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Abstract: In this paper, a stochastic model predictive control (MPC) is proposed to design a
non-pharmacutical policy to control and prevent the COVID-19 pandemic. The system dynamics
of COVID-19 is described by a stochastic SEIHR model subject to practical constraints,
and the model is proved to be feedback linearizable. A stochastic Control Lyapunov-Barrier
Function (CLBF) is constructed for the feedback linearizable system. Constraints on hospitalized
individuals are regarded as the unsafe region to construct the corresponding stochastic CLBF.
In the proposed stochastic MPC, the stochastic CLBF constraints are applied to improve the
overall performance on controlling and preventing the epidemic. Both theoretical proof and
simulation results imply that, with the CLBF-based stochastic MPC, the proposed policy is
effective in controlling and preventing COVID-19 pandemic.
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1. INTRODUCTION

The long lasting COVID-19 pandemic has made adverse
impressions and impacts on both individuals and com-
munities worldwide. Recently, due to its prediction and
optimization nature, model predictive control (MPC) has
been applied in wide range to predict, control and prevent
the pandemic. Based on the SIR model, an On-Off social
isolation strategy with hard constraints on symptomatic
individuals are applied in Morato et al. (2020). In Delavar
and Baghbadorani (2022), effects of social distancing, hos-
pitalization, and vaccination rate are considered as three
control inputs, and hospitalized and deceased populations
are used to estimate other immeasurable states with un-
scented Kalman filter. In Parino et al. (2021), MPC is
applied to devise optimal scheduling of first and second
vaccinations. A state observer is designed in Péni and
Szederkényi (2021) to estimate other states based on the
measured number of hospitalized people, where an output
feedback MPC structure is designed in the presence of
parameter uncertainties. In Köhler et al. (2021), a ro-
bust MPC is developed against model inaccuracies, uncer-
tain state measurements and inexact inputs in COVID-19
model. In She et al. (2022), a learning-based MPC frame-
work is proposed for epidemic mitigation, where the model
parameters can be estimated online, and control inputs
can be calculated simultaneously. Stochastic settings are
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adopted in Scarabaggio et al. (2021), such that chance
constraints on hospitalized people can be approximated
by sample approximation approach.

In the above works on modeling, prevention and control for
COVID-19 pandemic, most of them investigate determin-
istic dynamics with or without hard constraints. Compar-
atively, researches on stochastic influences on COVID-19
are still relatively rare. For a large scale system, however,
stochastic disturbances should be concerned. In stochas-
tic MPC strategies, stochastic Control Lyapunov–Barrier
Function (CLBF) can be applied for safety and perfor-
mance guarantee. When safety is a major design consider-
ation, there are many applications for safety-critical sys-
tems, e.g., obstacle avoidance (Romdlony and Jayaward-
hana, 2016), walking robots (Ames et al., 2019), chemical
process control (Wu et al., 2019) and so on. A constructive
design of CLBF is presented in Romdlony and Jayaward-
hana (2016), where Control Lyapunov Function (CLF) and
Control Barrier Functions (CBFs) are combined. CLBF
can be integrated into MPC framework (Wu et al. (2019))
to improve feasibility and closed-loop performance. The
new concept of stochastic CBF is presented in Clark
(2021). Application of stochastic CLBF in MPC is pro-
posed in Zheng and Zhu (2022). Some other stochastic
MPC applications can be found in Zheng and Zhu (2021).

In this paper, it is supposed that COVID-19 is subject
to stochastic disturbances and some practical constraints,
and it can be modeled by a stochastic SEIHR (Susceptible-
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Exposed-Infected-Hospitalized-Removed) model. Control
and prevention policy is designed within the framework
of stochastic MPC, such that both practical constraints
and stochastic disturbances can be treated. Our main
contributions include that: 1) some practical constraints
and stochastic disturbances can be modeled by stochastic
CLBF, such that the proposed constrained and stochastic
SEIHR model is more realistic, and the proposed policy
appears more applicable; 2) the proposed stochastic CLBF
can be applied to improve the performance of MPC for
the feedback linearizable nonlinear COVID-19 system; and
3) it is proved theoretically and validated numerically
that the proposed policy is effective in controlling and
preventing COVID-19 pandemic.

The paper is organized as follows. In Section 2, the
COVID-19 pendemic is modelled in a stochastic SEIHR
system. In Section 3, the stochastic CLBF is proposed,
and its construction for feedback linearizable systems is
described. In Section 4, simulation examples are provided
to demonstrate the effectiveness of the CLBF-based MPC
in controlling and preventing COVID-19 pandemic. The
paper is concluded in the final section.

2. PROBLEM STATEMENT

Since COVID-19 has a long latent period, the basic SIR
model in epidemiology is inadequate to describe its dy-
namics. In this paper, we adopt SEIHR model (Niu et al.
(2021)) to model the COVID-19 dynamics. The applied
SEIHR model is given by

d




S(t)
E(t)
I(t)
H(t)
R(t)


 =




ωRR(t)− [ηE(t) + αI(t)]S(t)u
− (β + ωE)E(t) + [ηE(t) + αI(t)]S(t)u

βE(t)− (γ + ωI) I(t)
γI(t)− ωHH(t)

ωEE(t) + ωII(t) + ωHH(t)− ωRR(t)


 dt

+




0
0

−σI(t)
σI(t)
0


 dW (1)

where the states S(t), E(t), I(t),H(t) andR(t) denote pro-
portions of susceptible, exposed, infectious, hospitalized,
and removed individuals, respectively; the input u includes
non-pharmaceutical policies to reduce infection rate, e.g.,
use of face masks, social distancing, isolation, lockdown,
etc (Scarabaggio et al., 2021). W denotes a Brownian
motion; η and α are transmission rates of exposed and
(symptomatic) infected individuals respectively; β is recip-
rocal of the mean latent period; γ is rate at which infected
individuals are hospitalized; ωE , ωI , and ωH denote re-
covery rates of non-hospitalized exposed, non-hospitalized
infected and hospitalized individuals respectively; σ de-
scribes random fluctuations from I to H; and ωR denotes
the re-infection rate (Zhu et al., 2021).

We aim at preventing and controlling the pandemic, re-
ducing hospital occupancy, and keeping social economy in
a certain prediction horizon, or mathematically,

u∗ = argmin
u

J(x,u),

s.t. H(t) ≤ Hm,u ∈ U

where

J (x,u) =
N−1
i=0

xT (i|k)Q0x (i|k) + ∆uT (i|k)R1∆u (i|k)

+ [1− u (i|k)]T R0 [1− u (i|k)]
and N denotes the prediction horizon; ·(i|k) denotes the
prediction of time i + k from time k; Hm denotes the
maximum occupancy of hospitals; Q0,R0,R1 are weight-
ing matrices of predicted states, inputs and increment of
inputs (with ∆u (0|k) = u (k) − u (k − 1)) respectively.
The term ∆u is to keep continuities in policy.

Physically, the mortality rate may largely increase if the
hospital occupancy exceeds limits (Köhler et al., 2021).
Such constraints can be regarded as a hard constraint and
unsafe region. Control Lyapunov-Barrier Function based
methods can be applied to decrease infected individuals
(both symptomatic and asymptomatic) and prevent sys-
tem trajectory from entering unsafe region D. Another
consideration is that, an excessively strict policy would
possibly deteriorate the social economy; consequently, the
control input should be penalized in the cost function, and
it is subject to hard constraints:

0 ≤ u ≤ 1,

where u = 1 implies no prevention or control policies are
exerted, and u = 0 indicates that policy is fairly strict.

3. CLBF-BASED STOCHASTIC MPC FOR
FEEDBACK LINEARIZABLE SYSTEMS

In this section, stochastic CLBF is reviewed, an approach
to construct stochastic CLBF for feedback linearizable
systems is provided. CLBF constraints are integrated into
the MPC framework to enhance the overall performance.

3.1 Stochastic Control Lyapunov-Barrier Function

The COVID-19 model (1) satisfies the following form of
stochastic nonlinear systems:

dx = (f (x) + g (x)u) dt+ σ (x) dW (2)

where x ∈ X ∈ Rn and u ∈ U ∈ Rm denote states
and constrained control inputs respectively; W is an n-
dimensional Brownian motion. The functions f , g and σ
are locally Lipschitz with proper dimensions. We first in-
troduce notions of control Lyapunov function and control
barrier function for stochastic nonlinear affine systems.

Definition 1. A twice differentiable positive-definite func-
tion V : X → R is called a stochastic control Lyapunov
function of (2) if it satisfies

inf
u∈U

LV (x) < 0, ∀x ∈ X,x ̸= 0 (3)

where the infinitesimal generator LV (x) is given by

LV (x) = LfV (x) + LgV (x)u+
1

2
tr


σT (x)

∂2V

∂x2
σ (x)



A stochastic nonlinear system (2) is stochastically asymp-
totically stabilizable if and only if there exists a stochastic
control Lyapunov function satisfying (3). If control action
u satisfies LV (xt) < 0 all the time, the zero solution
xt ≡ 0 is asymptotically stable in probability.
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Exposed-Infected-Hospitalized-Removed) model. Control
and prevention policy is designed within the framework
of stochastic MPC, such that both practical constraints
and stochastic disturbances can be treated. Our main
contributions include that: 1) some practical constraints
and stochastic disturbances can be modeled by stochastic
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SEIHR model is more realistic, and the proposed policy
appears more applicable; 2) the proposed stochastic CLBF
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the feedback linearizable nonlinear COVID-19 system; and
3) it is proved theoretically and validated numerically
that the proposed policy is effective in controlling and
preventing COVID-19 pandemic.
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COVID-19 pendemic is modelled in a stochastic SEIHR
system. In Section 3, the stochastic CLBF is proposed,
and its construction for feedback linearizable systems is
described. In Section 4, simulation examples are provided
to demonstrate the effectiveness of the CLBF-based MPC
in controlling and preventing COVID-19 pandemic. The
paper is concluded in the final section.
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d




S(t)
E(t)
I(t)
H(t)
R(t)


 =




ωRR(t)− [ηE(t) + αI(t)]S(t)u
− (β + ωE)E(t) + [ηE(t) + αI(t)]S(t)u

βE(t)− (γ + ωI) I(t)
γI(t)− ωHH(t)

ωEE(t) + ωII(t) + ωHH(t)− ωRR(t)


 dt

+




0
0

−σI(t)
σI(t)
0


 dW (1)

where the states S(t), E(t), I(t),H(t) andR(t) denote pro-
portions of susceptible, exposed, infectious, hospitalized,
and removed individuals, respectively; the input u includes
non-pharmaceutical policies to reduce infection rate, e.g.,
use of face masks, social distancing, isolation, lockdown,
etc (Scarabaggio et al., 2021). W denotes a Brownian
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u
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N−1
i=0

xT (i|k)Q0x (i|k) + ∆uT (i|k)R1∆u (i|k)

+ [1− u (i|k)]T R0 [1− u (i|k)]
and N denotes the prediction horizon; ·(i|k) denotes the
prediction of time i + k from time k; Hm denotes the
maximum occupancy of hospitals; Q0,R0,R1 are weight-
ing matrices of predicted states, inputs and increment of
inputs (with ∆u (0|k) = u (k) − u (k − 1)) respectively.
The term ∆u is to keep continuities in policy.

Physically, the mortality rate may largely increase if the
hospital occupancy exceeds limits (Köhler et al., 2021).
Such constraints can be regarded as a hard constraint and
unsafe region. Control Lyapunov-Barrier Function based
methods can be applied to decrease infected individuals
(both symptomatic and asymptomatic) and prevent sys-
tem trajectory from entering unsafe region D. Another
consideration is that, an excessively strict policy would
possibly deteriorate the social economy; consequently, the
control input should be penalized in the cost function, and
it is subject to hard constraints:

0 ≤ u ≤ 1,

where u = 1 implies no prevention or control policies are
exerted, and u = 0 indicates that policy is fairly strict.

3. CLBF-BASED STOCHASTIC MPC FOR
FEEDBACK LINEARIZABLE SYSTEMS

In this section, stochastic CLBF is reviewed, an approach
to construct stochastic CLBF for feedback linearizable
systems is provided. CLBF constraints are integrated into
the MPC framework to enhance the overall performance.

3.1 Stochastic Control Lyapunov-Barrier Function

The COVID-19 model (1) satisfies the following form of
stochastic nonlinear systems:

dx = (f (x) + g (x)u) dt+ σ (x) dW (2)

where x ∈ X ∈ Rn and u ∈ U ∈ Rm denote states
and constrained control inputs respectively; W is an n-
dimensional Brownian motion. The functions f , g and σ
are locally Lipschitz with proper dimensions. We first in-
troduce notions of control Lyapunov function and control
barrier function for stochastic nonlinear affine systems.

Definition 1. A twice differentiable positive-definite func-
tion V : X → R is called a stochastic control Lyapunov
function of (2) if it satisfies

inf
u∈U

LV (x) < 0, ∀x ∈ X,x ̸= 0 (3)

where the infinitesimal generator LV (x) is given by

LV (x) = LfV (x) + LgV (x)u+
1

2
tr


σT (x)

∂2V

∂x2
σ (x)



A stochastic nonlinear system (2) is stochastically asymp-
totically stabilizable if and only if there exists a stochastic
control Lyapunov function satisfying (3). If control action
u satisfies LV (xt) < 0 all the time, the zero solution
xt ≡ 0 is asymptotically stable in probability.

Definition 2. A twice differentiable function Bi : X → R
is called a stochastic (zero) control barrier function, if

Bi (x) > 0, ∀x ∈ Di (4)

inf
u∈U

LBi (x) ≤ −Bi (x) , ∀x ∈ X\Di (5)

{x ∈ X|Bi (x) ≤ 0} ̸= ∅ (6)

Similarly, if control u satisfies LBi (xt) ≤ −Bi (xt) all the
time, then P {x ∈ X/Di|x0 ∈ X/Di} = 1. We now give the
definition of stochastic control Lyapunov-Barrier function.

Definition 3. Given an unsafe region D ⊆ X, if there
exists a twice differentiable function Wc : X → R, which
has a minimum at the origin, satisfying

Wc (x) > 0, ∀x ∈ D (7)

inf
u∈U

LWc (x) < 0, ∀x ∈ X\ (D ∪ {0}) (8)

{x ∈ X|Wc (x) ≤ 0} ̸= ∅ (9)

then the function Wc (x) is called a stochastic control
Lyapunov-Barrier function for (2).

The following theorem shows the main property of stochas-
tic control Lyapunov-Barrier function.

Theorem 4. Given an unsafe region D ⊆ X, if there
exists a stochastic control Lyapunov-Barrier function Wc :
X → R for system (2) and if control action ut satisfies
LWc (xt) < 0 all the time, then P {xt /∈ D} = 1, ∀x0 ∈
X\Drelaxed and the zero solution xt ≡ 0 is asymptotically
stable in probability.

3.2 Stochastic CLBF for Feedback Linearizable Systems

In general, CLF and CBF are designed independently and
then combined to form a CLBF. Since CLF and CBF have
no impact on each other in design procedure, we will first
review stochastic CBF and CLBF presented in previous
work, and then give a stochastic CLF design method for
feedback linearizable systems.

We assume there exists a function FBi (x) ≥ 0 for every
unsafe set such that Di and Xi can be rewritten as level
sets of FBi (x), i.e.,

Di = {x|FBi (x)− lDi < 0} , Xi = {x|FBi (x)− lXi < 0}
Then (10) is a stochastic CBF if Bimin < 0, Bimax >
0, Bimax +Bimin > 0.

Bi (x) =

{
Bimin + Bimax−Bimin

1+e
−

kBi(lDi−FBi)

FBi(lXi−FBi)

, ∀x ∈ Xi

Bimin, ∀x ∈ X\Xi

(10)

where kBi (x) > 0 is a parameter that adjusts the shape of
CBF. The following proposition shows how to construct a
stochastic CLBF if an unconstrained CLF and CBFs exist.

Proposition 5. For a given unsafe region D =
nB⋃
i=1

Di ⊆ X,

suppose there exists an unconstrained stochastic control
Lyapunov function V : X → R and stochastic control
barrier functions Bi : X → R, i = 1, 2, . . . , nB of system
(2), such that

c1 ∥x∥2 ≤ V (x) ≤ c2 ∥x∥2 , ∀x ∈ Rn, c2 > c1 > 0 (11)

Bi (x) = −ηi < 0, ∀x ∈ X\Xi

Bi (x) ≥ −ηi, ∀x ∈ Xi (12)

where Xi are compact and connected sets satisfying Di ⊆
Xi and Drelaxed ⊆ X0 =

⋃nB

i=1 Xi ⊆ X. Then the following

function Wc (x) is a stochastic control Lyapunov-barrier
function if (8) holds.

Wc (x) = V (x) +

nB∑
i=1

λiBi (x) + κ (13)

where

λi >
c2c3i − c1c4i

ηi
nB∑

j=1,j ̸=i

λjηj − c1c4i < κ <

nB∑
j=1

λjηj − c2c3i

c3i =
max

x ∈ ∂Xi
∥x∥2 , c4i =

min
x ∈ Di

∥x∥2

We now consider a kind of feedback linearizable systems.
Inspired by CLF design for deterministic feedback lin-
earizable systems in Example 3.7 (Freeman and Kokotovic
(2008)), we give a stochastic version by Proposition 6.

Proposition 6. Suppose there exists a diffeomorphism
z = ϕ (x) : Rn → Rn that transforms the system (2) into

dz = Azdt+B [l0 (z) + l1 (z)u] dt+CzdW (14)

where the pair (A,B) is controllable and the functions l0
and l1 are continuous with l1 nonsingular for all z. Then
the function V (x) = ϕT (x)Pϕ (x) is an unconstrained
stochastic CLF for (2), where P is the positive definite
solution to the stochastic algebraic Riccati equation

ATP+PA−PBR−1BTP+CTPC+Q = 0 (15)

Proof. Since ϕ is a diffeomorphism, we have

LV (x) =LV (z)

=LAz+Bl0(z)V (z) + LBl1(z)V (z)u

+
1

2
tr

(
zTCT ∂2V (z)

∂z2
Cz

)

=2zTP {Az+B [l0 (z) + l1 (z)u]}
+ tr

(
zTCTPCz

)

=ϕT (x)
(
ATP+PA+CTPC

)
ϕ (x)

+ 2ϕT (x)PB [l0 (z) + l1 (z)u]

=− ϕT (x)Qϕ (x) + ϕT (x)PBR−1BTPϕ (x)

+ 2ϕT (x)PB [l0 (z) + l1 (z)u]

If LgV (x) = 2ϕTP∂ϕ(x)
∂x g (x) = 2ϕTPBl1 (ϕ (x)) = 0, it

follows that ϕT (x)PB = 0, therefore

LV (x) = −ϕT (x)Qϕ (x) < 0

and V (x) is an unconstrained stochastic CLF for system
(2), which completes the proof.

To solve stochastic algebraic Riccati equation, please refer
to a semidefinite programming associated with LMI (Rami
and Zhou (2000)) or Newton’s method (Wang (2009)).

3.3 CLBF-based Stochastic MPC

The proposed CLBF-based Stochastic MPC is designed by

(u∗, δ∗) =
argmin

(u, δ) ∈ U × RN
+
J (x,u) + δTR2δ (16)

subject to
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x (i+ 1|k) = [f (x (i|k)) + g (x (i|k))u (i|k)]T + x (i|k)
(17)

x (0|k) = x(k) (18)

u (i|k) ∈ U (19)

LWc (x (i|k) ,u (i|k)) < LWc (x (i|k) ,ΦL (i|k)) + δ (i|k) ,
(20)

for all x ∈ X\ (D ∪ {0}), where N is the predictive
horizon; x (i|k) denotes the predicted state of nominal
system at t = tk + iT ; u (i|k) denotes predicted input
during t ∈ [tk + iT, tk + (i+ 1)T ). The control input
is u(t) = u (0|k) , t ∈ [tk, tk + T ). ΦL is the auxiliary
Lyapunov controller (Zheng and Zhu, 2022). Slack variable
δ is added in (16) to recover feasibility if no feasible
solution exists for the original optimization problem (i.e.
replace δ with 0).

The infinitesimal generator LWc (x) can be calculated by

LWc (x) =LfWc (x) + LgWc (x)u

+
1

2
tr


σT (x)

∂2Wc

∂x2
σ (x)


.

Since LWc (x) is linear function of u, the feasibility region
of original optimization problem can be approximated by

XL =


x|LfWc +

n
i=1

LGWcu
i +

1

2
tr


σT ∂2Wc

∂x2
σ


< 0



where, for i = 1, 2, · · · ,m,

LGWc (x)u
i =


LgWc (x)umax,i, if LgWc (x) ≤ 0,
LgWc (x)umin,i, if LgWc (x) > 0,

and

U =




u|



umin1

...
uminm


 ≤ u ≤



umax1

...
umaxm







.

XL only combines constraints u (i|k) ∈ U and LWc < 0 at
first step in predictive horizon and therefore is an external
approximation of feasibility region. However, if weighting
matrix R2 is large enough, solution of (16) is equivalent
to original optimization as long as feasible solution exists
and optimization (16) is always feasible for x ∈ XL.

Proposition 7. If x ∈ XL, then the optimization (16)
subject to (17)–(20) is feasible, and for a proper sampling
time, the overall closed-loop system is ultimately bounded
in the mean square.

Proof. Please see Zheng and Zhu (2022) for details.

4. SIMULATION

In (1), the states satisfy S(t)+E(t)+I(t)+H(t)+R(t) = 1
and the COVID-19 system can be rewritten by

dx =



−ωRx1 + ωRx2 + ωRx3 + ωRx4

− (β + ωE)x2

βx2 − (γ + ωI)x3

γx3 − ωHx4


 dt

+



(ηx2 + αx3) (1− x1)
(ηx2 + αx3) (1− x1)

0
0


udt+




0
0

−σx3

σx3


 dW,

(21)

Table 1. Newton’s method to solve stochastic
algebraic Riccati equation

Algorithm 1

1. Select P0, ε0, ε1 such that A1 is stable
2. Let L1 = −R−1BTP0,A1 = A+BL1

3. Solve the mixed-type Lyapunov equations
AT

1 X+XA1 +CTXC = −Q− LT
1 RL1

3.1. Let α1 = 2θ1
(2∥A1∥2+∥C∥2

2)
, θ1 ≥ 1

3.2. Compute r1 = −Q− LT
1 L1 −AT

1 P0 −P0A1 −CTP0C
3.3. If ∥r1∥F < ε1, turn to 4; else,

P0 = P0 + α1

�
r1AT

1 +A1r1 +CTr1C

, turn to 3.2

4. Compute
r0 = ATP0 +P0A−P0BR−1BTP0 +CTP0C+Q

5. If ∥r0∥F < ε0, P = P0, end; else, turn to 2

Fig. 1.Wc(x) in the proposed stochastic CLBF with S = 1,
and E = 0.

where x = [x1 x2 x3 x4]
T

= [1− S(t) E(t) I(t) H(t)]
T
.

The model (21) is feedback linearizable, and a diffeo-
morphism z = ϕ (x) exists, such that the dynamics of
z is linear. For the SEIHR model, all states are physi-
cally nonnegative. Therefore l1 becomes zero only when
z2 = z3 = 0. This means the pandemic ends and can be
excluded. The matrices in (15) are given by

A =



−ωR ωR ωR ωR

0 − (β + ωE) 0 0
0 β − (γ + ωI) 0
0 0 γ −ωH


 ,B =



1
1
0
0


 ,

C =



0 0 0 0
0 0 0 0
0 0 −σ 0
0 0 σ 0


 , l0 = 0, l1 = (ηz2 + αz3) (1− z1)

and V (x) = ϕT (x)Pϕ (x) = xTPx is an unconstrained
CLF if P is the symmetric positive definite solution to
(15). We use numerical method in Wang (2009) to solve
(15). The algorithm is summarized in Table 1.

Let α = 0.46, β = 0.14, γ = 0.7, η = 0.338, ωE = ωI =
ωH = 0.1, σ = 0.3, ωR = 0.005, Q = I4, R = 100, P0 =
diag (3, 1, 1, 1), ε0 = ε1 = 10−12, the numerical solution of
stochastic algebraic Riccati equation is calculated by

P =



10.3037 −0.8329 −0.4510 −0.4480
−0.8329 2.8648 1.5168 1.4886
−0.4510 1.5168 4.0251 3.8120
−0.4480 1.4886 3.8120 4.9235




We can construct the stochastic CLBF in Section 3 by
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x (i+ 1|k) = [f (x (i|k)) + g (x (i|k))u (i|k)]T + x (i|k)
(17)

x (0|k) = x(k) (18)

u (i|k) ∈ U (19)

LWc (x (i|k) ,u (i|k)) < LWc (x (i|k) ,ΦL (i|k)) + δ (i|k) ,
(20)

for all x ∈ X\ (D ∪ {0}), where N is the predictive
horizon; x (i|k) denotes the predicted state of nominal
system at t = tk + iT ; u (i|k) denotes predicted input
during t ∈ [tk + iT, tk + (i+ 1)T ). The control input
is u(t) = u (0|k) , t ∈ [tk, tk + T ). ΦL is the auxiliary
Lyapunov controller (Zheng and Zhu, 2022). Slack variable
δ is added in (16) to recover feasibility if no feasible
solution exists for the original optimization problem (i.e.
replace δ with 0).

The infinitesimal generator LWc (x) can be calculated by

LWc (x) =LfWc (x) + LgWc (x)u

+
1

2
tr


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∂2Wc

∂x2
σ (x)


.

Since LWc (x) is linear function of u, the feasibility region
of original optimization problem can be approximated by
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
x|LfWc +

n
i=1

LGWcu
i +

1

2
tr


σT ∂2Wc

∂x2
σ


< 0



where, for i = 1, 2, · · · ,m,

LGWc (x)u
i =


LgWc (x)umax,i, if LgWc (x) ≤ 0,
LgWc (x)umin,i, if LgWc (x) > 0,

and

U =


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

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...
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
 ≤ u ≤



umax1

...
umaxm







.

XL only combines constraints u (i|k) ∈ U and LWc < 0 at
first step in predictive horizon and therefore is an external
approximation of feasibility region. However, if weighting
matrix R2 is large enough, solution of (16) is equivalent
to original optimization as long as feasible solution exists
and optimization (16) is always feasible for x ∈ XL.

Proposition 7. If x ∈ XL, then the optimization (16)
subject to (17)–(20) is feasible, and for a proper sampling
time, the overall closed-loop system is ultimately bounded
in the mean square.

Proof. Please see Zheng and Zhu (2022) for details.

4. SIMULATION

In (1), the states satisfy S(t)+E(t)+I(t)+H(t)+R(t) = 1
and the COVID-19 system can be rewritten by

dx =


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−ωRx1 + ωRx2 + ωRx3 + ωRx4

− (β + ωE)x2

βx2 − (γ + ωI)x3

γx3 − ωHx4


 dt

+


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(ηx2 + αx3) (1− x1)
(ηx2 + αx3) (1− x1)
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0
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Table 1. Newton’s method to solve stochastic
algebraic Riccati equation

Algorithm 1

1. Select P0, ε0, ε1 such that A1 is stable
2. Let L1 = −R−1BTP0,A1 = A+BL1

3. Solve the mixed-type Lyapunov equations
AT

1 X+XA1 +CTXC = −Q− LT
1 RL1

3.1. Let α1 = 2θ1
(2∥A1∥2+∥C∥2

2)
, θ1 ≥ 1

3.2. Compute r1 = −Q− LT
1 L1 −AT

1 P0 −P0A1 −CTP0C
3.3. If ∥r1∥F < ε1, turn to 4; else,
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, turn to 3.2

4. Compute
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5. If ∥r0∥F < ε0, P = P0, end; else, turn to 2

Fig. 1.Wc(x) in the proposed stochastic CLBF with S = 1,
and E = 0.

where x = [x1 x2 x3 x4]
T

= [1− S(t) E(t) I(t) H(t)]
T
.

The model (21) is feedback linearizable, and a diffeo-
morphism z = ϕ (x) exists, such that the dynamics of
z is linear. For the SEIHR model, all states are physi-
cally nonnegative. Therefore l1 becomes zero only when
z2 = z3 = 0. This means the pandemic ends and can be
excluded. The matrices in (15) are given by

A =


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0 − (β + ωE) 0 0
0 β − (γ + ωI) 0
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
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
 , l0 = 0, l1 = (ηz2 + αz3) (1− z1)

and V (x) = ϕT (x)Pϕ (x) = xTPx is an unconstrained
CLF if P is the symmetric positive definite solution to
(15). We use numerical method in Wang (2009) to solve
(15). The algorithm is summarized in Table 1.

Let α = 0.46, β = 0.14, γ = 0.7, η = 0.338, ωE = ωI =
ωH = 0.1, σ = 0.3, ωR = 0.005, Q = I4, R = 100, P0 =
diag (3, 1, 1, 1), ε0 = ε1 = 10−12, the numerical solution of
stochastic algebraic Riccati equation is calculated by

P =



10.3037 −0.8329 −0.4510 −0.4480
−0.8329 2.8648 1.5168 1.4886
−0.4510 1.5168 4.0251 3.8120
−0.4480 1.4886 3.8120 4.9235




We can construct the stochastic CLBF in Section 3 by

Table 2. Parameters in stochastic CLBF

CBF

Bmin = −10 Bmax = 15

kBi = aicos
(
ki

FBi
lXi

)
+ 1

2
ai + bi FBi (x) =

kF
H

ai = 104 bi = 0.1

ki =
2
3
π kF = 1

lDi = 104 lXi = 1.1× 104

CLBF

c1 = λmin (P) = 0.6233
c2 = λmax (P) = 10.7792

c3i = max
x∈∂Xi

∥x∥2 = 3 +
k2
F

l2
Xi

c4i = min
x∈Di

∥x∥2 =
k2
F

l2
Di

ηi = −Bmin i Kλi = 1000

λi =
c2c3i−c1c4i

ηi
+Kλi

κ = 1
2

[
max

i

(
nB∑

j=1,j ̸=i

λjηj − c1c4i

)
+

nB∑
i=1

λiηi

]

− 1
2

[
c2max

i
(c3i)

]
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Fig. 2. Trajectories of E(t), I(t), and H(t). Unsafe regions
are calculated by Di = {x|FBi (x)− lDi < 0} and
correspondingly Xi = {x|FBi (x)− lXi < 0}.

Wc (x) = V (x) +

nB∑
i=1

λiBi (x) + κ = xTPx

+

nB∑
i=1

λi

[
dXi

Bimax −Bimin

1 + e
− kBi(lDi−FBi)

FBi(lXi−FBi)

+Bimin

]
+ κ

where

dXi =

{
1, ∀x ∈ Xi

0, ∀x ∈ X\Xi

Parameters of CLBF and their values are listed in Table
2, and Wc(x) is illustrated by Fig. 1. In the auxiliary
Lyapunov controller ΦL, we set ρ = 0.1.

Simulations in this section are based on CasADi in An-
dersson et al. (2019). The continuous-time system dynam-
ics (1) is discretized via Euler–Maruyama method with
T0 = 0.05, and the nominal system to calculate MPC is
discretized via Euler discretization with T = 1. The MPC
is processed with predictive horizon N = 20, sampling
interval T = 1 and weighing matrices Q0 = 0, R0 = 0.1,
R1 = 0, R2 = 1014×diag(10, 1, 1, . . . , 1). The unit of time
is one day. The initial condition is supposed to be

X0 =
(
6× 10−4, 10−5, 10−5, 10−5, 5.7× 10−4

)
,

and simulation results are shown in Figs. 2 and 3.
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Fig. 3. Control inputs: control actions start from t = 13.

As can be seen from Figs. 2 and 3, as long as CLBF
constraints are not violated (except no feasible solution
exists and constraints should be relaxed), interventions
are unnecessary, and control input remains u = 1. It can
be seen that control actions are capable of keeping the
pandemic to a low level. The proportion of hospitalized are
always maintained under 10−4. After t = 13, due to the
sharp increase of system states, control actions are then
exerted. At this stage, CLBF constraints are activated,
and the proportion of hospitalized are constrained within
the given boundaries. After t = 31, the control action u
is calculated to be 0, implying an entire lockdown, such
that system states are forced to decrease. Finally, after
t = 64, a reopening restores, and the control action u keeps
approximately 0.6 to satisfy CLBF constraints.

Suppose that control actions may be implemented with
possible delays. A more realistic situation is to keep control
actions constant over Nω time steps, i.e.

u (Nωl|k) = · · · = u (Nωl +Nω − 1|k)
for all l = 0, · · · , N

Nω
− 1. Moreover, we set Q0 = 106 × I5,

R0 = 0.1, R1 = 0.05, R2 = 1020 × diag(10, 1, 1, . . . , 1)
to avoid excessive variations in control actions. The sim-
ulation is operated 20 times under the same settings, and
the results are displayed in Fig. 4. It can be seen that half
of the pandemic can be prevented by CLF constraints at
start, while others can be restrained by CBF constraints.
Note that several sample trajectories may enter the un-
safe region, and then leave instantly. The reason is that,
with slack variables, unboundedness of disturbances and
the sample-and-hold implementation of MPC may violate
some of the constraints with a low probability, especially
when additional hard input constraints are included. It is
noted that LBi (x) is a function of I and H, and S = 1 can
be assigned, such that the feasible region can be displayed
in Fig. 5. It is suggested from Fig. 5 that, the feasibility
regionXL increases withH. Overall, it can be claimed that
the proposed CLBF-based MPC is effective in designing
the prevention and control policy for COVID-19 pandemic.

5. CONCLUSION

A CLBF-based stochastic MPC is proposed to design the
policy to prevent and control COVID-19 pandemic. The
objective is to reduce the pandemic into small scale in
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Fig. 4. 20 simulations with same conditions. The red
and blue star lines denote boundaries of Di and
Xi, respectively. The initial condition is X0 =(
10−4, 10−5, 10−5, 10−5, 7× 10−5

)
. Control actions

are exerted since t = 10 with Nω = 4 and N = 20.

Fig. 5. The green surfaces are boundaries of Di and Xi.
The red surface is the boundary of XL. The region on
the right and below the red surface is XL.

case of stochastic disturbances and practical constraints.
The Stochastic CLBF is designed to model constraints
with stochastic disturbances, and it is applied in MPC
to enhance the overall performance. It is proved that,
the CLBF-based stochastic MPC is feasible, and states
of the closed-loop system can be reduced into small scale.
Simulations illustrate that the proposed policy is effective
in preventing and controlling COVID-19 pandemic.
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