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Abstract

Technological advances have integrated artificial intelligence (AI) into various scientific

fields, necessitating understanding AI-derived decisions. The field of explainable artificial

intelligence (XAI) has emerged to address transparency concerns, offering both transparent

models and post-hoc explanation techniques. Recent research emphasises the importance

of developing transparent models, with a focus on enhancing the interpretability of these

models. An example of a transparent model that would benefit from enhanced post-hoc

explainability is Bayesian networks. This research investigates the current state of explain-

ability in Bayesian networks. Literature includes three categories of explanation: explana-

tion of the model, reasoning, and evidence. Drawing upon these categories, we formulate

a taxonomy of explainable Bayesian networks. Following this, we extend the taxonomy

to include explanation of decisions, an area recognised as neglected within the broader

XAI research field. This includes using the same-decision probability, a threshold-based

confidence measure, as a stopping and selection criteria for decision-making. Additionally,

acknowledging computational efficiency as a concern in XAI, we introduce an approximate

forward-gLasso algorithm as a solution for efficiently solving the most relevant explana-

tion. We compare the proposed algorithm with a local, exhaustive forward search. The

forward-gLasso algorithm demonstrates accuracy comparable to the forward search while

reducing the average neighbourhood size, leading to computationally efficient explana-

tions. All coding was done in R , building on existing packages for Bayesian networks.

As a result, we develop an open-source R package capable of generating explanations of

evidence for Bayesian networks. Lastly, we demonstrate the practical insights gained from

applying post-hoc explanations on real-world data, such as the South African Victims of

Crime Survey 2016 - 2017.
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Chapter 1

Introduction

Technological advances have brought artificial intelligence (AI) closer to humans, trans-

forming how we approach everyday tasks, from AI-driven virtual assistants to autonomous

vehicles navigating our streets. However, despite these advancements, a growing concern

remains regarding the lack of transparency and interpretability in AI models and algo-

rithms, especially when applied to sensitive applications (Barredo Arrieta et al. 2020,

Longo et al. 2020). This lack of transparency often manifests in what’s known as the

“black-box” nature of AI – where the model operates without explicitly showing how or

why it arrives at a particular outcome.

Recognising the need for transparency and interpretability in AI models, the field of ex-

plainable artificial intelligence (XAI) has developed. XAI includes models explainable-by-

design, featuring inherently transparent structures that facilitate intuitive understanding,

as well as post-hoc explanation techniques aimed at explaining model outputs (Guidotti

et al. 2018, Lipton 2018, Barredo Arrieta et al. 2020), such as SHapley Additive exPla-

nations (SHAP) (Lundberg & Lee 2017) and LIME (Ribeiro et al. 2016). These models

go beyond just making accurate predictions or decisions. They can also provide clear and

understandable explanations for their reasoning process (Escalante et al. 2018). Given

the broad scope of XAI, reviewing all methods is beyond the scope of this work. Barredo

Arrieta et al. (2020) provides a comprehensive review of XAI methods. Consequently, XAI

acts as a tool that answers critical how and why questions, facilitating verification, im-

provement, and responsible management of AI models, fostering a fair, accountable, and

transparent human-centred approach, and ultimately, enabling users to trust AI-derived
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1.1. MOTIVATION

results and decisions (Cath 2018, Greene et al. 2019, Leslie 2019). Ribeiro et al. (2016)

emphasises the role of trust in human interaction with AI models. The level of trust is

closely tied to understanding the model’s behaviour.

The literature on XAI identifies several motivations for building explainable models.

Although these reasons do not occur in isolation and may overlap, they capture different

motivations. One of the main reasons is to justify AI-derived predictions and decisions

(Adadi & Berrada 2018). Rather than only explaining the inner workings or reasoning of

the model, it is important to use XAI to justify an outcome or decision of the AI (Saeed &

Omlin 2023). In other words, to show that it is reasonable. Another motivation for XAI

is to control AI systems. Understanding a system’s behaviour and reasoning allows users

to intervene and adjust the model to align with requirements (Keane & Smyth 2020, Ghai

et al. 2021). A third motivation for XAI is to improve AI systems. If one can explain

the model, it can also be easier to improve (Adadi & Berrada 2018). Finally, XAI can

be used to discover new knowledge (Saeed & Omlin 2023). Often, explanations include

information which humans might find counterintuitive or wrong. These explanations can

aid in knowledge discovery since they can point us to new areas for research.

Lacave & Dı́ez (2002) highlights three aspects that must be explained within the frame-

work of any expert system: the knowledge base, the reasoning process, and the evidence

propagated.

1.1 Motivation

Despite significant research on explainability, the XAI community has yet to reach a con-

sensus on the definition of “explanation”. It lacks a standardised framework for assessing

the quality of different explanation methods. While numerous efforts have been made

to define explanation and explainability, (Doshi-Velez & Kim 2017, Lipton 2018, Gilpin

et al. 2019), none of these definitions incorporate mathematical formalism (Barredo Ar-

rieta et al. 2020). Rosenfeld & Richardson (2019) defines explainability as “the ability

for the human user to understand the agent’s logic”, whereas Das & Rad (2020) define

explanation as “additional meta information, generated by an external algorithm or by

the machine learning (ML) model itself, to describe the feature importance or relevance of

an input instance towards a particular output classification”. Lacave & Dı́ez (2002) offers

University of Pretoria: Department of Statistics 2



1.1. MOTIVATION

another perspective, stating that explanation entails “exposing something in such a way

that is understandable for the receiver of the explanation, which implies that he/she im-

proves his/her knowledge about the object of the explanation; and is satisfactory as far as

it covers the receiver’s expectations”. Lastly, Nauta et al. (2023) defines an explanation as

“a presentation of (aspects of) the reasoning, functioning and/or behaviour of a machine

learning model in human-understandable terms”.

The lack of consensus on the composition of an explanation has led to a gap be-

tween users’ requirements and what AI researchers are producing. According to Ras et al.

(2018), XAI explanations must cater to a diverse audience beyond technical experts, in-

cluding consumers, regulators, and business executives. Differing levels of expertise and

context-specific requirements across stakeholders can make it challenging to provide ex-

planations that resonate with everyone. This suggests that explanations are versatile and

can be used to explain the model as a whole, i.e., global explanations, or to explain single

instances or decisions, i.e., local explanations (Das & Rad 2020). This is further reflected

in the definition by Nauta et al. (2023). Moreover, Lacave & Dı́ez (2002) identify two

primary objectives of explanation: description, which provides insight into the underlying

knowledge base, conclusions or intermediate results, and comprehension, which aims to

cultivate user understanding of model implications, the system conclusions, as well as the

relationship between them.

As such, explanations can take various formats; for example, explanations can take

the form of visualisations or natural language (Goebel et al. 2018, Mittelstadt et al. 2019,

Barredo Arrieta et al. 2020). Another explanation format is case-based reasoning in which

the current prediction is compared to similar historical cases (Leake & Mcsherry 2005,

Kolodner 2014). According to the definition of explanation by Das & Rad (2020), expla-

nations in this context would highlight the individual features that contribute most to the

model’s decision. Whereas for Pearl (1988), an explanation consists of the most probable

assignment of variables for some observed evidence.

Accordingly, the target audience is a pivotal aspect to consider when generating an

explanation. Because AI systems are employed in various sectors with different goals, it

is reasonable to expect several distinct user communities (Wick 1989). Although there

may be some overlap, these audiences are not identical in their intent, requirements,

University of Pretoria: Department of Statistics 3



1.1. MOTIVATION

expectations, and demands from explainability (Preece et al. 2018, Langer et al. 2021,

Barredo Arrieta et al. 2020). In recent work, Dwivedi et al. (2023) provides an overview

of the various types of stakeholders involved in the XAI process and divides them into

two phases: the understanding phase and the explaining phase. During the understanding

phase, stakeholders are involved with improving the model before deploying it to the

explaining phase. These stakeholders are categorised as developers in Barredo Arrieta et al.

(2020), Langer et al. (2021), but also include theorists and data scientists. The explaining

phase involves four main stakeholders: users, consumers, businesses, and regulators.

Having gained a foundational understanding of explainability, we now explore spe-

cific facets of explainability, such as transparency, the trade-off between performance and

explainability, methods of measuring explanation quality, and strategies for efficiently com-

puting explanations. We are particularly interested in transparency and the performance-

explainability trade-off. A less transparent model, while potentially more accurate, might

lead to opaque decisions that users struggle to understand and trust. Transparency fosters

collaboration and allows humans to intervene when necessary. Furthermore, computa-

tional efficiency is a critical concern in XAI. Real-time applications and resource limita-

tions necessitate efficient explanation generation. Beyond efficiency, understanding what

constitutes a good explanation allows for clear communication between AI and humans,

leading to better decision-making.

1.1.1 Transparency

Researchers often refer to inherently explainable models as transparent, i.e., we can easily

trace how the model works and understand how each feature contributes to the prediction.

Here, transparency is considered in three levels, based on the functional domain, namely

algorithmic transparency, decomposability, and simulatability (Lipton 2018, Mittelstadt

et al. 2019, Futia & Vetrò 2020). Algorithmic transparency means that the model’s de-

cisions should be visible and understandable to those affected (Diakopoulos & Koliska

2017). This includes understanding the steps used to make a decision and the rationale

behind those steps. Decomposability refers to the property that each part or component of

the model, i.e., model parameters and calculations, should have an intuitive interpretation

(Lipton 2018, Lepri et al. 2018). This allows users to analyse the individual contributions

University of Pretoria: Department of Statistics 4



1.1. MOTIVATION

of features to overall predictions, which proves valuable for understanding the relative

importance of factors in the decision-making process (Minh et al. 2022). Lastly, simulata-

bility refers to the ease with which a human can mimic (or simulate) the decision process

of a model (Barredo Arrieta et al. 2020). Simulatable models encompass both algorithmic

transparency and decomposability. Accordingly, Lipton (2018) notions that a model is

considered transparent if it can be contemplated in its entirety.

1.1.2 The performance-explainability trade-off

A majority of researchers acknowledge a supposed “trade-off” between explainability and

performance in AI models, where a higher prediction accuracy is often obtained by a less

explainable model (Xu et al. 2019). Figure 1.1 illustrates the performance-explainability

trade-off of well-known statistical models. This has received criticism, stemming from the

Explainable Machine Learning Challenge at the annual Neural Information Processing Sys-

tems (NeurIPS) conference 2018. The challenge required teams to create black-box models

for the given data set and explain how the model works. Instead, one team developed a

fully interpretable model. Rudin & Radin (2019) question the overuse of black-box mod-

els, arguing explanations for these models may be misleading and difficult to understand.

They advocate for data scientists to consider a broader spectrum of models, including

inherently interpretable models. While researchers have explored using a second model to

explain a black-box model (post-hoc explanations), Rudin (2019) argue that explanations

generated this way might be unreliable or difficult to understand. Therefore, focusing on

developing inherently transparent models from the outset can be more beneficial. Minh

et al. (2022) advocates for designing inherently explainable models rather than focusing

on black-box models that can cause harm to society.

1.1.3 Can we measure explanation quality?

Despite ongoing discussion surrounding the definition of explanation in XAI, numerous

researchers have proposed characteristics that they consider essential for a “good” expla-

nation. One common evaluation strategy involves presenting individual examples that

appear plausible (Murdoch et al. 2019). However, many researchers caution against solely

relying on such anecdotal evidence (Adebayo et al. 2018). According to Miller (2019), the
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Figure 1.1: Machine learning models and their respective performance vs explainability
(Gunning & Aha 2019).

majority of XAI research is guided by the researcher’s intuition regarding what consti-

tutes a good explanation. Whereas Longo et al. (2020) suggests that the quality of an

explanation is influenced, to some extent, by the recipient thereof. Moreover, Linardatos

et al. (2020) notes the absence of a universally accepted metric to measure explanation

quality. Leake & Mcsherry (2005) underscores this problem, arguing that the lack of such

a qualitative measure hinders XAI development.

Srinivasan & Chander (2021) define four primary features of a good explanation: sim-

plicity, robustness, explanations should bridge the knowledge-understanding gap, and self-

evidencing. Whereas Nauta et al. (2023) proposes measuring explainability by evaluating

the degree to which 12 quality properties are met, these include completeness, consis-

tency, and confidence. Arya et al. (2021) presents two qualitative metrics that serve as

indicators of explanation quality: faithfulness and monotonicity. The former examines

the accuracy of feature importance while the latter assesses whether adding more positive

evidence increases the probability of classification for that class. Lastly, Yuan, Lim & Lu

(2011) define two properties for a good explanation: precise and concise. Where precise

entails minimising the surprise value and regards high explanatory power as a metric for

preciseness. While a concise explanation contains only the most relevant variables.
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1.1.4 Efficient computation of explanations

One of the goals of XAI is to develop explanation techniques that provide meaningful

explanations in a computationally efficient manner (Barredo Arrieta et al. 2020). This was

also highlighted in the “Great AI Debate” at the annual NeurIPS conference in 2017, where

the importance of interpretability in machine learning was discussed. Several methods

have been developed to provide efficient explanations, for example, Kernel SHAP offers

computational efficiency and accurate approximation (Lundberg & Lee 2017, Dwivedi et al.

2023). Whereas Artelt & Hammer (2021) explore model-specific methods for generating

computationally efficient contrastive explanations. Chuang et al. (2023) study efficient

XAI and categorise existing techniques into two categories: efficient non-amortised and

efficient amortised methods.

1.2 Bayesian networks as a proposed solution

Following the recommendations from Rudin (2019) and Minh et al. (2022), we will use

a more transparent model and focus on enhancing the explainability thereof. Bayesian

networks, a probabilistic graphical model, lie at the intersection of AI, ML and statistics.

The graphical, qualitative structure of Bayesian networks allows the end-user to visually

note the relationships among the variables, which promotes transparency (Chen & Pollino

2012, Moe et al. 2021). Furthermore, the Bayesian network framework allows us to perform

probabilistic queries that can be framed as simple explanatory questions, such as, “What

is the probability of event X occurring, given the chain of events?”

However, the inner workings – such as independence-dependence relationships and

probabilistic belief updating – can present challenges for intuitive understanding (Korb &

Nicholson 2010). Accordingly, these probabilistic graphical models fall somewhere in the

middle of the performance-explainability trade-off (as illustrated in Figure 1.1). Literature

categorises Bayesian networks as inherently transparent: they are simulatable, decompos-

able, and algorithmically transparent (Barredo Arrieta et al. 2020). Nonetheless, they

lose their simulatability and decomposability properties when they become more complex.

Therefore this suggests that Bayesian networks, although considered explainable-by-design

(de Waal & Joubert 2022), can benefit from additional post-hoc explainability. As such,
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according to the definition of explanation by Nauta et al. (2023), we can formulate these

explanations to support the reasoning, function or behaviour of the Bayesian network.

Lacave & Dı́ez (2002) categorise explanation tasks into three distinct categories: expla-

nation of the model, explanation of reasoning, and explanation of evidence. These meth-

ods are categorised based on the focus of explanation and further subcategorised based

on three properties: content, communication, and adaption. Not included in these cate-

gories are methods that describe whether the user is ready to make a decision, and if not,

what additional information is required to better prepare for decision-making. A notable

omission, since Bayesian networks are often utilised as decision-support tools (Druzdzel

1993). According to Främling (2020), decision theory has been neglected in the broader

explainable artificial intelligence research field. Furthermore, explaining model decisions

under uncertainty is difficult due to the lack of a formal methodology for the treatment of

important variables (Guidotti et al. 2018). Lastly, the presence of uncertainty can greatly

impact a decision-maker’s ability to reach and appropriately trust the output obtained.

Within the Bayesian network domain, explanation of evidence involves finding the con-

figuration of variables most likely to explain the observed evidence, a concept commonly

referred to as abductive inference (Flores et al. 2005, Gámez 2004). Various methodolo-

gies have been developed to find the most likely configuration of variables that optimally

explain the observed evidence. Kwisthout (2015) propose the concept of the most frugal

explanation in Bayesian networks, a heuristic approach to the maximum-a-posteriori prob-

lem, and highlight its inherent computational intractability and the possibility of tractable

approximation when subjected to specific situational constraints. Yuan, Lim & Littman

(2011) propose several local algorithms to solve explanation of evidence. However, these

algorithms involve an exhaustive search of all solutions, which can be computationally

expensive. Akin to how the number of possible structures increases exponentially as more

variables are added (Jensen & Nielsen 2007), the search space encompassing all possible

configurations capable of explaining the evidence also increases exponentially. Notably,

including at least one additional variable increases the complexity of the search space

(Gelsema 1995). Therefore, an exhaustive enumeration of all possible configurations, as

done in Yuan, Lim & Littman (2011), becomes impractical. Hence, the need arises for an

efficient search algorithm to identify the optimal configuration of target nodes within a
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reasonable timeframe.

Lastly, it is important to highlight that although there are numerous software applica-

tions, such as BayesiaLab1 and HuginExpert2, available for providing explanations within

Bayesian networks, these software applications are not open-source and, as such, provide

users with limited access to these important tools. Current open-source Bayesian net-

work packages in R (R Core Team 2020) include bnlearn (Scutari 2010) and gRain

(Højsgaard 2012). However, they do not offer explanation functionalities; instead, they

offer functionalities such as structure learning, parameter estimation, and inferences.

1.3 Research aims and objectives

Three main objectives drive this research: 1) extend the current classification of expla-

nation methods in Bayesian networks to include decision-theoretic methods that support

decision-readiness and integrate them into a user-friendly and intuitive taxonomy; 2) de-

velop an efficient search algorithm capable of providing explanations for some observed

evidence; and 3) develop an open-source R package dedicated to explanation of evidence

methods. To accomplish these goals, we aim to:

• Investigate and review the current state of explainability in Bayesian networks to

organise the existing state-of-the-art methods according to our proposed taxonomy.

• Explore neighbourhood pruning algorithms, such as the graphical Lasso algorithm, to

address computational challenges faced while searching for the most likely (relevant)

variable configuration.

• Explore Decision Theory and decision-making in Bayesian networks to develop a

new category in the proposed taxonomy: explanation of decisions.

• Investigate the current software tools to implement explainability methods in

Bayesian networks.

• Illustrate the potential of the proposed taxonomy with experiments on well-known,

established Bayesian networks.
1BayesiaLab: https://www.bayesia.com/bayesia
2HuginExpert: https://www.hugin.com/
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• Implement the explainability methods captured in the open-source package to show

it is computationally applicable and useful in real-world scenarios.

• Discuss the potential and shortcomings of this research.

1.4 Contribution to scientific research

Although Bayesian networks are powerful tools for decision-making (Jensen & Nielsen

2007), there is limited research on explaining decision-readiness in Bayesian networks.

Consequently, while we endorse the explanation categories based on the focus of expla-

nation as proposed by Lacave & Dı́ez (2002), they do not account for these types of

explanations. Hence, we propose a user-friendly and intuitive explanation taxonomy, en-

compassing existing explanation methods while introducing a fourth category: explana-

tion of decisions. To our knowledge, we have yet to find any peer-reviewed work on an

explanation facility for decision-readiness in Bayesian networks. We are particularly inter-

ested in the same-decision probability, which is a confidence measure that represents the

probability that a specific threshold-based decision would be made if information about

unobserved variables had been made available. While the same-decision probability allows

us to explore two queries related to statistical decision theory, we utilise the same-decision

probability to explore the potential impact of unobserved variables. For example, what

if, upon observing such a variable, the explanation obtained from, say, the most relevant

explanation changes? Our proposed taxonomy has already gained some attention from fel-

low researchers, where Valero Leal (2022) extended our taxonomy to include an additional

category focused on providing explanation support.

Next, this research addresses one of the challenges of explainable artificial intelligence,

i.e., providing meaningful explanations in a computationally efficient manner. Previous

work has focused on developing mostly exhaustive search algorithms to solve the most

relevant explanation in Bayesian networks. We propose incorporating the graphical Lasso,

a statistical neighbourhood selection method, with a classic forward search algorithm to

prune the search space. We evaluate the performance and computational efficiency of the

proposed algorithm on a set of benchmark Bayesian networks. Furthermore, building on

existing Bayesian network packages in R , such as gRain (Højsgaard 2012), we develop
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an R package dedicated to providing explanations for observed evidence. The R package

includes three search algorithms: an exhaustive brute-force search, a local (exhaustive)

forward search algorithm, and the proposed approximate forward-gLasso search algorithm.

Lastly, this research extends the current literature and implementations in explainable

Bayesian networks. Although various fields of science have highlighted the importance

of explainability, limited real-world applications have been implemented. Explainability

methods have often been the topic of theoretical discussions and toy implementations. As

such, we apply the most relevant explanation and same-decision probability to a real-world

publicly available data set to showcase these methods as well as the actionable insights

obtained from these.

1.5 Overview of thesis

The document is structured as follows:

• Chapter 2 presents Bayesian networks as inherently transparent models. We provide

a brief overview of Bayesian networks in Section 2.2. Section 2.3 presents methods

of explainability focused on providing insights into the knowledge base of the model.

Lastly, we explore explanation of reasoning techniques in Section 2.4.

• Chapter 3 is focused on post-hoc explanation in Bayesian networks. In particular,

Section 3.2 presents local explanations for observed instances, such as the most prob-

able explanation and the most relevant explanation. Section 3.3 explores principles

from statistical decision theory and methods, such as the same-decision probability,

that act as a confidence measure for decision-readiness.

• We present the proposed forward-gLasso search to efficiently prune the search space

for the most relevant explanation as an explanation of evidence method in Chapter

4. This includes computational experiments on established benchmark Bayesian

networks. After that, Section 4.5 explores the dynamic nature of the most relevant

explanation by including additional evidence. The additional evidence is determined

using the same-decision probability as a selection criterion.

• We organise the existing explanation methods and the newly proposed explanation
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of decisions arch into a taxonomy in Chapter 5. Additionally, this chapter includes

a demonstration of the XBN R package developed in this research.

• In Chapter 6, we implement explanation of evidence and explanation of decision

methods on real-world data to demonstrate the actionable insights one can obtain

from these explanations. We provide three case studies. Section 6.3 includes two

case studies focused on explanation of evidence, while Section 6.4 features a case

study on explanation of decisions.

• Finally, in Chapter 7, we draw concluding remarks, discuss the potential and short-

comings of this research, and present our future endeavours.

1.6 Data and resources

This research will draw upon the wealth of open-source data available through repositories

such as the Bayesian Network Repository3 available through bnlearn (Scutari 2010),

which offers extensive collections of data relevant to our research domain. The bnlearn

repository offers a wide array of frequently utilised reference Bayesian networks that serve

as benchmarks in academic literature. These networks span various sizes, ranging from

small networks with fewer than 20 nodes to massive networks exceeding 1000 nodes. These

reference networks will allow us to evaluate and compare methodologies across various

network sizes and complexities.

In addition, we will use the South African Victims of Crime Survey (VCS) 2017 -

2018, which is a comprehensive nationwide household-based survey that collects data on

the prevalence of certain types of crime (Statistics South Africa 2018). The VCS utilises

a Master Sample frame derived from the South African Census 2011. These data sets are

publicly available through Statistics South Africa.

To supplement the available data, this research will incorporate data simulation. As a

result, we can manipulate and control various parameters and explore specific scenarios,

allowing for a more comprehensive analysis. We can study particular hypotheses and test

the performance of the proposed methods under controlled conditions. We will store the

code and simulated data on GitHub4 to ensure reproducibility and ease of collaboration.
3The contents of this page are licensed under the Creative Commons Attribution-Share Alike License.
4https://github.com/iEna101/XBN experiments to access the R scripts used in this thesis.
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Chapter 2

Bayesian networks as inherently

explainable models

2.1 Introduction

Bayesian networks (BNs) (Pearl 1988) are probabilistic graphical models that serve as

tools to manage uncertainty. They leverage the combined strengths of graph theory and

probability theory to represent the relationships between variables visually. This graph-

ical representation allows for an intuitive understanding of the dependencies (and inde-

pendencies) among variables and facilitates reasoning under uncertainty. The strength of

Bayesian networks lies in their seamless integration of modelling and inference within a

single framework. This allows Bayesian networks to predict outcomes and explain their

reasoning, making them valuable in applications requiring transparency and understand-

ing.

Their ability to explain their reasoning, coupled with their transparent graphical struc-

ture, sets it apart from many other models that lack such inherent explainability. More-

over, Bayesian networks can address diagnostic and counterfactual questions, such as:

“Was it X that caused Y, or rather something different?” or “If I have evidence that X

did not happen, what then was the most likely cause for Y?” or “What if I had acted dif-

ferently?” As a result, BNs are often referred to as “explainable-by-design” (de Waal &

Joubert 2022).

This chapter is divided into two main components to facilitate the understanding of

13
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explainability methods in Bayesian networks. Firstly, we explore fundamental concepts

related to Bayesian networks, such as independence and inference, and decision problems

in Bayesian networks. Section 2.2.4 provides an overview of existing Bayesian network

software. Thereafter, considering that Bayesian networks are often recognised as inherently

transparent models (Barredo Arrieta et al. 2020), and given that inherently transparent

models offer explanations directly derived from their structure and reasoning process, we

investigate the explanation of the model in Section 2.3 and explanation of reasoning in

Section 2.4.

2.2 Overview of Bayesian Networks

More formally, a Bayesian network is a pair B = (Gr,Θ), where Gr consists of a directed

acyclic graph whose nodes represent the random variables in the relevant universe. The

arcs in G indicate the direct dependencies among variables. Θ represents the network

parameters expressed as conditional probability tables. A key feature of Bayesian networks

is the Markov property1 (Korb & Nicholson 2010), which allows us to express the joint

probability distribution for V as the product of conditional probability distributions for

each variable Vi given its parents Pa(Vi):

Pr(V) =
n∏
i=1

Pr(Vi|Pa(Vi)). (2.1)

2.2.1 Conditional independence in Bayesian networks

Independence among random variables within a domain is a fundamental concept in prob-

ability theory and serves as the basis for various areas of study (Dawid 1979), including

probabilistic graphical models. Let’s consider two events, A and B. Events A and B

are considered independent if observing A provides no additional information about B

(Barber 2012). Mathematically, events A and B are considered independent (denoted as

A ⊥⊥ B) whenever conditioning on one, say B, leaves the probability of the other, A

unchanged (Korb & Nicholson 2010):

A ⊥⊥ B ≡ Pr(A|B) = Pr(A). (2.2)
1each node is conditionally independent of its non-descendants given its parents
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Furthermore, conditional independence between two events, A and B, given an additional

event C can be defined as,

A ⊥⊥ B|C ≡ Pr(A|B,C) = Pr(A|C). (2.3)

2.2.2 Inference in Bayesian networks

Bayesian networks are frequently used in practice due to their ability to reason under

uncertainty (Barber 2012), which is facilitated by probabilistic inference (also referred to

as belief updating). This task entails estimating the posterior probability distribution

for a set of variables conditioned on the observed evidence (D’Ambrosio 1999, Korb &

Nicholson 2010). Accordingly, the Bayesian network framework permits the conditioning

of any set of variables, fostering various directions of reasoning. This conditioning is

performed according to the ‘flow of information’ and is not limited to the direction of the

arcs.

Performing inference in Bayesian networks

The Bayesian network framework allows us to directly perform inference queries using

the distribution of our model (Koller & Friedman 2009). Two commonly used queries

are conditional probability queries and maximum a posteriori (MAP) queries (Nagara-

jan et al. 2013). MAP queries entail determining the most likely instantiation of mul-

tiple variables, which we explore in Section 3.2.2. To illustrate conditional probability

queries, i.e., Pr(Y|E = e), consider a medical practitioner observing a patient with a

fever (evidence). Using a Bayesian network that includes variables like fever, flu, infec-

tion, and common cold, we can perform inference to calculate the posterior probability

of each disease given the fever: Pr(flu|fever = true), Pr(infection|fever = true), and

Pr(common cold|fever = true). As such, we can investigate the effect of new evidence on

the distribution of the model, using the knowledge encoded in the network.

There are two common types of evidence, hard evidence and soft evidence (Jensen &

Nielsen 2007). If one or more variables are instantiated, we call it hard evidence; otherwise,

it is referred to as soft (or virtual) evidence, i.e., we specify a probability distribution for

the variables of interest that reflect our level of belief about the different states. Inference
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can be performed using either exact or approximate methods. Regardless of the approach,

the computational complexity of inference in Bayesian networks remains NP-hard (Koller

& Friedman 2009, Korb & Nicholson 2010).

Exact inference in Bayesian networks is often implemented using variable elimination

or via junction trees (Nagarajan et al. 2013). The variable elimination algorithm starts

by initialising factors for each node in the network, representing conditional probability

distributions based on the network’s structure and parameters. Thereafter, the algorithm

proceeds to select an elimination order for the variables. The main step of the algorithm

iteratively eliminates variables according to the chosen order. This choice significantly

impacts the algorithm’s efficiency (Darwiche 2009). For each variable in the elimination

order, it multiplies all factors containing that variable and then sums out the variable,

resulting in a new factor. This process continues until all variables are eliminated except

for the query variables. Finally, the algorithm normalises the resulting factor to obtain

the desired probability distribution. Another approach to inference involves transforming

the network into a junction tree. This is achieved by clustering the nodes into cliques to

reduce the network structure to a tree (Nagarajan et al. 2013). Once the junction tree is

established, a Message-Passing algorithm Kim & Pearl (1983) is applied for inference.

Approximate inference algorithms in Bayesian networks are often employed when exact

inference becomes computationally infeasible due to the complexity of the network. Two

commonly used approximate inference methods are Markov Chain Monte Carlo (MCMC)

and variational inference (Salimans et al. 2015). The MCMC algorithm generates sam-

ples from the joint distribution of variables in the Bayesian network, allowing the approx-

imation of relevant conditional probabilities (Nagarajan et al. 2013). While variational

inference (Xing et al. 2002) approximates the posterior distribution with a simpler, pa-

rameterised family of distributions.

R provides several packages to perform inference in Bayesian networks. The gRain

(Højsgaard 2012) package includes the setEvidence and querygrain functions, which

can be used to perform exact inference. Whereas the dbnR (Quesada 2022) package offers

inference functions such as exact inference and approximate inference .
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Reasoning patterns

There are four primary categories of reasoning: diagnostic, predictive, intercausal, and

combined reasoning. Figure 2.1 provides a visual representation of these reasoning pat-

terns. Diagnostic reasoning refers to inference performed in the opposite direction of the

arcs, i.e., reasoning from effects to cause. In Figure 2.1a E is evidence for B. With pre-

dictive reasoning, reasoning occurs in the direction of the arcs, i.e., from cause to effects

as new information becomes available. Figure 2.1b illustrates predictive reasoning where

node C is our observed evidence. Intercausal reasoning is concerned with mutual causes

of a common effect. Suppose we have two causes, A and C, of the effect, B, as shown

in Figure 2.1c. Note that A and C are independent of one another unless B is observed.

Suppose we observe B (the common effect) and C (one of the mutual causes). This new

information explains the observed effect, B, which lowers the probability of the alternative

cause, A. This type of reasoning captured the explaining away phenomenon, in which the

effect is sufficiently explained by the confirmed cause, making the alternative cause less

likely.

Since the framework allows for conditioning upon any set of variables, we do not restrict

nodes to either query (hypothesis) or evidence nodes. Consequently, the above-mentioned

reasoning patterns might not apply to all scenarios. Different scenarios may require a

combination of reasoning patterns. Figure 2.1d illustrates the combination of diagnostic

and predictive reasoning.

2.2.3 Decision problems in Bayesian networks

The Bayesian network framework allows one to move beyond drawing statistical inferences

and facilitates decision-making under uncertainty, i.e., with limited information. When

feasible, one would likely decide to search for more information. However, a common

challenge decision-makers face is whether exploring new information is ‘worth’ it. The

value of information (VOI), a concept introduced in economics (Raiffa & Schlaifer 1961)

and related to decision theory, is a quantitative measure used to estimate the expected

benefit of acquiring information before making a decision.

When assessing the value of information, an initial step involves defining a value func-

tion, which may be defined in terms of entropy, variance (Jensen & Nielsen 2007) or reward
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Figure 2.1: Types of reasoning in Bayesian networks (adapted from Korb & Nicholson
(2010)).

(Krause & Guestrin 2009). Using a reward-based value function R, and given a hypothesis

variable D, evidence e, and unobserved variables H, we have an expected reward

ER(R,D,H, e) =
∑
h∈H

R(Pr(D|h, e))Pr(h|e), (2.4)

since H is unobserved. The VOI (or expected benefit) of observing the variable H is then,

V(R,D,H, e) = ER(R,D,H, e)−R(Pr(D|e)), (2.5)

where R(Pr(D|e)) is the reward had we not observed the variables H.

In situations where we need to choose which unobserved variable to observe next,

limited to observing a single variable at a time, the myopic approximation is a popular

choice (Jensen & Nielsen 2007).
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2.2.4 Bayesian network software

Several software packages have been developed for building and evaluating probabilis-

tic graphical models. These include BayesiaLab, BayesServer2, HuginExpert, Netica3,

Elvira4. However, the majority of these tools are proprietary and, as such, provide users

with limited open-source access.

In addition to these specialised tools, general-purpose languages, like R and Python

provide dedicated packages for building and performing inference on probabilistic graphical

models. For instance, R offers the bnlearn (Scutari 2010), gRain (Højsgaard 2012),

and bnstruct Franzin et al. (2017), while Python boasts packages like pgmpy (Ankan

& Panda 2015) and pomegranate (Schreiber 2018). However, these packages are not

dedicated to providing explanations in Bayesian networks. For the remainder of this

research, we will focus on implementations in R and build on top of existing packages.

Having gained an understanding of the foundational concepts underlying Bayesian

networks, such as conditional independence and inference, we now focus on explainability

methods that leverage the model’s structure and reasoning process for direct explanation.

2.3 Explanation of the model

In essence, explanation of the model refers to the model’s ability to provide an under-

standable summary of the relationships between variables in the domain. As such, it

entails presenting the information in the knowledge base, which can be helpful in assisting

application experts in the model construction phase and offering knowledge about the do-

main for instructional purposes. Recall that one of the goals of explanation is to provide

insight into the workings of a model so that it can be better understood and improved

if necessary. This aligns with controlling and improving AI systems. In the context of

machine learning, explanation of the model may assist users in understanding how the

model makes predictions and decisions, which can be useful for identifying biases or errors

in the model. Within the broader landscape of XAI, the visual representation of deci-

sion trees directly aligns with the concept of explanation of the model as they depict the
2BayesServer:https://www.bayesserver.com/
3Netica: https://www.norsys.com/
4Elvira https://leo.ugr.es/elvira/
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relationships between variables and their impact on the outcome.

Model explanations are considered static (Henrion & Druzdzel 1990) and, by definition,

global since we are interested in explaining the model, i.e., the structure and the relation

between variables, and not the reasoning process or some observed evidence. Generally,

model explanations are visual representations and can be complemented with a verbal

description of the nodes and arcs. For example, Henrion & Druzdzel (1990), Druzdzel

(1993) proposed a method to translate the information contained in the network into

natural language expressions. These explanations include phrases such as impossible,

very unlikely, unlikely, fairly likely, very likely, and certain and are assigned based on

probability ranges. For example, the expression likely is mapped to probabilities in the

range 0.75− 0.9.

Given that Bayesian networks include a graphical representation (expressed as a di-

rected acyclic graph G), the most straightforward method of model explanation involves

visualising this graphical model, allowing users to understand the nodes and the connec-

tions between them visually. In R , we can visualise the Bayesian network using the built-

in plot function from bnlearn or through additional packages such as Rgraphviz

(Hansen et al. 2023) and visNetwork (Almende B.V. and Contributors & Thieurmel

2022). Note that the bnlearn package incorporates some features of Rgraphviz for

visualisation. This extends the visualisation capabilities by allowing users to visualise the

Bayesian network in terms of the marginal probability distributions of each node. This type

of plot provides a compact, visual summary that captures the structure and parameters

of the network. This allows users to analyse how different inferences, i.e., evidence propa-

gation scenarios impact the network’s behaviour. Specialised Bayesian network software,

like BayesiaLab, offers visual representations of network structures alongside conditional

probability tables.

To gain a deeper understanding of the relationships between variables in a Bayesian

network, we can visualise the arc strength. This metric measures the strength of the proba-

bilistic relationship between nodes. Visualising these relationships helps us understand the

variable influences at a glance, where the thickest arc represents the arc with the strongest

strength of influence. Figure 2.2 depicts the Insurance Bayesian network (Binder et al.

1997) with associated arc strengths as measured by the Bayesian information criterion
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Figure 2.2: Graphical display of the arc strengths as measured by the Bayesian infor-
mation criterion in the Insurance network from Binder et al. (1997).

(BIC). Please refer to Table B.1 in Appendix B for a description of the variables included

in the Insurance network. During model construction, the arc strength can be used to

build a network containing only significant arcs. This helps us create a more focused and

interpretable model that captures the essential relationships between variables.

While Bayesian networks effectively represent the relationships between variables, their

visual clarity may be compromised as the network grows in complexity. To improve read-

ability, we can specify the layout using the layout argument in the graphviz.chart

function from bnlearn – which incorporates features from Rgraphviz . The function

offers basic layout options such as dot , neato , and fdp . dot positions nodes based

on their topology (parents above, children below), while neato positions nodes based

on an approximation of their path distance. fdp creates similar layouts as neato , but

it prioritises keeping nodes further apart from one another. It is important to note that

while the function offers some layout control, it does not currently allow for more intricate

University of Pretoria: Department of Statistics 21



2.3. EXPLANATION OF THE MODEL

Figure 2.3: Graphical display of the marginal probabilities and the fdp layout from
Rgraphviz .

customisation of fonts and font sizes. Figure 2.3 illustrates the fdp layout along with the

marginal probabilities of the nodes in the Insurance Bayesian network. These basic layouts

might not be sufficient for very complex networks where the graphical representation can

become cluttered and difficult to interpret. To address this challenge, researchers have

explored techniques for optimising the layout structure of these networks. For instance,

Marriott et al. (2005) explores algorithms like horizontal layering and an extension thereof

through an additional vertex coordinate assignment phase. These optimised layouts not

only enhance visual clarity but also facilitate the process of understanding complex rela-

tionships within the network.

The transparency of Bayesian networks is further enhanced by their ability to show

their probabilistic reasoning. The network structure encodes these relationships, allowing

for explanations of how the model arrives at its conclusions based on probabilities. This

leads us to the next explanation method: explanation of reasoning.
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2.4 Explanation of reasoning

The overarching goal of explanation of reasoning aligns with one of the motivations for

designing explainable models, which is to justify AI-derived conclusions. Here, explanation

of reasoning aims to justify a particular instance in the network and how it was obtained,

thereby allowing users to verify the results (Gallego 2005). Reasoning methods include

extracting the chains of reasoning, measuring the impact of observed evidence (Kyrimi &

Marsh 2016), counterfactual or contrastive explanations (Koopman & Renooij 2021), and

scenario-based explanations (Druzdzel 1996). Since inherent transparency represents the

model itself, explanation of reasoning can be considered in this category since the reasoning

process is directly encoded within the network structure. In other words, the system

enables users to directly explore “what-if” questions and perform contrastive explanations

without the need for external assistance (Mittelstadt et al. 2019). Conversely, if we are

interested in examining the reasoning process in more detail, explanation of reasoning

would be considered post-hoc.

Within the broader XAI field, techniques like LIME (Ribeiro et al. 2016) and SHAP

(Lundberg & Lee 2017) form part of explanation of reasoning, albeit post-hoc. For in-

stance, SHAP employs an additive approach to explain individual predictions. Each fea-

ture receives a score reflecting its impact on the outcome, offering insights into the model’s

reasoning process.

2.4.1 Chains of reasoning

The chains of reasoning presented in Section 2.2.2 are encoded in the Bayesian net-

work framework, allowing direct elementary explanation capabilities. Firstly, explanations

through diagnostic reasoning may be “E is evidence for B”. In other words, we are inter-

ested in finding an explanation to answer “what went wrong”. Whereas explanations for

predictive reasoning may be “B may cause D”. Here, we are interested in questions con-

cerning “what will happen” based on current conditions. Lastly, intercausal explanations

may take the form “A and C may each cause B; as C explains B, there is no evidence for

A”. For example, a student received a low score on a test (observed outcome). Intercausal

reasoning allows us to consider multiple causes, such as study time and test anxiety. Sup-

pose the student mentions that they felt anxious before the test, then this observation
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explains away the insufficient study time.

Henrion & Druzdzel (1990), Druzdzel (1993) introduced a qualitative analysis method

implemented in the INSITE tool. The tool identifies reasoning chains linking evidence

variables to target5 variable. By examining how evidence influences variables in each

chain, INSITE eliminates chains that impede evidence propagation. Whereas BANTER

(Haddawy et al. 1997) selects those chains with the highest “strength” – the minimum

impact of any variable within the chain. The selection is driven by analysing each variable’s

impact on the overall chain.

This type of explanation is a graphical display of the reasoning pattern and, therefore

facilitates comprehension of the reasoning process. These explanations are inherently

transparent and do not require expertise in probabilistic reasoning. That said, familiarity

with evidence propagation methods can provide a deeper understanding.

2.4.2 Variable importance

Given some observed evidence, Bayesian networks use inference to make predictions on a

variable of interest. A question that may arise here is “which evidence variables supports

or contradicts the prediction”? In other words, we may be interested in finding explana-

tions that indicate variable importance since not all evidence has an equal influence on

the prediction. To facilitate this, we would need to determine the impact of an observed

variable by analysing how the probability distribution of the variable of interest changes

given the observed evidence. Suermondt’s INSITE (Suermondt 1992) framework utilises

the Kullback–Leibler divergence to quantify the difference between the posterior distri-

bution of the variable of interest under the presence of all evidence and the distributions

obtained by excluding specific evidence or subsets thereof. Whereas BANTER (Haddawy

et al. 1997) quantifies the difference in the prior and posterior probability of the variable

of interest based on each evidence variable. Madigan et al. (1997) evaluates the influence

by continuously updating the weight of evidence (Good 1950) as each evidence variable is

instantiated. Yap et al. (2008) propose a method, Explaining BN Inferences (EBI), that

explains the prediction in terms of influential nodes and the variable of interests Markov

blanket. These explanations promote transparency in the reasoning process. This allows
5Here, a target variable is the variable of interest.
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users to understand how each piece of evidence affects the prediction.

2.4.3 Counterfactual and contrastive explanations

Counterfactual explanations have received significant attention from the XAI research

community (Kenny & Keane 2021). Counterfactual explanations often take the form

of “what-if” scenarios (Byrne 2016, Bica et al. 2021), where the input is changed. For

example, “A person is denied a loan because their credit score is too low. What if their

credit score increased by 30 points? Would they then qualify for the loan?” Accordingly,

the decision is followed by a counterfactual statement (Wachter et al. 2017).

Pearl (2009) casts this in terms of probabilistic reasoning and Bayesian networks and

defines a counterfactual sentence as “Y would be y (in situation u), had X been x”. This

can be evaluated using three steps: evidence propagation → action → prediction, where

evidence propagation is based on the actual course of events, action refers to the for-

mulation of the counterfactual and prediction to the computation of the counterfactual.

Whereas Butz et al. (2024) investigate whether an actionable counterfactual explanation

is perceived as a more useful explanation than a direct cause counterfactual explanation

with a shorter chain.

According to Miller (2019), humans inherently prefer contrastive explanations. These

explanations address why an alternative and preferred (or expected) prediction was not

made instead and have been studied in the broader XAI research field (Lim & Dey 2009).

As such, contrastive explanations clarify why the observed outcome r occurred instead of

a different outcome r′. Koopman (2020) propose an algorithm that generates all explana-

tions that are both contrastive and counterfactual to explain a particular prediction (target

variable) using a Bayesian network. Focused only on contrastive explanations, Koopman

& Renooij (2021) propose an algorithm for solving pursuasive contrastive explanations in

Bayesian networks. Counterfactual and contrastive explanations provide a description of

the reasoning process such that the user can understand the conclusion obtained.

2.4.4 Scenario-based explanations

Scenario-based explanations use a hypothetical situation, based on variables in the net-

work, to illustrate how the network’s reasoning process leads to conclusions based on evi-
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dence. As such, scenarios can be envisaged as stories, each describing possible conditions

(Parson 2008). Probabilistically, scenarios are represented by an assignment of values to

relevant variables. These may be comprised of all variables or a subset thereof. In Druzdzel

(1996), scenarios are extracted from the Bayesian network and are presented as a configu-

ration of nodes in the network relevant to the prediction of the network. Vlek et al. (2015,

2016) proposed an approach to reasoning about legal evidence that merges Bayesian net-

works with scenario schemes, allowing for an integration of a narrative approach with a

probabilistic approach. This framework allows for the construction of narrative explana-

tions based on scenarios derived from the network. Furthermore, the authors introduce an

approach for generating natural language scenario-based explanations as well as a format

for alternative scenarios and their relation to the evidence.

Scenario-based explanations in Bayesian networks, while related, differ slightly from

general case-based explanations in XAI. Where scenario-based explanations leverage the

network structure and conditional probabilities to create scenarios, case-based explana-

tions comprise various techniques, not necessarily specific to the model’s internal structure,

to create explanatory scenarios. Fundamentally, case-based explanations involve compar-

ing a particular prediction to similar instances in the dataset and explaining the model’s

decision based on the outcomes of these similar cases. A notable research system is the

CARES (Cancer Recurrence Support) System (Ong et al. 1997), which compares cur-

rent and previous patient cases through case-based reasoning. Similar to counterfactual

and contrastive explanations, scenario-based explanations describe the reasoning process.

Here, explanations are provided in natural language with numerical probabilities.

2.5 Conclusion

As shown in this chapter, Bayesian networks offer a robust framework for modelling and

reasoning under uncertainty. This chapter provided a brief overview of Bayesian net-

works, including concepts like conditional independence and inference, and how explana-

tion methods (e.g., explanation of the model and reasoning) contribute to the network’s

inherent transparency. However, their inner workings can present challenges for intuitive

understanding (Korb & Nicholson 2010). Acknowledging this limitation, researchers have

developed a suite of post-hoc explainability techniques to make Bayesian networks more
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interpretable.

While the methods discussed in this chapter concentrated on explaining the model or

the reasoning process, these post-hoc techniques provide explanations about the domain

using the Bayesian network. In the following chapter, we explore these post-hoc methods,

detailing how these methods can be applied to explain observed evidence or decision-

readiness in Bayesian networks.
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Chapter 3

Post-hoc explanation in Bayesian

networks

3.1 Introduction

Post-hoc explanations focus on why a model behaves in a certain way, rather than how

it works (Mittelstadt et al. 2019). In this chapter, we explore post-hoc explanation in

Bayesian networks and in particular, local explanation techniques which include explana-

tion of evidence and explanation of decisions. The methods are considered local since we

focus on explaining a specific instance of observed evidence or a particular decision.

The objective of explanation of evidence is to find the most likely configuration of

variables that best explain the observed phenomena. Explanation of decisions calculates

a confidence level in making a decision based on unobserved variables in the network.

Essentially, it allows users to evaluate whether the decision would change if the true state

of the variables were known. Should the decision confidence be low, it motivates a search

for additional information. This involves selecting a variable from the set of unobserved

variables for observation. While the literature refers to these variables as hidden variables,

it is easy to confuse this terminology with the general statistical terminology for hidden

variables, representing variables that are never observed (Elidan et al. 2000). Since these

unobserved variables may be observed in a subsequent step, we can refer to these variables

as latent evidence variables. For example, suppose a bank uses credit score and income

for loan approvals, a high decision confidence indicates that knowing the applicants’ debt-
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to-income ratio would not have changed the outcome. Conversely, a low confidence level

suggests the bank may benefit from considering the applicants’ debt-to-income ratio. Here,

the latent evidence variable is the applicants’ debt-to-income ratio. Accordingly, we define

the term decision-readiness to capture whether a user is ready to commit to a decision,

given the information available.

The remainder of the chapter is structured as follows. Section 3.2 reviews explanation

of evidence methods. In particular, we explore the most probable explanation (Section

3.2.2) and the most relevant explanation (Section 3.2.3). As our interest lies in finding

computationally efficient explanations, we investigate existing algorithms, such as the for-

ward search, to solve the most relevant explanation. Section 3.3 presents the proposed

explanation of decisions category. Drawing on statistical decision theory, we explore con-

cepts like stopping and selection criteria to support decision-readiness in the Bayesian

network domain. This includes a brief illustration of the decision-readiness process. We

then focus on the same-decision probability (Choi et al. 2012, Chen et al. 2012) in Section

3.3.2 and show how it can be used as both a stopping and selection criteria.

3.2 Explanation of evidence

Abductive inference, a concept derived from psychology and philosophy, involves reason-

ing and forming explanations based on uncertain information (Dew 2007, Peng & Reggia

2012). Within the Bayesian network domain, abductive inference refers to finding the

configuration of variables that are most likely to explain the observed evidence (Gallego

2005, Gámez 2004). It is particularly useful in situations where more than one hypothesis

can explain the observed phenomenon (Charniak & Shimony 1994) since abductive infer-

ence allows one to generate multiple hypotheses. Bayesian confirmation theory recognises

the importance of considering alternative explanations and comparing these explanations

with regard to the observed evidence. By providing multiple explanations, end-users are

encouraged to explore different possible explanations that offer a broader perspective and

allow for a comprehensive evaluation of evidence (Yuan, Lim & Lu 2011). By examining

these alternatives, users gain deeper insight into how good the best hypothesis is or how

sensitive the hypotheses are to parameter changes (Chan & Darwiche 2012). Anderson

et al. (2020), Lim & Dey (2013) study the benefit of reasoning with multiple explanations.
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Finding the most likely variable instantiation, given some observed evidence, has been

a topic of interest for many years and is presented in various formats. For example, Pearl

(1988) refers to finding the best variable instantiation given some observed variables as

belief revision. While Shimony & Charniak (1990) refers to the problem as Maximum A

Posteriori, Sy (1993) and Li & D’Ambrosio (1993) refer to it as most probable explanations

– note that the majority of literature defines the most probable explanation (MPE) as a

special case of maximum a posteriori (MAP). Other frequently used terms are maximisa-

tion of a probabilistic expert system (Dawid 1992). Yuan & Lu (2008) frames the problem

as the most relevant explanation, which includes only the most relevant variables based

on a relevance measure.

We define three variable types for explanation of evidence: evidence, target, and in-

termediate nodes. Evidence nodes represent observed evidence, this might be a test, a

symptom, or even an error message displayed by a system. Target nodes are variables of

interest, in other words, variables we would like to investigate that could provide a deeper

understanding of the observed evidence, such as a patient’s health states. The set of target

variables form the hypothesis space. Intermediate, or auxiliary, nodes are those nodes in

the network that are neither an observation nor a target variable. Depending on the set

of target variables, abductive inference is presented in two variants: total abduction and

partial abduction (Gámez 2004). If we are interested in finding an explanation based on a

full set of target variables, i.e., an empty set of intermediate variables, we are interested

in total abduction; otherwise, if we have a non-empty set of intermediate variables, we are

interested in partial abduction.

Several approaches and algorithms (both local and approximations) have been pro-

posed to generate a hypothesis capable of explaining the observed evidence (Santos Jr

1991, Seroussi & Golmard 1994, Park 2002). Explanation of evidence methods does not

intend to predict future events. Instead, they reason backwards from observed evidence

to identify the most likely circumstances that led to it. Though we explore both the most

probable and most relevant explanations, our focus is on understanding the most relevant

explanation. Mainly since MAP (and MPE) has been studied extensively in the litera-

ture (Koller & Friedman 2009, Korb & Nicholson 2010, Mengshoel et al. 2010, Castillo

et al. 2012, Kwisthout 2013b). As such, our experiments will include a brute-force MAP

University of Pretoria: Department of Statistics 30



3.2. EXPLANATION OF EVIDENCE

implementation along with the relevant MRE implementation, unless stated otherwise.

3.2.1 Running example

We illustrate the concepts discussed in this section with the Insurance Bayesian network

developed by Binder et al. (1997). It is considered as a benchmark example to evaluate

feature selection (Zeng et al. 2009, Broom et al. 2012) and structure learning algorithms

(De Campos et al. 2003, Tsamardinos et al. 2006, Niculescu-Mizil & Caruana 2007). The

network consists of 27 variables, with three designated output variables: MedCost, ILi-

Cost, and PropCost, illustrated in Figure 3.1. Where MedCost refers to the cost of medical

treatment, ILiCost the inspection cost, and PropCost the ratio of vehicle costs. The re-

maining variables are used to estimate the expected insurance claim cost for a policyholder.

Please refer to Table B.1 in Appendix B for a description of the variables in the Insurance

network.

By generating explanations, we can improve our understanding of attributes that con-

tribute to observations such as high medical expenses, accidents or theft. Another exam-

ple is the explanation of factors that influence premium calculations and claim approvals.

Here, we illustrate how post-hoc explanations can be used to determine factors that led

to the accident. For example, the network can be used to determine if the accident was

due to attributes related to the driver, such as SeniorTrain, DrivingSkill, RiskAversion,

etc. Another set of attributes worth investigating could be those related to the vehicle,

such as VehicleYear, RuggedAuto, Mileage, etc. One could even consider a combination of

these attributes to better understand the variables that contributed to the severity of the

accident.

For this running example, we will use two observation variables, Accident and

RuggedAuto. Accident represents the severity of the accident and RuggedAuto represents

the ruggedness of the vehicle. Where the former takes states {None, Mild, Moderate,

Severe} and the latter takes states {Eggshell, Football, Tank} – rugged vehicles, such

as Tank, are often built with stronger materials and can withstand tougher driving con-

ditions. Suppose we observe {RuggedAuto = Tank, Accident = Mild}. To assess the

claim, the insurance company investigates three binary variables: AntiLock, OtherCar, and

Airbag. AntiLock indicates if the vehicle has an anti-lock braking system installed, Other-
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Car denotes whether a second vehicle was involved in the accident, and Airbag specifies

if the vehicle is equipped with an airbag.

The presence of an anti-lock braking system in the vehicle may impact accident severity

by preventing wheel lock-up during braking and maintaining vehicle control, thus poten-

tially contributing to the mild nature of the accident. Understanding whether another

vehicle was involved in the collision provide context about the accident dynamics and

helps reconstruct the scenario, as multi-vehicle accidents can differ from single-vehicle in-

cidents in terms of impact and severity. Additionally, the presence of airbags plays a role

in mitigating injuries during an accident, offering insight into why the accident resulted

in only mild consequences. By examining these variables, we gain an understanding of

how safety features and accident dynamics interact to produce the observed outcome. In-

sights from this analysis can inform accident prevention strategies, promote the adoption

of safety features like anti-lock braking systems and airbags, and guide policymakers and

vehicle designers in enhancing vehicle safety standards and features.

3.2.2 The most probable explanation

Recall, from Equation 2.1, that a Bayesian network represents a distribution over the

domain consisting of all possible variable instantiations. Essentially, MAP finds the con-

figuration of the target set that maximises the posterior probability given the evidence.

Suppose we have a set of n target variables (X1, X2, · · · , Xn), then MAP involves finding

the variable instantiation such that Pr(X1 = x1, X2 = x2, · · · , Xn = Xn|E) is maximised,

where E is the observed evidence (Korb & Nicholson 2010). The MPE, a special case of

MAP, entails finding a full instantiation consisting of all target variables (Korb & Nichol-

son 2010, Helldin & Riveiro 2009).

Several search algorithms, such as best-first search (Marinescu & Dechter 2007), genetic

algorithms (Mengshoel & Wilkins 1998), tabu search (Park & Darwiche 2004), ant colony

optimisation algorithms (Guo et al. 2005), and modified max-product clique trees (Sun

& Chang 2011), have been proposed to solve the MPE (and MAP) problem in Bayesian

networks. Mengshoel et al. (2010) study various initialisation algorithms for generating

initial explanations. Kwisthout (2013a) proposes an extension to MAP, named the most

inforbable explanation, which integrates two fundamental properties of abduction: the
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DrivHist DrivQuality Airbag Antilock RuggedAuto CarValue
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Figure 3.1: Graphical illustration of the Insurance Bayesian network from Binder et al.
(1997).

selection of candidate hypotheses (and the determination of their granularity), along with

the inference to the best explanation.

In principle, we can find the most probable configuration through a brute-force algo-

rithm which generates the joint distribution and selects the configuration with maximum

probability. However, this is intractable, as finding the most likely variable configuration,

either through MAP or MPE, is shown to be NP-hard (Shimony 1994, Abdelbar & Hedet-

niemi 1998), while Park (2002) extends this to show it NP-complete. To illustrate the

explanations obtained through the brute-force algorithm, consider the running example
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with target nodes AntiLock, OtherCar, and Airbag and evidence nodes RuggedAuto and

Accident. We can use the setEvidence and querygrain functions from the gRain

package in R to compute the joint probabilities for all combinations. Table 3.1 presents

the combinations of variable states and their associated joint probabilities, ranked from

highest to lowest. Here, the best explanation for the observed mild accident of a tank-style

vehicle is that the vehicle has no anti-lock braking system and no airbags and a second

vehicle was involved in the accident. The second-best explanation is a vehicle with an anti-

lock braking system and airbags were involved in an accident with a second vehicle. This

allows users to consider various scenarios to explain the observed phenomena, effectively

providing scenario-based explanations. Notice here that the most “unlikely” explanation,

based on the three target variables, is a vehicle with an anti-lock braking system installed

with no airbags and no other vehicle involved in the accident.

Table 3.1: MAP-generated variable instantiations for the Insurance running example.

AntiLock OtherCar Airbag Joint Probabilities
False True False 0.335
True True True 0.243
False True True 0.198
False False False 0.127
False False True 0.056
True False True 0.036
True True False 0.004
True False False 0.001

3.2.3 The most relevant explanation

Since the explanations obtained from MPE consist of the full instantiation of target vari-

ables, the explanation may be overspecified. To address this, Yuan & Lu (2008) propose

the most relevant explanation (MRE). In essence, MRE searches for and enumerates all

possible partial instantiations of a set of target variables and finds the instantiations that

maximise some relevance measure. Bayesian confirmation theory is a framework within

Bayesian statistics and Philosophy of Science that addresses the problem of updating hy-

potheses when new evidence is presented. It offers a probabilistic manner to represent the

degree of evidential support. One such probabilistic metric is the Bayes factor (Kass &

Raftery 1995). Furthermore, according to Yuan, Lim & Lu (2011), the chosen relevance
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measure should satisfy the properties of a good explanation, i.e., conciseness and pre-

ciseness. Proprietary software, such as BayesiaLab, offers functionality for most relevant

explanation, but the R environment currently lacks this functionality.

Generalised Bayes factor

Given the assumption that not all target variables need to be included for a good ex-

planation of observed evidence, the relevance measure should effectively prune irrelevant

variables from the best hypothesis. Bayes factor (Kass & Raftery 1995) measures the

strength of evidence among two competing hypotheses, i.e., two competing instantiations

of target variables. Let’s consider data D. We have multiple hypotheses, Hi, that could

explain this data. Each hypothesis has a probability distribution, Pr(D|Hi), representing

the likelihood of the data occurring under that hypothesis. Suppose we are interested in

comparing a specific hypothesis with one alternative hypothesis. Using Bayes’s theorem,

we obtain,

Pr(Hi|D) = Pr(D|Hi)× Pr(Hi)
Pr(D|H1)× Pr(H1) + Pr(D|H2)× Pr(H2) , (3.1)

so that,

Pr(H1|D)
Pr(H2|D) = Pr(D|H1)

Pr(D|H2) × Pr(H1)
Pr(H2) , (3.2)︷ ︸︸ ︷

Posterior odds =
︷ ︸︸ ︷
Bayes factor×

︷ ︸︸ ︷
Prior odds

where the Bayes factor is given by,

B12 = Pr(D|H1)
Pr(D|H2) . (3.3)

Therefore, the Bayes factor expresses the ratio between the posterior odds of H1 to its

prior odds, irrespective of the prior odds (Kass & Raftery 1995).

Similar to MPE and MAP, we are often presented with multiple possible hypotheses

rather than just one hypothesis and its alternative. The generalisation of the Bayes factor

allows for comparing multiple competing hypotheses (Fitelson 2001, Yuan, Lim & Lu

2011). The generalised Bayes factor (GBF), for observed evidence e and an explanation

University of Pretoria: Department of Statistics 35



3.2. EXPLANATION OF EVIDENCE

x, is given by

GBF (x; e) = P (e|x)
P (e|x̄) , (3.4)

where x̄ denotes the set of all alternative hypotheses of x. The generalised Bayes factor

penalises more complex explanations by considering the relative magnitude of variables,

retaining only relevant variables in the explanation (Yuan & Lu 2008). Ranking the ex-

planations by the generalised Bayes factor yields the most relevant explanation for the

observed evidence. Therefore, the explanation x that maximises the generalised Bayes

factor for the observed evidence e is considered the most relevant explanation. Mathemat-

ically, MRE is defined as

MRE(M ; e) ≡ argmax
x,∅⊂X⊆M

GBF (x; e) , (3.5)

where M is the set of target nodes.

Multiple explanations: k-MRE

The solution space for the most relevant explanation contains all partial instantiations; two

neighbouring explanations are connected if they have a local difference. In other words,

both explanations have the same variable-state combinations except for one explanation

having one less variable or the same variable with a single variable in a different state

(Yuan et al. 2009). The solution space for three target variables of the Insurance network

is illustrated in Figure 3.2. The lattice structure divides the nodes into layers. Nodes in

layer 1 consist of singular instantiations, whereas nodes in the bottom layer consist of full

instantiations.

To find all possible explanations, we can employ a brute-force search. Each explanation

is ranked according to its generalised Bayes factor. Table 3.2 provides a summary of

these explanations. Here, the MRE is a vehicle with an anti-lock braking system and an

airbag with a GBF score of 1.657. Interestingly, the best explanation according to MAP

{AntiLock = False, OtherCar = True Airbag = False, } has a GBF score of 0.924 and is

ranked 14th according to MRE. Notice that the second-best explanation is a superset of the

first explanation with a slightly lower GBF score. While the second explanation provides

more details, it doesn’t necessarily explain the observed phenomenon as effectively as the
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abab ac ac ab ab ac ac bc bc bc bc

a a b b c c
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Figure 3.2: Solution space for the three target variables of interest, Antilock (A), Oth-
erCar (B), and Airbag (C), in the Insurance (Binder et al. 1997) example. Antilock,
OtherCar, and Airbag take states {True, False}, where state False is indicated as a, b, c.

first. A concise yet diverse explanation set would be more insightful for understanding the

observed evidence.

Table 3.2: Brute-force MRE-generated variable instantiations for the Insurance running
example scenario.

AntiLock OtherCar Airbag GBF
1 True True 1.657
2 True True True 1.655
3 True True 1.613
...

...
...

14 False True False 0.924
...

...
...

26 True False False 0.237

Invoking Occam’s Razor (Thorburn 1918), the set of explanations should be as simple

as possible (Lötsch et al. 2022). Yuan, Lim & Lu (2011) propose filtering out explanations

based on dominance relations such that the final explanation set is minimal. An explana-

tion is considered minimal when there is no other explanation that either strongly or weakly

dominates it. The remaining explanation set consists of k explanations that are diverse

and representative. Computing these minimal explanations is computationally expensive

since it involves an iterative comparison of each hypothesis, its neighbours, and all can-

didate hypotheses. As such, pruning the neighbourhood can improve the computational
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efficiency.

Forward search to solve most relevant explanation

As illustrated previously, the solution space for MRE may be large since MRE is computed

using all partial instantiations of a subset of unobserved variables. Several local and ap-

proximation methods have been developed for solving MRE (Yuan, Lim & Littman 2011).

The inspiration behind these search methods stems from the similarity between MRE and

feature selection, which aims to eliminate redundant and irrelevant characteristics from

the set of features. The resulting subset comprises only relevant features (Chandrashekar

& Sahin 2014). However, instead of only selecting features that are most relevant, MRE

also entails the selection of the states of those features that will maximise the generalised

Bayes factor. Therefore, the solution space for MRE will be more extensive than that

of feature selection techniques. Yuan, Lim & Littman (2011) propose adapting existing

feature selection techniques to solve MRE. Although various feature selection techniques

exist, such as forward and backward search, we will focus on the forward search algorithm.

In essence, one or more starting solutions are invoked to initiate the forward search.

For each initial solution, the solution is improved by either adding an additional feature or

by changing the state of an existing feature in the solution (Yuan, Lim & Littman 2011).

The former is defined as add-one neighbours and the latter as change-one neighbours.

Although there are two ways to initialise a starting solution namely empty initialisation

and best pivot, we focus on the best pivot starting solution. Here, we set the target

features to their most likely state as a starting point. Figure 3.3 illustrates the forward

search for three target variables in the Insurance Bayesian network (Binder et al. 1997).

In particular, it shows the search path for OtherCar. The algorithm is given in Algorithm

11.

Exhaustive search algorithms are computationally feasible only for low-dimensional

models. While the forward search algorithm is a helpful tool for exploring and identify-

ing relevant features, it faces a notable challenge when applied to high-dimensional data

(Meinshausen & Bühlmann 2006), particularly in the Bayesian network domain. As the

complexity increases, the number of potential solutions that could explain the observed
1Algorithm adapted from Yuan, Lim & Littman (2011)
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Algorithm 1 Forward-search algorithm
Input: Bayesian network B, set of evidence variables E, and a set of target variables X.
Output: k-MRE solution.

1: Initialise the starting solution set I with the best pivot initialisation rule.
2: Initialise the current best solution, ybest = ∅ for each starting solution s
3: for each starting solution s in I do
4: y = s
5: repeat
6: Find the neighbouring solution set N of y by either changing the state of a

single variable or by adding an additional target variable with any state.
7: Compute the GBF score for each solution in N .
8: Filter the neighbouring solution set N based on dominance relations.
9: Update y if the best solution in N yields a higher GBF score.

10: until y stops updating
11: if GBF (y) > GBF (ybest) then
12: ybest = y
13: end if
14: end for
15: return ybest

evidence grows rapidly. As a result, finding the optimal solution can be challenging, es-

pecially if the algorithm is not able to prune the solution space efficiently. We propose

incorporating a statistical neighbourhood selection method, such as the Graphical Least

Absolute Shrinkage and Selection Operator (graphical Lasso or gLasso) (Friedman et al.

2008), to prune the solution space. We present this in Chapter 4 and for the rest of this

chapter turn our attention to methods that facilitate decision-readiness.

3.3 Explanation of decisions

Typically, Bayesian networks represent the relevant universe for a particular problem in

which we have observed some evidence and want to draw inferences about the probability

distribution of some other set of variables. Instead of focusing on statistical inferences,

Wald (1949) proposed another framework, namely statistical decision theory, which is con-

cerned with statistical action. Within the decision-making context, one would typically

need to choose one action from a set of possible actions. Each potential action would lead

to one of several outcomes, each of which is associated with a user preference. Decisions

for a reasonable course of action are often made based on incomplete information since

additional information may not be readily available, or be expensive to come by (Kochen-
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abab ac ac ab ab ac ac bc bc bc bc

a a b b c c

abc abc abc abc abc abc abc abc

Figure 3.3: Illustration of the search path for OtherCar (B) through the forward search
algorithm.

derfer 2015). This triggers an assessment of whether we have enough information to make

an informed decision. If not, we need to identify what additional information is required

to support an informed decision. In this context, we will stop information gathering if we

can make an informed decision; otherwise, we need to identify and select the additional

information required for informed decision-making. This aligns with a key motivation for

explainable models: the ability to discover new information.

Given the discussion of Bayesian networks as inherently transparent models as well as

existing post-hoc explanation techniques, statistical decision theory has been neglected.

This is echoed by Främling (2020), who investigates Decision Theory notions in the broader

XAI research field. Furthermore, generating explanations for decisions, especially under

conditions of uncertainty, can be difficult due to the lack of a formal methodology for the

treatment of important – potentially unobserved – variables (Guidotti et al. 2018). As

such, we will explore the current state of decision theory, particularly focusing on stopping

and selection criteria.

3.3.1 Concepts in statistical decision theory

As noted earlier, decisions are often made under conditions of uncertainty, and if feasible,

one would typically seek out additional information. A common challenge for decision-

makers is assessing whether the utility or benefit of additional information outweighs the

cost, albeit monetary or otherwise, of the new information (Petitet et al. 2021). Conse-
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quently, to make an informed decision, one would need to calculate the potential benefit of

acquiring the new information. This requires quantifying the potential gains or losses, i.e.,

the utility of the decision outcome and comparing it with the cost of this new information.

Bayesian decision theory (Savage 1972) provides a framework for calculating the expected

value of information.

There are two primary types of decisions in the domain of statistical decision-making:

test decisions and action decisions (Jensen & Nielsen 2007). The former refers to decisions

to look for more evidence, while the latter refers to decisions that aim to change the state of

the world. Two questions of interest typically stem from test decisions; “given the available

information, are we ready to make a decision?” and “if we are not yet ready to make a

decision, what additional information do we require to make an informed decision?” The

first question relates to the stopping criteria of the decision-making process. Accordingly,

the second question is associated with the selection criteria; when the stopping criteria

are not met, one would need to acquire additional information to make a decision (Chen

et al. 2012). The VOI (Raiffa & Schlaifer 1961), introduced in Section 2.2.3, can be used

as a selection criteria. Stopping and selection criteria are not isolated techniques but

rather integral parts of a broader decision-making framework. Various methods have been

proposed in the literature to address either the stopping or selection criteria in decision-

making.

Beyond these queries, exploring the potential impact of an unobserved variable presents

a further opportunity in the realm of explanation of evidence. What if, upon observing

a variable, the explanation obtained from MAP or MRE changes? In other words, how

robust are the explanations obtained from MRE? Are these explanations sensitive to new

explanation sets? Additionally, can we identify a subset of features that can sufficiently

explain the decision while decreasing the impact of irrelevant features? That is, sufficient

to provide strong probabilistic assurances that the model will exhibit similar behaviour

even when all features are observed. The latter is out of scope for this research and is

reserved for future research.
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Stopping criteria in decision-making

Suppose a medical practitioner examines a patient with symptoms suggesting multiple

possible diagnoses. Each diagnostic test offers valuable information but also costs time

and resources. Stopping criteria acts as a guideline to help the practitioner determine

when they have gathered sufficient information for making a confident decision (Saad &

Russo 1996). Common stopping criteria in statistical decision theory include threshold-

based criteria (Pauker & Kassirer 1980, Djulbegovic et al. 2015), resource-based criteria

(Wang et al. 2015), and performance-based criteria (Zhu et al. 2010). In this research, we

will focus on threshold-based criteria.

The concept of threshold-based notions is closely related to the idea of statistical

action – when should the decision-maker act? This embodies decision-theoretic rationality,

which suggests that the most rational course of action is to proceed when the expected

benefits outweigh the expected harms. In other words, the decision-maker will commit to a

decision once their belief about the event surpasses some predetermined threshold. These

thresholds may be set based on, for example, user preference, expert domain knowledge,

expected utility, information gain, computational analysis, or a combination of these.

For instance, in some clinical diagnosis models, thresholds depend on disease versus

utility definitions and decision-maker preferences (Djulbegovic et al. 2019). Lu & Przy-

tula (2006) defines probabilistic thresholds for multiple fault diagnosis. Decisions based

on predetermined thresholds are sensitive to changes in the threshold. Renooij (2018)

study the effect of changes in the threshold on decisions. Whereas Van Der Gaag & Bod-

laender (2011) investigates, given the current observed evidence, the potential that future

evidence may render another decision. Focusing on decision stability under uncertainty,

Van Der Gaag & Coupé (1999) explored the robustness of Bayesian network outputs for

threshold-based decision-making. The authors developed a sensitivity analysis method for

computing bounds to which the network conditional probabilities can be changed while

still resulting in the same decision.

Selection criteria in decision-making

Again, consider the medical practitioner examining a patient presenting symptoms indica-

tive of various potential diagnoses, with each diagnostic test providing valuable informa-
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tion. However, considering that these diagnostic tests usually involve some cost, whether

monetary or otherwise, one would typically prioritise the tests that offer the greatest

value. Selection criteria is then used to determine which variables should be selected for

observation. The decision-theoretic framework provides a metric for measuring the value

associated with making a particular observation (Koller & Friedman 2009). The VOI, a

concept introduced in economics (Raiffa & Schlaifer 1961) and related to decision theory,

is a quantitative measure used to estimate the expected benefit of acquiring information

before making a decision. This can be done in two ways: making a single observation at

a time or multiple observations at a time.

First, consider the case where we can select at most one observation at a time among a

set of possible observations. In this case, we can compute the myopic value of information

for each observation (Dittmer & Jensen 1997). Still, according to Koller & Friedman

(2009), not all information is necessarily of value; information lacks value if it fails to

change the optimal decision. This is related to the second question in test decisions, if we

are not yet ready to make a decision, what additional information do we require to make an

informed decision. For instance, whether we already have some observed evidence or not,

an additional test should only be performed if it will change the diagnosis and improve

our confidence in that decision.

Now, consider a more complex scenario in which multiple observations are made si-

multaneously. Here, we face the problem of which subset of variables to observe. If

we have a set of m possible variables, the number of possible observation subsets is ex-

ponentially large, i.e., 2m (Koller & Friedman 2009). Instead of observing all variables

simultaneously, we can sequentially approach the problem, adding one observation at a

time. Yet, the optimal choice of the next observation generally depends on the outcome

of the previous selection. A common approximate approach is using the myopic value of

information (Jensen & Nielsen 2007) discussed previously. Another solution is to extend

the Bayesian network to an influence diagram, although this may increase the complexity

of the model, which can influence the transparency thereof. Krause & Guestrin (2009)

presents an algorithm for selecting observations in probabilistic graphical models.
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Decision-readiness cycle

To illustrate the decision-readiness cycle, consider the flowchart depicted in Figure 3.4.

We start the process by defining our decision, initial evidence, latent evidence variables,

and decision threshold. Thereafter, we use a threshold-based stopping metric to determine

whether the current evidence is enough to make a confident decision. One such threshold-

based metric is the same-decision probability (Choi et al. 2012). This step will tell us

whether the decision is likely to stay the same or change had we observe the latent evidence

variables. If the stopping criteria are met, we can stop information gathering and commit

to a decision since the decision is less likely to change even if we have observed the latent

evidence variables. If not, we proceed with information gathering using the selection

criteria. This involves computing the expected benefit of observing each of the latent

evidence variables. We include the latent evidence variable that will, on average, lead to a

more robust decision. Since discrete variables in Bayesian networks consist of at least two

states, we include the state that maximises the threshold-based metric as evidence. This

leads to updated evidence and latent evidence variable sets. The expected benefit (VOI)

computation includes the threshold-based stopping criteria for the updated evidence –

refer to Equation 2.4. As a result, we can use this to determine whether we now have

sufficient evidence to make a decision. If not, we repeat the selection criteria process

until we can commit to a more robust decision. Consequently, the decision-readiness cycle

allows us to determine whether we have enough information to commit to a decision in

light of incomplete information.

To put this in context, consider a baseline patient form. The form contains infor-

mation on patient demographics, social circumstances, medical history, immunisations,

current symptoms, exposure status, and clinical examination. Assume we have a Bayesian

network for this along with nodes that represent the probability of a patient having a

particular disease. Suppose we select the tuberculosis node as the decision node and enter

current symptoms, exposure status, and clinical examination results as evidence. The

patient withheld certain information on their social circumstances, medical history, and

immunisations. These variables which the patient did not disclose are then seen as our

latent evidence variables. For simplicity’s sake, we will see these as three variables. How-

ever, in practice, there will be more variables to represent different social circumstances,
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Define decision, evidence, and
latent evidence variables.

Stopping criteria calculation:
Compute the threshold-based

metric based on the observed and
latent evidence variables.

Stopping criteria NOT met.

Selection criteria calculation:
Compute the expected benefit (VOI)

of observing each latent evidence
variable based on observed

variables.

Stopping criteria met.

Update the evidence and
latent evidence variables.

Stopping criteria calculation
included in selection criteria

calculation.

Stop information gathering and
commit to a decision.

Figure 3.4: A flowchart for decision-readiness.

medical history, and immunisations. We proceed to compute the stopping criteria based

on the current observed evidence and latent evidence variables. If this criteria is not met,

we proceed with the selection criteria calculation. Suppose this highlights that, on av-
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erage, observing the patient’s medical history will lead to a more robust decision. Since

the selection criteria use the expected benefit, it includes the stopping criteria calculation.

This allows us to update the evidence to now include the patient’s medical history. Of

course, this means that the set of latent evidence variables is reduced to the patient’s so-

cial circumstances and immunisations. Suppose that, even with the updated evidence the

stopping criteria are not met. In this case, we will repeat the selection criteria process to

determine which latent evidence variable to observe next since we use a myopic approach.

This process is repeated until we are confident that the decision will not change had we

observe the remaining latent evidence variables.

3.3.2 Same-decision probability

The same-decision probability (SDP), introduced by Choi et al. (2012), is a threshold-based

confidence measure for decision-making with probabilistic graphical models. Suppose we

want to make a decision d given some observed evidence e based on a threshold T . The

decision is confirmed by Pr(d|e) ≥ T . Then, the SDP can be defined as

SDP (d, e,H, T ) =
∑
h

[Pr(d|e, h) ≥ T ]Pr(h|e), (3.6)

where H is a set of latent evidence variables and an indicator function [Pr(d|e, h) ≥ T ]

described by

[Pr(d|e, h) ≥ T ] =


1 if Pr(d|e, h) ≥ T

0 otherwise.

Hence, SDP represents the expected probability that we would make the same decision

even if we were to observe the latent evidence variables. Consequently, we treat SDP as a

robustness measure for decision-making under uncertainty. Computing the same-decision

probability is proven to be PPPP -complete (Choi et al. 2012). Accordingly, (Chen et al.

2014) propose an approximate algorithm based on variable elimination. However, for this

work, we use a brute-force algorithm that enumerates all possible instantiations. Next, we

consider the same-decision probability as a stopping criterion for decision-making.
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D

H3 H4H2H1

Figure 3.5: A näıve Bayesian network with a hypothesis variable D and four features
H1, · · · , H4.

Table 3.3: The conditional probability tables associated with the näıve Bayesian network
in Figure 3.5.

D H1 Pr(H1|D)
+ + 0.55
+ − 0.45
− + 0.45
− − 0.55

D H2 Pr(H2|D)
+ + 0.55
+ − 0.45
− + 0.45
− − 0.55

D H3 Pr(H3|D)
+ + 0.60
+ − 0.40
− + 0.40
− − 0.60

D H4 Pr(H4|D)
+ + 0.65
+ − 0.35
− + 0.35
− − 0.65

Stopping criteria

By definition, SDP provides us with a confidence measure for decision-making. If we have

a high SDP, we can confidently make a decision based on the available evidence since the

likelihood of our decision changing based on additional information is low. Hence, SDP

can be used as a stopping criterion to determine whether we have enough information. To

illustrate this, we will consider two examples. The first reflects the work by Chen et al.

(2012, 2014), while the second applies the same-decision probability to the Asia (Lauritzen

& Spiegelhalter 1988) Bayesian network.

Consider the Bayesian network in Figure 3.5, with hypothesis variable D, where

Pr(D = +) = 0.5, and four feature variables whose readings may affect our decision.

Table 3.3 gives the conditional probability tables. Suppose we commit to a decision when

Pr(D = +|e) ≥ 0.55.

Suppose we observe H1 = + and H2 = +, then the set of latent evidence variables

consists of H3 and H4. Using setEvidence and querygrain in R , we can compute the

hypothesis probability Pr(d|e) = 0.599. Since this is greater than the threshold, we can
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Table 3.4: Scenarios for the latent evidence variables for the näıve Bayesian network in
Figure 3.5.

H3 H4 Pr(h|e) Pr(d|h, e)
+ + 0.290 0.806
− + 0.240 0.649
+ − 0.230 0.547
− − 0.240 0.349

conclude that our computed belief confirms the decision. However, this decision is made

without the consideration of the latent evidence variables. Observing these variables may

contradict the decision. Therefore, we would calculate the same-decision probability as a

confidence measure to confirm our decision. Table 3.4 provides the probabilities, Pr(h|e)

and Pr(d|e, h), for the various scenarios. Our SDP for this scenario is 0.290+0.240 = 0.53,

which indicates that there is a 47% chance that we would make a different decision had

we observed H3 and H4. As a result, we should not yet commit to a decision but rather

continue with information gathering.

Consider now the Asia Bayesian network in Figure 3.6 from Lauritzen & Spiegelhalter

(1988). The network consists of eight variables, visit to Asia (A), smoking (S), tuber-

culosis T , cancer (C), bronchitis (B), tuberculosis or cancer (P ), abnormal x-ray (X),

and dyspnoea (D). Suppose we commit to a decision when Pr(C = yes|e) ≥ 0.6, with

evidence S = yes and X = yes. While Pr(C = yes|e) = 0.646 > 0.6, the patient may

withhold some information, such as a recent visit to Asia. The true state knowledge of

A may confirm or contradict our decision. Using A as the latent evidence variable, the

same-decision probability is 0.988, indicating that even if the patient had disclosed this

information, there is still a 98.8% chance that we would make the same decision.

Selection criteria

Recall the same-decision probability for the example based on the näıve Bayesian network

in Figure 3.5 indicated that there is a 47% chance that we would make a different decision

if we had observed the two latent evidence variables. In this case, we need to decide

which variable(s) to observe next such that we can make a more informed decision. As

pointed out in Section 3.3.1, the selection criteria allows for a choice between observing

one variable at a time or observing multiple variables simultaneously. We will proceed
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Cancer (C)

Tuberculosis or Cancer (P)

XRay (X) Dyspnoea (D)

Tuberculosis (T)

Visit to Asia (A) Smoking (S)

Bronchitis (B)

Figure 3.6: The Asia Bayesian network from Lauritzen & Spiegelhalter (1988).

with a myopic approach, concentrating on observing one variable at a time. Since we have

two latent evidence variables, H3 and H4, we need to determine the expected benefit of

observing each of these variables.

From Section 2.2.3 and 3.3.1, it follows that the VOI can be used as a selection criteria.

Chen et al. (2012) propose defining the SDP as the reward function in VOI. We can then

rewrite Equation 2.5 to obtain the SDP gain of observing variables G out of latent evidence

variables H,

G(G) = E(G,H, e, T )− SDP (d,H, e, T ), (3.7)

where SDP (d,H, e, T ) is the SDP over latent evidence variables H and, from Equation

2.4, the expected SDP (also referred to as decision robustness) is given by

E(G,H, e, T ) =
∑
g

SDP (d,H G, ge, T ) · Pr(g|e). (3.8)

SDP gain serves as a selection criteria to prioritise variables that, on average, lead to the

most robust decision given the observed phenomena.

Let us now compute the SDP gains for G(H3) and G(H4). Observing H3 will give

us an SDP of either 0.557 (if we observe H3 = positive) or 0.5 for an expected SDP of

0.53, whereas observing H4 will give us an expected SDP of 1. Therefore, G(H3) = 0 and

G(H4) = 0.47. Hence, observing H4 will, on average, allow us to make a more robust
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decision that is less likely to change due to additional information.

3.4 Conclusion

This chapter highlights the theoretical components of post-hoc explanations in Bayesian

networks that facilitate abductive inference and decision-readiness. Explanation of evi-

dence methods is particularly useful in situations where we want to explain the observed

evidence. This allows us to understand the factors that influence it. By leveraging this

knowledge, we can improve existing measures, develop preventative measures, inform pol-

icymaking, and ultimately, drive positive user-centric outcomes. Explanation of decision

methods facilitates decision-readiness. This is useful in situations where we do not have im-

mediate access to all the necessary information to make a decision. The decision-readiness

process informs the user whether they can make a decision based on the current available

evidence. If not, it assists the user in identifying the information required to make a robust

decision.

While this chapter has explored post-hoc explanations in Bayesian networks, a key

challenge remains: efficiency. Computing explanations can be computationally expensive.

The next chapter introduces an approximate approach to solving the most relevant expla-

nation in Bayesian networks to address this challenge. The next chapter highlights the

statistical contributions of this research: a computationally efficient algorithm for gener-

ating explanations that retain the characteristics of a good explanation. Additionally, we

investigate the dynamic nature of explanations obtained through the MRE.
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Chapter 4

Forward-gLasso search for solving

the most relevant explanation

4.1 Introduction

Given that the solution space for the most relevant explanation can consist of full and par-

tial instantiations, it becomes computationally infeasible for moderate to larger Bayesian

networks. As such, it makes sense to prune the solution space to a subset of instantiations

that could explain the observed evidence. By doing so, we can ensure that the current

best solution is compared to a smaller, more concise, set of neighbours. To achieve this

goal, we propose leveraging the gLasso algorithm. Integrating gLasso into the forward

search algorithm is a symbiotic, approximate approach that combines the strengths of

both methods. The forward search algorithm systematically explores the solution space,

while gLasso helps identify the most relevant dependencies. Moreover, the sparsity in-

duced by gLasso allows us to identify and select a reduced set of approximated relevant

instantiations that exhibit dependencies, thus reducing the computational burden and

enhancing the explainability of the results.

This chapter proposes a novel approximation algorithm, forward-gLasso, developed

to generate computationally efficient explanations for observed evidence in Bayesian net-

works. The remainder of this chapter is structured as follows. Section 4.2 first explores the

theoretical properties of the gLasso. After that, we incorporate the gLasso algorithm into

the search strategy of the forward search algorithm. Here, we discuss the neighbourhood
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selection process and the precision matrix estimation. Section 4.3 describes the experi-

mental design while Section 4.4 provides the experimental results of the forward-gLasso

algorithm compared to the forward search algorithm. Lastly, in Section 4.5, we conduct

an experiment to test the most relevant explanation’s sensitivity to additional evidence.

This experiment demonstrates the dynamic nature of the most relevant explanation.

4.2 Graphical Lasso

Several researchers have explored using L1 regularisation in estimating sparse undirected

graphical models (Meinshausen & Bühlmann 2006, Banerjee et al. 2008, Dahl et al. 2008,

Friedman et al. 2008). These models employ undirected graphs to define the conditional

independence relationships between the variables. The default model assumes a multivari-

ate Gaussian distribution. Consider the matrix Xn×p, with n observations from p features

with mean µ and covariance matrix Σ. Note that a zero element in Σ−1 indicates con-

ditional independence between the two variables. Accordingly, sparser graphs are yielded

when zero off-diagonal elements in Σ−1 increases. Define the precision matrix as Θ = Σ−1

and let S denote the empirical covariance matrix, with S = 1
nX

TX. The gLasso prob-

lem is then defined as the maximisation of the penalised log-likelihood over non-negative

definite matrix Θ,

log detΘ− tr(SΘ)− λ||Θ||1, (4.1)

where ||Θ||1 is the L1 norm, λ is a tuning parameter controlling matrix sparsity, and tr

represents the trace of a matrix.

The gradient for Eq. 4.1 is given by,

Θ−1 − S − λ · sign(Θ) = 0. (4.2)

Since W = Θ−1, we have,

W − S − λ · (Θ) = 0. (4.3)

Graphical lasso solves the optimisation problem given in Equation 4.3 using a block-
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coordinate descent. Consequently, the upper-right block of Equation 4.3 is,

w12 − s12 − λ · sign(θ12) = 0. (4.4)

Using the relationship WΘ = I, we have

W ×Θ =

 I 0

0T 1

 . (4.5)

From this, we can derive,

w12 = −W11
θ12
θ22

. (4.6)

Substituting Equation 4.6 into Equation 4.4 gives

−W11
θ12
θ22
− s12 − λ · sign(θ12) = 0. (4.7)

Using β = − θ12
θ22

and sign(θjk) = sign(θjk) if θjk 6= 0, else sign(θjk) ∈ [−1, 1] if θjk = 0, we

get

W11β − s12 + λ · sign(β) = 0. (4.8)

While the forward search algorithm has been shown to be effective in generating the

most relevant explanation, its exhaustive search nature can be computationally expensive.

The gLasso offers a compelling solution to this limitation. By incorporating the gLasso

into the search strategy of the forward search, we can leverage its ability to promote

sparsity in the precision matrix. In essence, the gLasso acts as a pruning tool, guiding

the search and reducing the need to explore all possible neighbours. This combined ap-

proach improves computational efficiency while maintaining the characteristics of a good

explanation captured in MRE.

4.2.1 Search strategy

The forward search algorithm is the foundational framework for the proposed forward-

gLasso algorithm. The forward search, introduced in Section 3.2.3, provides the essential

architecture that guides the proposed algorithm through the solution space. We can think
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of the forward search as a puzzle where we need to assemble many pieces to obtain the full

picture. We start with one piece and gradually add one at a time to find the best-fitting

combination. Referring to Figure 3.3, we initiate the search process by assigning the most

likely state to each target variable. In this case, OtherCar is set to True, i.e., b – node filled

with a solid grey in layer 1. We attempt to gradually improve the solution through the

addition of one variable to the solution or by altering the state of one variable. These paths

are indicated by solid lines. The addition of one variable is shown in layer 2 of the lattice

structure. We evaluate the solution against the neighbouring solutions at each iteration

according to the generalised Bayes factor. We stop the process if the current solution

has a higher generalised Bayes factor than the best neighbour. In contrast, if the best

neighbour has a higher generalised Bayes factor than the current best solution, we update

the current best solution and repeat the process. Eventually, we reach a point where

adding more variables (or changing the state of a single variable) does not improve the

explanatory power of the explanation. Here, the algorithm visits all possible instantiations

of variables, which can be computationally inefficient.

Neighbourhood selection

To avoid visiting all possible instantiations of variables and the possibility of overspecified

explanations, we apply the gLasso at each iteration of the forward search to prune the

neighbourhood, N . In general, gLasso adds variables to the solution with the strongest

connections to the already included variables. In other words, gLasso helps us identify

which variables (and their states) are closely related. The gLasso can contribute to variable

selection through two approaches. Firstly, it facilitates the precision matrix estimation,

which contains information about the dependencies among the variables. Variables that

display strong connections in the precision matrix will likely hold significance in the model.

Secondly, variables can be selected with gLasso by using the penalised log-likelihood score.

The penalised log-likelihood measures how well the model fits the data. The variables

with the highest penalised log-likelihood score are the most likely to be important for the

explanation. We will focus on estimating the precision matrix to select the neighbours.

Using gLasso to select the neighbourhood ensures that the variables we include are not

only individually relevant but also contribute meaningfully to the explanatory power of
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Algorithm 2 Forward-gLasso search algorithm
Input: Bayesian network B, set of observation variables E, a set of target variables X,
and sparsity parameter λ.
Output: k-MRE solution.

1: Initialise the starting solution set I with the best pivot initialisation rule.
2: Initialise the current best solution, ybest = ∅ for each starting solution s
3: for each starting solution s in I do do
4: y = s
5: repeat
6: Find the neighbouring solution set N of y by either changing the state of a

single variable or by adding an additional target variable with any state.
7: Compute the GBF score for each solution in N .
8: Construct the precision matrix based on the GBF scores.
9: Apply gLasso to prune the neighbouring solutions set N .

10: Filter the neighbouring solution set N based on dominance relations.
11: Update y if the best solution in N has a higher GBF score.
12: until y stops updating
13: if GBF (y) > GBF (ybest) then
14: ybest = y
15: end if
16: end for
17: return ybest

the explanation.

Once the neighbourhood, N , has been pruned, we can continue the search by com-

paring the current best solution with the updated neighbouring set. The forward-gLasso

algorithm is presented in Algorithm 2. Figure 4.1 illustrates the path for OtherCar using

the forward-gLasso algorithm. At initialisation, OtherCar is set to True, i.e., b. Notice

here that the path to bc and ab are dashed. During the forward search, these paths were

solid. However, applying gLasso highlighted that these variables are conditionally inde-

pendent of the current best solution and can be eliminated from the neighbouring set. We

see here that the neighbouring set for the first iteration was reduced from the initial five

to three.

Estimating the precision matrix

We will use a generalised Bayes factor score matrix to approximate the precision matrix

used as input for the gLasso algorithm. Each cell in the score matrix corresponds to

a neighbour’s generalised Bayes factor score in the neighbouring solution set N . The
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abab ac ac ab ab ac ac bc bc bc bc

a a b b c c

abc abc abc abc abc abc abc abc

Figure 4.1: Path for OtherCar (B) through forward-gLasso search.

generalised Bayes factors are calculated using Equation 3.4. We split each neighbour

into two components based on neighbour type to get off-diagonal scores. For add-one

neighbours, the first component consists of the current best solution, and the second

component consists of the additional variable. Then, for change-one neighbours, the first

component consists of all variables in that neighbour for which the state did not change,

whereas the second component consists of the variable for which the state changed.

To illustrate this, let’s consider the current best solution, ab, in Figure 4.1. Our add-

one neighbours are {abc, abc} and the change-one neighbours are {ab, ab}. We can split

the neighbours as follows: abc = {ab, c}, abc = {ab, c}, ab = {a, b}, and ab = {b, a}. The

resulting score matrix is symmetric with the following row and column names: ab, c, c, a,

b, b, a:

Θ =



ab c c a b b a

ab 1.61 0.65 1.66 0 1.61 0 1.61

c 0.65 0.67 0 0.68 0.91 0.56 0.54

c 1.66 0 1.49 1.05 1.54 0.97 1.66

a 0 0.68 1.05 0.63 1.01 0.60 0

b 1.61 0.91 1.54 1.01 1.53 0 1.61

b 0 0.56 0.97 0.60 0 0.65 1.25

a 1.61 0.54 1.66 0 1.61 1.25 1.60



,

where boldface values represent the generalised Bayes factor scores for the neighbours of
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ab.

Decoupling from directed structure

Although the graphical representation of Bayesian networks involves directed arcs that

indicate conditional dependencies between variables, when solving the most relevant ex-

planation in a Bayesian network, it should be noted that the resulting set of possible

configurations is not directed. Instead, it represents the universe of undirected variable

assignments that can potentially explain the observed evidence. This allows us to use

the gLasso to prune the universe such that only the most relevant variable instantiations

remain.

4.3 Experimental design

We evaluate the performance of the forward-gLasso algorithm on a set of benchmark

Bayesian networks: Asia (Lauritzen & Spiegelhalter 1988), Alarm (Beinlich et al. 1989),

Circuit (Poole & Provan 1990), Hepar2 (K lopotek et al. 2000), and Insurance (Binder

et al. 1997). Asia, Alarm, Hepar2, and Insurance are included in the Bayesian network

data repository (Scutari 2010). We used the target and observation nodes described in the

relevant literature for each network. If the diagnostic node groupings were not available for

a particular network, we utilised alternative groupings. Table 4.1 provides an overview of

the benchmark Bayesian networks. Following a similar approach as Yuan, Lim & Littman

(2011), we will use each benchmark network as a generative model to generate test cases

for evaluation. We limit the generated test cases to only include unique observations, as

these observation nodes will serve as evidence. For smaller networks, such as Asia and

Circuit, where we have a single binary observation, we will have two unique test cases.

Since the Asia network allows for two possible diagnostics, we will run the experiments on

both, therefore we will have four unique test cases.

We first report on the forward-gLasso search algorithm’s ability to prune the neigh-

bourhood size. Thereafter, we evaluate the forward-gLasso according to two performance

indicators, namely cases solved exactly and average execution time. Since the graphical

Lasso includes a non-negative tuning parameter to encourage sparsity, we implemented

the forward-gLasso algorithm with three different tuning values: λ = 0.01, λ = 0.001,
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Table 4.1: Summary of the benchmark networks used in the experiments.

Network Type Nodes Arcs Targets Observations
Asia Small 8 8 3 1
Circuit Small 10 11 4 1
Insurance Medium 27 52 6 5
Alarm Medium 37 46 8 16
Hepar2 Large 70 123 7 63

λ = 0.0001. The results obtained from a brute-force approach implemented in R were

used as ground truth. Lastly, we provide the explanations obtained through the forward-

gLasso for the running example introduced in Section 3.2.1. The experiments were per-

formed in a R environment with R version 4.3.1 for programming. The Bayesian net-

works were loaded through the bnlearn (Scutari 2010) and gRain (Højsgaard 2012)

packages. Graphical Lasso was performed through the glassoFast (Sustik et al. 2023)

package. The test cases were generated using the rbn function from bnlearn , with the

loaded network structure and the number of samples to generate as input. We restricted

the generated cases to only include unique observations, as previously described. Where

applicable, we sampled 200 of these test cases without replacement, with a seed of 13.

4.4 Experimental results

4.4.1 Neighbourhood reduction

Table 4.2 displays the average number of neighbours visited for each algorithm. Boldface

entries indicate the smallest average neighbourhood size among the algorithms. Overall,

the results demonstrate the efficiency of the proposed forward-gLasso algorithm in reduc-

ing neighbourhood sizes compared to the forward search algorithm. This is particularly

significant in scenarios where computational efficiency and resource utilisation are impor-

tant. By reducing the number of neighbours to explore, the forward-gLasso algorithms

simplify the process of finding the most relevant explanation within Bayesian networks. It

is important to acknowledge the exception found in the Asia network, which is considered

a small network. In this specific instance, the forward-gLassoλ0.001 variant displayed a

larger average neighbourhood size in contrast to other versions of the algorithm as well as

the forward search algorithm. This highlights the sensitivity of the choice of the regulari-
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sation parameter, λ, as it determines the level of sparsity in the estimated matrix, thereby

influencing the inclusion or exclusion of neighbours.

Table 4.2: Comparison of the average neighbourhood size of each algorithm.

Forward F-gLassoλ0.01 F-gLassoλ0.001 F-gLassoλ0.0001

Asia 13.75 13.25 14.25 13.75
Circuit 25.50 24 25.50 25.50
Insurance 120.76 92.27 112.05 118.83
Alarm 123.14 88.02 106.23 118.28
Hepar2 105.48 74.79 92.94 102.79

4.4.2 Computational efficiency

Table 4.3 provides a detailed breakdown of the computational results. The table includes

the Bayesian network, the total test cases solved exactly (CSE), and the average execution

time in seconds (AET). Overall, the forward-gLassoλ=0.0001 stands out as it successfully

solves the same number of test cases as the forward search, but in less time. This finding

underscores the computational advantages of including gLasso in the forward search. How-

ever, it is worthwhile to note that while the average execution time for the forward-gLasso

implementations is generally quicker than the forward search, the forward-gLassoλ=0.01

and forward-gLassoλ=0.001 variants tend to solve fewer cases exactly, particularly in larger

networks. This observation sheds light on the trade-off between computational efficiency

and accuracy. When using a smaller value of the regularisation parameter λ, the algo-

rithms achieve higher computational efficiency but sacrifice some degree of accuracy in the

results.

Let’s look closer at the Alarm network, with 16 observation nodes and 8 target nodes.

Here, the forward-gLassoλ=0.0001 solves cases efficiently while maintaining high accuracy.

In contrast, the forward-gLassoλ=0.01 and forward-gLassoλ=0.001 variants, while faster, do

not attain the same level of accuracy. This observation echoes our earlier observation

while comparing the neighbourhood pruning capabilities of each variant, as presented in

Table 4.2. Despite a reduction in average neighbourhood size from 118.28 to 106.225, the

forward-gLassoλ=0.001 solves one less case than the forward-gLassoλ=0.0001.
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Table 4.3: Comparison of test cases solved exactly (CSE) and the average execution time
(AET) of each algorithm in seconds.

Forward F-gLassoλ0.01 F-gLassoλ0.001 F-gLassoλ0.0001

CSE AET CSE AET CSE AET CSE AET
Asia 4 0.236 4 0.159 4 0.155 4 0.166
Circuit 2 0.678 2 0.469 2 0.494 2 0.511
Insurance 199 14.887 195 9.663 192 10.375 199 11.873
Alarm 200 16.943 193 7.307 199 9.952 200 12.051
Hepar2 199 10.719 195 4.882 195 6.779 199 7.985

4.4.3 Most relevant explanation according to forward-gLasso

We also report the explanations obtained through the forward-gLasso search algorithm on

our running example and a second scenario based on the Insurance network with 6 targets

and 5 observation variables.

Scenario 1: running example

In this example, a policyholder submitted a claim after their vehicle, with tank-level

ruggedness, was involved in a mild accident. The three target variables are Antilock,

OtherCar, and Airbag. The minimal explanations, using λ = 0.2, are given in Table 4.4.

In this scenario, the most relevant explanation for the observed evidence is the presence

of both an anti-lock braking system and an airbag with a GBF score of 1.657, followed by

the presence of an anti-lock braking system and the involvement of a second vehicle, and

lastly the presence of an airbag and the involvement of a second vehicle.

Table 4.4: Set of explanations for the Insurance network using the forward-gLasso algo-
rithm.

AntiLock OtherCar Airbag GBF
True True 1.657
True True 1.613

True True 1.539

Note that in the running example, we only include binary target variables. We ex-

periment on a larger set of observations and target nodes from the Insurance network

to further investigate the most relevant explanations obtained with the forward-gLasso

algorithm.
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Scenario 2: including socio-economic and demographic factors

Suppose we observe a moderate accident and include additional socio-economic and de-

mographic factors related to the driver as evidence, such as Age, SocioEcon, HomeBase,

and DrivHist. In this scenario, the policyholder submitting a claim is a middle-class adult

based in a rural neighbourhood with zero prior accidents. We are interested in attributes of

the vehicle, such as Antilock, Airbag, VehicleYear, MakeModel, and RuggedAuto to explain

the observed evidence.

The minimal explanations, using λ = 0.001, obtained through the proposed forward-

gLasso are given in Table 4.5. The first explanation consists of a singular instantiation,

MakeModel = FamilySedan with a generalised Bayes factor of 3.074. The remaining ex-

planations are partial instantiations of the target variables and no explanation consists

of a full instantiation, i.e., all five target variables. In this scenario, the simplest expla-

nation carries the highest explanatory power and more complex explanations have lower

explanatory power. This observation agrees with Lötsch et al. (2022) who argue that ex-

planations should be simple since this is a requirement of comprehensibility. Accordingly,

the set of explanations provided are considered minimal explanations, since neither of the

explanations are either strongly or weakly dominated by another explanation. As such,

the explanations obtained through the forward-gLasso algorithm retain the properties of

a good explanation, namely preciseness and conciseness.

Table 4.5: Set of explanations for scenario 2 of the Insurance network using the forward-
gLasso algorithm.

AntiLock Airbag VehicleYear MakeModel RuggedAuto GBF
FamilySedan 3.074

False Older Tank 2.173
False False Tank 2.167

Older Football 1.480
False Football 1.449

Using the developed forward-gLasso algorithm, we can now explore additional points of

interest. For example, is the explanation set obtained from the most relevant explanation

static or dynamic? Does the best explanation stay consistent or change in light of new

information? We expect the explanation set to be updated with new evidence to reflect

the dynamic nature of human reasoning.
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4.5 Testing robustness of the most relevant explanation

with the same-decision probability

In this section, we explore the impact of new evidence on the most relevant explanation.

Instead of haphazardly selecting new evidence to observe, we make use of the same-decision

probability as a selection criterion. As such, we first compute the most relevant explanation

for a set of observed evidence. Thereafter, we employ the same-decision probability to

determine, from a set of latent evidence variables, which variable we should observe next

using a myopic approach. Having determined the next variable to observe, we update

the explanation set and recompute the most relevant explanation. To illustrate this, we

use the Win95pts Bayesian network provided by bnlearn (Scutari 2010). The Win95pts

network consists of 76 binary nodes with 112 arcs and is used for troubleshooting print-

related problems. For example, it can be used to troubleshoot “no output”, “garbled

output” or slow printing.

Suppose we want to understand why we observed no output when we know the printer

is switched on with the correct application data. To troubleshoot, we investigate the

printer paper supply, whether the correct printer was selected, whether the printer timed

out, and the toner supply. The initial evidence and target variables are described in

Table 4.6, where the variable type, variable name, a short description, and the observed

state (where applicable) are displayed. Using this, the most relevant explanation for the

observed evidence is presented in Table 4.7. Notice that these explanations consist of full

instantiations of the target set. Out of interest sake, we also compute the most probable

explanation as {PrtPaper = Has Paper, PrtT imeOut = Long Enough, TnsSpply =

Adequate, PrtSel = Y es}.

Since the explanations for the initial evidence provide similar generalised Bayes factor

scores, we implement the same-decision probability to determine which variable we should

observe next, based on a decision variable PC2PRT, a threshold of 0.5, and latent evidence

variables PrtDataOut and PrtCbl. The variable descriptions are provided in Table 4.6. For

this experiment, we separate the set of target variables from the latent evidence variables

such that the target set remains constant. The same-decision probability for this scenario

is 0.655. Although this is greater than the threshold, there is still a 34.5% chance that
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Table 4.6: Description of variables of interest in the Win95pts Bayesian network.

Variable type Variable name Short description State
evidence Problem1 No output No Output

PrtOn Printer on and online Yes
AppData Application data Correct

target PrtPaper Printer paper supply
PrtSel Correct printer selected
PrtTimeOut Printer timeouts
TnrSpply Toner supply

decision PC2PRT PC to PRT Transport Yes
hidden unobserved PrtDataOut Print data out

PrtCbl Local printer cable

Table 4.7: Most relevant explanation for initial evidence set.

TnrSupply PrtPaper PrtTimeOut PrtSel GBF
Adequate Has Paper Too Short Yes 2.295
Adequate No Paper Long Enough Yes 2.182
Low Has Paper Long Enough Yes 2.129
Adequate Has Paper Long Enough No 2.034

we would make a different decision had we observed the latent evidence variables. At this

point, we can either decide to commit to the decision or continue information gathering.

Suppose we continue information gathering, we now need to determine which variable,

PrtDataOut and PrtCbl, to observe next such that we can make a more informed decision.

Therefore, the next step is to determine the expected benefit of observing each of these

variables. Observing PrtDataOut will result in an SDP of either 0.95 (if we observe

PrtDataOut = Y es or 1 with an expected SDP of 0.965, whereas observing PrtCbl will

give us an SDP of either 0.684 (if we observe PrtCbl = Connected) or 1 for an expected

SDP of 0.697. Therefore, the corresponding SDP gains are: G(PrtDataOut) = 0.31 and

G(PrtCbl) = 0.041. Hence, observing PrtDataOut will on average allow us to make a

more robust decision that is less likely to change due to additional information.

Consider the scenario where we observe PrtDataOut = Y es. The most relevant

explanation for the updated evidence is given in Table 4.8. Notice here the most relevant

explanation changes in light of this new evidence. Previously, each explanation consisted

of a full instantiation of the target variables. Now, however, the “best” explanation is a

singleton explanation consisting of only PrtSel, indicating that the most relevant cause
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Table 4.8: Most relevant explanation for updated evidence set.

TnrSupply PrtPaper PrtTimeOut PrtSel GBF
Yes 12.761

Adequate Has Paper Too Short 3.111
Adequate No Paper Long Enough 2.866
Low Has Paper Long Enough 2.768

for the observed evidence is whether the correct printer is selected and not a combination

of factors. Furthermore, this variable is excluded from the remaining explanations. If we

focus on target variables TnrSupply, PrtPaper, and PrtTimeOut, for explanations two,

three, and four, we notice the states are the same as before (Table 4.6), except for the

exclusion of PrtSel. This may be attributed to the fact that, in light of the new evidence,

selecting the correct printer holds more explanatory power than the remaining target

variables.

This experiment demonstrates that the most relevant explanation is dynamic and

can adapt to new evidence, reflecting the dynamic nature of real-world decision-making.

Furthermore, the experiment suggests that including more evidence can elevate the ex-

planatory power of certain variables, potentially leading to a more comprehensive under-

standing.

4.6 Conclusion

A key challenge in XAI is developing methods capable of producing computationally ef-

ficient explanations. Local search algorithms, such as the forward search algorithm, are

exhaustive and can be computationally inefficient, especially for larger networks. These

algorithms visit all variable instantiations to obtain the set of most relevant explanations

for the observed evidence. This motivated the development of a novel algorithm capable

of efficiently pruning the search space.

This chapter introduced a forward-gLasso search algorithm as an approximate search

algorithm to solve the most relevant explanation. The forward-gLasso search algorithm

builds upon the forward search by incorporating the neighbourhood selection capabilities

of gLasso. This combined approach results in a more computationally efficient algorithm.

We compared the proposed algorithm with the forward search algorithm in terms of com-
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putational efficiency and the number of cases solved exactly, with the results of the brute-

force algorithm as our ground truth. After that, we illustrated the minimal explanations

obtained from forward-gLasso for the running example from Section 3.2.1 as well as the

explanation set from another scenario in the Insurance Bayesian network. Thereafter,

we showed the dynamic nature of the most relevant explanation in light of new evidence

obtained through the same-decision probability.

Having established the theoretical foundation and methodology, we can now turn our

attention to the practicality of these methods. The following chapter presents a taxonomy

of explainable Bayesian networks and an R package to support the work illustrated in

this research.
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Chapter 5

Taxonomy of explainable Bayesian

networks

5.1 Introduction

After exploring existing explanation methods in Bayesian networks and identifying a criti-

cal research gap of limited focus on decision-readiness, it becomes clear that a standardised

taxonomy for explanations in Bayesian networks is also missing. This absence hinders re-

searchers’ ability to assess how well explanations translate into actionable insights. To

address this challenge, we propose a taxonomy of explainable Bayesian networks. This

framework will serve as a foundation for improved communication among users, facilitat-

ing a more nuanced understanding of explanation types and their potential to support

informed analysis and decision-making. Furthermore, recognising the lack of open-source

software to generate explanations for Bayesian networks, we develop an R package. This

package facilitates the use of the most relevant explanations and includes three algorithms:

a brute-force search, a classic forward search, and the proposed forward-gLasso search.

This chapter is structured as follows. Section 5.2 presents the proposed taxonomy

of explainable Bayesian networks. This includes a discussion on how we can utilise the

taxonomy to address questions a decision-maker seeks to answer. Lastly, we demonstrate

the developed R package in Section 5.3 using two benchmark networks included in the

bnlearn package. It is important to note that the package is still in its early stages.

Our future endeavours include expanding the package to support additional explanation
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methods.

5.2 Taxonomy of explainable Bayesian networks

Building upon the explanation categories proposed by Lacave & Dı́ez (2002) and incor-

porating insights from discussions in Sections 2.3, 2.4, and 3.2, we present a taxonomy

for explainable Bayesian networks (XBN), which also incorporates the newly proposed

category on decision-readiness discussed in Section 3.3. Figure 5.1 illustrates the proposed

XBN taxonomy.

Recognising the importance of the target audience for explanations, XBNs prioritise a

user-centred approach. Due to the diverse intent, requirements, and expectations of XAI

communities (Preece et al. 2018, Langer et al. 2021, Barredo Arrieta et al. 2020), XBNs

shift focus from technical details to explaining the specific task at hand. This approach

enables XBNs to address user questions like “why”, “what” or “how” by selecting the most

suitable method based on the user’s specific needs.

While we define the taxonomy along the four categories, we acknowledge that not all

categories are necessarily of interest to the user. In the context of participatory modelling

(Düspohl et al. 2012), for example, the emphasis will be on explaining the model. How-

ever, if the Bayesian network is used as a classifier, the focus shifts towards explanation

of reasoning and explanation of decisions. For example, suppose the model prediction is

unexpected or counterintuitive. Users might then seek to understand the reasoning be-

hind the output. For example, encountering a “loan denied” prediction instead of “loan

approved” might trigger questions like “why was the loan denied instead of approved?” or

“was it the client’s low credit score or their unstable employment history that lead to the

denied loan?”. However, a user might leverage the model to evaluate the confidence level

associated with the current evidence before committing to a final decision. For example,

“beyond the symptoms presented, are there any environmental factors, such as recent travel

history, exposure to allergens, etc, that will change the current diagnosis?” The remainder

of this section illustrates several questions or scenarios users may ask or investigate and

assigns them to the relevant category in the XBN taxonomy. Given that explanation of

the model is deemed static and primarily involves the display of the knowledge base, we

opt to exclude it from this discussion.
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Figure 5.1: A schematic view of explainable Bayesian networks.

5.2.1 Reasoning

In the context of explanation of reasoning, different stakeholders have different expec-

tations of justifications provided for predictions. For example, a data scientist may be

interested in understanding how evidence propagates through the network to arrive at the

prediction, or they may be interested in identifying which variables have the most sig-

nificant influence on the prediction. At the same time, regulators would be interested in

examining variable importance to ensure that sensitive features do not disproportionately

influence decisions. On the other hand, consumers might be interested in counterfactual
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explanations to understand why a specific prediction was made and how it can be changed.

Consider the Asia Bayesian network from (Lauritzen & Spiegelhalter 1988) (illustrated

in Figure 3.6). A patient may ask “given their history of smoking, how likely is an abnormal

X-ray?. In this case, the user is concerned with a single outcome, i.e., the X-ray result.

Similarly, a healthcare provider may ask “what is the probability of a patient being a

smoker, given that they presented shortness of breath?” or “what if the patient had not

visited Asia, how would the probability of tuberculosis change?”

Next, consider a network that predicts a higher than usual customer churn rate for a

subscription service. We might be interested in examining data on customer demographics,

usage patterns, and reasons for cancellations to better understand what contributes most

to churn. Identifying the variable that contributes the most can lead to actionable insight.

Suppose we discover a significant number of cancellations are from customers who have

not used the service features extensively. We can use this to create clear and engaging on-

boarding tutorials to familiarise new customers with the features and benefits, implement

a free trial period to allow users to experience the value proposition before committing

to a subscription, or provide contextual in-app messaging highlighting features relevant

to user behaviour, encouraging them to explore the service’s full potential. In addition

to this, a marketing manager might ask what if they offer a discount on the subscription,

would this influence the churn rate?

Consider a network that predicts high-risk areas. Suppose the model identifies a specific

neighbourhood with a high risk of property crime over the next week. Using variable

importance in explanation of reasoning, the system may provide justifications for the

prediction. For example, it may highlight recent crime statistics, upcoming events, or

weather patterns. This may then motivate law enforcement to focus their resources on

high-risk areas and allocate more manpower strategically based on the predicted activity.

Moreover, this could highlight potential risk factors and work with community leaders

to implement preventative measures, fostering cooperation and proactive approaches to

crime reduction.
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5.2.2 Evidence

When users are interested in finding a hypothesis that best describes specific observed

phenomena, we use explanation of evidence methods. For example, a medical professional

might ask “which diseases are the most likely cause of the symptoms presented?” or

“which diseases are most relevant in explaining the symptoms presented by the patient?”.

Similarly, a patient may ask “given their shortness of breath and ” Additionally, hospitals

can analyse patient data to identify factors contributing to patient readmission within a

specific timeframe. This may include diagnosis, severity of illness, patient demographics,

social support network, medication adherence and adverse events. By understanding the

factors most likely associated with readmission, hospitals can identify high-risk patients

who might benefit from additional support after discharge.

In the context of an insurance claim, the service provider might ask “what subset of

variables would be most relevant in explaining a high inspection cost?” or “given a newer

vehicle was involved in a severe accident, what aspects related to driver behaviour are most

likely to explain the accident?” Alternatively, insurance companies can analyse historical

claims data to identify patterns that suggest potential fraud. This might involve looking

at inconsistencies between a claim and a policyholder’s past information, unusual claim

filing times, or suspicious third-party details. By understanding the factors most likely

associated with fraudulent claims, insurers can flag high-risk cases for further investigation.

This helps them allocate resources efficiently and potentially save in fraudulent payouts.

Similarly, a bank might analyse loan applications that were rejected. By using expla-

nation of evidence, they can understand which factors in a borrower’s risk profile (e.g., low

credit score, high debt-to-income ratio, other economic indicators) have the greatest im-

pact on loan rejection. This helps the bank refine its loan approval process and potentially

offer alternative solutions to those with less severe risk factors.

5.2.3 Decisions

In the context of decision-readiness, users would typically ask “do we have enough evidence

to make a decision?” and if not, “what additional evidence do we need in order to make

an informed decision?”. A medical professional might ask “do we have enough evidence

on the symptoms presented to make a decision on the disease?” or “since we cannot
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yet make a decision, what additional information – tests, comorbidities, other patient

histories – is required to make a decision?.” For example, consider a 35-year-old patient

arriving at the emergency room with a fever, cough, and fatigue. These symptoms are

common across various respiratory illnesses, making a conclusive diagnosis challenging

based solely on this information. The medical professional might explain that while the

symptoms are concerning, they do not have enough evidence to pinpoint a specific disease.

However, the decision-readiness process could highlight information that will lead to a more

robust decision. For example, a chest X-ray can help differentiate between pneumonia and

other lung conditions. Blood tests can identify potential causes like influenza or bacterial

infections. Additionally, understanding if a patient has been exposed to anyone with

similar symptoms might provide insights about potential contagions. By identifying the

specific tests and information needed, resources are used more efficiently which can lead

to a more timely diagnosis and treatment plan.

Applied to forensic investigations, this can be used to answer questions relating to

crime scene investigations. The analyst may ask questions regarding the actual evidence

collected from the crime scene, i.e., whether enough evidence is collected to rule a crime

a homicide or what additional evidence is required to rule the crime a homicide. Should

they investigate further, or is the evidence already collected enough to make an informed

decision? For example, suppose a body is found at a crime scene. The cause of death

appears to be a gunshot wound. Is there enough evidence at the scene to determine if this

is a homicide or not? The analyst examines the collected evidence, which might include

witness statements mentioning arguments or suspicious activity, location and trajectory

of the gunshot wound, gunshot residue patterns on the victim and surrounding area,

and fingerprints collected from the scene. Based on the initial evidence, decision-readiness

might determine there is not enough evidence to definitively rule this as a homicide. While

the gunshot wound suggests foul play, they need more information to build a stronger

case. Further investigation may include analysing the bullet recovered from the scene to

potentially link to a specific firearm, conducting a thorough DNA analysis of the crime

scene to identify any suspects or trace evidence and re-interviewing witnesses to gather

more details about the events leading up to the victim’s death. By highlighting what

evidence is missing, it guides investigators to focus their efforts on collecting the most
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crucial pieces. Furthermore, explanation of decisions provides a clear rationale behind the

need for further investigation, fostering better communication between the investigative

team and legal authorities. Lastly, a targeted approach to evidence collection strengthens

the case and may increase the likelihood of a successful prosecution. By following these, the

forensic team can gather the necessary evidence to reach a more definitive conclusion. This

could be a homicide, an accident, or even suicide, depending on the additional information

collected.

Suppose an e-commerce company is experiencing a decline in online sales. The com-

pany would like to decide whether to implement a new marketing campaign to boost sales

or is there another underlying issue causing the decline? The marketing team has gath-

ered data on website traffic, conversion rates, and customer demographics. The marketing

manager might explain that while a new marketing campaign could potentially increase

sales, we do not have enough evidence to pinpoint the exact cause of the decline. Based

on the decision-readiness analysis, they decided to investigate further before allocating the

budget to a new campaign. They may analyse customer reviews and social media senti-

ment, which can reveal if there are product quality issues, website usability problems, or

competitor offerings impacting customer satisfaction. Digging deeper into website traffic

data might identify a drop in organic traffic due to search engine algorithm changes or a

decrease in paid advertising effectiveness. Furthermore, analysing sales data by product

category can highlight if specific products are underperforming due to pricing issues, lack

of proper marketing, or changing customer preferences. Decision-readiness encourages a

data-centric approach, prioritising investigation to understand the root cause before allo-

cating resources to potential solutions. Furthermore, by identifying the core problem, the

company can implement targeted solutions rather than launching a potentially ineffective

marketing campaign. Lastly, understanding customer behaviour and market trends can

help the company make adjustments to its products, marketing strategies, and overall

business model for sustainable growth. Based on the insights gained through the analysis,

the company can decide on the most effective course of action. This might be revamp-

ing the website for better user experience, improving product quality based on customer

feedback, or adjusting marketing strategies to target the right audience.

While the taxonomy is focused on all four arches in explainable Bayesian networks,

University of Pretoria: Department of Statistics 72



5.3. A PACKAGE FOR SOLVING THE MOST RELEVANT EXPLANATION

there is a lack of open-source software supporting these methods. Hence, one of the

objectives of this research is to develop an open-source package to address this. Though

it is still in its early stages, we now explore the package’s functionalities.

5.3 A package for solving the most relevant explanation

Although numerous specialised Bayesian network software are available, these applica-

tions are not open-source. Furthermore, open-source software such as R have dedicated

Bayesian network packages but do not support generating explanations. Instead, these

packages are focused on structure learning and inferences. As such, one of the aims of

this research is to develop an open-source R package that offers explanation facilities in

Bayesian networks. The main function of this package is to solve the most relevant expla-

nation in Bayesian networks and supports three algorithms: a brute-force search, a forward

search, and the forward-gLasso proposed in this research. The XBN package builds upon

existing R packages such as gRain . The XBN package is available on GitHub.

5.3.1 Installation

The package can be downloaded and installed from the GitHub repository using,

1 devtools :: install_github (’ iEna101 /XBN ’)

The XBN package depends on the gRain package for evidence propagation and the

glassoFast package for implementation of the graphical Lasso. Other packages called

in the XBN package include: dplyr , gtools , magrittr , plyr , stringi , stringr ,

and tidyr .

5.3.2 Specifying the parameters

Since the focus of this research is on post-hoc explanations, we assume the Bayesian

network has already been specified in R . To solve the most relevant explanation, we need

to specify four primary input parameters:

• target set : a character vector that specifies the set of hypothesis variables. In

other words, the variables you want to investigate to explain the observed evidence.

• evidence set : a character vector defining the node names of the observed evidence.
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• evidence states : a character vector that contains the observed states for each

variable in the evidence set .

• bn grain : a Bayesian network object of class grain .

Since XBN expects the Bayesian network to be of class grain , we can convert an object

bn of class bn.fit can be converted to a grain object as follows,

1 bn_grain <- compile (as.grain(bn))

The forward-gLasso search introduced in this research, requires two additional pa-

rameters, bn rho and score scale , where the former refers to the tuning parameter

controlling matrix sparsity and the latter to indicate whether random noise should be

added to the score matrix for gLasso.

5.3.3 Practical demonstration

We illustrate the main functionality of the XBN package by analysing two benchmark

Bayesian networks, namely the Asia network from Lauritzen & Spiegelhalter (1988) and

the Insurance network from Binder et al. (1997). The two networks are included in the

Bayesian network repository available through bnlearn (Scutari 2010). For each imple-

mentation, we provide the R syntax along with the output.

For the Asia network, we consider the scenario where a patient presents a shortness of

breath, i.e., dyspnoea. The Bayesian network bn asia is specified as a grain object.

Suppose the medical practitioner is interested in understanding whether the cause of the

dyspnoea is cancer, tuberculosis, or bronchitis. For this demonstration, we will specify

the character vectors for target set , evidence set , and evidence states within the

function.

For the Insurance network, we consider the scenario where an adult with no advanced

training was involved in a moderate accident. To explain this observation, we consider

a combination of driver and vehicle attributes, such as AntiLock, DrivHist, DrivQuality,

RiskAversion, and RuggedAuto. Previously, our running example (Section 3.2.1) based on

the Insurance network considered only binary target variables for simplicity. However,

in this scenario, we consider target variables with at least two states. The Bayesian

network bn insurance is specified as a grain object. We can specify target set ,
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evidence set , and evidence states as follows,

1 target_set <- c(" Antilock ", " DrivHist ", " DrivQuality ",

2 " RiskAversion ", " RuggedAuto ")

3 evidence_set <- c(" Accident ", "Age", " SeniorTrain ")

4 evidence_states <- c(" Moderate ", "Adult", "False ")

Initialisation

The function init gbf implements the best pivot as an initialisation rule for the most

relevant explanation. In essence, the function computes the most likely starting solution

based on the highest generalised Bayes factor score for each target.

Using the Asia network,

1 init_gbf ( target_set = c(" tub", "lung", " bronc "),

2 evidence_set = c(" dysp "),

3 evidence_states = c(" yes "),

4 bn_grain = bn_asia )

5

6 tub lung bronc GBF

7 <NA > <NA > yes 6.139114

8 <NA > yes <NA > 1.967800

9 yes <NA > <NA > 1.827646

The column names reflect the variable names as given in target set along with the

generalised Bayes factor score GBF for each initialisation. From this, we see that bronchitis

= yes, lung cancer = yes, and tuberculosis = yes are the best starting solutions for each

of the three target variables. Similarly, we can implement this for the Insurance network

with parameters specified previously,

1 init_gbf ( target_set = target_set ,

2 evidence_set = evidence_set ,

3 evidence_states = evidence_states ,

4 bn_grain = bn_insurance )

5

6 Antilock DrivHist DrivQuality RiskAversion RuggedAuto GBF

7 <NA > <NA > Poor <NA > <NA > 18.067803

8 <NA > Many <NA > <NA > <NA > 4.575542
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9 <NA > <NA > <NA > Psychopath <NA > 1.547200

10 False <NA > <NA > <NA > <NA > 1.189034

11 <NA > <NA > <NA > <NA > Tank 1.168337

Notice the difference in generalised Bayes factor scores for DrivQuality = Poor and the

remaining starting solutions. This highlights the explanatory power of DrivQuality.

Brute-force search

The function mre brute implements the brute-force search and returns the full set of

explanations, ordered from the highest generalised Bayes factor score to the lowest. Similar

to the output from init gbf , the column names reflect the variable names as given in

target set along with the generalised Bayes factor score GBF . It also includes the

hypothesis size mre size , which indicates the number of target variables included in the

hypothesis. Using the Asia network, we implement mre brute as follows,

1 mre_brute ( target_set = c(" tub", "lung", "bronc "),

2 evidence_set = c(" dysp "),

3 evidence_states = c(" yes "),

4 bn_grain = bn_asia )

5

6 bronc lung tub GBF mre_size

7 yes <NA > <NA > 6.1391138 1

8 yes <NA > no 5.8438928 2

9 yes no <NA > 4.6240442 2

10 yes no no 4.4784580 3

11 ... ... ... ... ...

12 ... ... ... ... ...

13 no <NA > <NA > 0.1628900 1

14 no <NA > no 0.1557581 2

15 no no <NA > 0.1323684 2

16 no no no 0.1247761 3

Kindly note that the output presented here displays a summary of the hypotheses with

the highest and lowest generalised Bayes factor scores. This summary is provided to avoid

overwhelming the page with extensive data. Similarly, using the parameters previously

specified, the brute force algorithm for the Insurance network can be implemented as
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follows,

1 mre_brute ( target_set = target_set ,

2 evidence_set = evidence_set ,

3 evidence_states = evidence_states ,

4 bn_grain = bn_insurance )

5

6 Antilock DrivHist DrivQuality RiskAversion RuggedAuto GBF

7 <NA > <NA > Poor <NA > <NA > 18.067803

8 False <NA > Poor <NA > <NA > 7.084173

9 <NA > Many Poor <NA > <NA > 5.321693

10 ... ... ... ... ... ...

11 ... ... ... ... ... ...

12 True One Excellent Cautious EggShell 0.02253219

13 True Zero Excellent Cautious EggShell 0.02240894

14 True <NA > Excellent Cautious EggShell 0.02240628

Note the mre size column is excluded from this display for illustration purposes.

Forward-search

The function mre fwd implements the forward search algorithm and returns a set of min-

imal explanations, ordered from the highest generalised Bayes factor score to the lowest.

As with mre brute , the output columns reflect the variables specified in target set

along with the generalised Bayes factor score and the hypothesis size. mre fwd can be

implemented as follows for the Asia network,

1 mre_fwd ( target_set = c(" tub", "lung", "bronc "),

2 evidence_set = c(" dysp "),

3 evidence_states = c(" yes "),

4 bn_grain = bn_asia )

5

6 tub lung bronc GBF mre_size

7 <NA > <NA > yes 6.139114 1

8 <NA > yes <NA > 1.967800 1

9 yes <NA > <NA > 1.827646 1
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Similarly, we can implement this for the Insurance network using the previously specified

parameters,

1 mre_fwd ( target_set = target_set ,

2 evidence_set = evidence_set ,

3 evidence_states = evidence_states ,

4 bn_grain = bn_insurance )

5

6 Antilock DrivHist DrivQuality RiskAversion RuggedAuto GBF

7 <NA > <NA > Poor <NA > <NA > 18.067803

8 <NA > Many <NA > <NA > <NA > 4.575542

9 False One <NA > Cautious Tank 2.254417

10 True <NA > <NA > Psychopath Tank 1.723377

11 False <NA > <NA > Psychopath EggShell 1.599162

Again, the mre size column is excluded from the display.

Forward-gLasso search

mre fwd glasso implements the forward-gLasso search proposed in this research. As

mentioned, this function takes two additional parameters bn rho and score scale .

The output obtained from mre fwd glasso produces the set of minimal explanations

that best explain the observed evidence. For the Asia network with a tuning parameter

of λ = 0.001, we have

1 mre_fwd_glasso ( target_set = c(" tub", "lung", "bronc "),

2 evidence_set = c(" dysp "),

3 evidence_states = c(" yes "),

4 bn_grain = bn_asia ,

5 bn_rho = 0.001 ,

6 score_scale = TRUE)

7

8 tub lung bronc GBF mre_size

9 <NA > <NA > yes 6.139114 1

10 <NA > yes <NA > 1.967800 1

11 yes <NA > <NA > 1.827646 1
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The output of mre fwd glasso provides the set of minimal explanations that best

explain the observed evidence. This output matches the output from mre fwd . Similarly,

using the Insurance network with a tuning parameter of λ = 0.001,

1 mre_fwd_glasso ( target_set = target_set ,

2 evidence_set = evidence_set ,

3 evidence_states = evidence_states ,

4 bn_grain = bn_insurance ,

5 bn_rho = 0.001 ,

6 score_scale = TRUE)

7

8 Antilock DrivHist DrivQuality RiskAversion RuggedAuto GBF

9 <NA > <NA > Poor <NA > <NA > 18.067803

10 <NA > Many <NA > <NA > <NA > 4.575542

11 False One <NA > Cautious Tank 2.254417

12 True <NA > <NA > Psychopath Tank 1.723377

13 False <NA > <NA > Psychopath EggShell 1.599162

Although not displayed here, the output in R includes the mre size . Note that,

according to both mre fwd and mre fwd glasso , the best explanation according to the

generalised Bayes factor is also the simplest since it consists of only one variable, i.e,

DrivQuality = Poor. This is in line with Occam’s razor and the definition of a good

explanation, i.e., preciseness and conciseness. It is also excluded from the remaining

instantiations.

The package makes use of several internal functions not illustrated here. For example,

minimal exp is a function used to return a minimal explanation based on dominance

relations. This function filters both strongly and weakly dominated explanations and is

used in both mre fwd and mre fwd glasso . As such, the explanations obtained from

these functions are diverse and representative. At this time, there is no provision for a

“switch” that would allow users to filter both strongly and weakly dominated explanations,

applying a single dominance relation, or opting for no filtering. Nevertheless, we anticipate

integrating such a switch in a forthcoming update.
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5.4 Conclusion

This chapter presented two contributions of this research. The first, less technical con-

tribution is the taxonomy of explainable Bayesian networks. Instead of focusing on the

technical details, the taxonomy is focused on explaining a specific task or question. As

such, we illustrated the practicality of the taxonomy through a series of scenarios a specific

end-user might be interested in. Thereafter, we demonstrated the XBN R package that

stems from this research. The XBN package is available on GitHub. We are now in a

position to apply the concepts discussed and developed in this research to real-world data

sets.
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Chapter 6

Explainable Bayesian networks in

action: South African VCS

6.1 Introduction

Existing research on explanation methods is mostly limited to benchmark models, such

as the Asia network from Lauritzen & Spiegelhalter (1988). One of the objectives of

this research is to bridge the gap between theory and practice by demonstrating real-

world applications of these methods. By doing so, we will showcase the power of these

explanation methods to reveal actionable insights in real-world scenarios. This chapter

presents applications of explanation of evidence and explanation of decisions on the South

African Victims of Crime Survey (VCS) 2017 - 2018 (Statistics South Africa 2018).

The South African VCS 2017 - 2018 is a nationwide household-based survey capturing

data on the prevalence of specific crimes in South Africa. Its primary aim is to establish

the prevalence of crime within certain groups in the population. The objectives include

providing insights about crime dynamics from a household and victim perspective and ex-

ploring public perceptions of law enforcement’s role in preventing crime and victimisation.

The survey focuses on various aspects, including people’s perceptions and experiences of

crime, their views on the police service and the criminal justice system, and community

responses to crime. The data, which is publicly available1, profiles different characteristics

of crime, such as the location and timing of the crimes and the nature and extent of vio-
1Available on Statistics South Africa and various other online platforms.
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lence involved. The survey’s geographic coverage spans all nine provinces in South Africa,

with data aggregated at the provincial level. However, it does not cover institutionalised

or military persons or households. The South African VCS utilises a Master sample frame

derived from the South African Census 2011.

The remainder of the chapter is structured as follows. Section 6.2 provides a brief

description of the data preparation process. In Section 6.3, we apply the most relevant

explanation to two scenarios. The first scenario is focused on a specific crime committed

in a particular province in South Africa. This allows us to identify areas for intervention

or resource allocation. The second scenario is concerned with victim vulnerability. The

results obtained from this analysis can steer targeted crime prevention strategies and the

development of support services for victims. Lastly, we apply the same-decision probability

to assess respondent confidence in the South African Police Service (SAPS) based on

observed evidence, such as police presence and specialised operations and unobserved

variables such as respondents’ satisfaction with police services and the way courts deal

with perpetrators, whether they have been asked to pay a bribe, and their perception

on violent crime sentencing. While the same-decision probability is typically applied as

a threshold-based confidence measure, it can be leveraged to identify unobserved factors

that will have the greatest impact on improving the public’s confidence in the SAPS.

6.2 Data preparation

The South African VCS included two data sets of interest, the first is focused on person-

level data and the second on household-level data. From the person-level data, we extract

data such as age, gender, education, and economic activity. We exclude persons younger

than 18 and create four categories for age: young, early career, late career, and retired.

The education variable consists of 7 categories: primary school, high school, matric, voca-

tional technical training, higher education, unspecified, and other. While economic activity

reflects the nature of an individual’s work, for example, permanent employee.

We aggregate the person-level data with the household-level data, which consists of

21190 cases and 779 variables. We select a subset of variables from the household-level data

and, where applicable, create new variables based on these. This includes the type of crime

that occurs mostly type crime occur, the type of crime feared mostly type crime afraid,
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the daily activities a household avoids due to crime fear crime prevent actions, why the

household believes people commit crimes why crime commit, measures taken to protect

themselves protection measures indiv, groups that provide protection protection groups,

access to institutions access instituitions, the type of crime the household has experienced

crime experienced.

The aggregated data set contains several missing values. Instead of imputing missing

values, we removed incomplete cases as the number of cases allow for this. Furthermore,

several variables contained minimal unspecified values. We removed these cases as well.

The final data set consists of 39562 cases, with 21265 females and 18761 early career

individuals, 11504 late career individuals, and 2988 retired individuals. We use a score-

based hill-climbing search algorithm from bnlearn (Scutari 2010) to learn the structure of

the network and use bn.fit to fit the parameters of the network based on the aggregated

data set. The network consists of 49 nodes and is illustrated in Figure 6.1. Please refer

to Tables B.2 and B.3 in Appendix B for a description of the variables included in the

network.

6.3 Actionable insights: most relevant explanation

Explanation of evidence methods, such as the most probable explanation and the most

relevant explanation, can be implemented to understand the causes of crime and victim

perceptions. This goes beyond just knowing that a crime happened or that a victim

feels unsafe. By identifying factors like police response times, lack of trust in police,

or ineffective neighbourhood watch programs, we can develop targeted interventions to

address those specific issues. In addition, knowing the most relevant explanations allows

for a more focused and efficient allocation of resources. Efforts can be directed towards

addressing the factors that have the most impact on victim perceptions and overall crime

rates. Furthermore, when analysing explanations from a large dataset like the South

African VCS 2017 - 2018 data, common patterns might emerge. These patterns can

highlight potential systemic issues with law enforcement, social services, or environmental

factors that contribute to crime and distrust.
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Figure 6.1: Graphical display of the learned structure for the South African VCS data
set using a hill-climbing search algorithm.

6.3.1 Case study 1: rising crime in Mpumalanga

The first case study is concerned with a specific crime committed in a particular province

with no specialised police operations. Suppose we want to investigate “given property

crime is on the rise in Mpumalanga and there are no specialised police operations, what

factors, such as the nearest police station, police response time, and police presence are

most relevant in explaining this observation?” The most relevant explanation can help

identify areas for intervention or resource allocation, i.e., increased police presence or

response times. The variable encoding for the target set is given in Table 6.1.

Before computing the most relevant explanation, let us first obtain the most probable

explanation. For this scenario, the most probable explanation is the nearest police station

is less than 30 minutes away, with an unspecified police response time and police presence of

less than once a month. This suggests a potential link between infrequent police presence
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Table 6.1: Variable encoding for target variables in case study 1.

Variable Encoding
police mean time 1: less than 30 minutes

2: 31 - 60 minutes
3: 61 - 120 minutes
4: more than 2 hours

police response time 1: less than 30 minutes
2: 31 - 60 minutes
3: 61 - 120 minutes
4: more than 2 hours
5: never arrived
9: unspecified

police visibility 1: at least once a day
2: at least once a week
3: at least once a month
4: less than once a month
5: never

and the rise in property crimes in Mpumalanga. While a nearby police station might

provide a sense of security, slow or unpredictable response times could create a perception

of low risk among criminals. If they believe police won’t arrive promptly, they might feel

emboldened to commit crimes. Let us now explore the most relevant explanations.

The explanations obtained through MRE are given in Table 6.2. The most relevant

explanation for the recent rise in property crimes in Mpumalanga, with no specialised

police operations, is despite the nearest police station being less than 30 minutes away,

the police response time is more than two hours and there is low police presence (less

than once a month). All of the explanations highlight low police presence, with either a

presence of less than once a month or at least once a month (but not as frequent as once a

week). Furthermore, two of the explanations include a police response time of more than

two hours while the last explanation reports an unspecified response time. As mentioned

earlier, unpredictable police response times and infrequent police patrols might create

windows of opportunity for criminals to commit property crimes with a lower perceived

chance of being apprehended.

Actionable insights include evaluating resource allocation, such as police officers and

available police vehicles and considering reallocating them to areas with higher crime

rates and slow response times. This could involve strategically deploying officers or opti-
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Table 6.2: Most relevant explanations for case 1.

police mean time police response time police visibility GBF
1 4 4 2.336
1 4 3 1.937
4 9 3 1.174

mising patrol routes. Furthermore, one could explore cost-effective technology solutions

like automated dispatch systems to streamline call routing and location tracking for police

vehicles. Lastly, if resources allow, authorities can increase the frequency of patrols, par-

ticularly in high-risk areas and incorporate foot patrols in neighbourhoods to build trust

and encourage resident interaction with police officers.

6.3.2 Case study 2: victim perception

Let us now focus on victim vulnerability, i.e., given a specific victim profile and perception

of crime, what factors have led to this perception? Suppose we investigate “consider a

fixed-contract late-career female with a higher education degree, who harbours dissatisfac-

tion and distrust toward the police service. She believes the level of violent crime in the

area has increased, impeding her from participating in public activities. What factors are

most relevant in explaining this observation?” We will focus on factors such as the type of

crime experienced (if any), who she will contact in a time of need, the average time to the

nearest police station, police response time, police presence, the type of measures taken

to protect herself against crime and violence, and her perception on the perpetrators of

violent crimes. Table 6.3 gives these target variables’ variable encoding and codes.

By understanding the factors influencing a victim’s perception of crime, interventions

can be tailored to address those vulnerabilities and deter similar crimes against young

women. Analysing factors like police response times and visibility in the area can highlight

areas of improvement. This can lead to increased police patrols, particularly in areas

frequented by young women, and faster response times, fostering a greater sense of security.

Additionally, exploring why the victim wouldn’t necessarily contact the police in a time

of need can reveal a gap in trust. This could be addressed through community policing

initiatives that build trust and encourage residents to report crimes.

As before, we start with the most probable explanation for the specific victim profile
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Table 6.3: Variable encoding for target variables in case study 2.

Variable Code Encoding
crime experienced A 1: property crime

2: violent crime
3: other
9: no crime experienced previously

first contact B 1: nobody
2: relative/friend
3: private security companies
4: community group/organisation
5: religious/traditional
6: South African Police Service
7: metro police
8: community policing forum

police mean time C 1: less than 30 minutes
2: 31 - 60 minutes
3: 61 - 120 minutes
4: more than 2 hours

police response time D 1: less than 30 minutes
2: 31 - 60 minutes
3: 61 - 120 minutes
4: more than 2 hours
5: never arrived
9: unspecified

police visibility E 1: at least once a day
2: at least once a week
3: at least once a month
4: less than once a month
5: never

protection measures indiv F 1: private security
2: selfhelp group
3: weapon
3: other
9: no protection measures taken

violent crime committed by G 1: people from this area
2: people from other areas in SA
3: people from outside SA
9: unspecified
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Table 6.4: Most relevant explanations for the victim profiles in case 2.

(a) Explanations for a late-career female vic-
tim.

A B C D E F G GBF
3 1 1 5 1 1 2 15.779
3 3 1 5 1 1 2 14.926
2 1 1 5 1 1 2 13.755
2 3 1 5 1 1 2 13.035
2 3 1 4 4 1 2 10.689
3 3 1 5 3 3 2 9.659
3 3 1 5 1 3 2 9.387

(b) Explanations for an early-career male
victim.

A B C D E F G GBF
3 3 1 5 3 3 2 5.162
3 3 1 5 1 3 2 5.028
3 4 1 5 1 3 2 4.760
3 3 1 5 2 3 2 4.740
2 3 1 5 3 3 2 4.501
2 3 1 4 3 3 2 4.120
2 3 1 4 4 3 2 3.783

and perception of crime. Here, the MPE indicates that the late-career female perceives

violent crime to be committed by locals, yet there is a strong police presence and a

nearby station (within 30 minutes). Furthermore, she will seek help from the SAPS first.

Also included in the explanation is no crime experienced previously, which leads to an

unspecified response time and no additional protection measures taken. This presents

a seemingly contradictory situation. Despite positive factors like police presence and

accessibility, there’s underlying dissatisfaction and distrust toward the SAPS. This leads

us to explore the most relevant explanation.

The set of most relevant explanations is presented in Table 6.4a. The column names

correspond to the variable codes provided in Table 6.3. The best explanation for the

victim’s profile, with a GBF score of 15.779, is that the victim was previously affected by

crime (other types of crime not captured in the survey). Despite a strong police presence

and the nearest police station being less than 30 minutes away, a previous call for help

went unanswered. Although the victim utilises private security measures, she does not

rely on them in times of need. Instead, the explanation indicates that she would not

contact anyone – this may be because she does not have anyone to contact. The victim

perceives perpetrators of violent crimes as coming from other areas in South Africa. This

explanation gives us a better understanding of the victim’s dissatisfaction and distrust

in the SAPS as opposed to the MPE since it is not counterintuitive. The explanation

highlights the contrast between the strong perceived police presence and the negative past

experience, explaining how this could lead to dissatisfaction.

Let us inspect the states of the variables in the explanation set. Notice how all of the
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explanations include a perception that violent crimes in the victim’s area are committed

by people from other areas in South Africa. Using this information as a starting point,

authorities can develop targeted community outreach programs that promote social co-

hesion and understanding between residents from different areas. This can help dispel

stereotypes and foster a sense of collective safety. It is important to note that this variable

is based on the victim’s perception and one should not make generalisations. As such, this

perception can be used by authorities in combination with other statistics. Consequently,

if it is found that the victim’s perception corresponds to actual crime patterns, then this

can help inform resource allocation and police collaboration strategies.

Consequently, the widespread use of private security (as highlighted in five of the

seven explanations) suggests a lack of confidence in the police’s ability to deter crime or

respond effectively to incidents. Residents are likely taking matters into their own hands

because they do not feel adequately protected by official authorities. To address this,

authorities can implement community engagement initiatives that foster positive interac-

tions between police officers and residents. This can involve community policing forums,

neighbourhood watch groups, or open forums for residents to voice their concerns and

suggestions. Furthermore, they can explore potential partnerships with private security

companies to supplement police presence in areas where residents rely on private security

measures. This would require clear communication and collaboration between public and

private security forces.

Next, we focus on police mean time (C), police response time (D), and police visibility

(E). In six of the seven explanations, police never respond to a call for help despite there

being a nearby police station. Five of the explanations include a police presence at least

once a day, one explanation highlights a police presence at least once a month, and the

remaining explanation shows a police presence of less than once a month. This lack of

response, despite being near a police station, underscores the importance of addressing

the ineffectiveness of the police. This could involve investigating the reasons behind the

lack of response and implementing measures to ensure calls are responded to promptly

and effectively. For example, the lack of response could be due to a lack of resources, such

as insufficient manpower or vehicles, inefficient dispatch systems may contribute to delays

in assigning officers to calls, and high call volume might result in hindered response times
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for lower-priority incidents.

Lastly, two of the seven explanations include “nobody” as the first point of contact

in times of need. This paints a concerning picture of victim isolation and a breakdown

in trust mechanisms. None of the explanations include the SAPS or metro police as a

first point of contact. To address this, authorities can develop targeted outreach programs

that connect with vulnerable populations and educate them about available resources for

help. This could involve collaborating with community centres, religious or traditional

leaders, or social service agencies. Additionally, authorities can invest in robust victim

support services that provide immediate assistance, emotional support, and information

on legal rights. This can help victims feel less isolated and empower them to navigate the

aftermath of crime.

Suppose we adjust the victim profile to a permanently employed, early-career male

with matric. The most relevant explanations for the new victim profile are shown in

Table 6.4b. The best explanation here differs in terms of first contact, police visibility,

and protection measures indiv. The remaining variables take the same values as the best

explanation for our late-career female victim as presented in Table 6.4a. Where the late-

career female victim would not contact anyone, the male victim would first contact a

private security company. Furthermore, the male victim reported a less frequent police

presence of at least once a month as opposed to the female victim who reported daily

police presence. Lastly, it should be noted that the male victim possesses a weapon for

personal security purposes. The consistent variable instantiation of police response time

is worrying. For both victims, the police never showed up. As such, the explanations

capture systemic issues with public safety in the area. Factors like nearby police stations

without effective response and the perception of outside perpetrators are likely not specific

to one group but likely reflect broader problems within the community.

6.4 Actionable insights: same-decision probability

The same-decision probability is typically used to understand confidence in decisions.

Recall that the SDP is a threshold-based confidence measure that indicates the probability

that we would make the same decision even if we had more information. A high SDP leads

to a more robust decision that is less likely to change with new evidence. A low SDP might

University of Pretoria: Department of Statistics 90



6.4. ACTIONABLE INSIGHTS: SDP

require further information gathering before committing to a decision. Beyond this, we can

leverage the same-decision probability to understand how latent evidence variables, might

influence a decision, i.e., increase confidence in a decision. By identifying the variables

that, on average, lead to a more robust decision, we can prioritise addressing those first.

6.4.1 Case study 3: public perception of the SAPS

Suppose we use the public’s confidence in the SAPS as a decision variable, where trust in

the SAPS is the positive decision. While this is not a conventional decision variable, we can

use it as a proxy decision variable. This will help us understand the public’s confidence in

the SAPS and identify hidden factors that can improve trust in the SAPS. To achieve this,

we provide the following steps to identify the latent evidence variable that, on average,

will improve the public’s confidence in the SAPS. These steps follow the decision-readiness

cycle described in Section 3.3.1.

• Define the decision variable, evidence variables, latent evidence variables, and deci-

sion threshold.

• Calculate the SDP for the decision based on the observed evidence and latent evi-

dence variables.

• Calculate the expected SDP and SDP gains for each latent evidence variable.

• The latent evidence variable with the highest SDP gain will, on average, lead to a

more robust decision.

Suppose we investigate the City of Cape Town and we know there is a police pres-

ence at least once a week and no specialised police operations in the area. We want to

investigate the public’s confidence based on hidden binary variables such as respondents’

satisfaction with the police (satisfied police) and the way courts deal with perpetrators

(satisfied courts perps), their experience with bribery (bribe ask), and their belief in the

effectiveness of court sentencing (violent crime sentence). Based on a decision threshold

of 0.55, the same-decision probability is 0.474. This suggests there is a 52.6% chance that

observing respondents’ satisfaction with the police and the way courts deal with perpetra-

tors, their experience with bribery, and their belief in the effectiveness of court sentencing

could sway the public’s confidence in the SAPS.
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Table 6.5: Same-decision probabilities for case study 3.

Variable SDP Expected SDP
bribe ask 0.195, 0.689 0.638
satisfied courts perps 0.797, 0.433 0.474
satisfied police 1, 0.885 0.932
violent crime sentence 1, 0.604 0.666

Interestingly, if we change the scenario to areas in Limpopo or even Nelson Mandela

Bay in the Eastern Cape, we get a same-decision probability of 1. This indicates a very high

level of confidence. In these areas, police presence at least once a week and no specialised

police operations in the area seem to be a strong indicator of the public’s confidence in

the SAPS, and the respondents’ satisfaction with the police and the way courts deal with

perpetrators, their experience with bribery, and their perception of the effectiveness of

court sentencing might not have such a noteworthy influence in improving the public’s

confidence in the SAPS. However, this does not necessarily mean these resources are

irrelevant in Limpopo or Nelson Mandela Bay in the Eastern Cape. They might still play

a role, but their impact might be smaller.

Given the SDP of 0.474, we can leverage the SDP gain as a selection criteria to identify

which latent evidence variable has, on average, the largest impact on the public’s confi-

dence in the SAPS: improving the public’s satisfaction with the police or with the way

courts deal with perpetrators, tackling bribery, or strengthening the public’s belief in court

sentencing. To do this, we need to determine the expected benefit of observing each of these

variables. The same-decision probabilities and the expected same-decision probabilities for

each latent evidence variable are given in Table 6.5. The corresponding SDP gains are

G(bribe ask) = 0.192, G(satisfied courts perps) = 0, G(satisfied police) = 0.458, and

G(violent crime sentence) = 0.181. Observing the public’s satisfaction with the police

will allow us to make a more robust decision that is less likely to change due to additional

information. Since the same-decision probability for both states in satisfied police are high,

i.e., 1 and 0.885, we can motivate that interventions focused on improving the public’s sat-

isfaction with the police will increase the public’s confidence in the SAPS. Consequently,

the high same-decision probabilities allow us to stop information gathering since there is

a low chance that observing bribe ask, satisfied courts perps, and violent crime sentence

will change the decision, i.e., sway the public’s confidence in the SAPS.
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6.5 Conclusion

This chapter demonstrated the power of explanation methods like explanation of evidence

and explanation of decisions. By uncovering factors that influence victim perceptions, ris-

ing crime rates, and the public’s confidence in the SAPS, these methods provide actionable

insights. Explanation of evidence methods helps us trace and understand the causes of

these issues, enabling the development of targeted interventions. Whereas explanation of

decision methods helps identify latent evidence variables that can change a decision, i.e.,

which latent evidence variable will lead to a positive decision when the confidence in a

decision is low. Beyond the specific examples provided, explanation methods in Bayesian

networks offer a powerful tool for policymakers and law enforcement agencies across the

board. Combined with other data sources like geographical information, these insights

can further guide policymakers and law enforcement agencies in their efforts to develop

targeted interventions. As these methods continue to evolve, they have the potential to

improve crime prevention strategies, leading to safer communities.
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Conclusion

Explainable AI includes inherently transparent models and post-hoc explanation tech-

niques aimed at explaining model reasoning and outputs. While a less transparent model

may be potentially more accurate according to the performance-explainability trade-off

(Gunning & Aha 2019), the output generated might lead to opaque decisions. This often

requires a second, more transparent model to explain the black-box model.

Following the recommendations from Rudin (2019), Minh et al. (2022) this research

leveraged a more transparent model and focused on enhancing the explainability thereof.

Bayesian networks are considered transparent and explainable-by-design, offering insights

into the model and reasoning process. However, their inner workings can present challenges

for intuitive understanding, especially in more complex networks. Existing explanation

methods in Bayesian networks include explanation of the model, reasoning, and evidence.

To this extent, we investigate the current state of techniques associated with these three

explanation categories. In contrast to previous work on explanations in Bayesian networks

that utilised specialised software with built-in explanation functionalities, this thesis ex-

plores the potential of R packages. While these R packages are not explicitly designed

to generate explanations, some functions can be used as a foundation for generating ex-

planations.
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7.1 Contributions to scientific research

One of the contributions of this research is to develop a taxonomy of explainable Bayesian

networks. We use the existing categories defined in the literature and expand on these.

For example, for the explanation of evidence category, we include methods such as the

most relevant explanation as a method of abduction instead of the usual most probable

explanation and maximum-a-posteriori. We then extended the categories to include expla-

nation of decisions, which was not previously included in the literature and is considered

a neglected research area in the broader XAI field. Explanation of decisions is concerned

with decision-readiness; in other words, given the current evidence, are we ready to make

a decision, and if not, what additional observations do we need to make an informed deci-

sion? The same-decision probability is a threshold-based measure that quantifies decision

confidence in light of unobserved variables. It can also be used as a reward function in the

value of information to select the following observation for decision-making. We present

the XBN taxonomy along with typical questions a user may ask to emphasise the benefits

of each category given a specific usage of the Bayesian network. Our prospects lead to

a future where the XBN taxonomy empowers end-users. This framework will serve as

a guideline, enabling end-users to understand the “how” and “why” behind predictions

or observations. Notably, Valero Leal (2022) have built upon our proposed taxonomy by

incorporating an explanation support category.

Secondly, this research introduces an approximate forward-gLasso search algorithm

to solve the most relevant explanation in Bayesian networks. Using the gLasso, we can

identify and select a reduced set of neighbours based on the most relevant dependencies,

thus pruning the neighbourhood and decreasing the complexity of the most relevant ex-

planation. Previous work shows the most relevant explanation exhibits the conditions of

a good explanation, i.e., preciseness and conciseness. Integrating the gLasso into the for-

ward search algorithm retains these attributes and enhances the explanations by focusing

on key relationships. Bayesian networks inherently handle uncertainty, and the gLasso

can capture uncertainty associated with conditional dependencies. The zero entries in the

sparse inverse covariance matrix obtained from the gLasso represent conditional indepen-

dence between variables, indicating uncertainty in their relationships given the observed

evidence. We implemented the forward-gLasso using three different regularisation param-

University of Pretoria: Department of Statistics 95



7.1. CONTRIBUTIONS TO SCIENTIFIC RESEARCH

eters: λ = 0.01, λ = 0.001, and λ = 0.0001. The computational efficiency of the three

implementations is compared to the benchmark forward search algorithm while using the

explanations obtained through a brute-force search as ground truth. The experimental

results show an improvement in execution time compared to the benchmark algorithm.

At the same time, the accuracy is preserved, particularly in the case of the forward-

gLassoλ0.0001 . Furthermore, our results emphasise the potential benefits of harnessing the

neighbourhood pruning capabilities of the gLasso.

Thirdly, this research presents an open-source R package for solving explanations in

Bayesian networks. While software exists for generating explanations in Bayesian net-

works, these are primarily proprietary and limit access. In contrast, the XBN R package

not only enhances accessibility but also fosters collaboration and innovation within the

research community. The XBN package is available for download on GitHub. We demon-

strate the package use using two benchmark Bayesian networks, namely the Asia network

from Lauritzen & Spiegelhalter (1988) and the insurance network from Binder et al. (1997).

Finally, this research demonstrated the usefulness of post-hoc explanation techniques

in Bayesian networks on real-world data sets. The literature on post-hoc explanation tech-

niques includes mostly implementations on benchmark Bayesian networks and synthetic

data sets. This research extends the current literature by applying explanation of evidence

and explanation of decision methods to the South African Victims of Crime Survey 2017 -

2018. In particular, we investigate two case studies to demonstrate the practical applicabil-

ity of the most relevant explanation and one case study to demonstrate the same-decision

probability. The first case study is focused on property crime in Mpumalanga. The most

relevant explanation demonstrated that although there is a nearby police station, police

response time is more than two hours and there is a police presence of less than once

a month. The second case study is focused on a specific victim profile and perception

of crime. Although this case study included more target variables, the following is most

concerning. Although there is a frequent police presence in the area and a nearby police

station, police never respond to a call for help. Actionable insights from these two case

studies indicate that authorities should focus on improving police response time in times of

need. For case study 3, we used a proxy decision variable based on the public’s confidence

in the SAPS to understand which latent evidence variable would, on average, improve the

University of Pretoria: Department of Statistics 96



7.2. FUTURE WORK

public’s trust in the SAPS. This analysis revealed that targeted interventions focused on

the public’s satisfaction with the police will have the greatest impact on increasing the

public’s confidence.

Other contributions of this work include exploring the impact of new evidence on the

most relevant explanation. It was shown that, by adding new evidence based on the

same-decision probability, the most relevant explanation is dynamic and can adapt to new

evidence.

7.2 Future Work

Given the broad scope of explainability, there are several areas for future work.

• Our research highlights the neighbourhood pruning capabilities of the gLasso,

thereby paving the way for further exploration into alternative neighbourhood prun-

ing techniques that may enhance computational efficiency.

• Given the nature of the same-decision probability, can we identify a subset of features

that can sufficiently explain the decision while decreasing the impact of irrelevant

features? In other words, do we need to observe the complete set of evidence variables

to make an informed decision, or is there a minimal set of variables that will give us

probabilistic assurances that the model will behave similarly even when all variables

are observed?

• Currently, the package is focused on providing post-hoc explanations, particularly

the most relevant explanation. Not included in the current version is a feature to

limit the search space to include only the Markov Blanket of a target node. We

envisage a future update to include this feature.

• Our prospects lead to the inclusion of other explanation methods in the R package,

such as the same-decision probability as both a stopping and selection criteria and

providing natural language-based explanations of probabilities.
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7.3 Limitations

While XAI literature advocates for a human-centred approach, there’s a disconnect – cur-

rent explanations often fail to consider user type and competency. Ideally, explanations

should be adaptable, catering to diverse user needs with varying levels of complexity. To

bridge this gap and achieve user-centric explanations, we believe interdisciplinary collab-

oration is key. By incorporating insights from AI, computer science, statistics, cognitive

science, and social science, we can move towards explanations tailored to user expertise

and background.
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Appendix A

List of abbreviations and symbols

This section offers a summary of the key abbreviations and notations frequently used in

this thesis.

AET Average execution time in seconds.

AI Artificial Intelligence.

BNs Bayesian networks.

CSE Total test cases solved exactly.

GBF Generalised Bayes factor.

gLasso Graphical Least Absolute Shrinkage and Selection Operator.

MAP Maximum a posteriori.

ML Machine learning.

MPE Most probable explanation.

MRE Most relevant explanation.

SAPS South African Police Service.

SDP Same-decision probability.

VCS Victims of Crime Survey.

VOI Value of information, also referred to as expected benefit.

XAI Explainable Artificial Intelligence.

XBN Explainable Bayesian networks.

A1



E(G,H, e, T ) Expected SDP of observing variables G out of latent evidence H.

ER(R,D,H, e) Expected reward using a reward-based value function R, a hypothesis

variable D, evidence e, and unobserved variables H.

G(G) SDP gain of observing variables G out of latent evidence variables H.

GBF (x, e) Generalised Bayes factor for observed evidence e and explanation x.

MRE(M, e) Most relevant explanation for observed evidence e and set of target

variables M .

V(R,D,H, e) Value of information or expected benefit observing the variable H.

SDP (d, e,H, T ) Same-decision probability for decision d, evidence e, threshold T , and

latent evidence variables H.

University of Pretoria: Department of Statistics A2



Appendix B

Description of variables used

B1



Table B.1: Description of variables included in the Insurance Bayesian network from
Binder et al. (1997).

Variable name Description
Accident Severity of the accident.
Age Age group.
Airbag Vehicle equipped with an airbag.
Antilock Vehicle equipped with an anti-lock braking system.
AntiTheft Vehicle equipped with an anti-theft system.
CarValue Vehicle value.
Cushioning Impact absorption.
DrivHist Driver accident history.
DrivingSkill Driver driving skill.
DrivQuality Driver driving quality.
GoodStudent Is driver a good student.
HomeBase Neighbourhood type.
ILiCost Inspection cost
MakeModel Vehicle model.
MedCost Cost of medical treatment.
Mileage Vehicle mileage.
OtherCar Was another vehicle involved in the accident.
OtherCarCost Cost of other vehicle.
PropCost Cost ratio of the vehicles involved.
RiskAversion Drivers’ risk aversion.
RuggedAuto Ruggedness of vehicle.
SeniorTrain Advances driving course taken.
SocioEcon Socio-economic status.
Theft Theft of vehicle.
ThisCarCost Cost of the insured vehicle.
ThisCarDam Damage cost of this vehicle.
VehicleYear Vehicle age.
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