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1. Introduction

The theory of complex analysis on complex Banach spaces enjoys a long, well-known, and fruitful his-
tory, which is summarized in the text [11]. This theory generalizes the classical theory of functions of a 
complex variable by using norms as an abstraction of the ordinary modulus on the complex plane. In this 
paper we investigate complex analysis via an alternative generalization of the complex modulus: the mod-
ulus on Archimedean complex vector lattices. This complex vector lattice modulus naturally leads to the 
notion of order convergence, which provides us with an order-theoretic perspective on complex analysis. In 
particular, we introduce an order-theoretic approach to complex differentiation on Archimedean complex 
Φ-algebras.

Specifically, in Section 3 we utilize the notion of order convergent nets in complex vector lattices to 
develop suitable definitions for order differentiable functions in Definition 3.5. It is then illustrated that 
order differentiable functions satisfy the classical sum, product, chain, and, when E is uniformly complete, 
quotient rule. A conception of holomorphic functions in the present setting is also introduced.
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We then introduce in Section 4 the notions of super order differentiable functions and σ-super order 
differentiable functions as a means to strengthen our results on order continuity, the chain rule, and quotient 
rule from Section 3.

In Section 6 we apply our theory from Section 3 to power series and show that if a function is analytic 
in our abstract setting, then it is holomorphic. In order to perform this task, we first improve our Cauchy-
Hadamard formulas from [12] in Section 5, which now include spectra of convergence of Ω that are not 
necessarily order bounded. The key to this improvement is our obtainment of new formulas for the finite 
and infinite parts of a positive element in the sup-completion, which are introduced in [3]. Our alternative 
approach perhaps yields simpler formulas than the ones found in [3], which facilitate our proofs for the new 
and improved Cauchy-Hadamard formulas.

This paper continues our development of complex analysis on complex vector lattices, which began with 
a study of series and power series on such spaces in [12]. The reader will infer that our order-theoretical 
approach reveals new insights, such as how the notions of weak order units and projection bands play a 
compelling role in complex analysis.

2. Preliminaries

The reader is referred to the standard texts [1,10,13,14] for any unexplained terminology or basic results 
in vector lattice theory. As usual, C denotes the field of complex numbers, and the set of strictly positive 
integers is denoted by N. We also write N0 := N ∪ {0} throughout.

An Archimedean (real) vector lattice F is said to be square mean closed (see [4, p. 482] or [8, p. 356]) if 
sup{(cos θ)x + (sin θ)y : θ ∈ [0, 2π]} exists in F for every x, y ∈ F , in which case we write

x� y := sup{(cos θ)x + (sin θ)y : θ ∈ [0, 2π]}.

Given a square mean closed Archimedean (real) vector lattice F , the vector space complexification F⊕iF

is called an Archimedean complex vector lattice [8, p. 356–357], and F is called the real part of F ⊕ iF .

Notation 2.1. We denote the real part of an Archimedean complex vector lattice E by F throughout this 
paper.

The modulus on an Archimedean complex vector lattice E is defined by

|x + iy| := x� y (x, y ∈ F ).

The positive cone E+ of E is the set of all elements which are invariant under the modulus, that is, 
E+ := {z ∈ E : |z| = z}. Observe that E+ = F+.

In [12] it was necessary to confine our theory to the context of universally complete complex vector 
lattices. Indeed, without the assumption of universal completeness, fundamental results fail to be true. For 
example, it is shown in [12, Remark 3.7] that the geometric series can fail to converge in order in Archimedean 
complex vector lattices that are not universally complete. Hence we will focus solely on universally complete 
vector lattices in Sections 5 and 6, where we study power series. We are able to relax the conditions on 
E in Sections 3 and 4 to Archimedean complex Φ-algebras, although some instances still require uniform 
completeness.

If F is an Archimedean (real) Φ-algebra, that is, an Archimedean (real) f -algebra possessing a multi-
plicative identity, then its multiplication canonically extends to a complex multiplication on E = F ⊕ iF . 
The multiplication on E will be indicated by juxtaposition, and we denote the multiplicative identity of E
by e throughout. Therefore, E is endowed with a complex Φ-algebra structure and can rightly be called a 
complex Φ-algebra. Note that E is semiprime by [7, Corollary 10.4].
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As usual, if z ∈ E is (multiplicatively) invertible, we denote its multiplicative inverse by z−1. Moreover, 
we set z0 := e for all z ∈ E. For more information on complex Φ-algebras we refer the reader to [6].

We next record some useful basic properties of E, which we repeatedly and freely use throughout this 
paper. Note that real Φ-algebra analogues of statements (i)–(iv) can be found in [13, Section 142].

For all z, w ∈ E:

(i) zw = wz.
(ii) |zw| = |z||w|.
(iii) |z| ∧ |w| = 0 if and only if zw = 0.
(iv) If z is invertible and positive then z−1 is positive.

We next turn to the notion of order convergent nets in E.

Definition 2.2. A net (zα)α in E converges in order to z ∈ E (we denote this by writing zα → z), if there 
exists a positive decreasing net (qβ)β with infβ qβ = 0 (in symbols qβ ↓ 0) such that for all β, there exists 
α0 for which |zα − z| ≤ qβ for all α ≥ α0.

We add that a natural analog of Definition 2.2 for sequences is obtained by replacing the nets (zα)α and 
(qβ)β with sequences (zn)n≥0 and (qm)m≥0. We will use the notation zn → z to indicate when a sequence 
(zn)n≥0 in E converges in order to z ∈ E.

3. Differentiation for order convergence

Notation 3.1. E will denote an Archimedean complex Φ-algebra in this section.

Next we extend the classical notion of differentiable functions on C to the Archimedean complex Φ-
algebra setting. The notation f : dom(f) → E is used throughout, where by dom(f) we indicate the domain 
of f .

In the classical theory of differentiation, the points at which a function is differentiable are contained in 
some open set. For the order theoretical analogue, the situation is similar, but with subtle differences, as 
will be pointed out where necessary. To that end, we start by introducing the following notation.

Notation 3.2. For z, w ∈ F we write z 
 w to indicate when w − z is a positive invertible element in F .

The order theoretical analogues of open and closed disks are as follows.

Definition 3.3. For an invertible element r ∈ E+ and c ∈ E define

◦
Δ(c, r) := {z ∈ E : |z − c| 
 r},

which plays the role of the analogue of an open disk. Moreover, we define

Δ̄(c, r) := {z ∈ E : |z − c| ≤ r},

which plays the role of the analogue of a closed disk. We say for c ∈ E and r ∈ E+ an invertible element 
that a set of the form Uc :=

◦
Δ(c, r) is an order open neighborhood of c. Furthermore, a set U ⊆ E is said to 

be order open if for every point c ∈ U there is an order open neighborhood of c contained in U .
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Remark 3.4. Note that for c ∈ E and any invertible element r ∈ E+ the order disk 
◦
Δ(c, r) is order open, 

which is not the case for the set {z ∈ E : |z−c| < r}. Consider for example C2 with r := (1, 1) and c := (0, 0). 
Then (1, 0) < (1, 1), but {(z, w) ∈ C2 : |(z, w)| < (1, 1)} does not contain an order open neighborhood of 
(1, 0).

With the analogue of open disks in place, we introduce differentiable functions in the current setting.

Definition 3.5. A function f : dom(f) → E is said to be order differentiable at c ∈ dom(f) if there exists an 
order open neighborhood Uc ⊆ dom(f) of c and an fc ∈ E such that, for every hα → 0 with c +hα ∈ Uc for 
all α, there is a net qβ ↓ 0 with the property that for all β, there is an α0 for which

∣∣f(c + hα) − f(c) − hαfc
∣∣ ≤ |hα|qβ (1)

holds whenever α ≥ α0. In this case we call Uc a D-neighborhood for f at c.

Remark 3.6. In Definition 3.5, the order openness of Uc implies that there exists an invertible element 
r ∈ E+ such that 

◦
Δ(c, r) ⊆ Uc. Taking (hα)α to be the sequence defined by hn := 1

n+1r consisting of 
positive invertible elements, we have hn → 0 and c + hn ∈ Uc for every n ∈ N0. Thus we can divide both 
sides of the inequality (1) by |hn| = hn to obtain

∣∣(f(c + hn) − f(c)
)
h−1
n − fc

∣∣ ≤ qβ ,

implying that fc is unique.

Definition 3.7. We call the unique fc in Definition 3.5 the order derivative of f at c and will from now on 
denote it by f ′(c).

Remark 3.8. In Definition 3.5, the assumption that (1) holds for all hα → 0 with c +hα ∈ Uc does not imply 
in general that (1) holds for all hα → 0 with c + hα ∈ dom(f), as the following example illustrates.

Consider the universally complete vector lattice of all complex-valued sequences CN . Define f : CN → CN

by

f(z1, z2, z3, ...) :=
{

(z1, z2, z3, ...) if |(z1, z2, z3, ...)| 
 e

(z2, z3, z4, ...) if |(z1, z2, z3, ...)| �
 e.

Let hα → 0 satisfy hα ∈
◦
Δ(0, e) for all α. Then for each α,

|f(0 + hα) − f(0) − ehα| = 0 ≤ |hα|2

holds. Thus f is order differentiable at 0 and f ′(0) = e.
However, it is not true that

|f(0 + hα) − f(0) − hα| ≤ |hα|qβ

holds for some net qβ ↓ 0 in CN
+ whenever hα ∈ dom(f) for all α and hα → 0.

To verify, suppose this statement is true. Note that the sequence

hn = (0, . . . , 0︸ ︷︷ ︸, 2, 2, 2, ...)

n terms
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satisfies hn → 0 and hn ∈ dom(f) for all n ∈ N0. Moreover, for n ≥ 2 we have

|f(0 + hn) − f(0) − hn| = |f(hn) − hn|
= |( 0, . . . , 0︸ ︷︷ ︸

n−1 terms

, 2, 2, 2, ...) − (0, . . . , 0︸ ︷︷ ︸
n terms

, 2, 2, ...)|

= |( 0, . . . , 0︸ ︷︷ ︸
n−1 terms

, 2, 0, 0, 0, ...)|.

Next fix β. Note that for any n ≥ 2 we have

|( 0, . . . , 0︸ ︷︷ ︸
n−1 terms

, 2, 0, 0, 0, ...)| ≤ |(0, . . . , 0︸ ︷︷ ︸
n terms

, 2, 2, 2, ...)|qβ ,

which is a contradiction. Thus we will say that f is not super order differentiable at 0, a topic which is 
explored in Section 4.

Remark 3.9. One can see from Remark 3.8 that the function f : CN → CN defined by

f(z1, z2, z3, ...) := (z2, z3, z4, ...)

is not order differentiable at 0. Similarly, one can show that the function f : C2 → C2 defined by f(z, w) :=
(w, z) is not order differentiable at 0 either. This fact displays a fundamental difference between order 
differentiability and Fréchet differentiability, as f has a Fréchet derivative everywhere on C2.

The following lemma extends the classical result which states that differentiable complex functions are 
continuous. It will be strengthened to order continuity without restriction in Lemma 4.2 using the notion 
of super order differentiability.

Lemma 3.10. If a function f : dom(f) → E has order derivative at c ∈ dom(f), then there exists an order 
open neighborhood Uc of c such that the restriction f |Uc

to Uc is order continuous at c.

Proof. Suppose f has order derivative f ′(c) at c. Then there is an order open neighborhood Uc of c such 
that for hα → 0 with c + hα ∈ Uc for all α, there exists a net qβ ↓ 0 such that for every β there exists an 
α0 for which

∣∣f(c + hα) − f(c) − hαf
′(c)

∣∣ ≤ |hα|qβ (α ≥ α0).

Let (zα)α be a net in Uc converging in order to c. Then the net hα := zα − c converges in order to 0.
Moreover, there is a net pγ ↓ 0 such that for all γ there exists α1 such that |hα| ≤ pγ whenever α ≥ α1. 

For α2 ≥ α0, α1 we have

|f(zα) − f(c)| ≤ |f(c + (zα − c)) − f(c) − (zα − c)f ′(c)| + |zα − c||f ′(c)|
≤ |zα − c|qβ + |zα − c||f ′(c)| ≤ pγ(qβ + |f ′(c)|).

Hence f(zα) → f(c). �
We next shift our focus to differentiating the function z → z−1, which is the foundation for the quotient 

rule. Denote by E−1 the set of invertible elements of E.
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Remark 3.11. A net (zα)α of invertible elements converging in order to an invertible element z has the 
property that z−1

α → z−1 if and only if there exists an index α0 such that {|zα|−1 : α ≥ α0} is order 
bounded. To verify this fact, note that if {|zα|−1 : α ≥ α0} is order bounded for some α0, then for an upper 
bound u of {|zα|−1 : α ≥ α0}, we have

∣∣z−1
α − z−1∣∣ = |zα|−1|z|−1|zα − z| ≤ u|z|−1|zα − z|

for all α ≥ α0, and so z−1
α → z−1.

On the other hand, if z−1
α → z−1, then there is a net pβ ↓ 0 such that for any β there is an α0 such 

that 
∣∣z−1

α − z−1
∣∣ ≤ pβ for all α ≥ α0. Hence |zα|−1 ≤

∣∣z−1
α − z−1

∣∣ + |z|−1 ≤ pβ + |z|−1 for all α ≥ α0, so 
{|zα|−1 : α ≥ α0} is order bounded.

Lemma 3.12. If E is uniformly complete, then the set E−1 is an order open set. In this case, considering 
the function f : E−1 → E−1 defined by f(z) := z−1 and c ∈ E−1, there exists an order open neighborhood 
Uc ⊆ E−1 of c such that f |Uc

is order continuous.

Proof. Assume that E is uniformly complete. To show that E−1 is order open, let c ∈ E−1. If z ∈ Uc :=
◦
Δ(c, 12 |c|), then 1

2 |c| ≤ |z|. Thus |z| is invertible by [7, Theorems 11.1 and 11.4]. Then z is also invertible 
with z−1 = z̄|z|−2, where the complex conjugate z̄ is defined as usual. It follows that E−1 is order open.

Moreover, if (zα)α is a net in 
◦
Δ(c, 12 |c|) such that zα → c, then |zα|−1 ≤ 2|c|−1 for every α, so z−1

α → c−1

as explained in Remark 3.11. Hence f |Uc
is order continuous. �

Remark 3.13. The set E−1 is not necessarily order open if E is not uniformly complete. For example, first 
consider the Archimedean real Φ-algebra F = PP [0, 1] of all continuous piecewise polynomials on [0, 1]. Let 
F1 := F , and for n ∈ N, let Fn+1 be the Archimedean real Φ-algebra of all functions on [0, 1] that are of 
the form

f(x) :=
m∑

k=1

pk(x)
√
qk(x)

for some m ∈ N, pk ∈ Fn, and qk ∈ (Fn)+ (k ∈ {1, ..., m}). Then G :=
⋃∞

n=1 Fn is an Archimedean real 
Φ-algebra. Moreover, if f, g ∈ G, then there exist n ∈ N such that f, g ∈ Fn. Since Fn is a Φ-algebra, we 
have f2 + g2 ∈ Fn as well, and hence 

√
f2 + g2 ∈ Fn+1. It follows that G is square mean closed and so GC

is an Archimedean complex Φ-algebra. Of course, the constant function e with value 1 is invertible in GC. 
Let r ∈ G+ be any invertible element and define

z(x) := 1 + x ∧ 1
2r(x) (x ∈ [0, 1]).

Note that z ∈ G satisfies z ∈
◦
Δ(e, r). Moreover, since r is positive, invertible, and continuous, there exists 

a δ > 0 such that x < 1
2r(x) for all x ∈ [0, δ). Thus z(x) = 1 + x on [0, δ), and so z is not invertible in G. 

Hence G−1
C is not order open.

Our next lemma confirms that the map z → z−1 on a uniformly complete E indeed possesses an order 
derivative at every point in its domain E−1.

Lemma 3.14. Suppose E is uniformly complete. Define the function f : E−1 → E−1 by f(z) := z−1. Then 
f ′(c) := −c−2 is the order derivative of f at c for every c ∈ E−1.
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Proof. For c ∈ E−1 we have Uc :=
◦
Δ(c, 12 |c|) ⊆ E−1 as seen in the proof of Lemma 3.12. Let hα → 0 be 

such that c + hα ∈ Uc for all α. There exists a net (pβ)β with pβ ↓ 0 such that for every β, there exists an 
α0 such that for all α ≥ α0 we have |hα| ≤ pβ . Thus for each β there is an α0 such that

|f(c + hα) − f(c) + hαc
−2| = | − c−2(c + hα)−1hαc + c−2(c + hα)−1hα(c + hα)|

= |hα|2|c|−2|c + hα|−1

≤ 2|hα||c|−3pβ

for all α ≥ α0. It follows that f ′(c) = −c−2 at every c ∈ E−1. �
The following theorem extends the four essential differentiability theorems from classical complex analysis 

to the Archimedean complex Φ-algebra setting. The proofs of these rules are slight variations of stan-
dard arguments. We later present a variation of the chain rule, see Theorem 4.3(iii), where the use of 
D-neighborhoods is not needed in the assumption.

Theorem 3.15. Let f : dom(f) → E and g : dom(g) → E be functions. The following hold.

(i) (sum rule) If c ∈ dom(f) ∩dom(g) and f and g have order derivatives f ′(c) and g′(c) at c, respectively, 
then f ′(c) + g′(c) is the order derivative of the sum map z → f(z) + g(z) at c.

(ii) (product rule) If c ∈ dom(f) ∩ dom(g) and f and g have order derivatives f ′(c) and g′(c) at c, 
respectively, then f ′(c)g(c) + f(c)g′(c) is the order derivative of the product map z → f(z)g(z) at c.

(iii) (chain rule) Suppose that f and g are functions so that range(g) ⊆ dom(f). Assume that g has order 
derivative g′(c) at c ∈ dom(g) and f has order derivative f ′(g(c)) at g(c). If there exist D-neighborhoods 
Uc for g at c and Vg(c) for f at g(c) such that g(Uc) ⊆ Vg(c), then f ′(g(c))g′(c) is the order derivative 
of the composite map z → f(g(z)) at c.

(iv) (quotient rule) Suppose c ∈ dom(f) ∩ dom(g) and f and g have order derivatives f ′(c) and g′(c) at c, 
respectively, and range(g) ⊆ E−1. If E is uniformly complete and there exists D-neighborhoods Uc for 
g at c and Vg(c) for z → z−1 at g(c) such that g(Uc) ⊆ Vg(c), then 

(
f ′(c)g(c) − f(c)g′(c)

)
g(c)−2 is the 

order derivative of the quotient map z → f(z)g(z)−1 at c.

Proof. (i) If 
◦
Δ(c, r1) ⊆ dom(f) and 

◦
Δ(c, r2) ⊆ dom(g) with r1 and r2 positive and invertible, then by [13, 

Theorem 142.2(iii)] r := r1 ∧ r2 is a positive invertible element, and we have Uc :=
◦
Δ(c, r) ⊆ dom(f + g) =

dom(f) ∩ dom(g). Let hα → 0 be such that c + hα ∈ Uc for all α. If qβ ↓ 0 and pγ ↓ 0 are so that for fixed 
β and γ there is an α0 for which

∣∣f(c + hα) − f(c) − hαf
′(c)

∣∣ ≤ |hα|qβ and
∣∣g(c + hα) − g(c) − hαg

′(c)
∣∣ ≤ |hα|pγ (α ≥ α0),

then
∣∣(f + g)(c + hα) − (f + g)(c) − hα(f ′(c) + g′(c))

∣∣ ≤ |hα|(qβ + pγ).

Hence f ′(c) + g′(c) is the order derivative of z → f(z) + g(z) at c.
(ii) Since dom(fg) = dom(f) ∩ dom(g), there is a positive invertible element r such that, by the same 

argument as in (i), we have Uc :=
◦
Δ(c, r) ⊆ dom(fg). Let hα → 0 be such that c + hα ∈ Uc for all α. As 

hα → 0, there is a sequence qβ ↓ 0 such that for any β there is an α0 such that |hα| ≤ qβ for all α ≥ α0. 
Let pγ ↓ 0 and lλ ↓ 0 be so that for fixed γ and λ there is an α1 such that
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∣∣f(c + hα) − f(c) − hαf
′(c)

∣∣ ≤ |hα|pγ and
∣∣g(c + hα) − g(c) − hαg

′(c)
∣∣ ≤ |hα|lλ (α ≥ α1).

Next let α2 ≥ α, α1. By adding and subtracting f(c)g(c +hα) and 
(
f(c +hα) −f(c)

)
g(c) inside the modulus 

in the first line below, we obtain∣∣∣f(c + hα)g(c + hα)−f(c)g(c) − hα

(
f ′(c)g(c) + f(c)g′(c)

)∣∣∣
≤

∣∣∣f(c + hα) − f(c)
∣∣∣∣∣∣g(c + hα) − g(c)

∣∣∣ + |hα|pγ |g(c)| + |hα|lλ|f(c)|

≤ |hα|
(
(pmγ + |f ′(c)|)(|hα|lγ + |hα||g′(c)|) + pγ |g(c)| + lλ|f(c)|

)
≤ |hα|

(
(pγ + |f ′(c)|)(qβ(lγ + |g′(c)|) + pγ |g(c)| + lλ|f(c)|

)
= |hα|rβ,γ,λ

whenever α ≥ α2, and where rβ,γ,λ ↓ 0 is the net

rβ,γ,λ := (pγ + |f ′(c)|)(qβ(lλ + g′(c))) + pγ |g(c)| + lλ|f(c)|.

Hence f ′(c)g(c) + f(c)g′(c) is the order derivative of z → f(z)g(z) at c.
(iii) Let Uc :=

◦
Δ(c, r) be a D-neighborhood for g at c and Vg(c) be a D-neighborhood for f at g(c) such 

that g(Uc) ⊆ Vg(c). Then Uc ⊆ dom(g) ∩ g−1(dom(f)) = dom(f ◦ g). Let hα → 0 be so that c + hα ∈ Uc for 
every α. There exists qβ ↓ 0 such that for a given arbitrary β, there exists α0 such that

|g(c + hα) − g(c) − hαg
′(c)| ≤ |hα|qβ (a ≥ α0).

Also, the function g|Uc
is order continuous by Lemma 3.12 at c and g(Uc) ⊆ Vc, so we have kα := g(c +

hα) − g(c) → 0 and kα + g(c) ∈ Vg(c). Thus there exists a pγ ↓ 0 such that for a given arbitrary γ, there 
exists α1 for which ∣∣∣f(g(c) + kα

)
− f

(
g(c)

)
− kαf

′
(
g(c)

)∣∣∣ ≤ |kα|pγ (α ≥ α1).

Hence for all α ≥ α0, α1, we have∣∣∣(f ◦ g)(c + hα) − (f ◦ g)(c) − hαf
′
(
g(c)

)
g′(c)

∣∣∣
=

∣∣∣f(g(c) + kα

)
− f

(
g(c)

)
− hαf

′
(
g(c)

)
g′(c)

∣∣∣
=

∣∣∣f(g(c) + kα

)
− f

(
g(c)

)
− kαf

′
(
g(c)

)
+ kαf

′
(
g(c)

)
− hαf

′
(
g(c)

)
g′(c)

∣∣∣
≤ |kα|pγ +

∣∣∣kαf ′
(
g(c)

)
− hαf

′
(
g(c)

)
g′(c)

∣∣∣
= |kα|pγ +

∣∣∣(g(c + hα) − g(c) − hαg
′(c)

)
f ′
(
g(c)

)∣∣∣
≤ |g(c + hα) − g(c) − hαg

′(c) + hαg
′(c)|pγ +

∣∣∣f ′
(
g(c)

)∣∣∣ |hα|qβ

≤
(
|hα|qβ + |hα||g′(c)|

)
pγ +

∣∣∣f ′
(
g(c)

)∣∣∣ |hα|qβ

= |hα|
(
qβpγ + |g′(c)|pγ +

∣∣∣f ′
(
g(c)

)∣∣∣ qβ).
Hence f ′(g(c))g′(c) is the order derivative of z → f(g(z)) at c.
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(iv) Suppose E is uniformly complete. Assume there exist D-neighborhoods Uc for g at c and Vg(c)
for the map z → z−1 at g(c) such that g(Uc) ⊆ Vg(c). There is an invertible element r ∈ E+ such that 

Uc :=
◦
Δ(c, r) ⊆ dom(f) ∩ dom(g) = dom(f/g), by the same argument used in part (i) and (ii). Let hα → 0

be so that c + hα ∈ Uc for every α. By Lemma 3.14 and the chain rule (iii) it follows that −g′(c)g(c)−2 is 
the order derivative for z → g(z)−1 at c, and by the product rule (ii) we have that

f ′(c)g(c)−1 − f(c)g′(c)g(c)−2 =
(
f ′(c)g(c) − f(c)g′(c)

)
g(c)−2

is the order derivative of z → f(z)g(z)−1 at c. �
We conclude this section with the definition of the order theoretical analogue of a holomorphic function.

Definition 3.16. Let U ⊆ E be an order open set. A function f : U → E is said to be holomorphic on U , if 
f is order differentiable at every c ∈ U .

An example of a holomorphic function is the map z → z−1 on E−1 for uniformly complete E by Lem-
mas 3.12 and 3.14.

4. Super and σ-super order differentiability

We introduce the concepts of super and σ-super order differentiability in this section as a means to 
strengthen the conclusions of Lemma 3.12 and Theorem 3.15.

Definition 4.1. We call a function f : dom(f) → E super order differentiable at c ∈ dom(f) if f is order 
differentiable at c and the inequality (1) in Definition 3.5 holds for all nets hα → 0 such that c +hα ∈ dom(f)
for all α.

By following the proof of Lemma 3.10, one readily deduces the lemma below.

Lemma 4.2. If a function f : dom(f) → E is super order differentiable at c ∈ dom(f), then f is order 
continuous at c.

Next we provide an analogue of Theorem 3.15(i) − (iii) for super order differentiable functions. Notice 
that, unlike Theorem 3.15(iii), no assumptions regarding the D-neighborhoods of g and f are required in 
the super chain rule below. The proof is similar to that of Theorem 3.15(i) − (iii).

Theorem 4.3. Let f : dom(f) → E and g : dom(g) → E be functions. The following hold.

(i) (super sum rule) If c ∈ dom(f) ∩ dom(g) and f and g are super order differentiable at c, then f + g is 
super order differentiable at c.

(ii) (super product rule) If c ∈ dom(f) ∩ dom(g) and f and g are super order differentiable at c, then fg
is super order differentiable at c.

(iii) (super chain rule) Suppose that f and g are functions so that range(g) ⊆ dom(f). If g is order 
differentiable at c and f is super order differentiable at c, then f ◦ g is order differentiable at c. If in 
addition g is super order differentiable at c, then f ◦ g is super order differentiable at c.
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At this point, one might suspect that the map z → f(z)g(z)−1 is super order differentiable whenever f
and g are. However, this is not the case in general. In fact, the map z → f(z)g(z)−1 can even fail to be 
order continuous.

Remark 4.4. It is not true in general that the map z → z−1 on an Archimedean complex Φ-algebra is 
order continuous. To demonstrate this fact, recall from Remark 3.11 that a net (zα)α of positive invertible 
elements converging in order to a positive invertible element z has the property that z−1

α → z−1 if and only 
if there exists an index α0 such that {|zα|−1 : α ≥ α0} is order bounded. With this logical equivalence in 
mind, consider the space CN of complex valued sequences. For (k, l) ∈ N ×N define fk,l ∈ CN by

fk,l(n) :=
{

1 if 1 ≤ n ≤ k

l−1 for all n > k
,

and by ordering the elements of N×N coordinatewise, we obtain the net (fk,l)(k,l). Furthermore, for k ∈ N

define gk ∈ CN by

gk(n) :=
{

0 if 1 ≤ n ≤ k

1 for all n > k
,

and note that for the constant 1 sequence e we have |fk,l − e| ≤ gk for all l ∈ N, so fk,l → e as gk ↓ 0. It 
follows that there is no (k0, l0) ∈ N×N such that 

{
f−1
k,l : (k, l) ≥ (k0, l0)

}
is order bounded, since the subset {

f−1
k0,l

: l ≥ l0
}

consists of sequences whose values on n > k0 are unbounded. Hence f−1
k,l �→ e by what was 

discussed in the first part of this remark.

Despite the lack of order continuity for the map z → f(z)g(z)−1 in general, we prove in Proposition 4.6
that this map, when defined on a universally complete complex vector lattice, is always σ-order continuous. 
We stress here that universally complete complex vector lattices are Archimedean complex Φ-algebras, as 
noted in [12].

It is readily checked that any band in a universally complete complex vector lattice E is itself a universally 
complete complex vector lattice.

Notation 4.5. Suppose E is universally complete. Given z ∈ E, we denote by z∗ the multiplicative inverse 
of z in the band Bz generated by z in E.

Proposition 4.6. If E is universally complete, then the function f : E−1 → E−1 defined by f(z) := z−1 is 
σ-order continuous.

Proof. Let c ∈ E−1, and let (zn)n≥0 be a sequence in E−1 such that zn → c. Then there exists a sequence 
(pm)m≥0 with pm ↓ 0 such that for every m ≥ 0, there exists an N ≥ 0 such that for all n ≥ N we have 
|zn−c| ≤ pm. For each m ≥ 1, let Bm denote the principal band generated by (|c| −pm)+, and set B0 = {0}. 
Furthermore, let Pm be the band projection onto Bm, and set Qm := Pm −Pm−1. Then for m < n we have

0 ≤ Qm(e) ∧Qn(e) = (Pm(e) − Pm−1(e)) ∧ (Pn(e) − Pn−1(e)) ≤ Pn−1(e) ∧ (e− Pn−1(e)) = 0,

so (Qm)m≥1 is a pairwise disjoint sequence of band projections.
Let m ∈ N be arbitrary. Let N be such that |zn − c| ≤ pm holds for all n ≥ N . It follows that

(|c| − pm)+ ≤ |zn|
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holds for all n ≥ N , and thus

Qm|z−1
n | ≤ Qm((|c| − pm)+)∗

holds for all n ≥ N . If we define um :=
(∨

k≤N Qm|z−1
k |

)
∨ Qm((|c| − pm)+)∗ for each m ∈ N, it follows 

that Qm|z−1
n | ≤ um for all n ≥ 0. Since (um)m≥1 is a pairwise disjoint sequence, u := supm≥1 um exists in 

E+ as E is universally complete. For every m ∈ N and every n ∈ N0 we have that Qm|z−1
n | ≤ u, thus

|zn|−1 = lim
M→∞

PM |zn|−1 = lim
M→∞

∑
m≤M

Qm|zn|−1 = lim
M→∞

sup
m≤M

Qm|zn|−1 ≤ u,

for each n ∈ N0. Finally, observe that

|z−1
n − c−1| = |zn − c||c−1||z−1

n | ≤ |zn − c||c−1|u,

proving that z−1
n → c−1. �

The assumption of universal completeness in Proposition 4.6 cannot be relaxed, as the following remark 
illustrates.

Remark 4.7. Consider the Dedekind complete complex Φ-algebra 
∞C . We look at the sequence (zk)k≥0
defined by zk := fk,k as in Remark 4.4. Then zk → e and z−1

k ∈ 
∞C for every k ∈ N0, but z−1
k �→ e as no tail 

of (z−1
k )k≥0 is order bounded. Hence the map z → z−1 is not σ-order continuous on the invertible elements 

of 
∞C .

The σ-order continuity of the map z → z−1 on a universally complete space motivates the following 
definition.

Definition 4.8. We call a function f : dom(f) → E σ-super order differentiable at c if f is order differentiable 
at c and the inequality (1) in Definition 3.5 holds for all sequences hn → 0 such that c + hn ∈ dom(f) for 
all n ≥ 0.

The notion of σ-super order differentiability allows us to recover a super quotient rule. We begin by 
proving that the map z → z−1 is σ-super order differentiable on universally complete complex vector 
lattices.

Lemma 4.9. Let E be universally complete, and define the function f : E−1 → E−1 by f(z) := z−1. Then f
is σ-super order differentiable at c for every c ∈ E−1.

Proof. For c ∈ E−1, note that 
◦
Δ(c, 12 |c|) ⊆ E−1. Indeed, if z ∈ E such that |z − c| 
 1

2 |c|, it follows that 
1
2 |c| ≤ |z|. Hence z ∈ E−1. Let hn → 0 be such that c + hn ∈ E−1 for all n ∈ N0. Similarly to what was 
shown in Proposition 4.6, we have that u := supn≥0 |c + hn|−1 exists in E+ as E is universally complete. 
There exists a sequence (pm)m≥0 with pm ↓ 0 such that for every m ≥ 0, there exists an N ≥ 0 such that 
for all n ≥ N we have |hn| ≤ pm. Thus for m ≥ 0 there is an N ≥ 0 such that

|f(c + hn) − f(c) + hnc
−2| = | − c−2(c + hn)−1hnc + c−2(c + hn)−1hn(c + hn)|

= |hn|2|c|−2|c + hn|−1

≤ |hn||c|−2upm

for all n ≥ N . It follows that f is σ-super order differentiable at c. �
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Theorem 4.10. (super quotient rule) Let E be universally complete and let f : dom(f) → E and g : dom(g) →
E be functions. Suppose c ∈ dom(f) ∩ dom(g) and f and g are σ-super order differentiable at c and 
range(g) ⊆ E−1. Then the quotient map z → f(z)g(z)−1 is σ-super order differentiable at c.

Proof. Let hn → 0 be so that c +hn ∈ dom(f/g) for every n ∈ N0. By Lemma 4.9 and the super chain rule 
Theorem 4.3(iii) it follows that the function z → g(z)−1 is σ-super order differentiable at c. It then follows 
from the super product rule Theorem 4.3(ii) that z → f(z)g(z)−1 is σ-super order differentiable at c. �
5. Improved Cauchy-Hadamard formulas

We improve our Cauchy-Hadamard formulas from [12] in this section and therefore focus solely on 
universally complete spaces, as we did in [12].

Notation 5.1. E will denote a universally complete complex vector lattice in this section (with corresponding 
real part F as already designated).

We next provide some useful basic properties of E, which we use freely throughout the rest of the paper. 
Note that (ii) follows from (i), which is a consequence of [1, Theorem 2.37]. Together, [1, Theorem 2.44] and 
[10, Theorem 18.13] imply (iii)–(v). The veracity of (vi) is explained in [12, Remark 3.3].

For all z, w ∈ E and any order projection P on E,

(i) P (zw) = zP (w).
(ii) P (zw) = P (z)P (w).
(iii) P (|z|) = |P (z)|, that is, P is a complex vector lattice homomorphism.
(iv) P (supA) = sup[P (A)] for all ∅ �= A ⊆ F bounded above.
(v) P is order continuous.
(vi) z is invertible if and only if |z| is a weak order unit.

In particular, E is uniformly complete. Thus for every x ∈ E+, and n ∈ N, there exists a unique y ∈ E+
such that yn = x (see [5, Corollary 6]). This nth root of x is denoted by x1/n in the remainder of this 
manuscript.

Remark 5.2. For sequences, our definition of order convergence seems different at first glance from the 
definition given in [14, Ch. 4 S. 10] and used in [12], but it is in fact, equivalent if E is Dedekind complete. 
Indeed, if qm ↓ 0 is such that for all m ≥ 0 there exists N ≥ 0 so that |zn − z| ≤ qm whenever n ≥ N , then 
for all m ≥ 0, define pm := supn≥m |zn−z|, which are well-defined elements in E by Dedekind completeness. 
Clearly, the sequence (pm)m≥0 is downward directed and satisfies |zm− z| ≤ pm for all m ≥ 0. By Dedekind 
completeness once more, let p := infm≥0 pm. For any k ≥ 0 there is an mk such that pmk

≤ qk and so, we 
have p ≤ infk≥0 pmk

≤ infk≥0 qk = 0, showing that pm ↓ 0. Note that the converse implication clearly holds.

For an order bounded sequence (xn)n≥0 in F , we as usual write

lim sup
n→∞

xn := inf
n≥0

sup
m≥n

xn and lim inf
n→∞

xn := sup
n≥0

inf
m≥n

xn.

Observe that lim supn→∞ xn and lim infn→∞ xn are the order limits of the sequences(
sup
m≥n

xn

)
n≥0

and
(

inf
m≥n

xn

)
n≥0

,

respectively.
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We proceed with some notes on the sup-completion F s of F , a notion introduced in [9, Section 1]. Using 
the terminology from [9, Definition 1.1], a cone (C, +) is a commutative monoid, that is closed under a 
nonnegative real number scalar multiplication, for which the following hold:

(i) α(x + y) = αx + αy (α ∈ [0, ∞), x, y ∈ C),
(ii) (α + β)x = αx + βx (α, β ∈ [0, ∞), x ∈ C),
(iii) α(βx) = (αβ)x (α, β ∈ [0, ∞), x ∈ C),
(iv) 1x = x (x ∈ C), and
(v) 0x = 0 (x ∈ C).

In (v) above, the first 0 denotes the real number zero, while the second 0 designates the identity element of 
(C, +).

Following [9], we will from now on denote a cone (C, +) by C, for short. Given a cone C, we denote as 
in [9] the set

C0 := {x ∈ C : x possesses an inverse under +}.

The nonnegative real number scalar multiplication restricted to C0 can be extended to all of the real numbers 
by defining

αx := −α(−x)
(
α ∈ (−∞, 0), x ∈ C0

)
.

It is readily checked that C0 is a vector space under + and this expanded scalar multiplication.
A cone C possessing a partial ordering ≤ is called an ordered cone if the following hold:

(vi) x ≤ y implies x + z ≤ y + z (x, y, z ∈ C), and
(vii) x ≤ y implies αx ≤ αy

(
α ∈ [0, ∞), x, y ∈ C

)
.

An ordered cone that is a lattice with respect to its partial ordering is called a lattice cone. A lattice cone C
is called Dedekind complete if every nonempty subset of C which is bounded above (respectively, bounded 
below) possesses a supremum (respectively, infimum) in C.

Proposition 5.3. [9, Theorem 1.4] There exists an essentially unique cone F s (called the sup-completion of 
F ) for which the following hold.

(i) F s is Dedekind complete.
(ii) F = (F s)0 with coinciding algebraic and order structures.

(iii) For each y ∈ F s, we have

y = sup{x ∈ F : x ≤ y}.

(iv) z + (x ∧ y) = (z + x) ∧ (z + y) (x ∈ F, y, z ∈ F s).
(v) {y ∈ F s : there exists x ∈ F such that y ≤ x} ⊆ F .

(vi) F s has a largest element.
(vii) For any ∅ �= A, B ⊆ F s for which supA = supB, we have

sup
a∈A

(a ∧ x) = sup
b∈B

(b ∧ x)

for any x ∈ F .
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As noted in [3, (P6)], the following immediate consequence of Proposition 5.3(vii) holds.

Proposition 5.4. For any ∅ �= A ⊆ F s and x ∈ F , we have

sup
a∈A

(a ∧ x) = (supA) ∧ x.

A salient observation for our purposes is that Proposition 5.3(i) and (vi) together imply that supA exists 
in F s for any nonempty A ⊆ F s.

We utilize the following proposition from [9, Theorem 1.4] and [3, Remark 10].

Proposition 5.5. For F s the following hold.

(i) F s is a distributive lattice.
(ii) For any projection band B of F , we have that F s = Bs × (Bd)s.

Next we begin to enhance our Cauchy-Hadamard formulas originally given in [12] to be able to consider 
unbounded spectra of convergence. For this task, we rely on the sup-completion of F . By upgrading our 
Cauchy-Hadamard formulas, we are able to prove that analytic functions on E are holomorphic. We begin 
with some relevant definitions. For more information on series and power series on universally complete 
complex vector lattices, we refer the reader to [12].

Definition 5.6. We say that a series 
∑∞

n=0 an converges in order if the sequence of partial sums 
(
∑m

n=0 am)m≥0 converges in order in E. If 
∑∞

n=0 |an| converges in order, then we say that 
∑∞

n=0 an converges 
absolutely in order.

Definition 5.7. A power series on E, centered at c ∈ E, is of the form 
∑∞

n=0 an(z − c)n, where an ∈ E for 
every n ∈ N0 and z is a variable in E. We say that a power series 

∑∞
n=0 an(z − c)n converges uniformly 

in order on a region D ⊆ E if there exists a sequence pm ↓ 0 such that for every m ∈ N0, there exists a 
K ∈ N0 such that

sup
z∈D

∣∣∣∣∣
k∑

n=0
an(z − c)n −

∞∑
n=0

an(z − c)n
∣∣∣∣∣ ≤ pm

holds for every k ≥ K.

Definition 5.8. Let 
∑∞

n=0 an(z − c)n be a power series. We define the spectrum of convergence of the power 
series as

Ω :=
{
r ∈ E+ :

∞∑
n=0

an(z − c)n converges uniformly in order on Δ̄(c, r)
}
.

We also define ρ := sup Ω to be the radius of convergence of the power series, which exists in the sup-
completion F s of F .

We next provide a series of remarks, definitions, and results which we use to improve the Cauchy-
Hadamard formulas given in [12, Theorem 3.11].

Remark 5.9. By [2, Proposition 3], any band projection P : F → F can be extended to a left-order continu-
ous, additive, and positively homogeneous map P̄ : F s → F s via the formula
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P̄ (y) := sup{P (x) : x ∈ F, x ≤ y} (y ∈ F s).

Given 0 ≤ u ∈ F s, we define as in [2] a map Pu : F → F by

Pu(x) := sup
n≥1

{x ∧ nu}

for all x ∈ F+ and then

Pu(x) := Pu(x+) − Pu(x−)

for all x ∈ F . By [2, Lemma 4], the map Pu is a band projection on F ; in fact, Pu = PPu(e). We denote 
the corresponding band BPu(e) by Bu, for short. Recall that Bu is itself a (real) universally complete vector 
lattice.

Lemma 5.10. Let 0 ≤ u ∈ F s. Then P̄u(u) = u and u ∈ Bs
u.

Proof. We first note that

P̄u(u) = sup{Pu(x) : x ∈ F, x ≤ u}

= sup
{

sup
n≥1

{x ∧ nu} : x ∈ F, x ≤ u
}

= sup{x : x ∈ F, x ≤ u}
= u.

Secondly, let (xα)α be a net in F such that xα ↑ u. From the left-order continuity of P̄u and Proposi-
tion 5.3(iii) we have Pu(xα) = P̄u(xα) ↑ P̄u(u) = u. Since Pu(xα) ∈ Bu for all α, we conclude that u ∈ Bs

u

by Proposition 5.5(ii). �
Next we provide an alternative mechanism for dividing positive elements of a sup-completion into finite 

and infinite parts to that found in [3]. As stated in the introduction, this new approach perhaps yields 
simpler formulas, which facilitate many of the proofs in this section.

Definition 5.11. For 0 ≤ u ∈ F s, we define

u∞ := inf
n≥1

n−1u

and

uF := sup{x− x ∧ u∞ : x ∈ F+, x ≤ u}.

Note that x ∧ u∞ ∈ F for every x ∈ F by Proposition 5.3(v). Ergo the element uF is well-defined in F s.
The following lemma is required for our proof of Theorem 5.13. It is an immediate consequence of the 

definition of u∞.

Lemma 5.12. Given 0 ≤ u ∈ F s and m ∈ N, we have mu∞ = u∞.

Our next result represents an alternative way of breaking positive elements of a sup-completion into 
disjoint finite and infinite parts to that found in [3].
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Theorem 5.13. Let 0 ≤ u ∈ F s. Then the following hold.

(i) u = uF + u∞.
(ii) uF ∧ u∞ = 0.
(iii) u ∈ F if and only if u∞ = 0.
(iv) uF ∈ F+.

Proof. (i) Note that

uF + u∞ = sup{x− x ∧ u∞ : x ∈ F+, x ≤ u} + u∞

≥ sup{x + u∞ − x ∧ u∞ : x ∈ F+, x ≤ u}

≥ sup{x : x ∈ F+, x ≤ u}

= u,

where the last equality follows from Proposition 5.3(iii).
Moreover, we have

uF + u∞ ≤ u + u∞ = u + inf
n≥1

n−1u ≤ inf
n≥1

(u + n−1u) = inf
n≥1

(1 + n−1)u = u.

Thus (i) holds.
(ii) If x ∈ F+ and x ≤ u, then by Proposition 5.3(iv) and Lemma 5.12, we have

(x− x ∧ u∞) ∧ u∞ = x ∧ (u∞ + x ∧ u∞) − x ∧ u∞

= x ∧
(
(x + u∞) ∧ 2u∞

)
− x ∧ u∞

= x ∧
(
(x + u∞) ∧ u∞

)
− x ∧ u∞

= x ∧ u∞ − x ∧ u∞

= 0.

Then by Proposition 5.4 and the string of equalities above, we have

0 ≤ uF ∧ (u∞ ∧ e)

=
(
sup{x− x ∧ u∞ : x ∈ F+, x ≤ u}

)
∧ (u∞ ∧ e)

= sup{(x− x ∧ u∞) ∧ (u∞ ∧ e) : x ∈ F+, x ≤ u}

≤ sup{(x− x ∧ u∞) ∧ u∞ : x ∈ F+, x ≤ u}

= 0.

Thus uF ∧ u∞ ∧ e = 0. But since e is a positive invertible element, we have uF ∧ u∞ = 0, as claimed.
(iii) It is evident that if u ∈ F , then u∞ = 0, since E is Archimedean.
Next suppose u /∈ F ; i.e. u ∈ F s \ F . Let n ∈ N, and take z ∈ F+, z ≤ n−1u. Then

n−1u ≥ P̄ne<u

(
n−1u

)
= sup{Pne<u(y) : y ∈ F+, y ≤ n−1u}

= sup
{

sup{y ∧m (u− ne)+} : y ∈ F+, y ≤ n−1u

}

m≥1
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≥ sup
{

sup
m≥1

{y ∧m (nz − ne)+} : y ∈ F+, y ≤ z

}

= sup
{

sup
m≥1

{y ∧mn (z − e)+} : y ∈ F+, y ≤ z

}

≥ sup
{

sup
m≥1

{y ∧m (z − e)+} : y ∈ F+, y ≤ z

}
= sup{Pe<z(y) : y ∈ F+, y ≤ z} = Pe<z(z)

≥ Pe<z(e).

Thus n−1u ≥ sup{Pe<z(e) : z ∈ F+, z ≤ n−1u}. Furthermore, we have

sup{Pe<z(e) : z ∈ F+, z ≤ n−1u} = sup
{

sup
m≥1

{e ∧m(z − e)+} : z ∈ F+, z ≤ n−1u

}
= sup

m≥1

(
sup

{
e ∧m(z − e)+ : z ∈ F+, z ≤ n−1u

})
= sup

m≥1
e ∧m(n−1u− e)+

= sup
m≥1

e ∧mn−1(u− ne)+

= sup
m≥1

e ∧m(u− ne)+

= Pne<u(e).

Hence n−1u ≥ Pne<u(e). We thus obtain

u∞ ≥ inf
n≥1

Pne<u(e).

It follows from our assumption u ∈ F s \ F and [2, Theorem 14] that

inf
n≥1

Pne<u(e) > 0.

Therefore, u∞ �= 0.
(iv) We use proof by contradiction. To this end, suppose that uF ∈ F s \F . By part (iii) of this theorem, 

we have (uF )∞ > 0. Thus

uF ∧ u∞ ≥ (uF )∞ ∧ u∞ =
(

inf
n≥1

n−1uF

)
∧
(

inf
n≥1

n−1u

)
= inf

n≥1
n−1uF = (uF )∞ > 0,

a contradiction with part (ii) of this theorem. Thus uF ∈ F and hence uF ∈ F+, which establishes (iv). �
The finite and infinite parts of elements in the sup-completion, as was shown in Theorem 5.13, yield the

corresponding threefold band decomposition of F .

Theorem 5.14. For 0 ≤ u ∈ F s, we have

F = BuF ⊕Bu∞ ⊕Bd
u.
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Proof. Let 0 ≤ u ∈ F s. We first show that BuF ∩ Bu∞ = {0}. To this end, suppose x ∈ BuF ∩ Bu∞ , with 
x ≥ 0. Then x = PuF (x) = Pu∞(x). Using Lemma 5.12, Theorem 5.13(ii), and Proposition 5.4, we obtain

0 ≤ x = x ∧ x = PuF (x) ∧ Pu∞(x) = sup
n≥1

{x ∧ nuF} ∧ sup
n≥1

{x ∧ nu∞}

= sup
n≥1

{x ∧ nuF} ∧ (x ∧ u∞) = sup
n≥1

{(x ∧ nuF ) ∧ (x ∧ u∞)}

≤ sup
n≥1

{n(uF ∧ u∞)} = 0.

Hence x = 0. It follows that BuF ∩Bu∞ = {0}.
We next show that Bu = BuF + Bu∞ , first handling the inclusion BuF + Bu∞ ⊆ Bu. To this end, let 

x + y ∈ BuF + Bu∞ with x, y ≥ 0. Then

x + y = PuF (x) + Pu∞(y) = sup
n≥1

{x ∧ nuF} + sup
m≥1

{y ∧mu∞}

≤ sup
n≥1

{x ∧ nu} + sup
m≥1

{y ∧mu} ≤ 2Pu(x ∨ y),

and so x + y ∈ Bu.
For the reverse inclusion, note that, from Theorem 5.13(i) and [9, Lemma 1.3], we have

u = uF + u∞ = uF ∨ u∞ + uF ∧ u∞.

It thus follows from Theorem 5.13(ii) that u = uF ∨ u∞. Hence for any 0 ≤ x ∈ Bu, we have from 
Lemma 5.12, Theorem 5.13(ii), Proposition 5.3(ii), and Proposition 5.5 that

x = Pu(x) = sup
n≥1

{x ∧ nu} = sup
n≥1

{x ∧ (nuF + nu∞)} = sup
n≥1

{x ∧ nuF + x ∧ nu∞}

= sup
n≥1

{x ∧ nuF + x ∧ u∞} = sup
n≥1

{x ∧ nuF} + x ∧ u∞ = sup
n≥1

{x ∧ nuF} + sup
m≥1

{x ∧mu∞}

= PuF (x) + Pu∞(x).

It hence follows that Bu = BuF + Bu∞ . We therefore obtain

F = Bu ⊕Bd
u = BuF ⊕Bu∞ ⊕Bd

u. �
We are almost ready to present our new and improved Cauchy-Hadamard formulas but require some 

lemmas first.

Lemma 5.15. Let 0 ≤ u ∈ F s. Then P̄uF (u) = uF .

Proof. First note that P̄uF (u) ≥ P̄uF (uF ) = uF by Lemma 5.10. Moreover, using Proposition 5.3(iv) and 
Theorem 5.13(ii), we have

P̄uF (u) = sup {PuF (x) : x ∈ F+, x ≤ u} = sup
{

sup
n≥1

{x ∧ nuF} : x ∈ F+, x ≤ u

}
≤ sup

n≥1
{u ∧ nuF} = sup

n≥1
{(uF + u∞) ∧ nuF} = sup

n≥1
{uF + u∞ ∧ (n− 1)uF}

= uF ,

which proves the lemma. �



M. Roelands, C. Schwanke / J. Math. Anal. Appl. 541 (2025) 128671 19
As in [9], we set y+ := y ∨ 0 for y ∈ F s.

Lemma 5.16. If 0 ≤ u ∈ F s, then u∞ is the largest element of Bs
u∞ .

Proof. Let y ∈ Bs
u∞ . Then using Lemma 5.12 in the fourth equality below, we obtain

y ≤ y+ = P̄u∞(y+) = sup{Pu∞(x) : x ∈ F+, x ≤ y+}

= sup
{

sup
n≥1

{x ∧ nu∞} : x ∈ F+, x ≤ y+
}

= sup
{
x ∧ u∞ : x ∈ F+, x ≤ y+} ≤ u∞. �

We next make use of the multiplication on F s introduced by Azouzi and Nasri in [2, Section 3.2]. This 
extended multiplication is defined for 0 ≤ x, y ∈ F s as

xy := sup{vw : v, w ∈ F+, v ≤ x, w ≤ y}.

The following useful lemma from [2] will also be applied in our proofs.

Lemma 5.17. ([2, Lemma 23]) Let (xα)α, (yβ)β be nets in F s
+ such that xα ↑ x and yβ ↑ y for 0 ≤ x, y ∈ F s. 

Then xαyα ↑ xy.

As an immediate consequence of Lemma 5.17, we have the following.

Lemma 5.18. Let (yα)α be a net in F s
+ such that yα ↑ y for 0 ≤ y ∈ F s. If 0 ≤ x, u ∈ F s and xyα ≤ u holds 

for every α, then xy ≤ u.

In order to formulate a Cauchy-Hadamard formula which considers unbounded spectra of convergence, 
we need a notion of a generalized inverse for positive elements in the sup-completion. We would like to 
remind the reader that for z ∈ E the notation z∗ refers to the multiplicative inverse of z in the band Bz.

Definition 5.19. Let x ∈ F s
+. The generalized inverse of x in F s

+, denoted by x−1, is defined by x−1 :=
(xF )∗ + ∞d

x, where ∞d
x denotes the largest element of (Bd

x)s.

Theorem 5.20 (Cauchy-Hadamard). Let 
∑∞

n=0 an(z − c)n be a power series on E. Also let L :=
lim supn→∞ |an|1/n, which exists in F s. The following identities hold.

(i) Bd
L = Bρ∞ .

(ii) BL∞ = Bd
ρ .

(iii) (LF )∗ = ρF .

In particular, we have that L−1 = ρ for the generalized inverse of L in F s.

Proof. Towards proving (i), let rα ↑ ρ, where rα ∈ Ω for every α. Fixing α, we have that rα ∈ Ω implies ∑∞
n=0 anr

n
α converges in order. Thus by [12, Theorem 3.6(ii)], we have

lim sup
n→∞

(|an|1/nrα) ≤ e.

Let (xn)n≥0 be a sequence in E+ and set x := lim sup
n→∞

xn. Note that x is well-defined in F s, and assume 

that y ∈ E+. It follows from Lemma 5.17 and [3, Lemma 24(iii)], which states that
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x(y ∨ z) = (xy) ∨ (xz) (0 ≤ x, y, z ∈ F s),

that

xy = lim sup
n→∞

(xny). (2)

We thus obtain

Lrα = lim sup
n→∞

(
|an|1/nrα

)
≤ e.

It follows from Lemma 5.18 that Lρ ≤ e, and thus Lρ∞ ≤ e. Then by Lemma 5.12, we have nLρ∞ ≤ e for 
each n ∈ N, hence Lρ∞ = 0 since F is Archimedean. It follows that L ∧ ρ∞ = 0. Thus if x ∈ Bρ∞ , then by 
Lemma 5.16 we have

|x| ∧ L ≤ ρ∞ ∧ L = 0,

so x ∈ Bd
L.

Next let 0 ≤ r ∈ Bd
L. Then lim sup

n→∞
(|an|1/nmr) = mLr = 0 
 e for all m ∈ N, so by [12, Theorem 3.6(i)]

we have mr ∈ Ω for each m ∈ N. Then mr ≤ ρ and hence r ≤ 1
mρ for every m ∈ N. Thus we get r ≤ ρ∞. 

Hence r ∈ Bρ∞ and (i) holds.
We proceed with the proof of (ii). For this task, let r ∈ Ω. Then as argued in (i) we have Lr ≤ e. It 

follows that L∞r ≤ e, and thus L∞ρ ≤ e holds by Lemma 5.18. By Lemma 5.12, we have that

nL∞ρ ≤ e

holds for all n ∈ N. This implies that L∞ρ = 0, which in turn yields L∞ ∧ ρ = 0. Thus if x ∈ BL∞ , then by 
Lemma 5.16 we have

|x| ∧ ρ ≤ L∞ ∧ ρ = 0.

Hence we get x ∈ Bd
ρ .

Next, note that by Theorem 5.14 and (iii) we have Bd
ρ ⊥ Bd

L. It follows from Theorem 5.14 that Bd
ρ ⊆

BLF ⊕BL∞ . We will show that Bd
ρ ⊆ BL∞ by illustrating that Bd

ρ ∩BLF = {0}. To this end, suppose that 
B := Bd

ρ ∩BLF is a nontrivial band, and let P be its associated order projection. Fix 0 < ε < 1. Since εL∗
F

is a positive invertible element in BLF , we have that x := P (εL∗
F ) is a positive invertible element in B. 

From x ∈ BLF , we have x ∧ L∞ = 0 by Theorem 5.13(ii). Thus from (2) we have

lim sup
n→∞

(|an|1/nx) = Lx = LFx = LFP (εL∗
F ) = εP (e) 
 e.

Hence by [12, Theorem 3.6(i)] we get that x ∈ Ω, and so x ∈ Bρ. We thus have that x = 0. This is a 
contradiction since we above deduced that x was a positive invertible element in the nontrivial band B. 
Hence B = {0}, and so Bd

ρ ⊆ BL∞ . This proves (ii).
We conclude this proof by verifying (iii). To this end, note that by Lemma 5.15 and the left-order 

continuity of P̄LF we have

LF = P̄LF (L) = lim sup
n→∞

PLF (|an|)1/n.

Setting bn := PLF (an) for every n ∈ N, we have that (bn)n≥1 is order bounded and
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LF = lim sup
n→∞

|bn|1/n.

Then by [12, Theorem 3.11(i)], we obtain

(LF )∗ = sup
r∈Ω

PLF (r) = P̄LF (ρ).

Using Theorem 5.14, we have the following two band decompositions for F

F = BLF ⊕BL∞ ⊕Bd
L = BρF ⊕Bρ∞ ⊕Bd

ρ ,

and by (i) and (ii) we have BLF = BρF . Thus by Lemma 5.15 we obtain

(LF )∗ = sup
r∈Ω

PLF (r) = P̄LF (ρ) = P̄ρF (ρ) = ρF ,

proving (iii).
The generalized inverse L−1 of L in F s is given by (LF )∗ + ∞d

L, where ∞d
L is the largest element in 

(Bd
L)s. By part (iii) we have that (LF)∗ = ρF , and by part (i), we have that ∞d

L is the largest element in 
Bs

ρ∞ , which is ρ∞ by Lemma 5.16. We can now conclude that L−1 = ρF + ρ∞ = ρ. �
6. Differentiation of power series

We apply our theory of order differentiable functions to power series in this section.

Notation 6.1. Throughout the rest of the paper, E denotes a universally complete complex vector lattice.

Theorem 6.2. Let 
∑∞

n=0 an(z − c)n be a power series on E with spectrum of convergence Ω1. Then for the 
power series 

∑∞
n=1 nan(z − c)n−1 with spectrum of convergence Ω2 the corresponding radii of convergence 

ρ1 and ρ2 are equal. In particular, Ω1 is order bounded in F if and only if Ω2 is order bounded in F .

Proof. Let 0 < ε < 1, and let r ∈ Ω1. Then the series 
∑∞

n=0 an(εr)n converges absolutely in order by [12, 
Theorem 3.6(i)], since

lim sup
n→∞

|an|
1
n (εr) ≤ εe 
 e.

Furthermore, we have (ε2r)(εr)∗ 
 e and

lim sup
n→∞

n
1
n (ε2r)(εr)∗ 
 e,

so it follows that the series

∞∑
n=0

n((ε2r)(εr)∗)n

also converges absolutely in order by [12, Theorem 3.6(i)]. Hence there is an R ∈ E+ such that

n((ε2r)(εr)∗)n ≤ R

for all n ≥ 0. Thus
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n|an|(ε2r)n−1 = n|an|(ε2r)n(ε2r)∗ = ε−1n|an|(ε2r)n(εr)∗ = ε−1n|an|(ε2r)n((εr)∗)n(εr)n−1

= ε−1n|an|(ε2r)n((εr)∗)n(εr)n(εr)∗ ≤ ε−2r∗R|an|(εr)n

and so 
∑∞

n=1 nan(ε2r)n−1 converges absolutely in order by comparison to 
∑∞

n=0 an(εr)n, which yields ε2r ∈
Ω2.

On the other hand, if r ∈ Ω2, then similarly we find that 
∑∞

n=1 nan(εr)n−1 converges absolutely in order. 
Since

|an|(εr)n ≤ n|an|(εr)n−1(εr)

for all n ≥ 1, it follows that 
∑∞

n=0 an(εr)n converges absolutely in order, hence εr ∈ Ω1.
Next, for any r ∈ Ω2 we have shown that εr ≤ ρ1, and by letting ε → 1, we conclude that r ≤ ρ1. Hence 

ρ2 ≤ ρ1. Moreover, if r ∈ Ω1, we have that ε2r ≤ ρ2 which yields r ≤ ρ2 and hence ρ1 ≤ ρ2. Therefore, 
ρ1 = ρ2. �

The idea in the following lemma is used to naturally extend the definition of 
◦
Δ(c, r) where r ∈ F s.

Lemma 6.3. Let G be a uniformly complete Archimedean complex Φ-algebra, r ∈ G+ be an invertible element, 
and c ∈ G. Then 

◦
Δ(c, r) is the largest order open set in Δ̄(c, r).

Proof. Let z ∈
◦
Δ(c, r). Then s := 1

2 (r − |z − c|) is a positive invertible element and if y ∈
◦
Δ(z, s), it 

follows that r − |y − c| ≥ r − |y − z| − |z − c| ≥ r − s − |z − c| = 1
2 (r − |z − c|), which is positive and 

invertible by [7, Theorem 11.1, Theorem 11.4], hence 
◦
Δ(z, s) ⊆

◦
Δ(c, r) and 

◦
Δ(c, r) is an order open set. 

Suppose z ∈ Δ̄(c, r) \
◦
Δ(c, r). Furthermore, suppose that there exist an invertible element s ∈ G+ such that 

◦
Δ(z, s) ⊆ Δ̄(c, r). It follows that z + 1

2λs ∈
◦
Δ(z, s) for all λ ∈ C with |λ| = 1, so that

|z − c + 1
2λs| ≤ r (3)

for all λ ∈ C with |λ| = 1. By the Kakutani representation theorem and then complexifying, there is a 
compact Hausdorff space K such that the ideal generated by r is lattice isomorphic to CC(K), where r
corresponds to the constant function 1. If we identify f, g ∈ CC(K) with z − c and s, then there is x ∈ K

and λ0 ∈ C with |λ0| = 1 such that λ0f(x) = 1. This now yields

|f + 1
2λ0g|(x) = |λ0(λ0f + 1

2g)|(x) = |λ0f + 1
2g|(x) = λ0f(x) + 1

2g(x) > 1,

which contradicts (3). Hence, z is not an order interior point of Δ̄(c, r) and 
◦
Δ(c, r) is the largest order open 

set contained in Δ̄(c, r). �
Notation 6.4. For z, w ∈ F we use the notation z 
w w when w − z is a positive invertible element in Bw. 
Furthermore, for y ∈ F s and x ∈ F , by x 
 y we mean that both x ≤ y and PyF (x) 
yF yF . In addition, if 

y dominates a positive invertible element in F , the corresponding order disk 
◦
Δ(c, y) will denote the largest 

order open set in E that is contained in

Δ̄(c, y) := {x ∈ E : |x− c| ≤ y} = {x ∈ E : PyF (|x− c|) ≤ yF} + By∞ .

So, similarly to Lemma 6.3, this set is defined by
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◦
Δ(c, y) := {x ∈ E : PyF (|x− c|) 
yF yF} + By∞ ,

and it is readily verified that this set is order open.

If we want to think of a power series as a function, then we need to specify the domain, which necessarily 
must consist of all the z ∈ E for which the power series converges in order.

Proposition 6.5. Let 
∑∞

n=0 an(z − c)n be a power series on E. Then the domain of the function f(z) :=∑∞
n=0 an(z − c)n satisfies 

◦
Δ(c, ρ) ⊆ dom(f) ⊆ Δ̄(c, ρ). Furthermore, if ρ dominates a positive invertible 

element, then 
◦
Δ(c, ρ) is the largest order open set contained in dom(f).

Proof. Let z ∈ E be so that |z−c| 
 ρ. Then PρF (|z−c|) 
ρF ρF and we can write |z−c| = PρF (|z−c|) +
Pρ∞(|z − c|). Let L := lim supn→∞ |an|

1
n . Note that L is well-defined in F s. It follows from Lemma 5.17

and [3, Lemma 24(iii)], which states that

x(y ∨ z) = (xy) ∨ (xz) (0 ≤ x, y, z ∈ F s),

that L|z − c| = lim supn→∞(|an|
1
n |z − c|). From Theorem 5.20 we obtain

lim sup
n→∞

|an|
1
n |z − c| = L|z − c| = LPρF (|z − c|) = LFPρF (|z − c|) 
 e,

so that f(z) converges absolutely in order by [12, Theorem 3.6(i)]. Hence z ∈ dom(f). If z ∈ E is such that ∑∞
n=0 an(z − c)n converges in order, then lim supn→∞ |an|

1
n |z − c| ≤ e by [12, Theorem 3.6(ii)]. It follows 

that L|z − c| = lim supn→∞(|an|
1
n |z − c|) ≤ e.

Since F is Archimedean and L = LF + L∞, we find that L∞|z − c| = 0 by Lemma 5.12, so that 
PL∞(|z−c|) = 0, and LF |z−c| ≤ e. By Theorem 5.20 and by Theorem 5.14, it follows that PρF (|z−c|) ≤ ρF , 
and

|z − c| = PρF (|z − c|) + Pρ∞(|z − c|) + Pd
ρ (|z − c|) = PρF (|z − c|) + Pρ∞(|z − c|)

≤ ρF + ρ∞ = ρ,

as ρ∞ is the largest element in (Bρ∞)s by Lemma 5.16. Hence z ∈ Δ̄(c, ρ).

Suppose that ρ dominates a positive invertible element. Since 
◦
Δ(c, ρ) is the largest order open set con-

tained in Δ̄(c, ρ), it must therefore also be the largest order open set in dom(f) by an argument analogous 
to the proof of Lemma 6.3. �

The remainder of this paper is devoted to proving that analytic functions are also holomorphic in our 
present setting.

Definition 6.6. Let f : dom(f) → E and let U ⊆ dom(f) be an order open set. Then f is said to be analytic
on U if for every c ∈ U there is a positive invertible element r such that Δ̄(c, r) ⊆ U and there exists a 
power series 

∑∞
n=0 an(z − c)n on E that converges uniformly in order to f(z) on Δ̄(c, r).

In the next theorem we show when power series on universally complete complex vector lattices are order 
differentiable and consequently infinitely order differentiable. Part of our proof is an adaptation of a classical 
argument to the present setting.
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Theorem 6.7. Let f(z) :=
∑∞

n=0 an(z − c)n and g(z) :=
∑∞

n=1 nan(z − c)n−1 be functions defined by the 
respective power series with equal radius of convergence ρ by Theorem 6.2. Then f is order differentiable at z0

if and only if ρ dominates a positive invertible element and z0 ∈
◦
Δ(c, ρ). In this case we have f ′(z0) = g(z0).

Proof. Suppose f is order differentiable at z0. Then there is a positive invertible element s such that 
◦
Δ(z0, s) ⊆ dom(f). But then it follows from

1
2s = |12s| ≤ |z0 − c + 1

2s| + |z0 − c| ≤ 2ρ

that ρ dominates a positive invertible element. By Proposition 6.5 we have that 
◦
Δ(z0, s) ⊆

◦
Δ(c, ρ), so that 

z0 ∈
◦
Δ(c, ρ).

Suppose that ρ dominates a positive invertible element and z0 ∈
◦
Δ(c, ρ). Let r be a positive invertible 

element such that r 
 ρ and z0 ∈
◦
Δ(c, r). Let hα → 0 be such that z0 + hα ∈

◦
Δ(c, r), then it follows from 

[12, Theorem 3.6(i)] and Theorem 5.20 that f(r + c) converges absolutely in order. Next for n ≥ 1 define

fn(z) :=
∞∑

m=0
am

n−1∑
j=0

(z − c)n−1−j(z0 − c)j

on 
◦
Δ(c, r). Note that fn(z) is well defined since

n−1∑
j=0

|z − c|n−1−j |z0 − c|j ≤ nrn−1,

and g(r + c) converges absolutely in order since ρg = ρf by Theorem 6.2. Furthermore, we have that 
fn(z0) = g(z0) and as

n−1∑
j=0

(z − c)n−j(z0 − c)j −
n−1∑
j=0

(z − c)n−j−1(z0 − c)j+1 = (z − c)n − (z0 − c)n, (4)

we have

(z − z0)fn(z) = (z − c)fn(z) − (z0 − c)fn(z)

=
∞∑

m=0
am

n−1∑
j=0

(z − c)n−j(z0 − c)j −
∞∑

m=0
am

n−1∑
j=0

(z − c)n−j−1(z0 − c)j+1

= f(z) − f(z0).

Using the equation in (4) again, we find that

fn(z) − g(z0) =
∞∑

m=0
am

n−1∑
j=0

(z − c)n−1−j(z0 − c)j −
∞∑

m=0
am

n−1∑
j=0

(z0 − c)n−1−j(z0 − c)j

=
∞∑

m=0
am

n−1∑
j=0

(z0 − c)j
(
(z − c)n−1−j − (z0 − c)n−1−j

)

=
∞∑

m=0
am

n−2∑
j=0

(z0 − c)j
(
(z − c)n−1−j − (z0 − c)n−1−j

)
.
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Since

(
(z − c) − (z0 − c)

) n−2−j∑
k=0

(z − c)n−2−j−k(z0 − c)k = (z − c)n−1−j − (z0 − c)n−1−j ,

we find that

fn(z) − g(z0) = (z − z0)
∞∑

m=0
am

n−2∑
j=0

n−2−j∑
k=0

(z − c)n−2−j−k(z0 − c)k+j

and

n−2∑
j=0

n−2−j∑
k=0

|z − c|n−2−j−k|z0 − c|k+j ≤
n−2∑
j=0

n−2−j∑
k=0

rn−2 =
n−2∑
j=0

(n− 1 − j)rn−2

= 1
2n(n− 1)rn−2.

Since hα → 0, there is a net qβ ↓ 0 such that for all β there is an α0 such that |hα| ≤ qβ whenever α ≥ α0. 
Then for β and such an α0, it follows by combining all of the above established identities that

|f(z0 + hα) − f(z0) − hαg(z0)| = |hαfn(z0 + hα) − hαg(z0)| = |hα||fn(z0 + hα) − g(z0)|

≤ 1
2 |hα|qβ

∞∑
k=0

|ak|k(k − 1)rk−2

whenever α ≥ α0. Note that this series converges by applying Theorem 6.2 twice. Thus f is order differen-
tiable at z0 where the derivative is g(z0). �

We conclude this paper with the following result, which is a consequence of Theorem 6.7.

Theorem 6.8. Let f : dom(f) → E, and suppose that U ⊆ dom(f) is order open. If f is analytic on U , then 
f is holomorphic on U .

Proof. Let c ∈ U . Then there is a positive invertible element r ∈ E and a power series 
∑∞

k=1 ak(z − c)k
on E such that 

∑∞
k=1 ak(z − c)k converges uniformly to f(z) on Δ̄(c, r) ⊆ U . It follows that r ≤ ρ, and by 

Theorem 6.7, the function f is order differentiable at c. Hence f is holomorphic on U . �
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