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The health and safety of pressure vessels are a concern in the power, chemical, petrochemical, 

and other industries handling gases or liquids at high temperatures. The content of a pressure 

vessel usually is at a substantially different pressure than the ambient pressure, and if not 

handled carefully it can lead to fatal accidents such as an explosion. Therefore, industry 

decision makers rely on a risk-based approach to perform inspection and maintenance on the 

pressure vessel. 

According to the Risk-Based Inspection and Maintenance Procedures project (RIMAP) for the 

European industry, risk has two main components: the probability of failure (𝑃𝑜𝐹) and the 

consequence of failure (𝐶𝑜𝐹). As one of these risk drivers, a more accurate estimation of the 

𝑃𝑜𝐹 will contribute to a more accurate risk assessment. Current methods to estimate the 

probability of failure are either time-based or founded on expert judgement. This work 

proposes enhancements to the quantitative risk assessment for the probability of failure ( 𝑃𝑜𝐹) 

and the consequence of failure (𝐶𝑜𝐹) through the utilization of a newly proposed methodology.  

The proposed methodology consists of incorporating the proportional hazard model (PHM), 

which is a statistical procedure to estimate the risk of failure for a component subject to 

condition monitoring, into the risk-based inspection (RBI) methodology so that the 𝑃𝑜𝐹 

estimation can be enhanced to optimize inspection policies.  
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To achieve the overall goal of this work, case studies applying the PHM to determine the 𝑃𝑜𝐹 

for real-time condition data components, are discussed. Also, considering the consequences 

of failure due to accidents which can occur in pressure vessels using steam and water as 

reference material, boiling expanding vapour explosions (BLEVEs) are especially important 

due to their severity and diverse effects such as overpressure, thermal radiation and missile 

ejection. By way of example this work considers only the overpressure due to BLEVE to 

model the 𝐶𝑜𝐹. 

The first benefit of this work is that by incorporating PHM with the RBI approach, the PHM 

uses real-time condition data, to allow dynamic decision-making on inspection and 

maintenance planning. An additional advantage of the PHM is that where traditional 

techniques might not give an accurate estimation of the remaining useful life to plan an 

inspection, the PHM method can consider the condition as well as the age of the component. 

Another benefit of this work is that risk-based inspection is presently one of the best 

methodologies to provide an inspection schedule and ensure the mechanical integrity of 

pressure vessels. RBI usually provides an inspection schedule based on calendar or usage time 

intervals. This work however optimizes the inspection schedule on pressure vessels, by 

incorporating proportional hazard modelling (PHM) into RBI methodology as stated above.  

The work presented here comprises the application of the newly proposed methodology in the 

context of pressure vessels, considering the important challenge of possible explosion 

accidents due to boiling liquid expanding vapour explosion (BLEVE) as the consequence of 

failure calculations. The proposed risk management methodology incorporates a quantitative 

assessment of the Probability of Failure (𝑃𝑜𝐹), based on Proportional Hazard Modelling 

(PHM), and the Consequence of Failure (𝐶𝑜𝐹), of an explosion event. The unmitigated risk is 

thereby quantified by means of a risk matrix, which enables evaluating and deciding on 

suitable risk mitigation strategies.  
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Notation 

API : 

BLEVE : 

𝐶𝑜𝐹                          ∶

CWA: CEN              ∶ 

DRA : 

GFF : 

HP : 

IMS : 

LPG : 

MTTF : 

MW : 

NDT : 

NBP : 

𝑃𝑜𝐹 : 

PFM : 

PGM : 

PHM : 

RBI : 

RIMAP : 

RMS : 

SHE : 

SVEE : 

SLT 

TPM : 

VCE : 

. American Petroleum Institute 

Boiling liquid expanding vapour explosion. 

Consequence of failure  

European committee for standardization workshop agreement 

Dynamic risk assessment 

Generic failure frequency 

High pressure 

Intelligent maintenance system 

Pressurized liquid gas 

Mean time to failure 

Molecular weight 

Non-destructive testing 

Normal boiling point 

Probability of failure 

Probabilistic fracture mechanics 

Platinum group metal 

Proportional hazard model 

Risk-based inspection 

Risk-based inspection and maintenance procedure project 

Root mean square 

Safety health and environment 

Specific volume entropy and enthalpy 

Superheated limit temperature 

Transition probability matrix 

Vapour cloud explosion 
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Chapter 1. Introduction 

1.1 Problem statement 

Failure of pressure vessels presents a major risk to many industries and therefore the design 

and integrity management of pressure vessels are regulated through international codes and 

standards. Traditionally one of the principal integrity management measures prescribed by 

these standards has been to perform over-pressure testing at defined intervals during the life of 

a vessel, which ensures that defects which may exist and do not cause failure during such a test 

would safely propagate without reaching critical dimensions before the next test is performed. 

Due to the cost of performing these tests, an alternative integrity management approach has 

been developed, which is called risk-based inspection (RBI). 

The RBI approach replaces regulatory over-pressure testing on pressure vessels with 

maintenance actions such as repair and replacement based on inspection non-destructive testing 

(NDT) results. Because failure of pressure vessels can have catastrophic consequences, the 

inspection regime (where and when to do inspections) needs to be risk-based. 

RBI is a methodology designed to prioritize maintenance activities. This approach is prescribed 

in industrial standards, such as the American Petroleum Institute (API 581) for the 

petrochemical industry and the European Committee for standardization Workshop Agreement 

(CWA 15740) standard for the power generation industry. This risk of failure of the pressure 

vessel is calculated as the product of the consequence of failure (𝐶𝑜𝐹) and the probability of 

failure (𝑃𝑜𝐹). Often, the 𝑃𝑜𝐹 is more difficult to determine and is the parameter that one wants 

to reduce through the implementation of the RBI regime and the 𝐶𝑜𝐹 is a given and easy to 

define. 

The standards define various ways (qualitative and quantitative) to estimate risk. Quantitative 

methods are required for critical vessels and failure on such vessels. Preferably, the quantitative 

method will be based on failure models, where the relationship between the inspection results 

(condition parameters) and remaining useful life is known. In cases where the failure model is 

not known or accurate, the next best practice would be to use failure statistical methods and 

supplement this with Bayesian methods when data is scarce. Since RBI implies that inspections 

are performed and therefore that appropriate condition indicators will be available, it is argued 
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that it would be highly desirable to employ both statistical failure statistics, as well as the 

condition data, to estimate the 𝑃𝑜𝐹. 

Although RBI is preferred instead of overpressure testing for pressure vessels, the following 

challenges remain:  

 To obtain a 𝑃𝑜𝐹 that is as accurate as possible. The American Petroleum Institute 

which developed a well-established methodology (API 581) to implement RBI, 

suggests a quantitative approach based on two Weibull parameters to compute the 

𝑃𝑜𝐹. However, this is fundamentally a time-based approach, which does not consider 

the condition of the asset. The major problem here is to have a 𝑃𝑜𝐹 as accurate as 

possible to be computed with the 𝐶𝑜𝐹 for a better risk assessment and inspection 

schedule.  

 Since RBI implies that inspections are performed and therefore that condition 

parameters will be available, it is argued in this research that in these cases, a need 

exists for 𝑎 𝑃𝑜𝐹 estimation method, which uses both the statistical failure statistics, as 

well as the condition data, to estimate the 𝑃𝑜𝐹. 

 Another focus of this research lies in the quantification of the consequence of failure 

(𝐶𝑜𝐹), which is illustrated through a case study. This particular case study involves a 

complex real-world problem associated with the high-pressure cooling system of a 

coal-fired furnace. The failure of this system could result in a steam explosion known 

as a boiling liquid expanding vapour explosion (BLEVE). 

The modelling of the 𝐶𝑜𝐹 will be based on BLEVE theory, as BLEVEs are of particular 

importance among the various major accidents that can occur in process industries and during 

the transportation of hazardous materials. This is due to their severity and the fact that they 

involve a simultaneous occurrence of diverse effects, which can have a significant impact over 

a large area. These effects include overpressure, thermal radiation, and missile ejection. 

However, in this research, we will only focus on the overpressure resulting from BLEVEs. One 

safety concern that will be taken into account is the mixing of water and hot molten material 

within the converter. The converter consists of an air-cooled hearth system, a water-cooled 

crucible, and a high-pressure boiling system. Ultimately, it is necessary to develop strategies 

for mitigating the risk in order to reduce the estimated risk to an acceptable level. 
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1.2 Literature review 

A literature review is conducted to support the development of the new approach to fill the gap 

related to the traditional risk-based inspection methodology. The content of this section is 

arranged as follows: In section 1.2.1, the traditional approach for risk-based inspection is 

addressed, whereafter the development of an approach to a dynamic risk assessment is 

considered in section 1.2.2. Finally, boiling liquid expanding vapour explosion is investigated 

in section 1.2.3. 

1.2.1. Risk based inspection. 

Industry uses risk-based approaches to schedule inspection and maintenance programs 

(Giribone & Valette, 2004). Risk-based inspection is generally presented as an approach to 

prioritize and plan inspection. RBI has in the past been predominantly applied on pressure 

vessels. 

1.2.1.1. Probability of failure estimation in the CWA methodology 

Risk assessment can generally be addressed as follows: 

 Qualitative or screening level (expert judgement) 

 Semi-quantitative (rule-based analysis) 

 Quantitative (probabilistic, statistical, mathematical modelling) 

1) Qualitative assessment (screening level) 

Singh and Pretorius (2017) describe the basic steps of the CWA methodology, which address 

the risk analysis on multiple levels, progressing from the initial screening step to a detailed 

quantitative assessment. 

During the screening stage, the assessment of risk consists of screening the components. The 

𝑃𝑜𝐹 estimation is performed by determining several specific criteria that could influence the 

𝑃𝑜𝐹. 

The screening analysis is relatively fast, simple, and cost-effective. During the screening, 

component risks are ranked using criteria like ‘high’, ‘medium’ and ‘low’ risk levels. After 

screening the components, semi-quantitative analysis can be performed for components that 
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fall into high and medium-risk categories, while components in the low-risk category continue 

to be subjected to the required maintenance. 

The probability of failure at the screening stage is assessed by considering criteria such as: 

 Presence of degradation 

 Year of the last inspection 

 Component age 

 Rate of degradation 

 Design concerns 

 Previous repairs of damage 

 Rate of degradation, etc. 

with each criterion having an associated weighting. The weight of each criterion is assigned 

according to the level of influence it has on the probability of causing failure. Furthermore, 

each criterion is scored relative to a qualitative measure of its influence on the component. 

To produce a precise probability of failure 𝑃𝑜𝐹, the score criterion expressed by 𝐶 is multiplied 

by the weighting of the criterion expressed by 𝑊. The sum of that product for different 

components is then multiplied by the generic failure frequency 𝐺𝐹𝐹, which is a factor used 

based on experience to identify failure frequencies of different components. 𝐺𝐹𝐹 is typically 

developed using expert judgement and a history of component failure. 

 

𝑃𝑜𝐹 = ∑{[(𝐶1 × 𝑊1) + (𝐶2 × 𝑊2)

𝑖

1

+ (𝐶𝑖 × 𝑊𝑖)]                 × (𝐺𝐹𝐹)} 

 

(1) 

2) Semi quantitative assessment (level two risk assessment) 

Once the low-risk components have been screened out as described in the previous paragraph, 

the high and medium-risk components go to the semi-quantitative assessment (Shanil & 

Pretorius, 2017). 

The purpose of the level two 𝑃𝑜𝐹 assessment is to determine the detailed factors that may 

affect the identified damage mechanisms for a given component. The generic failure frequency 

(𝐺𝐹𝐹) is once again used, but for this level, actual failure frequencies obtained from industry 

experience, are used where available. In instances where no industrial 𝐺𝐹𝐹 data is available, 
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the RBI team will revert to the  𝐺𝐹𝐹 values that were used in the previous 𝑃𝑜𝐹 determination. 

The level two risk calculation is performed in the same manner as the level one risk calculation. 

However, in the level two 𝑃𝑜𝐹 assessment the number of criteria for the component under 

analysis is greater than the previous assessment level. 

These criteria include the same as for level 1 as was listed in the previous section. But in 

addition to these there are now more specific criteria such as: Total starts per year, time since 

the last inspection, presence of hot spot, nominal operating temperature, corrosion 

susceptibility, Frequency of temperature excursions, the severity of temperature excursions. 

These additional criteria goes a level deeper than level 1 criteria, the aim of the level two 𝑃𝑜𝐹 

assessment is to determine in greater detail the factors that may affect the identified damage 

mechanisms for the component under analysis. 

3) Quantitative assessment (Level three risk assessment) 

The quantitative or detailed approach is essentially based on calculating the remaining useful 

life for the component under analysis. No further calculation is required when the calculation 

indicates that there is an acceptable period before failure. Otherwise, even more, detailed 

calculations are performed. 

In the CWA 15740, the detailed risk assessment follows almost the same rules as in the 

screening level, although in greater detail. For most critical components, the CWA procedure 

suggests a more detailed analysis where the damage mechanism can be identified, and the 

degradation rate obtained. The 𝑃𝑜𝐹 can then be estimated (Jovanovic, 2004). 

The quantitative methods for determining the 𝑃𝑜𝐹 described above, can be divided into two 

discernible approaches. In the case where an accurate failure model is available and expected 

loading and environmental conditions are quantifiable, the life expectancy for an identified 

failure mode is calculated. In this calculation, the ageing damage accumulation is estimated 

and forms the basis of risk-based decisions in terms of inspection schedules. Such inspections 

monitor the damage parameters, such as crack sizes or corrosion damage and are essentially a 

condition monitoring activity. Depending on the observed damage found during these 

inspections compared to the failure model results, remaining useful life (RUL) calculations are 

performed to trigger repair/replacement decisions, or updated future inspection schedules. This 

includes the case where RBI implementation is done on existing equipment, which would 

already have accumulated damage. Again, future inspection schedules are based on a calculated 
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RUL, with a failure model being available and pre-existing damage parameters having been 

measured. 

In the case where an accurate failure model is not available, inspection schedules are based on 

historical or generic failure statistics, to estimate failure rates and probabilities. In this second 

approach, the inspections, or condition monitoring, are also aimed at finding damage (e.g., 

cracking or corrosion damage), but since a failure model is not available to estimate a RUL, 

any indication of damage would typically lead to repair/replacement actions. 

RUL and the P-F curve 

1) Introduction 

Condition monitoring (CM) is a practice that involves monitoring the condition of equipment 

through various non-intrusive testing methods, supervisory control and data acquisition , visual 

inspection, and other testing methods (Ochella, Shafiee & Sansom, 2021). The selection of the 

appropriate testing method for a particular equipment depends on the equipment's failure 

modes being monitored. Predictive testing and inspections play a vital role in the detection of 

incipient faults and performance deterioration (Square et al., 2017). These inspections include 

vibration monitoring, infrared thermography, ultrasonic noise (acoustics) measurements, 

lubricant (oil) analyses, temperature measurements, flow characteristics, ultrasonic thickness 

measurements, eddy current testing, and motor current signature analysis, among others 

(Nguyen, Fouladirad, & Grall, 2018). A detailed coverage of CM is crucial for equipment 

maintenance and management. 

Lorenzoni et al. (2017) investigated the complexities related to logistics concerning the upkeep 

of offshore assets. In their study, the degradation of components was modelled using dynamic 

Bayesian networks, where the P-F curve represented the degradation pattern and was modelled 

as a reversed exponential function. The P-F curve's characteristic in the study was influenced 

by maintenance activities and operating conditions, which were considered in order to derive 

the health state of the equipment. The study employed five distinct health states to characterize 

operating equipment, namely: new or as good as new, very slight indication of degradation, 

serious degradation, stage of rapid decline, and finally, stage with very high probability of 

failure. 
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2) Potential failure curve (P-F curve)  

Based on the data acquired from prognostic testing and inspection tasks, the state of an asset, 

when plotted against an elapsed time, manifests the potential failure or P-F curve. Figure 1 

exhibits a typical P-F curve. The P-F curve derives its name from its ability to denote the exact 

point at which a monitored asset’s failure becomes detectable. This point is referred to as the 

potential failure point, P. From the inception of an asset’s service life to a particular point, any 

malfunction is indiscernible due to the monitored asset's parameters, such as temperature, 

vibration, lube oil analysis, etc., indicating that the asset remains in a healthy state devoid of 

detectable defects (Lorenzoni et al., 2017). However, incipient failure becomes detectable at a 

certain time when deviations start to occur. The duration from the point of actual detection of 

potential failure to the point of functional failure is known as the P-F interval curve (Wiseman 

et al., 2006). It is desirable for the P-F interval to be ample, allowing for both decision-making 

and maintenance as well as life-extension undertakings, to ensure the success of the entire 

endeavour. 

A P-F curve is an important tool when managing an asset. It is a common way to represent the 

behaviour of an asset before a functional failure occurs. It shows the declining performance of 

an asset or a component over time, until it reaches a functional failure. Since failure is a process 

which can be caused by wear, fatigue, corrosion etc., these failure modes do not necessarily 

immediately cause the asset to reach the state of functional failure. In these cases the 

deterioration can be tracked, and the P-F interval can be used to define the inspection policy. 

 

1.2.1  

 

 

 

Figure 1: P-F Curve 

P expresses the potential failure point, which is the point where it is possible to detect that 

failure is about to occur. The detection of P is usually done through condition indicators. F is 

the functional failure point or the failed state. 
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The P-F interval is the time between the potential failure point to functional failure, and the P-

F interval length is an important key to defining the inspection frequency. The determination 

of P is usually flagged at the attainment of specified values of some condition indicators. This 

could however be challenging. 

 P-F interval determination: The visual representation in figure 1 provides a clear 

demonstration of how equipment performance can deteriorate over time due to a single 

failure mode. Additionally, one must realise the varying capabilities of different 

condition monitoring (CM) techniques in detecting failure at different stages. Notably, 

it is worth mentioning that conducting a visual inspection at point P may not enable the 

detection of the exact size of a crack. However, deploying a more accurate inspection 

technique such as radiography, just after point P, might yield a range of possible P-F 

intervals. These intervals provide a window in which maintenance intervention can be 

planned and implemented. Therefore, for critical equipment, it is imperative to 

continuously monitor using appropriate technologies and techniques to ensure early 

detection (Lorenzoni et al., 2017). Furthermore, it is essential to acquire data at the 

appropriate frequency to facilitate the P-F curve's effectiveness in identifying 

equipment deterioration. In simpler terms, the inspection interval should be shorter than 

the P-F interval to capture faulty conditions before failure. 

 Relationship between P-F interval, useful life and asset life: Lorenzoni et al. (2017) 

provided a definition for useful life, denoted as the duration from the commencement 

of service to the age at which the likelihood of failure significantly increases. This may 

or may not align with the emergence of incipient failure. Jardine et al. (2013) 

characterized RUL as "the remaining time prior to observing a failure, given the current 

state and age of the machine, as well as the past operational profile." In essence, the 

lifetime of an asset can be segregated into the useful life (normal operating state) and 

the faulty state during which the asset operates with an existing fault. Many articles in 

the literature designate these two operational zones as the "stable zone" and "failure 

zone," respectively. Consequently, the entire lifespan of the asset 𝐿𝑎, is defined as the 

summation of the durations in which the asset is in a satisfactory health status and the 

period in which it operates in an unsatisfactory state until it fails. The lifespan of the 

asset can be expressed using the equation:  𝐴𝑠𝑠𝑒𝑡 𝑙𝑖𝑓𝑒 = 𝑈𝑠𝑒𝑓𝑢𝑙 𝑙𝑖𝑓𝑒 +

𝐹𝑎𝑢𝑙𝑡𝑦 𝑧𝑜𝑛𝑒 𝑎𝑠𝑠𝑒𝑡. The faulty zone comprises the P-F interval (P-F interval) and 𝑡𝑑, 

which denotes the time difference between the actual onset of incipient failure and its 
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detection using sensor devices. Thus, the lifespan of the asset can be represented by 

equation: 𝐿𝑎 = 𝐿𝑢 + (𝑡𝑑 + 𝑃𝐹 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙). The primary aim of life-extension measures 

is to prolong the service life of an asset beyond its original design lifetime. When a fault 

is detected, a life-extension measure is implemented, and the equipment's state returns 

to a condition that is almost as good as new.  

1.2.1.2. Other risk assessment techniques 

Quantitative Risk Analysis (QRA) pertains to the quantitative evaluation of risk through the 

application of mathematical methodologies grounded in engineering assessments, aiming to 

integrate estimations of incident probabilities and consequences (Song, 2018). A variety of 

methodologies have been devised for conducting quantitative risk analyses, with the traditional 

approaches such as Fault Tree (FT), Event Tree (ET), and Bow-tie (BT) standing out as the 

most prominent. These analyses play a crucial role in risk assessment by assessing the 

effectiveness of safety measures in avoiding or minimizing accident repercussions. For 

instance, FT, which is widely utilized, delineates the logical connections from root causes to 

the top event qualitatively through gates, while quantitatively revealing the potential impact of 

a failure. 

However, these traditional risk assessment techniques are characterised by their static nature, 

failing to adapt to evolving operational circumstances or modifications (Khan & Abbasi, 1998). 

Besides, conventional risk assessment techniques, in addition to generic failure data utilization, 

are typically identified by their non-case-specific nature, thereby introducing uncertainty into 

the outcomes. The limitations associated with these techniques have spurred the emergence of 

dynamic risk assessment methods, which aim to provide a more refined evaluation. These 

methods focus on the continual reassessment of risk by updating the initial failure probabilities 

of events and safety barriers as new information becomes available during a specific operation.  

The revision of prior failure probabilities is currently accomplished through two primary 

approaches. Firstly, Bayesian strategies involve the utilization of new data in the form of 

likelihood functions to update prior failure rates using Bayes’ theorem. Secondly, non-Bayesian 

updating approaches rely on real-time monitoring of parameters, inspection of process 

equipment, and the application of physical reliability models to supply new data (Abimbola et 

al., 2014). 

 

 
 
 



10 

 

The evaluation of risk assessment techniques outlined in the preceding paragraph has revealed 

deficiencies in both the traditional static approaches and the dynamic method that relies heavily 

on expert judgment, thus hindering its fully quantitative nature. 

Consequently, the present study aims to explore a dynamic risk assessment approach that is 

entirely quantitative and can effectively mitigate the limitations associated with current 

methodologies. 

1.2.1.3. 𝑃𝑜𝐹 estimation using failure statistics. 

The quantitative approach for RBI uses also statistical models, which are based on collecting 

data from plant experience for given components. Generic databases often assume that the 

failure rate is shaped as a ‘bathtub’ over a component’s lifetime and is divided into three zones 

(Jovanovic, Auerkari & Brear, 2001). If the failure rate is constant, the time to failure is 

exponentially distributed. 

The complexity of industrial systems is a prevailing characteristic; however, repairs are 

possible in multiple cases. It is often challenging to obtain historical or benchmarking data 

regarding system failures and repair patterns, and such data can be unreliable due to practical 

constraints. Thus, a good reliability, availability and maintainability (RAM) analysis is crucial 

during the design phase and any modifications necessary to achieve optimized system 

performance (Afsharnia, 2017). Proper maintenance performance requires an assessment of 

component reliability, which is based on knowledge about component states. During the early 

stages of new system development, the uncertainty or unknown states of components are 

common. Therefore, understanding how uncertainties affect system reliability evaluation is 

essential. The reliability of systems depends on age, intrinsic factors such as dimensioning, 

component quality, and material, as well as use conditions such as environment, load rate, and 

stress. The failure rate 𝜆 is the parameter that defines a machine's reliability, and it represents 

the frequency of breakdown occurrences. Failure rate analysis is a strategic method for 

integrating reliability, availability, and maintainability using techniques such as mean time to 

failure (𝑀𝑇𝑇𝐹), asset downtime, and system availability values. These methods and tools 

enable the identification and quantification of equipment and system failures that hinder the 

achievement of objectives. 
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1) Failure rate 

The machine's reliability is determined by its ability to carry out its designated task within a 

predetermined time frame while adhering to certain limitations and prerequisites. The 

operational availability of a machine is directly proportional to its reliability; hence it can be 

defined as the duration during which the machine can function without any malfunctions. The 

reliability of equipment is contingent on the frequency of failures, which is quantified by the 

mean time between failures (𝑀𝑇𝐵𝐹). The estimation of reliability is based on failure rates 

(Afsharnia, 2017). The failure intensity or 𝜆(𝑡)2 is defined as "the expected number of times 

an item will fail during a specified period, given that it was in perfect condition at time zero 

and is operating at time 𝑡." This computed value serves as a measure of equipment reliability. 

At present, this value is expressed as failures per million hours (𝑓/𝑚ℎ). The calculations of 

failure rates are based on intricate models that integrate various component-specific data such 

as stress, environment, and temperature. In the prediction model the organization of assembled 

components follows a serial order. Consequently, the computation of failure rates for 

assemblies entails the summation of individual failure rates for the components within said 

assemblies.  

 
𝜆 =

1

𝑀𝑇𝐵𝐹
 

(2) 

 

where 𝑀𝑇𝐵𝐹 is mean time between failure. 

2) Mean time between failure (𝑀𝑇𝐵𝐹) 

The fundamental metric for assessing reliability is the 𝑀𝑇𝐵𝐹 for an asset that can be repaired. 

𝑀𝑇𝐵𝐹 represents the duration elapsed before a component, assembly, or system failure, 

assuming a constant failure rate. The 𝑀𝑇𝐵𝐹 of repairable systems refers to the estimated 

interval between two consecutive system failures. It is a widely employed variable in the 

analysis of reliability and maintainability. The 𝑀𝑇𝐵𝐹 can be computed as the reciprocal of the 

failure rate λ, for systems with a constant failure rate. For example, if a component has a failure 

rate of 2 failures per million hours, the 𝑀𝑇𝐵𝐹 would be the inverse of the failure rate λ.  
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𝑀𝑇𝐵𝐹=

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
=

1

𝜆
 

(3) 

 

According to Reiter (2017) the mean time between failures (𝑀𝑇𝐵𝐹) is just the sum of mean 

time to failure (𝑀𝑇𝑇𝐹) with the mean time to repair (𝑀𝑇𝑇𝑅). The term "repair" may be used 

interchangeable with other terms such as "replacement" or "replenishment," and thus, is 

referred to as "downtime." It is important to note that 𝑀𝑇𝐵𝐹 includes downtime whereas 

𝑀𝑇𝑇𝐹 does not. In most cases, 𝑀𝑇𝑇𝑅 is much smaller in comparison to 𝑀𝑇𝑇𝐹, resulting in 

𝑀𝑇𝑇𝐹 being like 𝑀𝑇𝐵𝐹. Nonetheless, 𝑀𝑇𝐵𝐹 and 𝑀𝑇𝑇𝐹 differ significantly in larger and 

more comprehensive systems such as production lines and aircraft since they contain numerous 

component parts, leading to a lower 𝑀𝑇𝐵𝐹 and a higher downtime. As a result, industry has 

accepted either 𝑀𝑇𝑇𝐹 or 𝑀𝑇𝐵𝐹 as interchangeable terms with the same meaning. However, 

while functional safety engineers tend to use 𝑀𝑇𝑇𝐹, logistics and maintenance personnel tend 

to prefer 𝑀𝑇𝐵𝐹. 

The second way to differentiate between 𝑀𝑇𝑇𝐹 and 𝑀𝑇𝐵𝐹 may not be common, but it is 

equally important. It has been mathematically proven (Reiter, 2017) that in redundant or fault-

tolerant systems, the 𝑀𝑇𝑇𝐹 is distinct from the 𝑀𝑇𝐵𝐹 in steady state. This distinction between 

𝑀𝑇𝑇𝐹 and 𝑀𝑇𝐵𝐹 becomes particularly important when the useful product life can be 

associated with either the "setting time" characterized by 𝑀𝑇𝑇𝐹, or the steady state, 

characterized by 𝑀𝑇𝐵𝐹. 

1.2.1.4. Bayesian Approach 

1) Introduction 

Augmenting the quantitative approach based on failure statistics can be done using Bayesian 

Statistics. Bayes’ rule for events can be expanded to define a Bayes’ rule for random variables 

and their distribution functions. The expanded rule can be used to combine a prior distribution 

and a likelihood function to produce a posterior distribution. The posterior distribution can 

subsequently be used as an input in risk analysis. The Bayes’ rule can be written as (Guyonnet, 

2009): 
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𝑃(𝐴|𝐸) =

𝑃(𝐴) × 𝑃(𝐸|𝐴)

𝑃(𝐸)
 

 (4) 

 

where 𝑃(𝐴|𝐸) is the Posterior: Probability distribution of the parameter (A) given data set 

(D);  𝑃(𝐸|𝐴) is the likelihood. A function of the observed data (E) given a parameter (A); 𝑃(𝐴) 

is the prior: Probability distribution of the parameter (A) which represents our belief on the 

parameter before the dataset D is observed; 𝑃(𝐸) is the evidence: probability distribution of 

the observed data (D) which acts as a normalizing constant that ensures the cumulative 

posterior distribution sum to 1. 

Usually, decision-making based on statistical lifetime data as well as condition monitoring data 

requires a large set of data which often is incomplete or missing. To overcome that problem, 

the use of expert judgement is accommodated using Bayesian statistics. The essential element 

is the revision of probabilities based on new information (Jardine & Tsang, 2013). 

As previously argued, risk-based approaches for the scheduling of inspections are becoming 

common. The Bayesian approach is well suited for this because it allows a systematic 

integration of expert judgement and data obtained from ongoing inspections (Aven & Pörn, 

1998). 

2) Frequentist and Bayesian differences 

Frequentist and Bayesian methodologies are distinguished by their varying approaches. The 

frequentist regards model parameters as unknown, but fixed constants, relying solely on 

observed data in order to estimate their values. In the context of failure time data, it is common 

to assume that such data is exponentially distributed. 

 
𝑓(𝑥; 𝜆) =

1

𝜆
𝑒

−𝑥
𝜆⁄  

(5) 

 

where 𝜆 is the parameter of interest, 𝑀𝑇𝐵𝐹. The maximum likelihood estimator for 𝜆 in this 

equation is simply the total test time divided by the number of failures which provides a point 

estimate for 𝑀𝑇𝐵𝐹. To provide an account of the variability in the estimation process, a 

confidence interval, typically a one-sided lower bound, can be computed (Shamshoian et al., 

2022). However, when the dataset is limited or no failures are observed, the bounds may be 

considerably wide and insufficiently informative. Additionally, in the absence of failures, a 

 
 
 



14 

 

point estimate cannot be determined due to division by zero. Furthermore, it is important to 

note that confidence bounds do not signify the parameter's range of values, but instead represent 

the uncertainty related to the sampling method (Harman, 2018). It is therefore appropriate to 

state that "we anticipate that 90% of the estimated intervals will encompass the population 

parameter." 

Bayesian methods treat parameters as unknown random variables whose distribution (the prior) 

represents the current belief about the parameters. Bayes’ rule is defined in equation 2. 

The maximum likelihood estimation (MLE) serves as a tool to identify optimal parameter 

values that most effectively align with a given dataset, utilizing a predetermined distribution. 

The likelihood term serves as a representation of this form of information. It is important to 

note that unlike in non-Bayesian analyses, the likelihood and prior serve as inputs within 

Bayesian analysis, rather than outputs. In Bayesian analysis, the posterior is a probability 

distribution function (pdf) of the parameter given the dataset, rather than simply a point 

estimate. This enables the application of all pdf properties within the analysis, signifying a 

critical juncture in the process. 

The difference between frequentist and Bayesian approaches diminish as the sample size is 

augmented. Nevertheless, the variances can be considerable for small datasets, with Bayesian 

interval evaluations frequently exhibiting narrower margins than the frequentist techniques. 

Steps to implement Bayesian analysis are: 

 Choose a prior distribution that describes the belief of the 𝑀𝑇𝐵𝐹 parameter. Any prior 

distribution may be selected, provided it precisely characterizes the parameter 

information that is known and is established prior to the collection of any fresh data. 

For instance, in the context of failure times, we opt for an inverse gamma distribution, 

as it pertains to the example at hand. 

 Collect failure time data and determine the likelihood distribution function: Many 

defence systems' failures are often assumed to conform to an exponential distribution; 

nonetheless, this assumption may not always hold true (Harman, 2018).   

 Use Bayes’ rule to obtain the posterior distribution: The posterior distribution is formed 

by the combination of the prior distribution and the likelihood distribution. Generally, 

any combination of these distributions is possible. However, in the general case, 

numerical methods such as Markov chain Monte Carlo (MCMC) are necessary. 
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Nevertheless, there exist certain combinations of distributions that lead to closed form 

posteriors having the same form as the prior distribution. These combinations are 

known as conjugate priors. For the case of exponential likelihood and inverse gamma 

prior, the resulting posterior distribution is an inverse gamma distribution (Shamshoian 

et al., 2022). 

 Use the posterior distribution to evaluate the data. 

1.2.1.5. Framework of the existing method to estimate the 𝑃𝑜𝐹 

Below is given a framework showing the existing or traditional methods to estimate the 𝑃𝑜𝐹. 

 

Figure 2: Framework summarising the existing methods. 

Figure 2 represents a framework for the existing procedure to estimate the Probability of 

Failure (𝑃𝑜𝐹) to assess risk. The framework is essentially constituted by four main blocks 

(Expert opinion likelihood block, Bayesian Approach block, Failure data block and Condition 

block) which are existing 𝑃𝑜𝐹 estimation methods serving respectively as input to the risk 

assessment in the framework. A closed loop part which captures risk indices is used to decide 

either to repair, replace or let the component run according to the severity of the risk index 

(Shamshoian et al., 2022). 
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In summary, Figure 2 represents the progression in risk assessment, starting from the non-

quantitative approach, which is prevalent and offers no dynamic view of risk assessment, to 

the time-based approach, which may lead to the early replacement of components that still have 

a useful life. Framework describing the existing method to estimate the 𝑃𝑜𝐹 in RBI. 

The traditional risk assessment addressed in this section is based on the CWA procedure and 

the API standard and assumes that the system or the component is still safe for operation 

between the planned inspection intervals. This assumption yielded many accidents (Bhatia, 

Khan, Patel & Abbassi, 2019). Therefore, there is a need for an innovative approach, which 

allows dynamic risk assessment (DRA). 

1.2.2. Development of an approach to a dynamic risk assessment  

1.2.2.1. Introduction 

Modern industries emphasise safety and risk prevention. This has led to the growth of risk-

based inspection as one of the best approaches for scheduling inspection. Section 1.1 stated 

that over the two past decades, the American Petroleum Institute (API) and the Risk-based 

Inspection and Maintenance Procedure (RIMAP) project have published standards and 

guidelines to facilitate the determination of the inspection interval based on equipment life 

degradation rate, environmental impact, etc. 

 

The underlying assumption of these approaches is that risk must remain acceptable between 

two planned inspections or maintenance intervals (Zio, 2018). This assumption may however 

not be suitable for degrading, fast-changing, and complex engineering systems (Bhatia et al., 

2019). To deal with this challenge, researchers developed an innovative dynamic risk 

assessment (DRA) methodology to assess risk for a dynamically changing system. Dynamic 

risk can be defined as a risk profile that provides the status of risk at any given time and can be 

updated upon the availability of new information (Zio, 2018). 

1.2.2.2. Overview of the existing dynamic risk assessment methods 

In his lookout on future risk assessment, Zio (2018) presents a detailed review of the recent 

literature related to dynamic risk assessment. From the literature, dynamic risk models can be 

classified into three categories. 
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 Data-based approach: In this approach, risk updates are based on accident or near-miss 

data. Also, as soon as new data are recorded, they are integrated into the model to update 

the risk computation. Statistical tools such as fault trees, event trees, or Bayesian 

networks are used in this approach to define the relationship among initiating events. 

 Process-based approach: This approach is based on the fact that any change in the 

process parameters is likely to change the risk. All changes are monitored to update the 

risk calculation. 

 Degradation-based approach: In this approach, the system's condition is monitored in 

real-time, and risk computation is updated based on continuous degradation. The 

degradation mechanism rate must be estimated based on experience and available data. 

 

Meel and Seider (2006) utilised the Bayes’ Theorem method to dynamically update the 

estimate of accident probabilities, using near misses and accident data collected from 

equivalent systems. 

Along the same lines,  Kalantarnia, Khan and Hawboldt (2009) developed a method where the 

Bayesian Theorem was utilised to update probability and event tree (ET) analysis was used for 

consequence modelling. Khakzad, Khan and Amyotte (2012) combined the Bayes’ theorem 

with the bow-tie (BT) model. The failure probabilities of the primary event and safety barriers 

in the BT were continuously revised over time, and the updated BT model was used to update 

the risk. 

The main drawback of the DRA methods as mentioned above, which is also the case for many 

other DRA methods, is that they use only statistical data to update the estimated risk value. 

Using only statistical data, updating risk indices only happens when accidents or near misses 

occurring.  

To fill the gap identified in sections 1.2.1 and 1.2.2, a condition-based approach would resolve 

the shortcomings related to the non-quantitative and time-based approaches by tracking the 

condition of a component. Being able to estimate the remaining useful life of a component, 

allows inspection and replacement to be planned. However, the condition-based approach relies 

on the availability of an accurate failure model. When this is not available the time-based 

approach would be the only option, even though the inspections performed because of the RBI 

assessment, will continuously add information, which will be under-utilised, only being used 

to inform replacement/repair decisions based on conservative acceptance criteria. Hence, this 
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research proposes to combine the condition-based approach with component age, using a 

proportional hazard model (PHM). Section 1.3 addresses the suggested method to respond to 

the shortcomings highlighted in this paragraph. 

As risk is computed based on both 𝑃𝑜𝐹 and 𝐶𝑜𝐹, the following section addresses the 𝐶𝑜𝐹 

estimation. 

1.2.3. Consequence of failure modelling 

Consequences of failure are usually considered to consist of four aspects: (1) health 

(𝐶𝑜𝐹ℎ𝑒𝑎𝑙𝑡ℎ), safety (𝐶𝑜𝐹𝑠𝑎𝑓𝑒𝑡𝑦), environment (𝐶𝑜𝐹𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡), and business (𝐶𝑜𝐹𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠).  

The safety, health and environment (SHE) consequences are important in any scenario where 

a loss of containment takes place (Heerings & den Herder, 2004). 

According to the RIMAP, the 𝐶𝑜𝐹 assessment follows the same pattern as the 𝑃𝑜𝐹, which 

means they are all based on a certain scenario. Section 1.2.1.1 describes the 𝑃𝑜𝐹 computation 

performed from the screening level known as level 1, semi-detailed known as level 2 and the 

detailed level, which is level 3, the consequence of failure analysis follows the same logic from 

level 1 to level 3 in the RIMAP approach. In the RIMAP approach, the screening level is 

performed by expert opinion without any numerical analysis. 

However, according to API 581, the consequence of failure is presented into two categories. 

These are the consequences based on the affected area and financial consequences (Syawalina, 

Priyanta & Siswantoro, 2020). 

The consequence analysis in the RBI (API 581) consists of allowing one to rank the asset items 

based on risk and providing a suitable inspection schedule. According to API 581, the 

computation of the consequences is based on empirical equations. The consequence results are 

expressed in terms of impact area in quantitative terms (Vianello, Guerrini, Maschio & Mura, 

2014). 

Loss of containment of dangerous fluids from pressurized processing equipment may result in 

damage to surrounding equipment, serious injury to personnel, production losses, and 

undesirable environmental impact (Henry & Osage, 2014). The consequences of failure are 

calculated using well-known consequence analysis methods and are presented as an affected 
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impact area or in financial terms (Shishesaz, Nazarnezhad Bajestani, Hashemi & Shekari, 

2013). 

The impact areas from incident outcomes such as pool fires, fireballs, and vapour cloud 

explosions are quantified based on the outcome of thermal radiation and overpressure on 

surrounding equipment and personnel. API 581 provides two levels of consequences analysis: 

1.2.3.1. LEVEL 1 Consequence analysis 

A level 1 consequence analysis evaluates the consequence of hazardous releases for a limited 

number of reference fluids. The reference fluid that closely matches the normal boiling point 

and molecular weight of the fluid contained within the process asset should be used. The 

following are some reference fluids for the level 1 consequence analysis (Henry & Osage, 

2014): Water; Steam; Acid; Ammonia; Chlorine; Hydrogen (H); Hydrogen fluoride (HF). 

The first step is to determine the 𝐶𝑜𝐹 by selecting from the above list the reference fluid that 

most closely matches the normal boiling point (NBP) and molecular weight (MW) of the fluid 

contained within process equipment. The subsequent steps consist of calculating the release 

rate that depends on the physical properties of the material, the phase of the fluid and the 

process operating conditions and the allocated release hole size (Prayogo, Haryadi, Ismail & 

Kim, 2016).  

1.2.3.2. LEVEL 2 Consequence Analysis  

Level 2-consequence analysis provides a detailed approach to determine the consequences of 

loss of containment of dangerous fluids from pressurized equipment. 

Level 2-consequence analysis was developed as a tool to use where the assumption of level 1 

consequence analysis is not valid. Examples of where level 2 calculation may be desired or 

necessary are cited below: 

 When the stored fluid is close to its critical point, the ideal gas assumptions for the 

vapour release equations are no longer invalid. 

 When incorporating the impact of two-phase emissions, which encompasses both jet 

entrainment and rainout, into the methodological framework, it becomes imperative. 

 When the specific fluid is not sufficiently described in the compilation of available 

reference fluids, this includes situations where the fluid is a diverse combination of 
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substances with different boiling points or when the harmful effects of the fluid are not 

adequately represented by any of the reference fluids (Henry & Osage, 2014). 

Since the high-pressure cooling system supporting the converter experiences multiple leaks in 

the case of the system under consideration, these cause safety risks because leaks on the HP 

are a serious problem that can result in steam explosions in the converter (which is a pyro 

metallurgical process devices able to transform raw material in another form of substrate). This 

challenge of a potential steam explosion will be the focus of the following analysis. 

Consequence modelling in this work is performed according to the boiling liquid expanding 

vapour explosion (BLEVE) theory defined in the following section. 

1.2.3.3. Boiling liquid expanding vapour explosion (BLEVE) 

1) Definition 

The definition of boiling liquid expanding vapour explosion (BLEVE) has been established by 

the Centre for Chemical Process Safety as the sudden release of a substantial amount of 

pressurized superheated liquid into the atmosphere (Abbasi & Abbasi, 2007). This sudden 

release can be attributed to various factors such as containment failure due to fire engulfment, 

missile impact, corrosion, manufacturing defects, or internal overheating. Birk et al. (2018) 

have defined a BLEVE as the explosive release of expanding vapour and boiling liquid when 

a container holding a pressure-liquefied gas fails catastrophically. They have also defined 

"catastrophic failure" as the sudden opening of a tank to release its contents almost 

instantaneously. The instantaneous and explosive boiling-vaporisation resulting from the 

release of previously pressurized and liquefied vapour causes a series of cataclysmic impacts. 

 

 A boiling liquid expanding vapour explosion (BLEVE) can result in several 

consequences.  

 The generation of short-lived pools of liquid, which may ignite if the liquid is 

flammable, a blast wave.  

 The creation of flying fragments or missiles; and the release of fire or toxic gases. If 

the pressurized liquefied vapour is flammable, the BLEVE can result in the formation 

of a fireball. In cases where the substance undergoing a BLEVE is toxic, such as with 

ammonia or chlorine, the negative effects can include the dispersion of toxic gases. 
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2) Mechanism of BLEVE occurrence 

Birk et al. (2018), Behrouz and Casal (2017), Birk (2008) and Abbasi (2007b) among others, 

have presented detailed descriptions of the events leading up to a BLEVE. Drawing from their 

observations a typical BLEVE can be broken down into the following steps: 

 A container holding pressurized liquid gas (PLG) is subject to a heat load or experiences 

failure due to missile impact, fatigue, or corrosion. If a container holding pressure-

liquefied gas is accidentally heated, for instance, due to nearby fire radiation, the 

pressure inside the container will begin to increase. Once the pressure reaches the set 

pressure of the pressure relief valve, the valve will open, allowing liquid vapour to 

escape into the atmosphere. As the liquid vaporises, the portion of the vessel wall that 

benefits from liquid cooling decreases. Eventually, the remaining metal may become 

weakened and rupture, even if the pressure relief valve is functioning correctly. A 

container may also fail in the absence of fire if it is struck by missiles from an adjacent 

exploding vessel, or due to other forms of mechanical failure such as gland/seal loss, 

sample line breakage, fatigue, or corrosion. 

 The container ruptures. A pressure vessel is designed to withstand the pressure relief 

valve set pressure, but only under design temperature conditions. If the metal is heated 

due to a nearby fire, its strength may decrease enough to cause rupture. For example, 

the steel commonly used in LPG containers may fail when the container is heated to 

approximately 650°C and its pressure reaches approximately 15 atm. The container 

may also rupture due to mechanical failure, as explained in the previous paragraph. 

 There is instantaneous depressurization and explosion, when a vessel experiences 

failure, an immediate depressurization occurs. The liquid that was previously at a high 

pressure and corresponding temperature is abruptly reduced to atmospheric pressure 

but remains at a temperature above the liquid's atmospheric pressure boiling point, 

resulting in superheating. However, each liquid has a different superheat limit 

temperature (SLT) which it can withstand. If the temperature of the liquid in the 

depressurized vessel exceeds its SLT, there will be instantaneous and homogeneous 

nucleation, leading to a violent release of a large portion of the liquid in a boiling liquid 

expanding vapor explosion (BLEVE) that occurs within one millisecond of 

depressurization. If the liquid is below its SLT but still in a state of significant 

superheat, a BLEVE can still occur due to factors such as depressurization waves and 
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the presence of likely heterogeneous nucleation sites. According to Abbasi and Abbasi 

(2007b) Prugh was among the first to emphasize that a BLEVE can occur even at initial 

temperatures below the superheat limit, but the higher TNT equivalent for BLEVE 

occurs near or above the SLT. BLEVEs have been observed with propane at ambient 

temperature, well below its atmospheric superheat limit temperature. However, for a 

violent and explosive boiling to occur, there must be potential for superheat in the liquid 

when it is suddenly exposed to a pressure below its saturation pressure due to the initial 

tank failure. This is particularly relevant for pressure-liquefied gases (PLGs), which are 

substances that are held as liquids in pressurized containers despite being in a gaseous 

state at atmospheric pressure. Examples of PLGs include industrial chemicals such as 

liquid petroleum gas, compressed natural gas, and liquefied chlorine, as well as 

superheated water in a boiler.  

 When the vessel shatters, the liquid vaporizes suddenly and generates a powerful 

overpressure blast wave due to the several hundred-fold to over a thousand-fold 

increase in volume of the vaporizing liquid and expansion of the already existing 

vapour. The magnitude of the blast wave is much higher than that caused by a vapour 

cloud explosion occurring in an identical scenario. The quantity of substance is a critical 

factor in the event of a vessel shattering and its fragments being propelled in various 

directions. The splashing of the substance may lead to short-lived pools nearby, which 

may ignite if the liquid is flammable. The resulting missile fragments can cause damage 

to other vessels containing liquefied gas under pressure, leading to further BLEVE 

incidents. This chain reaction has been observed in various tragic accidents, including 

the one in Mexico City, which resulted in the most significant loss of life in a process 

industry explosion-cum-fire accident. In some cases, the vessel fragments themselves 

can become missiles and travel long distances, causing destruction at unexpected 

locations. 

 Additionally, if the substance involved is not combustible or toxic, the pressure wave 

and missile effects are the only consequences of the explosion. However, in most cases, 

flammable chemicals are involved, and the explosion results in a mixture of liquid and 

gas, which ignites, leading to the formation of a fireball. Analysis of past BLEVE 

accidents has shown that over two-thirds of all incidents involve flammable chemicals, 

resulting in intense thermal radiation that causes massive damage. The size, shape, and 

heat load of the fireball are influenced by various factors, such as the presence of air 

 
 
 



23 

 

and the amount of fuel involved. Not all the fuel may burn, and some may escape 

through cracks or openings in the vessel. In BLEVE disasters like those in Mexico City, 

fragments of shattered vessels can carry flammable liquid, leading to fires in the 

surrounding areas and threatening other vessels. 

 

3) Impact or consequence of BLEVE 

The evaluation of the impact or the consequences of a BLEVE are determined by two essential 

factors: The energy of the explosion also called “burst energy, consists of determining the 

severity of the blast wave generated by and the velocity of the missiles formed out of the vessel 

fragments. 

Generally, two treatments have been used to evaluate the burst energy related to the BLEVE: 

The method developed by Prugh, as documented by Abbasi is the so called “TNT equivalent 

method “which considers the expanding vapour as an ideal gas. The second method, also 

named SVEE method, is also a thermodynamic method like that of Prugh, but it is distinguished 

by the use of specific volume, entropy and enthalpy (SVEE). 

However, this work uses the TNT method in chapter 3 to compute the BLEVE energy, 

overpressure and the distance from the accident epicentre (Abbasi & Abbasi, 2007). 

While there exist more rigorous approaches that exhibit a greater degree of consensus regarding 

their applicability for the explosion of vessels containing pressurized gases, caused explosives, 

and vapour cloud explosions (VCE), the level of uncertainty is much higher in the context of 

BLEVE scenarios which involve superheated liquids and pressurized gases (Abbasi & Abbasi, 

2007). In the case of a BLEVE, in which a vessel containing a superheated liquid undergoes a 

catastrophic failure, the "boiling liquid" and the "expanding vapour" jointly provide the burst 

energy. However, it becomes quite challenging to determine the contribution of each phase, 

since the events occurring between the initial crack and the crack's propagation up to the 

occurrence of the BLEVE have an impact on the state of both phases, as elaborated in the 

preceding section. Additionally, a certain amount of the burst energy gets expended in 

shattering the vessel, another portion is utilized in propelling the vessel fragments, and yet 

another in the generation of the blast wave. The cooling effect of the flash vaporization of the 

liquid and the adiabatically expanding vapour only serve to further complicate the situation. 

Once a vessel is shattered, some of its contents can also form transient pool fires by getting 

splashed on the floor before evaporating, which may reduce the quantity of the vessel contents 
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that form the fireball. Below, we present an overview of the state-of-the-art of BLEVE 

consequence assessment. Classically, two methods have been employed to estimate BLEVE 

energy. 

1.2.3.4 Analysis of risks of pressure vessel 

1) Introduction 

Wyckaert et al. (2017) conducted a study on the health and safety risk assessment of pressure 

vessels. They reviewed literature from the past ten years and analysed accident reports from 

Quebec and the United States over the past sixteen years. Despite advanced technologies and 

standards regulating pressure vessels and piping, serious accidents can still occur. According 

to Wyckaert et al. (2017), the study highlighted two major risks related to the use of pressure 

vessels: 

 An increase of the internal fluid pressure above the burst pressure of the vessel, or 

 A decrease of the resistance of the vessel material due to the operating conditions which 

in turns causes a decrease in the burst pressure. 

 

Majid & Ghorba (2015) noted that technical issues are not the only factors leading to the rupture 

of pressure vessel. Human and organisational factors are also significant parameters to 

consider. 

Leroux, De Marcellis-Warin & Trepanier (2010) conducted a study on the transport of 

dangerous materials. They identified the main risks related to the transport and storage of 

dangerous materials, such as explosion, fire, and emission of toxic products. The study 

highlighted that human error is identified as the principal causal factor in these types of 

accidents. 

As for the material of the enclosure of the vessel, the environment has a great impact on the 

fragile parts of the vessel (Barbosa et al, 2006). Leaks are prone as fragile components of the 

pressure vessel and piping, making them more sensitive to wear, fatigue, and human error. 

According to Wyckaert et al. (2017) the impact of accidents involving pressure vessels can be 

severe, including explosion, domino effects due to fragments, fire, creation of slick of products 

or gas cloud or toxic or flammable vapours and the projection of fragments. 
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2) Explosion by rupture of enclosures 

With regards to the risk of rupture of pressure vessels, various authors (Ineris, 2013) have 

established that there are two possible causes. The first cause is an increase in the internal fluid 

pressure beyond the vessel's burst pressure. The second cause is a decrease in the resistance of 

the vessel material due to the operating conditions, which leads to a decrease in the burst 

pressure. However, technical issues are not the only factors that contribute to the vulnerability 

of pressure vessels to rupture. Human and organizational factors are also significant parameters 

to consider (Majid & Ghorba, 2015). 

During their study of the transport of dangerous material, Leroux et al. (2010) identified the 

principal risks associated with the transportation and storage of dangerous materials. These 

risks include explosions, fires, and emissions of toxic products. The study also revealed that 

human error is the principal causal factor in this type of accident (Leroux et al., 2010). In the 

case of a rupture of the shell, pressure vessel equipment, such as gas bottles, compressors, 

evaporators used in many industrial applications, research, medical and household appliances, 

etc., are of concern. In such cases, hazards arise from the projection of fragments and impacts, 

as well as incidents related to pipe whipping energy. The consequences of the rupture vary 

depending on the phase (liquid, gas or vapour) and the product contained in the pressure device, 

ranging from jet of steam or superheated water to intoxication or explosion. The rupture 

generally occurs at the fragile parts of the pressure vessels, such as seals, welds (Barbosa et al., 

2006), pipe fittings, valves, pressure reducers, etc. 

3) Leak 

Fragile components of the pressure vessel and piping are prone to leakage. They are more 

sensitive to wear and fatigue but also to human error. As for the material of the enclosure of 

the vessel, the environment has a great impact on the fragile parts of the vessel (Barbosa et al., 

2006). The leak of these pressure vessel components can sometimes be classified as fugitive 

emissions, (i.e., “a release of pollutants to the atmosphere after an escape from the equipment 

after an attempt to collect them using a hood, a gasket joint or any other means which should 

have ensured their capture and retention”). The misuse or incorrect installation of a gasket can 

generate a leak of the confined fluid of the pressure vessel (Bouzid, 2014). The consequences 

of such leaks can be the cause of creation of a slick of flammable products or poisons, the 

creation of flammable or toxic gas or vapour clouds which can lead to a fire or an explosion or 

an asphyxiation or poisoning of workers. In the current context, terrorism spreads and gains in 
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extent, the intentional deterioration of an industrial installation under pressure resulting in 

important escape of hazardous substances cannot thus be ignored (Wyckaert et al., 2017). 

4) Risk quantification and classification of pressure vessels based on failure modes. 

The establishment of the Risk Quantification and Grading Method Based on Failure Mode 

(RBFM) is a noteworthy innovation. This method is highly suitable for the surface static 

equipment of oil and gas gathering and processing stations. It functions by analysing each 

failure mode and its corresponding consequences to obtain the risk grade under each respective 

failure mode. the present study aims to assess various failure modes and their associated risks 

of equipment based on field production parameters. In conjunction with API 581 Risk Based 

Inspection and Statistical summary pipeline transportation occurrences in 2018, typical failure 

modes include leakage, combustion, explosion, and the like. The primary damage mechanisms 

are thinning, environmental cracking, and functional or mechanical failure. The failure reasons 

are analysed and classified into four categories and 19 subcategories (Baru, 2016). 

 

Of significance, the process failure mechanism of pressure vessels is innovatively introduced 

in the functional or mechanical failure damage mechanism, such as overpressure, gas and liquid 

channelling, flooding, and so forth. The corresponding risk factors gradually deteriorate the 

equipment over time and ultimately lead to equipment failure. The risk factors that affect 

pressure vessels mainly include media, operation, design, environment and man-machine 

factors (Singh & Pokhrel, 2018). Based on accident statistics (Pipeline Performance in Alberta, 

1990–2005), the most common damage mechanism of equipment in the station is thinning, 

including internal corrosion and external corrosion. Internal corrosion hazards include medium 

components, operating parameters, and design, which ultimately affect the internal corrosion 

rate and lead to internal corrosion perforation (Liao et al., 2023). External corrosion is divided 

into soil corrosion, corrosion under the insulation layer, joint coating corrosion, among others. 

Therefore, the risk factors are related to soil, insulation layer, environmental parameters, and 

pipeline materials, which affect the external corrosion rate or potential (Shi et al., 2021). In the 

functional or mechanical failure damage mechanism, there are several failure reasons. Blocking 

hazards can be divided into three types, which are mainly related to the properties of sand 

gravel, wax evolution of oil products, and formation temperature of natural gas hydrate (Ke & 

Chen, 2019). Overpressure is related to the maximum allowable operating pressure and 

operating pressure. Gas and liquid channelling, tank deflection is closely related to operating 

parameters (temperature, pressure, flow rate, etc.). The hazards of mis-operation in improper 

 
 
 



27 

 

operation are closely related to the operators' skills and knowledge (to management and 

persons). 

In this work we investigate only the scenario of a leaking pipe in the high-pressure (HP) cooling 

system which leads to water suddenly penetrating molten matte in the furnace of a converter 

plant in a smelter, despite the generalisation that might have been obtained from also 

considering all the other possible accident scenarios, such as coal explosions. 

We consider the case where water accumulates on the slag crust, before the crust fails, and the 

water penetrates the molten matte. This may lead to a boiling liquid expanding vapour 

explosion (BLEVE) in the converter. 

1.2.3.5. Summary and conclusion concerning BLEVE. 

According to Abbasi and Abbasi (2007b), the following observations are relevant to BLEVE: 

 BLEVE, which is one of the six classes of explosions that can occur in the process 

industry, is particularly destructive. The other five classes of explosions include vapour 

cloud explosion (VCE), dust explosion, condensed phase explosion, confined 

explosions, and 'physical' explosions. The Mexico refinery disaster of 1984, the world's 

second worst process industry accident, involved a chain of BLEVEs.  

 Aside from producing highly destructive blast waves and fireballs, BLEVEs propel the 

fragments of the ruptured vessel in all directions at high velocities, and such missiles 

are often enveloped in fire if the ruptured vessel had contained a flammable chemical. 

In most BLEVE events, the greatest damage has been caused by such missiles either by 

directly hitting and often killing people, or by triggering fires, or by damaging other 

process units leading to secondary accidents. 

 BLEVE can occur in any situation where a vessel or a conduit carrying a pressure-

liquefied gas (PLG) is accidentally depressurized. The depressurization suddenly 

renders the PLG into a superheated state, leading to instantaneous nucleation and 

explosive flashing. However, several factors introduce complexity in this otherwise 

simple-looking phenomenon. For instance, the initial depressurization due to a minor 

crack may just cause the release of a gaseous or a liquid jet, and the crack may either 

not propagate further or do so after a great deal of time. However, a crack may also 

propagate rapidly. Abbasi and Abbasi (2007b) showed that much has been done to 

understand the nature and the magnitude of the forces and counterforces that are 
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generated in a jeopardized vessel containing a PLG. A great deal of new knowledge has 

been acquired, based on analysis of past accidents as well as experimental BLEVEs, 

but we still are not able to forecast whether a jeopardized vessel will suffer BLEVE 

and, if it does, when. This remains an area where a great deal of further research and 

development is required. 

 Knowledge has been accumulated regarding the potential energy of explosion of a 

BLEVE, the resulting fireball size, duration, and heat load, as well as the quantity, size, 

orientation, and kinetic energy of projectiles generated from a shattered vessel. 

However, the utilization of different methods may result in significant variations in the 

forecasts, at times differing by several orders of magnitude. 

 Despite the existence of manuals produced by coordinating agencies, such as the TNO 

in The Hague and the Centre for Chemical Process Safety in New York, which outline 

various consequence assessment methods, there is little discussion on their relative 

merits. This situation creates situations where the risk assessments conducted by 

industries and regulatory agencies may differ significantly, even though both parties 

have employed legitimate consequence analysis models. Therefore, there is an urgent 

need to standardize and codify procedures, like the approaches used in clinical and 

environmental analysis. 

 It is surprisingly common to believe that BLEVE only occurs with flammable 

chemicals, even though it is a well-known and well-documented phenomenon. 

However, the reality is that one-fifth of all BLEVEs occur with non-flammable PLGs. 

 Investigating the probability of a secondary and higher order accident (domino effect) 

caused by a BLEVE is one of the questions that need answers. BLEVE history indicates 

that it is seldom a standalone event and is frequently a trigger for other accidents. 

Therefore, studies on this aspect of BLEVE would refine our assessment of the risk 

posed by PLG-holding units. 

 There is a great need for research and development to identify more reliable methods 

than those currently available to prevent a jeopardized vessel from undergoing BLEVE. 

1.3 Scope of the Research 

The scope of the work is divided into two sections: The work firstly proposes a new 

methodology to estimate  𝑃𝑜𝐹 of an asset. The method is based on PHM, which is a statistical 

model able to define the risk of failure for a component, subject to condition monitoring. This 
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is addressed in section 1.3.1. Secondly the advantages related to the proposed method is 

discussed in section 1.3.2. 

1.3.1. Newly proposed method based on PHM. 

It is evident from sections 1.2.1 and 1.2.2 that much research was done in the traditional risk-

based inspection. Progress was also made in innovative dynamic risk assessment. However, 

this work proposes the incorporation of the PHM into the RBI to obtain an optimal 𝑃𝑜𝐹, which 

is a function not only of the time but also of asset condition. 

To fill the gap related to the existing methods that use either time based statistical data or 

condition monitoring data, (Zeng & Zio, 2018) proposed combining statistical data with 

condition monitoring data to assess the risk. Their method uses a hierarchical Bayesian model 

to compute the reliability of the safety barriers. A Bayesian updating algorithm, which 

integrates particle filtering with Markov Chain Monte Carlo, is developed to update the 

reliability evaluations based on both the statistical and condition-monitoring data. These 

authors suggested that in future, models such as support vector machines, artificial neural 

networks, etc., may be considered for DRA.  

The present research however follows a more classical approach by integrating PHM into RBI. 

This allows the possibility of combining both statistical failure data with condition monitoring 

data, in a unique model to update risk assessment while the system condition is degrading. The 

proportional hazards model (PHM) is based on work done by (Cox, 1972) to estimate the risk 

of human mortality. PHM incorporates the effects of covariates or explanatory variables on the 

distribution of lifetimes. Covariates are any measured parameters that are thought to be related 

to the lifetimes of components. For each given time, the covariate provides an increase or 

decrease in the hazard. proportional to the baseline hazard rate (Lelo, Heyns & Wannenburg, 

2019). 

PHM is now one of the most popular statistical models used for survival analysis. Its popularity 

arises from the fact that the proportional hazards model is part of a broader class of survival 

analysis which provides information on the duration of time between the identifiable start and 

the occurrence of an event (Carstens & Vlok, 2013). A key feature when using a proportional 

hazards model is that it can utilize time-series variation in the covariates. The information can 

be provided based on the change in explanatory variables over time, that influence the 

probability of the event occurring. 
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Figure 3 below represents a framework summarizing the proposed method described in this 

work. 

 

Figure 3: Framework with the proposed method. 

The approach developed in this work consists of incorporating the proportional hazard model 

(PHM) into a risk-based inspection (RBI) methodology. The advantages of incorporating PHM 

with the RBI approach are that the PHM uses real-time condition data, allowing dynamic 

decision-making on inspection and maintenance. 

Knowing that risk is obtained by the product of 𝑃𝑜𝐹 and 𝐶𝑜𝐹,the PHM allowed the 𝑃𝑜𝐹 

computation based on failure time and covariate. 

1.3.2. Advantages related to the suggested methods. 

One of the advantages related to the application of PHM to the RBI methodology is that the 

PHM uses instantaneous condition data at a given time, which leads to dynamic decision-

making in inspection scheduling. Another benefit is that the PHM approach is intended for 

situations where the covariates provide some indication of an approaching failure and, when 

combined with age, give an improved indication of the risk of failure, compared to using only 

age as an indicator. These advantages lead to an improved estimation of the 𝑃𝑜𝐹. 

As risk is the product of 𝑃𝑜𝐹 and 𝐶𝑜𝐹, to model the 𝐶𝑜𝐹 in this work, the scenario that we 

address and present as case study 2, is that of a leaking pipe in the high pressure (HP) cooling 
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system which leads to water suddenly penetrating molten matte in the furnace of a converter 

plant in a smelter. We consider the case where water accumulates on the slag crust before the 

crust fails and the water penetrates the molten matte. This may lead to a boiling liquid 

expanding vapour explosion (BLEVE) in the converter.  

1.4 Document overview 

Traditional risk-based inspection methodology as well as the shortcomings related to it are 

addressed in chapter 1. To address these shortcomings it is proposed to develop a methodology 

that incorporates PHM into the RBI. Since this approach will be demonstrated in a high 

pressure cooling system where a leaking pipe can lead to boiling liquid expanding vapour 

explosions, the consequences of failure based on BLEVE are also introduced in chapter 1. 

Chapter 2 presents the development of the PHM modelling to enhance the estimation of the 

𝑃𝑜𝐹 and its incorporation into RBI, together with an illustration, using the IMS data for a 

bearing test rig with four test bearings on one shaft. RMS and kurtosis are used as covariates 

in this chapter to build the PHM and estimate the 𝑃𝑜𝐹 related. The case study described in 

chapter 2 also addresses the 𝑃𝑜𝐹 computation based on the time-based approach. Finally a 

comparison between the 𝑃𝑜𝐹 based on time-based and PHM is performed to highlight the 

benefits. 

In chapter 3, the emphasis is on the quantification of the 𝐶𝑜𝐹, also illustrated at the hand of a 

case-study, which in this instance is a complex, real world problem involving a pressure vessel. 

The vessel is the high pressure cooling system of a coal fired furnace, where the consequence 

of failure would involve a BLEVE. In this chapter, the proposed methodology to estimate the 

𝑃𝑜𝐹 is based on PHM with moisture and cumulative feed rate as covariates. The consequence 

of failure modelling in this chapter 3 is based on the BLEVE theory. The safety issues in this 

chapter are due to water and hot molten materials mixing within the lower part of the furnace 

vessel, from the HP cooling system. 

Chapter 4 addresses mitigation decision making based on quantified risk. This work is 

concluded in chapter 5 by showing the benefits to optimize the risk policy for pressure vessels 

using the incorporation of PHM into RBI for improved 𝑃𝑜𝐹 quantification, together with the 

quantification of the 𝐶𝑜𝐹 using, in the case presented here, BLEVE principles. 
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Chapter 2. Development of a model incorporating 

the proportional hazards model into risk-based 

inspection. 

2.1 Introduction 

Industry decision-makers often apply a risk-based approach to plan inspection and 

maintenance. Probability of failure (𝑃𝑜𝐹) and consequence of failure (𝐶𝑜𝐹) are the two main 

components involved in the risk assessment (API 581, 2016). Risk based inspection (RBI) 

identifies and quantifies both the 𝑃𝑜𝐹 and 𝐶𝑜𝐹 of failure to establish an inspection schedule. 

Qualitative risk assessment is usually based on expert opinion and specific plant experience, 

while quantitative risk assessment is based on statistical computations which are based on 

historical data. An inspection schedule is then proposed as an outcome of the risk assessment, 

which is usually time-based. The need to optimize risk assessment is very critical in this 

research due to the gap highlighted in section 1.2.1.4. 

The scope of research presented in section 1.3.1 alludes to the incorporation of the PHM into 

RBI to optimize the 𝑃𝑜𝐹 as well as the inspection schedule. This chapter describes the proposed 

model based on the PHM. The calculation of 𝑃𝑜𝐹 applying the proposed model is then 

illustrated by means of the IMS bearing data set. 

2.2 Building a mixed model incorporating PHM into RBI 

Over the past few decades, preventive maintenance decisions have been optimized by means 

of statistical analysis of failure data, while condition-based maintenance has been optimized 

by utilizing sophisticated methods such as vibration and oil analysis. The present research 

consists of building a mixed model which combines historical failure data and condition 

monitoring data into a mathematical model to predict the risk of failure occurrence for an 

asset, and then use the outcome from the prediction model to estimate the 𝑃𝑜𝐹. 

Reliability analysis commonly referred to as the analysis of historical failure data exclusively, 

which consists of aligning historical data with a probability distribution based on time interval. 

The fitted distribution can be utilized for further analysis (Carstens & Vlok, 2013). However, 

it is postulated in this work that it would be beneficial to combine historical failure data and 
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condition-monitoring data by building a mathematical model that allows maintenance and 

inspection decision support (diagnostics or prognostics). In this thesis, a time dependent 

proportional hazard model (PHM), which is a popular regression model, is used. The PHM is 

described and utilized as a tool to optimize 𝑃𝑜𝐹 as well as inspection schedule. 

Renewal theory consist of estimating the reliability of a component using the recorded time 

to failure and computing the renewal time that minimizes the mean life cycle cost of the future 

components (Carstens & Vlok, 2013). When dealing with renewal theory the reliability 

concepts such as failure density, cumulative failure density, reliability function and the 

instantaneous failure rate are important to model the history of the asset under consideration. 

To model the reliability function of a renewable system, several approaches are used: 

 A probabilistic modelling approaches. 

 A non-probabilistic modelling approach. 

 A regression modelling approach. 

The following paragraph addresses the regression modelling because it involves combining 

both probabilistic and non-probabilistic modelling approach as specified in section 2.2.1 and 

particularly the proportional hazard model. 

2.2.1. Regression modelling approach 

Regression modelling entails merging probabilistic and non-probabilistic modelling 

approaches. The following properties define the regression modelling approach: 

 Like non-probabilistic models the regression models directly recognize the existence 

of the survivor function or hazard rate but do not utilize the existence of an underlying 

failure distribution as primary assumption. 

 The regression models are not only the primary use parameter modelled but also the 

concomitant information surrounding failure or covariates. 

Several regression models have been identified in the literature for renewal theory (Vlok and 

Coetzee, 2012): 

 Accelerated failure time models (AFTM) during 1966. 

 Proportional hazard model (PHM) during 1972. 

 Prentice William Peterson model (PWP model) during 1981. 
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 Proportional odds model (POM) during 1983. 

 Additive hazard model (AHM) during 1990. 

All five these named regression models have the same structure, namely a baseline function 

which is a time-based part estimated either using parametric or non-parametric techniques, 

and an explanatory part which has a direct influence on the baseline function to estimate the 

overall reliability of the system. 

Vlok and Coetzee (2012) presented a decision matrix showing that the proportional hazard 

model is the most suitable out of all the named regression models. The criteria of evaluation 

were: (1) Theoretical foundation; (2) Previous practical success in reliability modelling; (3) 

Potential to lead to the dissertation objective; (4) Achievability of numerical implementation; 

(5) Future potential in reliability modelling. 

2.2.2. Proportional hazard models 

2.2.2.1. Introduction 

PHM is a statistical procedure enabling the estimation of the risk of a component failing when 

its condition is monitored (Jardine & Tsang, 2013). PHM models form part of a broader class 

of survival analysis models which estimate the risk that is incurred at a given time, given the 

period of operation and a measured covariate which describes the state of the machine. 

When modelling the hazard function ℎ(𝑡), the baseline hazard function ℎ0(𝑡) can be 

represented in parametric or non-parametric form. A commonly used parametric baseline 

hazard function is the Weibull hazard function. PHM is essentially a regression modelling 

analysis. A set of significant covariates is needed and only the significant covariates are inserted 

in the models. 

The PHM with a Weibull baseline hazard function is presented in the following equation: 

 
ℎ[𝑡, 𝑍(𝑡)] =

𝛽

𝜂
(

𝑡

𝜂
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where ℎ[𝑡, 𝑍(𝑡)] is the hazard function, the 𝑍𝑖(𝑡) are the covariates at time t, 
𝛽
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)𝛽−1 is the 

baseline hazard function with 𝛽 the shape parameter and 𝜂 the scale parameters. The Weibull 
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parameters, which allow the construction of the baseline part of the model, are determined by 

maximizing the likelihood function. 

For a given PHM, the choice of the type of covariate to be used depends on the theoretical 

assumption about the relationship between the covariate value and the hazard function 

(LeClere, 2005). When the hazard function is mostly dependent on the value of the covariates 

at time zero or some fixed time point, then time-independent covariates are the right choice. 

But when the covariates change over time and the hazard function depends more on the current 

values of the covariates, then the time-dependent covariates are the right choice. 

Considering errors yielded by the situation where covariates change over time, many studies 

ignore the time dependence and deal with time-dependent covariates as time-independent, by 

fixing its value at a given point in time or setting the value of the covariate to an average value 

for the period that is studied. Likely problems when using time-dependent covariates as time-

independent or time-invariant covariates are: 

 As several covariates are likely to change before the advent of the failure, the variation 

was eliminated, and important information is lost. 

 Several phenomena are generated by dynamic, longitudinal processes because the value 

of a covariate along the time path affects the probable event happening. 

 The model does not include the value of the covariate observed at the time of event 

occurrence, although it may be this actual value that generates the event. 

 With the availability of software today, there are some programs, which directly deal 

with time-dependent variables, and the need for considering time-dependent variables 

as time-independent is reduced. 

In the parametric PHM, one of the most important operations to be done is to estimate the 𝛾′𝑠 

to access the effect of the explanatory variable, the corresponding estimate parameters are 

determined using the maximization of the likelihood function (Vlok & Coetzee, 2012). 

2.2.2.2. The fully parametric PHM and maximum likelihood 

Before addressing the maximum likelihood method, it is important to understand the notion of 

fully parametric. The PHM is parametrized by assuming a continuous distribution for the 

baseline (Vlok & Coetzee, 2012). For this work, the Weibull distribution is considered. This is 

given by expression (6). 
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Statistical model 

Vlok and Coetzee (2012) highlighted that fewer numerical issues arise when dealing with 

Weibull PHM to determine the baseline parameters. Therefore, Vlok’s approach to determining 

the three Weibull parameters in the general distribution formula for time dependence is 

considered here. 

 
𝑓(𝑡) =

𝛽

𝜂
(

𝑡

𝜂
)𝛽−1exp [−(𝑡/𝜂)𝛽] 

(7) 

The hazard rate function corresponding to the probability density function (pdf) given by 

equation (7) is: 

 
ℎ(𝑡) =

𝛽

𝜂
(

𝑡

𝜂
)𝛽−1 

(8) 

with beta (𝛽) and eta (𝜂) being the shape and scale parameters of the distribution 

respectively. By using the Weibull distribution as the baseline hazard rate of the PHM 

according to equation (6), the formula becomes: 

 
ℎ(𝑡, 𝑍(𝑡)̅̅ ̅̅ ̅̅ ) =

𝛽

𝜂
(

𝑡

𝜂
)𝛽−1exp (�̅� × 𝑍(𝑡)̅̅ ̅̅ ̅̅ ) 

(9) 

Considering the reliability theory, it is stated that the reliability of a component under the 

influence of ageing only, before the renewal at a time 𝑇𝑖 is given by: 

 𝑅(𝑇𝑖) = exp (− ∫ ℎ(𝑡)𝑑𝑡
𝑇𝑖

0
)=exp (−(

𝑇𝑖

𝜂
)𝛽) (10) 

The distribution of 𝑈𝑖 = (
𝑇𝑖

𝜂
)𝛽 is unit negative exponential distribution, similarly for time-

dependent  (Jardine, 1987). As for equation (8), at the time 𝑇𝑖 the reliability of the component 

under the influence of time-independent covariates according to the PHM is estimated by: 

 𝑅(𝑡, �̅�)=𝑒𝑥𝑝 [− ∫
𝛽

𝜂

𝑇𝑖

0
(

𝑡

𝜂
)𝛽−1dt exp (�̅� × 𝑍)̅̅ ̅] (11) 

By solving equation (9) it follows that: 

 𝑅(𝑡, �̅�)=𝑒𝑥𝑝 [−(
𝑇𝑖

𝜂
)𝛽exp (�̅� × �̅�] (12) 
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Equation (12) is about the time-independent covariate. For the time-dependent 𝑈𝑖 =

(
𝑇

𝜂
)𝛽exp (𝛾,̅ 𝑍�̅�), again with unit exponential distribution. When dealing with this case with 

time-dependent covariates, the reliability of time 𝑇𝑖 for the component, considering the time-

dependent covariate will be: 

 𝑅(𝑡, 𝑍(𝑡)̅̅ ̅̅ ̅̅ =𝑒𝑥𝑝 [− ∫
𝛽

𝜂

𝑇𝑖

0
(

𝑡

𝜂
)𝛽−1exp (�̅� × 𝑍(𝑡)̅̅ ̅̅ ̅̅ 𝑑𝑡] (13) 

Equation (11) gives: 

 𝑅(𝑡, 𝑍(𝑡)̅̅ ̅̅ ̅̅ =𝑒𝑥𝑝 [− ∫ exp (�̅�
𝑇𝑖

0
× �̅�𝑖 (𝑡)𝑑(

𝑡

𝜂
)𝛽]  

 

Considering the equation 𝑈𝑖=∫ exp (�̅�
𝑇𝑖

0
× �̅�𝑖 (𝑡)𝑑(

𝑡

𝜂
)𝛽, with unit negative exponential 

distribution, in practice equations (11) and (12) are approximated by: 

 𝑅(𝑡, 𝑍(𝑡)̅̅ ̅̅ ̅̅ =𝑒𝑥𝑝 {∑ exp (𝛾 ̅𝑖
𝑘=1 × 𝑍𝑖

∗̅̅ ̅(𝑡𝑘)) × [(
𝑡𝑘+1

𝜂
)𝛽 − (

𝑡𝑘

𝜂
)𝛽]} (14) 

with 0=𝑡0 < 𝑡𝑖 < ⋯ < 𝑇𝑖 inspection points where covariate measurement was performed and  

𝑍𝑖
∗ = 0.5 × (𝑍𝑖 (𝑡𝑘

̅̅ ̅̅ ̅̅ ̅) + 𝑍𝑖 (𝑡𝑘+1)).̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

2.2.2.3. Maximum likelihood (Parameter estimation) 

As indicated in the literature, the maximum likelihood of the Cox model parameters is found 

by maximizing a likelihood function. The likelihood function is a mathematical expression 

which describes the joint probability of obtaining the data observed on the subjects in the 

study as a function of the unknown parameters (the 𝛾′𝑠) in the model being considered (Vlok 

& Coetzee, 2012). Some literature such as the work by Vlok and Coetzee (2012), addressed 

the optimization of the likelihood equation to determine the Weibull parameters. 

The Weibull parameters are estimated by maximizing the likelihood equation, given by: 

 𝐿(𝛽, 𝜂, �̅�)=∏ ℎ(𝑇𝑖, 𝑍𝑖 (𝑇𝑖
̅̅ ̅̅ ̅̅ ̅

𝑖 ) × ∏ 𝑅(𝑇𝑗, 𝑍𝑗(𝑡))̅̅ ̅̅ ̅̅ ̅̅
𝑗  (15) 

with the 𝑖 index referring to failure times and where 𝑗 = 1,2 … … … . . 𝑛 indicate failure and 

suspension times. It is important to highlight that the work in this thesis deals with complete 

data.  
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The Weibull parameters 𝛽, 𝜂, 𝛾, which maximize the likelihood in equation (15), will also 

maximize log (𝐿(𝛽, 𝜂, 𝛾) or 𝑙(𝛽, 𝜂, 𝛾). It is numerically appropriate to maximize 𝑙(𝛽, 𝜂, 𝛾) 

which is given by: 

 𝑙(𝛽, 𝜂, 𝛾 ̅) = 𝑟𝑙𝑛 (
𝛽

𝜂⁄ ) + ∑ 𝑙𝑛 [(
𝑇𝑖

𝜂⁄ )𝛽−1] + ∑ �̅�

𝑖𝑖

× 𝑍𝑖 (̅̅ ̅̅ 𝑇𝑖) − ∑ ∫ exp (�̅�

𝑇𝑗

0𝑗

× 𝑍  ̅̅
�̅�(𝑡) 𝑑(𝑡

𝜂⁄ )𝛽
 

(16) 

where r is the number of failure renewals. 

In this work, equations (14) or (15) are solved numerically using a Newton-Raphson 

optimization procedure. 

 𝑙(𝛽, 𝜂, 𝛾 ̅) = 𝑟(−𝛽𝑙𝑛𝜂) + 𝑟𝑙𝑛𝛽 + (𝛽 − 1)

× ∑ 𝑙𝑛𝑡𝑖

𝑟

𝑖=1

+ ∑ 𝛾𝑏𝐵𝑏

𝑚

𝑏=1

− [exp(𝑎)

× (∑ 𝛾𝑔𝑍𝑗𝑔
𝑖 ) × (𝑡𝑖(𝑗+1)

𝛽
− 𝑡𝑖𝑗   

𝛽

𝑛

𝑖=1

)] 

 

  (17) 

To maximize equation (15) and estimate the three Weibull parameters, many techniques 

have been tested successfully (Vlok & Coetzee, 2012). Among these are:  

 A Nelder-Mead method 

 A BFGS Quasi-Newton method 

 Snyman’s dynamic trajectory method 

 A modified Newton-Raphson method 

The performance of the above-mentioned methods was assessed regarding their economy, 

which means according to the number of iterations needed to converge, the number of 
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objective function evaluations and the number of partial derivative evaluations, as well as 

robustness. The outcome from the evaluation of the above-mentioned methods was such that 

the Newton-Raphson method was found more suitable and economic for the optimization of 

the maximum likelihood function. This work uses the Newton-Raphson method to optimize 

equation (15).  

1) Newton Raphson method for a three-parameter Weibull distribution 

Vlok and Coetzee (2012) proposed a template to simplify the computation of the Newton 

Raphson optimization technique for vibration monitoring data for case study 1, and moisture 

and cumulative feed rate for case study 2. Referring to the suggested template (see table 1), 𝑛 

expresses the number of histories, such that: 𝑖 = 1,2 … . . 𝑛. 

The time to failure or suspension in each history, as expressed by 𝑇𝑖, and 𝐶𝑖, are used as 

indications making the difference between failure and suspension. For 𝐶𝑖=1, 𝑇𝑖 is a failure 

and for 𝐶𝑖 = 0, 𝑇𝑖 is a suspension. As indicated before we assume the data are complete, which 

means that there are no suspensions. 

The number of inspections 𝑘𝑖 must be set to be able to model the scenario associated with the 

time-dependent covariate. Below in table 1, a sample of the template associated with our data, 

is given. 
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Table 1: Template of inspection time and covariate corresponding. 

 

Inspection Time 

 

Covariate 

𝑡𝑖0 

𝑡𝑖1 

. 

. 

. 

𝑡𝑖𝑘𝑖 

𝑍01
𝑖  

𝑍11
𝑖  

. 

 

 

𝑍𝑘𝑖1
𝑖  

 

The above template is adjusted according to our data that deals with a unique covariate, as is 

the case in case study 1. The Weibull parameters are estimated by optimizing the objective 

function (15), considering the complexity of the objective function, an optimisation algorithm 

(fmincon) is used under MATLAB as well as opti; a free optimisation toolbox to optimize 

and compute the objective function given in equation (15). 

2) Maximum likelihood for a simple Weibull (two parameters) 

The simple two Weibull parameters approach is associated with the time-based approach, as 

recommended by API 581. while the proposed approach in this work considers three Weibull 

parameters, taking into consideration both historical failure data and condition monitoring data. 

This section is all about determining the shape and scale parameters related to the time-based 

approach. Firstly, it is important to notice that the Weibull parameter estimates can be defined 

using different methods such as the graphical method, using probability plotting paper, or the 

analytical method, using either least squares or maximum likelihood (Huynh, 2011). The 

probability plotting method requires simpler mathematics and is suitable for a small sample 
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size. Furthermore, Huynh (2011) presents many advantages making the maximum likelihood 

method more attractive. Among its properties could be mentioned: 

 It is asymptotically consistent, efficient, and unbiased. 

 There is the possibility to handle survival and interval data better than rank 

regression. 

Considering that, the lifetime 𝑇 follows a Weibull distribution with 𝛽 and 𝜂 parameters, the 

probability density function could be given by: 

 
𝑓(𝑡) =

𝛽

𝜂
(

𝑡

𝜂
)𝛽−1𝑒

−(
𝑡
𝜂

)𝛽

 
(18) 

with 𝑡, the failure time, beta the shape parameter strictly greater than zero and 𝜂 the scale 

parameter. the log-likelihood function is given by: 

 

Λ = 𝑁𝑙𝑛(𝛽) − 𝑁𝛽 ln(𝜂) + (𝛽 − 1) ∑ ln(𝑡𝑖) − ∑(
𝑡𝑖

𝜂
)𝛽

𝑁

𝑖=1

𝑁

𝑖=1

 

 

(19) 

Referring to the Newton-Raphson method, the above equation (19) log-likelihood function 

maximization, gives: 

 1

𝛽
=

∑ 𝑡𝑖
𝛽

𝑙𝑛𝑡𝑖
𝑁
𝑖=1

∑ 𝑡𝑖
𝛽𝑁

𝑖=1

−
1

𝑁
∑ 𝑙𝑛𝑡𝑖

𝑁

𝑖=1

 

(20) 

As the log-likelihood function maximization is dealt with numerically, a MATLAB 

optimization code is used to solve (19). The estimated parameters obtained from the 

likelihood function maximization are utilized to build the time-based or two-parameters 

Weibull probability density function given in equation (18). 

2.3 Case study 1:  Illustrating the developed model. 

In this section, a case study is presented to illustrate the methodology, using failure data 

obtained from the simple but readily available IMS bearing data set. The RBI methodology is 

commonly applied to pressure vessels where the need for such investigations is higher to 

minimize the risk of accidents. However, in this section, a simple bearing data set is used for 

illustrative purposes, simply because datasets like these are very well documented and well 

understood. A similar data set for pressure vessels is not readily available publicly. 
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The data for the IMS case study was generated by the NSF I/UCR Centre for Intelligent 

Maintenance Systems (IMS-www.imscenter.net) with support from Rexnord Corp. The 

following is a description of the testing configuration from which the test results were 

obtained. 

The bearing test rig had four test bearings on one shaft. The shaft was driven by an AC motor 

and coupled to the shaft via rubber belts. The rotation speed was kept constant at 2000 rpm. 

A radial load of 6000 lbs. was applied to the shaft and bearing by a spring mechanism. All the 

bearings were force lubricated. An oil circulation system regulated the flow and the 

temperature of the lubricant. A magnetic plug installed in the oil feedback pipe, collected 

debris from the oil as evidence of bearing degradation. The test was discontinued when the 

accumulated debris adhering to the magnetic plug exceeded a certain level and caused an 

electrical switch to close. 

Four Rexnord ZA-2115 double row bearings were installed. Each bearing had 16 rollers in 

each of the two rows, a pitch diameter of 2.815 in., a roller diameter of 0.331 in. and a tapered 

contact angle of 15.170. A high sensitivity accelerometer was installed on each of the four 

bearings to record bearing housing vibration. Vibration data was collected every 20 minutes. 

The data-sampling rate was 20 kHz, and the data lengths were 20480 points. 

2.3.1. Simulations and Results. 

2.3.1.1. Fault diagnosis of bearings 

For this case study1, the root mean square (RMS) and kurtosis of the measured acceleration 

signals are used as covariates for the proportional hazards model. The RMS value is associated 

to the energy of the signal. Usually, the appearance of a defect is detected by an increase of 

the vibration level. The RMS values were compared with levels while the bearing is still 

undamaged. 

Kurtosis is the fourth statistical moment of the vibration signal, normalized by the standard 

deviation raised to the fourth power. 

RMS and kurtosis were used in this work for condition monitoring because of their simplicity 

of application and interpretation. 
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2.3.1.2. Graphical representation of the data (RMS and kurtosis) 

The bearing test RMS and kurtosis results are depicted below for bearings 3 and 4. The interest 

in bearings 3 and 4 is justified by the fact that at the end of the test-to-failure experiment, 

defects occurred for bearings 3 and 4. 

 

Figure 4: RMS as function of time for bearing 3 

 

Figure 5: Kurtosis as function of time for bearing 3 
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Figure 6: RMS as function of time for bearing 4 

 

Figure 7: Kurtosis as function of time for bearing 4 

Figures 4 and 6 are RMS vibration trends for bearings 3 and 4 respectively. Both figures reveal 

that the change of RMS can be divided into two phases for the inner race defect. In the first 

phase, during the first 600-700 hours of operation, no underlying trend was observed. However, 

after the test had been running for 600-700 hours, the RMS increased significantly. The 

increased RMS can be explained by the propagating damage. As the damage spreads over an 

increased area, the RMS vibration level rises. 

Figures 5 and 7 depict the kurtosis for bearings 3 and 4 respectively. The peaks in the kurtosis 

show the characteristic behaviour of kurtosis where peak levels of vibration are initially 
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important but as the damage spreads over a larger area, become less important compared to the 

growing RMS value.  

2.3.1.3. Kurtosis and RMS as condition indicators 

Kurtosis is a useful feature to indicate an initially localised failure in a bearing with the kurtosis 

rising suddenly as the failure occurs. As the failure propagates around the bearing the fault 

becomes more distributed, the kurtosis generally drops (Randall & Antoni, 2011) and kurtosis 

loses some of its value as fault indicator.  

Therefore, while kurtosis and RMS are both indeed useful condition indicators, they 

nevertheless provide only partial information on the condition of the component. It is therefore 

proposed here to combine failure time information with the condition information to enhance 

the risk assessment. As previously discussed, the combination of age and condition information 

is enabled by the application of PHM. This is shown later in figure 10. 

2.3.2. Time based approach and risk assessment 

This section addresses the time-based approach for RBI. The previous section highlighted that 

the condition indicators kurtosis and RMS alone are not always adequate for identifying 

machine condition. This can in some cases be dealt with by either applying more sophisticated 

signal processing to find better condition indicators, but in the absence of this, a time-based 

approach could also be followed.  

The same steps undertaken in section 2.2.2.3 to estimate the regression coefficients required to 

build the PHM, are also needed for the two parameter Weibull, or time-based approach. 

Equation (21) below, which is the log likelihood function for the parameter Weibull 

distribution, must be maximized to determine the regression parameters. 

 

Λ = 𝑁𝑙𝑛(𝛽) − 𝑁𝛽 ln(𝜂) + (𝛽 − 1) ∑ ln(𝑡𝑖) − ∑(
𝑡𝑖

𝜂
)𝛽

𝑁

𝑖=1

𝑁

𝑖=1

 
(21) 

The maximum of the log likelihood function given by equation (21) gives the following 

equation: 
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1

𝛽
=

∑ 𝑡𝑖
𝛽

𝑙𝑛𝑡𝑖
𝑁
𝑖=1

∑ 𝑡𝑖
𝛽𝑁

𝑖=1

−
1

𝑁
∑ 𝑙𝑛𝑡𝑖                     

𝑁

𝑖=1

 

(22) 

The determination of the shape parameter 𝛽 in equation (22) is normally dealt with 

numerically. Using a MATLAB code, the output gave a shape parameter 𝛽 = 4  for the bearing 

data.  

The differentiation of equation (21) with respect to 𝜂 gives: 

 

𝜂 = (
1

𝑁
∑ 𝑡𝑖

𝛽

𝑁

𝑖=1

)
1

𝛽⁄
=

1

4
∑ 𝑡𝑖

4

4

𝑖=1

= 360 ℎ𝑜𝑢𝑟𝑠            
 

(23) 

With 𝛽 and  known, the hazard or risk of failure for the time-based approach is: 

 
ℎ(𝑡) =

4

360
(

𝑡

360
)4−1 

(24) 

 

Figure 8: Time-based hazard rate 

The cumulative distribution function (cdf) or probability of failure curve related to the hazard  

represented in figure 8, is given in figure 9 below. 
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Figure 9: Time-based Weibull cumulative distribution function 

The economical approach for the time-based approach consists of finding an optimal time of 

replacement which minimizes the cost per unit time. Referring to Jardine et al. (2013), the 

optimal preventive replacement time of a component subject to breakdown, is given by: 

 
𝐶(𝑡𝑝) =

𝐶𝑝 × 𝑅(𝑡𝑝) + 𝐶𝑓 × (1 − 𝑅(𝑡𝑝))

𝑡𝑝 × 𝑅(𝑡𝑝) + 𝑀(𝑡𝑝)(1 − 𝑅(𝑡𝑝))
 

(25)                                               

We consider a three to one cost ratio, so that the failure cost 𝐶𝑓 in South African Rands (ZAR) 

is three times the preventive cost 𝐶𝑝. If we further assume that 𝐶𝑝 = 2000 𝑍𝐴𝑅  and 𝐶𝑓 =

6000 𝑍𝐴𝑅, the results after computation are given below: 
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Table 2: Table of results for time-based approach. 

Considering Table 2, the optimal expected replacement cost per unit time is 13,13 ZAR/day.  

 Time (hours) Reliability 𝑅(𝑡) Probability of 

failure 𝐹(𝑡) 

Cost per unit time 

𝐶(𝑡𝑝) 

1 0 1 0 inf 

2 60 0.999 0.001 33.41 

3 120 0.987 0.0123 17.2743 

4 180 0.9394 0.0606 13.1416 

5 240 0.8208 0.1792 13.1323 

6 300 0.6174 0.3826 16.2892 

7 360 0.3679 0.6321 24.5829 

8 420 0.1568 0.8432 49.355 

9 480 0.0424 0.9576 154.5658 

10 540 0.0063 0.9937 893.1391 

11 600 0.0004 0.9996 11228 

12 660 0.0004 0.9995 364330 

13 720 0 1 74051000 

 

The following section consists of estimating the expected optimal cost based on Risk (PHM) 

instead of time as it is the case in this section. The cost per unit time obtained for time-based 

will be compared to the cost per unit time for PHM to evaluate the advantages of PHM over 

the time-based approach.   

2.3.3. PHM Approach 

2.3.3.1. Building the PHM 

The PHM model incorporates both the kurtosis and the RMS as covariates. The first step of 

this investigation consists of estimating the regression coefficients 𝛽, 𝜂, 𝛾 required to build the 

PHM. (Carstens & Vlok, 2013) argue that the log-likelihood function represented by equation 

(17) should be maximised: 
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𝑙(𝛽, 𝜂, 𝛾 ̅) = 𝑟𝑙𝑛 (
𝛽

𝜂⁄ ) + ∑ 𝑙𝑛 [(
𝑇𝑖

𝜂⁄ )𝛽−1] + ∑ �̅�𝑖𝑖 × 𝑍𝑖 (̅̅̅̅̅𝑇𝑖) − ∑ ∫ 𝑒𝑥𝑝 (�̅�
𝑇𝑗

0𝑗 𝑍  ̅̅
�̅�(𝑡) 𝑑(𝑡

𝜂⁄ )𝛽       (26). 

The outcome from this optimisation renders a shape parameter β=4, a scale parameter ή=800 

hours the weight of the covariate γ1= 0.4952 (weight of the RMS) and γ2= 0.5 (for the kurtosis)       

The above regression parameters are obtained from the maximum likelihood equation (13): 

The hazard rate equation corresponding to the above parameters with kurtosis and RMS as 

covariate, is given by: 

 
ℎ[𝑡, 𝑧(𝑡)] =

4

800
(

𝑡

800
)

4−1

𝑒𝑥p [0.4952 𝑅𝑀𝑆 + 0.5 𝐾𝑈𝑅𝑇] 
(27)                                            

A graphical representation of this equation for the PHM with RMS and kurtosis as covariates 

is given as figure 10 below. 

Figure 10:  Proportional hazard rate (PHM) 

2.3.3.2. Probability of failure estimation using the PHM 

The probabilistic hazard rate ℎ(𝑡), without considering that the condition of the component, is 

defined as the instantaneous failure rate at time 𝑡, therefore the probability of a failure event at 

time 𝑇, occurring during an arbitrarily small time period 𝑑𝑡 after 𝑡, given that the component 

has not failed before time 𝑡, divided by 𝑑𝑡. 

 
ℎ(𝑡) = lim

𝑑𝑡→0

Pr (𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡|𝑇 ≥ 𝑡)

𝑑𝑡
 

(28)                                                
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The probability of failure during the time period 𝑑𝑡 will equal 𝑑𝑡 and the probability of not 

failing before time 𝑡 is by definition equal to the reliability R(t), which reduces to: 

 
ℎ(𝑡) =

𝑓(𝑡)

𝑅(𝑡)
 

(29) 

The reliability 𝑅(𝑡) and therefore also the 𝑃𝑜𝐹 = 𝐹(𝑡), can be determined from the hazard rate 

ℎ(𝑡) and the probability density function 𝑓(𝑡), which will all be functions of the fitted failure 

time distribution parameters in a time-based approach.  

However, such probabilistic approach is limited because it is only time-based. The PHM 

addresses this by assuming that the hazard rate of an item is the product of a baseline hazard 

rate ℎ0(t) and a functional term, which is function of time and covariates.  

ℎ[𝑡, 𝑍(𝑡)̅̅ ̅̅ ̅̅ ] = ℎ0(𝑡) × 𝑒𝑥𝑝(𝛾, 𝑍(𝑡)̅̅ ̅̅ ̅̅ )                                                               (30) 

which is the general form of the problem to calculate the corresponding 𝑃𝑜𝐹 is now that only 

the modified hazard rate will be known and not the probability density function𝑓(𝑡). Further 

manipulation of Equation 29 is required. By definition:    

𝑅(𝑡) = ∫ 𝑓(𝑡)𝑑𝑡
∞

𝑡

= ∫ 𝑓(∞)𝑑𝑡 − ∫ 𝑓(𝑡)𝑑𝑡

= − ∫ 𝑓(𝑡)𝑑𝑡

 

𝑓(𝑡) = −
𝑑𝑅(𝑡)

𝑑𝑡
 

which means 

ℎ(𝑡) = −
1

𝑅(𝑡)

𝑑𝑅(𝑡)

𝑑𝑡

= −
𝑑 ln (𝑅(𝑡))

𝑑𝑡

 

so that 

− ∫ ℎ(𝑡)𝑑𝑡
𝑡

0

= ln (𝑅(𝑡)) 
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and  

𝑅(𝑡) = 𝑒− ∫ ℎ(𝑡)𝑑𝑡
𝑡

0  

This can be discretised: 

𝑅(𝑡𝑖) = 𝑒− ∑ ℎ(𝑡𝑘)𝑖
𝑘=1 ∆𝑡 

and 

𝑅(𝑡𝑖−1) = 𝑒− ∑ ℎ(𝑡𝑘)𝑖−1
𝑘=1 ∆𝑡 

then 

ln [𝑅(𝑡𝑖)] − ln [𝑅(𝑡𝑖−1)] = −ℎ(𝑡𝑖)∆𝑡 

giving. 

 𝑅(𝑡𝑖) = 𝑒ln [𝑅(𝑡𝑖−1)]−ℎ(𝑡𝑖)∆𝑡 

 

                               

This makes it possible to recursively calculate 𝑅(𝑡𝑖), only as a function of 𝑅(𝑡𝑖−1) and this 

ℎ(𝑡𝑖) will be valid for the PHM: 

 𝑅(𝑡𝑖) = 𝑒ln [𝑅(𝑡𝑖−1)]−ℎ(𝑡𝑖)∆𝑡 (31)                 

with 𝑡1 < 𝑡2 … … . < 𝑇𝑖 inspection times, when covariate information is updated. 

If the cumulative distributive function cdf is defined as the probability of failure at each 

inspection time, it could then be calculated as: 

 𝑅(𝑡𝑖) = 𝑒ln [𝑅(𝑡𝑖−1)]−ℎ(𝑡𝑖)∆𝑡  

 𝐹[𝑡, 𝑍(𝑡)] = 1 −  𝑅[𝑡, 𝑍(𝑡)] (32)                   

The 𝑃𝑜𝐹 related to the condition of the bearings (in this case bearing #4) at a given time is 

given in figure 12. 
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Figure 11: Comparison of hazard rate 

2.3.3.3. Interpretation of the results 

The hazard rate and 𝑃𝑜𝐹 results obtained for the time-based and the proportional models are 

respectively plotted in figure 11 and figure 12. 

As it is always the case with hazard rate plots, the values are difficult to interpret, but the trends 

are insightful. For the time-based model figure 8, the hazard rate is smoothly increasing with 

time (age) to the power of three (β-1). For the proportional model, both the proportional hazard 

rate, as well as the time-based component (factor ℎ0) of it, are plotted in figure 11. It may be 

observed that this time-based component ℎ0, although it is smoothly increasing with age to the 

power of three (β-1), is significantly lower than the time-based hazard rate, due to a smaller η.  

This means that the over-all proportional hazard rate, up to when the covariates start to increase, 

is significantly lower that the time-based hazard rate. It is also having a relatively small 

contribution to the over-all proportional hazard rate, when the covariates start to increase, 

showing the dominance of the covariates (kurtosis) later in the life of the bearings, closer to 

the failure time. 

The influence of the kurtosis covariate on the proportional hazard rate may be observed starting 

at 600 hours but decreasing soon after a while, the RMS influence is significantly smaller. 
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    Figure 12: Comparison of time-based and PHM probability of failure results 

Similarly, the comparison of the probabilities of failure (𝑃𝑜𝐹) shown in figure 12, is insightful.  

It should be noted that the proportional 𝑃𝑜𝐹 can only be derived from the proportional hazard 

rate results. The proportional 𝑃𝑜𝐹 curve is lower than the time-based 𝑃𝑜𝐹 curve for a major 

part of the life of the bearing. It reaches a 𝑃𝑜𝐹 value of only 20% at 550 hours, driven up to 

that point only be the age of the bearing (implying the usefulness of the age component of the 

PHM), whereas the time-based 𝑃𝑜𝐹 reached 20% already at 250 hours and are close to 100% 

at 500 hours. This is a very significant demonstration of the benefit of the PHM method for 

more realistic 𝑃𝑜𝐹 estimation, compared to the time-based model, which is the main reason 

for this approach. 

The proportional 𝑃𝑜𝐹 rises sharply just at 600 hours due to the kurtosis spike, which 

demonstrates an insightful way of interpreting kurtosis results in terms of 𝑃𝑜𝐹. After the dying 

away of the kurtosis peak, the 𝑃𝑜𝐹 does not decrease, due to the cumulative nature of the 𝑃𝑜𝐹 

calculation, which makes intuitive sense. 

2.3.3.4. Optimal decision making based on PHM 

The PHM provides an approximate risk of failing for the component based on the age and 

covariates (RMS and kurtosis for the case study presented here). The information, which is 

made available by the PHM, should be utilized to obtain economic benefits. 

For optimal replacement decision making with the PHM in reliability, Makis and Jardine 

(2013) made a model available. The model specifies the optimal renewal policy in terms of an 
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optimal hazard leading to the minimum life cycle cost (LCC). To be able to determine the 

hazard rate that leads to the minimum LCC it is needed to predict the behaviour of covariates. 

Makis and Jardine’s model assumes the covariate behaviour to be stochastic and approximating 

it by a non-homogeneous Markov chain in a finite space. Referring to that model, the expected 

average cost per unit time is a function of the threshold risk level given by: 

 
∅(𝑑) =

𝐶𝑝 + 𝐾𝑄(𝑑)

𝑊(𝑑)
 

 

(33) 

 

where, 𝑄(𝑑) = 𝑃(𝑇𝑑 ≥ 𝑇) represents the probability that failure replacement will occur and 

𝑊(𝑑) the expected time until replacement and  𝐾 = 𝐶𝑓 − 𝐶𝑝. 

For the bearings case, the prediction of the covariates (RMS) behaviour was performed using 

a Markov chain and the following transition probability matrix (TPM) with five states was 

found. Each state expresses a given range of the covariate. For example, the case below is a 

sample for rms, with: 

State 1: from 0.10 to 0.12 

State 2: from 0.12 to 0.14 

State 3: from 0.14 to 0.16 

State 4: from 0.16 to 0.18 

State 5: from 0.18 to 0.30 

The optimal average cost per unit time found after computation using equation 15 is 6.92 

ZAR/day, which is less than the 13.13 ZAR/day for the time-based approach. This is one of 

the important benefits related to the use of PHM compared to the time-based approach.  

2.3.4. Benefits of incorporating PHM into RBI 

Quantitative risk-based inspection decisions are time-based (having to decide on time-based 

inspection frequencies) and are therefore normally based on only time-based failure data to 

estimate the time progression of the 𝑃𝑜𝐹. RBI, also by definition, incorporates a condition-
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based approach, to guide decisions based on inspection (condition) results. These decisions 

may include keeping a component in operation, but changing future inspection frequencies, or 

replacing/repairing the component. 

As was argued in section 2.3.3.3, that the PHM approach offers significantly better insight into 

the progression of the 𝑃𝑜𝐹 with age, than the time-based approach. In the case of the bearings, 

initial inspection frequency decisions would be based on the concept of a quantified PF-interval 

(i.e., the time it takes for a bearing to fail from the first onset of damage indication due to the 

kurtosis covariate contribution). No such insight is available when only observing the time-

based 𝑃𝑜𝐹 curve, which shows only a smooth increase of the 𝑃𝑜𝐹 over time. It is therefore 

argued that the PHM approach would lead to both economic and safer inspection frequency 

decisions. 

In terms of the decisions made, based on inspection results (in this case, the RMS and kurtosis 

measurements), section 2.3.3.4 demonstrates the economic benefits of using the PHM method, 

compared to only the time-based data. Obviously, should the RBI inspection include condition 

monitoring where the relation between the condition monitoring parameter(s) have a known 

and accurate relation to the remaining useful life through a failure model, then this benefit of 

using PHM for replacement decisions, would not realise. We however argue that the PHM 

approach will still have economic benefits insofar as replacement decisions are concerned, 

should the condition monitoring used during RBI not have a known and accurate remaining 

useful life model available, for example, when the condition indicators do not vary 

monotonically with the remaining useful life.  

A third, most important benefit of incorporating the PHM approach into RBI processes, is 

derived from the fact that it allows the use of real time condition monitoring data and therefore 

allows dynamic risk-based decisions, for inspection and maintenance planning. Again, this 

benefit will also be applicable only to cases where the condition monitoring results cannot be 

combined with an accurate remaining useful life model.  

As mentioned before, PHM does have limitations for situations where the failure manifestation 

is easily measurable, such as crack growth of an accessible crack, meaning that the condition 

of the component can easily be quantified, and a condition-based approach would be more 

appropriate. Another limitation of the PHM is that when covariate data as not available, time-

based approaches might be more appropriate. 
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A decision process identifying the right situation to use the PHM method could be based on 

the following components: 

 The failure mode relevant to the PHM use (e.g., corrosion, wear, inaccessible fatigue 

damage, etc.). 

 The availability of failure and condition data is an important component in the decision 

process. 

 The relative significance of condition versus age data in the PHM computation. 

The relevance of this work is that an enhanced 𝑃𝑜𝐹 estimation leads to a dynamic risk 

assessment.  

The benefits are: 

 The improvement of decision-making support. 

 The 𝑃𝑜𝐹 estimation is enhanced to optimize inspection and maintenance policies 

leading to a cost-effective approach. 

 Where traditional techniques might not give an accurate estimation of the remaining 

useful life, to plan inspection, the PHM gives a better estimation of the remaining useful 

life by combining age and condition data for incorporation into RBI, to allow for a 

better risk-based inspection schedule. 
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Chapter 3. Application of PHM model and BLEVE 

theory on a real-world case study. 

3.1 Introduction to Case Study 2 

The previous chapter comprised the development of a modelling approach that integrates the 

proportional hazard model into risk-based inspection. The chapter was concluded by a simple 

case study applying the model. However, this chapter aims to apply the approach to a real risk-

based inspection case, which is a HP cooling system for a platinum converting process. 

The platinum group metals (PGMs) consist of platinum, palladium, ruthenium, osmium, 

rhodium and indium (Viviers & Hines, 2005). The process for the extraction of PGMs includes 

different steps such as smelting, converting, refining etc. At the centre of this process can be 

found furnace, boiler, high pressure cooling system. 

This chapter presents the application of RBI to a furnace high pressure cooling system by 

incorporating PHM and steam explosion consequence modelling. 

The following sections address the risk assessment on the HP cooling system by means of a 

model that combines historical data with condition data in a unique statistical model. 

3.2 Problem description 

Water coming in contact with liquid metal is well known in the metallurgical industry to be 

dangerous and has been at the base of many fatal incidents worldwide (Kennedy et al., 2013). 

During the converting process of the platinum group metals (PGMs), water leaking from a 

cracked pipe in the HP cooling system, may accumulate on the slag crust on top of a pool of 

molten matte. This can cause a boiling liquid expanding vapour explosion also called 

“BLEVE” when sufficient water has accumulated over time. Definitions for BLEVE are 

proposed in section 1.2.3.3.  

Figure 13 schematically depicts water leaking from a HP pipe, at a mass flow rate 𝑚1̇ , and then 

accumulating on the slag crust at a mass flow rate 𝑚2̇ , before the slag fails under the weight of 

the accumulated water, the water penetrates the matte and then flashes. 
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Figure 13: Overview of the model describing the HP water leak accumulation on the 

slag 

To address the risk assessment in this chapter a case study is proposed in the following section. 

3.3 Case study 2 details 

We consider the closed-circuit high-pressure (HP) cooling system on an Amec Foster Wheeler 

converter plant. The system is constructed out of SA-192 boiler tubes with a total surface area 

of 628 square meters in contact with the converter off-gas. The system is designed to cool the 

converter plant off-gas from the processing temperature of approximately 1400C degrees 

down to less than 800C. 

The operating parameters of the HP system are: 

 System temperature: 220-250°𝐶 

 System pressure: 50-70 bar 
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 Circulating water flow: 1600 (𝑚3/ℎ𝑟) 

 Inlet gas temperature: 1200-1400°𝐶 

 Outlet gas temperature: 600-800 °𝐶 

 Exit water temperature limit: 275°𝐶 

The downtime hours experienced due to HP leaks from 2017 until 2020 have been recorded 

and are shown in table 3. The moisture of the off-gas and the cumulative feed-rate 

corresponding to the cumulative operating times (age), have also been recorded as condition 

and usage indicators. It is argued that increasing moisture in the off-gas would indicate the 

development of leaks in the cooling system. 

Table 4 illustrates an example of data featuring moisture and cumulative feed-rate as a covariate 

for the HP cooling system. The standardization of the measured covariate values is conducted 

to alleviate the computational burden during parameter fitting, considering that these values 

may vary significantly in magnitude. The comprehensive data pertaining to tables 3 and 4 can 

be found in the appendix. The standardized values in table 4 are unitless, and inspection values 

in the same table are explained in section 2.2.2.3 and table 1. 
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Table 3: Sample of downtime hours experienced due to HP leak 

Year Date and 

time start 

Date 

and 

time 

stop 

Duration 

(Hours) 

Description Reason 

2017 22 Sept 23Sept 11.7 B/maker 

patched HP 

leak 

323-HP 

cooling 

system 

2017 23 Sept 23Sept 2.1 Melting down 

solids 

323-HP 

cooling 

system 

2017 23Sept 23Sept 2 Melting down 

solid 

323-HP 

cooling 

system 

2017 12 Oct 13Oct 22.8 HP leak on the 

west side 

323-HP 

cooling 

system 

2018 08 May 08May 1.28 Melting down 

solids 

323-HP 

cooling 

system 

2018 13 May 13May 1.18 HP leak 323-HP 

cooling 

system 

2018 18 May 18May 9 Plant off for HP 

leak repair 

323-HP 

cooling 

system 

2020 28 Oct 09Nov 277 HP cooling 

system leak 

323-HP 

cooling 

system 

2020 07 Dec 07Dec 1.01 HP cooling 

system leak 

323-HP 

cooling 

system 

2020 08 Dec 08Dec 4.88 HP cooling 

system leak 

323-HP 

cooling 

system 

 

  

 
 
 



61 

 

Table 4: Sample of history 

Inspection 

Time Moisture Feed rate 

Standardized 

moisture 

Standardized feed 

rate 

50 3.200 2066.500 10.917 -1.864 

100 0.073 4321.678 -0.312 -1.821 

450 -0.019 11576.624 -0.648 -1.681 

500 -0.019 13724.506 -0.648 -1.640 

3.3.1. Simulation and results for 𝑷𝒐𝑭 computation based on failure data (Weibull time-

based approach). 

This section addresses the time-based approach for RBI that involves determining the 𝑃𝑜𝐹 

related to the HP cooling system failure data. The historical failure data employed for this 

purpose was recorded over a period of three years, and consisted of leaking incidents due to 

cracking of the piping at various locations in the cooler system. It was assumed that each such 

incident represented a new independent failure of the cooler, considered to be one non-

repairable system, with one Weibull failure distribution, for our purposes. Even though the 

leaks causing the various incidents had been repaired, it was assumed that no repeat failures 

occurred at the same location, making this assumption viable. 

We first estimate the regression coefficients required to build a time-to-failure two-parameter 

Weibull equation. Equation (18), which is the log likelihood function for the two parameters 

Weibull distribution, is maximized to determine the regression parameters. 

The maximum likelihood of the log-likelihood function given by equation (19) leads to the 

outcome, which is equation (20).  

The estimation of the shape parameter 𝛽 in equation (20) is performed numerically using a 

MATLAB code, the result is such that the shape parameter 𝛽 = 1.5  for the HP cooling system.  

Differentiation of equation (20) gives the shape parameter = 1.5 and 𝜂 
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𝜂 = (
1

𝑁
∑ 𝑡𝑖

𝛽

𝑁

𝑖=1

)
1

𝛽⁄
= 5180.4 ℎ𝑜𝑢𝑟𝑠            

 

(34) 

With 𝛽 and  known, the hazard rate for the time-based approach is: 

 
ℎ(𝑡) =

1.5

5180.4
(

𝑡

5180.4
)1.5−1 

(35) 

Since the HP-cooling system is complex and has multiple failure modes, it is to be expected 

that the shape parameter will be close to unity. This would indicate a near constant failure rate 

and hazard rate. Figure (14) below depicts the actual hazard rate related to the failure data for 

the HP cooling system. 

 

Figure 14: Hazard rate time-based on the HP cooling system 

The hazard rate in figure 14 is increasing, but gradually tends towards a constant rate. The 

mean time to failure (𝑀𝑇𝐵𝐹) is given by: 

 
𝑀𝑇𝐵𝐹 =

Operating time

Number of failures
=

8850

32
= 276 hours 

 

 
  

This means that at each 276 hours or at each 11 to12 days there is a probability of having a leak 

in the HP cooling system. The probability of failure corresponding to the time-based approach 

for the HP cooling system is given in figure 15 below. The hazard rate, 𝑀𝑇𝐵𝐹 and risk 

calculations are based on operating time and number of failures only, and does not consider the 

covariates.  
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From the data under analysis in this work the Laplace trend value is 0.2737 which is between 

-1 and +1. This means that the data is noncommittal and as a result, the data set is independent 

and identically distributed, hence renewal theory is applicable. 

 

Figure 15: Probability of failure for the HP cooling system (Time-based) 

Table 5: Summarized results corresponding to the time-based approach 

Failure time Hazard-rate Probability of failure 

3.5 7.526e-06 1.756e-05 

459.5 8.623e-05 0.0260 

8825 0.00037 0.891 

8832 0.00037 0.892 

 

3.3.2. Simulation and results for 𝑷𝒐𝑭 computation based on the incorporation of 

covariates into the hazard computation using the PHM. 

3.3.2.1. Introduction to the proportional hazard model (PHM) 

Referring to section 2.2.2, PHM was defined as a statistical procedure that enables the 

estimation of the risk for a component or system to fail when its condition is monitored 

(Jardine & Tsang, 2013). PHM models are part of a broader class of survival analysis models 
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that enable estimation of the risk of failure at a given time, given the period of operation 

(age), and any measured covariates that describe the state (condition or usage) of the 

component or system. 

The PHM with a Weibull baseline hazard function is presented in the following equation 

(36). This equation is the same as equation (6), and is reintroduced here for convenience: 

 
ℎ[𝑡, 𝑍(𝑡)] =

𝛽

𝜂
(

𝑡

𝜂
)𝛽−1 exp {∑ 𝛾𝑖𝑍𝑖(𝑡)

𝑚

𝑖=1

} 
(36) 

where ℎ[𝑡, 𝑍(𝑡)] is the hazard function, 𝑍𝑖(𝑡) are the covariates at time 𝑡, 
𝛽

𝜂
(

𝑡

𝜂
)𝛽−1 is the 

baseline hazard function with 𝛽 the shape parameter and 𝜂 the scale parameter, which allow 

the construction of the baseline part of the model. These parameters are determined by 

maximizing the likelihood function, based on the historical data. 

3.3.2.2. Probability of failure for HP cooling system based on the PHM. 

For the sake of convenience, it is important to repeat that the PHM model uses both the moisture 

and cumulative feed rate as covariates. They are indications of failure available for the system. 

The first step of this investigation consists of estimating the regression coefficients β, η, γ 

required to build the PHM (Carstens & Vlok, 2013). After computation, the outcome from 

equation (26) is described in the following paragraph. 

The result from the optimization of equation (26) gives a shape parameter 𝛽 = 4, a scale 

parameter 𝜂 = 8850 hours the weight of the covariate 𝛾1 = 0.0100 (weight of the moisture 

parameter) and 𝛾2 = 0.5281 (weight of the cumulative feed rate parameter). The regression 

parameters are obtained from the maximum likelihood equation (26). The hazard rate equation 

corresponding to the above parameters with moisture and cumulative feed rate as the covariate 

is given by: 

         

ℎ[𝑡, 𝑧(𝑡)] =
4

8850
(

𝑡

8850
)

4−1

exp [0.0100 Moisture + 0.5281Feed rate]   

 

(37) 

 
 

A graphical representation of this equation for the PHM with moisture and cumulative feed  
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rate as covariates is given in figure 16 below. 

Figure 16: Proportional hazard rate for HP cooling systems 

Figure 16 shows both the proportional hazard rate, as well as the time-based component (factor 

ℎ0) of it. It may be observed that this time-based component ℎ0 , is smoothly increasing with 

age according to a power of three (𝛽 − 1) rule. It is also important to observe that the trend of 

the time-based component ℎ0 means that covariates influence the proportional hazard rate. 

The probability of failure corresponding to the proportional hazard approach for the HP cooling 

system is given in figure 17 below: 

 

Figure 17:Probability of failure for HP cooling system (covariatees included) 
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3.3.2.3. Comparison between the time-based hazard rate and proportional hazard rate 

and the 𝑃𝑜𝐹 related to both. 

Figures 18 and 19 below display respectively the hazard-rate related to the time-based and the 

proportional hazard rate and the 𝑃𝑜𝐹 related to both, the time-based and PHM approach. 

 

Figure 18: Comparison of hazard rate 

The hazard rate and 𝑃𝑜𝐹 results obtained for the time-based and the proportional models are 

respectively plotted in figure 18 and figure 19. 

Normally, the hazard rate values are difficult to interpret, but the trends are insightful as the 

hazard rate expresses an instantaneous rate of failure. The time-based hazard rate ℎ in figure 

18, is slightly increasing with time (age) to the power of 0.5 (𝛽 − 1). However, by inserting 

covariates in the hazard computation using the proportional model, both the proportional 

hazard rate, as well as the time-based component (factor ℎ0) of it, as plotted in figure 6, are 

showing a significantly increasing hazard rate. 

This indicates that the incorporation of the covariate information yields a lower initial hazard 

rate that increases exponentially to a similar value than the time-based hazard rate towards the 

end of the period. The comparison of the cumulative distribution functions (𝑃𝑜𝐹) shown in 

figure 19 shows a similar result. 
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Figure 19: Comparison of time-based and PHM probability of failure results 

The proportional 𝑃𝑜𝐹 curve is lower than the time-based 𝑃𝑜𝐹 curve for the major part of the 

life of the HP cooling system. It reaches a 𝑃𝑜𝐹 value of only 20% at 6000 hours, whereas the 

time-based 𝑃𝑜𝐹 reached 20% already at 2000 hours and is close to 70% at 6000 hours. This is 

a very significant demonstration of the benefit of the PHM method for more realistic 𝑃𝑜𝐹 

estimation, compared to the time-based model. 

3.3.3. Consequence of failure for HP cooling system based on the BLEVE. 

3.3.3.1. Introduction 

Current furnace designs often integrate extensive use of cooling elements to accomplish long 

service lives at high operating intensities. However, contact between water and high-

temperature fluids can provoke boiling liquid expanding vapour explosions (BLEVEs) 

(Kennedy et al., 2013). There are several types of explosion, such as deflagration, detonation, 

dust explosion, vapour cloud explosion, and boiling liquid expanding vapour explosion (Kumar 

Malviya & Rushaid, 2018). However, for the purposes of this work, consequence of failure 

modelling refers to the impact or consequences of BLEVE. Contact between water and high 

temperature fluids can result in powerful BLEVE. 

BLEVEs are important due to their severity and the fact that they simultaneously involve 

diverse effects which can cover a large area: overpressure, thermal radiation, and missiles 

ejection (Planas-Cuchi, Salla, & Casal, 2004). 
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3.3.3.2. Impact or consequence of BLEVE 

The evaluation of the consequences of a BLEVE pivots on two parameters: 

 The burst energy determines the severity of the blast overpressure generated by the 

BLEVE (Abbasi & Abbasi, 2007). 

 The impact of the blast on structures and injuries on persons.  

The calculation of a BLEVE incident severity consists of a stepwise procedure. One of the first 

steps is to calculate the energy associated with the BLEVE. According to the TNT equivalency 

method, the energy or the effects of physical explosion can be expressed as TNT equivalent 

mass by using the appropriate energy conversion factor (𝑎pproximately 4680
J

kg
of TNT) 

where 𝑀𝑇𝑁𝑇 is the equivalent mass of TNT (𝑘𝑔). The equation is provided by the API 581 

document: 

 
𝑀𝑇𝑁𝑇 = 𝐶30𝑛𝑣𝑅𝑇𝑠 ln [

𝑃𝑠

𝑃𝑎𝑡𝑚
] 

(38) 

with 𝑇𝑠 the storage or normal operating temperature, 𝑅 is the universal gas constant which is 

8.314 J/(kg-mol), 𝑛𝑣 is the moles (kg-mol) that flash from liquid to vapour upon release at 𝑡0 

atmosphere, 𝑃𝑠 (kPa) is the storage or normal operating pressure, and 𝑃𝑎𝑡𝑚 is the atmospheric 

pressure. 

Abbasi and Abbasi (2007) proposed equation (39) to calculate the energy associated with the 

BLEVE, if the flashing fraction of the liquid and the pressurized gas expand isentropically as 

an ideal gas. 

 
𝑀𝑇𝑁𝑇 =

2.4 × 10−4 × 𝑃𝑉∗

𝑘 − 1
[1 − [[

101

𝑃
]𝑘−1 𝑘⁄ ] 

(39) 

with P (kPa) the pressure in the vessel at the time of burst, 𝑉∗ (𝑚3) is the total vapour volume 

𝑘 ratio of specific heats at constant volume, and 𝑀𝑇𝑁𝑇 is the equivalent mass (kg) of TNT of 

the explosion energy. 

Once the explosion energy of a BLEVE is estimated, overpressure can be determined by 

employing the correlations available in literature, which link overpressure with explosion 

energy, and the distance from the accident epicentre. 
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Overpressure (or blast overpressure) is the pressure caused by shock waves over and above a 

normal atmosphere. Kumar and Rushaid (2018) suggested an equation to calculate the 

overpressure: 

Assume the equivalent TNT mass (kg): 

 
𝑀𝑇𝑁𝑇 =

𝑓𝐸  ∆𝐻𝑐𝑀𝐺

∆𝐻𝑇𝑁𝑇
 

(40) 

with 𝑀𝐺 (kg) the mass of the gas that participates in the explosion, ∆𝐻𝑐 is the heat of 

combustion of the gas (kJ/kg), and ∆𝐻𝑇𝑁𝑇 is the heat of combustion of TNT (kJ/kg). 

The scaled distance 𝑍 in (m/𝑘𝑔1/3): 

 𝑍 =
𝑥

𝑀𝑇𝑁𝑇
1/3

 
(41) 

where 𝑀𝑇𝑁𝑇 is the equivalent TNT mass, and 𝑥 is the distance from the centre of the explosion. 

The overpressure of the shock wave is given by: 

 
𝑃𝑆 =

80.800[1 + [
𝑍

4.5
]2

√1 + [
𝑍

0.045
]2 √1 + [

𝑍
0.32

]2√1 + [
𝑍

1.35
]2     

 

(42) 

 

3.3.3.3.  Impact modelling 

After defining the reference fluid, which is steam in our case, the next step is to assess the 

consequences of incident outcomes on workers and structures utilizing impact modelling. 

It is well known that overpressure, thermal radiation, etc. cause damage according to the 

exposure level, however, mathematical modelling is needed to predict the impact and risk 

associated with the BLEVE (Ahumada, 2016). 

To assess the consequences of an accident on people and structures, a probit model is often 

used (Mustapha & El-Harbawi, 2016). The word probit relates to ‘probability plus unit’. In 

statistics the probit variable Y is a measure of the percentage of a population submitted to an 

effect with a given intensity (𝑉). The probit variable 𝑌 therefore represents a dose-response 

relationship and provides a measure of having certain damage as a function of the intensity of 

the 𝑉 dose  through a linear correlation. As it is usually the case that this variable follows a 

normal distribution, with an average value and a standard deviation of The probit function is 

usually of the form: 
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 𝑌 = 𝑎 + 𝑏𝑙𝑛𝑉 (43) 

where 𝑌 represents the probit function or variable, and 𝑎 and 𝑏 are constants obtained from 

best fitting response data or are experimentally determined from information on accidents, etc. 

𝑉 is the causative factor whose definition changes according to the associated hazard, it is also 

a measure of the intensity of the damaging effect. It can be overpressure, thermal radiation, or 

any other parameter (Mustapha & El-Harbawi, 2016). For this research, overpressure is used 

as a measure of the damaging effect. 

In this thesis, the dose has been considered as the overpressure whereas the effect is considered  

as the  damage on the structure as well as lung haemorrhage on the people. The variable Y can 

be directly compared with the actual failure probability (Salzano, 2001). 

The relationship between the probit variable 𝑌 and the probability of fatality 𝑃 is given by 

 
𝑃 = 50[1 +

𝑌 − 5

|𝑌 − 5|
erf (

|𝑌 − 5|

√2
)     

(44) 

with 𝑃 the probability of fatalities due to BLEVE and erf; the error function. 

3.3.3.4.  BLEVE impact estimation for the HP cooling system  

1) Overpressure estimation 

Consequence of failure in this thesis is related to the BLEVE effects. However, the literature 

describes three types of BLEVE effects: the shock wave or overpressure , the thermal radiation, 

and the fragment projection (Shariff, Wahab & Rusli, 2016). Here we deal with overpressure 

as the causative factor of damaging effect. In fact, overpressure is the pressure caused by a 

shock wave over and above normal atmospheric pressure (Kumar Malviya & Rushaid, 2018). 

To estimate the overpressure given in equation (42), the equivalent TNT mass equation (40) is 

first needed. However, equation (40) includes an important parameter 𝑀𝐺  which is the mass of 

the explosive material which will be based on leak rate modelling. For the purposes of leak 

modelling, we use the Bernoulli equation for fluid flow through a pipe with a given diameter. 

(Saqib, Mysorewala & Cheded, 2017) 

 
 
 



71 

 

 �̇� = �̇� × 𝜌   (45) 

with �̇� the flow rate and 𝜌 the water density. 

The mass is a function of the flow rate �̇� given by: 

 

  �̇� = 𝐶 × 𝐴√
2∆𝑃

𝑆𝜌
 

(46) 

 

with 𝐶 the discharge coefficient. For an orifice in pipe, it varies between 0,60 to 0,80. 𝐴 is the 

crack area, the specific gravity equals that of  water, 𝜌 water density = 1000 kg/cube meter, 

and 𝛥P is the pressure drop. 

From equations (45) and (46) which compute respectively the mass and flow rate of the 

material flowing through the pipe crack to mix with the molten matte and slag in the furnace, 

the equivalent mass of the TNT given in equation (40) is obtained. Together with the scaled 

distance, the following graph is obtained: 

 

Figure 20: Mass flow versus crack diameter 

 

The overpressure related to the explosion is given by figure 21 below: 
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Figure 21:Overpressure in kPa versus distance in meter 

To estimate the consequences of an accident on people, we will refer to the probit function 

defined in equation 43. The following section evaluate the effects of overpressure on humans 

and constructions. 

2) Effects of overpressure on human and constructions 

The direct effects of overpressure on humans are eardrum rupture, lung haemorrhage, whole 

body displacement injury and injury from shatter glasses. It is also important to notice that the 

most likely harm to people during the explosion comes also from the indirect effects of people 

being inside or close to the building when it collapses (Mustapha & El-Harbawi, 2016). 

The typical consequences from an explosion are burning, fragments hitting the people, building 

or structure failing down, people falling, etc. 

Sharrif, Wahab and Rusli (2016) provide probit correlations for a variety of causes and their 

corresponding effects:  

The probit equation for an eardrum exposed to overpressure is given by: 

 Y1 = −15.6 + 1.93lnPovr (47) 

The probit equation relating death from lung haemorrhage to overpressure is given by: 
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 Y2 = −77.1 + 6.91lnPovr (48) 

There have been several experimental and theoretical studies of the behaviour of shattering and 

flying glass and studies of glass breakage following accidental explosions. The probit equation 

relating glass breakage to overpressure is given by: 

 Y3 = −18.1 + 2.79lnPovr (49) 

and the probit equation relating structural damage to overpressure, by: 

 Y4 = −23.8 + 2.92lnPovr (50) 

   

As stated previously, in this research we consider the BLEVE effect based on probit function 

equation (43) using overpressure as a causative factor 𝑉. 

3) Probability of fatalities 

The probability of fatalities due to BLEVE can be obtained using equation (41), leading to 

the following curves: 

 

Figure 22: Probability of fatality versus distance 

 

3.3.4. Summary of the chapter 

In this chapter, a case study was undertaken, utilizing data obtained from a closed-circuit high-

pressure (HP) cooling system on an Amec Foster Wheeler converter plant. The crucial elements 
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necessary for risk computation were defined namely, the probability of failure and the 

consequence of failure. The quantification of the 𝑃𝑜𝐹 was first based solely on historical failure 

data, adhering to the approach prescribed by API 581, subsequently, the quantification was 

further enhanced by employing the PHM, which represents the proposed method. The 

computational results, as depicted in figure 19, clearly demonstrated the added value associated 

with the proposed methodology. Additionally, this chapter introduced the computation of 

the 𝐶𝑜𝐹 by means of probability of fatalities resulting from a BLEVE, a notion that had not 

been addressed in chapter 2. The following chapter will place considerable emphasis on the 

crucial importance of risk mitigation, while also presenting a number of viable mitigation 

options that can be quantifiably effective in achieving said mitigation. 
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Chapter 4. Mitigation decisions based on quantified 

risk in industrial plant. 

4.1 Introduction 

Risk mitigation is the strategic approach employed by industries to minimize the impacts of 

business risks. The process of risk mitigation entails understanding specific risks and threats, 

acknowledging their existence, and making appropriate decisions to minimize their effects (Ni, 

Chen & Chen, 2010). This chapter addresses the decision-making process of risk mitigation 

based on quantified risk for a high-pressure cooling system in a furnace. 

It is important to note that risk mitigation does not follow a universal model, as different 

industries adopt their own approaches to mitigating the effects of particular threats. 

Nevertheless, there are some common techniques employed for risk mitigation, including risk 

transfer, risk acceptance, risk avoidance, and risk monitoring (Wyckaert, Nadeau & Bouzid, 

2017). However, in this work risk is dynamically monitored and mitigated when reaching a 

threshold value. 

Furthermore, as risk mitigation is an integral component of the risk management process, it 

necessitates a comprehensive risk assessment that culminates in a quantitative risk assessment. 

This work primarily focuses on developing a methodology to optimize quantitative risk 

assessment by employing proportional hazards model and the consequence of failure 

quantification based on BLEVE theory in order to establish an optimal inspection strategy 

aimed at mitigating the risk in the furnace high pressure cooling system.   

Qualitative methods for assessing risk that are susceptible to CWA the European standard, 

encompass techniques for identifying hazards such as risk checklists, qualitative risk analysis, 

preliminary hazard analysis (PHA). Hadj-Mabrouk (2017) list inspections, hypothetical 

accident and consequence analysis, failure mode and effect analysis (FMEA) (Liu et al , 2013), 

hazard and hazard regulation studies (HAZOP), as well as other methods (AlKazimi & 

Grantham, 2015). 

Experts' opinions are used in qualitative methods to provide relative levels of high, medium, 

and low risks that are convenient and quick to operate. However, the frequency and 

consequences of hazardous accidents cannot be quantified. Semi-quantitative risk assessment, 
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on the other hand, is a risk analysis technique based on quantitative risk indicators. Quantitative 

risk analysis (QRA), also known as Probability Risk analysis which is addressed in API 581, 

is a rigorous mathematical and statistical method employed to quantify absolute accident 

frequency (Steijn, Van Kampen, Van der Beek, Groeneweg & Van Gelder, 2020). This 

evaluation and analysis method is widely utilized in the nuclear, aviation, and petrochemical 

industries.  

However, despite the inclusion of qualitative and quantitative evaluations in the CWA and API 

581 respectively, there remains a gap in the quantification of risk. The calculation of probability 

of failure (𝑃𝑜𝐹) primarily relies on historical failure data considerations only, while the 

quantification of Consequence of Failure (𝐶𝑜𝐹) is often approached qualitatively. This work 

aims to address both the 𝑃𝑜𝐹 and 𝐶𝑜𝐹 quantification in order to enhance risk assessment and 

subsequently improve risk mitigation strategies. 

The assessment of asset risk can have significant consequences. Singh and Pokhrel (2018) 

argue that the risk assessment method provided by RBI can guide inspections of stations and 

improve economic benefits. However, while RBI includes risk assessments of corrosion 

thinning failure modes, its focus is primarily on oil refining, petrochemical, and chemical 

plants, which are not always applicable to the working conditions of oil and gas processing 

plants. Furthermore, the application of RBI requires a substantial amount of data collection, 

and the accuracy of evaluation results is often difficult to guarantee.  

Additionally, the existing asset integrity management process fails to integrate with pipeline 

and pressure vessel integrity management in the application of oil and gas stations, which 

makes implementation of asset integrity management challenging. Moreover, the risk 

management link relies on multiple parameters, such as failure data, which do not facilitate 

pre-emptive risk assessment and cannot effectively support preventive maintenance elements. 

As such, Liao et al. (2023) propose an innovative risk assessment method. By analysing various 

failure modes of pressure vessels, they created risk quantification and classification of pressure 

vessels based on failure modes (RBFM), which can quickly prepare risk assessments for 

pressure vessel failure modes. Unlike RBI, RBFM circumvents the need for extensive failure 

data statistics, combines failure mechanisms, starts from the failure development trend, 

establishes relevant factors and indicators, and identifies the likelihood of failure.  
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The main innovations of RBFM risk assessment method are as follows: (1) They undertake an 

assessment of the risks associated with diverse failure modes. That exercise has provided a firm 

grounding for future detection and maintenance activities. (2) By means of comparing various 

standards, specifications, and literature studies, a sound methodology has been established to 

avoid the pitfalls of an invalid database. Further, they have developed indices and value ranges 

under different failure modes, considering the influence of medium and working conditions on 

the incidence of failure. The correlation between detection methods and risk levels has been 

enhanced. Drawing on failure mode, failure probability, and risk level, a detection strategy that 

encompasses a detection method and detection cycle has been devised, thereby improving the 

accuracy rate of equipment inspection. 

The integrity management of pressure vessels has been improved through this strategy, 

rendering the risk assessment of pressure vessels more precise. This approach has also led to 

an improvement in the integrity management level of pressure vessels at the station. However, 

unlike Liao et al. (2023) who considered different failure modes to investigate the risk 

assessment, this work considers only a unique failure mode as it serves as an illustrative case 

to support the proposed methodology. Furthermore, this work demonstrates the application of 

risk management of a high-pressure (HP) cooling system for a metal smelting furnace, as water 

ingress into the furnace from leaks due to cracks, can cause a steam explosion. The proposed 

risk management methodology incorporates a quantitative assessment of the Probability of 

Failure (𝑃𝑜𝐹), based on proportional hazard modelling (PHM), and the consequence of failure 

(𝐶𝑜𝐹), of an explosion event as was proposed in chapter 3.  

The unmitigated risk is thereby quantified by means of a risk matrix which enables evaluating 

and deciding on suitable risk mitigation strategies. Probable risk mitigation strategies are such 

as using risk based inspection principles to define the inspection frequency sufficient to ensure 

that repair actions are taken before leaks occur, or to shorten the furnace campaign duration 

before swapping out and performing major rebuild or replacement, to lower the risk to an 

acceptable level. 

4.2 Objectives of risk assessment 

Risk assessment may target three objectives: evaluation, forecast and understanding with the 

latter one being the most demanding (Ryser, 2021). The first objective is to quantify the risk 

the assets are exposed to, considering that a risk quantification measure has been precisely 
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defined. The second objective is to forecast potential losses, including. social, economic, 

regulatory factors. The latter and most demanding objective is to understand why potential 

losses occur and why historical losses have occurred. In this work more attention is given to 

the first objective which consist of quantifying the risks. To analyse and quantify risks, various 

methodologies are available, including qualitative and quantitative methods (Gebremeskel & 

Gebregziabher, 2021). The following section addresses risk quantification with particular 

emphasis on both qualitative and quantitative method.  

4.3 Risk quantification 

Risk quantification is a crucial component of the decision-making process within all 

organizations. The act of risk quantification entails the assignment of numerical values or the 

measurement of potential risks that an organization may encounter. The quantification of risks 

encompasses two fundamental aspects: the probability of a risk event taking place and the 

potential financial repercussions that may arise if the risk event indeed occur (Gebremeskel & 

Gebregziabher, 2021). This serves as the foundation for conducting risk assessments, enabling 

businesses to comprehend the risk landscape in which they operate. 

The key difference between qualitative and quantitative risk analysis is that qualitative risk is 

based on subjective judgement, while quantitative risk analysis is objective based on verified 

and specific data. Qualitative risk assessment may rank the risk from one scenario or group of 

scenarios to be greater than some other scenario or group of scenarios. When all the scenarios 

from a system are included in the ranking, the ranking can only be done subjectively. In 

contrast, for quantitative risk assessment, the risk from each scenario is estimated numerically, 

allowing the analyst to determine not only risk relative to all scenarios in the system, but 

absolute risk measured on whatever scale of units is chosen, this determination can be made 

objectively using numerical scale (Andreis & Florio, 2019). 

4.3.1. Qualitative risk assessment 

4.3.1.1. Introduction 

Qualitative risk analysis is a process of assessing the impact of identified risk factors. Through 

this process, the priorities are determined for solving potential risk factors, depending on the 

impact they could have. The main characteristic of the qualitative risk assessment method is 
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the use of subjective indexes, such as ordinal hierarchy: Low-medium-high (Ryser, 2021). The 

following are steps for qualitative risk analysis: 

 Step 1 is to identify risk. In this step a master list of risks is created. 

 Step 2 is to classify risk, there are several techniques for classifying risks, with one 

popular technique being the risk matrix which combines the consequence and 

likelihood of a risk occurring. The following subsection will describe the risk matrix. 

 Step 3 is to control risk; this step is generally divided into two categories. The first 

category is focused on targeting the root causes of risks such as hazard or inefficient 

management processes. The second category is geared towards mitigating the negative 

impact of the risk through corrective actions. 

 Step 4 is to monitor the risks. 

4.3.1.2. Introduction to the risk matrix 

Plotting 𝑃𝑜𝐹 and 𝐶𝑜𝐹 values on a risk matrix is a productive method of representing risk 

graphically. 𝑃𝑜𝐹 is plotted along one axis, increasing  in magnitude from the origin, while 𝐶𝑜𝐹 

is plotted along the other axis (API RP 581, 2016). It is important to notice that it is the 

responsibility of the owner (user) to define and document the basis for 𝑃𝑜𝐹 and 𝐶𝑜𝐹 category 

ranges and risk targets used. 

 

A risk matrix can be defined as a mechanism to characterize and rank process risks that are 

typically identified through one or more multifunctional reviews (e.g. process hazard analysis, 

audit or incident investigation) (Markowski & Mannan, 2008). 

 

Plotting the risk results in a matrix is an efficient way of presenting the distribution of risks for 

components in a processing unit without using numerical values (API RP 581, 2016). There 

are two dimensions to a risk matrix, which consist of evaluating how severe and likely an 

unwanted event is. The combination of these two dimensions creates a matrix. The risk matrix 

is known as the simplest and easy-to-apply semi-quantitative risk assessment tool (Ni et al., 

2010). In this work risk quantification is performed referring to the risk matrix taken from API 

RP 581(2016). 

1) Traditional risk matrix approaches  

The traditional risk matrix also called the original risk matrix (ORM) was introduced by the 

Electronic System Centre and developed by US Air Force and MITRE corporation (Li, et al., 
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2014). In the traditional risk matrix, two key metrics for risk are the probability of occurrence 

and the severity of consequences illustrated in the subsequent bullets. 

 Probability of occurrence 

Probability of occurrence capture the likelihood that an identified risk could happen. The 

probability of occurrence in table 6 uses a rating and value scale ranging from inconceivable 

or not present (1) to very likely (5). 

The probability of occurrence table with a standard linear scaling chart includes a per-cent 

probability that an issue will occur. Note that this chart is done in accordance to normal practice 

scaled from 1 to 5 with 5 being the highest probability. 

Table 6: Probability of occurence table (From API 581) 

Likelihood Description Rating Value Per cent 

Very likely The most likely 

result of the hazard 

5 Above 0.1 

Possible (Likely) Has a good chance 

of occurring and is 

not unusual 

4 0.1 

Conceivable Might occur at some 

time in future 

3 0.01 

Remote Has not been known 

to occur after many 

years 

2 0.001 

Inconceivable Is practically 

impossible and has 

never occurred 

1 0.0001 

 

 Severity of consequences 

There are several ways of considering severity: An event could be very severe from the 

perspective of people’s life or the perspective of damage to a facility. More often four 

perspectives are used (people, environment, safety, and health). Any event can be judged 

against these four categories. 
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The severity of consequences in table 8 assigns a rating based on the impact of an identified 

risk to safety, resources, property, and environment. Each rating is then assigned a value (for 

example” No risk “may be assigned a value of 1 and a “High” rating may be assigned a value 

of 5). 

The severity of consequences with a standard linear scaling chart evaluates impacts on people, 

safety, environment, and health associated with each rating. 

Table 7: Severity of consequences table (from API 581) 

 

Severity Description Rate 

Catastrophic Numerous fatalities 

irrecoverable property 

damage and productivity 

E 

Fatal Approximately one single 

fatality major property 

damage if the hazard is 

realised 

D 

Serious Non-fatal - injury, 

permanent disability 

C 

Minor Disabling but not permanent 

injury 

B 

Negligible Minor abrasions, bruises, 

cuts, first aid type injury 

A 

 

 Low probability, high severity 

The complexity of the events that have very low frequency, but a catastrophic severity is that 

if the risk matrix categories are not set up correctly, these types of events tend to fall off the 

grid and get less attention than they deserve. 

This is the problem with historical frequency scales, where an event will get the lowest possible 

score just because it has never occurred. A possible solution is to make the worst severity 

category the highest priority category, regardless of the probability. 
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2) Types of risk matrix according to API 581 

Referring to the API RP 581(2016), two risk matrix examples are provided in figure 23 and 

figure 24. In both figures, probability of failure 𝑃𝑜𝐹  is expressed in terms of number of failures 

over time 𝑃(𝑡)or damage factor (𝐷𝐹). Consequence of failure 𝐶𝑜𝐹 is expressed in the area or 

financial terms in the examples. According to the examples, two types of risk matrix can be 

described: 

 Unbalanced risk matrix 

𝑃𝑜𝐹 and 𝐶𝑜𝐹 value ranges are allocated numerical and letter categories, respectively, 

increasing in order of magnitude (API RP 581, 2016). Risk categories (high, medium-high, 

medium and low) are allocated to the boxes with risk matrix shading asymmetrical. 

For example, using table 6 and 7, the 3C box is medium risk category when plotted in figure 

23. 

Figure 23 below expresses the unbalanced risk according to API 581. 

 

Figure 23: Unbalanced Risk matrix (Figure taken from API 581) 

 

 

 

 
 
 



83 

 

 Balanced risk matrix 

The 𝑃𝑜𝐹 and 𝐶𝑜𝐹 value range are allocated numerical and lettered categories as in the previous 

section. However, for this case risk categories (High, Medium, low) are allocated symmetrical 

to the boxes, when values from table 6 are used. However, the 3C box in figure 24 example 

corresponds to a medium risk category. 

Figure 24: Balanced risk matrix (API RP 581, 2016). 

All ranges and risk category shading given in table 11, as well as in figures 23 and 24 are 

examples of dividing the plot into risk categories and are not recommended risk targets and 

thresholds (API RP 581, 2016). It is the responsibility of the owner (user) to established the 

range values for their risk-based.  

3) The design of the risk matrix 

The risk matrix is a very important tool for risk assessment, although the design of the risk 

matrix is a topic that has not reached a consensus, despite its widespread use in practice (Bao 

et al., 2017). Many methods have been proposed to help design a risk matrix, such as fuzzy 

risk matrix proposed by Markowski & Mannan (2008). Bao et al.(2017) compared two risk 

matrix design methods from the perspective of applicability. Duijm (2015) investigated and 

explored the weaknesses related to the risk matrix and provided a recommendation for the use 

design of the risk matrix. 
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According to Markowski and Mannan (2008), to produce or design a risk matrix, some basic 

rules should be followed: 

 The basis for the risk matrix is the standard definition of risk as a combination of the 

severity of the consequences occurring in a certain accident scenario and its probability. 

That means only two input variables are needed to construct a risk matrix. The output 

risk index id determined only by the severity of the consequences and their probability. 

 The severity of consequence, probability and output risk index can be divided into 

different levels, respectively, with qualitative description and scales. 

 The calculation process of matrix producing is presented by the logic implication if the 

probability is 𝑝 and the severity of consequence is 𝑐 than 𝑟 is the risk. 

4.3.2. Quantitative risk assessment 

Quantitative risk assessment (QRA) is a systematic approach implemented to calculate risks 

arising from hazardous events (Declerck, 2002). This technique involves the calculation of 

potential consequences associated with a hazard, as well as the frequency at which the hazard 

may occur. These factors are then combined to quantify the risk in numerical values, typically 

pertaining to the risk of fatality. QRA encompasses the evaluation of all identified hazardous 

events to assess the overall risk levels (Declerck, 2002). Often, similar hazardous events are 

aggregated and evaluated together as bounding or representative events. 

Quantitative risk assessment is a systematic approach to evaluating and managing risks by 

assigning numerical values to the likelihood and consequences of potential hazards (Rodolfo, 

Mason & Nassivera, 2011). In the case of pressure vessel as the case of this work quantitative 

risk assessment involves estimating the probability of failure and the potential consequences 

of failure. This is typically done by analysing historical and condition monitoring data, using a 

statistical model. This will be described in section 4.4. 

4.4 Case study 3: Risk assessment of the HP cooling system 

This particular case study bears corresponds to the case study 2, but with the probability of 

failure (𝑃𝑜𝐹) and the consequence of failure (𝐶𝑜𝐹) calculation which were already calculated 

in chapter 3. 

In chapter 4, our focus shifts towards risk analysis and the subsequent decision-making process 

of risk mitigation, ultimately culminating in the formulation of an inspection schedule. 

 
 
 



85 

 

As in the preceding case study, the design characteristics and processing temperature, along 

with the dimensions of the surface that comes into contact with the exhaust gas from the metal 

smelting furnace related to the closed circuit high pressure cooling system, remain unchanged. 

The operational variables of the high-pressure system, including system pressure, temperature 

of the gas at the inlet and outlet, and other parameters, remain the same. 

The moisture of the off-gas and the cumulative feed-rate corresponding to the cumulative 

operating times (age), have been recorded as condition and usage indicators.  It is argued that 

increasing moisture in the off-gas would indicate the development of leaks in the cooling 

system. A case study is presented in this section to illustrate the risk assessment implementation 

conducting to the risk mitigation for the HP cooling system. 

As emphasized previously in this section, the two components referred to as the probability of 

failure and the consequence of failure are necessary for the quantification and mitigation of 

risk, which serves as the primary aim of this chapter 4 and has already been computed in the 

preceding chapter. The subsequent sections will refer to the calculated component in order to 

analyse the risk. 

4.4.1. Probability of failure  

This section describes the probability of failure computation, which is function of downtime 

hours experienced due to the HP cooling system leak, during the cumulative operating time 

going from 2017 to 2020. Tables 3 and 4 in section 3.3 serve as illustrations of a subset of 

historical failure data and the condition monitoring data, respectively. A comprehensive link 

to the complete dataset is available in the appendix. 

Referring to section 3.3.1, the maximum likelihood estimation, which is a well-known method 

to estimate the regression coefficients as defined in equation (20), allowed determining the 

shape parameter 𝛽. The characteristic life from equation (23) together with the computed shape 

parameter allowed determining the probability of failure using the two-parameter Weibull 

distribution method given by equation (51): 

 
𝑃𝑜𝐹 = 1 − exp [− (

𝑡

𝜂
)

𝛽

] 

 

(51) 
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where the Weibull shape parameter 𝛽 is unit-less, it shows how the failure rate develops over 

time, the Weibull characteristic life parameter, 𝜂, in years, and 𝑡 is the independent variable 

time in years. The 𝑃𝑜𝐹 versus time in hours refers to figure 15 in section 3.3.1. 

The cumulative distribution function in figure 15 shows a smooth increase of the probability 

of failure over time, whereas this work uses an approach based on the proportional hazard 

model PHM (with the moisture of the gas off  and cumulative feedrate as covariate) which 

optimizes the 𝑃𝑜𝐹 estimation compared to the traditional method such as time-based (Lelo,  

Heyns & Wannenburg, 2022). ℎ[𝑡, 𝑍(𝑡)] is the hazard rate based on the PHM : 

 
ℎ[𝑡, 𝑍(𝑡)] =

𝛽

𝜂
(

𝑡

𝜂
)𝛽−1 exp {∑ 𝛾𝑖𝑍𝑖(𝑡)

𝑚

𝑖=1

} 

 

(52) 

Referring to section 3.3.2.1, the covariates 𝑍𝑖(𝑡) in equation (52), are monitored parameters 

that either relate to usage of the system, or condition of the system. Their influence on the 

hazard rate, and therefore on the 𝑃𝑜𝐹, are signified by weight factors (𝛾𝑖), which are estimated, 

together with the Weibull shape and scale parameters, based on a statistical maximum 

likelihood method, using historical data of the monitored parameters, as well as failure data.  

In this case study, the monitored cumulative feed rate throughput of the smelter was used as a 

usage covariate and the monitored moisture content in the off-gas was used as a condition 

parameter. 

Comparative curves of the 𝑃𝑜𝐹 based on the two parameter Weibull versus the 𝑃𝑜𝐹 based on 

the PHM was previously given in figure 19. Examining figure 19, it can be observed that during 

the primary span of the HP cooling system's lifespan, the value derived from the PHM approach 

is lower than that determined by the time-based approach. This disparity highlights the 

substantial advantage of employing the PHM method for more realistic estimation, when 

compared to the time-based model. 

4.4.2. Consequence of failure evaluation 

Section 3.3.3 provides calculations of the consequence of failure for the HP cooling system 

based on the BLEVE, as current furnace designs often integrate extensive use of cooling 

elements to accomplish long service lives at high operating intensities. Therefore, contact 

between water and high temperature fluid can provoke explosion.As highlighted in section 

3.3.3.2 concerning the impact of the BLEVE on human and construction,  Abbasi and Abbasi 
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(2007) state that the assessment of the impact (consequence) of the overpressure due to BLEVE 

is determined by two factors :  

 The energy of the explosion, or "burst energy". This determines the severity of the blast 

wave produced by the BLEVE. When a vessel containing a superheated liquid fails in 

a BLEVE, the “boiling liquid” as well as the “expanding vapour” together produce the 

burst energy. 

 The manner of release of the vessel contents. This determines the size, duration, and 

heat flux of the fireball, if the contents are flammable. 

In this chapter, the impact or consequence of a BLEVE will be estimated based on the 

overpressure. The overpressure related to the explosion versus the crack size refers to figure 

21 in section 3.3.3.4. Figure 21 showed a rapidly decreasing pressure at increasing distances 

from the centre of the explosion. In the case study, this result is used to estimate the effect of 

the overpressure on humans at 20 m.  

To estimate the impact of an accident on humans and structures, Section 3.3.3.4 introduced the 

probit equation, which evaluated the effects of overpressure on humans and constructions. The 

direct consequences of overpressure are lung haemorrhage on people and structural damage. 

The measure of the percentage of a population subjected to an effect with the intensity (𝑉) is 

performed by the probit variable Y. This variable follows a normal distribution, with an average 

value and standard deviation of 1. As was previously indicated the probit function is typically 

of the form: 

 𝑌 = 𝑎 + 𝑏 ln 𝑉 
 

(53) 

Section 3.3.3.4 provides detailed calculations related to equation (53) presenting the effect of 

overpressure on human and construction. It is then important to evaluate the potential 

consequences and effects of overpressure caused by explosions on people and structures. The 

probit and probability equations were used to estimate lung haemorrhage damage and structure. 

Table 8 shows the probability of lung haemorrhage and damage impact on the structure. The 

probabilities in the table are based on the direct effect of overpressure only according to the 

equation (53). Table 8 provides detailed values of overpressure received by the surface at a 

distance X in meter.  
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Table 8: Probability effect of overpressure on humans and structures. 

Distance 

(X) in meter 

Overpressure Lung Haemorrhage 

(Y2) 

Structural 

(Y4) 

P2 P4 

20 2.466e+07 40.514 25.901 18.195 10.854 

30 6.172e+06 30.941 21.856 13.390 8.814 

40 2.746e+06 25.346 19.491 10.575 7.617 

50 1.547e+06 21.380 17.815 8.573 6.767 

60 9.915e+05 18.306 16.516 7.017 6.107 

70 6.896e+05 15.798 15.456 5.741 5.566 

80 5.075e+05 13.679 14.561 4.657 5.109 

90 3.893e+05 11.845 13.786 3.712 4.712 

100 3.081e+05 10.230 13.104 2.871 4.361 

110 2.501e+05 8.787 12.494 2.109 4.047 

120 2.071e+05 7.483 11.943 1.396 3.762 

130 1.743e+05 6.295 11.441 0.701 3.502 

140 1.489e+05 5.203 10.979 0.439 3.262 

150 1.286e+05 4.193 10.553 1.080 3.039 

160 1.223e+05 3.255 10.156 2.008 2.832 

 

Figure 28 below expresses the percentage of people and structures affected by different effects 

and causes at a given point (overpressure effect). 

 

Figure 25:Percentage of people and structures affected by effect and causes at a given point. 
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Figure 25 shows the percentage of people and structures affected by overpressure. The results 

in table 8 reveal that at 20 meters distance, the probability of fatality is 18.195 % due to lung 

haemorrhage and 10.854% due to structure damage. These values can be used to define 

further risk mitigation strategies in the discussion section. 

4.4.3. Risk computation 

This section consists of rating risks using probability of occurrence and severity of consequence 

scale. Risk assessment  consists of  a series of procedure related to risk analysis, assessment  of 

the degree of risk, judgement on whether  the  risk is acceptable or unacceptable (Embry et al., 

2014) 

In this, risk assessment will use probability of occurrence and severity of consequence scales 

to rate risk associated with the BLEVE effect in the system under analysis. 

4.4.3.1. Probability of occurrence 

The probability of occurrence in this work corresponds to the probability of having an 

explosion, 𝑃𝑜𝐹𝑒𝑥𝑝𝑙 explores the likelihood that the risk could occur. Probability of occurrence 

uses a rating and value ranging from inconceivable (1) to very likely (5). For the purposes of 

this paper, the probability of occurrence includes two probabilities: 

 The probability of failure calculated from the history of failure - 𝑃𝑜𝐹ℎ 

 The probability that the leak is at critical crack size - 𝑃𝑜𝐹𝑐𝑟𝑎. 

Then the probability of occurrence or the probability of having an explosion will be:  

 𝑃𝑜𝐹𝑒𝑥𝑝𝑙 = 𝑃𝑜𝐹ℎ × 𝑃𝑜𝐹𝑐𝑟𝑎   (54) 

The only data set available to estimate 𝑃𝑜𝐹𝑐𝑟𝑎, is the fact that a catastrophic steam explosion 

has occurred twice during the twelve-year life of the system. We therefore estimate that the 

event of the crack failure large enough which causes water accumulation occurred twice in 

twelve years, i.e. (1/6 yearly). The probability of a crack, if it occurs, being large enough to 

cause a steam explosion hence can thus be estimated as: 

 𝑃𝑜𝐹𝑐𝑟𝑎 = (1 6⁄ )/𝑃𝑜𝐹ℎ (at end of year) (55) 
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From figure 19 it can be seen that 𝑃𝑜𝐹ℎ(at end of year) = 0.83.  This means that we can 

estimate 𝑃𝑜𝐹𝑐𝑟𝑎 = 1 6⁄ (0.83⁄ ) = 0.2 = 20%. 

Failure probabilities of reactor pressure vessels have attracted significant attention in recent 

years. Extensive efforts have been dedicated to converting statistical evidence of conventional 

high pressure vessel integrity and findings from surveillance testing into failure probabilities 

specific to nuclear pressure vessels. Investigations on vessels comparable to nuclear vessels 

have been conducted both in the United Kingdom and in Germany. These investigations 

encompassed a total of approximately 100,000 and 1,000,000 vessel years, respectively. The 

overall number of failures relevant to nuclear vessel services corresponded to failure rates of 

10−3  to 10−4 per year, Xiao, Shi, Cao, Xu, & Hu (2018) recently investigated the safety and 

reliability of pressure vessels considering various uncertain factors. The outcome from the 

investigation was that when the crack is shallow, the failure probability is less than 10−3. For 

the case of this work considering the scenario of having cracks in the piping circuit of the HP 

cooling system and based on the experience on the ground we assumed that failure happened 

twice every twelve years which justify the incorporation of 1 6⁄  in the probability calculation. 

In the above it is useful to realise that the difference between the two probabilities 𝑃𝑜𝐹ℎ  

and 𝑃𝑜𝐹𝑒𝑥𝑝𝑙  is that ,𝑃𝑜𝐹ℎ denotes the calculated probability of failure based on historical 

failure data (which is either time-based  or condition-based (PHM) as outlined in Table 9), 

whereas, 𝑃𝑜𝐹𝑒𝑥𝑝𝑙  represents the probability of having an explosion in the event of the crack 

failure becoming large enough to cause a steam explosion. 

4.4.3.2. Total probability of fatalities 𝑇𝑝𝑓 (likelihood) 

Risk measures the likelihood and severity of the accident to evaluate the magnitude and 

prioritize the hazard as shown in table 6. After the total probability of fatality and degree of 

harm is determined, the risk is assessed.                

 𝑇𝑝𝑓 = 𝑃𝑜𝐹ℎ × 𝑃𝑜𝐹𝑐𝑟𝑎 × Probit     (at end of year)                (56) 

It is important to highlight that the introduction of the parameter (𝑃𝑜𝐹𝑐𝑟𝑎), is required to take 

account of the fact that not all HP system water leaks would cause a steam explosion.  Historical 

incident investigations have concluded that steam explosions occur only when sufficient liquid-
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phase water accumulates on the crust of the molten metal in the furnace, to break through the 

crust and then to come into direct contact with the molten metal below the crust. For this to 

happen, the rate of water leakage needs to be high enough and this will depend on the size of a 

pipe crack. 

The result obtained from the total probability of fatality equation is considered as the likelihood 

or the y-axis in the risk matrix. 

4.4.3.3. Severity of Consequences 

Severity of consequences assessments assign a rating based on the impact of an identified risk 

to safety, economic, persons and environment (Zakaria, Ismail, Rani, Amat, & Wahab, 2018). 

The severity of consequence assesses impacts in table 7 in the form of: 

 Single fatality (Lung haemorrhage) 

 Multiple fatality (Structural damage) 
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Table 9  Risk computation 

Age 

[hours] 

PoF 

[Time-

Based] 

PoF [PHM] Lung 

Haemor- 

rhage 

Probit 𝑌2 

Struct

ural 

Probit 

𝑌4 

Lung Ha. 

Probability 

of 

occurence 

[time-

based] 

Likelihood 

Lung Haemor 

rhage 

Probability  

of  

occ [PHM] 

Likelihood 

Structural 

Probability 

of 

occurrence 

[ Time-

based] 

Likelihood 

Structural 

Probability 

of 

occurrence 

[PHM] 

Likelihood 

3.5 1.76e-05 1.7e-09 0.241 0.074 8.46e-07 8.18e-11 2.60e-07 2.51e-11 

459 0.026 5.02e-06 0.241 0.074 1.25e-03 2.42e-07 3.85e-04 7.42e-08 

2083 0.225 0.002 0.241 0.074 1.08e-02 9.64e-05 3.33e-03 2.96e-05 

3519 0.429 0.02 0.241 0.074 2.07e-02 9.64e-04 6.35e-03 2.96e-04 

4220 0.521 0.044 0.241 0.074 2.51e-02 2.12e-03 7.71e-03 6.51e-04 

5191 0.633 0.112 0.241 0.074 3.05e-02 5.40e-03 9.37e-03 1.66e-03 

5559 0.671 0.156 0.241 0.074 3.23e-02 7.52e-03 9.93e-03 2.31e-03 

6542 0.758 0.309 0.241 0.074 3.65e-02 1.49e-02 1.12e-02 4.57e-03 

7985 0.852 0.648 0.241 0.074 4.11e-02 3.12e-02 1.26e-02 9.59e-03 

8798 0.89 0.826 0.241 0.074 4.29e-02 3.98e-02 1.32e-02 1.22e-02 

8825 0.892 0.835 0.241 0.074 4.30e-02 4.02e-02 1.32e-02 1.24e-02 

8832 0.892 0.835 0.241 0.074 4.30e-02 4.02e-02 1.32e-02 1.24e-02 
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4.4.4. Risk mitigation strategies and interpretation of the results  

4.4.4.1. Introduction 

1) Risk matrix for single fatality 

For the lung haemorrhage, the likelihood (y-axis) is 0.040, which is rated 5 referring to table 

6, while the single fatality is rated D according to table 7. To assess the risk for the lung 

haemorrhage we therefore obtain the couple (D,5) on the risk matrix, meaning severity 

(consequence) rated at D and likelihood at 5 (most likely), section 4.4.4.2 explains the meaning 

(D,5). 

For the probability of fatality due to the structural damage, the likelihood value is 0.01, which 

is rated 4 in table 6, while the single fatality is rated to D according to table 7. Section 4.4.4.2 

explains the meaning of (D,4) which is the couple severity and likelihood respectively. 

2) Risk matrix for multiple fatality 

Multiple fatality analyses consider the number of persons exposed in the risk and how far   they 

should be moved away this would be the focus of our next chapter dealing with risk mitigation 

strategies. 

4.4.4.2. Interpretation of the results 

For the fatality occurring due to lung haemorrhage, a total probability value of 0.04 was 

calculated (in Table 9).  This could be understood to mean that, if there existed a hundred such 

identical plants, it is to be expected that every year 4 explosions which will cause single fatality 

would occur, or alternatively, during a hundred years of operating one plant, there is an 

expectation of four fatalities. caused by explosions, would occur.  The assessed risk for this 

situation at (D,5) on the risk matrix.  The risk matrix in figure 24, from which the results are 

interpreted, has four coloured zones and our lung haemorrhage result falls in the red zone. The 

red zone generally means that a high risk exists that management’s objectives would not be 

achieved and that it therefore needs to be mitigated immediately. 

For the structural the total probability of fatality value is 0.01 which falls at 4 (likely) in the y-

axis and the severity at D (a single fatality). The assessed risk of (D,4) in figure 24 falls in the 
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orange zone, which is called “medium high” in the API 581. At this level of risk, management’s 

objectives may not be achieved and there is a need to mitigate the risk as soon as possible.  

4.4.4.3. Suggested mitigation strategies 

Considering the previous section showing risk at the red zone (D,5), there is necessity for risk 

mitigation strategies. Possible risk mitigating actions, to lower these risks to acceptable levels, 

include the following: 

 Introducing inspections for cracks at frequencies sufficient to ensure repair actions are 

taken before leaks occur.  This is the major objective of the RBI approach.  The PHM 

method introduced in this paper, ensures more accurate quantification of the risk as it 

evolves over time, which implies a less onerous schedule. 

 Shortening the duration of the campaigns of the furnace before swapping out and 

performing major rebuilds or replacements, whilst the assessed risk is still low enough.  

Again, the introduction of the PHM approach, makes this a viable mitigation action, 

since the risk increases rapidly towards the end of a campaign.  It is important to note 

that the probability of failure results used to assess the risk, were end-of-campaign 

values. 

 Making the end-of-campaign decision risk-based, implying that the furnace would be 

taken out of operation at an acceptable risk level, which will be dynamically calculated, 

using the PHM introduction of the covariates as inputs. 

 Introducing controls, acting on the moisture measurement, to shut down the water-feed 

to the HP system as soon as any indication of leaking is noticed, to avoid the 

accumulation of sufficient water to cause the major explosion (ie, reducing the 𝑃𝑜𝐹𝑐𝑟𝑎 

parameter).  

 

The following chapter will address each of the mitigation options suggested in this section by 

quantifying and interpreting them in the context of industrial plant. 

4.4.4.4. Risk mitigation based on probabilistic fracture mechanics analysis. 

During the integrity assessment of a structure by fracture mechanics analysis, the goal is to 

determine critical crack sizes as well as fatigue crack propagation rates. Wannenburg (1994), 
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describes an analytical method to estimate the probability of failure of structure containing 

defects (Deng et al., 2021). 

The probability that, if a defect exists, it is critical and remains in the structure after inspection 

and repair, is calculated as:  

 𝑃𝑓𝑑 = 𝑃(𝑎𝑐 < 𝑎)(1 − 𝑃𝑑) (57) 

   

where 𝑃𝑑 is the probability that a defect will be detected by non-destructive inspection 

exercises. 

The probability that a structure contains a critical defect after inspection and repair is given by: 

 

Where N is the number of defects before inspection. To define the detection probability 𝑃𝑑, 

Matzkanin and Yolken (2001) state that it is a function of crack size and depth of the crack (a 

larger crack would be more easily detectable). Wannenburg (1994) and other recent researchers 

use constant numbers for probability of detection (0.6 for limited inspection and 0.95 for good 

inspection).  

The UK Health and Safety Executive (2017) gives values of  the tolerable probability of failure 

arising from a calculated assessment of the integrity of a high quality fabrication as follows:  

 Upper value: 6 × 10−6 

 Median value: 4 × 10−6 

 Lower value: 2 × 10−6 

In this chapter we consider the medium value of 4 × 10−6 to implement a measure which 

would control the probability of failure in an effective manner. Inspection and repair schedules 

are the most common fracture control measures used in industry.  

After each inspection, the number of defects remaining in the vessel would be reduced  

 𝑃𝑓 = 1 − (1 − 𝑃𝑓𝑑)𝑁 (58) 
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to (1-𝑃𝑑)× 𝑁. The probability of failure should therefore be reduced by a factor (1 − 𝑃𝑑) after 

each inspection to keep the total probability of failure below 4 × 10−6. 

 4 × 10−6 > 𝑃𝑓(𝑦𝑒𝑎𝑟) ×  (1 − 𝑃𝑑)𝑖 

 

(59) 

 

where 𝑖 is the inspection number, and 𝑃𝑓(𝑦𝑒𝑎𝑟) is the largest possible original probability of 

failure, as a function of years in service, as determined. 

4.4.4.5. Risk mitigation through inspection 

Section 4.4.4.3 considered implementation of the inspection based on mitigation strategy. In 

order to implement the outlined mitigation strategies equation (59) was solved to determine 

when each inspection should take place to keep the total probability of failure below  

 4 × 10−6.    

This probability value  is the medium acceptable probability of failure, arising from a calculated 

assessment of the integrity of high -quality fabrication such as pressure vessel according to 

HSE - U.K. Health and Safety Executive.(2017). The results of this calculation are presented 

in table 4 and figure 28, which provide the recommended number of inspections, their 

frequencies, and the time at which each inspection should occur. These results can be used to 

effectively implement the mitigation strategies outlined in section 4.4.4.3.   

 

Figure 26: Probability of failure versus time in service 

Considering the detection probability of 0.6 and the acceptable probability of failure arising 

from the assessment of the integrity of a high -quality pressure vessel, figure 26 and table 10 

can be interpreted as follows:  

 
 
 



97 

 

Comparing figure 26 with figure 27, it can be observed that the probability of failure is very 

sensitive to the assumption concerning the detection probability.  

Table 10 and figure 26 show that the probability of failure would therefore rise to  

3.695 × 10−6 at the end of 2050 hours of the HP cooling system life, at which time the first 

inspection would be performed. After inspection and repair the lowered probability of failure 

would then rise again to reach  3.771 × 10−6 after 2700 hours when the second inspection 

would be performed. After 3550 hours, a third inspection would be required, thereby lowering 

the probability of failure again, etc. 

For the detection probability of 0.9, figure 26 becomes: 

 

Figure 27: Probability of failure versus time in service for detection probability of 0.9 

Table 10: Inspection Schedule 

Inspection 

number 

Hours (Year) 

Inspection interval 

Pf (year) Hours Pf (year)× (1 − 𝑃𝑑)𝑖−1 

1 2050 3.695 × 10−6 3.695 × 10−6 

2 2700 9.427 × 10−6 3.771 × 10−6 

3 3550 2.424 × 10−5 3.879 × 10−6 

4 4500 6.075 × 10−5 3.888 × 10−6 

5 5700 1.555 × 10−4 3.980 × 10−6 

6 7100 3.883 × 10−4 3.976 × 10−6 

7 8600 9.559 × 10−4 3.912 × 10−6 
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The results presented in figure 26 and table 10 successfully address the mitigation strategies 

suggested in section 4.4.4.3. The first strategy involved implementing inspection for cracks, 

and the results recommend seven inspections at specific interval as shown in table 10. The 

other strategy involved shortening the duration of the furnace campaigns, and the results 

suggest setting the campaign duration at 2025 hours, which is the time to the first recommended 

inspection.  

Considering the detection probability of 0.6 and the acceptable probability of failure arising 

from the assessment of the integrity of a high -quality pressure vessel, figure 26 and table 10 

can be interpreted as follow:  

Comparing figure 26 with figure 27, it can be observed that the probability of failure is very 

sensitive to the assumption concerning the detection probability.  

Table 10 and figure 27 show that the probability of failure would therefore rise to  

3.695 × 10−6 at the end of 2050 hours of the HP cooling system life, at which time the first 

inspection would be performed. After inspection and repair the lowered probability of failure 

would then rise again to reach  3.771 × 10−6 after 2700 hours when the second inspection 

would be performed. After 3550 hours, a third inspection would be required, thereby lowering 

the probability of failure again, etc. 

4.4.4.6. Shortening campaign duration 

The results presented in figure 26 and table 10 also successfully address the shortened 

campaign duration mitigation strategy, suggested in section 4.4.4.3. The results suggest setting 

the campaign duration at 2025 hours, which is also the time to the first recommended 

inspection, since currently, the target maximum risk is exceeded.  

4.4.4.7. Risk based campaign duration. 

Since the PHM method, used for calculating the 𝑃𝑜𝐹, can be updated during the campaign, 

using the monitored covariates as inputs, the risk assessment can also be dynamically updated.  

This implies that the end of campaign decision (and in fact, also the inspection frequencies), 

can be updated accordingly. 
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Chapter 5. Conclusion and recommendations 

The risk based inspection (RBI) methodology is an ideal tool for asset management because of 

its ability to optimize the inspection schedule and extent of inspection, which contribute to the 

saving of cost and prioritize inspection on important components.  

When the potential consequences of failure (𝐶𝑜𝐹) are high, it becomes imperative to perform 

quantified probability of failure (𝑃𝑜𝐹) calculations. In cases where an accurate relationship 

between inspection or condition monitoring results and the remaining life, based on failure 

models, are not known, these calculations are based on statistical methods, using historical 

failure data, specifically time-based data.  

With this research a case is made to introduce the utilization of proportional hazards modelling 

(PHM) in the realm of RBI. This has not been done before but it is demonstrated that the 

approach offers significant benefits. These benefits include: 

 Time-based probability of failure calculations seems to be overly conservative 

compared to the PHM-based calculations. 

 Dynamic condition and usage data is incorporated in the calculation, thereby enabling 

dynamic risk assessment. 

It is therefore recommended that PHM methods are more generally applied in RBI programs. 

Similarly, the 𝐶𝑜𝐹 estimation in RBI programs are often done in qualitative manner (in fact, 

the RBI standard do not require quantified 𝐶𝑜𝐹 calculation in high risk situations, such as it 

does for (𝑃𝑜𝐹). 

 

Using a real-world case study as an example, this work illustrates the complexity of such 

quantification by considering one potential consequence of failure, by considering boiling 

expanding vapour explosions (BLEVEs). Although the work only considers this one potential 

consequence of failure, a methodology to deal with such consequences is illustrated in the 

context of the methodology that is presented earlier in the work. The work also illustrates the 

importance of considering such consequences. Although only considering the BLEVE 

situation, the point is strongly made that such analysis should be part of high-risk pressure 

vessel RBI programs. 
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Furthermore, due to the fact that the 𝐶𝑜𝐹 calculation for the case study, introduced statistical 

parameters such as the probit variable and the probability of fatalities. The possibility of 

complex interaction between 𝐶𝑜𝐹 (which is typically only seen as static, deterministic 

evaluation) and 𝑃𝑜𝐹 (where the statistical nature of the problem is quantified), is highlighted. 

 

Based on the above, it is recommended that the RBI methodology should incorporate such 

situations where 𝑃𝑜𝐹 and 𝐶𝑜𝐹  are well quantified as illustrated in chapter 3. It was 

demonstrated that failure in the management of a high pressure (HP) cooling system for a metal 

smelting furnace, as water ingress into the furnace from leaks due to cracks, can cause a steam 

explosion. The risk management methodology incorporated a quantitative assessment of the 

Probability of Failure (𝑃𝑜𝐹), based on Proportional Hazard Modelling (PHM), and the 

Consequence of Failure (𝐶𝑜𝐹), using BLEVE methods, of an explosion event. Finally, risk 

mitigation strategies, such as using Risk Based Inspection principles to define the inspection 

frequency sufficient to ensure that repair actions are taken before leaks occur, or to shorten the 

furnace campaign duration before swapping out and performing major rebuild or replacement, 

to lower the risk to an acceptable level have been defined. 

This study demonstrated the application of the RBI approach on a furnace high pressure cooling 

systems, incorporating the PHM and steam explosion consequence modelling, and 

demonstrated in terms of its application in risk assessment and mitigation, as well as the 

associated decision-making that it enables. 

It is concluded that the research may contribute towards more effective and practical integrity 

management of pressure vessels using RBI principles. 

From the observations made during this study, the following was highlighted as limitations 

and recommendations for future work: 

 This study provides a foundation for the 𝑃𝑜𝐹 computation for the dynamic risk 

assessment (DRA) based on PHM. While the current API 581 standard relies on time-

based analysis, the proposed methodology has the potential to be integrated into the 

API framework in the future.  

 The estimation of PHM parameters requires enough lifetime data as well as condition 

monitoring data, which often is incomplete or missing, therefore, the use of 

knowledge elicitation (expert opinion) can be applied to determine Weibull 

parameters when there is not enough lifetime data. 
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 In the present work, a particular application and a specific type of accident have been 

considered, leading to the suggestion that future research should be conducted to 

explore various accident types.  

  In this work, we have considered initially a simple application on experimental 

bearing data, followed by the validation of the method, and subsequently expanded 

to encompass the HP cooling system.   
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Appendix 

The downtime caused by the leakage of the HP cooling system facilitated the determination of 

the operating time required for the compilation of the historical failure data. In the second link, 

there are 32 histories, which present a connection between a specific age and the respective 

covariates, namely moisture and cumulative feed rate. 
See the data available in the following link below: 

Historical failure data for High-pressure cooling system 

Downtime hours experienced due to HP leaks from 2017 until 2020 have been recorded 

 

https://docs.google.com/spreadsheets/d/1KvEeE4eE00Nb8wWUFWIouDR1E4rKa-

RiHkt7O_6CnsI/edit?usp=sharing 

 

Campaign 1 prepared data (32 histories)  

https://docs.google.com/spreadsheets/d/1Ski88ej2RWFlTJxB8QKFdwtIcvBqwaY0GMIYCTTPETs/edit?

usp=sharing 

 

  

 
 
 

https://docs.google.com/spreadsheets/d/1KvEeE4eE00Nb8wWUFWIouDR1E4rKa-RiHkt7O_6CnsI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1KvEeE4eE00Nb8wWUFWIouDR1E4rKa-RiHkt7O_6CnsI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Ski88ej2RWFlTJxB8QKFdwtIcvBqwaY0GMIYCTTPETs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Ski88ej2RWFlTJxB8QKFdwtIcvBqwaY0GMIYCTTPETs/edit?usp=sharing
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