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Abstract

The probabilistic forecast skill level of statistically downscaled European Centre

for Medium-Range Weather Forecasts (ECMWF) subseasonal-to-seasonal (S2S)

forecasts is determined in predicting maximum and minimum temperatures for

weeks 1–4 lead times during 20-year December–January–February (DJF) sea-

sons from 2001 to 2020 over South Africa. Skilful S2S forecasts are vital in assist-

ing decision-makers in the development of contingency planning for any

eventualities that may arise because of weather and climate phenomena.

Extreme high- and low-temperature events over a prolonged period can lead to

hyperthermia and hypothermia, respectively, and can lead to loss of life. The

results from the relative operating characteristic (ROC) and reliability diagrams

indicate that the ECMWF S2S model has skill in predicting maximum tempera-

ture up to week 3 ahead, particularly over the central and eastern parts of

South Africa. The ROC scores indicate that the model has skill in predicting

minimum temperature up to week 4 ahead for the above-normal category, par-

ticularly over the central and eastern parts of South Africa. Reliability diagrams

indicate that the model has a tendency of overestimating the below-normal cate-

gory when predicting both maximum and minimum temperatures for weeks 1–
4 lead times over South Africa. Furthermore, canonical correlation analysis

(CCA) pattern analysis suggests that when there are anomalously positive and

negative predicted 850-hPa geopotential heights located over South Africa, there

are anomalously hot and cold conditions during the DJF seasons over most parts

of South Africa, respectively. These results suggests that statistical downscaling

of model forecasts can improve forecast skill. Moreover, the results suggest that

there is potential for S2S predictions in South Africa, and as such, S2S prediction

system for maximum and minimum temperatures can be developed.
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1 | INTRODUCTION

The South African Weather Service (SAWS) has the man-
date to provide weather and climate information to the
public of South Africa. Hence, SAWS issues temperature
and rainfall weather forecasts on a daily basis and sea-
sonal climate predictions once a month (e.g., Phakula
et al., 2018; Phakula et al., 2020). There is a ‘gap’
between weather forecasting and seasonal climate predic-
tions, referred to as subseasonal-to-seasonal (S2S), a time-
scale from 2 weeks up to 2 months (de Andrade
et al., 2021; Klingaman et al., 2021; Mariotti et al., 2018;
Moron & Robertson, 2020; Mundhenk et al., 2017;
Wang & Robertson, 2018; White et al., 2017). The S2S
timescale is referred to as a ‘prediction desert’
(e.g., Vitart et al., 2012), and it has long been neglected
because of its inherent nature of being difficult to predict
(e.g., Hudson et al., 2011; Li & Robertson, 2015; Luo &
Wood, 2006; Vitart, 2014). The difficulty is due to the fact
that the lead time is sufficiently long that much of the
memory of the atmospheric initial condition is lost and it
is too short a time range for the slowly evolving variation
of the ocean to have a strong influence on the atmo-
sphere (Vitart, 2013; Vitart et al., 2017; Black et al., 2017;
DelSole et al., 2017; White et al., 2017; de Andrade
et al., 2021).

The demand for S2S forecasts has increased since
decision-making and early warnings across different sec-
tors, such as agriculture, water, disaster risk management
and energy fall within this timescale (e.g., Black
et al., 2017; Endris et al., 2021; Hudson et al., 2011; Mar-
iotti et al., 2018; Tian et al., 2017; White et al., 2017). This
is particularly urgent in the context of increasing societal
exposure to extreme weather threats, either caused by
growing populations or due to decadal climate variability
or anthropogenic climate change (Li & Robertson, 2015).
Therefore, accurate S2S forecasts are needed to assist
decision-makers to carry out contingency planning for
any eventualities that may arise because of weather and
climate phenomena. This study seeks to determine the
probabilistic forecast skill level of statistically downscaled
European Centre for Medium-Range Weather Forecasts
(ECMWF) S2S forecasts in predicting maximum and
minimum temperatures for weeks 1–4 lead times during
20-year December–January–February (DJF) seasons over
South Africa. In our previous work, we tested the deter-
ministic skill of S2S forecasts in predicting surface tem-
perature over South Africa, without any downscaling
(Phakula et al., 2020). Therefore, in this study, the focus
is to determine if statistical downscaling of model fore-
casts improves skill or not. Extreme high- and low-
temperature events over a prolonged period can lead to
hyperthermia and hypothermia, respectively (van der

Walt & Fitchett, 2021), and can lead to loss of life. There-
fore, development of downscaled S2S forecast system for
surface minimum and maximum temperatures can be
invaluable for South Africa. The remainder of this paper
is organized as follows: Section 2 describes the data and
methods used for the analysis, Section 3 analyses the
result findings of the study, and the discussion and con-
clusions are summarized in Section 4.

2 | DATA AND METHODS

2.1 | S2S model data

The 850-hPa geopotential height fields of the ECMWF
reforecast dataset from the S2S Prediction Project data-
base (Vitart et al., 2017) are used as the predictor in this
study. The 850-hPa geopotential heights are used here
because they have been found to be good predictor over
South Africa at month and seasonal timescales
(e.g., Landman et al., 2014; Phakula et al., 2018). The
reforecast data are archived on a 1.5� grid resolution. The
ECMWF produces reforecasts on-the-fly, meaning that
the reforecasts are produced at the same time as the real-
time forecasts, covering the past 20 years from 2001 to
2020 for this model version, and are initialized on 2 days
per week (Monday and Thursday) for each model version
consisting of an 11-member ensemble and 51-member
ensemble for real-time forecasts. The models' 7-day aver-
age 850-hPa geopotential heights for week 1 (1–7 days),
week 2 (8–14 days), week 3 (15–21 days) and week 4 (22–
28 days) lead times for DJF seasons are computed for the
climatological period of 2001–2020. For this model ver-
sion, the start dates for December, January and February
are 25 November 2021, 27 December 2021 and 27 January
2021, respectively. The week 1, week 2, week 3 and week
4 averages for December, January and February are com-
puted and averaged to form weeks 1–4 DJF seasons. The
ECMWF model is used because in our previous study, it
performed better than the other S2S models in terms of
skill over southern Africa (Engelbrecht et al., 2021;
Phakula et al., 2020).

2.2 | Verification data

The maximum and minimum temperatures of the
ECMWF fifth-generation reanalysis (ERA5, Hersbach
et al., 2020) datasets are used as predictand and to vali-
date the model. The datasets are available from 1979 to
the near present with a 0.25� resolution. The predictand
data are interpolated (bilinear) to 1.5� resolution to
match those of the S2S model dataset. The weekly
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average of the maximum and minimum temperatures for
week 1, week 2, week 3 and week 4 for DJF seasons are
also computed in a similar fashion as that of the model
reforecast. The climatology of the reanalysis is restricted
to 2001–2020 to match that of the model.

2.3 | Downscaling approach

Canonical correlation analysis (CCA; Hotelling, 1936)
option of the Climate Predictability Tool (CPT; Mason
et al., 2022) is used to perform model output statistics
(MOS; Wilks, 2011) through a retroactive procedure to
downscale the 850-hPa geopotential heights of the
ECMWF S2S model to the maximum and minimum tem-
peratures of the ERA5 reanalysis over South Africa. CCA
and MOS have been used to some success for seasonal
climate predictions over southern Africa (Landman
et al., 2009; Landman et al., 2014). Retroactive forecast
validation is a robust method to assess forecast model
performance and give unbiased skill levels
(e.g., Landman et al., 2001). The retroactive procedure is
followed as in Landman et al. (2012) and Phakula et al.
(2018): firstly, usually, half of the training sample is used
as a training period, secondly, the model using that train-
ing period is reconstructed, thirdly, the year that follows
the last year of the training period is forecasted, and
lastly, the process is repeated by adding 1 year to the
training period and then the subsequent year is predicted
until a forecast has been made for each year of the train-
ing sample. For this study, an initial training period of
10 years from 2001 to 2010 out of a training sample
of 20 years from 2001 to 2020 is used to construct the
model and to forecast the year 2011. A training period
from 2001 to 2011 is used to reconstruct a model and
forecast the year 2012. The process is repeated for each of
the subsequent years until a forecast for each year has
been made.

2.4 | Forecast skill metrics

To determine whether statistical downscaling of model
forecasts improves forecast skill, the Spearman's rank
correlation computed from CCA (downscaling) and raw
global climate model (GCM) forecasts (no downscaling)
in predicting maximum and minimum temperature for
weeks 1–4 during 20-year DJF seasons from 2001 to 2020
is examined. The model's probabilistic forecast skill is
assessed using relative operating characteristic (ROC)
diagram and reliability diagram. Probabilistic forecast
performance is tested for three equal probabilities of
33.3% tercile categories. The first tercile is for forecasting

the below-normal category, and the last tercile is for the
above-normal category, and these two categories are con-
sidered in this study. The focus is on the outer two cate-
gories because we are interested in the departure from
the normal. Moreover, the deterministic and probabilistic
skill scores for normal category are less than for the outer
categories (Mason et al., 2021). ROC score (also referred
to as area under ROC curve) measures the ability of the
forecast system to discriminate between events and non-
events, providing information on forecast resolution (dis-
crimination) (Landman & Beraki, 2012; Wilks, 2006,
2011). ROC can be explained by calculating the area
under the curve (Mason & Graham, 1999). The reliability
diagram explains the resolution and reliability attributes,
which together determine the usefulness of probabilistic
forecast systems (e.g., Brocker & Smith, 2007). Resolution
measures the ability of a forecast system to resolve situa-
tions in which the observed frequency of the event is dif-
ferent from the climatological frequency, while reliability
is a measure of the bias in predicted probabilities for the
event, relative to the verified event frequency. A forecast
with good reliability is closer to the perfect reliability line
(diagonal line on the attributes diagram), while a forecast
with a good resolution has a wide range of frequencies of
observations corresponding to forecast probabilities. Res-
olution is considered the more fundamental of the two
attributes because reliability may generally be improved
by calibration of the forecast probabilities, while resolu-
tion cannot. A forecast system that underestimates (over-
estimates) forecasts will have the forecast line positioned
above (below) the perfect reliability line. The histogram
of forecasts in each probability bin shows the sharpness
of the forecast. In addition to the forecast skill verifica-
tion, CCA pattern analysis is performed to determine the
dominating atmospheric circulation systems predicted to
be controlling temperature variations for weeks 1–4 dur-
ing DJF seasons. CCA has the main advantage of select-
ing pairs of spatial patterns that are optimally correlated,
making a physical interpretation of the connection
between the observations and the retroactive forecasts or
hindcasts possible (Busuioc et al., 2001).

3 | RESULTS

3.1 | Spearman's rank correlation

Spearman's correlation maps in Figures 1 and 2 show
that the statistical downscaling of the ECMWF 850 hPa
geopotential heights shows high correlation in predicting
minimum and maximum temperatures during DJF sea-
sons at S2S timescales compared to the raw model out-
puts. The downscaled forecasts for weeks 1–4 lead time
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have higher correlation over the summer rainfall areas of
South Africa, especially in week 1. In fact, the area-
averaged Spearman's correlation (Table 1) exhibits high
values of 0.399 and 0.323 for week 1 and week 2, respec-
tively, for the CCA compared to 0.122 and 0.042 for the

raw GCM forecasts in predicting maximum temperature.
Similarly, the downscaled forecasts have high correlation
value of 0.348 and 0.259 for week 1 and week 2, respec-
tively, compared to 0.121 and 0.029 for the raw GCM
(Table 2). The correlation maps in Figures 1 and 2

FIGURE 1 Spearman's

correlations of CCA (left panel)

and raw GCM (right panel) for

maximum temperature at 1.5�

grid resolution for weeks 1–4
lead timescales.
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indicate that for the raw model forecasts, generally there
is no correlation over most parts of South Africa, except
for week 4. The improved correlation in week 4 for the
raw GCM could be because of noise, not the accuracy of

the forecasts, as documented in literature that the skill
deteriorates over time (e.g., Zhang et al., 2021). This
result gives confidence that downscaling of forecasts is
beneficial for climate variables at S2S timescales.

FIGURE 2 As in Figure 1, but for minimum temperature.
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3.2 | ROC scores, ROC curve and
reliability diagrams

The ROC score maps (Figure 3) indicate that the statisti-
cally downscaled ECMWF S2S forecasts have good skill in
predicting maximum temperature in week 1 for both
above-normal and below-normal categories over
South Africa. Enhanced skill is found in the eastern parts
of South Africa, particularly in the below-normal category.
In week 2, the skill for the below-normal category is lower
compared to the above-normal category. In week 3, high
skill scores are found over the eastern and central parts of
the country for the below-normal category, but no skill
over the western and southern parts. There is reduced skill
in week 4 for both categories, especially for the below-
normal category. The ROC curve and the reliability dia-
grams (Figure 4) clearly show that the model is good in
predicting both categories in week 1 (ROC scores >0.58)
and the above-normal category in week 2 (ROC score
>0.57). The ROC score in week 3 is 0.53 (above-normal
category) and 0.55 (below-normal category), and no skill
in week 4, with ROC scores <0.5 for both categories. The
ROC score maps indicate that the model has skill in pre-
dicting maximum temperature up to week 3 ahead, partic-
ularly over the central and eastern parts of South Africa,
whereas the reliability diagrams exhibit a positive forecast
slope, implying that the forecasts are reliable; however,
the model has a tendency to overestimate forecasts for
both categories when predicting maximum temperature
for weeks 1–3 during DJF seasons over South Africa. In
week 4, the reliability diagram exhibits a negative forecast
slope, indicating that the forecast is unreliable. In week

1, the forecast slopes are above the no skill lines (dashed
lines), indicating good reliability forecasts, and forecast
slopes are close to the perfect reliability (diagonal line)
and far away from the no resolution (solid horizontal
lines), indicating good resolution in the forecasts. The fore-
cast resolution is minimal in weeks 2 and 3, with no reso-
lution in week 4. The frequency histograms included in
the reliability diagrams indicate that the forecasts lack
sharpness in predicting maximum temperatures for weeks
1–4. The lack of sharpness could be due to too large
ensemble spread, and the forecasts rarely deviate much
from the climatological value of 33.3%.

In predicting minimum temperature for week 1, the
ROC score maps (Figure 5) depict that the statistically
downscaled ECMWF S2S forecasts have the highest skill
over the eastern parts of South Africa for the above-normal
category and over the central parts for the below-normal
category. For week 2, the skill for predicting both catego-
ries is reduced compared to week 1. In week 3, the model
has good skill over the eastern half of South Africa, with
enhanced skill found over the central parts of South Africa
for the below-normal category. In week 4, the skill drops
significantly for the below-normal category. However,
there is good skill in week 4 for above-normal category
over the northeastern and southwestern parts of
South Africa. The ROC curve diagrams and the reliability
diagrams (Figure 6) show that the model is good in predict-
ing minimum temperature in week 1 for both categories,
with the ROC scores of 0.62 and 0.59 for the above- and
below-normal category, respectively. In week 2, the ROC
diagrams indicate that the model skill levels do not differ
much in predicting the above-normal category compared
to below-normal category, with ROC scores of 0.56 and
0.53, respectively. In week 4, the model has no skill in pre-
dicting the below-normal category (ROC score <0.5). The
ROC score maps indicate that the model has skill in pre-
dicting minimum temperature up to week 4 ahead, particu-
larly over the central and eastern parts of South Africa,
whereas the reliability diagrams indicate that the model
has a tendency of overestimating the below-normal cate-
gory when predicting minimum temperature for weeks 2–3
during DJF seasons over South Africa. The reliability dia-
gram indicates that the forecast has low resolution for
weeks 2 and 3 and no resolution for week 4. The frequency
histogram included in the reliability diagrams also indi-
cates that the forecasts lack sharpness in predicting mini-
mum temperatures for weeks 1–4.

3.3 | CCA pattern analysis

CCA pattern analysis is performed to determine the domi-
nant atmospheric circulation systems predicted to influ-
ence the climate variables of interest (e.g., Phakula

TABLE 1 Area-averaged Spearman's correlations scores of

CCA and raw GCM for maximum temperature for weeks 1–4 lead

timescales.

Tx CCA GCM

Week 1 0.399 0.122

Week 2 0.323 0.042

Week 3 0.143 �0.021

Week 4 0.138 0.120

TABLE 2 Area-averaged Spearman's correlations scores of

CCA and raw GCM for minimum temperature for weeks 1–4 lead
timescales.

Tn CCA GCM

Week 1 0.348 0.121

Week 2 0.259 0.029

Week 3 0.125 0.044

Week 4 0.057 0.133
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et al., 2018). CCA pattern maps suggest that when there
are anomalously positive (Figure 7) and anomalously nega-
tive (Figure 8) predicted 850-hPa geopotential heights over
South Africa, there are anomalously maximum and mini-
mum temperatures for weeks 1–4 during the DJF seasons
over most parts of South Africa. This conclusion is drawn
in the following way. CCA pattern maps for maximum
temperature (Figure 7) show that during 2016 (which was
an El Nino year), for example, the predictor's spatial load-
ings are anomalously positive for weeks 1–3 lead times and
the temporal scores are also positive. The product of the
spatial loadings and the temporal scores is positive. During

the same year over most parts of South Africa, the predic-
tand spatial loadings are positive and the temporal scores
are also positive, and their product is positive. This result
implies that when there are anomalously positive 850-hPa
geopotential heights over South Africa, there are anoma-
lously hot conditions over most parts of South Africa. In
fact, when there is a high-pressure system extending from
Angola into the interior of South Africa, it is usually dry
and hot over most parts of the country (e.g., Mbokodo
et al., 2023). The opposite is true for the CCA maps in
Figure 8, showing that during the same year (2016), there
are anomalously negative predictor's spatial loadings over

FIGURE 3 ROC score maps of ECMWF S2S model in predicting maximum temperature for weeks 1–4 during DJF seasons from 2001 to

2020 over South Africa. The top panel is for predicting the above-normal category, and the bottom panel is for the below-normal category.

FIGURE 4 ROC diagrams (top panel) and reliability diagrams (bottom panel) of ECMWF S2S model in predicting maximum

temperature for weeks 1–4 during DJF seasons from 2001 to 2020 over South Africa. Blue colour is for predicting the above-normal category,

and orange colour is for the below-normal category. Area-averaged ROC scores are included in the ROC diagrams.
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Angola stretching into South Africa for weeks 1–4 lead
times and the temporal scores are also negative. The prod-
ucts of the spatial loadings and the temporal scores are pos-
itive. During the same year (2016), the predictand spatial
loadings over most parts of South Africa are anomalously
negative and the temporal scores are also negative. The
products of the loadings and the scores are positive. During
2011 (which was a La Nina year), for both maximum and
minimum temperatures, the CCA shows that the products
of predictor and predictand spatial loadings and temporal
scores are negative. Following the same analogy, this
implies that when there are anomalously negative
850-hPa geopotential heights over South Africa, there are

anomalously wet and cold conditions over most parts of
South Africa. In fact, when there is a low-pressure system
over Angola stretching into South Africa during the sum-
mer seasons, it advects moisture into South Africa and usu-
ally results in rainfall and low temperatures (e.g., Cretat
et al., 2019; Pascale et al., 2019).

4 | DISCUSSION AND
CONCLUSIONS

S2S forecast demand has increased in the applications
community because decision-making and early warning

FIGURE 5 ROC score maps of ECMWF S2S model in predicting minimum temperature for weeks 1–4 during DJF seasons from 2001 to

2020 over South Africa. The top panel is for predicting the above-normal category, and the bottom panel is for the below-normal category.

FIGURE 6 ROC diagrams (top panel) and reliability diagrams (bottom panel) of the ECMWF S2S model in predicting minimum

temperature for weeks 1–4 during DJF seasons from 2001 to 2020 over South Africa. Blue colour is for predicting the above-normal category,

and orange colour is for the below-normal category. Area-averaged ROC scores are included in the ROC diagrams.
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systems across different sectors fall within this time-
scale. Hence, accurate S2S forecasts are vitally impor-
tant and can fill the gap between weather forecasts and
seasonal climate outlooks. This study investigates the
probabilistic forecast skill level of the downscaled

ECMWF S2S forecasts in predicting maximum and
minimum temperatures for weeks 1–4 lead times dur-
ing DJF seasons over South Africa. The Spearman's cor-
relations clearly show that there is a great benefit in
statistical downscaling of forecasts compared to using

FIGURE 7 CCA maps for the first mode of the predicted 850-hPa geopotential heights of the ECMWF S2S model (X spatial loadings)

and the downscaled maximum temperature of the ERA5 reanalysis (Y spatial loadings) for weeks 1–4 during DJF seasons. Canonical

correlation values are included in the temporal scores.
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raw model forecasts. The result from the ROC curve
and reliability diagrams indicate that the ECMWF S2S
model has skill in predicting maximum temperature up
to week 3 ahead, particularly over the eastern and cen-
tral parts of South Africa, whereas the reliability dia-
grams indicate that the model has a tendency of

overestimating forecasts, particularly for the below-
normal category when predicting maximum tempera-
ture for weeks 1–4 during DJF seasons over
South Africa. The ROC score maps indicate that the
model has skill in predicting minimum temperature up
to week 4 ahead, particularly over the eastern and

FIGURE 8 As in Figure 7, but for minimum temperature.
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central parts of South Africa. The forecasts in predicting
both minimum and maximum temperatures have
enhanced skill in week 3 compared to week 2. Deter-
mining why there is high skill in week 3 is beyond the
scope of this study but needs to be investigated further
in the future. The reliability diagrams indicate that the
model has a tendency of overestimating forecasts when
predicting minimum temperature for weeks 2–4 during
DJF seasons over South Africa. Furthermore, the reli-
ability diagrams indicate that the forecast has low reso-
lution and lacks sharpness in predicting both minimum
and maximum temperatures for weeks 1–4. In addition
to the forecast skill verification, CCA pattern analysis is
performed to determine the dominating atmospheric
circulation systems predicted to be influencing temper-
ature variations for weeks 1–4 during DJF seasons.
CCA pattern maps suggest that when there are anoma-
lously positive (negative) predicted 850-hPa geopoten-
tial heights over South Africa, there are anomalously
maximum (minimum) temperatures for weeks 1–3 dur-
ing the DJF seasons over most parts of South Africa.
Canonical correlation values show that the correlations
between the predictor and predictand are very high,
with values greater than 0.8 in most cases. From this
result, we can conclude that statistical downscaling of
model forecasts can improve forecast skill. This conclu-
sion is based on our previous work (Phakula
et al., 2020) where we found that the deterministic fore-
cast skill of model forecasts is limited to 2 weeks ahead.
We replicated the results of the deterministic forecast
skill weeks 1–4 during DJF seasons from 2021 to 2020
to compare with the downscaled probabilistic forecast
skill in the current study (see attached supplemental
information document). The correlation of analysis
(CORA) indicates that the skill is limited to weeks 1–2
and no skill over most parts of South Africa except for
the northeastern parts in weeks 3–4 (Figure S1). More-
over, the CORA exhibits similar spatial distribution of
skill for both minimum and maximum temperatures,
particularly for weeks 3 and 4. The findings of this
study suggest that there is a prospect for S2S predictions
in South Africa, and as such, S2S prediction system for
maximum and minimum temperatures can be
developed.
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