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Figure S1. CORA between the 850hPa geopotential heights of ECMWF S2S model and the 

maximum and minimum temperatures of the ERA5 reanalysis for weeks 1-4 DJF seasons from 

2001-2020. Stippling indicates areas of statistical significance at a 95% confidence level using the 

Student’s t-test at each grid point.  

Forecast skill metric 

The correlation of anomalies (CORA) is a skill metric often used to assess deterministic S2S 

forecasts (e.g., Li & Robertson, 2015; Wang & Robertson, 2019). CORA is calculated as follows: 

Firstly, the anomalies of the models’ hindcasts and minimum and maximum temperatures 

(observations) for the weeks 1-4 DJF seasons from 2001-2020 are computed. Secondly, the 

correlations between the forecast and observed 20-year timesteps climatological anomalies are 

then calculated. This method of computing CORA is commonly used in S2S prediction studies 

(e.g., Becker et al., 2013; Wang & Robertson, 2019; Alvarez et al., 2020; Phakula et al., 2020; 

Engelbrecht et al., 2021).  The statistical significance of CORA is taken into consideration 

following the Student’s t-test approach (Al-Achi, 2019; Mishra et al., 2019). The Student’s t-test 

is based on a 20-year climatological anomalies of the events. Any CORA value greater than 0.3 at 



each grid-point is considered significant at the 5% confidence level, and only positive CORA 

values are considered skillful. 
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