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Abstract—To address the false data injection (FDI) and denial
of service (DoS) attack, this paper proposes an event-trigger
based resilient distributed energy management approach for
cyber-physical system of smart grid. Here, an event-trigger
based resilient consensus algorithm (ERCA) is proposed with
attack identification and compensation mechanism. The event-
triggered mechanism is improved within distributed optimization
combined with reliable acknowledgment (ACK) signals technique
to mitigate the impact of data loss or transmission delay, and
trust nodes based compensation approach is proposed during
resilient coordinated optimization for state correction to ensure
the stability and security of power grid system. The optimality
and convergence of proposed method is proved theoretically that
the proposed method can approximate to optimal solution well
and achieve consensus by ensuring the proactive involvement of
all participants under coordinated cyber attack. According to
those obtained simulation results, it reveals that the proposed
algorithm can effectively solve the energy management issue
under coordinated DoS and FDI attack.

Index Terms—Energy management, false data injection, denial
of service, event-triggered, resilient consensus algorithm
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Algebraic Symbols
G Undirected Graph
aij Doubly stochastic matrix
A Weight Matrix
Ni Neighbor node set
V Set of n agents
VG Distributed generators set
VD Responsive demands set
VT Trusted node set
VN Normal node set
VM Malicious node set
E Set of edges
B Connected dominating set
η Feedback proportional parameter
αk Decay iteration step
J(P ) Objective function
J
′

Differentiable value
H Upper limit of the differential value J

′

λi Incremental cost
ξi(k) Local mismatch power
Ci (Pi) Cost function of generator
PMj (Pmj ) Upper(Lower) bound of the load unit
a0i,a1i,a2i Cost parameter
Uj(Pj) Utility function
τj ,∂j Satisfaction factors
di (k) Derivative of the objective function J(P )
Li (k) Triggering threshold
Dij (k) Set of DoS attack nodes
Fi (k) Set of FDI attack nodes
Si (k) Set of secure nodes
ϕ Random communication loss rate
wij Row random matrix
W (k) Weight Matrix
Φ(k, t) Inverse product
Y (µ, ν) Optimal convex set
θi (k) State error
Π (t) Random vector
tack Communication time
tM Maximum delay time
λi
M(m) (k) Maximum/Minimum states

vλi False value
êi(k) Correction variable



I. INTRODUCTION

SMART grid is a power system based on information
technology and communication technology, which can

monitor, control, and optimize the various components of the
power system in real-time. Energy management is an impor-
tant part of smart grid. By optimizing the collection, storage,
conversion, and utilization of energy, energy management can
achieve efficient energy use, reduce energy consumption and
emissions, improve energy utilization efficiency, support the
application of new energy technologies, and attain sustain-
able energy development [1]. With the development of clean
energy and the limited ability of centralized energy supply
regulation, distributed architectures are widely used due to
their flexible energy supply and high energy utilization [2], [3].
Meanwhile, traditional network control systems heavily rely
on conventional technologies, while cyber-physical systems
(CPS) integrate physical processes, communication networks,
and enabling massive computing, precise control, and au-
tonomous coordination. Currently, CPS are widely applied
in smart grids, smart healthcare, and transportation systems
[4]. The rapid development of digital communication and
modern technology has provided opportunities for malicious
node attacks on CPS. Among them, FDI attacks and DoS
attacks are the most prevalent. Usually, FDI attacks inject false
information into the power system by tampering with data,
destroying the accuracy of system data. DoS attacks affect
the power system with numerous irrelevant requests, resulting
in communication disruption, data loss, and impacting real-
time data transmission. Obviously, both attacks affect the
reliability and security of the power grid, leading to inaccurate
and unreliable energy distribution and management. Therefore,
appropriate network security measures must be taken to ensure
the safety of smart grid.

There have been many studies on FDI attacks [5]–[9]. In
[5], a strategy is presented for resilient distributed secondary
control in island microgrids, aiming to ensure frequency
synchronization and recovery. This method employs a hidden
layer-based attack elastic control scheme, designed to counter-
act FDI attacks targeting secondary control system components
like actuators, sensors, and communication links. Cai et al. [6]
introduce a resilient distributed Nash Equilibrium search algo-
rithm that possesses resilient properties, allowing the system
to converge towards network elements even information about
the characterization of FDI attacks is missing. For network
multi-group systems, [8] provides a completely distributed
and resilient control approach, including the original network
physical layer and virtual elastic layer. This methodology is
designed to effectively address unforeseen and unlimited FDI
attacks. Guo et al. [9] designs an FDI attack scheme, taking
into account real-world physical scenarios. It crafts a forward
channel attack signal to achieve the stealthiness of FDI attacks.
In addition, there are also many research achievements on
DoS attack [10]–[17]. Reference [11] proposes a novel detec-
tion method based on Deterministic Probabilistic Automaton,
capturing anticipated states to detect malicious attacks during

the communication process in smart grids. In [15], the article
delves into the challenge of network security control when
faced DoS attacks, particularly focusing on equalization and
voltage restoration within isolated DC microgrids. The study
introduces a resilient sampling mechanism that aims to achieve
the restoration of bus voltage. Li et al. [17] tackle data loss
caused by DoS attacks by utilizing latest measurement packets.
They enhance the performance of traditional state estimation
algorithms by integrating Holt’s two-parameter exponential
smoothing and extended Kalman filtering techniques. In addi-
tion, event triggered mechanisms are actively used in resilient
methods to reduce the communication burden [18]–[21]. Lu et
al. [18] have established a new switching LFC system model
based on the event-triggered communication strategy, aiming
to reduce the communications burden and guarantee network
security. In Ref [21], a fresh event-triggered framework was
proposed by introducing the concept of “triggering domain”,
which relieved the communication burden and meanwhile
maintains the desired secure filtering performance for the
switched CPSs. Currently, existing resilience strategies for
studying both DoS and FDI attacks [22], [23] are limited. Guo
et al. [23] relies on an event-triggered mechanism to build
a switch-state feedback controller to ensure system stability
under attack. However, most existing methods only target
individual attacks and lack scalability, few methods have been
applied in energy management of smart grid. Therefore, this
paper focuses on cyber-physical system and proposes an event-
triggered resilient consensus strategy with an attack detection
mechanism. This strategy is designed to address the impact of
FDI and DoS attacks on power systems, ensuring the security
and efficiency of smart grids. The main contributions of this
work can be outlined as follows:

1) To address the DoS attack, event-triggered mechanism
based distributed optimization method is improved with
reliable ACK signals technique, which can detect the
transmission state of participant information. The im-
proved method can mitigate the impact of data loss or
transmission delay.

2) Due to the security risks posed by FDI attack, a com-
pensation mechanism is proposed during the coordinated
optimization on the basis of trust nodes based distributed
energy management approach, it can correct the abnormal
state with trust nodes identification technique, which
can be more scalable and stable in comparison to those
existing methods.

3) The convergence of proposed approach have been theo-
retically proved, and simulation results on IEEE 39-bus
system also reveal that the proposed method can tackle
with the energy management of power cyber-physical
system under DoS and FDI attack.

The subsequent sections can be organized as: Section II
establishes the system model and introduces the FDI and DoS
attack models. Section III outlines the primary resilient algo-
rithms. Section IV presents theoretical analysis, while Section
V showcases simulation outcomes validating the algorithm’s



reliability, and Section VI concludes the whole work.

II. PROBLEM FORMULATION AND
PRELIMINARIES

A. Communication Network Model
The network of power grid formed by various generators

and loads, can be conceptualized as an undirected graph. The
communication network can be described with an undirected
graph G = {V,E}, where V represents a set of n agents,
consisting of distributed generators set VG and responsive
demands set VD, E ⊂ V × V is the set of edges. For
an undirected graph, any edge (Vi, Vj) ∈ E also has a
corresponding edge (Vj , Vi) ∈ E. The neighbor node set of
each node i is defined as Ni = {j| j ∈ V, (i, j) ∈ E, j 6= i}.
This article does not consider self-loops, i.e.,(i, i) /∈ E,∀i ∈ V .
Additionally, a weight matrix A = [aij ] ∈ Rn×n is defined
to describe the connectivity between nodes. If the weight
matrix A is row or column stochastic, this means that either∑n
i=1 aij = 1 or

∑n
j=1 aij = 1; if it is double stochastic, both∑n

i=1 aij = 1 and
∑n
j=1 aij = 1 hold simultaneously. Here,

it defines a doubly stochastic matrix A:

aij =


1

|Ni|+1 , j ∈ Ni
1−

∑
j∈Ni

aij , j = i

0, j 6= i

(1)

Meanwhile, all nodes in the undirected graph are classified
into three types as:
• Trusted nodes: Investing more resources on trusted nodes

to enhance their security and make them less susceptible
to attacks, trusted node set is noted as VT .

• Normal nodes: Normal nodes can recognize information
about its neighbors and perform iterations. However, it
can be infected by attackers, normal node set is noted as
VN .

• Malicious nodes: Malicious nodes can obtain information
from their neighbors, maliciously modify the neighbor’s
information, and disrupt the iteration of normal nodes,
malicious node set is noted as VM .

The concept of connected dominating set is refereed in liter-
ature [24].

Definition 1: The set B ⊂ G is called as a connected
dominating set if arbitrary node i /∈ B has at least one neighbor
node j that satisfies j ∈ B, and all those nodes in set B can
form a connected graph.

Assumption 1: All trusted nodes can form a connected
dominating set of G = {V,E}.
B. Physical System Model

In a smart grid, the main task of energy management
involves minimizing costs associated with each generation and
load unit within a certain time range and improve energy
utilization efficiency with considering the balance between
generation and load demand and several power/load limits.
The specific problem is described as follows:

min J (P ) =
∑
i∈VG

Ci (Pi)−
∑
j∈VD

Uj (Pj) (2)

where Ci (Pi) is the cost function of generator i(i ∈ VG);
Uj (Pj) represents the utility function of each load j(j ∈ VD);
Pi and Pj are the generation power of each generator unit i
and the demand power of each load unit j respectively.

1) The cost function for generator i: The cost function
Ci (Pi) of each generation unit can be described as:

Ci (Pi) = a0iP
2
i + a1iPi + a2i (3)

where a0i,a1i,a2i is the cost parameter, PMi and Pmi are
the upper and lower limits of power generation, respectively.
Ci (Pi) maps the relationship between the generation cost
and the generation quantity of each power generation unit
i, where the quadratic cost term a0iP

2
i reflects variations in

power efficiency as the generated electricity quantity increases,
the linear cost term a1iPi reflects operational cost, and the
constant term a2i represents the fixed costs incurred during
the power generation process.

2) The utility function of the load: The utility function
Uj(Pj) represents the degree of satisfaction with the electricity
usage quantity Pj , it satisfies the following characteristics:
• Uj(Pj) is a continuously derivable non-concave function.
• Uj(Pj) is a non-decreasing function with a non-negative

first derivative.
• Uj(Pj) = 0, it means that when no electricity is used,

the satisfaction degree of the load unit is 0.
Therefore, a utility function Uj(Pj) that satisfies the following
condition as:

Uj(Pj) =

{
τjPj − ∂jP 2

j , Pj ≤ τj
2∂j

τ2
j

4∂j
, Pj >

τj
2∂j

(4)

where τj and ∂j are satisfaction factors, and the upper(lower)
bound of the load unit is PMj (Pmj ). The condition Pj ≤ τj

2∂j
reflects the consumer’s decreasing utility perceptions, i.e., the
user has a decreasing marginal utility as electricity consump-
tion increases; If τj

2∂j
is satisfied, the consumer has the maxi-

mum demand, and a further increase in electricity consumption
will no longer improve the consumer’s satisfaction. Therefore,
the optimization problem for multiple generation units and
load units can be described as:

min J (P ) =
∑
i∈VG

Ci (Pi)−
∑
j∈VD

Uj (Pj)

s.t.
∑
i∈VG

Pi =
∑
j∈VD

Pj

Pmi ≤ Pi ≤ PMi , i ∈ VG
Pmj ≤ Pj ≤ PMj , j ∈ VD

(5)

it is assumed that the objective function J(P ) is continuously
differentiable and Lipschitz continuous, and it satisfies that
the differentiable value J

′ ≤ H , where H is a constant. Thus,
consensus-based algorithms can be described as:

λi(k + 1) =
∑
j∈V

aijλj(k) + ηξi(k)− αkdi(k) (6)

where λi = 2a0iPi + a1i is the incremental cost of the
generation unit i, λj =

dUj(Pj)
dPj

is the incremental utility
of the load unit j, and ξi(k) represents the local mismatch



power of node i, η is the feedback proportional parameter
with 0 < η < 1, αk is the decay iteration step and it satisfies
Assumption 2 in literature [25], di (k) is the derivative of the
objective function J(P ).

Assumption 2: The decay iteration step αk satisfies
∞∑
0
αk = ∞,

∞∑
0
α2
k < ∞ and lim

k→∞
αk = 0, where αk is

designed to accelerate the convergence of λi to the optimal
value.

C. Cyber Attack Model

1) FDI Attack Model: Attackers can hijack normal nodes
and turn them into malicious nodes, which can import any
false information in the state variables, denoted as vλi . For
convenience, it simulates the situation where the state variable
λi (k) is under FDI attack. The state variable can be modeled
as:

λi (k + 1) =
∑
j∈V

aijλj (k) + ηξi(k)− αkdi(k) + τvλi (k)

(7)

where vλi ∈ R is an arbitrary value. If node i is hijacked
by an attacker, then τ = 1, while τ = 0 if it is a normal
node. If the attacker just injects random data into the system,
though the system convergence can be interrupted, it can be
easily detected by the inspector. Here, it is assumed that the
attacker can know some basic information of power system,
but the generated FDI attack can still disrupt the stability and
reliability of the power grid, which means that the FDI attack
satisfies Lemma 1.
Lemma 1: When the attack injects false data satisfies [26]:

lim
k→∞

τvλi (k) = 0,

∞∑
k=0

∣∣τvλi (k)
∣∣ ≤ Z, i ∈ V (8)

A stealthy attack is defined as i ∈ V :

lim
k→∞

λi (k) = λa, lim
k→∞

Pi (k) = Pi
a, lim
k→∞

ξi (k) = 0 (9)

where Z, λa, Pia are constant parameters.
2) DoS Attack Model: DoS attack can block the commu-

nication link between arbitrary node i and its neighbor node
j, which can result in the data loss between these two com-
munication nodes. Typically, the random communication loss
rate follows a Bernoulli distribution (binomial distribution) as
[27]:

Pr {ς (k) = 0} = ϕ

Pr {ς (k) = 1} = 1− ϕ (10)

where ς (k) = 1 signifies successful broadcast, while ς (k) = 0
represents failed communication, ϕ denotes the packet loss
rate between adjacent nodes, satisfying 0 < ϕ < 1. Typically,
the packet loss rate caused by DoS attacks is slightly higher
than the random loss rate. If a DoS attack occurs on the
communication path from node i to j, the broadcast state of
node i is λi (k + 1) = 0, as it fails to broadcast the data
successfully.

III. EVENT-TRIGGERED RESILIENT CONSENSUS
UNDER CYBER ATTACK

A. Detection of FDI and DoS Attack

For the purpose of monitoring participant state and mit-
igating the impact of DoS attacks, a secure and reliable
acknowledgment(ACK) [28] signal is introduced in this paper.
Node i simultaneously transmits state information and ACK
to its neighbor j. It is worth noting that ACK is assumed
to be completely reliable and will not be lost. And the
system cannot perform a timeout retransmission operation.
During the communication window of tack + tM , with tM
denoting the maximum delay, successful transmission of state
information is confirmed for node i if it receives ACK from
its neighbor. Conversely, failure to receive ACK marks the
communication path from node i to j as disrupted. Therefore,
setting Dij (k) = {i|ij ∈ DoS} (j ∈ Ni) represents the set
of nodes that did not successfully broadcast information when
the link between node i and j is disrupted by DoS attacks.

In addition, the state of the trusted node is the true trusted
value, so the FDI attack is detected through trusted node
screening. After node i collects neighbor’s information from
its neighboring node j, it sorts the collected trusted node state
and its own state to obtain the maximum/minimum states
λi
M(m) (k) = max (min) {λj (k) |j ∈ VT ∪ {i}}. When the

state of a normal node exceeds [λmi (k) , λMi (k)], it is consid-
ered to be infected by the attacker, and therefore the set of
nodes with abnormal states due to FDI attacks is designated
as Fi (k) = {i|i ∈ FDI}. When the node’s state is within the
range, it is considered safe, and the set of secure nodes is de-
noted as Si (k) =

{
i|λmi (k) ≤ λi (k) ≤ λMi , i ∈ Ni ∪ {i}

}
.

B. Resilient algorithm design under event-triggered mecha-
nism

To enhance microgrid security and reliability, an elastic
consistency algorithm is devised to alleviate the impact of
potential attacks. Preceding this, an event-triggered mechanism
is explored as a solution to the DoS attack concern. Initially, an
auxiliary variable ei (k) = λi (k)− λ̂i (k) is introduced, quan-
tifying the error between the current updated state and the pre-
ceding triggered state. Furthermore, Ti (k) = |ei (k)| −Li (k)
is defined, with Li (k) representing the triggering threshold,
which represents the maximum allowable error, and it should
satisfy Assumption 3.

Assumption 3: For all i ∈ V ,j ∈ Ni,Li (k) satisfies the
following attributes:

Li (k) ≤ L (k) , lim
k→∞

L (k) = 0,

∞∑
k=0

L2 (k) <∞. (11)

The condition for triggering the mechanism is Ti (k) > 0,
where k is the triggering time. If Ti (k) > 0, the event is
triggered,at which point λ̂i (k) = λi (k), and node i broadcasts
the current state to neighboring node j, otherwise, λ̂i (k) =
λ̂i (k − 1) = λi (k) + ei (k). Therefore, a correction variable



êi(k) is defined to simplify the iteration process of the event-
triggered mechanism.

êi (k) =

{
ei (k) , Ti (k) < 0
0, Ti (k) ≥ 0

(12)

where êi(k) is the correction variable.
Remark 1: Assumptions 2 and 3 explain the nature of

the decay iteration step and event triggering threshold, re-
spectively, and according to literature [25], the preferred data
format selected is ι

(k+ρ)o , where ρ and ι are positive constants,
and 0.5 < o ≤ 1, at which point the trigger frequency and
convergence rate can be effectively controlled.

Due to the information sharing among microgrids based on
the event-triggered communication mechanism, when a DoS
attack is detected, the event-triggered mechanism characteristic
is utilized to update the state of the current moment based
on the triggering state of the previous moment, ensuring the
normal iteration of the microgrid. It is worth mentioning that
nodes that fail to successfully send neighboring state values
may also be subject to FDI attacks. Therefore, all participants
need to rely on trusted nodes for abnormal state detection,all
abnormal nodes are in the set Fi (k). To correct the state
caused by FDI attack, this paper proposes a new iteration
algorithm for abnormal nodes, which relies on the average
state of the max and min states of their neighboring trusted
nodes to update their own states. Nodes within the safety set
are updated by normal iterative states. Combining with the
event-triggered mechanism, the state of each node at iteration
k is summarized as:

λ̃i (k) =


λ̂i (k − 1) , i ∈ Dij (k)

λ̂i (k) , i ∈ Si (k)
λ̂m
i (k)+λ̂M

i (k)
2 , i ∈ Fi (k)

(13)

The proposed algorithm firstly detects the state of each node
and assigns it to a reasonable set, and then broadcasts the
state λ̃i (k) of all participants based on 15. At the same time,
a row random matrix wij = 1

|Si+Fi| is designed to solve the
optimization problem. The consistency algorithm is rewritten
as follows:

λi(k + 1) =
∑

j∈Si(k)

wij λ̃j(k) +
∑

j∈Fi(k)

wij λ̃j(k)

+ τvλi (k) + ηξi(k)− αkdi(k) (14)

Then the specific energy management procedures are described
in Algorithm 1.

IV. CONVERGENCE ANALYSIS OF ERCA

With consideration of the effects of FDI and DoS attacks,
this section validates the performance of ERCA. Some lemmas
are required as follows, which is critical for the proof of the
following convergence analysis.

Lemma 2: If the set of trusted nodes satisfies Assumption
1, the matrix form of Algorithm (14) can be written as:

Γ(k + 1) =W (k)Γ(k) + ∆(k)− αkdk (18)

Algorithm 1 Event-triggered resilient consensus algo-
rithm(ERCA)
Initialization: set λi(0), Pi(0), and ξi (0),i ∈ V as follows,

λi (0) =

{
Ci
′ (Pmi ) , i ∈ Vg

Ui
′ (PMi ) , i ∈ Vd , Pi (0) = ξi (0) = 0,∀i ∈ V

(15)

set σ1 and σ2 as termination errors.
Iteration:Loop

Step 1. Revision of λ̃i(k) is carried out by each node i
based on (13).

Step 2. Update of λi(k + 1) is performed by each node
i according to (14).

Step 3. Update of P (k + 1) is executed by each node i.

Pi (k + 1) =
arg min

Pi
m≤Pi(k)≤PM

i

[Ci (Pi (k))− λi (k + 1)Pi (k)] , i ∈ Vg

arg min
Pi

m≤Pi(k)≤PM
i

[λi (k + 1)Pi (k)− Ui (Pi (k))] , j ∈ Vd

(16)

Step 4. Update of ξi(k) is conducted by each node i.

ξi(k + 1) =
∑
j∈V

aij ξ̂j (k) + Pi (k)− Pi (k + 1) , i ∈ Vg∑
j∈V

aij ξ̂j (k) + Pi (k + 1)− Pi (k) , j ∈ Vd
(17)

Until |λi(k + 1)− λi| < σ1 or |ξi(k)| < σ2 for all i ∈ V .
Output λi, Pi, and ξi, i ∈ V .

where weighting matrix W (k) = [wij ]N×N , gradi-
ent vector matrix dk = [d1 (k) , d2 (k) , · · · , dN (k)], and
state errors matrix ∆k = [∆1,∆2, · · · ,∆N ]. Espe-
cially, the state error of abnormal nodes are defined as
θi (k) =

∑
j∈Fi(k) wij

(
λ̂m
i (k)+λ̂M

i (k)
2 − λ̂j (k)

)
, where ∆(k)

is bounded. It should be noted that the presence of state
errors leads to differences in the proofs of Lemma 2 and [29],
besides, the proof in this paper consider convergence for all
participants.

Proof: The Lemma 2 can be proved in Appendix.A.
Lemma 3: If ERCA satisfies Assumption 1, any sequence

Φ(k, t) satisfies the following nature [24]:
1) Φ(k, t) has limk≥t,k→∞Φ(k, t) = 1Π(t), where Π (t) ∈

RN is a random vector related to t.
2) Φ(k, t) satisfies |Φij(k, t)−Πi(t)| ≤ (1− σn)[ k−t+1

n ].
The next proof is based on the Lemma 3. Meanwhile,

formula (18) can also be written in the form of (19) as

Γ(k + 1)

=W (k)Γ(k) + ∆(k)− αkdk

=Φ(k, 0)Γ(0)−
k+1∑
t=1

Φ(k, t)αt−1dt−1 +

k+1∑
t=1

Φ(k, t)∆(t− 1)

(19)



where Φ(k, t) = W (k) · · ·W (t), t < k, Φ(k, k) = W (k), and
Φ(k, k+1) = IN .IN is an identity matrix of size N×N . With
consideration of the properties of FDI attacks and referring
to Lemma 1, the state error values θi(k) and subgradient dk
satisfy Assumption 4 and 5.

Assumption 4: For all i ∈ V , j ∈ Ni, θi(k) satisfies the
following attributes:

θi(k) ≤ θ(k), lim
k→∞

θ(k) = 0,

∞∑
k=0

θ2(k) <∞. (20)

Assumption 5: Assume for all participants that the com-
putation of dk stops after k, that is, after k subgradient is
replaced by 0.

Assumption 5 implies that all participants are in a smooth
state after k iterations and their state values do not change,
then one can also obtain that ∆i (k) = 0. For all k > k,
according to Lemma 2, as k →∞, it can get:

lim
k→∞

Γ(k̄ + k)

= lim
k→∞

Φ(k, 0)Γ(0)−
k̄∑
t=1

lim
k→∞

αt−1Φ(k̄ + k, t)dt−1

+

k̄∑
t=1

lim
k→∞

Φ(k̄ + k, t)∆(t− 1)

= [〈Π(0),Γ(0)〉 −
k̄∑
t=1

〈Π(t), αt−1dt−1 −∆(t− 1)〉]1 (21)

It can be found that the limit values of this vector converge
to the same value, and the same value is defined as y(k), it
can get

y(k̄) = 〈Π(0),Γ(0)〉 −
k̄∑
t=1

〈Π(t), αt−1dt−1 −∆(t− 1)〉.

(22)

Combined with Assumption 5 and (22), the iterative equation
for y(k̄) can be written as:

y(k̄ + 1) = y(k̄)−
〈
Π(k + 1), αkdk −∆(k)

〉
(23)

For convenience, replace k with k. The convergence state
of the state values is evaluated by referring to the convex
optimal set of [24]. Firstly, for any given µ and v, the set
of functions is C (µ, ν) =

{
q (λ)

∣∣q (λ) =
∑
i∈V Υiti(λ)

}
,

where Υi ≥ 0,
∑
i∈V Υi = 1,

∑
i∈V I {Υi ≥ µ} = v, and

I (·) is the indicator function. Then define the optimal convex
set

Y (µ, ν) = ∪q(x)∈C(µ,ν) arg min
x∈R

q(x) (24)

This proof shows that λi (k) converges to the intermediate
factor y(k), followed by y(k) converging to the convex set
Y (µ, ν). Note that Y (µ, ν) is a convex set when µ ≥ r0

−r0

and ν = r1. Specific parametric properties about r0 and r1

can be found in Ref. [24].
Lemma 4: Let {ak}∞k=0, {bk}∞k=0, and {ck}∞k=0 be non-

negative sequences. Suppose that

ak+1 ≤ ak − bk + ck,∀k > 0

with
∞∑
k=0

ck < ∞. Then
∞∑
k=0

bk < ∞ and the sequence

{ak}∞k=0 converges to a nonnegative value [29].
Lemma 5: ∀x ∈ R and ∀k ≥ 0, then the following relation

holds:∣∣y(k + 1)− λ|2

≤
∣∣y(k)− λ|2 + 4Hαk

n∑
j=1

Πj(k + 1)|y(k)− λj(k)|

− 2αk

n∑
j=1

Πj(k + 1)(tj(y(k))− tj(λ))

+ 2
n∑
j=1

Πj(k + 1)∆j(k)(y(k)− λ) +

n∑
j=1

(αkdk −∆(k))
2

(25)

Proof: The Lemma 5 can be proved in Appendix.B.
Lemma 6: Let x = min

i∈Vi

λi(0), and X = max
i∈Vi

λi(0). For

∀i ∈ Vi, the following inequality can be obtained inequality:

|y(k)− λi(k)| ≤ n(1− σn)[ k
n ] max {|x| , |X|}

+ nH

k−1∑
t=1

αt−1(1− σn)
[ k−t

n ]
+ 2(αk−1H + M(k − 1))

(26)

Proof: The upper bound on (26) is proved in Appendix.C.

Lemma 7: If Assumption 1 holds, one can obtain
∞∑
k=0

ck <

∞. And then, one can obtain achieve

lim
k→∞

|y(k)− λi(k)| = 0 (27)

Proof: The Lemma 7 can be proved in Appendix.D.
From Lemma 7, one eventually obtains lim

k→∞
λi (k) =

lim
k→∞

λj (k) ∈ Y (µ, v). Thus, the proof of convergence of
the algorithm ERCA ends.

V. SIMULATION RESULTS

This chapter validates the effectiveness of ERCA in an IEEE
39-bus system, which consists of ten generators with i = 1 ∼
10, and eighteen load consumers with j = 11 ∼ 28. To testify
resilient defense strategies against DoS and FDI attacks, nodes
1,2,7,12,17,18,19,21,22,23 and 28 are set as trusted nodes,
blue nodes are set to normal nodes, and red nodes 4,10,26
and 27 as nodes infected by FDI attack, communication links
9↔ 24 and 25↔ 26 are considered as being subjected to DoS
attacks. The specific network diagram is shown in Figure 1,
and all parameter details about generators and load consumers
can be found in literature [30]. The case was presented based
on vλ4 (k) = 40 ∗ 0.35k, v10λ (k) = 100 ∗ 0.85k, v26λ (k) =
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Fig. 1: The physical structure and network example of an
IEEE 39-bus system.

30 ∗ 0.25k, v10λ (k) = 50 ∗ 0.35k to show the effect of
FDI attacks and based on ϕ (9↔ 24, 25↔ 26) = 0.2 to
demonstrate the situation of DoS attacks. The results obtained
include two parts: analysis of attack disruption and analysis
of resistance strategy results, as shown from V-A to V-B.

A. Convergence Analysis under FDI and DoS Attacks

0 50 100 150 200

k

0

5

10

i

(a) Electricity Price

0 50 100 150 200

k

-200

0

200

400

P
i

(b) Generation/Load Power

0 50 100 150 200

k

-100

0

100

200

 i

(c) Parameter 

0 50 100 150 200

k

0

500

1000

G
lo

b
a

l 
p

o
w

e
r 

d
e

v
ia

ti
o

n

(d) Power Mismatch

power deviation

  * =6.586

Fig. 2: System convergence performance of CEMA without
attacks.

According to CEMA in Literature [30], the optimal elec-
tricity price and optimal output can be obtained, as well
as the error between local and global power generation and
load demand, as shown in Figure 2. The electricity price
information is λi = 6.586, the power generation and demand
distribution are shown in Figure 2(b), where the load power is
set to negative power. Figure 2(c) shows that the local power
error gradually approaches 0. Figure 2(d) shows that global

power error is 0, which means that the equality constraint of
Equation 5 are satisfied. Figure 3(a), 5(a) and 6(a) show the
performance of the traditional algorithm CEMA under both
FDI and DoS attacks. The final electricity prices of each power
generation and load unit are shown in Figure 3(a). Due to
the presence of FDI attacks, the electricity price of the node
reached an abnormal peak within 200 iterations, gradually
falling back to a convergent value, which could mislead the
system to produce incorrect energy management results. Some
links are affected by DoS attacks, causing obvious oscillations
in the iteration of the node and affecting the convergence state,
thus destroying the optimality of the traditional algorithm. As
shown in Figure 5(a), the fluctuation of electricity price will
affect the optimal output of the system. The optimal output
of the attacked node fluctuates greatly. Figure 7 shows the
trajectory of the mismatch between global power generation
and demand, that is, the balance constraint

∑
i∈VG

Pi =
∑
j∈VD

Pj ,

where can be seen that there is a serious imbalance between
supply and demand as a result of FDI and DoS attacks. And
Figure 6(a) is the local power error, it shows that under the
comprehensive effect of attacks, the local power mismatch of
the system is unbalanced, which means that the global supply
and demand are unbalanced.

B. Comparison Analysis with Resistance Strategy

To prove the optimality of the energy management al-
gorithm amid DoS and FDI attacks, this paper shows the
performance of ERCA algorithm. Figures 3, 5, 6 and 7
provide a comparative analysis of DoS and FDI attacks on
CEMA and ERCA, demonstrating the superior performance
of ERCA. In Figure 3(b), prices continue to exhibit significant
oscillations due to FDI attacks. While λi is very close to
the optimal price within 200 iterations. Despite the impact
of DoS, characterized by packet loss, the incremental cost
estimation still converges towards the optimal electricity price.
Figure 4 shows the number of packet losses incurred by a node
experiencing a DoS attack. Additionally, Figure 5(b) presents
that the attack has minimal impact on optimal power output
under the resilient strategy.
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Fig. 3: Comparison of convergence performance of λi
between CEMA under attacks and ERCA.
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Fig. 4: Statistics on the number of DoS attacks on nodes.
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Fig. 5: Comparison of convergence performance of Pi
between CEMA under attacks and ERCA.
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From Figure 6(b), it can be seen that the proposed ERCA al-
gorithm can effectively eliminate the imbalance error between
local power generation and load demand. To better highlight
ERCA performance, Figure 7 compares the error between
global power generation and load demand imbalance under
ERCA,CAMA and CEMA under FDI and DoS attacks. It is
evident that the convergence effect of the ERCA algorithm
approaches the obtained solution of CEMA and greatly elim-
inates the impact of attacks. The information sharing in this
paper is based on an event-triggered communication mecha-
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Fig. 7: Convergence performance of global power deviation
under ERCA.

nism. The proposed mechanism alleviates the communication
burden caused by attacks. As shown in Figure 8, compared
with traditional communication methods, the event-triggered
mechanism greatly reduces the communication frequency of
the system. There is no abnormality in the communication
frequency of the attacking nodes 4, 10, 26, and 27, which
further verifies that the ERCA algorithm mitigates the impact
of the attack. The proposed ERCA algorithm in this paper
can achieve efficient and secure operation of the system even
under cyber attack.
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Fig. 8: Number of communications.

VI. CONCLUSION
This paper proposes a resilient consistency algorithm for

Cyber-Physical systems when subjected to DoS and FDI
attacks, ensuring the security and stability of the power
grid. The paper designs models for FDI and DoS attacks, it
introduces ACK signals and configures trusted nodes to detect
DoS and FDI attacks. Finally, compensation measures based
on event-triggering are designed to ensure the secure update
of information and guarantee the system’s stable operation.
Additionally, the theoretical validity of ERCA is verified, and



simulations are conducted to further confirm the effectiveness
and superiority of ERCA. The current work focuses on design-
ing resilient strategies tailored to the characteristics of DoS and
FDI attacks, and future work will focuse on attacks in Cyber-
Physical System and designing resilient distributed strategies
with generality.

ACKNOWLEDGMENT

This work was supported in part by National Nat-
ural Science Fund (Grant NO. 61973171, 62293500,
62293505, 52077106 62233010), the Basic research project
of leading technology of Jiangsu Province under Grant
(BK20202011), National Natural Science Fund of Jiangsu
province (BK20211276).

REFERENCES

[1] H. Zhang, Z. Chen, T. Ye, D. Yue, X. Xie, X. Hu, C. Dou, G. P.
Hancke, and Y. Xue, “Security event-trigger-based distributed energy
management of cyber-physical isolated power system with considering
nonsmooth effects,” IEEE Transactions on Cybernetics, pp. 1–12, 2023.

[2] Z.-W. Liu, X. Yu, Z.-H. Guan, B. Hu, and C. Li, “Pulse-modulated inter-
mittent control in consensus of multiagent systems,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 47, no. 5, pp. 783–793,
2017.

[3] Z.-W. Liu, G. Wen, X. Yu, Z.-H. Guan, and T. Huang, “Delayed
impulsive control for consensus of multiagent systems with switching
communication graphs,” IEEE Transactions on Cybernetics, vol. 50,
no. 7, pp. 3045–3055, 2020.

[4] Y. Gao, J. Ma, J. Wang, and Y. Wu, “Event-triggered adaptive fixed-
time secure control for nonlinear cyber-physical system with false
data-injection attacks,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 70, no. 1, pp. 316–320, 2023.

[5] Y. Chen, D. Qi, H. Dong, C. Li, Z. Li, and J. Zhang, “A fdi attack-
resilient distributed secondary control strategy for islanded microgrids,”
IEEE Transactions on Smart Grid, vol. 12, no. 3, pp. 1929–1938, 2021.

[6] X. Cai, F. Xiao, and B. Wei, “Resilient nash equilibrium seeking in
multiagent games under false data injection attacks,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 53, no. 1, pp. 275–284,
2023.

[7] H. Zhang, D. Yue, C. Dou, and G. P. Hancke, “Resilient optimal defen-
sive strategy of micro-grids system via distributed deep reinforcement
learning approach against fdi attack,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–11, 2022.

[8] S. Zuo and D. Yue, “Resilient containment of multigroup systems against
unknown unbounded fdi attacks,” IEEE Transactions on Industrial
Electronics, vol. 69, no. 3, pp. 2864–2873, 2022.

[9] H. Guo, J. Sun, and Z.-H. Pang, “Stealthy fdi attacks against networked
control systems using two filters with an arbitrary gain,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 69, no. 7, pp.
3219–3223, 2022.

[10] A.-Y. Lu and G.-H. Yang, “Input-to-state stabilizing control for cyber-
physical systems with multiple transmission channels under denial of
service,” IEEE Transactions on Automatic Control, vol. 63, no. 6, pp.
1813–1820, 2018.
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APPENDIX

A. Proof of Lemma 2

The states of all participants can be divided into three
groups: the node state set Dij (k) under DoS attack, the normal
node state set Si (k) and the abnormal state set Fi (k), in
which the own state is included in set Si (k). Since the states
in Dij (k) need to be tested for FDI attacks at the same time,
the states of set Dij (k) are distributed among the sets Si (k)



and Fi (k). Thus, the state of node i at time k can be described
as:

λi (k) =wij

 ∑
j∈Si(k)

λ̃j (k) +
∑

j∈Fi(k)

λ̃j (k)


=
∑
j∈V

wijλj (k) +
∑
j∈V

wij êj (k) +
∑

j∈Si(k)

wijei (k)

+
∑

j∈Fi(k)

wij

(
λ̂mi (k) + λ̂Mi (k)

2
− λ̂j (k)

)
(28)

According to formula (14), the state error can be described
as ∆i(k) =

∑
j∈V wij êj (k) +

∑
j∈Si(k) wijei (k) + θi (k) +

ηξi(k) + τvλi (k), where
∑

j∈Si(k)

wijei (k) is the normal state

error in the set Dij (k). So formula (14) can be rewritten
as λi (k + 1) =

∑
j∈V

wijλj (k) + ∆i (k) − αkdk. Then, since

matrix wij is a row stochastic matrix, formula (19) can be
deduced. Besides, those the auxiliary variables satisfy:

∑
j∈V

wij êj(k) ≤
∑
j∈Ni

wij(‖ej(k)‖) ≤ L(k − 1) (29)

where L (k − 1) is bounded, then it can obtain that êi(k)
is bounded. In the same way, it can obtain that ei(k) also
converges. According to assumption 4 and literature [30], it
can obtain that θi (k) and ηξi(k) are bounded. Thus, it can be
deduced that the state error ∆i(k) is bounded. �

B. Proof of Lemma 5

For any x ∈ R and any k ≥ 0, it can obtain:

∣∣y(k + 1)− λ|2

=|y(k)− 〈Π(k + 1), αkdk −∆(k)〉 − λ|2

=|y(k)− λ|2 − 2(y(k)− λ) 〈Π(k + 1), αkdk −∆(k)〉
+ | 〈Π(k + 1), αkdk −∆(k)〉 |2 (30)

Combined with Cauchy-Schwarz inequality, it satisfies

‖Π(k + 1)‖2 ≤
n∑
j=1

Πj(k + 1) = 1, then it can obtain:

| 〈Π(k + 1), αkdk −∆(k)〉 |2
a
≤‖Π(k + 1)‖2‖αkdk −∆(k)‖2

b
≤‖αkdk −∆(k)‖2

=

n∑
j=1

(αkdk −∆(k))
2 (31)

On the basis of the second term on the right of formula
(30), the following inequality can be deduced:

− 2(y(k)− λ) 〈Π(k + 1), αkdk −∆(k)〉

≤ 4Hαk

n∑
j=1

Πj(k + 1)(y(k)− λj(k))

− 2αk

n∑
j=1

Πj(k + 1)(tj(y(k))− tj(λ))

+ 2

n∑
j=1

Πj(k + 1)∆j(k)(y(k)− λ) (32)

The inequality satisfies the condition that tj(·) is L-
Lipschitz continuous for each j ∈ V . �

C. Proof of Lemma 6

For k > 0, formula (19) can be rewritten as:

Γ(k) =Φ(k − 1, 0)Γ(0)−
k∑
t=1

Φ(k − 1, t)αt−1dt−1

+

k∑
t=1

Φ(k − 1, t)∆(t− 1) (33)

Then, each λi(k) can be calculated as:

λi(k) =

n∑
j=1

Φij(k − 1, 0)λj(0)

−
n∑
j=1

k∑
t=1

Φ(k − 1, t)(αt−1dj(t− 1)−∆j(t− 1))

(34)

Thus, formula (22) can be written as y(k) =
n∑
j=1

Πj(0)λj(0)−
n∑
j=1

k∑
t=1

Πj(t)(αt−1dj(t−1)−∆j(t−1)). According to formula

(33) and (34), it can obtain:

|y(k)− λj(k)| ≤ |
n∑
j=1

(Πj(0)− Φij(k − 1, 0))|λj(0)

+

n∑
j=1

k∑
t=1

(Φij(k − 1, t)−Πj(t))(αt−1dj(t− 1)−∆j(t− 1))

(35)

For the first term of the second equation of formula (30),
it can obtain:

|
n∑
j=1

(Πj(0)− Φij(k − 1, 0))|λj(0)

≤
n∑
j=1

|Πj(0)− Φij(k − 1, 0)||λj(0)|

≤n(1− σn)[ k
n ] max {|x| , |X|} (36)



In addition, since the condition Φ(k − 1, k) = I holds, the
second term in formula (34) satisfies:
n∑
j=1

k∑
t=1

(Φij(k − 1, t)−Πj(t))(αt−1dj(t− 1)−∆j(t− 1))

≤
k−1∑
t=1

(

n∑
j=1

|Φij(k − 1, t),Πj(t)||αt−1||dj(t− 1)|

+

n∑
j=1

Πj(k)|(αk−1(di(k − 1)− dj(k − 1))|

+

n∑
j=1

|∆j(k − 1)−∆i(k + 1)|

≤ nH
k−1∑
t=1

αt−1(1− σn)
[ k−t

n ]
+ 2(αk−1H + M(k − 1))

(37)

where M(k) is the upper bound of
n∑
j=1

∆j(k). Combined with

formula (35), (36) and (37), then Lemma 6 holds. �

D. Proof of lemma 7
Let λ∗ ∈ Y (µ, ν). According to Lemma 4, it can obtain:∣∣y(k + 1)− λ∗|2

≤
∣∣y(k)− λ∗|2 + 4Hαk

n∑
j=1

Πj(k + 1)|y(k)− λj(k)|

− 2αk

n∑
j=1

Πj(k + 1)(tj(y(k))− tj(λ∗))

+ 2

n∑
j=1

Πj(k + 1)∆j(k)(y(k)− λ∗) +

n∑
j=1

(αkdk −∆(k))
2

(38)

Here, some variables can be defined as follows:

ak =
∣∣y(k)− λ∗|2

bk = 2αk

n∑
j=1

Πj(k + 1)(tj(y(k))− tj(λ∗))

ck = 4Hαk

n∑
j=1

Πj(k + 1)|y(k)− λj(k)|

+ 2

n∑
j=1

Πj(k + 1)∆j(k)(y(k)− λ∗) +

n∑
j=1

(αkdk −∆(k))
2

(39)

Then, it is obvious that ak ≥ 0 and ck ≥ 0. Thus, it can
deduce that bk ≥ 0. The first item of the ck satisfies:
n∑
j=1

Πj(k + 1)|y(k)− λj(k)| ≤ n(1− σn)[ k
n ] max {|x| , |X|}

+ nH

k−1∑
t=1

αt−1(1− σn)
[ k−t

n ]
+ 2(αk−1H + M(k − 1))

(40)

Then, it can be further deduced as:
∞∑
k=0

4Hαk

n∑
j=1

Πj(k + 1)|y(k)− λj(k)|

≤
∞∑
k=0

4Hαkn(1− σn)[ k
n ] max {|x| , |X|}

+
nH

2

∞∑
k=0

k−1∑
t=1

α2(k)(1− σn)[ k−t
n ] + 2

∞∑
k=0

(αk−1H + M(k − 1))

+
nH

2

∞∑
k=0

k−1∑
t=1

α2(k − 1)(1− σn)[ k−t
n ] <∞ (41)

On the basis of Assumption (5), the third item of the ck
satisfies:
∞∑
k=0

n∑
j=1

(αkdk −∆(k))
2

=

k∑
k=0

n∑
j=1

(αkdk −∆(k))
2
<∞

(42)

Similarly, the second term can be deduced as:

2

∞∑
k=0

n∑
j=1

Πj(k + 1)∆j(k)(y(k)− λ∗)

= 2

k∑
k=0

∆(k)

n∑
j=1

Πj(k + 1)(y(k)− λ∗) <∞ (43)

Hence, it satisfies that
∞∑
k=0

ck < ∞, then it can deduce that
∞∑
k=0

bk <∞ as follows:

∞∑
k=0

bk =

∞∑
k=0

2αk

n∑
j=1

Πj(k + 1)(tj(y(k))− tj(λ∗)) <∞

(44)

It follows that y(k) converges with k. Suppose that
lim
k→∞

y(k) /∈ Y (µ, v), then formula (45) can be obtained.

lim
k→∞

n∑
j=1

Πj(k + 1)tj(y(k))−
n∑
j=1

Πj(k + 1)tj(λ
∗) 6= 0

(45)

Then, it is obvious that formula (45) contradicts with formula
(44), it can be deduced that lim

k→∞
y(k) ∈ Y (µ, v). So, it can

be deduced that y(k) is the limit of λi(k). Thus if k ≥ k,
y(k) = y(k), it can be obtain:

lim
k→∞

|y(k)− λi(k)| = 0 (46)

Hence, it can be proved that Lemma 7 holds. �
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