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Abstract
Recent advances in the field of immuno-oncology have brought transformative changes in the management of
cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and
treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as
potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby
expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the
phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically
relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to
guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now
provide unprecedented insights into the tumour microenvironment, including the potential interplay between
various cell types. However, there are significant challenges to widespread integration of these technologies in daily
research and clinical practice. This review addresses the challenges and potential solutions within a structured
framework of action from a regulatory and clinical trial perspective. New developments within the field of
immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described,
with a specific focus on translational implications across different subtypes of cancer.
© 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.

Keywords: multiplex immunofluorescence; multiplex immunohistochemistry; tumour infiltrating lymphocytes; multiplex imaging; digital
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Fundamentals of immune infiltration in cancer

In earlier concepts of cancer, the specific role of the
immune system in the pathogenesis of malignancy was
not well recognised. Over the last 15 years, however, the
crucial role that the host immune system plays in tumour
evolution has been brought to the forefront of cancer
research; indeed, the immune landscape of tumours has
emerged as a key hallmark of cancer [1]. During
oncogenesis, alteration of the tumour microenvironment
(TME) and tumour neoantigens trigger signals that facil-
itate immune responses in an attempt to eliminate
preneoplastic cells [2]. Immune cells of varying density
can be found in most types of malignancy due to the
immunogenic response triggered by cancer cells [3].
The accumulation of different immune cells can have both
tumour-promoting and tumour-suppressive functions [4].

In the first phase of tumourigenesis, cytotoxic
immune cells such as NK and cytotoxic CD8+ T cells
identify and kill only highly immunogenic cancer cells.
Consequently, less immunogenic cells escape the reach
of both the adaptive and innate immune systems, foster-
ing the progression to malignancy [5]. Thus, heteroge-
neous populations of immune infiltrates can drive
tumour progression via a complex network of crosstalk
between themselves and the other components of the
TME. The qualitative characterisation of this interplay
between immune infiltrates and cancer cells is called the
immune contexture [6], which encompasses the density
of each immune infiltrate and their spatial architecture
across the tumour. Profiling immune contexture is one of
the most significant ways to obtain insights into immune
responses and has the potential to provide information
with predictive and prognostic value [6]. Numerous
studies over the years have provided strong evidence
linking the presence of tumour-infiltrating lymphocytes
(TILs) with clinical outcomes in various tumour types,
such as melanoma, breast, colorectal, and non-small cell
lung cancer (NSCLC) [7–11]. Hence, there is consider-
able interest in the scientific community with respect to
approaches that can appropriately profile the immune
contexture in cancer tissue samples.

Routine H&E staining in diagnostic laboratories
allows for histopathological assessment of the general
degree of immune infiltration, but possesses significant

limitations. Significantly, subtyping of functionally dis-
tinct immune cell populations is not possible with H&E
staining. Even though the presence of a specific immune
population is important, more nuanced characteristics,
including the quantity, functional state, spatial distribution,
and interplay of immune subpopulations in the TME,
collectively influence tumour progression [12]. Therefore,
mapping multiple layers of biological characteristics is
required to acquire information of maximum clinical
value. To achieve this, many state-of-the-art multiplexed
imaging technologies have been developed in recent
years [13]. These platforms offer the ability to quantita-
tively assessmultiple biomarkers to elucidate the biological
characteristics, density, and spatial distribution of different
classes of immune cells with objective quantitative data.
The ability to perform multiparametric assessment of
immune cells allows one to explore and extract a pleth-
ora of novel spatial features of translational and func-
tional significance.

Advantages of multiplex immunostaining

Traditionally, H&E and conventional immunohisto-
chemistry (IHC) have been considered the gold standard
for evaluating histopathological biomarkers of clinical
relevance. However, given that only a very limited
number of markers can be assessed at the same time,
such approaches can be extremely limiting. In the era of
ever-increasing findings in immune-oncology research,
it is becoming more and more crucial to obtain informa-
tion on multiple biomarkers to make more accurate
clinical decisions [14]. It has already been shown in a
meta-analysis that multiplex immunostaining-based
assays outperform other commonly used assay modali-
ties in predicting response to anti-PD-1/PD-L1 therapy,
including PD-L1 IHC, tumour mutational burden, and
gene-expression profiling [15].

Multiplex IHC and immunofluorescence (mIHC/IF)
allow simultaneous analysis of multiple markers on the
same tissue section. Depending on different mIHC/IF
technologies, the number of assessable markers gener-
ally varies between relatively discrete panels (two to eight
markers) (Figure 1) to high-plex panels (up to 100) [13].
Simultaneous assessment of multiple markers provides
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mIHC/IF with key advantages over H&E or conventional
IHC. First, with conventional IHC, it is often necessary to
stain the same number of serial tissue sections as the
number of markers that need to be assessed, risking tissue
depletion, particularly on core needle biopsies that are the
mainstay of primary diagnosis in many settings (Figure 2).
Indeed, with these traditional approaches it can be very

challenging to investigate an extensive panel of immune
markers after exhausting most of the usable sections for
routine diagnostic markers. Second, it is only possible to
visually cross-compare up to two or three consecutive
sections if one wants to study the colocalisation or spa-
tial relationship between different markers. For example,
an average lymphocyte is 10 μm in diameter, and with

Figure 1. mIF staining of a panel of five immune markers plus one epithelial marker. (A and B) A breast cancer TMA core showing composite
staining of each of the six markers in the mIF panel (CD4, CD8, FOXP3, CD68, CD68, and PanCK) together with DAPI. (C–H) Individual images
of CD4 (green), CD8 (yellow), FOXP3 (orange), CD68 (red), CD20 (white), and PanCK (purple) with DAPI counterstain.

Figure 2. Comparison of experimental design between conventional chromogenic IHC and mIF. (A) In conventional chromogenic IHC, each
marker requires a separate slide. Although multiplexing with chromogenic IHC is possible, it is severely restricted in terms of the number of
markers that can be simultaneously stained. (B) With mIF, one section is enough to examine multiple markers. The figure was partly created
using BioRender.com.
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sections of standardised thickness (3–5 μm), it is possi-
ble to have a maximum of three consecutive sections of
the same cell [13]. Alternatively, there is an option to use
virtual multiplexing, where multiple single-stained serial
images are digitally stacked on top of one another to
provide a multiplex effect [16]. However, these images
are not always reliable for cell phenotyping, especially
where there are co-expressed markers, due to the similar
limitation in that specific cells are not consistently pre-
sent across multiple tissue sections. Also, these
workflows are impractical for most high-throughput
clinical study/trial requirements [17].

As far as biological information is concerned, multi-
plex imaging brings a wealth of additional information
to the table, which is impossible to extract from H&E or
conventional IHC (Figure 3). The majority of method-
ologies described for TIL scoring in histopathological
samples use H&E staining [18,19]. However, H&E
staining only reveals the degree of total lymphocyte
infiltration. TIL populations may contain both
antitumour and tumour-promoting immune cells;
therefore, without further subtyping, it is not possible
to capture an accurate representation of the immune
contexture. Multiplex imaging techniques offer a huge
advantage here, as it is possible to simultaneously
phenotype multiple immune populations. Admittedly, it
is possible to quantify the infiltration of specific
populations with single-plex IHC staining of serial
sections, but in most cases it is not enough to characterise
their functional status in samples. For example, T cell
populations may be labelled with CD3. However, T cells
can co-exist in dozens of different states having

significantly different biological functions in the TME,
states that can only be characterised by further profiling
the lineage markers in the cells. For instance, CD3+CD8+

co-expressing T cells represent cancer-killing cytotoxic T
cells and CD3+CD4+FOXP3+ co-expressors represent
tumour-promoting T regulatory cells (Tregs).
Furthermore, multiplex staining provides a much

deeper insight into the spatial characteristics of the
targeted cell populations and allows any proximal
association between cells expressing specific markers
to be deciphered. Assessment of immune cells in
a multiplex setting enhances spatial mapping of immune
cells in relation to tumour cells as malignant cells can be
labelled concurrently [20]. Combined with digital image
analysis (DIA), this process allows faster and higher-
throughput quantification of stromal, intratumoural, and
peritumoural TILs compared with manual evaluation.

DIA and artificial intelligence

In a multiplex-based immune profiling workflow, the
first step after staining involves digitising the stained
section into a high-resolution image using a whole-slide
imaging scanner. Multiplex images carry a massive
amount of complex biological information, and to
extract and manage this wealth of data, histopathological
DIA software is used.
Prior to analysis, raw scan images usually undergo a

number of preprocessing steps to eliminate autoflu-
orescence and unmix overlapping fluorophore signals.

Figure 3. TIL profiling with H&E versus conventional chromogenic IHC versus mIF. (A) H&E staining enables the measurement of total TILs in
tissue, whereas, with conventional IHC, a specific immune population can be profiled based on a single protein marker. (B) mIF staining
allows the total TIL population to be subtyped based on multiple markers. It is also possible to further characterise cells based on
marker colocalisation. With an epithelial or tumour differentiation marker, it is possible to automate tumour–stroma segmentation
with image analysis software. Furthermore, multiplex images can be used to map spatial distributions of different cell phenotypes and
examine their proximal associations, and further identify distinct cellular neighbourhoods. Created with BioRender.com.
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The image analysis workflow for immune profiling in
tumour tissue primarily involves three steps (Figure 4).
In the first, tissue segmentation is performed, and
involves the automated identification and partitioning
of separate tissue compartments, such as tumour and
stroma [21]. Tissue segmentation can also be carried
out by manually annotating regions of interest (ROIs),
especially in studies with fewer samples. However, in
multiplex studies, an epithelial marker, like cytokeratin, is
generally used to assist the software in segmenting tumour
and stromal content in the tissue [22]. This streamlines
and increases the efficiency of quantifying intratumoural
and stromal TILs in a large number of tissue samples.
The second step is cell segmentation, where each cell in
the tissue is detected and segmented by the software,
typically based on a nuclear counterstain such as DAPI.
However, studies have shown that using signals from
multiple markers, including membrane markers, signif-
icantly improves cell segmentation compared with sin-
gle markers or counterstaining [23,24]. Following cell
segmentation, each cell is phenotypically classified

according to single or multiple markers. Cell or object
classifying tools mainly fall into two categories.
Threshold-based classifiers determine if a cell is positive
or negative for a marker depending on the signal
intensity. Artificial intelligence (AI)-based classifiers
are algorithms that are trained by a user on a variety of
staining and morphological features to detect specific
objects/cells of interest. Post-training, they automati-
cally perform object segmentation on the samples.
AI-based classifiers allow the incorporation of the
domain-specific knowledge of experienced pathologists
in developing the image analysis algorithm. Generally,
pathologists or specialists train these kinds of classifier
by manually annotating objects, tissue, or different mor-
phological and biological structures. Pathologists feed
the algorithm such data until the classifier learns to
distinguish objects with acceptable proficiency. This
offers a much more rapid, unbiased, and potentially
accurate assessment of features of interest.

In immuno-oncology research, AI classifiers are now
widely employed for tissue segmentation and

Figure 4. DIA workflow for mIF. (A) First, raw images are generated by scanning stained tissue slides. (B) Spectral unmixing and
autofluorescence removal are performed with the software to extract the true signals from each marker. (C) A tissue segmentation algorithm
is run to segment tumour and stromal areas. (D) Cell segmentation followed by cell phenotyping is performed to classify all cells based on the
marker panel used. (E) Finally, spatial mapping of all cell classes is carried out for further proximity analysis. The images were generated using
inForm® image analysis software, Akoya Bioscience.
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lymphocyte detection within the context of H&E-
based images [25–27]. In multiple key studies, AI-
based approaches have shown a better or similar level
of accuracy compared with expert pathologists
[28,29]. AI algorithms are increasingly being inte-
grated into multiplex image analysis workflows to
improve structure and object identification and phe-
notypic segregation [30,31]. Due to tissue heteroge-
neity, phenotyping of simple objects becomes
troublesome if the classifier only works with a few basic
parameters, such as signal intensity or cell diameter. AI-
based semi-automated or automated image analysis
approaches are very useful in those scenarios. As the
AI-based classifiers can be trained over a wide variety of
tissue samples and utilise large datasets, the classifiers
are able to gather a lot more information to identify
specific morphological features. Zarubin et al [31]
trained an AI algorithm on 219 manually annotated
regions from different tissues (kidney, ureter, lung, ure-
ter, lymph node, tonsil) and showed near human accu-
racy in segmenting various cell types (tumour, immune)
in multiplexed images. For chromogenic mIHC, it is
challenging to digitally evaluate more than four bio-
markers in the same section due to a lack of readily
available analysis tools. To solve this, Fassler and col-
leagues [32] developed two complementary deep
learning-based tools (Color AE and U-Net) utilising
pathologist annotations and constructed an ensemble
method that reliably classified six distinctly
chromogenically labelled immune populations.

After cell segmentation and phenotyping, the final
analysis involves profiling the spatial architecture of
the markers. With cell segmentation, DIA software can
create a topographical map of every cell in the tissue
using the individual cell coordinates [33]. Based on
those data, any spatial feature of each cell phenotype
can be analysed, and potential clinically significant asso-
ciations can be assessed further. Currently, there
are multiple high-end commercial and open-source
DIA software packages that offer both AI- and
non-AI-based analysis tools (listed in [34]).

Pitfalls of multiplex immunostaining

Multiplexed staining assays are unique sample-sparing
tools that offer a superior histopathological interpreta-
tion of disease heterogeneity compared with conven-
tional staining techniques. Nevertheless, they come
with certain methodological pitfalls that should be con-
sidered before designing any experiment. In general,
multiplex immunostaining workflows are more techni-
cally challenging and time-consuming. Compared with
classical IHC, it involves a greater number of experi-
mental variables and thus requires a more comprehen-
sive and lengthy optimisation process.

Any IHC technique requires extensive validation of
antibody specificity and optimisation of their staining
conditions. In order to develop a mIHC/IF panel, the

staining conditions for each antibody need to be further
optimised in a multiplexed setting [35]. Comparison
with standard single-plex IHC/IF represents the gold
standard during this optimisation. Staining markers in
the correct sequence can be critical, as changes in tissue
antigenicity during multiple staining rounds can affect
antibody performance. Simultaneous staining of multi-
ple targets on the same tissue sample introduces addi-
tional complexities. For example, staining multiple
targets with fluorophores having close spectral emission
poses the risk of spectral overlap. This may lead to
fluorophore signals leaking into the wrong channel and
resulting in false-positive detections. Thus, variables
such as reagent concentrations, antibody–dye pairing,
and the antibody staining sequence in the panel must
be thoroughly optimised to prevent spectral overlapping
and accurate detection of targets. Parra et al [36]
provided a detailed discussion on the procedural require-
ments and a step-by-step guideline for proper optimisa-
tion of a mIF staining panel. Some vendors now provide
spectral unmixing tools in their DIA packages that can
eliminate overlapping signals during post-processing of
raw images [35]. Using these tools, users can build
spectral libraries by profiling the exact emission spec-
trum of individual fluorophores. These libraries are then
used to deconvolute overlapping signals. IF-based tech-
niques are also inherently susceptible to issues related to
autofluorescence, which can interfere with the detection
of targets labelled with fluorophores that emit at wave-
lengths near the autofluorescence emission spectrum.
These issues can be reasonably resolved by following
an optimal protocol for handling pre-analytical
conditions, like tissue fixation and sample preparation,
then removal of autofluorescence signal in the scanned
images through DIA unmixing tools [35]. Additionally,
multiple antibodies targeting closely spaced epitopes
may create steric hindrances and impede antibody
binding [37]. Adequate stripping of antibodies after each
staining cycle is necessary to prevent this.
Together, the use of multiple antibodies, high-end

equipment, and DIA packages makes multiplex staining
considerably costlier than traditional IHC, particularly
for high-throughput studies. Consequently, for most
immune profiling studies with large sample sizes, tissue
microarrays (TMA) are used instead of full-face
sections. However, in some cases, tissue cores in a
microarray may not adequately represent the heteroge-
neity of marker expression in the sample [38,39]. Some
immune populations are often dispersed irregularly across
tumour sections; thus, small-sized tissue cores are often
not sufficient to capture the accurate spatial composition
of the populations [40]. For similar reasons, TMAs are
also unlikely to be ideal for profiling rare immune
populations and spatial phenotypes. Several validation
studies suggest that increasing the number of cores and
carefully selecting cores that are more representative of
the marker distribution leads to an improvement in
the concordance between TMA cores and full-face
sections, particularly for markers that are preferentially
distributed [41,42].
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Statistical considerations for multiplex immune
profiling

mIHC/IF assays generate high-resolution, single-cell
spatial data, usually spanning thousands of observations
per sample across multiple ROIs. Each observation
contains information on cellular phenotype, protein
expression, and spatial location. Due to the complex
and hierarchical nature of these data, statistical methods
must be carefully vetted to minimise bias and maximise
knowledge learned. One inherent challenge of immune
profiling with mIHC/IF is intratumoural heterogeneity,
whereby immune cell densities and/or protein levels can
vary dramatically across ROIs within a single tumour
sample [43–45]. This variation can be either random or
related to anatomic features, such as the invasive tumour
margin [46,47]. Without a standardised approach for
analysingmIHC/IF data, heterogeneity increases the risk
of bias and/or inter-observer discordance [43]. A cus-
tomary statistical method to overcome heterogeneity
is to sample tumours across multiple high-powered
fields/ROIs, and to report outcomes as the mean of these
ROIs [43]. This approach is simple and effective, and is
the basis for clinically validated prognostic instruments,
such as the breast cancer H&E stromal TIL score (which
relies on whole-slide visual averaging) [19,43] and
the colon cancer Immunoscore (which relies on averag-
ing cell counts across four distinct spatial/cellular
compartments) [48,49].
The process of averaging estimates across numerous

high-powered fields requires significant manual and
computational labour; therefore, it is of practical interest
to ascertain how many ROIs must be sampled to
overcome the effects of intratumoural heterogeneity.
Recently, mIF data from a breast cancer preoperative
immunotherapy clinical trial were used to characterise
the impact of ROI sample size on statistical power [50].
Using bootstrapping simulations to emulate 1,000 trials
under various ROI sample sizes, it was shown that
undersampling of ROIs resulted in unstable estimates
of treatment effect, whereas sampling of 15 or more
ROIs per specimen resulted in consistent estimation of
treatment effect. In addition to ROI sample size, the
spatial location of sampled ROIs may also influence
the estimation of mIHC/IF results. For example,
acknowledging the natural inclination of immune cells
to cluster at the invasive margin, oversampling of ROIs
at the invasive margin relative to other areas would have
the effect of inflating the cell density estimate of a given
tumour. Statistical methods could be used to adjust esti-
mates of the mean for anatomic confounders such as the
invasive margin. Linear regression modelling could be
employed, with the inclusion of spatial covariates into
the model to account for proximity to the invasive
margin, thus generating estimates of mean immune cell
density that are independent of sampling effects of the
invasive margin. In relation to the Immunoscore used in
colon cancer, a similar but less statistically formalised
method is employed, whereby CD3 and CD8 counts are

estimated across each of two tumour compartments
(invasive edge and tumour), and then averaged [49].

Finally, mIHC/IF output images bear an uncanny
resemblance to topographical maps, with tumour epithe-
lial nests and other anatomic structures mimicking geo-
graphical features (such as polygonal boundaries of
continents), and immune cell locations representing spa-
tial point locations of features on the map (such as
locations of cities). As such, another promising direction
is to use abundant spatial statistical techniques and soft-
ware packages (e.g. Spatstat) borrowed from the fields of
geography and ecology [51]. Using these programs, one
can convert mIHC/IF output data into vector-format
datasets that overlay immune cell location (spatial
points) with anatomic feature location (spatial polygons).
Software can then be used to estimate cell densities at the
local level (across partitioned regions of an ROI), and
to formally interrogate the relationship between cell
location/density, the surrounding microanatomy, and
neighbouring cells. It is of paramount importance to
tackle such analyses using a multidisciplinary approach,
whereby immunologists, pathologists, and statisticians
work together to ensure proper hypothesis generation,
histological annotation, and statistical modelling/testing.
For detailed information on analysing and reporting
spatial immune profiling data, please see the companion
manuscript from The International Immuno-Oncology
Biomarker Working Group [52].

Clinical and translational implications of
tissue-based immune profiling in cancer

The remarkable success of immunotherapy, particularly
the checkpoint inhibitor therapeutic strategies targeting
CTLA-4 and PD-1/PD-L1, has revolutionised treatment
for several types of malignancy, as well as our broader
understanding of the clinical significance of immune
contexture in cancer. Over the last couple of decades,
numerous studies have confirmed the ability of tumour
immune composition to significantly influence clinical
outcomes in various cancer types [53]. This highlights
the potential importance of immune profiling as a metric
to be reported and used in clinical settings for tumour
characterisation and for guiding clinical decisions.

A seminal study on colorectal cancer showed that the
composition of TIL infiltrates is a better predictor of
survival than routine TNM (tumour, node, metastasis)
classification [10]. This finding first challenged the con-
cept of only looking at neoplastic cell characteristics for
assessing the risk of progression. Galon et al [54] devel-
oped the Immunoscore, which assigns a score of 0–4
based on the density of CD3+ and CD8+ populations in
both the tumour centre and invasive margins [55].
Immunoscore correlates with disease-free and overall
survival in colorectal cancer and other tumour
types, including melanoma, breast, kidney, and lung
cancers [56,57].
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The efficacy of different forms of immunotherapy is
critically affected by the immune composition of
tumours before therapy [58] and the absence of T cells
and tumour-specific T cell responses are key contribu-
tors to poor clinical responses [59]. These findings led
to classifying immune composition in the TME into
distinct phenotypes that correlate with patient
responses to immunotherapy and prognosis. Several
years of IHC-based spatiotemporal studies across dif-
ferent tumour types have established distinct immune
phenotypes: hot tumours (immune-inflamed) and cold
tumours (immune-excluded and immune-desert) [60].
The immune-inflamed phenotype is characterised by
substantial infiltration of TILs in the tumour centre. It
is associated with the presence of CD4+ and CD8+

T cells in the tumour parenchyma that reflects a pre-
ceding antitumour response mediated by an immune-
permissive microenvironment. The immune-excluded
phenotype is characterised by pronounced infiltration
of immune cells localised at the tumour interface with
surrounding tissue, instead of within the tumour
centre. This class of tumour is hypothesised to be
poorly immunogenic. The final phenotype, immune-
desert tumours, is characterised by the absence of
pre-existing T cells in either tumour parenchyma
or stroma. These features indicate the absence of
pre-existing antitumour immunity. Tumours with
immune-desert phenotypes often exhibit poor response
to immunotherapy [61].

Currently, with the ongoing discovery of these com-
plex phenotypes of clinical significance, spatiotemporal
multi-marker assessment of immune contexture is
becoming a necessity in immune-oncology research.
Hence, tissue-based multiplexing has evolved into an
optimal investigating tool for identifying predictive and
prognostic immune biomarkers [55]. A comprehensive
list of studies focusing on the clinical relevance of
immune profiling through mIHC/IF techniques is
presented in Table 1.

Cancer prognosis

The major fraction of immune infiltrates in cancer is
comprised of T cells. T cell infiltration has been associated
with survival outcomes in multiple different tumour types,
including melanoma, breast, lung, colon, liver, and blad-
der [11,54,81–83]. CD8+ cytotoxic T cells are widely
regarded as the central players in antitumour immunity,
and a higher degree of CD8 infiltration is mostly associ-
ated with favourable clinical outcomes [84–87].
CD4+FOXP3+ Treg cells are critical subsets of helper T
cells that suppress the antitumour immune response [88].
Recently, relatively small multiplex panels (three to four
markers) are increasingly used to study T cell composition
and their prognostic relevance in various cancers.
Yamagami et al [67] assessed the composition of CD4+,
CD8+, and Treg cell populations in endometrial cancer
with mIF and found that patients with high Treg counts

and Treg/CD8 ratios experience significantly worse sur-
vival. Several studies in different cancer types have shown
that T cell aggregation in intratumoural regions was linked
to better prognosis [10,66,89]. Spatial analysis of eight
distinct immune subpopulations in pancreatic ductal ade-
nocarcinoma with mIF found intratumoural T cell infiltra-
tion to be independently correlated with favourable patient
survival [90]. In a similar study of NSCLC, cytotoxic T
cell (CD3+, CD8+) infiltration was mapped using a multi-
plex panel and a higher level of intratumoural CD8+ cell
infiltration independently correlated with better sur-
vival [69]. Another recent study of NSCLC showed
increased CD8+ T cell density in the invasive margin to
be positively associated with recurrence-free survival [91].
mIHC/IF assays are also widely used by researchers to

study proximal associations between cancer and immune
markers, as well as among different immune cell sub-
types [92]. The proximity of malignant cells to specific
immune subsets can suggest an effective antitumour or
tumour-promoting environment that may be important for
determining prognosis. Nearchou et al [93] simulta-
neously assessed the distribution of T cell infiltrates in
intratumour locations and at invasive margins within the
context of tumour budding in colorectal cancer. The study
not only confirmed T cell infiltrates and tumour budding
to be independent prognostic factors, but also found that
the spatial relationship of lymphocyte infiltrates and
tumour budding offers additional prognostic value.
Combining all the features together into a prognostic
index generated improved prognostic stratification for
patients compared with any of the features individually.
Another study explored the spatial relationship of 17 dis-
tinct leukocyte lineages with a 29-plex mIF platform.
They found that the proximity of Treg and myeloid cells
to tumour cells had a strong correlationwith earlier cancer
recurrence [94]. Similar results by multiplexing were also
found in lung cancer and head and neck squamous cell
carcinoma, where the proximity of Treg cells to carci-
noma cells was linked to poor prognosis [91,95].
Together with T cell subsets, recent research has also

highlighted the prognostic utility of other immune
populations, such as B cells, macrophages, and dendritic
cells. A recent study used multiplex staining for immune
profiling of colon cancer and developed a highly prog-
nostic signature comparable with the Immunoscore by
combining the prognostic features of CD8+ T cells and
CD68+/CD163+ macrophages. The signature further
demonstrated significant prognostic efficacy in four
other cancer types – oesophageal adenocarcinoma, blad-
der cancer, lung adenocarcinoma, and melanoma [96].
Multiplex immunostaining techniques also allow identi-
fying complex phenotypes, such as tertiary lymphoid
structures [97,98]. Tertiary lymphoid structures are
ectopic lymphoid structures of cellular aggregates,
generally comprised of a germinal core with proliferat-
ing B cells and follicular dendritic cells, surrounded by a
CD3+ T cell zone [99]. The prevalence of tertiary lym-
phoid structures in tumours is generally suggestive of
strong tumour immunity and is mostly correlated with a
better prognosis [100].
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Predictive tool for therapy response

PD-L1 is the most well-studied and well-accepted pre-
dictive biomarker in the clinical setting for immune
therapies. IHC-based PD-L1 assays have already been
approved as companion diagnostic testing for selecting
patients to receive checkpoint blockade therapies in

several different cancer types [101,102]. However,
PD-L1 alone has not been sufficient for optimal patient
stratification [103] and several other components of the
TME appear to affect the likelihood of therapy response.
Strong evidence from multiple studies suggests that TIL
infiltration with a T cell-inflamed phenotype is asso-
ciated with an anti-PD-L1 therapy response [104].

Table 1. Application of multiplex staining in clinical immune profiling studies.
Tumour type Marker panel Summary Reference

Prognostic studies
Breast cancer (HER2+ and TNBC) CD4, CD8, CD20, FOXP3, CD68, PanCK Higher B cell infiltration was associated with better

overall survival
[62]

Breast cancer CD8, CD103, CD69, PanCK, DAPI Higher tissue-resident memory T cell infiltration
was associated with better recurrence-free
survival

[63]

Breast cancer (TNBC) CD4, CD8, FOXP3, CD20, CD33, PD-1 Higher PD-1+ CD8+ T cells, PD-1+CD4+ T cells were
associated with better prognosis

[64]

Breast cancer (TNBC) CD4, CD8, FOXP3, PD-1, PD-L1 CD4/PD-L1, CD8/PD-1, and CD8/PD-L1 double-
positive TILs were significantly associated with
recurrence

[65]

Pancreatic ductal adenocarcinomas CD8, KRT7 High density of CD8+ T cells in tumour centre was
associated with improved survival

[66]

Endometrial cancer CD8, CD4, FOXP3 High Treg counts and Treg/CD8+ ratios were
significantly associated with worse distant
metastasis-free survival

[67]

Lung cancer (NSCLC) Panel 1: CD4, CD38, CD68, FOXP3, CD20 Patients were classified into three subtypes based
on their unique immune composition (immune
activated, immune defected and immune
exempted), where immune-activated patients
showed the longest disease-free survival

[68]
Panel 2: CD8, PD-L1, CD163, CD68, CD133

Lung cancer (NSCLC) CD3, CD8, CD20 Higher CD3+ and CD8+ infiltration was associated
with better outcome

[69]

Gastric cancer CD68, CD163, CD206, IRF8, PD-L1 Higher CD163+ (CD206�) tumour-associated
macrophage density with high CD68 expression
was associated with better patient survival

[70]

Gastric cancer CD4, CD8, FOXP3, PD-1, PD-L1, TIM3 Higher levels of CD8, PD-1, and PD-L1 following
NAC were associated with better overall survival

[71]

Predictive studies
Melanoma CD8, FOXP3, SOX10 PD-1, PD-L1 CD8+ cells within 20 μm of a melanoma cell were

predictive of PD-1-based immunotherapy.
[72]

Melanoma CD4, CD8, CD20, CD3, GZMB, Ki67 Pretreatment lymphocytic infiltration (CD3, CD8)
was indicative of anti-PD-1 response

[73]

Lung cancer (NSCLC) CD3, CD8, CD4, PD-1, CD57, FOXP3, CD25,
Granzyme B

CD8+ T cells lacking PD-1 inhibitory receptor
positively impacted nivolumab-treated patient
survival

[74]

Lung cancer (NSCLC) Panel 1 – AE1/AE3, PD-L1, CD3, CD4, CD8, and
CD68

Higher intratumoural T helper cell and macrophage
levels were associated with chemotherapy
outcome

[75]

Panel 2 – AE1/AE3, PD-1, granzyme B, FOXP3,
CD45RO, CD57.

Breast cancer CD3, CD20, CD8 CD3, CD8, and CD20 infiltration were predictive of
NAC response

[76]

Breast cancer (HER2+) CD8, CD4, CD20, CD68, FoxP3, CK CD4+, CD8+, CD20+ s-TILs, CD20+ s-TILs were
independently associated with higher pCR in
patients treated with neoadjuvant anti-HER2
therapy

[77]

Breast cancer PD-L1, PanCK PD-L1 was predictive of NAC response [78]
Gastric cancer CD8, PD-1, PD-L1, TIM-3, LAG-3, CD4, CD20,

FoxP3,
CTLA-4, CD68, CD163, CD66b, HLA-DR,
STING

Multi-marker protein signature predicts anti-PD-1/
PD-L1 therapy response

[79]

Lung cancer (NSCLC) PD-L1, CD68, CD8 High level of PD-1 in macrophages was linked with
higher CD8+ cell infiltration and better survival
outcome in PD-1 pathway blockade therapy

[80]

pCR, pathological complete response; s-TIL, stromal tumour-infiltrating lymphocyte; TNBC, triple-negative breast cancer.
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In mismatch repair-proficient colorectal cancer
CD8+PD-1+ T cell infiltration was found to be the
only biomarker predicting response to neoadjuvant
immunotherapy [105]. De Vries et al [106] demon-
strated evidence of γδ T cells contributing to an immune
checkpoint blockade response in HLA class I-negative
mismatch repair-deficient colon cancer patients. Multiplex
immunostaining assays can serve as an ideal diagnostic
tool to assess these kinds of complex immune subset in
clinical settings.

When CD8+ T cell distribution was assessed in mel-
anoma TME, high CD8+ cell density at the invasive
margin was found to be associated with anti-PD-L1
therapy response [107]. In another recent mIF-based
study with melanoma samples, spatial interactions
between T cell populations and malignant cells were
investigated, and higher CD8+ cell density within close
proximity to melanoma cells was found to be associated
with a better response to anti-PD-1 therapy [72].
Interestingly, in Merkel cell carcinoma, the proximal
association between PD-1 and PD-L1 was found to be
predictive of an anti-PD-1 response [108].

In addition to predicting therapy response in patients
using tissues sampled prior to therapy, immune profiling of
early on-treatment patient biopsies has also been found to be
very effective in predicting long-term therapy response. A
multiplexed immune profiling study in a cohort of mela-
noma patients treated with combined CTLA-4 and PD-1
blockade therapy showed increased accumulation of CD8+

cells in the tumour centre that was significantly correlated
with the therapeutic response [109]. All of these studies
support the clinical value of TIL profiling, and PD-L1 as a
companion diagnostic test, with better predictive accuracy.
As IHC-based techniques are already routinely used for
clinical assays, tissue-basedmultiplexed platforms will be
ideal tools for combining TIL scores with PD-L1 data.
Similar strategies should also be adopted for designing
immunotherapy clinical trials. This is crucial, as patient
selection for clinical trials is still based on conventional
toxicity and efficacy patterns observed with chemother-
apy and targeted agents [110]. Very few clinical trials are
adopting standard immune biomarkers for patient selec-
tion, which is a major impediment to proper characterisa-
tion of the biological response.

Apart from modulating the tumour response for
immunotherapy, the immune composition of the TME
has also been found to heavily influence the clinical
outcome of other kinds of cancer treatment [111–113].
It was originally thought that chemotherapy only had an
immunosuppressive effect. However, recent studies
have shown that certain types of chemotherapy can
facilitate an antitumoural immune response by induc-
ing tumour-associated neoantigen expression [114].
Parra et al [75] investigated the change in immune
composition after neoadjuvant chemotherapy (NAC)
in tumour tissues from 112 NSCLC patients using
two different six-plex IF panels to quantify 12 tumour-
associated immune phenotypes. Higher levels of PD-L1
with T cell and tumour-associated macrophage cell infil-
tration were observed in samples from patient treated

with NAC compared with those who had not received
NAC, indicating that NAC induces a discrete immune
response. Moreover, patients receiving NAC who had
higher levels of helper T cells and tumour-associated
macrophages showed better survival. In a similar study
of HER2-positive breast cancer patients, an assessment
of CD8+ cells together with PD-L1 was found to be
valuable in predicting the response to anti-HER2
neoadjuvant therapy [115].

Implementing mIHC/IF technologies in daily clinical
practice

Although multiplex imaging technologies have critical
utility in clinical research, very few of these technologies
have been adequately validated for clinical application.
To date, no multiplex staining assays have been approved
by the Food and Drug Administration for use in clinics as
in vitro diagnostics [116].With the growing need to better
understand the TME for clinical decision-making, incor-
porating these technologies into clinical pathology is
becoming increasingly necessary. There are several
challenges to overcome for mIHC/IF techniques to
become widely adopted in clinics.
To begin with, there are extensive infrastructure

requirements to facilitate mIHC/IF and digital pathology
in a clinical institution. In general, mIHC/IF images are
composite files of separate images generated for each
marker, creating a large file size. With a moderate-sized
panel (five to seven markers), the whole-slide image size
will probably fall between 0.5 and 4 gigabytes [117].
Consequently, a hospital will generate hundreds of
terabytes of imaging data each year, and it is essential to
have access to infrastructure that can store, process, and
facilitate the sharing of this amount of data. Additionally,
AI-based quantitative and spatially resolved image anal-
ysis of these images requires expensive high-end work-
stations with powerful graphics processing units [118]. It
also requires additional human resources with consider-
able statistical and bioinformatic expertise for down-
stream statistical analysis and robust data interpretation.
In addition to infrastructure requirements, ensuring

consistency of these new mIHC/IF techniques by
standardisation is also a critical impediment to their
integration into clinics. Most mIHC/IF techniques are
specific in their methodology, having unique staining
and imaging platforms, different analysis packages,
and image formats [13]. These factors inherently intro-
duce variability, which raises the question whether data
from independent laboratories can be compared.
In order to meet these challenges, The Cancer Immune

Monitoring and Analysis Center (CIMAC) conducted a
multistep harmonisation study to compare assay perfor-
mance among independent laboratories and to determine
whether it is feasible to generate comparable data regard-
less of the platform and site [119]. They have compared
the staining of a five-marker immune panel (PD-L1,
PD-1, CD3, CD8, and PanCK) on head and neck tumour
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samples among three different institutions using two
different multiplexed imaging platforms – a mIF-based
tyramide signal amplification system and chromogenic
mIHC. Both platforms were evaluated for sensitivity,
specificity, and reproducibility, followed by the harmo-
nisation of three aspects – staining, image acquisition,
and image analysis procedures across the two
platforms. Post-harmonisation of the data, for most
markers, the correlation coefficient exceeded 0.85;
combining all markers, it was over 0.7, with a median
coefficient of variation below 0.1, indicative of excel-
lent precision between measurements. These findings
demonstrated that despite differences in protocols,
platforms, reagents, and image analysis applications,
independent multiplex immunostaining platforms
could produce harmonised data without imposing rigid
standardisation.
One of the significant factors that affected the

harmonisation effort was pre-analytical variables, such
as sample procurement and processing. It is generally
recognised that pre-analytical variables pose challenges
to IHC standardisation [120,121]. Thus, CIMAC
has formulated an ‘umbrella’ protocol for stan-
dardising pre-analytical conditions, which can be
adopted to minimise analytical variability across
laboratories [122]. They are also putting considerable
effort into analytically validating assay platforms
based on their ability to perform the most robust and
unbiased analyses, allowing them to prioritise specific
assays for clinical trials.
A six-institution intrasite collaboration in 2019,

termed the MITRE study, developed a standardised
end-to-end workflow for a six-plex mIF assay (PD-L1,
PD-1, CD8, CD68, FOXP3, and CK) suitable for
multisite trials [123]. Assay optimisation led to sensitive
and reproducible results between and within all sites.
Further similar efforts must be made to address
standardisation issues with mIHC/IF. The Society for
Immunotherapy of Cancer (SITC) has taken a crucial
step in that direction by forming a 21-member task force
of pathologists and research leads from academia
and pharmaceutical companies to develop best practice
guidelines for optimising and validating multiplex
immunostaining assays [37]. Overall, for validating
these multiplex imaging assays, a harmonised, system-
atic approach should be designed and adopted for clin-
ical use. Throughout the process, there needs to be more
collaboration between the clinical and scientific commu-
nities. To meet high infrastructure requirements,
solutions like cloud-based analysis pipelines can be
adopted as an alternative to developing storage and
analysis infrastructure in hospitals. This will enable easy
access to the heavy computational requirements and
facilitate collaboration among researchers and patholo-
gists by providing shared access to data and algorithms.
In addition, there should be free public databases for
multiplexed images, with widely accepted minimum
information standards [124]. This will encourage meta-
analyses and help to develop more reliable algorithms.
Ultimately, the future adoption of multiplex imaging

technologies in clinics will require more harmonisation,
standardisation, and validation studies addressing all the
factors contributing to variability. This will not only
ensure improved accuracy and reproducibility of
immune profiling, but also facilitate a faster and more
streamlined process of test development.
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