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Abstract

This thesis contains a collection of problems dealing with the modelling and optimisa-
tion of multi-state production systems, hence addressing challenges within the broader
category of flexible manufacturing. These systems are often subjected to random degra-
dations, failures, age of machines, human errors, power supply disruptions, or changes in
demand.

In literature, many inventory models have been developed under the assumption that
the lifetime of systems is infinite, meaning the performance of a system or equipment
remains unchanged and is fully usable for satisfying future demand. Some other models
have extended this assumption by considering the functioning of systems (or equipment)
under binary modelling conditions in which two states are considered: operational state
and failure state. However, a growing body of literature is beginning to take into con-
sideration the numerous scenarios that may occur during the lifetime of an equipment.
These situations contribute to the multiplicity of the possible states of systems. Such
systems are called multi-state systems (MSS). MSS are generally subject to several fail-
ure modes, in particular degradation and age of the systems, with various effects on their
performance. The operational characteristics of MSS allow them to continue to function;
however, they have a reduced level of performance, demonstrating the adaptability and
scalability of the equipment. In the literature, techniques to increase the performance of
binary systems are often based on strategies including redundancy or preventive main-
tenance. In the case of multi-state systems (MSS), continuity of service is ensured by
reconfiguration.

The objective of this research is to develop models for managing inventory models for
deteriorating items in a multi-state manufacturing environment. In many research based
on the binary modelling conditions, ensuring the continuity of the production is an im-
portant issue. These models assume complete shutdowns of production systems upon
failure of manufacturing resources, which can be extremely costly and lead to substantial
manufacturing losses. By addressing these limitations that are present in many of the
current literature, the models proposed in this thesis are more practical and thus benefi-
cial for operations management practitioners when making decisions involving multi-state
systems in manufacturing processes. For such systems, the breakdown or failure of any
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component only minimally or at least partially disrupts their performance. In this way,
the system can continue to provide service with an acceptable level of degradation. The
contribution of this thesis is the development of three mathematical models to optimise
a series of Economic Production Quantity (EPQ) systems for deteriorating products.

The first model deals with A lot-sizing model for a deteriorating product with shifting
production rates, freshness-, price-, and stock-dependent demand with price discount-
ing. The system consists of one machine producing a single type of product. When the
component of the machine breaks down, the system is minimally or at least partially
disrupted. Thus, it may continue to operate at a rate lower than the initial rate until a
specific inventory level is reached. Initially, demand is influenced by its selling price and
the level of stock displayed. As freshness declines, demand then depends on the prod-
uct’s freshness condition. As production continues, there is also a shift in production rate
over time. To account for declining freshness affecting consumer interest and purchasing
behaviour, discounts are applied after a certain period. The optimisation problem was
solved using numerical methods and supported by sensitivity analysis to demonstrate
its practical implications. However, at this stage, the model does not explore how raw
material with imperfect quality could impact this system.

The second scenario presents a two-echelon supply chain inventory model for perishable
products, incorporating a shifting production rate, stock-dependent demand rate, and
imperfect quality raw material. This novel model extends the classic EPQ as well as the
first novel developed in this thesis to account for the use of raw materials with imperfect
quality in the production process. Two scenarios are formulated within this framework:
one involves selling imperfect raw materials at a discounted price after a screening period,
while the other entails keeping imperfect items in stock until they are returned to the
supplier at the end of an inventory cycle. Both scenarios consider product deterioration
as well as shifts in production rate. Numerical solutions were derived for these scenar-
ios. The findings indicate that maximising profit may involve selling the proportion of
imperfect raw material rather than retaining it until a new lot arrives from the supplier.
This approach is particularly crucial in manufacturing systems where imperfect products
appear in both the raw materials and finished goods. The results were validated through
a sensitivity analysis.

The third model expands previous novels by considering the scenario of a production sys-
tem that continually declines, leading to an increasing rate of defects over time. It takes
into consideration various elements including deterioration of finished products, stock lev-
els, product quality, and the influence of corporate social responsibility (CSR). CSR plays
a critical role in enhancing the reputation of the company, building customer loyalty, and
increasing sales by demonstrating a commitment to ethical practices and societal well-
being. The objective of the model presented in this scenario is to identify the optimal
inventory level and cycle time that minimise the total cost per cycle. To illustrate the ef-
fectiveness of this model, numerical examples are provided along with sensitivity analysis.

The findings show that the profit generated can increase by as much as 14% if manufac-
turers integrate a setup cost policy and selling price decisions. Extending product shelf
life by 60% can increase the net profit by as much as 7%. In another model involving a
two-echelon supply chain system, the profit can be increased by as much as 360% and
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386%, respectively, if the selling price and the demand enhancement parameter for in-
ventory level increase by 20%. Furthermore, the unit selling price can decrease the total
cost by as much as 34%. Operations managers can use all these mechanisms to increase
profits in their production systems. Under reasonable conditions, other industrial fields
like automotive, mineral processing plants, assembly lines, as well as the production of
mechanical components, may also also benefit from the results obtained.
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Chapter 1

Introduction

1.1 Context

In today’s fast-paced and volatile business environment, organisations face numerous chal-
lenges when it comes to effectively managing their production and inventory. Managing
inventory systems is crucial for any organisation, especially if the organisation deals with
perishable products and experiences variable demand. Multi-state production systems,
which involve several stages in the production process, add complexity to the inventory
management problem. In these systems, the production process is divided into several
stages, each with its own production rate and capacity.

The production process is the backbone of any manufacturing industry. It is the process
of converting raw materials into finished products. However, the assumptions of constant,
smooth production may not always hold. Recently, the manufacturing domain has under-
gone a major transformation due to the introduction of key enabling technologies required
for Industry 4.0 (Sima et al.,2020). To meet clients’ customised requirements and enable
global manufacturers’ personalised production, there is a need to transform current pro-
duction and process capabilities. This is because recent demands such as shorter product
life cycles, higher production rates, increased job complexity, higher product quality, and
cost-effectiveness are crucial factors for any manufacturing industry (Lenz et al., 2020).
In addition to meeting these requirements, there is a need to improve the system’s capa-
bilities and keep it under control from degradation, breakdowns, and external forces.

One of the factors that can cause the production rate in a typical system to be scaled
down is the age of the machinery. As machines age, they may become less efficient, and
the cost of maintenance and repairs may increase. This can lead to longer production
times, increased downtime, a decrease in quality of products and higher costs associ-
ated with producing each unit. Another factor that can cause production to be scaled
is the machines’ usability. Machines that are difficult to operate or maintain may result
in longer production times, higher downtime, and increased costs. Changes in market
demand are another factor. Changes in market demand or the introduction of new tech-
nologies may make existing products less competitive, resulting in declining production
rates. Breakdowns of machines can also cause production to decrease. Process degrada-
tion is an inherent characteristic that cannot be avoided during manufacturing processes.
The degradation rate is a crucial factor in the lifespan of manufacturing systems since
the impact of degradation on different types of manufacturing systems can be observed
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through the severity of their failures (Samala et al., 2021). A degraded machine can affect
the quality of manufactured parts (Rivera et al., 2018).

One approach to mitigate the random occurrence of failures is to integrate processes
that are highly flexible, configurable, and accessible (Ashraf and Hasan, 2018). Several
reliability studies employ binary configuration to model most systems, restricting them
to only two states: nominal and complete failure. The performance of such systems is
considered to be at the same level during their useful life (operation). Although such
modelling has countless practical applications, it is considered insufficient to describe
different situations that occur in the life of systems and that can have an impact on their
performance (Aven, 1993; Wu and Chan, 2003). In practice, systems and their compo-
nents can exhibit varying levels of performance. These performance levels can typically
be influenced by controlled actions such as fault tolerance, architecture duplication, and
safe operation monitoring design to achieve the desired performance. These actions aim
to ensure that the system or its component continues to function, even in the presence
of faults. This may, however, result in a decrease in the system’s performance, but not
necessarily its complete failure, making it a reconfigurable system (Soro, 2011). A sys-
tem that can operate at different levels of performance is considered a multi-state system
(MSS) (Levitin and Lisnianski, 2001; Tshinangi et al., 2022).

To thrive and remain competitive, organisations often create strategies that find the
right balance between optimising inventory levels, managing production and optimising
cost or profit. Traditionally, organisations have employed static, rule-based approaches
that unfortunately fail to account for the inherent variability in today’s business land-
scape. Inventory management and production/capacity planning cannot be overstated.
Organisations that fail to adapt and develop effective strategies to address challenges risk
significant financial losses, loss of customer satisfaction, and diminished market compet-
itiveness. By optimising inventory and production capacity, organisations can minimise
costs, improve customer service levels, enhance agility and responsiveness, mitigate risks
associated with disruptions, and position themselves for scalable growth. Accordingly,
this thesis aims to develop models for managing the production of deteriorating items in
multi-state systems.

1.2 Relevance

1.2.1 The importance of inventory control

Inventory control is critical to supply chain management, particularly for companies that
produce or distribute deteriorating and perishable products. These products, such as
food, pharmaceuticals, and certain chemicals, have a limited shelf life and can quickly
become unfit for use or consumption. One of the main challenges of inventory control
for deteriorating and perishable products is the need to balance supply and demand in
real time. Unlike non-perishable products, the demand for these products can be highly
variable and unpredictable, making it challenging to maintain optimal inventory levels.
Excess inventory can lead to waste and increased costs, while insufficient inventory can
result in stockouts, lost sales, and damage to the company’s reputation. To address
these challenges, companies must implement inventory control strategies tailored to the
unique characteristics of deteriorating and perishable products. Effective inventory con-
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trol for deteriorating and perishable products also requires a strong focus on supply chain
management and logistics. This includes careful monitoring of production and storage
conditions, such as temperature, humidity, and light, to ensure that products are main-
tained at optimal conditions throughout the supply chain. Effective inventory control is
essential to minimise waste, reduce costs, and ensure timely delivery of these products to
customers.

1.2.2 The importance of Multi-state systems

In many industries, machines’ structural, functional, and behavioural performance are
critical to ensuring smooth operations and maintaining production schedules. However,
Despite meticulous maintenance, machines can encounter issues leading to delays, down-
time, and revenue loss. While preventative maintenance and monitoring systems can help
identify potential problems before they escalate, predicting when a breakdown might oc-
cur is a challenge that is difficult to overcome. The complexity of modern production
systems and the machines used are the primary reasons why it is challenging to main-
tain a smooth production. Many systems consist of various components, each of which
may be subject to wear and tear or other forms of damage. These components may fail
independently or simultaneously, making it difficult to predict which component will fail
and when. A well-maintained machine may be more reliable than an older machine that
has not been serviced regularly. However, even a well-maintained machine can still be
affected by factors that may be difficult to predict, such as unforeseen environmental
factors (extreme temperatures, humidity, and corrosive materials), human factors, and
randomness. While techniques such as predictive maintenance can help identify potential
issues before they occur, there is no foolproof method to predict when a breakdown will
happen. Systems that operate at different levels of performance, even in the presence
of faults, play a critical role in ensuring the reliability and efficiency of a supply chain.
These systems are designed to operate under different levels of performance, with each
level representing a different state of the system. In the event of a fault or failure, the sys-
tem can transition to a lower level of performance, allowing it to continue operating even
in the presence of faults. One of the critical benefits of multi-state systems is their ability
to provide different levels of performance based on the severity of the fault or failure.
This allows the system to continue operating at a reduced level of performance rather
than completely shutting down. By providing a backup mode of operation, multi-state
systems can minimise downtime and increase responsiveness in various industries.

1.3 Research gap analysis

Currently, there aren’t many known lot-sizing models in the literature for integrated
multi-state systems in inventory models for perishable products, which entail re-configurable
systems wherein the component or machine used for manufacturing deteriorates and con-
tinues to function even in the presence of faults. Various production factors such as flex-
ibility, availability of machines, the state of the equipment and variable setup time have
received attention from researchers. However, these studies often overlook the dynamic
nature of equipment states in real manufacturing situations. While many researchers
have ignored the effect of the degradation of machines, a growing body of literature now
considers numerous situations that may occur during the lifetime of the production sys-
tem. Such systems may be “in a state of control” or “out of control” (Ben-Daya, Hariga,
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& Khursheed, 2008). Systems that are deemed ”out of control” can incur substantial
costs and negatively impact customer demand, as unplanned machine breakdowns lead
to shutdowns that may disrupt the production process, especially in a make-to-order en-
vironment.

If, from the production point of view, a system is conceived in a way that at the occurrence
of any failure, a reconfiguration is undertaken automatically, allowing the degraded or
deteriorated machine or any other equipment to be functional, but with a decrease in
the service delivered, it refers to as a multi-state system (MSS). Thus, a third state is
added to the two previous states, which is referred to as the degraded state. Such models
are particularly relevant for mineral processing systems, and power grid control systems
(Soro, 2011). Despite the significance of MSS models for industries such as mineral
processing, food industries or power grid control systems, the majority of the current
MSS models overlook several important features such as price-dependent demand, stock
level, freshness-dependent demand, quality control, and shortages. Furthermore, these
models do not account for multi echelons in the supply chain, which are prevalent in
the food industries as well as mining sectors. Thus, it is essential to explore multi-state
systems and multi-echelon supply chain inventory models that are more reflective of real-
world inventory systems, given the intricate and multifaceted nature of supply chains.

1.4 Objectives

The primary goal of this thesis is to develop inventory models for managing deteriorating
products in a multi-state system. Three inventory models are presented in this thesis,
each representing a sub-objective of the thesis. Each sub-objective targets a specific
aspect of the overarching aim, which is to develop comprehensive inventory models that
better reflect real-world conditions and enhance the efficiency of managing perishable
goods. The models are as follows:

• An inventory model with a shifting production rate for perishable products with
freshness, price, stock-dependent demand rate, and price discounting;

• A two-echelon supply chain inventory model for perishable products with a shifting
production rate, stock-dependent demand rate and imperfect quality raw material;

• An integrated Economic Production Quantity (EPQ) model for deteriorating prod-
ucts with declining production rate, increasing defects, stock and price-dependent
demand, and effects of corporate social responsibility activities.

The three models are briefly described next.

1.4.1 Sub-Objective 1: An inventory model with a shifting pro-
duction rate for perishables products with freshness, price,
and stock-dependent demand rate and price discounting

Classical EPQ models make assumptions about demand rate, production quality and the
nature of manufactured products that may not accurately reflect real-world conditions.
In practice, factors like price fluctuations, machine conditions, and product deterioration
can significantly impact demand or production rate. Efficiently managing deteriorating
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items in inventory is crucial for manufacturers and retailers. Special consideration is
needed for accounting for the type and quantity of stocks. Numerous researchers have
explored demand dependencies on pricing and have investigated inventory models tailored
for perishable items. These models incorporate features such as advanced payment, trade
credits, and holding costs that vary linearly with time. Freshness is another crucial
factor that influences consumers’ behaviour. As such, effective inventory management
models for perishable products must not only consider financial aspects but also prioritise
maintaining product quality to meet safety standards and enhance customer satisfaction.
Thus, this sub-objective introduces the concept of a shifting production rate with demand
that is dependent on factors such as freshness, price, and inventory levels.

1.4.2 Sub-Objective 2: A two-echelon supply chain inventory
model for perishable products with a shifting production
rate, stock-dependent demand rate and imperfect quality
raw material

Building on the insights from sub-objective 1, sub-objective 2 extends the focus to a two-
echelon supply chain involving both manufacturers and suppliers. Ben-Daya et al.(2008)
analysed the effect of a shifting production rate on lot sizing decisions due to speed losses
caused by some process deterioration. The cycle starts with a certain production rate,
and after a random time, the production rate shifts to a lower rate. They assumed
that the product quality was not affected by this shift in production rate. While Ben-
Daya et al. (2008) provided valuable insights into lot sizing decisions affected by shifting
production rates, their assumption might overlook some important factors, such as the
quality and deterioration nature of products manufactured, which may not align with
real-world scenarios. The limitations in these assumptions underscore the need for more
comprehensive models that account for the impact of shifting production rates on both
quantity and product quality. Hence, a two-echelon supply chain inventory model for
perishable products with a shifting production rate, stock-dependent demand rate and
imperfect quality raw material is proposed. Since the production process requires the
use of raw materials, it is assumed that the raw material received contains a proportion
of imperfect quality. The model is investigated for the case where the imperfect raw
material is kept in inventory after screening and then sold at a salvage value and for a case
where the imperfect material is returned to the supplier. This helps to understand how
shifting production rates and imperfect raw materials affect decision-making in inventory
management.

1.4.3 Sub-Objective 3: An integrated EPQ Model for deterio-
rating products with declining production rate, increasing
defects, stock and price-dependent demand, and effects of
corporate social responsibility activities

While the previous models considered the effects of shifting production rates and imper-
fect raw materials, this sub-objective focuses on the broader production environment. A
vast majority of existing models in inventory management predominantly focus on sce-
narios featuring constant production rates or systems with discrete production rates and
a consistent rate of defective items. However, these simplifications may not fully capture
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the complexity of real-world production environments. Therefore, there is a pressing need
to explore the dynamics of a production system characterised by continuous changes, es-
pecially concerning both the production rate and the generation of defective items over
time. Furthermore, it’s noteworthy that, regardless of the state of the production sys-
tem, some companies strategically invest in the community through practices commonly
referred to as Social Corporate Responsibility (CSR). Many researchers emphasise that
such initiatives not only contribute to social welfare but also serve as a means for compa-
nies to gain a competitive advantage and attract customers who value ethical and socially
responsible business practices. This sub-objective integrates and expands upon the previ-
ous models by presenting a continuously declining production system with an increasing
rate of defective products while considering various factors, including the deterioration
of products, stock levels, time, product quality, and CSR impact.

1.5 Thesis organization

Except for the introductory chapter, this thesis consists of four additional chapters, which
are structured in the following manner:

Chapter 2 provides a comprehensive review of important inventory models documented
in the literature. This review primarily focuses on inventory models with price-dependent
demand, stock-dependent demand, time-dependent demand, mixed-dependent demand,
imperfect quality of items, perishable items with expiration dates, multi-state systems,
inventory models with planned shortages, multi-echelon inventory systems, and models
with corporate social responsibility activities.

Building upon the literature review, Chapter 3 delves into the mathematical underpin-
nings of selected models, forming the theoretical foundation for the development of the
novel models that are subsequently presented in Chapter 4.

Chapters 4, 5, and 6 represent the core of this thesis, wherein the primary objective
is achieved through the formulation and development of three distinct inventory mod-
els. Each model is formulated to represent a specific scenario under specific conditions
that commonly arise in the production industry. These conditions encompass factors
such as shifting production rates, price-dependent demand, inventory level considerations,
freshness-dependent demand, the presence of imperfect quality items, and the existence
of expiration dates.

Chapter 7 is the concluding chapter. Here, a concise summary of the findings obtained
throughout the thesis is presented, highlighting the valuable contributions this research
makes to the existing body of knowledge in the field of inventory management. Finally, the
chapter concludes with suggestions for future research avenues in inventory management,
specifically focusing on growing items within multi-echelon supply chains.
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Chapter 2

Literature Review

2.1 Introduction

Inventory typically constitutes the most substantial portion of the current assets section
of a business’s balance sheet. As such, any shortcomings in inventory management can
exert substantial adverse financial ramifications on the entire organisation. In addition
to the financial implications, an inadequately managed inventory system can diminish
customer satisfaction levels, thereby exacerbating the financial burden due to reduced
customer retention rates. Furthermore, these detrimental consequences extend beyond
the focal business, influencing the entire supply chain (Sebatjane, 2020).

Inventory management involves optimizing the quantity of available stock, aiming to
strike a balance that prevents two undesirable extremes on a spectrum: overstocking
and understocking. When a business overstocks a product, it not only incurs substantial
expenses associated with storing the product, in addition to the procurement cost, but it
also foregoes potential opportunities that might have arisen from the capital invested in
inventory. Conversely, in the case of understocking a product, the business is compelled
to reject prospective orders, resulting in not only foregone sales but also diminished levels
of customer satisfaction and the loss of potential repeat business in the future (Sebatjane,
2020).

The questions surrounding effective inventory management have received considerable
scholarly interest in recent decades. As executives have recognised the financial burdens
associated with superfluous stock levels, researchers have sought to minimise excessive
inventory while preserving client service standards. While maintaining inventories is
sometimes important to satisfy global customer demand Gourdin (2001), management
aims to hold only the requisite inventory to achieve this goal. Consistent with this per-
spective, Chase et al. (2021) define inventory as ”the stock of any item or resource used
in an organisation”. Hence, proper inventory administration necessitates suitable super-
visory protocols and directives to routinely evaluate inventory levels and adjust them
according to organisational needs (Chase et al., Chase et al. 2021). Moreover, this study
acknowledges the significance of replenishment processes and inventory quantity. Fur-
thermore, Pycraft et al. (2010) provide a more comprehensive definition of inventory as
”the stored accumulation of material resources in a transformation system”. This encom-
passes manufacturers retaining material stocks, tax bureaus maintaining informational
stocks, and amusement parks managing client stocks (Pycraft et al., 2010). The estab-
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lishment of an efficient inventory management system is an indispensable prerequisite for
attaining success in business. Consequently, decisions about the quantity of stock to be
ordered/produced, the frequency at which stock is replenished, or products are produced
represent pivotal managerial considerations.

2.2 Types of inventories

Stock and Lambert (2001) delineate six major inventory forms and their uses in manu-
facturing:

• Fluctuation inventory : Fluctuation inventory, also known as safety stock or
buffer stock, is a category of inventory that serves as a cushion against uncertainties
and fluctuations in demand and supply. Businesses with dynamic demand and with
the product life cycle in the growth phase typically require this inventory to manage
sudden demands.

• Anticipation inventory : Anticipation inventory, also known as seasonal or spec-
ulative inventory, is a category of inventory built up in anticipation of future demand
fluctuations or expected events. Unlike fluctuation inventory, which is used to buffer
against uncertainties, anticipation inventory is purposefully accumulated based on
forecasts, market trends, or known seasonal patterns. Anticipation inventory fore-
casts demand in seasonal industries that expect to elevate sales in specific periods
for specific products like winter clothing or Christmas decorations.

• Cycle inventory : Cycle inventory, also known as lot-size or replenishment inven-
tory, refers to the inventory held to satisfy demand between successive replenish-
ments or production cycles. It arises due to the periodic ordering or production
process of goods.

• Transportation inventory : Transportation inventory, also known as In-transit
inventory or pipeline inventory, is the stock that has been ordered but has still not
been delivered. Work-in-process (WIP) inventory is considered part of this category
and is intended for the plant design and layout processes type.

• Decoupling inventory : Decoupling inventory, also known as strategic inventory,
is a category of inventory that is strategically positioned at different points within
the supply chain to decouple or separate the interdependencies between different
stages of production or distribution.

• Dead stock : dead stock, also known as obsolete inventory, refers to unwanted
stocks that are not expected to be used for any immediate or long-term purposes.
Therefore, additional costs are incurred to store and maintain this inventory. In
some cases, the stock may be stored to anticipate an eventual increase in demand or
simply because disposal costs are higher than the storage costs. However, customer
service is a primary reason that pushes businesses to stock dead inventory so that
an occasional buyer can procure them at a salvage price in the future.

Waters (2008) proposed another classification of inventory based on the function of the
inventory within the process as follows (shown in Figure 2.1):
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Figure 2.1: Different types of inventory

• Raw materials: This inventory type represents the initial stage of the production
process. Raw materials are fundamental inputs utilised to create finished products,
and they are crucial for commencing the manufacturing cycle.

• Work in progress: This inventory signifies the intermediate stage of the produc-
tion process. Work-in-progress inventories are integral to the production cycle and
are still undergoing transformation.

• Finished goods: These inventories represent the final stage of the production pro-
cess. Finished goods are products that are ready for sale and delivery to customers.

• Spare parts: These are maintenance-related inventories. Spare parts are not
directly used in producing finished goods but are essential for the upkeep and repair
of machinery and equipment employed in the production process.

• Consumables: Comsumables such as lubricants, cleaning supplies, and office ma-
terials are necessary for the operation of the production process, though they do
not become part of the final product. Consumables are utilised in maintenance and
support activities.

2.2.1 Importance of inventory

Organisations across diverse industries exhibit significant variation in their inventory
holdings. While building materials like bricks and sand require sizeable storage spaces
with minimal specialised attention, expensive goods such as platinum, gold and diamonds
require smaller storage areas with heightened security measures. Perishable goods, such
as meat and milk, need special types of storage. Similarly, information can be stored in
vast quantities but must facilitate rapid searching, sorting, and retrieval. Despite these
distinct characteristics, inventory plays a crucial and indispensable role in every organisa-
tion. Without inventory, most operations would be rendered impossible. At a minimum,
inventory enables operations to become more efficient and productive. It affects lead
times and material availability, thereby impacting customer service, satisfaction, and the
perceived value of products. Furthermore, inventory affects operating costs, profitability,
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return on assets, return on investment, and various other financial performance metrics.
Inventory also shapes broader operational facets, such as the optimal size, location, and
type of facilities (Waters, 2008).

2.3 Inventory Control

Inventory control refers to organising inventory management procedures to avail cus-
tomers with goods as required (Wild, 2017). Procurement, manufacturing, storage, and
distribution play integral roles by supporting the objectives of a typical organisation
(Wild, 2017). Inventory control coordinates these primary operating activities to har-
monise supply with projected demand. Effective procurement, manufacturing, storage,
and distribution are, thus, imperative for meeting customer needs. By synchronising
procurement, production, warehousing and delivery operations, inventory management
aims to facilitate the realisation of business objectives. Thus, inventory control regulates
the provision of finished goods, spare parts, raw materials, obsolete items, and other
necessities (Wild, 2017; Jaber et al., 2009). Logistics, customer services and production
significantly rely on inventory control efficiency (Jaber et al., 2009). Efficient inventory
control systems offer numerous benefits, including improved customer satisfaction on an
annual basis, reduced investment through effective planning and allocation, opportunities
for trade purchase discounts, procurement of materials that adhere to product specifi-
cations, streamlined purchase and storage processes, as well as optimised production
scheduling and reordering. Moreover, efficient control assured proper receipt, transaction
and storage procedures for future purposes (Clodfelter, 2022).

2.4 Challenges of Inventory Control

Inventory control faces several challenges that impact customer satisfaction and opera-
tional efficiency. Inefficient stock management can result in delivery unavailability, order
shortages, lost sales, and bottlenecks, leading to dissatisfied customers. On the other
hand, excessive emphasis on customer service can lead to overstocking, tying up exces-
sive capital in inventories (Biswas et al., 2017). Balancing these conflicting objectives
is crucial. Managers need to determine the optimal level of customer service while con-
trolling inventory costs. This involves avoiding both overstocking and understocking to
ensure materials are available when required in manufacturing operations (Mula et al.,
2006). Effective inventory control also contributes to economic efficiency, waste reduc-
tion, and minimising losses in the process.

The efficiency of inventory control directly affects the firm’s flexibility. Inadequate pro-
cedures and strategies can result in undesirable inventory levels, with some items being
overstocked while others face stock-outs. Inefficient inventory control leads to increased
investment levels or higher ordering costs for excessive inventory or operational compro-
mises in the case of low inventory levels (Mathur, 1994). Proper inventory control involves
measures such as ABC analysis, setting inventory holding standards, and determining re-
order costs (Mathur, 1994). Furthermore, the primary goal of inventory control is to
provide a continuous and timely flow of high-quality and relevant information/materials
to enable retailers/suppliers to serve end buyers effectively (Zinn and Charnes, 2005).
However, unexpected disruptions like stock-outs render inventory management ineffec-
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tive, and various factors may contribute to the ”Bullwhip Effect”.

Material management is another critical aspect of inventory control, encompassing pro-
curement, warehousing, scheduling, inventory control of raw materials, and transporta-
tion (Federgruen and Zipkin, 1984). Procurement plays a vital role in operational activi-
ties, involving relationships between buyers and suppliers at strategic levels. Determining
the required demand relies on factors such as scheduled orders, sales history, marketing
initiatives, and customer feedback. Accurate demand forecasting is essential and involves
both internal components within the firm and external partners such as suppliers and
customers. In logistics, transportation is a significant concern as it directly impacts the
movement of products. The choice of transportation methods affects the number of ware-
houses required for inventory management. Additionally, transportation economies play
a role in the accumulation of inventories or raw materials, as purchasing the full load
capacity lowers per-unit transportation costs (Jaillet et al., 1997).

Inventory control faces challenges in achieving customer satisfaction, balancing inventory
levels, managing the procurement of raw materials, forecasting demand, transportation
logistics, and maintaining cost-efficiency. Overcoming these challenges requires effective
inventory control systems and strategies that align with the organisation’s goals and
optimise operational processes. Mathematical models have been developed to offer in-
valuable guidance to management when making decisions regarding order quantities and
replenishment frequencies. The genesis of these models is credited to Harris (1913), who
conceptualised the inaugural model, widely recognised as the Economic Order Quantity
(EOQ) model. This model was explicitly designed to determine the optimal lot size,
referred to as the order quantity and the replenishment frequency, with the primary aim
of minimising the costs associated with inventory management. In its most fundamental
form, the EOQ model attains this objective by striking a balance between the expenses
associated with inventory holding and the fixed costs associated with order placement
(Sebatjane, 2020).

2.5 The classic EOQ/ EPQ model

2.5.1 Initial development of the EOQ model

Determining the appropriate quantity of units to order is a crucial factor in supply de-
cisions for all companies. Given this significance, the EOQ model has gained increasing
importance over the past century. Its origin can be traced back to Harris, who first intro-
duced the model in 1913. This model operates on the assumption that the optimal order
size can minimise certain inventory-related costs. Thus, it becomes essential to consider
factors such as holding costs and the trade-off between total ordering size. As described
by Schroeder (2007), the EOQ represents the optimal quantity that strikes a balance
between minimising inventory holding costs and the costs associated with reordering.
Throughout decades of research, the strength of the EOQ model has been widely ac-
cepted, serving as a foundation for inventory control practices in subsequent stages of
development.

The classic EOQ model stands as the most straightforward inventory control model. It
aims to determine a fixed order quantity that minimises the combined costs of hold-
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ing inventory and placing orders. While procurement cost could likewise be included,
it typically does not impact the optimum order quantity unless quantity discounts are
considered. At its core, the EOQ model achieves equilibrium between holding cost and
ordering cost. As the order quantity increases, holding costs rise while ordering costs
decrease, and vice versa. Visual representations are shown in Figures 2.2 and 2.3 to il-
lustrate this dynamic trade-off and how total costs vary to changes in order quantity and
inventory levels over time (Sebatjane, 2018). Such illustrations demonstrate the interplay
between diverse cost elements the EOQ model seeks to balance.

Figure 2.2: Holding cost, ordering cost and total cost as functions of order quantity

(a) Fewer large orders result in higher inventory
holding costs and lower setup costs

(b) Numerous small orders result in lower in-
ventory holding costs and higher setup costs

Figure 2.3: Typical inventory system behaviour for the classic EOQ model

The inventory system illustrated in Figure 2.3 focuses on a single type of item and assumes
there is no lead time. At the beginning of each inventory planning cycle, an order for Q
items is received as a single shipment. Placing an order for Q items incurs an ordering
cost of OrC. The items are consumed at a constant annual rate of D until they are
completely depleted by the end of period T . As soon as the order is depleted, a new
order for Q items is received. The items are stored in inventory, incurring an annual
holding cost of h per item. The model assumes no quantity discounts or shortages. The
total cost per unit time, denoted as TC, is calculated as follows:

TC = h

(
Q

2

)
+OrC

(
D

Q

)
(2.1)
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The value of Q which minimises Equation (2.1), denoted by Q∗ and referred to as the
EOQ, is determined using differential calculus as:

Q∗ =

√
2OrCD

h
. (2.2)

2.5.2 Initial Development of the EPQ model

As previously stated in Section 2.5.1, the primary objective of the original EOQ model
developed by Harris (1913) is to provide managers with guidelines for ordering optimal
quantities from suppliers. However, it is widely recognised that the practical application
of the EOQ model is predominantly observed in batch manufacturing models, where the
requirement is to have all materials available at the time of processing the entire produc-
tion batch at once. Consequently, an extension of the EOQ model was introduced, known
as the Economic Production Quantity (EPQ) model, which governs the optimal batch
size. This model, as suggested by Taft (1918), is particularly suitable for manufacturing
a single type of product. The units produced are intended to fulfil immediate customer
requirements, while the remaining units are produced and stored to meet future customer
needs.

The overall approach to optimise this model is the same as the economic order quantity.
The derivation of the EOQ model is based on the assumption that the entire replenish-
ment is instantaneous. The EPQ model assumes that replenishment becomes available
at a rate of K per unit time, which corresponds to the production rate of the machinery
used to manufacture the item. As a result, the sawtooth diagram depicted in Figure (2.3)
is modified to that of Figure (2.4).

(a) One stock cycle with a finite replenishment
rate

(b) NVariation in stock level with finite replen-
ishment rate

Figure 2.4: Typical inventory system behaviour for the classic EPQ model

The primary change in the derivation is the calculation of the average inventory level,
which is now Q

2
(1 − D

P
). The total relevant costs can then be determined by modifying

the model represented in Equation (2.1). The total cost per unit time, TC, is:

TC = h

(
Q

2

)
· (1− D

P
) +G ·

(
D

Q

)
(2.3)
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With G: Set-up cost.
The value of Q, which minimises Equation (2.3), denoted by Q∗ and referred to as the
Optimal batch size, is determined using differential calculus as:

Q∗ =

√
2 ·G ·D

h
·
√

P

P −D
(2.4)

The practical application of Harris(1913)’s and Taft (1918)’s models to real-life inven-
tory systems is limited due to their restrictive assumptions. As a result, researchers
have sought to extend the model to address this limitation. These extensions involve
either relaxing the original implicit and explicit assumptions or introducing new ones
to accommodate diverse practical scenarios (Andriolo et al.,2014). These extended lot-
sizing models provide increased utility for practitioners and serve as the basis for the
research presented in this thesis. Specifically, the work builds upon models tailored for
deteriorating products, products in multi-echelon supply chain systems, products with
imperfect quality, perishable products with expiration dates, manufacturing with both
shifting production rates and continuous decline, products with price-dependent demand,
and products with inventory-level dependent demand.

2.6 Relevant inventory management models

2.6.1 Inventory models for deteriorating items

One of the first areas in which several extensions of the classic EOQ/EPQ model were
developed is the area of deterioration of products. The classical inventory models of
Harris (1918), rehashed in Taft (1918), assume that the depletion of inventory is due to
a constant demand rate only. In real life, decay or deterioration of items is a natural
phenomenon. Vegetables, fruits, foods, perfumes, chemicals, pharmaceuticals, radioac-
tive substances and electronic equipment are examples of items that lose value over time
through deterioration. Effective management of deteriorating inventory items is critical
for manufacturers and retailers. Due to the perishable nature of these items, stockholders
monitor the levels of inventory to prevent losses due to spoilage. Careful evaluation of
costs associated with deterioration stands out as a defining characteristic of these inven-
tory systems. Managing such products has resulted in significant research within the area
of inventory control.

Whitin (1957) was the first to consider the effect of deterioration on fashion items after
a prescribed date. Ghare and Schrader (1963) proposed a replenishment policy for an
exponentially decaying inventory. Covert and Philip (1973) examined an inventory model
for deteriorating items characterized by a variable rate of deterioration, where deterio-
ration refers to decay, damage, or spoilage, rendering the item unusable for its original
purpose. A Weibull distribution is employed to represent the probability distribution of
the time until deterioration occurs. The Economic Order Quantity (EOQ) formula is
derived under the assumption of constant demand, instantaneous delivery, and no short-
ages. Misra (1975) presented a production lot size model for an inventory system that
deals with deteriorating items. The analysis considers both the scenarios of varying and
constant rates of deterioration. A numerical method is proposed as a solution approach
for the varying rate case since obtaining a straightforward expression for the production
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lot size proves challenging. On the other hand, for the constant rate of deterioration, an
approximate expression is derived to determine the production lot size. Dave and Patel
(1981) developed an inventory model for deteriorating items with a deterioration rate,
which is a constant fraction of the on-hand inventory. Benkherouf (1995) presented an
optimal replenishment policy for a constant deterioration rate with a known and finite
planning horizon. Jaggi et al. (2006) proposed an optimal inventory replenishment policy
for deteriorating items in the presence of inflationary conditions. The analysis employs a
discounted cash flow (DCF) approach, which enables a comprehensive assessment of the
financial implications associated with inventory management, including opportunity costs
and out-of-pocket expenses. Moreover, the DCF approach allows for a precise considera-
tion of the timing of cash flows within the inventory system. Ouyang et al. (2006) focused
on developing a suitable inventory model for non-instantaneous deteriorating items that
incorporate a permissible delay in payments to identify an optimal replenishment policy
that minimizes the total relevant inventory cost. Srivastava and Gupta (2007) studied
an EOQ model for deteriorating items with a constant deterioration rate, with both con-
stant and time-dependent demand rates and no-shortages. Yan et al. (2011) proposed an
integrated production-distribution model for a deteriorating item in a two-echelon supply
chain. The model considers a restriction on the supplier’s production batch size, which
must be an integer multiple of the discrete delivery lot quantity to the buyer. Exact cost
functions are developed for the supplier, the buyer, and the entire supply chain. These
cost functions enable the determination of optimal policies for each entity involved, as
well as the optimal policy for the overall integrated supply chain. A procedure is outlined
to determine the optimal decisions for the supply chain to minimise the total system
cost. Mishra (2013) formulated an inventory model for instantaneously deteriorating
items. The model acknowledges the significance of managing the deterioration rate by
implementing preservation technology (PT) to address this concern effectively, mitigate
the impact of deterioration, and ensure better preservation of goods or assets. Mishra et
al. (2013) developed an inventory model for deteriorating items with a time-proportional
deterioration rate and time-varying holding cost. Majumder et al. (2015) developed an
Economic production quantity model for deteriorating items under a partial trade credit
policy. Pal et al. (2014) presented an inventory model for deteriorating items experienc-
ing fluctuating demand in a fuzzy environment and incorporated the impact of inflation
in the model. Wu et al. (2016) developed models for deteriorating items having a lifes-
pan within a supplier-retailer-customer chain. Viji and Karthikeyan (2018) proposed a
production-inventory model for deteriorating items with three levels of production, and
the rate of deterioration follows a two-parameter Weibull distribution. Agi and Soni
(2020) presented a deterministic inventory policy for a perishable product subject to
both physical deterioration and freshness condition degradation. Sepehri et al. (2021)
proposed a sustainable inventory model for deteriorating products with both quality and
environmental concerns. Halim et al. (2021) discussed a production inventory model
for deteriorating items along with an overtime production opportunity. Jain and Singh
(2022) examined the effect of frequent inspections in lot sizing under partial advance
payment and deterioration to reduce food wastage due to spoilage. Duary et al. (2022)
discussed an inventory problem for deteriorating items that integrates the concepts of
advance and delay payment. The model also incorporated the impact of advertisements
on products. Lu et al. (2022) examined the implications of various carbon emission poli-
cies on the optimal production-inventory decisions for deteriorating items. Mahapatra
et al. (2022) investigated three continuous review EOQ models for time-dependent dete-
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rioration, considering the utilisation of preservation technology. Initially, a crisp model
is formulated, which is then extended into a fuzzy model to accommodate the imprecise
nature of demand. Furthermore, the impact of the learning effect is analysed within the
fuzzy environment. All models are designed for a finite time horizon and incorporate
promotional efforts.Three algorithms are developed to determine the optimal solutions
for each of the three models. Rahaman et al. (2022) presented an inventory model for de-
teriorating inventory in which preservation technology to recover substantial loss of items
during production is implemented. Tiwari et al. (2022) explored how the inventory of
imperfect quality items is affected by deterioration and trade credit policy. Salas-Navarro
et al. (2023) proposed a vendor-managed inventory model for deteriorating items with a
three-layer supply chain.

All the aforementioned studies mentioned above on perishable items can be summarised
in five categories such as constant, linear, logarithmic, exponential and Weibull func-
tions. Wang, Lin, and Jonas (2011) examined the methodologies employed to model the
deterioration process (see Figure 2.5).

Figure 2.5: Different types of the continuous deterioration functions

• Constant function: Many researchers have assumed that the deterioration rate
remains constant over time. This assumption aligns well with goods such as oil,
alcohol, and certain cosmetic products (Chung and Wee, 2008; Huang and Yao,
2006; Aggarwal and Jaggi, 1995);

• Linear function: Other researchers such as Lin and Lin (2006) assumed deteri-
oration rate as θ(t) = θ1 + θ2.t where 0 ≤ θ(t) < 1 and 0 < θ1,θ2 < 1. Linear
deterioration form is suitable for modelling products that experience a uniform de-
cline in value or quality over time such as machinery, equipment, electronic devices,
infrastructure and buildings;

• Logarithmic function: This type of deterioration function is well-suited for mod-
elling products that experience a dramatic increase in their deterioration rate during
an initial phase, followed by rapid stabilisation. For example, numerous integrated
circuit (IC) chip products exhibit an increasing deterioration rate before packaging,
which then stabilises afterwards;
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• Exponential function: Certain dairy products, such as milk, rechargeable batter-
ies, fossil fuels or mineral deposits, may degrade slowly at first, but as the products
approach their expiration dates, the deterioration rate accelerates rapidly due to
spoilage ( Mahata, 2011; Lawrence et al, 2013; Gothi et al. 2017);

• Weibull function: Several researchers like Sharmila and Uthayakumar 2016),
have assumed that the generalised form of θ(t) could be represented as a Weibull
distribution, where θ(t) = ΠΩtΩ−1,Π,Ω ≥ 0. The Weibull deterioration function is
suitable for modelling products with diverse deterioration patterns, including both
increasing and decreasing rates over time. The Weibull function can capture a wide
range of deterioration behaviours, from constant to exponential, depending on the
value of the shape parameter Ω. Specifically, for Ω = 1, the deterioration rate
remains constant over time. For 1 < Ω < 2, the deterioration follows a logarithmic
pattern. Setting Ω = 2 yields a linear deterioration rate, while Ω > 2 results in an
exponential deterioration. This flexibility makes the Weibull function a powerful
and versatile tool for modelling the deterioration of diverse products.

2.6.2 Inventory models with planned shortage

Shortages have a significant impact on systems that account for time delays in deliv-
ery or payment, leading to various effects such as decreased profitability and sales. The
occurrence of shortages may result in higher sales losses as customers may opt not to
wait for the next replenishment. Furthermore, shortages can affect the selling price, with
some items being sold at discounted prices during backlog cycles to retain customers.
Researchers often address the question of how much to backlog, how long the backlog
cycle should be, and whether the permissible delay in the cycle is affected by the batch
size or order quantity.

Many studies in inventory models prioritised the characterisation of optimal policies for
perishable products by excluding shortage costs from their models. This simplified ap-
proach allowed researchers to focus on understanding the dynamics and implications
of certain products within a specific context. While this omission may not accurately
capture real-world scenarios, it provided valuable insights into replenishment strategies
and pricing decisions of certain products. By omitting shortages, these models lay the
groundwork for more comprehensive approaches that incorporate all relevant factors im-
pacting the overall cost of systems under study. These models provided a framework for
future research to expand upon by including shortages and developing solution techniques
that can handle more complex scenarios. As time progressed, inventory models consider-
ing the combined effects of deterioration processes and shortages became more common.
However, the basic models without shortages still played a crucial role in advancing the
understanding of perishable inventory management from a scientific perspective. It is
crucial to determine the optimal batch quantity in situations with shortages. Balancing
costs related to shortages, inventory holding, and potential sales loss is essential for find-
ing a profitable and efficient solution.

Some researchers have dealt with shortages as completely back-ordered demand. Luo
(1998) proposed an integrated inventory model for deteriorating items with backorders.
The study analyzed the impact of marketing strategies on system profitability, specifically
pricing and advertising. It determined the optimal production quantity and backorder
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level to maximise net profit. Das and Maiti(2003) presented a profit maximisation in-
ventory model for a differential item, where units are sold from two shops owned by a
single management. Shortages are allowed in both shops, and they are fully backlogged.
Hou(2006) proposed a mathematical model to address the inventory management of de-
teriorating items with shortages completely backlogged. The proposed model expands
upon previous research by incorporating factors such as deterioration rate, inflation, and
time value of money into the decision-making process over a finite planning horizon. Wee
et al. (2007) formulated an efficient inventory model for defective items and shortages.
The research assumes that in case of a shortage, customers are willing to wait for new
supply and backorders are allowed. This assumption is based on the understanding that
customers recognise and accept the occasional unavailability of the item and are prepared
to wait for it to be restocked. Najid et al. (2011) proposed a model that combines the
problems of capacitated lot sizing with complete shortage cost and determining optimal
maintenance cycles.This integration aimed to mitigate the impact of preventable failures
and reduce the frequency of unplanned events, incorporating strategic schedules for pre-
ventive maintenance actions within specified time windows to improve customer demand
fulfilment. Kharde (2012) presented a replenishment policy for planned shortages using
the concept of Equivalent Holding Cost (EHC) to optimise the EPQ system. These mod-
els are developed under complete backlogging. Pal et al. (2015) examined a production
inventory model for deteriorating items with shortages under the impact of inflation. The
deterioration rate follows a two-parameter Weibull distribution. Additionally, the model
takes into account the effect of inflation on stock shortages within a finite period to address
the devaluation of money caused by inflation. The inventory model is solved in a fuzzy
environment to account for parameters with vague or imprecise definitions. To find the
optimal solution, the authors considered production time and production rate as decision
variables in different scenarios. By incorporating a symmetric triangular fuzzy number,
they defuzzified the solution using the total lambda integral value. Viji and Karthikeyan
(2018) introduced a multi-level economic production inventory model for deteriorating
items. The model takes into account the production rate, demand rate, and deteriora-
tion rate, which is modelled using a two-parameter Weibull distribution. Their approach
allows shortages as well as dynamic adjustments of the production levels during different
time periods to optimise stock levels and minimise holding costs while meeting consumer
demands. Their objective was to achieve overall cost reduction throughout the inventory
cycle while maximising potential profits and customer satisfaction by finding the optimal
production time. San-José et al. (2019) developed an inventory model that is determinis-
tic with discrete scheduling. This model takes into account the possibility of backlogged
shortages. One of the assumptions made is that both the inventory cycle and stock-out
periods should be multiples of a fixed time period called the basic period. Any unfulfilled
demand is fully backlogged. The main goal of implementing this inventory management
system is to minimise the cost per unit time associated with maintaining and managing
inventory levels. The total cost includes holding costs, backlogging costs, and ordering
costs. The model involves two important integer decision variables: the number of periods
within a cycle and the number of periods for stock-in. A two-dimensional search method
is used to find the optimal inventory policy by considering the characteristics of the cost
function. This approach aims to calculate the economic order quantity and determine
an optimal inventory cycle that minimises total cost per unit time. Numerical examples
were provided to illustrate theoretical findings, and sensitivity analysis was performed to
assess how changes in specific parameters impact the optimal policy in this deterministic
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demand pattern with backlogged shortages setting. Overall, this model provides a sys-
tematic framework for efficient inventory management while minimising costs. Tiwari et
al. (2020) proposed an inventory model for deteriorating items that takes into account
shortages and partial delayed payments. The research provides theoretical findings on
the optimal replenishment time and the duration needed to deplete all stock, which are
then used to compute the most cost-effective ordering and backlogging strategies for re-
tailers. Analytical methods were employed to obtain optimal solutions, while numerical
validation was also conducted for the inventory model. Sicilia et al. (2022) proposed an
inventory model for multi-item systems and limited storage capacity. The scheduling pe-
riod or inventory cycle is predetermined and fixed. Initially, an aggregate cycle demand is
determined, which is then gradually released into the inventory system following specific
power patterns within the cycle. Additionally, shortages are permitted and fully back-
logged while considering limited warehouse capacity. Their objective was to determine
an optimal inventory policy that maximises expected profit per unit time through an
algorithmic approach for calculating optimal inventory levels and maximising expected
profit in online and in-shop sales.

The partial backordered state, which is a more generalised form of the completely back-
ordered situation, can be classified into two categories: time-independent and time-
dependent models (Sazvar, 2013). In time-independent cases, the number of unfulfilled
back-ordered customers does not depend on the waiting time to meet their requirements.
Law and Wee (2006), Lo et al. (2007), Hu et al. (2009), and Tshinangi et al. (2022) took
into account that a constant percentage of demand was back ordered over the length of
a stock-out interval. Pal et al. (2006) developed a deteriorating inventory problem with
a demand rate dependent on stock level, selling price and frequency of advertisement, in
which partial back ordering is considered. Mishra et al. (2013) developed an inventory
model for deteriorating items with a time-proportional deterioration rate, time-dependent
linear demand rate and time-varying holding cost under partial backlogging. Yang (2014)
investigated an inventory control policy with a stock-dependent demand rate and stock-
dependent holding cost rate with partial backordering. Tyagi et al. (2014) presented an
inventory model for non-instantaneous deteriorating items with stock-dependent demand
and variable holding cost and shortages. Ghiami et al. (2013) investigated a two-echelon
supply chain model for deteriorating inventory with stock-dependent demand and par-
tial backlogging in which the retailer’s warehouse has a limited capacity. San-José et al.
(2022) formulated an inventory system integrating time-dependent demand and partial
backordering, which maximized the Return on Inventory.

On the other hand, in models where backorders are partially allowed and depend on time,
it is assumed that the number of back-ordered demands during a stock-out cycle decreases
as the waiting time to fulfil customer demand increases. This means that customers are
more likely to wait if the waiting time is short. Thus, it is assumed that the fraction of
demand back ordered during a stock-out (β∗) decreases as the remaining time until re-
plenishment (τ ∗). Zhou et al. (2004) presented a model for managing inventory lot-sizing
model with waiting-time-dependent backlogging and a lot-size-dependent replenishment
cost. This model not only accommodates the conversion of backlogged demands to lost
sales but also models this conversion rate through a continuously decreasing function
based on the remaining waiting time until the next replenishment delivery. Abad (2003)
investigated the lot-sizing problem for a perishable good involving finite production, ex-
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ponential decay, and partial backordering, along with lost sales. The study considered
impatient customers, with the backlogging rate modelled as a negative exponential func-
tion of waiting time. Abad (2003) further assumed a first-come-first-served basis for cus-
tomer service during shortage periods and presented a solution procedure to determine
the lot size for maximizing the net profit cycle. However, the study did not account for
the shortage cost related to backlogged items and the cost of lost goodwill arising from
lost sales in the objective function. Yang (2005) examined partial backlogging in the
context of deteriorating items, considering four distinct inventory models. The analysis
incorporates both the opportunity cost associated with lost sales and the purchase cost,
facilitating a comprehensive comparison among the four alternatives. The backlogging
rate is defined as a differentiable and decreasing function of time to ensure generality.
Teng et al. (2007) extended Abad’s (2003) lot-sizing model by incorporating both the
shortage cost for backlogged items and the cost of lost goodwill due to lost sales. Subse-
quently, they introduced a new modelling approach inspired by Goyal and Giri (2003) to
address the lot-sizing inventory problem. Yang et al. (2010) developed an EOQ model
that incorporates several important factors, including partial backlogging, inflation and
time value of money, and time-varying replenishment cycles and shortage intervals to of-
fer a comprehensive and flexible approach to EOQ modelling. The theoretical framework
developed in the paper provides a basis for analysing and optimising inventory manage-
ment decisions under various real-world scenarios. Sarkar and Sarkar (2013) proposed
an inventory model for time-varying deteriorating items with time-varying backlogging
rates. Yang and Chang (2013) proposed a two-warehouse partial backlogging inventory
model with a permissible delay in payment under inflation. The model assumes that
the partial backlogging rate decreases as the waiting time up to the next replenishment
increases, and the two warehouses have different deterioration rates. Tiwari et al. (2018)
investigated an inventory model for deteriorating items in a two-level partial trade credit
setting, considering shortages. The study focused on a supplier-retailer-customer supply
chain and incorporated allowable shortages. The study aimed to determine the optimal
selling price, replenishment cycle time, and time to reach zero inventory while considering
factors such as deteriorating items, credit periods, and shortages. Meena et al. (2022)
proposed an inventory model that considers non-instantaneous deteriorating items with
delayed payments while also taking into account the visibility of products to diverse cus-
tomer segments. They derived the model by employing the discount cash flow method
to incorporate marketing costs and salvage value for deteriorated units throughout the
extended planning horizon marked. The inventory model accounts for shortages which
are partially backlogged. The rate at which items are back-ordered during stock-out pe-
riods varies based on the time until the next replenishment is received. They conducted
numerical examples and sensitivity analysis on key parameters to validate our approach
before discussing management implications based on these findings.

As described previously, the generalisation form of a complete backorder situation is a
partial backorder state. Studies on partial backorder assumptions can be divided into
two categories: time-independent and time-dependent models, as shown in Figure 2.6. In
time-independent partial backorder models, the number of unfulfilled demands is inde-
pendent of the waiting time required to meet the customer’s requirements (Law and Wee,
2006; Goyal and Giri,2003). In time-dependent partial backorder models, the number of
backordered demands during a stockout cycle is inversely proportional to the time it takes
to fulfil the customer’s demand. That is, more customers are willing to wait if the wait
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time is shorter.
Pentico and Drake (2011) categorised models for time-dependent partial backorders into
six different classes, as outlined in Table 2.1.

Table 2.1: Partial backorder forms

Form of β(τ ∗) Equation Range for τ ∗

Linear 1 β(τ ∗) = βM − (βM − β0)
(

τ∗

T1

)
0 ≤ τ ∗ ≤ T1

Linear 2 β(τ ∗) = βM −
(

βM

τ∗M

)
(τ ∗) 0 ≤ τ ∗ ≤ τ ∗

M

Rational β(τ ∗) =
(

βM

1+aτ∗

)
a > 0 0 ≤ τ ∗

Step β(τ ∗) = 1 0 ≤ τ ∗ ≤ τ ∗
M

Exponential β(τ ∗) = βMe
−aτ∗a > 0 0 ≤ τ ∗

Mixed Exponential∗ β (τ ∗1 , τ
∗
2 ) = β1e

−a1τ∗1+ 0 ≤ τ ∗
1 , τ

∗
2

β2e
−a2τ∗2 , β1, β2 ≥ 0 β1+
β2 ≤ 1 a1, a2 > 0

Figure 2.6: Partial backorder forms in the literature (Sazvar, 2013)

• Linear 1: The first form for a non-constant backorder was discussed by Montgomery
et al. (1973). In this form, β(τ ∗) has an initial value, β0, at the time the stock-out
begins (i.e., when τ ∗ has its maximum value) and then increases linearly until it
reaches a maximum value, βM , when the new replenishment order is received (when
τ ∗ = 0 );

• Exponential: In this model, β(τ ∗) is obtained by multiplying βM with a negative
exponential function of τ ∗. This exponential form was first proposed by Papachris-
tos and Skouri(2000) and later it was incorporated into the basic EOQ model with
partial backlogging by San José et al. (2006);

∗It is assumed that there are two kinds of customers.
†β0: Initial value of β(τ∗)
‡βM : Maximum value of β(τ∗) over a stock-out interval
§TI : Length of time during an inventory cycle for which there is stock-out
¶τ∗M : Maximum customer’s waiting time
‖:Time remaining until the next replenishment order is received
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• Rational: β(τ ∗) is βM divided by a positive linear function of τ ∗ (San José et al.,
2005);

• Linear 2: This form provides a more flexible approach compared to the linear 1
form, as it allows the initial backorder rate β∗, to vary based on the length of the
stockout period. In the linear 2 model, the backorder rate is initially zero until a
time τ ∗M before the replenishment order arrives, and then it increases linearly until
it reaches its maximum value, βM , at τ ∗ = 0 which is the time of replenishment.
This flexibility can make the linear 2 model more suitable in certain situations, as
it captures the impact of the stockout duration on the backorder rate. The linear
2 model was introduced and analysed by San José et al. (2005);

• Step: This form is similar to the linear 2 policy as the backorder parameter β(τ ∗)
equals to zero until a time τ ∗M before the arrival of the replenishment order. How-
ever, it diverges from the linear 2 policy because β(τ ∗) immediately increases to one
and maintains this value until a new replenishment is received, rather than grad-
ually increasing as in the linear 2. San José et al. (2005) analysed this particular
form. The β(τ ∗) function differs from the previous ones, exhibiting a U-shaped or
dish-shaped pattern rather than a non-decreasing function of τ ∗;

• Mixed exponential: The basic assumption behind the mixed exponential model, as
examined in Sicilia et al. (2009), is that there are two distinct customer segments.
For some customers, the reluctance to backorder decreases as the replenishment
time approaches. Conversely, another group exhibits the opposite behaviour, be-
coming more inclined to backorder if the wait is prolonged. Sicilia et al.(2009)
assumed that this might occur if customers believe that a longer wait will ensure
they receive higher-quality items or will get a discount. The combination of these
two customer types results in a backordering-likelihood function that is the sum
of two exponential forms. One exponential form, with a maximum value of β1, is
based on τ ∗ (referred to as τ ∗1 ), while the other, with a maximum value of β2, is
based on T1 − τ ∗ (referred to as τ ∗2 ), representing the time elapsed from the stock-
out onset until the requirements for the customers that are willing to wait for the
next replenishment arrive. The aggregation of these two exponential forms yields a
dish-shaped function.

The extensions of the EOQ/EPQ models with planned shortages differed based on the
type of shortage function used in each study. However, these studies provided valuable
insights into how shortages affect the formulation of the model.

2.6.3 Inventory models with price-dependent demand rates

Another extension of the EOQ/EPQ model concerns scenarios where demand changes
with respect to price. These scenarios consider the correlation between consumer de-
mand and product price. In 1974, Ladany and Sternlieb conducted one of the pioneering
studies extending the EOQ model to include varying demand rates linked to the prod-
uct’s selling price. Their model investigated how the EOQ interacts with diverse pricing
policies to ascertain the order quantity that maximises a company’s net profit. Prior
to constructing the model, several assumptions were made, including deterministic de-
mand dependent on the selling price, single-batch supply ordering, and a unit cost that
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decreases either linearly or hyperbolically. Subsequently, Ray et al. (2005) carried out
another study that explored the link between product demand and its selling price, in-
tegrating this association into the EOQ model. This investigation focused on a scenario
involving a company selling a single product utilising mark-up pricing. Additionally,
linear and log-linear demand functions were considered in this study. The study demon-
strated that, from a profitability perspective, for customers highly sensitive to pricing
changes with non-linear demand, managers should avoid substantial price reductions and
instead adopt an assertive approach.

The EOQ model was further expanded through a series of research that explored demand
as a function of the selling price, making the key assumption that the demand function
was deterministic. Notable contributions in this area include the work of Fibich et al.
(2003) and Chou and Parlar (2006), who employed a linear deterministic demand func-
tion; Jeuland and Shugan (1988) and Agrawal and Ferguson (2007), who utilised a power
deterministic demand function; Hanssens and Parsons (1993) and Song et al. (2008),
who expressed the deterministic demand function in an exponential form; Chen et al.
(2006), who employed a logarithmic deterministic demand function; Chen and Simchi-
Levi (2012), who incorporated a logit-based deterministic demand function into their
research; Avinadav et al. (2014), who proposed an optimal ordering and pricing policy to
maximise profits given a deterministic demand function that is affected by both price and
inventory age; Feng et al. (2017) expanded Wu et al. (2016)’s model by considering pric-
ing strategy as an additional factor; Bai et al. (2017) analysed a sustainable supply chain
system with deteriorating items, which consists of a manufacturer and a retailer sub-
ject to carbon cap-and-trade regulation, and the demand is affected by three endogenous
variables: promotional efforts by the retailer, product selling price, and the sustainable
level determined by the manufacturer; Khan et al. (2020), who developed mathemati-
cal models for perishable items with advance payment, linearly time-dependent holding
cost and demand dependent on advertisement and selling price. These studies collectively
contributed to a deeper understanding of how variations in selling price influence demand
and, subsequently, how this information can be effectively integrated into the EOQ model
to optimize inventory management and ordering decisions. Torkaman et al. (2022) intro-
duced a Mixed-Integer Nonlinear Program (MINLP) to address the Production-Routing
Problem with Price-Dependent Demand (PRP-PD). Feng et al. (2022) studied pricing
and lot-sizing decisions for fresh (or perishable) goods and incorporated multiple pay-
ment types, including advance, cash, and credit payments when demand is a generalised
downward-sloping curve that depends on unit price, displaying stocks and product age.

The aforementioned models all operated under the assumption that the demand function
was deterministic. However, a range of studies took the EOQ/EPQ model a step further
by introducing demand functions characterised by random probability distribution func-
tions, as demonstrated by Huang et al. (2013). Federgruen and Heching (1999) extended
the EOQ model to encompass demand distribution influenced by the item’s price. This
extended model was predicated on several assumptions, including the price being depen-
dent on the state of the system being managed and the ability to place a replacement
order at the beginning of a given period. Additionally, Petruzzi and Dada (1999) intro-
duced the connection between demand and the selling price into an EOQ model. Their
research examined different forms of uncertainty, including additive, multiplicative, and
hybrid uncertainties. Their case study revealed that when uncertainty took an additive
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form, the optimal price did not surpass that obtained from the deterministic model. How-
ever, when the uncertainty was in a multiplicative form, the optimal price did not fall
below the deterministic model’s outcome. Moreover, their model demonstrated that a
single-period model could be effectively applied to a multiple-period problem, enhancing
the practicality and versatility of this innovative model. Chen and Simchi-Levi’s model,
introduced in 2004, is yet another model that treated the demand function as stochas-
tic. In this research, demand was regarded as a random variable, with its probability
distributions influenced by the product’s selling price. Similar to earlier studies, this
model involved making pricing and ordering decisions at the beginning of the period and
encompassing both fixed and variable costs in the ordering cost. The researchers demon-
strated that when the demand model followed an additive pattern, the optimal policy
involved managing inventory based on the principle that an order is placed only when
the inventory level at the beginning of the period falls below a specific reorder point.
Furthermore, in this scenario, the price was best done based on the inventory position
at the beginning of the period. Moreover, other stochastic demand models found in the
literature included those developed by Kocabıyıkoglu and Popescu (2011) and Phillips
(2005). These models collectively enriched our understanding of how stochastic demand
can influence inventory management and ordering decisions in various scenarios.

Additional demand models, often referred to as ”willingness to pay demand function,”
operate on the premise that consumers exhibit varying levels of willingness to purchase
a product from a company at a specific selling price, which may be less than the max-
imum price they are prepared to pay for that product (Huang et al., 2013). Among
these models, one noteworthy example is the model crafted by Kalish in 1985. Kalish’s
(1985) model tackled this concept by integrating the uncertainty received from consumer
feedback and experiences with the product, adjusting the product’s value accordingly.

Moreover, there exist Poisson flow models that delve into the dynamics of customers’ pur-
chasing processes and their evolving price preferences. These models take into account
shifts in customers’ willingness to pay for certain products. Zhao and Zheng (2000) were
among the first to introduce an inventory model that considers customers whose reser-
vation price distribution dynamically changes over time, following a non-homogeneous
Poisson process. This model also considers changes in the probability function of this
distribution as time progresses. An (2003) explored a continuous-time dynamic pricing
model where a seller aims to sell a single item within a finite time frame. Customers
arrive following a Poisson process, and upon arrival, they purchase if the posted price
is lower than their individual reservation price; otherwise, they exit without a purchase.
Notably, some customers who have made a purchase may subsequently return the item
at an exponential rate, expecting a full refund. The seller’s objective is to dynamically
adjust the price to maximise the expected total revenue as the sales period concludes by
formulating the dynamic pricing problem as a dynamic programming model. In scenarios
with more general reservation price distributions, the author presented an approximation
of the original model by discretising both time and the permissible price range and then
introduced an algorithm to numerically compute the optimal policy within this discrete-
time model. Lin (2004) proposed a sequential dynamic pricing model where the seller sells
a given stock to a random number of customers. He also formulated the seller’s problem
as a stochastic dynamic programming model and developed an algorithm to compute
the optimal policy. Wen and Chen (2005) established a dynamic pricing model for the
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sale of a uniform inventory of perishable products over a limited time horizon by putting
forth three theorems to elucidate the characteristics of expected revenue and time-based
thresholds in a single-product, single-retail store problem. In this model, the authors con-
sidered demand in a stochastic Poisson form and assumed that it is price-sensitive. All
customers are treated as independent entities, and they purchase if the current price falls
below their respective reservation price. Each customer’s reservation price signifies the
maximum amount they are willing to pay for the product. Typically, these reservation
prices exhibit a continuous distribution across the customer population. Furthermore,
both the arrival rate of customers and the distribution of reservation prices fluctuate over
time. Additionally, the authors assumed that there are no competing firms operating on
the Internet, meaning they disregard the impact of external competition. Liu and Yang
(2012) focused on the practice of dynamic pricing, specifically on the markup strategy
employed by firms. Their model involved using real-time inventory data to determine the
most opportune moments to increase sales prices. In this model, demand follows a Pois-
son process, with the instantaneous rate being the result of two factors: one influenced
by the current price and the other by the current time. By employing a combination of
mathematical induction and sample-path arguments, they established the optimality of
threshold policies. Pang et al. (2015) explored the behaviour of bid prices in revenue
management (RM) environments. In RM, the optimal pricing decision depends on con-
sumer valuation and bid price. The study provides a probabilistic characterisation of
optimal bid-price processes, showing that they have an upward trend before inventory
levels fall to one and then a downward trend. This pattern is driven by the resource
scarcity effect and the resource perishability effect. The article also demonstrates how
bid prices and consumer valuation interact over time to drive the optimal price process.
The findings apply to network RM problems as well. Katehakis et al. (2022) focused on
analysing an irreversible dynamic pricing situation, specifically when a firm uses real-time
inventory information to determine the optimal time to increase its sales prices. They
assume that the aggregate demand is influenced by independent purchase decisions made
by a multitude of buyers and that the firm’s pricing decisions impact the arrival rate
of demand. The study proposes a demand pattern that includes a time-dependent term
and a price-dependent factor and establishes the optimality of a threshold policy for both
markup and markdown cases. The policy involves price-switching at specific time points
based on current price choices and inventory levels. Additionally, this research discusses
the concept of the ”leapfrog” phenomenon, the challenges of maintaining value function
monotonicity, and tests to determine the optimality of arrival patterns. Other studies
that adopt the Poisson flow to model the demand function include the work of Bitran
and Mondschein (1997), Xu and Hopp (2009), and Cao et al. (2012). These models offer
valuable insights into how customers’ behaviour and preferences evolve and their impact
on revenue.

All the above models operate on the assumption that a single firm exclusively sells the
given product. However, in the real world, it is more common to encounter scenarios
where multiple competitors are selling similar products. Consequently, several models
were developed to address this reality, taking into account the impact of competition on
demand in a multi-firm environment. Notable among these models are those devised by
Anderson et al. (1992) and Vives (1999). These models consider a linear demand func-
tion and incorporate the effects of both the product’s price and the prices of competitors’
products. It is worth noting that these models place a greater emphasis on the impact of
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the product’s price compared to the influence of competitors’ prices. Lu (2019) discussed
a mathematical model for revenue management in a competitive market. It combines
the stochastic knapsack problem and a non-cooperative game model to understand the
rational behaviour of sellers and then establishes a dynamic recursive procedure that
incorporates the value and utility functions of the game, leading to the identification of
some important structural properties.

Based on the comprehensive review of the diverse price-dependent models mentioned
above, it is evident that the methodological approach and underlying assumptions for
model development can vary significantly depending on the characteristics of the demand
function and the competitive landscape. Furthermore, the broad spectrum of demand
functions employed in these models offers a range of advantages and disadvantages for
each. This variety of insights is valuable when it comes to selecting the most suitable
demand function for developing models in the context of this thesis.

2.6.4 Inventory models with time-dependent demand rates

In addition to investigating how inventory models are influenced by product selling prices
and the shortage, previous literature has also explored the effects of time on demand, lead-
ing to the development of extended models. This has led to the development of extended
models to accommodate such variations. These models primarily focus on goods with
finite shelf lives, which experience decay, spoilage, or loss of utility over time. Examples
of such products include fish, medicine, vegetables, and airline tickets, all of which start
to deteriorate as soon as they are produced. Many research studies have expanded the
traditional EOQ/EPQ model to incorporate the impact of time on product demand. The
earliest models in this area were developed by Resh, Friedman, and Barbosa (1976) and
Donaldson (1977). Resh et al. (1976) extended the EOQ model to incorporate deter-
ministic demand that increases linearly with time. Their model was based on three key
assumptions: prompt inventory replenishment based on the required number of items, a
well-defined planning horizon, and the inclusion of replenishment, carrying, and shortage
costs. The derived model aimed to determine the optimal schedule for inventory replace-
ment to minimize costs when the inventory level reaches zero. The researchers demon-
strated that for a given number of required replacements ”m,” there exists a unique vector
of ”m” time intervals that minimises the total cost. They also developed an algorithm
to determine the optimal value of ”m” and the corresponding replacement schedule us-
ing the derived mathematical formula. Furthermore, the researchers expanded the scope
of the formulated model by considering products with increasing rates of demand and
diminishing markets, simultaneously. Donaldson (1977) utilised dynamic programming
methods, focusing on the replacement cycle and cycle time to derive the demand.

Another important study that considered time-dependent demand rates is the study by
Bose, Goswami, and Chaudhuri (1995). Unlike previous models, this study incorporated
shortages, backlogging, inflation and the time value of money. The model was based
on several assumptions, including a constant deterioration rate, an infinite replenish-
ment rate, and a finite time horizon with multiple reorder points. The comprehensive
model also took into account three types of costs: production cost, carrying cost, and
shortage cost. The production cost was influenced by the internal inflation rate, increas-
ing total cost, while the unit purchase price was affected by the external inflation rate.
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The carrying cost included both opportunity costs and out-of-pocket expenses unrelated
to operations, such as insurance, taxes, and storage.Numerical cases were examined to
analyse the effects of shortages on reorder numbers, system cost, and scheduling period.
Additionally, a sensitivity analysis provided an understanding of the influence of inde-
pendent variables on the model’s results. Balkhi and Benkherouf (2004) presented an
inventory model for deteriorating items with stock-dependent and time-varying demand
rates over a finite planning horizon. Panda et al. (2009) developed an inventory model for
perishable products with time-varying demand. Maihami and Kamalabadi (2012) intro-
duced a comprehensive joint pricing and inventory control model for non-instantaneous
deteriorating items. This model considers a demand function that is influenced by both
price and time, allowing shortages and partial backlogging. The primary objective of
this model is to determine the optimal selling price, replenishment schedule, and order
quantity, all to maximise the overall profit. To facilitate the practical application of the
model, the authors provided a straightforward algorithm for finding the optimal solution.
Additionally, they included a numerical example to illustrate the model’s use in real-world
scenarios. Sarkar et al. (2012) looked into the development of an optimal inventory re-
plenishment policy for an item experiencing deterioration with time-quadratic demand,
time-proportional deterioration functions, as well as variable replenishment cycles in their
model. Additionally, they considered the impact of waiting-time-dependent partial back-
logging. Khanra et al. (2013) explored an EOQ model for an item under time-dependent
demand characteristics. This model incorporates a quadratic time-dependent demand
function that allows for payment delays and presents a mathematical model for deter-
mining the optimal order quantity and cost within the inventory system. The authors
derived the model under three distinct scenarios and used numerical examples to illustrate
the outcomes. Moreover, the authors extended the model’s scope to include shortages and
introduced trade credit periods as additional variables. The resulting inventory model
describes the relationship between demand rate, inventory levels, and time. Two partic-
ular cases were examined: one where the buyer accrues interest and another where the
buyer doesn’t incur interest but earns it during a specific period. Guchhait et al. (2013)
presented an EPQ model for damageable items with variable demand rates in which both
the inventory carrying cost and the production rate are assumed to be time-dependent.
Chowdhury et al. (2015) developed an inventory model for deteriorating items to deter-
mine the optimal strategy for a firm that sells a seasonal item over a finite planning time
to maximise the firm’s expected profit.Chen et al. (2019) focused on the problem of man-
aging a single product inventory system over a finite horizon. The product is perishable
and deteriorates over time, with the deterioration rate dependent on the inventory level.
Demand for the product is deterministic and influenced by the inventory level, price, and
time. The objective is to determine the pricing and replenishment policy that maximises
average profit per period. The authors propose a model and algorithm to determine the
optimal policy. A numerical example illustrates the model and a sensitivity analysis is
conducted. The paper concludes with a summary of the research and suggestions for
future work. Sanni et al. (2020) investigated a reverse logistics EOQ model for deterio-
rating items that address the inventory problem of determining when to order and how
much quantity to order with the reverse flow of items in the system to maximise profit
using the Karush-Kuhn-Tucker (KKT) conditions. Akan et al. (2021) discussed the op-
timal pricing and inventory policy for a follower firm in the fashion industry, with the
demand for fashion products going through three stages: growth, maturity, and decline.
Small retailers, as followers, only have the opportunity to observe the demand levels in
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the second stage. The study aims to find the optimal pricing and inventory policies con-
sidering a single replenishment opportunity and a shrinking market. The interest rate is
assumed to be time-dependent, and the article proposes a discrete pricing heuristic using
a control theoretic approach. Their findings suggest that a piece-wise constant pricing
strategy may be more practical in real-life settings. Khan et al. (2022) discussed two
sustainable inventory models for perishable items with limited storage capacity, advanced
payment, time-dependent demand and time-varying holding cost under partial backlog-
ging. Aarya et al. (2022) introduced a two-storage production inventory model, where
the demand is influenced by both the pricing and the passage of time. The demand rate
is shaped by the selling price and the elapsed time. In their analysis, they made an initial
assumption that the rate of deterioration remains constant, and for the storage they own
(OW), the holding cost varies with time. Unlike the OW, for rented storage (RW), they
considered that the deterioration rate is time-dependent while the holding cost remains
constant. Recently, Kumar et al. (2023) formulated a framework designed to pinpoint
the optimal replenishment time and quantity to effectively manage sales operations while
preventing stockouts. Their study integrates the influence of promotional activities and
product reliability on customer purchasing behaviour, employing the concept of the Ca-
puto fractional order derivative. The authors engaged in a comprehensive exploration of
various inventory models and their respective limitations, underscoring the necessity for a
model that accounts for the interplay of time, product reliability, and promotional efforts
in shaping demand. To illustrate the practical application of their proposed model, they
conducted a case study involving an e-commerce retailer. The results of this case study
provide compelling evidence for the advantages of utilising this model in the context of
inventory planning. Saranya and Chandrasekaran (2023) presented a depleted demand
inventory model with constant deterioration. The demand rate is assumed to be time-
dependent, with initial non-zero demand occurring due to advertisements. The research
encompasses two distinct replenishment strategies: one without shortages and another
with shortages. The primary aim is to ascertain an appropriate replenishment policy
that effectively minimises the total inventory cost. The paper meticulously delineates
the assumptions, symbols, and formulation of the model. Rukonuzzaman et al. (2023)
discussed an inventory planning problem for a company that sells perishable items with a
quantity-based discount under time-dependent demand. The study aims to minimise the
company’s costs by considering the impact of the discount on inventory planning. The
authors introduced two solution algorithms for the problem and provided an example
of a mango business to verify the inventory procedure. The findings suggest that the
company can benefit from a reduced acquisition price by making larger purchases under
the discount program.

The extensions of the EOQ/EPQ model that considered time-dependent demand varied
depending on the specific demand function used in each study. It is important to note
that all of these models focused solely on scenarios where competition is not present,
highlighting a limitation of these models. Nonetheless, valuable insights were obtained
regarding the impact of various assumptions on the formulation of the model.

2.6.5 Inventory models with stock level-dependent demand rates

Another area of inventory management that has witnessed significant attention focused
on a class of inventory models that consider demand rates dependent on the stock or
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inventory level. These models assume that the presence of retail inventory has a stim-
ulating effect on customer behaviour. It is not uncommon to observe stores displaying
large quantities of items as ”psychic stock” to encourage sales of specific retail products,
as noted by Larson and DeMarais (1990). This phenomenon can also be observed with
products that are essentially similar but have slight individual differences. In such cases,
higher inventory levels provide customers with a broader selection, increasing the likeli-
hood of making a purchase.

Unlike classical inventory models where demand is treated as an exogenous variable, these
inventory models with inventory-level-dependent demand assume that the demand rate
is endogenous to the firm and is influenced by the inventory level. Consequently, retailers
are incentivised to maintain higher inventory levels, even with increased holding costs, as
long as the item remains profitable and the demand is positively correlated with the in-
ventory level. This approach leads to additional sales, improved fill rates, and potentially
greater profits. The field of operations management has recognised this motivating effect
of inventory on demand and has developed models that incorporate this relationship.
Datta and Pal (1990) proposed a deterministic inventory system for deteriorating items
with a constant deterioration rate and demand rate that is a linear function of stock level.
Chakrabarti and Chaudhuri (1997) presented a replenishment inventory problem for a
deteriorating item over a finite horizon with a linear trend in demand rate. Datta and
Pal (2001) discussed an inventory model with both price and stock-dependent demand
under a finite time horizon. Urban (2005) provided a comprehensive review of inventory
models with inventory-level-dependent demand. It explores two types of models: one
where the demand rate is a function of the initial inventory level and the other where it
is dependent on the instantaneous inventory level. The article demonstrates the equiv-
alence of these two types of models and proposes an alternative approach to sensitivity
analysis for these models. The article also discusses the motivating effect of inventory on
demand and how higher inventory levels can lead to increased sales and profits. Pal et al.
(2006) discussed the impact of deterioration, marketing strategies (such as pricing and
advertising), and storage capacity on inventory management. The demand rate depends
on various factors, including the displayed stock level, the selling price, and the frequency
of advertising across both electronic and print media, as well as through sales represen-
tatives. The model allows for shortages, which, if they occur, are partially backlogged at
a variable rate, dictated by the waiting time until the arrival of the next replenishment.
The model also accounts for transportation costs associated with replenishing goods,
and the authors assumed that the showroom or shop has a finite storage capacity. They
explored various scenarios and sub-scenarios based on the relative influence of stock level-
dependent demand parameters and the storage capacity of the showroom/shop. These
scenarios are solved using the GRG (generalised reduced gradient) method and a com-
putational approach. Alfares (2007) presented an inventory model with a stock-level
dependent demand rate and a variable holding cost throughout the inventory cycle to
discuss how demand for a product can be influenced by internal factors such as price and
availability. The author proposed a unique step structure for the holding cost function
of perishable items and developed an inventory model with two types of time-dependent
holding cost increase functions, such as retroactive holding cost increase and incremental
holding cost increase function. The paper by Panda et al. (2008) deals with an EPQ
model for seasonal products with stock-dependent demand. Roy et al. (2009) presented
a mathematical model for an inventory system that focuses on deteriorating items with

29



uncertain planning horizons and stock-dependent demand. The model assumes a linear
relationship between displayed stock and demand. It takes into consideration both fuzzy
and random parameters while also accounting for inflation and the time value of money.
The time horizon is treated as a random variable following an exponential distribution.
The authors developed a genetic algorithm (GA) that implements roulette wheel selec-
tion, arithmetic crossover, and randommutation techniques to optimise the total expected
profit. When dealing with crisp inflation effects, the GA aims to maximise profits over the
planning horizon when dealing with crisp inflation effects. However, when the inflation
effect is fuzzy, the total expected profit becomes fuzzy as well. The authors employed the
possibility/necessity measure of a fuzzy event to obtain the optimistic/pessimistic return
of the expected profit. Sarkar (2012) developed an EOQ model that incorporates a finite
replenishment rate and proposed an ideal replenishment policy for scenarios where de-
mand is stock-dependent and permissible delay payment. Lee and Dye (2012) formulated
a deteriorating inventory model with stock-dependent demand by allowing preservation
technology cost as a decision variable in conjunction with replacement policy. Sakar and
Sakar (2013) discussed the EOQ model that focused on deteriorating items with stock-
dependent demand. The model incorporates time-varying backlogging and deterioration
rates to determine the optimal cycle length for each product, aiming to minimise the
expected total cost, including holding, shortage, ordering, deterioration, and opportunity
costs.Additionally, necessary and sufficient conditions are presented to demonstrate the
existence and uniqueness of the optimal solution. Practical applications of this proposed
model are illustrated through numerical examples accompanied by sensitivity analysis
and graphical representations. Chakraborty et al. (2015) investigated multi-item inte-
grated production-inventory models involving suppliers and retailers. The models focus
on the collaboration between suppliers and retailers dealing with products experiencing
a constant rate of deterioration, subject to stock-dependent demand. Several aspects are
considered in these models, including the supplier’s production cost, retailer procurement
cost, and supplier transportation cost. The supplier’s production cost is treated as a non-
linear function that depends on the production rate. The retailer’s procurement cost is
exponentially dependent on the credit period, and the transportation cost is considered a
nonlinear function of the quantity purchased. The primary objective of the models devel-
oped by Chakraborty et al. (2015) was the determination of credit periods and the total
duration of the supply chain cycle that optimised the inventory system, all within the
constraints of space and budget limitations. The models are further adapted to function
within fuzzy, random, and bifuzzy environments. Several variables, such as ordering cost,
procurement cost, retailer selling prices, holding costs, production cost, transportation
cost, supplier setup cost, total storage area, and budget, are all considered in fuzzy and
bifuzzy environments. Lee et al. (2017) investigated a vendor-managed inventory system
with a consignment stock agreement applied to an integrated vendor-buyer system. In
this system, the vendor produces a single product in batches and delivers it to the buyer
in equal-sized transfer lots. Consignment inventory refers to a situation where a sup-
plier stocks their products in a buyer’s warehouse without receiving payment until the
products are used or sold. This arrangement can offer several benefits to both the sup-
plier and the buyer, including reduced holding costs, improved cash flow, and increased
availability of products. Their research also discussed the different stocking policies that
can be employed in consignment agreements, such as the forward stocking policy, which
involves pushing inventory forward to the buyer’s warehouse as soon as possible, and the
backward stocking policy, which involves replenishing inventory based on actual usage
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or sales. However, the choice of stocking policy depends on various factors, such as the
cost structure, demand patterns, and supply chain characteristics. The objective of the
models was to maximise the total profit for the coordinated system. Lee et al. (2017)’s
research demonstrated that, for any stock-dependent demand, a minimum restocking
level on the buyer’s sales floor is a more profitable strategy than the traditional run-out
replenishment policy. It further demonstrated that when the unit inventory holding cost
decreases as the stock moves downstream in the supply chain, the vendor should adopt a
forward stocking policy. Pando et al. (2018) analysed an inventory model for deteriorat-
ing items with a constant rate of deterioration and stock-dependent demand rate. The
cumulative holding cost for items held in stock is defined by a nonlinear function in both
the time and stock level. The objective of the model is to maximise the total profit per
unit of time. To obtain an approximate optimal solution, the author presented a numer-
ical algorithm. Comparisons are made between the proposed model and models without
deterioration. San-José et al. (2018) presented an inventory model for items with demand
that depends on price and time. The demand rate is assumed to be a combination of a
time-power function and a price-logit function. Mishra et al. (2019) formulated an inven-
tory model for deteriorating items, taking into account a hybrid price-stock-dependent
demand. The model considers the trade credit policy and applies the discounted cash
flow approach specifically for re-manufactured products. The study aims to identify the
optimal cycle time, selling price, and present profit of future cash flows through the
application of mathematical modelling, theoretical analysis, case examples, sensitivity
analysis, and managerial implications. Chen et al. (2019) presented an inventory model
of short life cycle products that deteriorate over time. The study focuses on a finite
horizon multi-period setting with deterministic, stock-level-dependent, time-varying, and
price-dependent demand to maximise the average profit per period by determining the
optimal replenishment and pricing strategy. Their research demonstrates the importance
of advertisement in increasing the demand for products and the significance of managing
inventory about the expiration date of perishable items. It also highlights the role of
advance payment in the relationship between suppliers and retailers. Halim et al. (2021)
discussed an EPQ model with a nonlinear price structure and stock-dependent demand
while also accounting for the possibility of overtime production opportunities. Cárdenas-
Barrón et al. (2020) proposed an economic order quantity (EOQ) model that considers
both nonlinear stock-dependent demand and nonlinear holding cost. Mallick et al. (2023)
considered the concept of stock-dependent demand within an inventory control system
for deteriorating items. Additionally, the model takes into account the increase in market
price over time, as well as the inflation in the model. The analysis of the proposed model
is conducted within a finite time horizon. The optimal profit is calculated based on the
optimal replenishment period for each cycle. As the parameters associated with the sys-
tem may not always be deterministic, the model introduced a degree of uncertainty. To
address this uncertainty, the model is extended to a fuzzy model by considering fuzzy
membership functions. The fuzzy model is then defuzzified using the Center of Gravity
(COG) method and the fuzzy extension principle. Akhtar et al. (2023) presented an
inventory model with price-dependent demand that maximises the retailer’s total profit
over a finite time horizon.

As seen from the above review of the various models, in real-life scenarios, demand
functions are not always constant, linear, nonlinear, price, or time-dependent. Instead,
the demand rate for items can fluctuate in the market due to the stock level or the
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combination of the stock level with a different factor that could influence the demand
function.

2.6.6 Inventory models with imperfect quality

Another factor that needs to be considered when developing EOQ/EPQ models is the
quality of products. In procurement, imperfect products can be attributed to various
stages. One common scenario arises when suppliers are not adequately assessed, result-
ing in the selection of a supplier incapable of fulfilling the required quantity or quality
standards. Moreover, unclear specifications and requirements may also result in items
that do not meet their intended purpose or desired level of quality, further exacerbating
issues with inventory management. During manufacturing, defects can occur for various
reasons, such as equipment malfunction, human error, or external factors, and they can
lead to a decrease in the product’s quality. When defects occur, the production process
may need to be slowed down or stopped to identify and rectify the issue. This can re-
sult in additional costs, such as setup costs, inspection costs, and downtime costs, which
can impact the overall production. Moreover, defects can lead to increased customer
complaints, product returns, and decreased customer loyalty, which can have a negative
impact on the company’s reputation. Several studies have investigated the effect of de-
clining production rates and defects on inventory management.

Item quality was incorporated into inventory management research by Salameh and Jaber
(2000). Unlike previous models, which suggested that no defective items are produced,
Salameh and Jaber (2000)’s research considered defective items. To ensure quality con-
trol, a 100% screening process is conducted at a rate of x units per unit of time. Both
categories, consisting of good and poor-quality items, are subsequently put up for sale.
The good quality items are sold continuously throughout the inventory replenishment
cycle, while the poor quality items are salvaged. The optimal solution for this model was
obtained through mathematical equations derived from closed-form expressions.

Figure 2.7: Inventory system behaviour for items with imperfect quality

The study proposed by Salameh and Jaber (2000) and depicted in Figure 2.7 incorporates
the following key elements:

• The model considers a scenario where a lot size of Y items is delivered instanta-
neously with a purchasing price of pc per unit and an ordering cost of OCr.
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• Not all of the items received in each lot are of good quality. To ensure quality
control, a 100% screening process is conducted at a rate of x units per unit of time,
which separates the good quality items from those of poor quality.

• The lot contains a certain percentage of defective items, denoted as q, which follows
a known probability density function, f(p).

• The screening process occurs for the duration t.

• Good quality items are sold for sp per unit and are demanded at an annual rate
of D. Poor quality items are sold as a single batch at a price sd per unit, which
is lower than the price charged for good quality items at the end of the screening
period.

2.6.6.1 Extensions made to the classic model for items with imperfect quality

Goyal and Cardenas-Barron (2002) proposed a simplified approach to determine the op-
timal solution for the inventory model introduced by Salameh and Jaber (2000). They
achieved this by modifying the expression for the expected value of the total profit cycle.
Unlike Salameh and Jaber, Goyal and Cardenas-Barron separately determined the ex-
pected values of revenue and total cost. This approach required less computational effort
compared to Salameh and Jaber’s method. Huang (2002) extended the model introduced
by Salameh and Jaber (2000) by incorporating a vendor-buyer cooperative supply chain
relationship. Unlike Salameh and Jaber, who focused on optimising the buyer’s costs,
Huang aimed to optimise the total costs incurred by both the buyer and the vendor. In
this cooperative model, the vendor supplies items to the buyer, who screens them for qual-
ity before offering them for sale. The buyer sells only good quality items, while the vendor
incurs a warranty cost for the fraction of poor quality items supplied to the buyer. Chan
et al. (2003) proposed an inventory model that distinguishes between three groups of
items based on their quality: good quality items, poor quality items, and defective items.
The distinction between the three groups allowed for a more nuanced treatment of items
based on their quality and potential for sale. It takes into account the possibility of selling
poor quality items at a reduced price or after reworking them rather than treating them
as a single category with no differentiation. This differentiation in the treatment of items
enables the development of more accurate and comprehensive inventory management
strategies. By considering the different categories separately, the model accounted for
the costs and revenues associated with each group, leading to improved decision-making
regarding pricing, rework, and rejection of items based on their quality characteristics.
Chang (2004) incorporated fuzzy sets theory into the basic EOQ model with imperfect
quality items. The primary aim was to identify the order quantity that would yield the
maximum total profit, considering the presence of fuzzy inputs within the model. Two
distinct scenarios were examined during the application of fuzzy theory. In the first sce-
nario, the fraction of imperfect quality items was treated as a fuzzy variable. The second
scenario extended the analysis by assuming fuzziness in both the fraction of imperfect
quality items and the demand rate. By incorporating fuzzy sets theory into the EOQ
model, Chang aimed to enhance the realism and adaptability of inventory management
decisions, effectively addressing the inherent fuzziness and uncertainty associated with
the input parameters. Wee et al. (2007) extended Salameh and Jaber (2000)’s model by
developing an inventory model for items with imperfect quality items, where shortages
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were allowed and fully back-ordered. This adjustment implied the company did not incur
a cost for lost sales, as all customers were willing to wait for the backordered stock. Jaber
et al. (2008) expanded upon the imperfect quality EOQ by incorporating learning effects.
The primary distinction between their model and Salameh and Jaber’s (2000) lies in the
assumption that the fraction of imperfect quality items decreases according to a learning
curve. To account for the learning effect, Jaber et al. (2008) assumed that the fraction
of imperfect quality items could be represented by an S-shaped logistic learning curve.
Glock et al. (2012) considered the impact of sustainability on the production process
and provided insights into how manufacturers can balance economic goals with environ-
mental responsibility. They focused on a manufacturer producing a single product in a
market where demand is influenced by both price and quality and where the production
process is assumed to have an environmental impact, such as emissions or waste or the
consumption of non-renewable resources.

Many traditional inventory models assume that warehouses have unlimited capacity.
However, in real-world scenarios, retailers may be motivated by factors like temporary
price discounts to purchase quantities of goods that surpass their warehouse’s limita-
tions. Consequently, these retailers might find it necessary to rent extra warehouses to
meet their business requirements. Chung et al. (2009) relaxed this assumption by consid-
ering an inventory model that incorporates both imperfect quality and two warehouses
to address the practical challenges associated with imperfect quality and the need for
additional warehousing capacity. The proposed model and solution approach provides
decision-makers with a framework to optimise their inventory management strategies.
Chen and Kang (2010) studied a vendor-buyer inventory system for items with imperfect
quality. In addition, they assumed that the vendor grants the buyer trade credit financing
by allowing the buyer to receive stock and only pay for it at a later stage. The buyer
incurs an interest charge for this transaction, which is paid to the vendor. The objective
function in their model was the total system costs for both the buyer and the vendor.
Khan et al. (2010) expanded upon the model presented in Salameh and Jaber (2000) by
introducing two significant modifications. Firstly, they introduced the assumption that
the rate of screening for defective items follows a learning curve. Secondly, they incor-
porated the transfer of knowledge during the learning process when screening transitions
from one cycle to the next. This transfer of learning was considered in three scenarios:
(i) no transfer of learning, (ii) complete transfer of learning, and (iii) partial transfer of
learning. Wahab et al. (2011) extended Salameh and Jaber (2000)’s model to a vendor-
buyer supply chain model. While previous models had touched upon similar concepts,
this study approached it from three realistic perspectives. Firstly, they examined the sit-
uation where both the buyer and vendor operate within the same country - an assumption
implicitly made in earlier inventory models for items with imperfect quality. Secondly,
they explored a scenario where the buyer and vendor are located in different countries
while considering stochastic exchange rates between them. Lastly, they investigated how
carbon emission costs impact production and logistics activities involved in fulfilling or-
ders when there is a geographical separation between vendors and buyers across borders.
Sana (2011) proposed an integrated production-inventory model for a three-level supply
chain involving suppliers, manufacturers, and retailers. The model considers both perfect
and imperfect quality items and considers various business strategies, such as optimising
the order size of raw materials, production rate, unit production cost, and idle times in
different sectors to examine the impact of the collaborative marketing system. Yassine
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et al. (2012) proposed a modified version of Salameh and Jaber (2000)’s model to ad-
dress the issue of shipping poor-quality items by exploring two scenarios: aggregation
and desegregation. In the aggregation scenario, multiple production runs are combined
to form a single batch for shipment. On the other hand, in the desegregation scenario,
poor-quality items are assumed to be sold separately during each production cycle. Singh
et al. (2013) proposed an inventory model incorporating two distinct warehouses - an
owned warehouse/showroom and a rented warehouse. The proposed model also considers
the realistic assumption of limited storage capacity in the rented warehouse. Defective
units are accounted for as a natural occurrence in production processes, representing
imperfect quality production. Additionally, inflation is considered within this model. A
solution method is provided to determine the optimal replenishment cycle, production
cost, inspection cost, damaged item cost and preservation technology cost to minimise
total costs per unit of time. Hsu and Hsu (2013) proposed an inventory model for items
with imperfect quality items and sales returns. They also considered errors in the screen-
ing process as a factor that increased the likelihood of customers returning items. When
a sales return occurs, the retailer incurs additional costs, including item costs, customer
refunds, and reverse logistics expenses. Modak et al. (2015) incorporated one of the re-
cent trends in inventory management for items with imperfect quality, namely preventive
maintenance. Their model considered a just-in-time manufacturing environment that pro-
duces both perfect and imperfect quality items, regardless of the preventive maintenance
nature. Preventive maintenance is an integral part of the production process, requiring
periodic shutdowns to improve the condition of the production unit to an acceptable
level. During these shutdowns, just-in-time buffers for both perfect and imperfect qual-
ity items are considered for maintaining normal operations. The duration of preventive
maintenance is stochastic, and it is influenced by the production unit’s condition. The
percentage of imperfect quality items is also subject to randomness. The study aims to
determine the optimal just-in-time buffer to minimise the system’s running cost, account-
ing for holding costs of perfect and imperfect quality items, as well as shortage costs for
both. Khan et al. (2016) introduced the concept of Vendor-Managed Inventory (VMI)
to the inventory model for items with imperfect quality. In this vendor-buyer inventory
system, the vendor supplies the buyer with items, not all of which are of good quality.
In a VMI agreement, the vendor retains ownership of the stock, which is stored at the
buyer’s warehouse or store. However, the responsibility for managing and controlling
the stock lies with the buyer. The motivation behind their model stemmed from the
observed increase in the number of manufacturers and retailers opting for VMI agree-
ments. These agreements enable closer collaboration and coordination between vendors
and buyers, resulting in improved inventory management, better stock availability, and
reduced stockouts. Nobil and Taleizadeh (2016) constructed a multi-product Economic
Production Quantity (EPQ) inventory model for a defective production system on a single
machine with a rework process and auction. their focus lay on addressing issues relating
to reworking faulty products and determining the optimal cycle length and percentage of
reworking every faulty product that would ultimately lead to minimizing total inventory
cost. Al-Salamah (2016) proposed an EPQ model that addresses imperfections in both
the production process and inspection. The model focuses on determining the optimal
lot size for a manufacturer producing items in batches, where batches undergo either de-
structive or non-destructive acceptance sampling before reaching the market. The model
takes into account potential errors in testing, including Type 1 and Type 2 errors. If a lot
is rejected, it undergoes a more expensive non-destructive screening stage to categorise
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items as non-defective, reworkable, or salvage. The expected net profit function consid-
ers various components such as primary and secondary market sales, salvage item sales,
setup and variable production costs, return cost, rework cost, screening cost, destructive
cost, work-in-process, sales items inventory, rework item inventory, and salvage inventory.
Kim et al. (2018) explored an improved approach to calculating imperfect items within
an integrated inventory model. The model employs a distribution-free approach for lead
time demand, aiming to optimise lot size, safety factor, number of shipments, and lead
time simultaneously. The backorder rate is influenced by the reduced lead time. In their
model, the quality of products is taken into account, and each item is inspected by the
buyer. Defective items are returned to the supplier during the delivery of the next lot.
Additionally, certain investments are made to enhance product quality and reduce setup
costs. De et al. (2018) presented an EPQ model for items with imperfect quality. In the
proposed model, the imperfect items that can be reworked are sent back for reprocess-
ing, aiming to improve their quality. On the other hand, the remaining imperfect items
that cannot be reworked are sold at a discounted price to recover some value. Further-
more, the model incorporates environmental regulations, and a carbon tax is introduced,
assuming that the manufacturer incurs this tax if its production processes generate a
specified quantity of carbon emissions. Sebatjane and Adetunji (2019) proposed an in-
ventory system for the growing items. An assumption is made about a fraction of these
items being of lower quality than desired. The process involves ordering live newborn
items, feeding them until they reach a customer-preferred weight, and then slaughtering
them. The slaughtered items undergo screening to separate good quality ones from those
of poorer quality before being put on sale. The model aimed to maximise the expected
total profit. Guha and Bose (2020) reviewed the article by Al-Salamah (2016). Two ma-
jor modifications are introduced to address inconsistencies in the inventory computations
presented in Al-Salamah’s work. First, Guha and Bose’s model accounts for defective
items sent to the primary market. Second, the model assumes that, for non-destructive
testing, the expected proportion of defective items in accepted and rejected lots should
differ from that of the production process, a consideration not included in the original
article. Ahmed et al. (2021) proposed a new inventory model that integrates partial
backordering and multi-delay-in-payments. The model considers the presence of defec-
tive items and the possibility that repaired batches may still contain defects. Due to
imperfections in the manufacturing system of a global supplier, imperfect items are pro-
duced. However, instead of resorting to costly reverse logistics for replacement from a
distant manufacturer, the purchaser can utilise local repair stores for minor reworking
of these valuable defective goods. Asadkhani et al. (2021) developed an EOQ model
with different types of imperfect items, such as salvage, scrap, and reject. Tiwari et al.
(2022) examined how managing imperfect quality items, deterioration, and trade credit
policies can impact inventory control. A two-warehouse model is developed to analyse
deterioration in quality and the use of two-level trade credit. The researchers determine
the optimal lot size that maximises total profit per cycle through analytic calculations,
utilising differential calculus methods to find the best solution. The results highlight
the potential cost savings in the supply chain when combining trade credit policies with
deteriorating imperfect quality items.
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2.6.7 Inventory models with freshness condition and expiration
dates

The freshness condition of products is another factor that significantly impacts the eco-
nomic prospects of manufacturers and retailers. The freshness of products, such as meat,
tomatoes, or vegetables, is crucial in determining their quality and safety for consump-
tion. Consumers tend to prefer fresh products due to their better taste, texture, and
nutritional value. People typically do not buy products when they are close to their ex-
piry date for several reasons. Firstly, expired products are potential health hazards due
to the growth of harmful bacteria or the breakdown of active ingredients. This can be
particularly concerning in the food industry. Secondly, some expired products like phar-
maceutical products may lose their effectiveness or become unsafe to consume, leading
to health risks and waste of money. Thirdly, the perception of expiring products being
of lower quality or value may also deter consumers from purchasing them. This can be
particularly true for products that have a short shelf-life. As a result, manufacturers and
retailers may be forced to discount or dispose of them, leading to financial losses and
waste. Food and pharmaceutical safety regulations are in place to ensure that products
are safe for consumption, and freshness is a critical factor in determining the safety of
the products consumed. Fujiwara and Perera (1993) were the first to investigate the
impact of utility deterioration, specifically declining freshness, on inventory management
for perishable products. They used an exponential penalty cost function to model the
deterioration. Cardello and Schutz (2003) analyzed the various factors associated with
the freshness condition of food products and their significance in the food industry. Bai
and Kendall (2008) presented a model that manages a deteriorating inventory and shelf
space of fresh produce in a single period, assuming that the demand rate is determinis-
tic and dependent on the level of inventory displayed and the freshness condition of the
item. Piramuthu and Zhou (2013) extended Bai and Kendall’s (2008) model for perish-
able inventory by linking the demand directly to the amount of shelf space allotted to
the specific item and its current quality, using auto-ID technology like Radio Frequency
Identification (RFID), which includes the necessary sensors that generate information on
an item. Wu et al. (2016) investigated an economic order quantity (EOQ) model that
takes into account dynamic timing, expiration date, and inventory volume as factors that
influence demand rate. Dobson et al. (2017) investigated the inventory management de-
cisions of a retailer selling a single perishable good in a deterministic environment. The
model considers consumers’ assessment of product quality over time, with the demand
rate being influenced by factors such as freshness, expiration date, and stock level. The
traditional assumption of zero-ending inventory is challenged since both freshness and
stock levels have an impact on demand. Feng et al. (2017) investigated a model for
managing inventory of perishable products in which demand is expressed as a multivari-
ate function of price, freshness, and displayed stocks. It is assumed that the age of the
product reduces on-hand stocks and decreases the demand rate. In addition, the product
becomes unsuitable for consumption or sale after its expiration date. The selling price is
considered an endogenous decision variable, impacting both the demand rate and total
profit. The model allows for a closeout sale at a markdown price and keeps displayed
stocks fresh and plentiful since the demand is freshness-and-stock dependent. This ap-
proach relaxes the traditional assumption of zero-ending inventories to non-zero-ending
inventories. Banerjee and Agrawal (2017) developed an inventory model that considers
a general demand function and general deterioration distribution. The model takes into
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account the deterioration of an item and its freshness condition. Li and Teng (2018)
developed a model that integrates pricing and lot-sizing decisions for retailers selling per-
ishable products. The demand for these products is influenced by factors such as the
selling price, reference price, product freshness (as determined by the expiration date),
and displayed stock level. They proposed a deterministic model wherein the retailer de-
termines optimal selling prices and ending inventory levels to maximise discounted total
profit. Additionally, they explored two distinct scenarios of demand behaviour: loss neu-
trality and loss aversion. Jansen et al. (2018) studied an inventory model that takes
into account both age and closing days constraints. The proposed stochastic multi-item
inventory model considers various factors such as total stock capacity limits, positive lead
time, periodic inventory control, target customer service level, and mixed FIFO and LIFO
issuing policies for perishable items with fixed lifetimes. They also assessed the impact
of the closing days constraint using mathematical inventory models for perishable goods
and focused on waste reduction and total costs. The methodology used involves develop-
ing a new inventory model with a closing days constraint for perishable items. Through
a comparative simulation analysis using rolling planning data, they demonstrated how
incorporating the closing days constraint can optimize order decisions while minimising
waste quantities and costs in grocery stores. Khan et al. (2023) examined two inventory
models with shortages to address the challenges for perishable products such as seasonal
fruits, meat, poultry, eggs, dairy products, juices, jams, jellies, and other similar items.
To better represent the demand for perishable items, a function is used that considers
both linear price dependence and non-linear advertisement dependence. Additionally, the
rate at which the products deteriorate over time is influenced by their expiration date.
Two critical scenarios were highlighted in this research: models without shortages, which
assumed sufficient stock levels to consistently meet customer demands while minimising
the risk of running out of stock, and models with shortages, which considered the po-
tential risks associated with unexpected factors causing stock-outs. This study aimed
to develop effective inventory management for businesses dealing with perishable goods,
where optimising pricing, advertising, and stock management strategies becomes crucial.

2.6.8 Lot-sizing models with corporate social responsibility

Customers’ demands can also be influenced by external factors such as natural disasters,
pandemics, corporate events, international politics and other unexpected events. These
events can cause sudden changes in demand, which can be difficult to predict and man-
age. The current era of globalisation and technological progress has made it challenging
for businesses to establish or uphold a competitive edge due to heightened competition.
Currently, firms are increasingly recognising their responsibilities towards promoting so-
cietal welfare, commonly known as corporate social responsibility (CSR). This refers to
the voluntary inclusion of social, environmental, and health-related objectives in their
business practices and strategies (Sharma and Kiran, 2013). The strategic and opera-
tional implications of CSR in supply chain management have been explored by numerous
researchers. Panda et al. (2017) investigated the impacts of CSR on a socially responsi-
ble manufacturer-retailer closed-loop supply chain (CLSC) with a focus on two aspects:
profit maximisation and social responsibility via product recycling where the manufac-
turer demonstrates its social responsibility by recycling used products collected from the
retailer through the reverse channel. This study focuses on a manufacturer-retailer supply
chain scenario where the manufacturer takes into account stakeholder well-being through
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CSR activities alongside profit generation. In addition to manufacturing new products,
the manufacturer also collects used items through reverse channels, recycles them into
new products, and sells these products through forward channels. It is assumed that
the manufacturer demonstrates corporate social responsibility by engaging in product
recycling, which showcases a higher level of environmental consciousness to stakeholders
and shareholders. The profit generated by the socially responsible manufacturer encom-
passes both pure profits from selling newly manufactured products, as well as benefits
resulting from CSR initiatives, including consumer surplus derived from stakeholders and
profits stemming from recycled products. Additionally, Panda et al.(2017) explored how
revenue-sharing mechanisms and Nash bargaining strategies could be utilized to resolve
channel conflicts and distribute surplus profits while also examining the impact of CSR
activities. The authors addressed five key inquiries, including how CSR efforts are linked
with product recycling, a feasibility assessment for manufacturers to maximise overall
welfare through environment-friendly recycling practices, prioritisation of social respon-
sibility to motivate a retailer to fully engage in collecting and recycling used products,
in other words, is it feasible for a socially responsible manufacturer to ensure maximum
effort in recycling through the retailer effective coordination of such a supply chain using
any type of coordination contract. Lastly, investigate the impact of CSR and, subse-
quently, recycling on the wholesale price and profitability of the manufacturer. Raj et
al. (2018) analysed five types of contracts related to the coordination of the supply
chain by assuming that the supplier is putting in greening effort and the buyer is putting
in CSR efforts. Raza (2018) proposed supply chain coordination schemes for a single
manufacturer-retailer supply chain. These schemes involve making decisions regarding
pricing, inventory management, and investments in CSR initiatives, considering the un-
certain nature of demand that is influenced by both price and CSR investment factors.
Modak et al. (2019) considered the impact of selling price and social work donation
(SWD) on demand and provided optimal closed-form solutions for three decentralised
and a centralised channel structure in a sustainable supply chain model that incorporates
CSR activities. Seyedhosseini et al. (2019) examined the impact of a manufacturer’s CSR
effort on customer price sensitivity in a two-echelon competitive supply chain consisting of
a monopolistic manufacturer and two duopolistic retailers. Modak et al. (2020) presented
a comprehensive framework and identified future research directions for CSR in supply
chain management. Su et al. (2021) examined the impact of two commonly practised
corporate social responsibility activities, namely social donations and green industrial de-
velopment, on a multi-component assembly production system with imperfect processes.
The analysis assumes that demand is influenced by both selling price and CSR effective-
ness. They formulated the problem as an EPQ model aiming to maximise profits. The
decision variables include the duration of each process during production runs, expenses
allocated for social donations, and investments in green industrial development. Their
findings demonstrated the existence of an optimal solution, which was also proven to be
unique. Furthermore, they presented an algorithm for computing the optimal solution.
To validate their proposed model’s effectiveness, they conducted numerical simulations
using a footwear original brand manufacturing company based in Taiwan as a case study.
Raj et al. (2021) considered the impact of greening and CSR on suppliers and buyers and
compared the full and asymmetric information on different decision alternatives. Four
distinct decision alternatives are considered, each reflecting a combination of greening
and CSR efforts by the supplier and buyer. These four scenarios include:

• A scenario where the supplier emphasises greening and corporate social responsi-

39



bility while the buyer is solely focused on maximising profits;

• A scenario in which the supplier prioritises greening efforts while the buyer focuses
on CSR endeavours;

• A situation where it is the supplier who emphasises CSR activities while the buyer
concentrates on greening initiatives;

• A case wherein both buyer and supplier parties are equally committed to combining
their respective greening and CSR efforts with profit maximisation.

After examining various models under different conditions, they then analysed the cen-
tralised and decentralised cases with wholesale price contracts and linear two-part tariff
contracts and then developed a cut-off policy and evaluated the value of information in
situations involving asymmetric information.

It is essential to recognise that the impact of CSR on economic performance typically man-
ifests as gradual improvements, demonstrated through changes in purchase intentions,
increased sales figures, enhanced corporate perception, and boosted employee morale. To
illustrate this point further, many companies commonly engage in charitable donations
to promote sales or strengthen their brand reputation. This approach often involves al-
locating a portion of the revenue from each purchase to charitable organisations such as
foundations supporting children and families, social welfare initiatives, rural education
programs, and rare disorders. To enhance customers’ intention to purchase, companies
can promote certificates of donation obtained from various organisations. Additionally,
companies commonly engage in social donations for disadvantaged groups. For instance,
these groups may sell products provided by the companies at lower cost prices as a means
to support themselves financially (Su et al., 2021).

2.6.9 Inventory models with shifting production rate

The production process is the backbone of any manufacturing industry. This involves
the conversion of raw materials into finished products. However, assumptions of constant
smooth production may not always hold. Industry 4.0 technologies have recently trans-
formed the manufacturing domain, necessitating a shift in current production capabilities
to meet customised client requirements and enable personalised production on a global
scale. The requirement for shorter product life cycles, higher production rates, increased
job complexity, superior product quality, and cost-effectiveness have become critical for
the industry (Lenz et al., 2020). To address these challenges, manufacturing processes
must be highly available, flexible, configurable, and accessible (Ashraf and Hasan, 2018).
This transformation is crucial, considering the manufacturing process’s significant role
in shaping the production-inventory system’s overall efficiency and effectiveness. Many
production systems operate in a multi-state mode, where different machines or processes
can function at varying rates. This flexibility allows for adjustments in production levels,
optimising resource utilisation, and enhancing responsiveness to changing market con-
ditions. Scaling production becomes essential for manufacturing plants, particularly in
response to fluctuations in product demand and seasonal variations. Aligning produc-
tion output with market requirements helps prevent negative consequences, such as high
holding costs due to rapid inventory buildup.
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Moreover, scaling production enables businesses to flexibly allocate resources, ensuring
efficient utilisation of operational expenses, including labour, energy, and raw materi-
als. Power consumption also influences production scale, with companies adjusting rates
in response to power shortages or limited availability. Quality control and process im-
provements further motivate the need for scaling production and aligning manufacturing
processes with evolving industry standards. In essence, the manufacturing industry faces
a dynamic landscape, requiring not only technological advancements but also strategic
adaptations in production capabilities to meet the challenges and opportunities presented
by Industry 4.0. Gupta and Arora (2010) examined a production inventory system that
considers alternating production rates caused by market fluctuations and other relevant
constraints to satisfy various demand patterns. Bhowmick and Samanta (2011) presented
a continuous production control inventory model with variable production rates, allow-
ing for a switch between production rates during the production process to maintain a
certain level of manufactured items at the initial stages. Sivashankari and Panayappan
(2015) considered a production inventory model that considers deteriorating items and
utilizes two different production rates to avoid excessive inventory and enhance consumer
satisfaction while maximising profit. Mishra (2018) introduced a three-rate production-
inventory model that considers deteriorating products with a demand rate that is depen-
dent on advertising cost and selling price. The production rates are assumed to be finite
and proportional to the demand rate. To address production challenges similar to those
experienced during the Covid-19 pandemic, Malumfashi et al. (2022) proposed a model
for delayed deteriorating items having a two-phase production period and a holding cost
function that is linearly increasing with time.

While fluctuating demand, seasonality, or power consumption are common reasons com-
panies adjust production output, another critical factor influencing the decision to shift
between production levels is the state of the manufacturing equipment, particularly for
systems with degrading or deteriorating machines. Even with stable demand and consis-
tent power supply, issues can arise with equipment during production, leading to process
deterioration. Such deterioration poses a major challenge, causing production delays,
downtime, missed deadlines, decreased product quality, increased waste, lost business
opportunities, higher costs, and decreased efficiency. Researchers have delved into the
impacts of manufacturing efficiency, reliability, process availability, and preventive main-
tenance in recent years (Rahim and Ben-Daya, 2001, Llaurens, 2011). The age of machin-
ery is a significant factor contributing to system degradation and a decline in production
efficiency. Ageing machines may become less efficient, with increased maintenance and
repair costs, resulting in longer production times, higher downtime, reduced product
quality, and elevated production costs per unit. Another factor influencing production
decline is the usability of machines. The rate of degradation plays a crucial role in the
lifespan of manufacturing systems, impacting the severity of failures and the quality of
manufactured parts (Rivera-Gómez et al., 2018, Samala et al., 2021). In manufacturing
industries, various factors, including flexibility, machine availability, and equipment state,
have gained attention. The dynamic nature of equipment states is a crucial consideration,
with a growing literature acknowledging situations that may arise during the lifetime of
a production system. Systems may be ”in a state of control” or ”out of control”. While
there are tools such as predictive maintenance techniques that can help identify potential
issues before they occur, there is no foolproof method to predict when a breakdown will
happen. When a system is designed to automatically reconfigure at the occurrence of a
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failure, enabling the degraded or deteriorated machine to function with reduced service
delivery, it is termed a multi-state system (MSS). This introduces a third state, known
as the ”degraded state”, alongside the two previous states, providing a nuanced perspec-
tive on the complexity of manufacturing processes. When machines are not functioning
optimally, it may become necessary to shift to a lower production rate and avoid fur-
ther damage or unplanned repairs. By shifting to lower production rates, manufacturing
plants can dedicate more attention and resources to identifying and rectifying any issues
that may arise within their production lines, thereby ensuring efficient use of resources.
The concept of flexible manufacturing systems with unreliable machines, failures and re-
pairs presented in the form of a Markov Process was first introduced by Rishel (1975) and
then Olsder and Suri (1980). Schweitzer and Seidmann (1991) introduced the concept
of flexibility to discuss the optimisation of the processing rate for a flexible machine in
a manufacturing system. Khouja and Mehrez (1994) presented an extension of the EPQ
model that incorporates situations where the production rate becomes a decision variable
and also accounts for degradation in the quality of the production process that occurs
as the production rate increases. Khouja (2005) reformulated some inventory models to
allow for adjustments (minor setups) to the manufacturing resource within the produc-
tion cycle without interrupting the system. These adjustments do not involve performing
all activities of a full set-up and incur only a fraction of a full set-up cost and time.
Jaber (2006) extended the work of Khouja (2005) by assuming that the setup cost re-
duces over time because of learning effects and that the rate of defects reduces because
the production process benefits from changes eliminating the defects, and thus reduces
with every minor setup. Sana et al. (2007) studied a flexible economic manufacturing
quantity (EMQ) model with a reduction in the selling price in an imperfect production
system. Kenne and Nkeungoue (2008) introduced a homogenous Markov process utilising
the hedging point policy for machines that undergo both failures and repairs caused by
the age-dependent nature of the machine. Ben-Daya et al. (2008) proposed an EPQ
model that accounts for the changes in production rate due to speed losses caused by the
deterioration of the process and their impact on lot sizing decisions. Hajej et al. (2012)
developed a joint optimisation approach to determine the optimal production plan and
maintenance schedule, taking into account the degradation and availability of a single ma-
chine that produces a single product to meet a random demand within a finite production
horizon. Golmakani and Moakedi (2012) investigated a multi-component repairable sys-
tem with components that are susceptible to soft failures. These soft failures lead to a
decrease in the system’s performance and an increase in operating expenses. Sarkar et al.
(2014) discussed an EMQ model of an imperfect production process with time-dependent
demand subject to machine breakdown. Omar and Yeo (2014) proposed a model for a
continuous time-varying inventory system that satisfies the demand for a finished product
over a known and finite planning horizon by supplying both new and repaired items under
multiple setups. Ben-Salem et al. (2015) addressed the issue of joint production, mainte-
nance, and emission control for an unreliable manufacturing system that is susceptible to
degradation, generating harmful emissions during its operations, and may be subject to
environmental penalties under the emission cap approach to propose a feedback strategy
that can control the production rate, emission rate, and maintenance rate concurrently,
to counteract the effects of the system’s degradation. Nobil et al. (2016) formulated a
multi-machine multi-product economic production quantity (EPQ) problem for an im-
perfect manufacturing system problem with non-identical machines in a manufacturing
system. Koutras et al. (2017) introduced a general model for multi-state deteriorating
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systems with condition-based preventive maintenance. The model also accounts for im-
perfect maintenance, including minor or major failures and sudden failures that may be
caused by external factors at any stage of deterioration. Zhang et al. (2018) proposed
the Wiener-process-based techniques to represent degradation for manufacturing systems.
Nobil et al. (2019) investigated the effects of a machine warm-up period on an imperfect
production process with the rework to maximise the efficiency and effectiveness of the
production machine. Chiu et al. (2019) investigated the optimal runtime for a fabrica-
tion system with backordering, service level constraint, stochastic breakdown, and scrap.
Ganesan and Uthayakumar (2020) proposed EPQ models for an imperfect manufacturing
system considering warm-up production run, shortages during the hybrid maintenance
period and partial backordering. Manna et al. (2020) examined a production process
that is susceptible to deterioration over time, transitioning from a state of ”in-control” to
”out-of-control” to model an inventory system that takes into account inspection errors,
time-dependent development costs, and price dependent demand. El Cadi et al. (2021)
highlighted the challenges faced by researchers and managers in controlling joint produc-
tion systems due to the interdependence between system states and control actions. The
proposed model considers operation-dependent degradations of reliability and quality and
employs a make-to-stock production strategy and an age-based preventive maintenance
policy to cope with uncertainty. Hadian et al. (2021) discussed a stochastic model for
joint planning of maintenance, production and quality control in manufacturing systems.
The model considers the possibility of process deterioration, with state transition time
following a general distribution.

Another factor that needs to be considered when developing EPQ models with shifting
production rates is defects. Defects can occur during the manufacturing process due to
various reasons, such as equipment malfunction, human error, or external factors, and
they can lead to a decrease in the product’s quality. When defects occur, the produc-
tion process may need to be slowed down or stopped to identify and rectify the issue.
This can result in additional costs, such as setup costs, inspection costs, and downtime
costs, which can impact the overall production. Moreover, defects can lead to increased
customer complaints, product returns, and decreased customer loyalty, which can have
a negative impact on the company’s reputation. Several studies have investigated the
impact of declining production rates and defects on inventory management. Tai (2013)
presented two models for economic production quantity (EPQ) for items that are im-
perfect and subject to deterioration, with a rework process to restore imperfect items.
Cheng et al. (2018) developed a model that integrates production, quality control, and
maintenance planning in deteriorating processes. To mitigate uncertainties, a safety stock
was maintained to prevent stock-outs. The study implemented a 100% inspection policy
for quality control and determined the production lot size based on the maintenance plan
and quality control policy. Al-Salamah (2019) proposed inventory models for scheduling
an imperfect manufacturing process where a certain proportion of items are defective. To
accommodate the manufacturer’s flexibility in selecting the rework rate and process, the
author presented a flexible rework rate approach, where the rework rate can differ from
the production rate, and the rework process can be either asynchronous or synchronous.
Ye et al. (2020) presented a new competing failure model that investigates the inter-
actions among machine failures, product quality, and inspection process, enabling the
characterisation of time-delayed propagation of failure, accumulation of degradation, and
dynamics of states in serial automated manufacturing systems (AMSs). Bose and Guha
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(2021) discussed the impact of the manufacturer’s choice between full inspection and
sampling inspection on the economic production lot sizing decision for items with imper-
fect quality and inspection errors. They proposed an online sampling inspection model
and argued that the choice between full inspection and sampling inspection depends on
the threshold level of unit inspection cost. Ahmed et al. (2021) discussed the challenges
faced in intercontinental trade and economics when a fraction of defective items is re-
ceived from a global supplier by proposing an inventory model that considers reworking,
multi-period delay-in-payments policy, and shortages to maximise profit. Tshinangi et
al. (2022) examined a degrading production system for deteriorating items with shifting
production rates, imperfect quality, and partial backlogging of demand with lost sales.

2.6.10 Multi-echelon inventory models

The concept of coordinating inventory decisions in a multi-echelon system, which is now
commonly associated with supply chain management, can be traced back to the work of
Clark and Scarf in 1960. Their model laid the foundation for studying coordination in
inventory management. In a multi-echelon supply chain, each stage represents a distinct
process involved in the overall flow of items, such as procurement, manufacturing, or
transportation. Each stage has the potential to hold inventory or stock of the item
being processed at that particular stage. To model a multi-echelon system, a network
representation is commonly used. In this network, nodes represent the stages within
the supply chain, while arcs depict the precedence relationship between these stages.
Multi-echelon systems can be categorized into different types based on their network
structures, such as serial (Fig.2.8a), assembly (Fig.2.8b), distribution (Fig.2.8c), general
acyclic (Fig.2.8d), and general cyclic systems (Fig.2.8e).

The objective of inventory optimisation in multi-echelon systems is to minimise the over-
all inventory cost or maximise its overall profit while maintaining the desired service
levels for the final customers. This involves determining the optimal inventory allocation
across the various stages of the supply chain. Optimising inventory decisions across the
multi-echelon supply chain is a challenging task due to the numerous interdependent de-
cision variables and the presence of non-linear functions that govern service levels. The
complexity of multi-echelon inventory optimisation is closely tied to the network struc-
ture, which is influenced by factors such as the number of stages and the topology of
stage connections (Eruguz et al., 2016). Multi-echelon approaches are widely studied in
the literature. Goyal (1977) expanded the Clark and Scarf’s (1960) model to coordinate
a vendor-buyer inventory system, where the vendor resells products to a buyer. The
primary objective was to determine the economic lot size for both entities, denoted as
the joint economic lot size (JELS), with the overarching goal of minimizing the collective
total costs associated with this type of inventory. The formulation of the JELS problem
involves a vendor and a buyer engaged in producing and selling a singular item type,
aiming to identify the optimal inventory replenishment policy for both entities. Goyal’s
(1977) model was formulated under certain assumptions, such as an infinite production
rate and a lot-for-lot production policy at the vendor. The shipment policy between the
vendor and the buyer in Goyal’s JELS model is often referred to as the single setup-single
delivery (SSSD) policy. Under this policy, the vendor produces a single cycle or lot and
delivers the entire lot to the buyer.
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Figure 2.8: Network structures for multi-echelon supply chain systems by Eruguz et al.
(2016).

Over the years, Goyal (1977)’s model has undergone several extensions, beginning with
Banerjee (1986), who relaxed the assumption of an infinite production rate. Banerjee
extended the model to a scenario where the vendor produces items at a specific (i.e.,
finite) production rate on a lot-for-lot basis. In this case, the vendor generates enough
items to meet the demand for the designated period. Goyal (1988) introduced the Sin-
gle Setup-Multiple Delivery (SSMD) variant of Goyal (1977)’s model, assuming that the
vendor produces sufficient items to fulfil the buyer’s orders with an integer number of de-
liveries for each production setup. The SSMD policy involves multiple deliveries from the
vendor to the buyer for a single production setup. This policy resulted in lower total sys-
tem costs, attributed to the smaller lot sizes, leading to reduced holding costs and faster
consumption, thereby spending less time in storage. Braun et al. (2003) introduced a
Model Predictive Control (MPC) as a strategic approach for multi-product, multi-echelon
demand networks, particularly when confronted with uncertainties such as inaccurate es-
timations of production lead times and demand forecasts. Their primary emphasis lay on
achieving robust supply chain management, where robustness would denote the capacity
to adeptly handle uncertainties and variations within the system. Rau et al. (2003)
developed a multi-echelon inventory model for a deteriorating item to derive an optimal
joint total cost from an integrated perspective among the supplier, the producer, and the
buyer. The model considered the single supplier, single producer and single buyer. El-
Kassar et al. (2012) investigated an Economic Production Quantity model that considers
the cost of raw materials essential for production. The model assumes that the supplier’s
raw materials contain a certain percentage of imperfect quality items. Upon receipt, a
screening process with a 100% detection rate for imperfect items is carried out at the start
of each inventory cycle. Two scenarios are explored: in one, imperfect items are sold at
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a discounted price after screening, and in the other scenario, imperfect items are kept in
stock until the end of the cycle and then returned to the supplier upon receiving the next
order. Zhou et al. (2013) extended Rau et al. (2003)’s model to accommodate multiple
suppliers, one producer, and multiple distributors and buyers. Additionally, an algo-
rithm designed by Genetic Algorithm (GA) is used to solve the model. Cárdenas-Barrón
et al. (2014) examined the problem of channel coordination in a supply chain consisting
of one manufacturer and one retailer. The demand for products in this supply chain is
influenced by promotional activities and sales team initiatives. A production-inventory
model is formulated, incorporating the procurement cost per unit as a function of the
production rate. Different centralised coordinating systems are analysed to address the
challenges of channel coordination and meeting demand through promotions. An analyti-
cal approach is used to determine optimal production rates, lot sizes, backlogging policies,
and sales team initiatives that maximise profits for both the manufacturer and retailer.
Priyan and Uthayakumar (2015) studied a two-echelon multi-product multi-constraint
product returns inventory model with permissible delay in payments and variable lead
time. This study examines a supply chain problem involving a distributor and warehouse.
The supply chain includes both serviceable and recoverable parts, with multiple products
involved. The distributor faces limitations in terms of space capacity and budget for
purchasing all the products. Defective products are returned to the warehouse, where
they are recovered into perfect products of equal value to the initially procured ones. The
lead time for receiving products from the warehouse to the distributor is a controllable
variable with an associated crashing cost. In this system, a portion of product short-
ages is back-ordered while the remainder is considered lost. To minimise overall costs,
an optimisation model is utilised in this research to determine optimal order quantity,
lead time adjustments, and total number of deliveries within the system. Ross et al.
(2017) introduce a joint three-echelon location inventory model for an industry driven
by donation demands. The model considers the presence of a main warehouse, distribu-
tion centres, retail stores, and donation-only centres. At each retail store, two classes of
products are handled based on the difference between demands and donations received
at that specific store from the assigned distribution centre. The proposed model pro-
vides a comprehensive solution to determine optimal decisions simultaneously, including
the number of open distribution centres, their respective locations, and assignment plans
for retailers regarding different types of products. The overall objective is to minimise
total annual costs, which encompass facility location expenses along with transportation
costs while accounting for inventory holding costs and potential revenue losses due to
unmet customer demand. The complexity inherent in this problem led Ross et al. (2017)
to explore relaxing constraints through recourse to Lagrangian relaxation. Sarkar et al.
(2018) presented a model for a single-vendor multi-buyer supply chain, incorporating a
variable production rate and accounting for imperfect product quality. The unit pro-
duction cost is modelled as a function of the production rate, introducing three distinct
production functions to capture the relationship between process quality and production
rate. Given the substantial demand from multiple buyers, the lead time demand is treated
as a random variable following a normal distribution. The study aims to analyze how the
adaptability of the production rate influences both product quality and the overall cost
of the supply chain, particularly under a single-setup multiple-delivery policy. The opti-
misation process employs classical techniques to attain the global optimum solution, and
an illustrative algorithm is devised for numerical results. Panda et al. (2019) combined
advertisement of the product, price, stock, and credit policy in a two-warehouse inven-
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tory model and represented it mathematically. In addition, they added a deteriorating
factor to their proposed problem with price- and stock-dependent demand under partial
backlogged shortage. Dye (2020) investigated a joint pricing, advertising, and inventory
control problem for a firm that sells perishable products with a psychic stock effect to
maximise the total profit over the infinite planning horizon. Halat et al. (2021) studied
a carbon tax policy in inventory games of multi-echelon supply chains. They analysed
four different decision-making structures within the supply chain, namely decentralised,
vertical downward cooperation, vertical upward cooperation, and horizontal cooperation,
with the main goal of identifying optimal solutions for inventory games under each coop-
eration scheme, comparing strategies, and assessing the impact of carbon taxes on costs,
emissions, and savings resulting from collaboration. Closed-form equilibrium values are
computed for various factors, including optimal replenishment cycles, costs, and carbon
emissions, using an algebraic method. Other games were resolved using a precise solution
approach. Furthermore, an analysis was conducted on how inventory and carbon emis-
sions parameters affected both costs and carbon emissions reductions achieved through
cooperative settings in supply chains. In a recent study, Yazdekhasti et al. (2022) in-
troduced an Integer Non-Linear Programming model to optimise a warranty distribution
network with a dihedral structure. The WDN consists of two echelons operated by a
third-party entity: the first echelon includes a depot repair centre that repairs defective
items using support from a high-capacity supplier and follows a continuous review inven-
tory policy, while the second echelon comprises multiple customer support centres with
continuous inventory control policy. This two-echelon structure is particularly significant
in scenarios like auto parts inventory systems, where the first layer handles repair, replace,
and return tasks, while the second layer manages replace and return duties. The paper
employs an electric vehicle (EV) battery system as a case study to validate the proposed
model. Döngül et al. (2022) presented an integrated location-allocation model that in-
corporates inventory control decisions in a multi-echelon and multi-period supply chain
with uncertain demand. The model focuses on customer importance, as it distinguishes
between customers based on their purchasing volumes and their significance to the supply
chain. To solve this model, a novel meta-heuristic algorithm called Seeker Evolutionary
Algorithm (SEA) is proposed. Comparative results against genetic algorithms and GAMS
software show that SEA provides high-quality solutions with acceptable computational
efficiency for both small and large-scale scenarios. Gioia and Minner (2023) modelled a
network comprising an Online Fulfillment Center (OFC) and physical offline retailers for
perishable. Gioia and Minner’s research explores the complexity and structure of optimal
policies, considering the challenges posed by perishable products and the uncertainties
in demand and customer preferences. Additionally, they investigated different extensions
to base-stock policies across multi-echelon networks while analysing the impact of po-
tential correlations and imbalances in demand volumes between channels on heuristic
approaches. The advantages and disadvantages of such solutions were also identified. To
better understand the problem dynamics, they defined state variables along with decision
variables or actions that would guide them towards achieving rewards using transition
functions for effective decision-making processes within the network configuration where
OFC is responsible for order sizes from suppliers as well as acting as a distribution centre
for both online and offline channels. Kouki et al. (2023) explored a two-echelon inventory
system consisting of a central warehouse and multiple local warehouses with lost sales.
The demand at each local warehouse is modelled as a Poisson process, and the stock is
controlled using a continuous review base-stock policy. Previous analyses of this type
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of system have focused on deterministic or exponentially distributed lead times at the
central warehouse, deterministic lead times at local warehouses, and approximate per-
formance evaluations. Kouki et al. (2023)’s research expands upon these analyses by
considering generally distributed lead times at both the central and local warehouses.
They then provided exact closed-form expressions for inventory performance measures in
cases where demand is lost if no items are available within specified thresholds. Moreover,
they proposed new approximate solutions for situations where waiting time thresholds
are smaller than the local warehouse lead-time limits.

2.7 Chapter Summary

Numerous researchers have made significant contributions to the foundations of this the-
sis, as highlighted in the conducted literature review. The research focuses on explor-
ing various aspects, such as lot-sizing models for deteriorating items, shifting produc-
tion rates, multi-echelon inventory systems, imperfect quality, expiration dates, price-
dependent demand, and inventory level-dependent demand. While the classic EOQ/EPQ
model has played a crucial role in these models’ development, there are still identified
gaps that call for novel models tailored to address practical scenarios encountered in sys-
tems with flexible production capabilities.

Particular aspects within the reviewed literature, namely lot-sizing models for inventory
with deterioration, lot-sizing models with shifting production rates and those applicable
to items within multi-echelon inventory systems, stand out among the rest with ample
opportunities for further development. By combining these aspects, there is a promising
avenue for developing new models specifically designed for complex, flexible production
systems. As such, the unifying theme among the three innovative models presented in
this thesis is the consideration of deteriorating items and shifting production rates in
inventory.

Other aspects of the literature have been considered in the development of these three
novel models. These include lot-sizing models that account for price-dependent de-
mand, imperfect quality, freshness condition, corporate social responsibility, and stock-
dependent demand. By integrating these aspects into each model, realistic and practical
solutions are formulated specifically for flexible production systems. This adaptation is
necessary as pricing decisions, quality control measures, freshness conditions, and stock
levels significantly impact how flexible production systems operate. For instance, im-
plementing quality control ensures the integrity of products throughout different supply
chain echelons during value-adding processes like processing and packaging. Additionally,
managers in retail settings must monitor the expiration dates of products to minimise
waste arising from the disposal of expired products that are unfit for sale. The selling
price and displayed inventory level of products have been identified as critical factors
influencing consumer demand, with demand generally increasing with decreasing prices
and rising stock levels on shelves.
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Chapter 3

Review of foundational models

3.1 Introduction

This chapter introduces the foundational models that form the basis for the models
developed in the subsequent chapters. This review explores and analyses the essential
models that have influenced this thesis. Four lot-sizing models previously published in
the literature serve as the basis for the three new models introduced in this thesis. These
are 1) the Economic production quantity model with a shifting production rate, by Ben-
Daya et al.(2008); 2) the inventory model for deteriorating items with freshness and
price-dependent demand, by Banerjee and Agrawal (2017); 3) Joint pricing and inventory
decisions for perishable products with age, stock, and price-dependent demand rate by
Agi and Soni(2020); and 4) EPQ model with imperfect quality raw material, by El-Kassar
et al.(2012). Together, these form the foundation of all three models presented in this
thesis. The concepts behind these four fundamental models are incorporated with the
concepts of the other two foundational models (specifically, models with corporate social
responsibility and models with imperfect quality) in formulating the three initial models
introduced in this thesis. This chapter provides a concise overview of the mathematical
principles governing these three fundamental models.

3.2 Notations

The following notations are used during the development of the models presented in this
thesis:

A Demand parameter
b Elasticity parameter of the unit selling price
Cd Deterioration cost per unit item
Cdp Disposal cost per unit item
Cp Penalty cost per unit lost sale
cr Unit cost of raw material
D(sp, I(t)), D(I(t)) Demand for the product
d(sp) Price component of the demand for the product
d1,2 Proportion of defective units produced
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ETC(t) Expected total cost per unit time
Fr raw material ordering cost
G1,2 Set-up cost associated with stage i
hp Inventory carrying cost per item produced per time
hr Inventory carrying cost per unit of raw material per time
HM Hessian Matrix
I(t) Instantaneous inventory level
k1 Initial production rate at the start of the cycle
k2 Production rate following the shift in production
ζ Increase in unit machining cost due to increase in the production rate
pc1 Unit production cost at the start of production
pc2 Unit production cost after the machine’s production rate has been scaled down
pl Lost production cost per end product.
pr Purchase cost of raw material per unit
pc Purchase price per unit product
Q Production batch size
Q∗ Optimal batch size
q Proportion of raw materials that are of imperfect quality
q The inventory remaining at the end of the cycle
QDp Quantity of deteriorated products

ϕ
Per unit cost of running the machine independent of the production rate
including labor and energy costs

SC Fixed setup cost
sp Market selling price of the product
sd Discounted unit selling price of imperfect finished products
s Social donation amount per sale
sr Discounted unit selling price of imperfect raw material
y Raw material order size per cycle
T Cycle time
TC Average total cost per cycle
TR Average revenue per cycle
TP Average profit per cycle
ti∈{1,2,3,4} Time duration of each phase of the cycle
t Random time at which the process shifts from a higher to a lower production rate
ts Screening period
tp Production period
TSC Total set-up cost
θ(t) Deterioration rate per unit per time
γ Demand enhancement parameter for inventory level
ρ1,2 Aggregation parameters for some known variables
β Freshness parameter
α Discount percentage offered on selling price
n Shelf-life of the product
x Screening rate for raw material
µ, η Non-negative constants
ρ1,2, δ, B,E Aggregation parameters for some known variables
σ Parameter that reflects the impact of defects on customer demand
λ Rate at which the proportion of defective items increases over time
ηm Maximum proportion of defective products that can be produced
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3.3 Primary models

3.3.1 Shifting production rates

Traditional manufacturing systems are based on the belief that the process runs perfectly
with durable machinery and equipment, constantly producing high-quality items at a
consistent rate. However, this isn’t always the case, as facilities and equipment can dete-
riorate over time due to factors such as ageing, operational stress leading to deformation,
regular wear and tear, and exposure to corrosive substances (such as chemicals or envi-
ronmental elements). These forms of damages can result in reduced production capacity,
plant shutdowns due to breakdowns, an increase in defective products being produced
or a decrease in market value stemming from design or manufacturing flaws, which ulti-
mately lead to lower quality of finished products. Over time, these damages can result
in additional costs, whether direct or indirect. Some manufacturing systems assume that
repairing a machine after a breakdown restores it to its original state. However, if this
were always true, the systems could operate for an almost unlimited duration, which is
nearly impossible. Therefore, it is important to consider the impact of deterioration on
manufacturing systems and incorporate quality issues into the analysis.

There has been a growing interest in studying manufacturing systems with machines
that may experience deterioration/degradation. Many other systems and their compo-
nents undergo deterioration during their lifespan due to factors like erosion, vibration,
wear, fatigue, or shock. Many production systems and their components are often anal-
ysed and represented using different states of deterioration, each reflecting the system or
component’s stage. In terms of production, a system that automatically undergoes recon-
figuration upon failure to allow degraded equipment to remain functional with reduced
service is known as a multi-state system (MSS) or degraded system. This introduces a
third state known as the degraded state as previously represented states in section 2.6.9.
The reliability and functioning of the system depend on the state of its degradation, with
some components able to continue providing service at a decreased level of performance.
Proper analysis of the degraded mode is often conducted to anticipate any serious failure
of the MSS, which includes identifying the component in need of urgent restoration. The
evaluation aims to find an optimal balance between different risks and acceptable losses.
Once risks are identified, assessed, and prioritised, procedures for managing the degraded
mode are put into place.

Shift in production rates in which the production process is restored to the original
production rate only at the beginning of the next cycle was introduced by Ben-Daya et
al.(2008) through the development of an EPQ model for a type of deterioration observed
in machining systems such as turning and milling. For such systems, the production rate
is a function of the speed rate, which in turn depends on the tool life. Consequently, any
tool failure due to wear out will disrupt the machine operations, resulting in a gradual
decrease in the production efficiency. When the production begins, the process starts with
a production rate k1 and after a time t, the production rate shifts to a lower production
rate k2 because of speed losses due to some process deterioration, such that k1 ≥ k2. The
new production rate, if it happens, is assumed to be known a priori from experience. The
inventory holding cost per unit per time is hp. The setup cost is G. Lost production
during the lower production rate period is assumed to incur some penalty cost, which is
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represented by pl. In this model, product quality is not affected by this shift in production
rate. During the whole cycle T , the demand D is assumed to be fixed and known. The
unit production cost is ζk + Φ

k
. Two distinct scenarios for the occurrence of the time of

the shift can be identified. In scenario 1, the shift takes place during the production run,
denoted by t ∈ [0, tp]. Meanwhile, in scenario 2, the shift occurs after the production run
period, with t ∈ [tp,∞]. The costs per cycle for each of these two scenarios are analysed.
The inventory profile is shown in Figure 3.1.

• Scenario 1: The unit cost of production is a function that depends on the production
rate k, and it is of the form ζk + ϕ

k
. This means the total production cost over the

entire cycle is

Production cost =

(
ζk1 +

ϕ

k1

)
k1t+

(
ζk2 +

ϕ

k2

)
k2 (tp − t) (3.1)

The average holding cost per cycle is given by

HC = hp

[
t2

{
(k1 − k2)

2 −D (k1 − k2)

2D

}
+ tpt

{
k2 (k1 − k2)

D

}
+ t2p

{
k2 (k2 −D)

2D

}]
(3.2)

In many practical scenarios, there is a penalty for failing to deliver the promised
quantity on time. This can be expressed mathematically as k1tp−[k1t+ k2 (tp − t)],
or pl (k1 − k2) (tp − t). Adding a fixed setup cost, denoted as G per cycle, the total
cost per cycle can be expressed as

TC1 =G+

(
ζk1 +

ϕ

k1

)
k1t+

(
ζk2 +

ϕ

k2

)
k2 (tp − t)

+ hp

[
t2

{
(k1 − k2)

2 −D (k1 − k2)

2D

}
+ tpt

{
k2 (k1 − k2)

D

}
+t2p

{
k2 (k2 −D)

2D

}]
+ pl (k1 − k2) (tp − t)

(3.3)

The company’s cycle length is

T (tp, t) =
k2tp + (k1 − k2) t

D
(3.4)

• Scenario 2: The same method can be applied to calculate the overall cost per cycle
when t ≥ tp. In this scenario, there is no penalty for lost production, and the total
cost per cycle is determined by

TC2 (tp) = G+ tp
(
ζk21 + ϕ

)
+ hp

{
k1 (k1 −D) t2p

2D

}
(3.5)

and the company’s cycle length is given by

T (tp) =
k1
D
tp (3.6)
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Figure 3.1: Inventory profile with a shift in production rate at time t :(a) t ∈ [0, tp], (b)
t ∈ [tp,∞]

The total anticipated cost per cycle is calculated using the probability distribution of
shift timings.

E [TC (tp)] =

∫ tp

0

TC1 (tp, t) f(t)dt+

∫ ∞

tp

TC2 (tp) f(t)dt (3.7)

where TC1 (tp, t) and TC2 (tp) are given by Equations (3.3) and (3.5), respectively.
Similarly, the anticipated duration of the cycle is expressed as

E [T (tp)] =

∫ tp

0

T (tp, t) f(t)dt+

∫ ∞

tp

T (tp) f(t)dt (3.8)

Where T (tp, t) and T (tp) are given by Equations (3.4) and (3.6), respectively.

3.3.2 Multi-echelon inventory systems

The traditional economic production model has been expanded to address the complex-
ities found in inventory management. El-Kassar et al.(2012) examined an EPQ model
that accounts for the cost of raw materials needed for production. They introduced a
model known as the EPQ model with imperfect quality raw material, which focuses on
optimising the inventory replenishment policy in a two-level inventory system involving
one supplier and one manufacturer. The supplier is tasked with providing raw materials
to the manufacturer while the manufacturer produces the requested products needed for
consumption. It is assumed that some of the raw materials obtained from the supplier
are items of imperfect quality. Upon receiving the raw materials at the start of each
inventory cycle, a thorough screening process is conducted to identify all imperfect qual-
ity items. Two different scenarios are considered: one where imperfect quality items are
sold at a discounted price after screening, and another where they are kept in inventory
until the end of the cycle and then returned to the supplier upon receipt of the new order.

The model starts with the first scenario. In this scenario, a product is being produced at a
rate called k, which is greater than the demand rate D. As part of the production process,
raw material is required, and a replenishment quantity of y is ordered and received at the
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start of each production cycle. It is also assumed that the received raw material includes
a proportion q of imperfect quality items. The quantity of imperfect quality items within
the received raw material is yq, while the remaining items, which are perfect quality, are
y(1− q) and are used in producing the finished products. Consequently, the production
period is

tp =
y(1− q)

k
(3.9)

and the length of inventory cycle is

T =
y(1− q)

D
(3.10)

At the start of the production cycle, there is a screening process with a screening rate x
(x > k) to ensure all imperfect quality items are identified. The duration of the screening
period is

ts =
y

x
(3.11)

During the screening period, only perfect raw materials are utilised in production. As
a result, the inventory level of raw materials decreases at a rate k until the end of the
screening period. The quantity of raw material remaining at the end of the screening
process is

y − kts = y

(
1− k

x

)
(3.12)

Imperfect items are sold at a reduced price sr, which is lower than the unit procurement
cost of raw material cr. The inventory level of raw material decreases from y − Pts by a
quantity qy. The overall remaining quantity of raw material items is y

(
1− k

x
− q

)
. The

raw material inventory continues to decrease at a constant rate of k until it reaches zero
by the end of the production period. The inventory profile of raw materials is illustrated
in Figure 3.2.

Figure 3.2: Raw material inventory level, imperfect items sold at a discount

In the context of the given scenario, the production of finished products occurs at a
constant rate represented by k, while a portion of these products are sold at a rate of
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D. Consequently, an inventory of finished products accumulates during the production
period at a rate of k−D. The inventory level of the finished items is shown in Figure 3.3.
As the production progresses, the inventory continues to accumulate until it reaches the
maximum level ymax. ymax is obtained by multiplying the rate at which inventory is built,
(k − D) by the production time, tP , as expressed in the equation 3.9. This expression
leads to the following result

ymax = tP (k −D) = y(1− q)

(
1− D

k

)
(3.13)

Figure 3.3: Finished product inventory level

The manufacturer incurs a raw material purchasing cost of cry at the start of each pro-
duction cycle, a production cost of Cpy(1 − q), an ordering cost of raw material of Fr,
and a fixed setup cost of G. The holding cost of raw material, Hr, is calculated as the
product of the average inventory of raw material and the holding cost per unit time, hr.
To determine Hr, El-Kassar et al.(2012) multiplied the area under the curve shown in
Figure 3.2, which represents the raw material inventory level by hr and then divided the
expression by the cycle length, T . This yielded

Hr = y2
(
(1− q)2

2k
+
q

x

)
1

T
(3.14)

The total holding cost for finished goods, Hp, is the product of the average inventory and
the holding cost per unit per unit time hp. The authors assumed that the holding cost
rate per finished good incurred is the aggregate of the two holding costs per unit time,
hP and hr, and represented the average inventory level of finished goods by 1

2
ymax which

is the area under the curve shown in Figure 3.3. Using the expression of the average
inventory, they expressed Hp as follows

Hp =
y

2
(1− q)

(
1− D

k

)
(hp + hr)T (3.15)

The joint total inventory cost per cycle TC(y) is the sum of all the costs involved divided
by the inventory cycle length T = y(1− q)/D. Hence,
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TC(y) =cr
D

1− q
+ CpD + (Fr +G)

D

y(1− q)
+ yD

(
(1− q)

2k
+

q

(1− q)x

)
hr

+
y

2
(1− q)

(
1− D

k

)
(hp + hr) +

y

2
(1− q)

(
1− D

k

)
(hp + hr)

(3.16)

The total sale function TR(y) includes both the sales revenue of the finished products
and the discounted imperfect quality raw materials. That is,

TR(y) = spD + srqD
1

(1− q)
(3.17)

El-Kassar et al.(2012) ’s model was aimed at maximising the total joint inventory man-
agement profit TP . The joint total profit per unit time, TP (y), is

TP (y) =spD + srqD
1

(1− q)
− cr

D

1− q
− CpD − (Fr +G)

D

y(1− q)

− yD

(
(1− q)

2k
+

q

(1− q)x

)
hr −

y

2
(1− q)

(
1− D

k

)
(hp + hr)

− y

2
(1− q)

(
1− D

k

)
(hp + hr)

(3.18)

The manufacturer’s optimal batch size, y∗, is obtained by setting the first derivative of
equation (3.18) with respect to y to zero, resulting in

y∗ =

√√√√ 2 (Fr +G)D

(hp + hr)
(
1− D

k

)
(1− q)2 +Dhr

(
(1−q)2

k
+ 2q

x

) (3.19)

In the second scenario, the imperfect raw materials are kept until the inventory cycle
is completed and then returned to the supplier when the next order is received. The
behaviour of the inventory profile of raw materials is shown in Figure 3.4.
The total cost per cycle is identical to that of the first scenario except for the holding
cost of the raw material, which in this case is

Hr = y

(
q +

D

2k
(1− q)

)
hrT (3.20)

The TC function for the second scenario is

TC(y) =cr
D

1− q
+ CpD + (Fr +G)

D

y(1− q)
+ y

(
q +

D

2k
(1− q)

)
hr

+
y

2
(1− q)

(
1− D

k

)
(hp + hr)

(3.21)

the total profit function is

TP (y) =spD − crD − CpD − (Fr +G)
D

y(1− q)
− y

(
q +

D

2k
(1− q)

)
hr

− y

2
(1− q)

(
1− D

k

)
(hp + hr)

(3.22)

The batch size is calculated by solving the equation (3.22) using a similar approach
to that of the first scenario. Hence

y∗ =

√
2 (Fr +G)D

(hp + hr)
(
1− D

k

)
(1− q)2 +

(
2q(1− q) + D

k
(1− q)2

)
hr

(3.23)
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Figure 3.4: Raw material inventory Level, imperfect items returned to supplier

3.3.3 Freshness and time-dependent demand inventory systems

Banerjee and Agrawal (2017) proposed a model for managing deteriorating items that
incorporates the impact of product freshness on demand. They suggested that both
freshness decline φ(t) and deterioration θ(t) commence after some time t in storage. The
graph in Figure 3.5 illustrates the inventory levels throughout a cycle. At time t = 0, Q
units are replenished and added to the stock immediately. It is assumed that the product
is initially in perfect condition. The freshness function φ(t) which is a non increasing
function of time t, is of the form

φ(t)

{
= 1, if t < t1
< 1, if t ≥ t1

. (3.24)

If there is no decline in freshness, φ(t) = 1 for t ∈ [0, T ]. When the selling price is sp, the
demand rate at time epoch t is given by

D(sp, t) =

{
f1(sp), if φ(t) = 1 at epoch t
f2(sp, φ(t)), if φ(t) < 1 at epoch t

, (3.25)

where f1(sp) is a declining function of sp and f2(sp, φ(t)) is a declining function of s but
increasing function of φ(t), with sp being exogenous and known.
From (0, t1), inventory decreases solely due to demand, which is influenced by the selling
price sp of the item. After time t1, the freshness φ(t) of the items starts to decline over
time. The inventory continues depleting only due to demand, which is now dependent on
both selling price sp and freshness condition φ(t). At time t2, deterioration θ(t) begins.
Inventory depletes due to both demand and deterioration. To stimulate more sales, a
discount α% is offered on the selling price from time t3 > t2. Inventory reaches zero
at time t4 followed by shortages beginning after this point, resulting in lost sales from
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unmet demand. An order placement occurs again at time T (≥ t4). Keeping a product in
inventory incurs a holding cost of hp per unit of time. This holding cost applies exclusively
to non-deteriorated products, regardless of their freshness level. The cost of deterioration
per unit, denoted as cd, is greater than the purchase price per product pc. Moreover, the
selling price per unit, represented as sp, is greater than the cost of deterioration per unit.

Figure 3.5: Inventory profile for items with freshness dependent demand

Differential equations governing the inventory situations are

dI1(t)

dt
= −f1(sp), 0 ≤ t ≤ t1

dI2(t)

dt
= −f2(sp, φ(t)), t1 ≤ t ≤ t2

dI3(t)

dt
= −f2(sp, φ(t))− θ(t)I3(t), t2 ≤ t ≤ t3

dI4(t)

dt
= −f2((1− α)sp, φ(t))− θ(t)I4(t), t3 ≤ t ≤ t4.

(3.26)

The order quantity Q is given by

Q =f1(sp)t1 +

∫ t2

t1

f2(sp, φ(x)) dx

+ exp

(
−
∫ t2

0

θ(x) dx

)[∫ td

t2

f2(sp, φ(x)) exp

(∫ x

0

θ(y) dy

)
dx

+

∫ t4

t3

f2((1− α)sp, φ(x)) exp

(∫ x

0

θ(y) dy

)
dx

]
.

(3.27)

The total holding cost over the time period [0, t4] is

THC = hp

(∫ t1

0

I1(t)dt+

∫ t2

t1

I2(t)dt+

∫ t3

t2

I3(t)dt+

∫ t4

t3

I4(t)dt

)
(3.28)
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The total cost of deterioration over the entire cycle is

TCD = Cd

[
Q−

(∫ t1

0

f1(sp)dt+

∫ t3

t1

f2(sp, φ(t))dt+

∫ t4

t3

f2((1− α)sp, φ(t))dt

)]
(3.29)

The cost of lost sales is

CLS = lsc

∫ T

t4

f2((1− α)sp, φ(t))dt (3.30)

The revenue TR over the entire cycle is

TR = (sp − pc)

[∫ t1

0

f1(sp)dt+

∫ t3

t1

f2(sp, φ(t))dt

]
+[(1− α)sp − pc]

∫ t4

t3

f2((1−α)sp, φ(t))dt

(3.31)
The net profit is

NP = TR− THC − TCD − CLS (3.32)

3.3.4 Inventory level-dependent demand and deterioration

Agi and Soni(2020) proposed a model for optimising pricing and managing inventory of
perishable products, where demand is influenced by the on-hand inventory level. Their
approach accounts for both physical deterioration and diminishing freshness of the prod-
uct over time, which leads to reduced demand as the product ages. The model also
departs from the traditional assumption of zero-ending inventory, allowing for positive
end-of-cycle inventory levels to capture benefits from higher stock levels that stimulate
increased demand. Furthermore, they considered that any remaining inventory at the end
of the cycle could be sold at a fixed price. In this system, a quantity Q of the product
is received by the retailer at time t = 0 with selling price sp set throughout period [0, T ].
During this time frame, on-hand inventory diminishes at a constant rate θ while simul-
taneously losing freshness. The demand rate of the product is assumed to be increasing
with the current stock level and decreasing with the price and the freshness condition of
the product. The inventory level I(t) follows the pattern depicted in Figure 3.6.
Agi and Soni (2020) used the Equation (3.33) to represent the demand function.

D(sp, I(t), t) =
n− t

n
d(sp) + γI(t) + θI(t) (3.33)

The above equation describes the relationship between the demand rate, D(sp, I(t), t),
and the inventory level over time, I(t), where γ represents the demand sensitivity to
the current level of inventory, d(sp) represents the price component of the demand for
the product and n represents the shelf-life of the product. Therefore, the inventory level
changes with time is governed by the following differential equation

dI(t)

dt
= −n− t

n
d(sp)− γI(t)− θI(t), 0 ≤ t ≤ T (3.34)

Upon solving equation (3.34), an expression for Q (in terms of q, sp and T ) is obtained,
which is then used to compute the company’s holding cost.

Q =d(sp)

(
1

γ + θ
+

1

n(γ + θ)2

)(
e(γ+θ)T − 1

)
− d(sp)

n(γ + θ)
Te(γ+θ)T + qe(γ+θ)T (3.35)
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Figure 3.6: Graphical representation of the inventory system with time-dependent demand

The company is charged a holding cost of hp per unit of time for keeping a single item in
stock. Moreover, the company incurs a fixed ordering cost of OrC whenever an order is
placed, and the cost of purchasing each product is c. If the company sells the products
at a selling price of sp per product and salvages some products for sd per product, then
its total profit per unit time, TPU , is

TPU =
1

T



(sp − c)d(sp)T

(
1− 1

2n
T

)
− [spγ − hp − c(γ + θ)]

γ + θ
d(sp)T

+
[spγ − hp − c(γ + θ)]

2n(γ + θ)
d(sp)T

2

+
[spγ − hp − c(γ + θ)]

γ + θ

[
d(sp)

(
1

γ + θ
+

1

n(γ + θ)2

)
+ q

]
×
(
e(γ+θ)T − 1

)
− [spγ − hp − c(γ + θ)]

n(γ + θ)2
d(sp)Te

(γ+θ)T + (sp − c)q −OrC


(3.36)

Owing to the difficulty associated with obtaining a closed-form solution to equation (3.36),
an algorithm was used to find the company’s optimal price s∗p, the optimal cycle time T ∗,
the optimal order quantity Q∗ and the optimal product quantity remaining at the end of
the cycle q∗.

3.3.5 Concluding remarks

In this chapter, the mathematical principles underpinning the four fundamental models
that form the basis for developing the three original models presented in this thesis are
examined. These foundational models encompass scenarios commonly encountered by
inventory managers in the industry. In various industries, such as automotive and min-
eral processing, it is crucial to implement production systems that can adjust production
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rates due to the ever-changing market conditions and operational variables. For example,
in the automotive sector, shifts in consumer demand for vehicles are influenced by eco-
nomic factors, technological advancements, and seasonal trends. By utilising adaptable
production systems that can respond to these changes in demand, automakers can opti-
mise manufacturing output and quickly adapt to shifting market preferences. Similarly,
in the electronics and consumer goods industries, where technology and consumer pref-
erences frequently change rapidly, having the ability to modify production rates allows
manufacturers to efficiently meet evolving demands and remain competitive within the
marketplace.

Moving into heavy industries such as steel and mineral processing, the need for produc-
tion systems that can shift production rates becomes even more pronounced. Changes in
commodity prices, variations in ore quality, and shifts in global economic conditions all
influence the profitability and sustainability of mineral processing operations. The abil-
ity to modulate production rates in response to these factors allows mineral processing
plants to maintain operational efficiency, optimise resource utilisation, and adapt to the
complexities of a constantly changing market. Whether driven by market demands, tech-
nological advancements, or external economic factors, the adoption of flexible production
systems is an essential strategic move across various industries to ensure flexibility and
resilience amidst dynamic business environments. In addition to market dynamics and
operational variables, the need for production systems with adaptable rates is further
emphasised by external factors such as the unpredictability of electricity supply, which
includes challenges like load shedding and power outages. Industries ranging from auto-
motive to mineral processing face challenges related to energy availability and reliability.
In most African countries, where power interruptions are common, having flexible pro-
duction systems becomes crucial for mitigating the impact of intermittent energy supply.
These systems can intelligently adjust production rates based on power availability, en-
suring continuous operations during periods of electricity instability.

Furthermore, the adoption of production systems with the ability to shift production
rates is not only influenced by market dynamics, operational variables, and power supply
challenges but also due to considerations related to product deterioration and the fresh-
ness of consumable goods. In sectors like automotive manufacturing, where just-in-time
production practices are common, the ability to control production rates becomes crucial
to avoid excess inventory and ensure that vehicles reach consumers in optimal condition.
This flexibility is even more vital in industries dealing with perishable products like those
in the food and beverage sector. Here, fluctuations in demand and concerns about product
shelf life require adaptable production systems that can meet market needs while min-
imising wastage. Then the mineral processing sector, where extracted materials’ quality
and characteristics may deteriorate over time. The ability to adjust production rates is
essential for preserving finished products. In mining operations, timely ore processing is
critical to maintaining mineral quality and preventing degradation that could affect their
usability in subsequent applications. By integrating flexibility into production systems,
these industries can not only meet market demands, but also tackle the specific issues
related to product deterioration and the freshness conditions of consumable goods.

Two fundamental models, namely the model with shifting production rates and the model
incorporating deterioration and stock-dependent demand, form a common core in the
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three original models discussed in the next chapters of this thesis. These specific models
collectively provide a practical representation of inventory systems across various indus-
tries. Consequently, these foundational models serve as a framework for developing new
inventory management models that address shifting production rates, accommodating
deterioration and stock-dependent demand.
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Chapter 4

A lot-sizing model for a
deteriorating product with shifting
production rates, freshness-, price-,
and stock-dependent demand with
price discounting∗

4.1 Introduction

4.1.1 Context

In the complex world of supply chain dynamics, managing flexible production systems
has become increasingly crucial for industries aiming to enhance their adaptability and
agility. This study seeks to explore the intricate relationship between changing produc-
tion rates and inventory modelling, with a specific focus on the unique challenges posed
by perishable products. Unlike traditional production models that assume fixed pro-
duction rates, flexibility in production systems is essential for improving responsiveness,
particularly in industries where adaptability and efficiency are paramount. As indus-
tries continue to transition towards more agile and adaptable production systems, this
research recognises the growing need to accommodate dynamic production rates within
this context. It acknowledges the specific challenges presented by perishable products
that require a responsive approach to production. By addressing this requirement for
flexibility in handling shifting production rates, the research aims to contribute practical
insights into implementing adaptive production models in industries where real-time ad-
justments are vital for operational efficiency.

4.1.2 Purpose

This section introduces an extended inventory model for deteriorating products. The
model builds upon the work of Tshinangi et al.(2022) and Ben-Daya et al.(2008) and ex-
pands upon their research by considering the relationship between the concept of shifting

∗A modified version of this chapter has been accepted to International Journal of Mathematical,
Engineering and Management Sciences.
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production rates and both the freshness condition and deterioration of products, as pro-
posed by Banerjee and Agrawal (2017). The core purpose of this research is to contribute
to the development of an advanced inventory model tailored for flexible production sys-
tems, emphasising their crucial role in fostering adaptability and agility. With a specific
focus on perishable goods, the study explores how shifts in production rates can seam-
lessly integrate into inventory models, accounting for variables such as freshness, price
dynamics, and stock-dependent demand.

4.1.3 Relevance

The importance of this research goes beyond the traditional scope of managing perishable
goods. As highlighted in the literature review, no prior study has specifically explored
a production system that combines processes with scalable production rates, produc-
ing items of varying quality and subject to deterioration to meet demand influenced by
freshness conditions, price, and stock level. Filling this gap in the literature is vital for
implementing practical inventory management strategies in industries handling perish-
able goods. This approach is especially relevant in sectors such as agriculture, food, and
pharmaceuticals, where the timely adjustment of production rates can significantly im-
pact product quality, market competitiveness, and overall sustainability. The findings of
the study have broader implications beyond just perishable goods; they are positioned
to influence a range of industries by offering a framework for integrating flexibility into
production systems. This fosters agility and efficiency in response to the increasing trend
towards adaptable manufacturing processes. Professionals who grasp the proposed inven-
tory system can navigate the complexities of adapting production rates to meet dynamic
demand influenced by price and stock levels while adhering to freshness constraints. As
a result, this research contributes not only to theoretical progress but also offers action-
able insights for industries seeking efficient and adaptive solutions when facing challenges
related to perishable inventories.

4.1.4 Gap analysis

The gap in existing literature addressed in this study is examined in Table 4.1, which
presents an analysis of the inventory models from previous research, highlighting the
different factors considered and how this chapter contributes to the research on production
systems with varying production rates. The current literature review indicates a lack
of extensions for deteriorating item inventory models that take into account imperfect
systems with shifting production rates, freshness, price- and stock-dependent demand, as
well as price discounting.

4.1.5 Organisation

In addition to the introductory section, this chapter has five other sections. In Section 4.2,
the nomenclatures and notations necessary for the development of the inventory model are
outlined. Sections 4.3 and 4.4 focus on the description and formulation of the inventory
model, taking into account the shift in production, freshness, stock and price-dependent
demand, and the inclusion of deterioration, discount and imperfect production. In Section
4.5, numerical examples are solved to provide practical illustrations, a sensitivity analysis
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is conducted, and observations are discussed to provide managerial insights. Finally,
Section 4.6 offers a conclusion respectively.

4.2 Notations and assumptions

4.2.1 Notations

The following notations are utilised in this chapter

A Demand parameter
b Elasticity parameter of the unit selling price
Cd Deterioration cost per unit item
Cdp Disposal cost per unit item
D(sp, I(t), φ(t)), D(I) Demand for the product
d1,2 Proportion of defective units produced
G1,2 Set-up cost associated with stage i
hp Inventory carrying cost per item produced per time
HM Hessian Matrix
I(t) Instantaneous inventory level
k1 Initial production rate at the start of the cycle
k2 Production rate following the shift respectively
Li∈{1,2,3,4,5} Constant of integration
pc1 Unit production cost at the start of production

pc2

Unit production cost after the machine’s production rate
has been scaled down

QDp Quantity of deteriorated products
sp Market selling price of the product
T Cycle time
TC Average total cost per time
THC Total holding cost
TDC Total deterioration cost
TPC Total production cost
TDPC Total disposal cost
TR Average revenue per time
TSC Total set up cost
NP Average profit per time
ti∈{1,2,3,4} Time duration of each phase of the cycle
θ(t) Deterioration rate per unit per time
γ Demand enhancement parameter for inventory level
ρ1,2 Aggregation parameters for some known variables
β Freshness parameter
α Discount percentage offered on selling price
n Shelf-life of the product
ρ1,2 Aggregation parameters for some known variables
φ(t) Freshness function
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4.2.2 Assumptions

Some assumptions were made to formulate the mathematical model. These include:

• The inventory procedure is for a single product.

• At the start of the process, a production rate of k1 is employed. After a time, t1,
the decision maker switches to a lower production rate of k2.

• Demand is deterministic and dependent on the freshness, price and stock level

D (sp, I(t)) =


A− bsp + γI(t) for 0 < t ≤ t3

(A− bsp)φ(t) for t3 < t ≤ t4

[A− b(1− α)sp]φ(t) for t4 < t ≤ t5

(4.1)

With A, b, and γ ̸= 0

• All products are sold at a unit selling price sp.

• Some manufactured products are accidentally damaged (or contaminated) and have
to be discarded as scrap during each of the two production phases at constant rates
di with i ∈ {1, 2}

• The manufactured products are subject to deterioration. The deterioration function
is of the form

θ(t) =

{
θe−θt, for t > t3

0, otherwise
(4.2)

• The product has a maximum shelf-life, n, beyond which its perceived value is lost,
leading to potential financial losses. The freshness decreases linearly from a par-
ticular time, t3 < n, following the function, φ(t), similar to the model proposed by
Banerjee and Agrawal (2017), where

φ(t)

{
= 1, if t < t3

= [n−β(t−t2)]
n

, if t ≥ t3
(4.3)

This implies that while production ends at t2, products are still considered fresh for
a length of time until time t3, from when its freshness starts to decline until when
it is considered unacceptable after the shelf life is reached. There is no decline in
quality up until t3, and the freshness function φ(t) will be equal to 1 for t ∈ [0, t3].

• There is no rework or replacement of poor-quality products.

4.3 Problem description

Figure 4.1 illustrates the changes in inventory level throughout the cycle. At the be-
ginning of the production cycle, the product is manufactured at a production rate k1,
and inventory is built until it reaches the level I1 at time t1. During the interval [0, t1],
the product is considered completely fresh, and the inventory is withdrawn solely due to
demand, which depends on both the level of stock displayed and the selling price of the
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product. In the interval [0, t1], it is assumed that some manufactured products are dam-
aged and taken away at a rate d1. At time t1, the operator scales down the machine and
continues the production at a rate k2 until time t2, during which the inventory reaches
its maximum level, I2. In the interval [t1, t2], inventory continues to be withdrawn due to
demand, which still depends on both the stock level and the selling price of the product,
while the damaged are taken away at rate d2. At time t2, the system stops production.
During the interval [t2, t3], the inventory continues to deplete due to demand. After t3,
the freshness of the product begins to decline, product deterioration starts, and inven-
tory depletion occurs due to both demand and deterioration. The demand function now
depends on both the selling price and the freshness of the product, but no longer on the
level of stock displayed. To stimulate demand, a fixed discount of α% is offered on the
selling price starting from time t4. The inventory level hits zero at time T .

Figure 4.1: Inventory system behaviour for deteriorating products with a shift in
production and freshness, price, and stock-dependent demand
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4.4 Model formulation

The differential equations that govern the inventory situations in the interval [0, T ] are
as follows

dI(t)

dt
= (1− d1) k1 − [A− bsp + γI(t)] 0 ≤ t ≤ t1 (4.4a)

dI(t)

dt
= (1− d2) k2 − [A− bsp + γI(t)] t1 ≤ t ≤ t2 (4.4b)

dI(t)

dt
= − [A− bsp + γI(t)] t2 ≤ t ≤ t3 (4.4c)

dI(t)

dt
+ θI(t) = − [A− bsp]φ(t) t3 ≤ t ≤ t4 (4.4d)

dI(t)

dt
+ θI(t) = − [A− b(1− α)sp]φ(t) t4 ≤ t ≤ T (4.4e)

The model is developed under the following conditions I(0) = 0, I (t1) = I1, I (t2) = I2,
I (t3) = I3 and (t4) = I4. Solving Equation (4.4a), yields

I(t) =
⌊(1− d1) k1 − A+ bsp]

γ
+ L1e

−γt (4.5)

From Equation (4.5), under the boundary condition, I(0) = 0 the following is obtained

I(t) =
ρ1
γ

[
1− e−γt

]
0 ≤ t ≤ t1 (4.6)

With: (1− d1) k1 − A+ bsp = ρ1

Linearising the exponential terms containing t in Equation (4.6) by using Taylor’s series
expansion for e−γt leads to the following

e−γt =
∞∑

m=1

(−1)mγmtm

m!
= 1− γt

1
+
γ2t2

2!
− γ3t3

3!
+
γ4t4

4!
≈ 1− γt (4.7)

Substituting Equation (4.7) into Equation (4.6) yields

I(t) = ρ1t 0 ≤ t ≤ t1 (4.8)

Solving differential Equation (4.4b) yields

I(t) =
[(1− d2) k2 − A+ bsp]

γ
+ L2e

−γt (4.9)

From Equation (4.9) under the boundary condition, I(t1) = I1, one gets

I(t) =
ρ2
γ

+

[
I1 −

ρ2
γ

]
e−γ(t−t1) t1 ≤ t ≤ t2 (4.10)

With: (1− d2) k2 − A+ bsp = ρ2
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Utilising Taylor’s series expansion for e−γ(t−t1) to linearise the exponential terms near
t = t1 in Equation (4.10) yields

I(t) = I1 − (γI1 − ρ2) (t− t1) t1 ≤ t ≤ t2 (4.11)

The solution of the differential Equation (4.4c) is

I(t) = −(A− bsp)

γ
+ L3e

−γt (4.12)

From Equation (4.12) under the boundary condition, I(t2) = I2, we obtain

I(t) = −A− bsp
γ

+

[
I2 +

A− bsp
γ

]
e−γ(t−t2) t2 ≤ t ≤ t3 (4.13)

Again, linearising the exponential term e−γ(t−t2) to near t = t2 in Equation (4.13) utilising
Taylor’s series expansion yields

I(t) = I2 − (γI2 + A− bsp) (t− t2) t2 ≤ t ≤ t3 (4.14)

solving the differential Equation (4.4d), leads to

I(t) = − (A− bsp)

[
[n− β (t− t2)]

nθ
+

β

nθ2

]
+ L4e

−θt (4.15)

On solving Equation (4.15) under the boundary condition I(t3) = I3, the following is
obtained

I(t) = − (A− bsp)

[
φ(t)

θ
+

β

nθ2

]
+

[
I3 + (A− bsp)

[
φ (t3)

θ
+

β

nθ2

]]
e−θ(t−t3) t3 ≤ t ≤ t4

(4.16)

With: [n−β(t3−t2)]
n

= φ (t3)

Linearising the exponential terms e−θ(t−t3) in Equation (4.16) by applying Taylor’s series
expansion near t = t3, results in the following

I(t) = I3 − θ {I3 + (A− bsp)φ (t3)} (t− t3) t3 ≤ t ≤ t4 (4.17)

The solution to differential Equation (4.4e) is

I(t) = − [A− b(1− α)sp]

[
[n− β (t− t2)]

nθ
+

β

nθ2

]
+ L5e

−θt (4.18)

Using the boundary condition, I(t4) = I4 in Equation (4.18), we obtain

I(t) = − [A− b(1− α)sp]

[
[n− β (t− t2)]

nθ
+

β

nθ2

]
+

[
I4 + [A− b(1− α)sp]

[
φ (t4)

θ
+

β

nθ2

]]
e−θ(t−t4) t4 ≤ t ≤ T

(4.19)

With: [n−β(t4−t2)]
n

= φ (t4)

Linearising the exponential term e−γ(t−t4) to near t = t4 in Equation (4.19) utilising
Taylor’s series expansion yields

I(t) = I4 − θ {I4 + [A− b(1− α)sp]φ (t4)} (t− t4) t4 ≤ t ≤ T (4.20)
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4.4.1 Manufacturer’s cost components

The behaviour of the manufacturer’s processed inventory level is depicted in Figure 4.1.
The manufacturer’s total cost function is the sum of the setup, holding, deterioration,
production, and disposal costs.

4.4.1.1 Manufacturer’s set up cost

This production model incorporates variable production rates across the production cycle,
and each shift is associated with its unique setup cost denoted as SUCi for each shift i.
The total setup cost is expressed as

TSC =
2∑

i=1

Gi (4.21)

4.4.1.2 Manufacturer’s inventory holding cost

The manufacturer’s cost for holding inventory per unit time, THC, is determined as the
product of the cumulative holding inventory at different time intervals within the overall
cycle and the cost of holding a single unit per time unit (hp). The holding cost incurred
by the manufacturer is thus

THC = hp

[∫ t1

0

I(t)dt+

∫ t2

t1

I(t)dt+

∫ t3

t2

I(t)dt+

∫ t4

t3

I(t)dt+

∫ T

t4

I(t)dt

]
(4.22)

∫ t1

0

I(t)dt =
1

2
ρ1t

2
1 (4.23a)

=
1

2
I1t1 (4.23b)

∫ t2

t1

I(t)dt = I1 (t2 − t1)−
1

2
(γI1 − ρ2) (t2 − t1)

2 (4.23c)

=
1

2
(I1 + I2) (t2 − t1) (4.23d)

∫ t3

t2

I(t)dt = I2 (t3 − t2)−
1

2
(γI2 + A− bsp) (t3 − t2)

2 (4.23e)

=
1

2
(I2 + I3) (t3 − t2) (4.23f)

∫ t4

t3

I(t)dt =

[
I3 −

1

2
θ [I3 + (A− bsp)φ (t3)] (t4 − t3)

]
(t4 − t3) (4.23g)

=
1

2
(I3 + I4) (t4 − t3) (4.23h)
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∫ T

t4

I(t)dt = I4 (T − t4)−
1

2
θ [I4 + [A− b(1− α)sp]φ (t4)] (T − t4)

2 (4.23i)

=
1

2
(T − t4) I4 (4.23j)

The inventory carrying cost during the entire cycle [0, T ] can be obtained by summing
up equations (4.23b), (4.23d), (4.23f), (4.23h) and (4.23j) as

THC =
1

2
hp

[
I1t2 + I2 (t3 − t1) + I3 (t4 − t2) + I4 (T − t3)

]
(4.24)

4.4.1.3 Manufacturer’s deterioration cost

The manufacturer’s cost for deteriorating inventory, TCD, is determined as the product
of the net quantity of deteriorated products and the unit cost of a deteriorating product
(Cd). The net quantity of deteriorated products over the entire cycle is given by QDp

QDp =

[∫ t4

t3

I(t)dt+

∫ T

t4

I(t)dt

]
(4.25)

The expression in Equation (4.25) is derived by considering the changes in inventory over
different phases of the provided model. The inventory is built up during the time interval
from 0 to t2 until until it reaches I2. The net quantity of deteriorated products is zero
at the end of this interval. This is because the model starts with an empty inventory,
and no deterioration occurs since the products are considered fresh, and deterioration
only starts when products start losing their freshness. The same approach was used by
Banerjee and Agrawal (2017) in their model for perishable products.

∫ t4

t3

I(t)dt =

∫ t4

t3

[
I3 − θ

(
I3 + (A− bSp)φ (t3)

)
(t− t3)

]
dt (4.26a)

= I3 (t4 − t3)−
1

2
θ {I3 + (A− bSp)φ (t3)} (t4 − t3)

2 (4.26b)

(4.26c)

∫ T

t4

I(t)dt =

∫ T

t4

[
I4 − θ [I4 + [A− b(1− α)Sp]φ (t4)] (t− t4)

]
dt (4.27a)

=
1

2

[
I4 + I4 − θ

[
I4 + [A− b(1− α)Sp]φ (t4)

]
(T − t4)

]
(T − t4) (4.27b)

(4.27c)

Hence, the net quantity is

QDp = I3 (t4 − t3)−
1

2
θ {I3 + (A− bSp)φ (t3)} (t4 − t3)

2

+
1

2

[
I4 + I4 − θ

[
I4 + [A− b(1− α)Sp]φ (t4)

]
(T − t4)

]
(T − t4)

(4.28)

72



QDp =
1

2
(I3 + I4) (t4 − t3) +

1

2
(T − t4) I4 (4.29)

The cost of deterioration is therefore given by

TCD = Cdθ

{
1

2
(I3 + I4) (t4 − t3) +

1

2
(T − t4) I4

}
(4.30)

4.4.1.4 Manufacturer’s production cost

The manufacturer’s production is:

TPC = pc1

∫ t1

0

k1dt+ pc2

∫ t2

t1

k2dt (4.31)

TPC = pc1k1t1 + pc2k2 (t2 − t1) (4.32)

4.4.1.5 Manufacturer’s disposal cost

The manufacturer’s disposal cost is dependent on the production rate. This cost is
incurred to manage defective products produced during the manufacturing process. It is
the product of the disposal cost per product (cdp) and the integral of the total quantity
of defective produced produced over [0, t2]. Thus

TDPC = cdp

[∫ t1

0

d1k1dt+ pc2

∫ t2

t1

d2k2dt

]
(4.33)

TDPC = cdp

[
d1k1t1 + d2k2 (t2 − t1)

]
(4.34)

4.4.2 Manufacturer’s total cost per time

In order to determine the manufacturer’s average total cost incurred, TC, Equations
(4.21), (4.24), (4.30), (4.32), and (4.34) are summed, and this leads to

TC =
1

T


2∑

i=1

Gi +
1

2
hP

[
I1t2 + I2 (t3 − t1) + I3 (t4 − t2) + I4 (T − t3)

]
+ (pc1 + d1cdp) k1t1 + (pc2 + d2cdp) k2 (t2 − t1)


+
Cdθ

T

{
1

2
(I3 + I4) (t4 − t3) +

1

2
(T − t4) I4

} (4.35)

4.4.3 Manufacturer’s total revenue per time

The manufacturer’s total revenue is obtained by multiplying the total quantity of products
sold by the unit selling price (sp).

TR =
sp
T


∫ t1

0

[A− bsp + γI(t)] dt+

∫ t2

t1

[A− bsp + γI(t)] dt+

∫ t3

t2

[A− bsp + γI(t)] dt

+

∫ t4

t3

[A− bsp]φ(t)dt+ (1− α)

∫ T

t4

[A− b(1− α)sp]φ(t)dt


(4.36)
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∫ t1

0

[A− bsp + γI(t)] dt = (A− bsp) t1 +
1

2
γρ1t

2
1 (4.37a)

=

[
(A− bsp) +

1

2
γI1

]
t1 (4.37b)

∫ t2

t1

[A− bsp + γI(t)] dt = (A− bsp) (t2 − t1) + γI1 (t2 − t1) +
1

2
γ (ρ2 − γI1) (t2 − t1)

2

(4.38a)

=

[
(A− bsp) +

1

2
γ (I1 + I2)

]
(t2 − t1) (4.38b)

∫ t3

t2

[A− bsp + γI(t)] dt = (A− bsp) (t3 − t2) + γI2 (t3 − t2)−
1

2
γ (γI2 + A− bsp) (t3 − t2)

2

(4.39a)

=

[
1− 1

2
γ (t3 − t2)

]
(A− bsp + γI2) (t3 − t2) (4.39b)

∫ t4

t3

[A− bsp]φ(t)dt =

[
2n (t4 − t3)− β (t24 − t23) + 2βt2 (t4 − t3)

2n

]
(A− bsp) (4.40a)

=

[
2n− β (t4 + t3) + 2βt2

2n

]
(t4 − t3) (A− bsp) (4.40b)

∫ T

t4

[A− b(1− α)sp]φ(t)dt =

[
2n (T − t4)− β (T 2 − t24) + 2βt2 (T − t4)

2n

]
[A− b(1− α)sp]

(4.41a)

=

[
2n− β (T + t4) + 2βt2

2n

]
(T − t4) [A− b(1− α)sp]

(4.41b)

Hence, the average total revenue is expressed as

TR =
sp
T



[
(A− bsp) +

1

2
γI1

]
t1 +

[
(A− bsp) +

1

2
γ (I1 + I2)

]
(t2 − t1)

+

[
1− 1

2
γ (t3 − t2)

]
(A− bsp + γI2) (t3 − t2)

+

[
2n− β (t4 + t3) + 2βt2

2n

]
(t4 − t3) (A− bsp)

+ (1− α)

[
2n− β (T + t4) + 2βt2

2n

]
(T − t4) [A− b(1− α)sp]


(4.42)
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4.4.4 Manufacturer’s profit per time

The manufacturer’s profit, NP (sp, T ), is obtained by subtracting Equation (4.35) from
Equation (4.42). Thus

NP (sp, T ) =
sp
T



[
(A− bsp) +

1

2
γI1

]
t1 +

[
(A− bsp) +

1

2
γ (I1 + I2)

]
(t2 − t1)

+

[
1− 1

2
γ (t3 − t2)

]
(A− bsp + γI2) (t3 − t2)

+

[
2n− β (t4 + t3) + 2βt2

2n

]
(t4 − t3) (A− bsp)

+ (1− α)

[
2n− β (T + t4) + 2βt2

2n

]
(T − t4) [A− b(1− α)sp]


− 1

T


2∑

i=1

Gi +
1

2
hP

[
I1t2 + I2 (t3 − t1) + I3 (t4 − t2) + I4 (T − t3)

]
+ (pc1 + d1cdp) k1t1 + (pc2 + d2cdp) k2 (t2 − t1)


− Cdθ

T

{
1

2
(I3 + I4) (t4 − t3) +

1

2
(T − t4) I4

}
(4.43)

4.5 Solution

The optimisation problem addressed in this chapter is as follows

Maxsp,T {NP (sp, T )} (4.44)

The objective function is maximising the total profit per unit time, NP , which consists
of: the total revenue (TR), the disposal cost (TDPC), the production cost (TPC), the
deterioration cost (TCD), the holding cost (THC) and the setup cost TSC.

4.5.1 Determination of the decision variables

Two important principles must be met by the production system being examined. It
is essential that within an economical domain, increasing the values of decision vari-
ables should not lead to a decrease in overall profit, thus minimising the system’s inef-
ficiency. This principle emphasises a crucial factor referred to as average profit denoted
as NP (sp, T ), which corresponds to the initial partial derivative or gradient of the total
profit function. This optimisation problem could be fractioned into two sub-problems.
The first one is the optimisation with respect to sp, and the second problem is the opti-
misation with respect to T . The following is obtained
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∂NP (sp, T )

∂sp
=

1

T



[
(A− bsp) +

1

2
γI1

]
t1 +

[
(A− bsp) +

1

2
γ (I1 + I2)

]
(t2 − t1)

+

[
1− 1

2
γ (t3 − t2)

]
(A− bsp + γI2) (t3 − t2)

+

[
2n− β (t4 + t3) + 2βt2

2n

]
(t4 − t3) (A− bsp)

+ (1− α)

[
2n− β (T + t4) + 2βt2

2n

]
(T − t4) [A− b(1− α)sp]



+
sp
T



[
−b+ 1

2
γ
∂I1
∂sp

]
t1 +

[
−b+ 1

2
γ

(
∂I1
∂sp

+
∂I2
∂sp

)]
(t2 − t1)

+

[
1− 1

2
γ (t3 − t2)

](
−b+ γ

∂I2
∂sp

)
(t3 − t2)

− b

[
2n− β (t4 + t3) + 2βt2

2n

]
(t4 − t3)

− b(1− α)(1− α)

[
2n− β (T + t4) + 2βt2

2n

]
(T − t4)


− 1

T

{
1

2
hP

[
∂I1
∂sp

t2 +
∂I2
∂sp

(t3 − t1) +
∂I3
∂sp

(t4 − t2) +
∂I4
∂sp

(T − t3)

] }
− Cdθ

2T

{
∂I3
∂Sp

(t4 − t3) +
∂I4
∂Sp

(T − t3)

}
(4.45)

∂NP (sp, T )

∂T
=
sp
T


− β

2n
(1− α) (T − t4) [A− b(1− α)sp]

+ (1− α)

⌈
2n− β (T + t4) + 2βt2

2n

]
[A− b(1− α)sp]

− 1

2T
hP I4

− Cdθ

2T
I4 −

1

T
NP (sp, T )

(4.46)
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with

I1 = ρ1t1 (4.47a)

∂I1
∂sp

= bt1 (4.47b)

I2 = I1 − (γI1 − ρ2)(t2 − t1) (4.47c)

∂I2
∂sp

=
∂I1
∂sp

− (γ
∂I1
∂sp

− b)(t2 − t1) (4.47d)

I3 = I2 − (γI2 + A− bsp)(t3 − t2) (4.47e)

∂I3
∂sp

=
∂I2
∂sp

− (γ
∂I2
∂sp

− b)(t3 − t2) (4.47f)

I4 = I3 − θ {I3 + (A− bsp)φ(t3)} (t4 − t3) (4.47g)

∂I4
∂sp

=
∂I3
∂sp

− θ

[
∂I3
∂sp

− bφ (t3)

]
(t4 − t3) (4.47h)

I5 = I4 − θ {I4 + [A− b(1− α)sp]φ (t4)} (T − t4) (4.47i)

, The optimal solution to the proposed inventory system, which has NP (sp, T ), repre-
sented by Equation (4.43) as the objective function and sp and T as decision variables,
is determined by setting the partial derivatives in Equations (4.45) and (4.46) to zero

∂NP (sp, T )

∂sp
= 0 (4.48)

∂NP (sp, T )

∂T
= 0 (4.49)

4.5.2 Optimality condition

The second profit function principle is that there exists a feasible region for which the Hes-
sian matrix is positive (semi)definite or surely nonnegative, to be more precise. However,
the functions in equations (4.45) and (4.46) are highly nonlinear, making it challenging
to derive a closed-form analytical proof. Nonetheless, it is possible to numerically demon-
strate the concavity of the profit function by establishing its positive (semi)definiteness
using the Hessian matrix presented in Equation (4.50) while also satisfying the conditions
presented in Equations (4.51) and (4.52)

HM =


∂2NP (sp,T )

∂s2p

∂2NP (sp,T )

∂sp∂T

∂2NP (sp,T )

∂T∂sp

∂2NP (sp,T )

∂T 2

 ≥ 0 (4.50)

∂2NP (sp, T )

∂s2p
≤ 0 (4.51)

∂2NP (sp, T )

∂T 2
≤ 0 (4.52)

Taking the second-order derivatives of NP (sp, T ) in (4.43), we found
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∂2NP (sp, T )

∂s2p
=

2

T

{[
−b+ 1

2
γ
∂I1
∂sp

]
t1 +

[
−b+ 1

2
γ

(
∂I1
∂sp

+
∂I2
∂sp

)]
(t2 − t1)

+

[
1− 1

2
γ (t3 − t2)

](
−b+ γ

∂I2
∂sp

)
(t3 − t2)

−b
[
2n− β (t4 + t3) + 2βt2

2n

]
(t4 − t3)

−b(1− α)2
⌈
2n− β (T + t4) + 2βt2

2n

]
(T − t4)

}
(4.53)

∂2NP (sp, T )

∂sp∂T
=
∂2NP (sp, T )

∂T∂sp
=

1

T


− β

2n
(1− α) (T − t4) [A− b(1− α)sp]

+ (1− α)

[
2n− β(T + t4) + 2βt2

2n

]
[A− b(1− α)sp]


+
sp
T

{
β

2n
b(1− α)2 (T − t4)− b(1− α)2

[
2n− β(T + t4) + 2βt2

2n

] }
− hP

2T

∂I4
∂sp

− Cd

2T

∂I4
∂sp

− 1

T

∂NP (sp, T )

∂sp
(4.54)

∂2NP (sp, T )

∂T 2
= − β

nT
[sp(1− α)] [A− b(1− α)sp]−

2

T

∂NP (sp, T )

∂T
(4.55)

4.5.3 Numerical results

A numerical experiment is provided to demonstrate the use of the proposed model. The
following parameter values were selected, guided by values suggested from some previous
models and examples presented in the literature:

Demand parameter, A = 40 units/day

Demand enhancement parameter for inventory level, γ = 0.8

Deterioration cost, Cd = $ 0.8/unit

Deterioration rate per unit per time, θ(t) = 0.004

Discount percentage offered on selling price, α = 20%

Disposal cost per unit item, Cdp = $ 0.5/unit

Elasticity parameter of the unit selling price, b = 0.2

Fixed setup cost during the first production cycle, G1 =$ 657/setup

Fixed setup cost during the second production cycle, G2 = $ 947/setup

Fraction of defective products during the first production cycle, d1 = 0.08

Fraction of defective products during the second production cycle, d2 = 0.1
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Freshness parameter, β = 0.6

Initial production rate at the start of the cycle, k1 = 150 units/day

Inventory carrying cost per item produced per time, hp = $ 0.092/unit/day

Production cost at the start of production, pc1 = $ 0.54/unit

Production cost at the start of production, pc2 =$ 0.7/unit

Production rate following the shift, k2 = 130 units/day

Production time, t1 = 1 day

Production time, t2 = 2 days

Consumption time, t3 = 3 days

Consumption time, t4 = 6 days

Shelf-life of the product, n = 40 days

Figure 4.2: Graphical observation of NP against sp and T

The optimization is performed using the Newton-Raphson method, implemented using
MATLAB software due to the complexity of the equations. Solving Equations (4.48) and
(4.49), we obtain the optimal values for the product’s price s∗p = $167.6/ unit, and the
optimal length of the cycle T∗ = 21.5 days. Subsequently, we calculate the average total
profit NP

(
s∗p, T

∗) = $2977 per day. The concavity of the profit function can be observed
in Figure 4.2 for the values of the selling price ranging between 30 and 310 and the cycle
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Figure 4.3: Graphical representation of NP with respect to sp

time ranging between 14 and 28. Through numerical calculus using various values of sp,
ranging from 20 to 300, and it is evident from Figure 4.3 that the profit function per unit
time, NP (sp,T), is strictly concave versus the selling price.

4.5.4 Sensitivity analysis

Based on the aforementioned example, sensitivity analysis is conducted by changing the
value of one parameter while keeping the other parameters constant. This sensitivity
analysis is conducted to assess the impact of varying individual parameters on the opti-
mal values of the unit selling price, cycle time, and maximum profit. This is achieved by
adjusting parameter values within the range of -20% to +60% at intervals of 20%, and
the changes in optimal values are summarised in Tables 2, 3 and 4 and Figures 4, 5 and
6 for the impacts of the changes on the optimal cycle time, selling price and net profit
respectively

Figure 4.4 shows the effect of changing parameter values on the cycle time. The cycle
time T ∗ is highly sensitive with respect to shape parameters b, γ and β; production rates
k1 and k2; setup cost parameters G1, G2; time parameters t1, t2, t3, t4; the discount rate α;
moderately sensitive to unit production costs pc1, pc2; inventory holding costhp; defective
rates d1, d2; and the shelf-life period n. The cycle time T ∗ is insensitive with respect to
the parameter disposal costCdp; deteriorating costCd and the deterioration rate θ. The
analysis reveals that, for a higher values of b, hp, pc1, pc2, G1, G2, t3, t4 and n, the model
suggests decreasing the cycle time. On the other hand, the model suggests increasing the
cycle time T ∗ for a higher production rate k1 and k2, time parameter t1, shape parameters
γ and β and the discount rate α.
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Figure 4.4: Effect of changing parameters on T

From Figure 4.5, it can be seen that the selling price s∗p is highly sensitive with respect
to shape parameters b, time parameter t3 and discount rate α; moderately sensitive to
production rates k1 and k2, unit production costs pc1 and pc2, setup cost parameters G1,
and G2, time parameters t1, t2 and t4. The sensitivity analysis indicates that changes in
Cd, Cdp, hp, θ, γ, β, d1, d2, and n have a relatively minor impact on the unit selling price s∗p
as compared to other factors. Therefore, the unit selling price s∗p appears to be insensitive
to variations in these parameters. The parameters k1k2, pc1, pc2, G1, G2, t1, t2, t3, and the
discount rate α have an impact on the optimal selling price s∗p in positive way. For
instance, when the values of the mentioned parameters increase, the optimal selling price
also increases. The discount parameter α and time parameter t3 have the greatest impact
on the optimal selling price s∗p. On the other hand, the shape parameter of demand b and
the time parameter t4 have the opposite impact on the optimal selling price. In other
words, the optimal selling price decreases with the increase in values of the mentioned
parameters. The shape parameter b has the greatest effect on the optimal selling price.

The total profit per NP ∗ is highly sensitive with respect to changes in setup cost param-
eters G1, G2, shape parameter β and the shelf-life period n (Figure 4.6). The total profit
per NP ∗ is moderately sensitive to changes in parameter γ, disposal cost Cdp, inventory
holding costhp; unit production costs pc1, pc2, time parameters t1, t2, t3 and t4. The total
profit per NP ∗ exhibits a strong positive sensitivity to changes in setup cost parameters
G1, G2, disposal cost Cdp, inventory holding cost hp; unit production costs pc1, pc2, time
parameters t2, t4 and the shelf-life period n. Among these parameters, the setup cost pa-
rameters, the shelf live period n and time parameter t4 have the greatest impact on the
optimal profit. NP ∗ is highly sensitive in a negative to changes in shape parameters b, γ
and β, production rates k1, k2, time t1 and t3. Among these parameters, shape parame-
ters γ and β, and time parameter t1 have the greatest impact on the optimal profit per
cycle. The change in Cd, α, and θ has a minimal effect on the net profit NP ∗, indicating
that these parameters have a relatively insignificant influence on revenue when compared
to other factors that affect profitability.
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Figure 4.5: Effect of changing parameters on sp

Figure 4.6: Effect of changing parameters on NP

4.5.5 Managerial implications

The findings from the sensitivity analysis provide valuable suggestions to managers and
decision-makers for enhancing the total profit. These suggestions aim to optimise various
factors and improve overall profitability.

• It is important to note that the demand elasticity factor, b, is an important param-
eter in determining the net profit, the selling price, and the cycle time. This may
provide the managers with the necessary alternative optima, especially in situations
where there may be operating constraints on possible practical values. For instance,
market forces may impose limitations on the achievable cycle time, necessitating
managers to operate within a specific range of values. It can be observed from Fig-
ure 4.4 from the changes in the gradients that the changes in cycle time are more
sensitive to a decrease in demand elasticity than its increase. Hence, the manager
may appear to have some leeway in allowing an increase in this value. However,
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seeing the implications on the net profit function in Figure 4.6 discourages this
assumption.

• The setup cost parameters G1 and G2 play a crucial role in shaping the cycle
time and the net profit. When the setup costs increase, the manufacturer should
optimize the profit margin by taking some action to offset the increase in total
cost. Analysis of the provided tables reveals a notable decrease in cycle time, which
proves to be beneficial in optimizing the revenue. This reduction in cycle time
helps mitigate holding costs, particularly in production systems where storage costs,
deterioration, or obsolescence of inventory are significant concerns. Additionally,
the manufacturer should consider increasing the selling price per product as the
G1 and G2 increase to maintain their profit margin. The model suggests smaller,
well-justified price increases s∗p may be more acceptable to customers. To protect
profitability, a sustainable pricing strategy must consider the long-term viability
of the business. By adjusting the selling price s∗p to cover increased setup costs,
manufacturers can ensure that the business remains financially stable.

• The sensitivity analysis shows that an increase in the time from which price discount
is offered, t4, results in a moderate decrease in the cycle time. The model then
suggests a moderate increase in selling price to result in a moderate increase in
the optimal Net profit NP ∗. At first glance, this behaviour seems peculiar. This
suggests that as the combined effects of both product deterioration and the freshness
function kick in, the demand starts to drop, and spoilage starts to increase, and
there is the need to promptly introduce demand stimulants, especially because of
the impact of the freshness function. The extra sale will then compress the cycle
time since the quantity produced is already fixed, and this can mitigate the overall
effect of the holding cost and deteriorated quantity, amongst others, thereby raising
profit. On the other hand, in a typical production system, there can be a trade-off
between the production time (t2) and the cycle time (T ∗). When t2 increases, it is
often associated with producing a larger quantity of items within each cycle. As
a result, T ∗ may also increase to accommodate the production of these additional
items. However, it is important to note that an increase in production time does not
necessarily have a negative impact on the overall profitability of the manufacturer.
It can contribute to higher revenue earned per cycle. To ensure that the revenue
outweighs the total cost incurred, managers need to carefully balance the production
time, selling price, and cost factors. Increasing the selling price

(
s∗p
)
can be one

strategy to offset the potential increase in costs associated with longer cycle times
and larger inventories. By adjusting the selling price strategically, managers can aim
to maintain a competitive advantage while covering the additional costs incurred
due to increased production and inventory.

• Based on an observation derived from sensitivity analysis, it has been noted that
any change in the freshness parameter (β) necessitates careful consideration to
strike a balance between cycle time T ∗ and the total profit NP ∗. As β increases,
the product freshness drops, and the demand drops correspondingly. Consequently,
since products are already made, the cycle time lengthens, which increases the
quantity that deteriorates, makes the time the discounted product is sold longer,
increases the holding cost, and subsequently depletes the profit. It can be seen from
Figure 4.6 that this factor has one of the greatest impacts on profit, and as the cycle
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time increases further, comparing its slope to that of the demand elasticity factor,
it can quickly become the most important cause of profitability decline.
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Table 4.2: Results from the sensitivity analysis

% change Cycle time T Price Profit per time
days % change USD % change USD % change

Base 21.50 $ 167.60 $2,977

b

-20 30.47 41.7% 197.4 17.8% 3087.15 3.7%
+20 17.93 -16.6% 146.1 -12.8% 2780.52 -6.6%
+40 15.50 -27.9% 130.2 -22.3% 2601.90 -12.6%
+60 13.80 -35.8% 118.0 -29.6% 2447.09 -17.8%

cd

-20 21.50 0.0% 167.6 0.0% 2977.00 0.0%
+20 21.50 0.0% 167.6 0.0% 2977.00 0.0%
+40 21.50 0.0% 167.6 0.0% 2977.00 0.0%
+60 21.50 0.0% 167.6 0.0% 2977.00 0.0%

cdp

-20 21.52 0.1% 168.1 0.3% 3003.79 0.9%
+20 21.46 -0.2% 168.3 0.4% 3009.75 1.1%
+40 21.41 -0.4% 168.3 0.4% 3012.72 1.2%
+60 21.39 -0.5% 168.3 0.4% 3015.70 1.3%

hp

-20 21.61 0.5% 167.9 0.2% 2997.84 0.7%
+20 21.37 -0.6% 168.4 0.5% 3015.70 1.3%
+40 21.24 -1.2% 168.6 0.6% 3027.61 1.7%
+60 21.11 -1.8% 168.8 0.7% 3036.54 2.0%

k1

-20 18.38 -14.5% 167.6 0.0% 3057.38 2.7%
+20 24.70 14.9% 168.6 0.6% 2950.21 -0.9%
+40 28.01 30.3% 169.3 1.0% 2890.67 -2.9%
+60 31.48 46.4% 169.9 1.4% 2828.15 -5.0%

k2

-20 19.22 -10.6% 167.6 0.0% 3036.54 2.0%
+20 23.78 10.6% 168.8 0.7% 2977.00 0.0%
+40 26.06 21.2% 169.4 1.1% 2947.23 -1.0%
+60 28.34 31.8% 170.1 1.5% 2914.48 -2.1%

pc1

-20 21.72 1.0% 167.8 0.1% 2988.91 0.4%
+20 21.26 -1.1% 168.6 0.6% 3024.63 1.6%
+40 21.05 -2.1% 168.9 0.8% 3042.49 2.2%
+60 20.86 -3.0% 169.3 1.0% 3057.38 2.7%

pc2

-20 21.74 1.1% 167.8 0.1% 2985.93 0.3%
+20 21.24 -1.2% 168.6 0.6% 3027.61 1.7%
+40 21.01 -2.3% 168.9 0.8% 3045.47 2.3%
+60 20.77 -3.4% 169.4 1.1% 3066.31 3.0%

G1

-20 23.56 9.6% 165.1 -1.5% 2857.92 -4.0%
+20 19.89 -7.5% 171.1 2.1% 3143.71 5.6%
+40 18.58 -13.6% 173.8 3.7% 3268.75 9.8%
+60 17.48 -18.7% 176.5 5.3% 3387.83 13.8%

G2

-20 24.68 14.8% 163.6 -2.4% 2780.52 -6.6%
+20 19.29 -10.3% 172.3 2.8% 3200.28 7.5%
+40 17.61 -18.1% 176.1 5.1% 3375.92 13.4%
+60 * * * * * *
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Table 4.3: Results from the sensitivity analysis

% change Cycle time T Price Profit per time
days % change USD % change USD % change

Base 21.5 $167.60 $2,977

d1

-20 21.69 0.9% 167.6 0.0% 2968.07 -0.3%
+20 21.20 -1.4% 167.6 0.0% 2982.95 0.2%
+40 21.01 -2.3% 167.6 0.0% 2991.89 0.5%
+60 20.58 -4.3% 167.6 0.0% 2997.84 0.7%

d2

-20 21.80 1.4% 167.6 0.0% 2971.05 -0.2%
+20 21.20 -1.4% 167.6 0.0% 2982.95 0.2%
+40 20.88 -2.9% 167.6 0.0% 2991.89 0.5%
+60 20.60 -4.2% 167.6 0.0% 2997.84 0.7%

t1

-20 20.19 -6.1% 167.9 0.2% 3036.54 2.0%
+20 23.76 10.5% 168.6 0.6% 2953.18 -0.8%
+40 26.75 24.4% 169.4 1.1% 2881.74 -3.2%
+60 30.27 40.8% 170.3 1.6% 2801.36 -5.9%

t2

-20 16.79 -21.9% 166.6 -0.6% 3033.56 1.9%
+20 24.06 11.9% 170.3 1.6% 3033.56 1.9%
+40 24.57 14.3% 172.3 2.8% 3110.97 4.5%
+60 * * * * * *

t3

-20 26.17 21.7% 164.8 -1.7% 3137.76 5.4%
+20 22.36 4.0% 169.6 1.2% 2890.67 -2.9%
+40 18.64 -13.3% 176.8 5.5% 2887.69 -3.0%
+60 10.47 -51.3% 190.2 13.5% 2843.04 -4.5%

t4

-20 22.42 4.3% 170.4 1.7% 2965.09 -0.4%
+20 20.64 -4.0% 165.8 -1.1% 3042.49 2.2%
+40 19.84 -7.7% 163.4 -2.5% 3078.22 3.4%
+60 19.14 -11.0% 160.9 -4.0% 3110.97 4.5%

θ

-20 21.46 -0.2% 167.6 0.0% 2977.00 0.0%
+20 21.54 0.2% 167.6 0.0% 2977.00 0.0%
+40 21.54 0.2% 167.6 0.0% 2977.00 0.0%
+60 21.56 0.3% 167.6 0.0% 2977.00 0.0%

γ

-20 18.61 -13.4% 166.4 -0.7% 3078.22 3.4%
+20 24.22 12.7% 168.1 0.3% 2896.62 -2.7%
+40 25.71 19.6% 168.3 0.4% 2840.06 -4.6%
+60 26.35 22.5% 168.4 0.5% 2810.29 -5.6%

α

-20 21.25 -1.2% 161.6 -3.6% 2971.05 -0.2%
20 22.46 4.5% 174.1 3.9% 2982.95 0.2%
40 23.09 7.4% 181.2 8.1% 2985.93 0.3%
60 23.71 10.3% 188.7 12.6% 2991.89 0.5%

β

-20 20.99 -2.4% 167.8 0.1% 3093.10 3.9%
+20 22.90 6.5% 167.4 -0.1% 2846.01 -4.4%
+40 24.24 12.8% 167.3 -0.2% 2694.19 -9.5%
+60 26.11 21.5% 167.1 -0.3% 2509.61 -15.7%
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Table 4.4: Results from the sensitivity analysis

% change Cycle time T Price Profit per time
days % change USD % change USD % change

Base 21.5 $167.60 $2,977

n

-20 23.20 7.9% 167.4 -0.1% 2810.29 -5.6%
+20 21.11 -1.8% 167.8 0.1% 3073.16 3.2%
+40 20.66 -3.9% 167.8 0.1% 3137.76 5.4%
+60 20.34 -5.4% 167.9 0.2% 3185.39 7.0%

• It is interesting to see that changes in the shelf life, n, do not have a significant
impact on the optimal cycle time or on the optimal selling price. For instance, a
60% increase in the product life decreases the cycle time by just about 5 % and
the selling price by less than 0.5%. However, it increases the profit moderately, by
up to 7 %. This may be because longer shelf life dampens the effect of declining
freshness (which reduces demand), and decreases the cycle time (shortens the length
of discount period on fresh products, since t4 is fixed), hence, improving profit.
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4.6 Conclusion

Companies are actively seeking effective inventory strategies for deteriorating products.
While deteriorated products are unsellable, products that gradually lose freshness expe-
rience a decrease in demand as they age, although they can still be sold. Many previous
models on inventory models for deteriorating products often assume that the demand
remains unchanged regardless of the freshness level of the product. In reality, demand
is affected by freshness. Another assumption is that the production rate is constant in
a manufacturing system. This can be problematic as it doesn’t consider the variability
in and the complexity of manufacturing processes. In reality, production shifts from one
rate to another due to a variety of factors, such as variability of demand, machine break-
downs, material shortages, energy constraints, and quality issues. To effectively respond
to changes in demand or unforeseen disruptions in the production process, many organi-
zations implement flexible production systems for better efficiencies and profitability.

This study examined an EPQmodel with alternating production rates and price-dependent
demand while employing price discounting as a strategy to optimise profit. Additionally,
we modified the inventory model to incorporate deteriorating products, where demand
is not only influenced by the unit selling price but also by factors such as the level of
stock displayed and the freshness condition of the product. The primary objective is to
determine both the selling price and the inventory cycle time that maximises the profit.
The objective function of this model is highly non-linear, making it challenging to find
an analytical solution, hence, solved numerically. We presented a numerical example and
then conducted sensitivity analyses to gain managerial insights based on changes in pa-
rameter values. It is not always economically viable for the decision maker to sell products
at the regular price, particularly when the production costs per unit or the setup costs
increase. In such cases, decision-makers can reduce their cycle time as much as possible
and increase their unit selling price to protect their profit. Furthermore, when faced with
an increase in discount, the analysis suggests that in such situations, the decision maker
may respond by increasing their price and cycle time to maintain the profit. However,
it is important for managers to consider market dynamics and customer behaviour when
contemplating cycle time and price adjustments. Adjustments in cycle time or price may
be more effective in preserving profitability without compromising the overall profitabil-
ity of the production system.

Future research can expand this model in several ways, such as considering non-linear
shortages, inflation, incremental discount facilities, prepayment instalments on pricing,
and other factors. Furthermore, one could explore models with demand dependent on ad-
vertisement and selling price, nonlinear stock-dependent holding cost, non-instantaneous
deterioration, and preservation technology, as well as introducing various credit policies
(single-level, two-level, partial, credit risk customers, etc.). The model can also be ex-
tended to stochastic or fuzzy models.
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Chapter 5

A two-echelon supply chain
inventory model for perishable
products with a shifting production
rate, stock-dependent demand rate
and imperfect quality raw material †

5.1 Introduction

5.1.1 Context

El-Kassar et al. (2012) examined an Economic Production Quantity model that ac-
counts for the cost of raw materials required for production. The model assumes that a
certain proportion of imperfect quality items are present in the supplier’s raw materials,
which undergo a screening process at the beginning of each inventory cycle. However,
the model has limitations as it does not accurately represent real-life inventory systems
due to several underlying assumptions, four of which will be discussed in this section.
The first assumption is that after receiving an order of raw materials at the start of a
production cycle, products are manufactured at fixed costs throughout the entire cycle.
In many practical environments, production costs are rarely fixed throughout the entire
production cycle. Various factors, such as changes in raw material prices, labor costs,
and other operational expenses, can contribute to changes in the overall production cost.
Additionally, unforeseen events or disruptions can impact the cost structure, making it
variable rather than fixed. The second assumption is that demand remains constant,
which does not account for the dynamic nature of market conditions. Demand for prod-
ucts can fluctuate due to factors such as stock, seasonality, price, quality, market trends,
economic conditions, or shifts in consumer preferences. The third assumption is that the
production rate is fixed and that all products are of perfect quality; this is not always the
case, especially in today’s business environment, where managing flexible production sys-
tems has become increasingly crucial for industries aiming to enhance their adaptability
and agility. The fourth assumption is that there is no degradation. In various industries,
products have a limited shelf life or experience gradual deterioration over time, which can

†A modified version of this chapter will be submitted to the journal of mathematics.
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be influenced by factors such as expiration dates, quality, or technological obsolescence.

5.1.2 Purpose

This study aims to consider the implications of stock displayed, shift in production, and
quality of raw material on the inventory management policies of a two-echelon supply
chain of deteriorating products. To this end, an integrated model for managing inventory
in a two-echelon supply chain for deteriorating products is proposed. The two echelons
correspond to the supplier, supplying raw materials, and a manufacturer that operates
downstream, transforming these inputs into finished products. Flexibility in production is
an essential characteristic in inventory control. Two distinct inventory models for deteri-
orating products are developed under imperfect production, considering the combination
of imperfect raw materials and the concept of shifting production rate. In both models,
demand for the product is dependent on the current stock level. In the first model, the
imperfect raw materials are sold at a discounted price at the end of the screening period,
whereas in the second one, imperfect items are kept in stock until the end of the inventory
cycle and then returned to the supplier.

5.1.3 Relevance

This research holds significant relevance in today’s field of supply chain management,
especially for industries facing challenges related to managing deteriorating products. In
the current dynamic business landscape, characterised by rapid technological advance-
ments and evolving consumer demands, the adaptability and resilience of supply chains
are crucial. Table 5.1 presents the gap in the existing literature that this study aims to
address. It provides an analysis of inventory models from previous research, specifically
focusing on the various factors that have been considered. This chapter focuses on the
impact of the level of stock displayed, production shifts, and raw material quality within
a two-echelon supply chain to provide practical insights that can significantly improve
inventory management strategies. By comprehending the complexities associated with
imperfect raw materials and changes in production rates, businesses can refine their ap-
proaches to minimise risks, optimise profits, and ensure efficient resource utilisation. The
proposed inventory management model offers a practical framework for industries dealing
with imperfect raw materials and variability in demand alongside non-reliable produc-
tion systems. Ultimately, the study contributes to and expands existing literature on
inventory management for deteriorating products with stock-dependent demand in two
distinct ways: First is its consideration of simultaneous quantity deterioration, imperfect
raw material, and stock-level dependent demand along with an increasing defective rate
of finished products which has not been done before. Secondly, it combines all these
factors in a two-echelon supply chain.
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5.1.4 Organisation

Apart from the introductory part, this particular section consists of five additional sub-
sections. Before delving into the model development presented in Subsection 5.3, the
assumptions used in this chapter are outlined in Subsection 5.2. Subsection 5.4 provides
numerical results and a demonstration of the model’s optimality conditions, while Sub-
section 5.5 presents sensitivity analysis, aiming to investigate the influence of changes in
important parameter values on decision variables to understand their impact on the profit
comprehensively. The section concludes with Subsection 5.6, which consists of concluding
remarks and suggestions for future research.

5.2 Notations and assumptions

5.2.1 Notations

The following notations are used during the development of the models presented in this
thesis:

A Demand parameter
ψ Aggregation parameter for some known variables
cd Deterioration cost per item
cr Unit cost of raw material
D[I(t)] Demand for the product
d1,2 Proportion of defective units produced
τ Aggregation parameter for some known variables
Fr raw material ordering cost
G1,2 Fixed set-up cost associated with stage i
hp Inventory carrying cost per item produced per time
hr Inventory carrying cost per unit of raw material per time
HM Hessian Matrix
I(t) Instantaneous inventory level
k1 Initial production rate at the start of the cycle
k2 Production rate following the shift respectively
ζ Increase in unit machining cost due to increase in the production rate
pc1 Unit production cost at the start of production
pc2 Unit production cost after the machine’s production rate has been scaled down
pl Lost production cost per product
pc Purchase price per product
Q Production batch size
Qs Quantity of good products sold at a normal price
Q∗ Optimal batch size
QDp Quantity of deteriorated products
q Proportion of raw materials that are of imperfect quality

ϕ
Per unit cost of running the machine independent of the production rate
including labor and energy costs

sp Market selling price of the product
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sd Discounted unit selling price of imperfect finished products
sr Discounted unit selling price of imperfect raw material
y Raw material order size per cycle
T Cycle time
ti∈{1,2} Time duration of each phase of the cycle
ts Screening period
TCRM Total purchase cost of raw material
THR Total carrying cost of raw material
THC Total carrying cost of finished products
TDC Total deterioration cost
TPC Total production cost
TSC Total set-up cost
LP Lost production cost
TR Average revenue per time
TC Average total cost per cycle
TR Average revenue per cycle
TP Average profit per cycle
θ(t) Deterioration rate per unit per time
γ Demand enhancement parameter for inventory level
ρ1,2, ξ, υ Aggregation parameters for some known variables
x Screening rate for imperfect raw material
y Raw material order size

5.2.2 Assumptions

Several assumptions are made to model the proposed inventory system. These assump-
tions include:

• A single type of product is considered.

• Deterioration is observed on manufactured products only.

• The quality of all items produced does not always meet the quality standard; there-
fore, a proportion di is considered to be defective in each stage of the production
cycle.

• At the start of the process, a production rate of k1 is employed. After a time, t1,
the decision maker switches to a lower production rate of k2.

• The demand rate is dependent on the level of stock displayed and is of the form

D(I) = A+ γI(t) (5.1)

Where A ≥ 0 is the base demand rate, independent of the inventory level, γ > 0 is
the demand enhancement parameter for inventory level I(t) > 0

• The production cost per unit is of the form

pki = pci +
ϕ

ki
+ ζki (5.2)

where pci, ϕ and ζ are nonnegative constants. The cost of production is a combina-
tion of the following factors (Panda et al., 2007):
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1. pci is the fixed cost per unit produced, independent of the batch size

2. The factor ϕ
ki
indicates that there is a cost associated with the economy of scale

in the batch that affects the unit fixed cost of production. As the production
rate decreases, some costs, like labour, energy, etc., increase.

3. The factor ζki is associated with machine and technology costs and is propor-
tional to the production rate.

• All the good products are sold at a unit selling price sp.

• Process deterioration occurs in the production run period.

• The changeover cost and time from k1 to k2 is assumed to be negligible.

• The discounted unit selling price of imperfect raw material (sr) is always greater
than the unit purchasing cost of raw material Cr.

• Some manufactured products are of imperfect quality and have to be discounted as
a batch at a discounted price at the end of the cycle at a unit selling price sr.

• The manufactured products are subject to deterioration. The deterioration function
is of the form

θ(t) =

{
θe−θt, for t > 0

0, otherwise
(5.3)

• It is assumed that the raw material doesn’t deteriorate but contains a proportion
q that is considered to be of imperfect quality.

• There is no rework or replacement of poor quality products since it is handled by
using in-house capacity.

5.3 Problem description

5.3.1 First scenario’s Formulation

In this scenario, it is assumed that the system starts production at a rate of k1 (Figure
5.1). During the first part of the cycle, inventory accumulates at a rate (1− d1) k1 −A−
γI(t)− θI(t) while the imperfect quality items accumulate at the rate d1k1 and are sold
at a discounted price as a single batch at the end of the cycle. An order of size y of raw
materials is assumed to be placed and received prior to the start of the cycle because the
production process requires input materials. However, the raw material delivered by the
supplier for production contains a percentage q that is assumed to be of poor quality.
Therefore, a quantity yq is deemed to be of imperfect quality and only y(1− q) units of
raw materials received are used during the production cycle. It is also assumed that once
the order is received, a 100% screening process is conducted at a rate x, where x > k1.
Therefore, the length of the screening period is:

ts =
y

x
(5.4)

Throughout the screening process, materials of perfect quality are separated from imper-
fect ones, and only perfect materials are used to produce items that are used to satisfy
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Figure 5.1: Raw material inventory level with imperfect items sold at a discount

the demand. Therefore, the stock level of raw material used for production is depleted
at a rate of k1 until the end of the screening cycle. When the screening process stops,
the quantity of raw material reaches a level of

y − k1ts = y

(
1− k1

x

)
(5.5)

At this time, the imperfect raw materials are separated from the perfect ones and sold as
a single batch at a discounted price sr. Thus, the level of raw material in Equation (5.5)
drops further by a quantity qy. The quantity of raw material left is

y − k1ts − qy = y

(
1− k1

x
− q

)
(5.6)

Moreover, the production continues at the rate k1 until the end of the first production
cycle (Figure 5.2). At time t1, the raw material level in Equation (5.6) drops by a quantity

k1 (t1 − ts) (5.7)

Subtracting Equation (5.7) from Equation (5.6) results in

y − k1ts − qy − k1 (t1 − ts) = y(1− q)− k1t1 (5.8)

At this time during the cycle, the number of perfect quality items produced reaches a
level of inventory I1. However, it is assumed that the production rate switches over at t1
(Figure 5.2), just after reaching the inventory level I1, and the system is automatically
reconfigured to continue to be operational but at a lower production rate, k2 (k2 < k1) to
ensure the continuity of the production. The raw material in Equation (5.8) continues
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Figure 5.2: Inventory profile with a shift in production rate and stock dependent demand

to decrease at a rate k2 until it reaches zero at the end of production cycle t2, and the
inventory of perfect items produced accumulates at the rate (1− d2) k2− A−γI(t)−θI(t)
until a level I2 is reached. During this period, the quantity of imperfect quality items
accumulates at the rate d2k2, which ends at time t2. The production is then stopped at
t2. The cycle then repeats itself after time T .

The differential equations that represent the state of the production system in the interval
[0, T ] are given by

dI(t)

dt
+ θI(t) = (1− d1) k1 − A− γI(t) 0 ≤ t ≤ t1 (5.9a)

dI(t)

dt
+ θI(t) = (1− d2) k2 − A− γI(t) t1 ≤ t ≤ t2 (5.9b)

dI(t)

dt
+ θI(t) = −A− γI(t) t2 ≤ t ≤ t3 (5.9c)

Solving Equation (5.9a), one can obtain

I(t) =

[
(1− d1) k1
θ + γ

− A

θ + γ

]
+ L1e

−(θ+γ)t (5.10)

From Equation (5.10) under the boundary condition, I(0) = 0, the following is obtained

L1 =
A

θ + γ
− (1− d1) k1

θ + γ
(5.11)
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Substituting Equation (5.11) into Equation (5.10) results in

I(t) =

[
(1− d1) k1
θ + γ

− A

θ + γ

] [
1− e−(θ+γ)t

]
0 ≤ t ≤ t1 (5.12)

Solving Equation (5.9b) leads to

I(t) =

[
(1− d2) k2
θ + γ

− A

θ + γ

]
+ L2e

−(θ+γ)t (5.13)

Using the boundary condition, I(t1) = I1 in Equation (5.13), leads to

L2 =

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e(θ+γ)t1 (5.14)

Substituting Equation (5.14) into Equation (5.13) results in

I(t) =

[
(1− d2) k2
θ + γ

− A

θ + γ

]
+

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t−t1) t1 ≤ t ≤ t2

(5.15)
Solving Equation (5.9c), leads to

I(t) = − A

θ + γ
+ L3e

−(θ+γ)t (5.16)

From Equation (5.16) under the boundary condition, I(t2) = I2, the following is obtained

L3 =

(
I2 +

A

θ + γ

)
e(θ+γ)t2 (5.17)

Substituting Equation (5.17) into Equation (5.16) leads to

I(t) = − A

θ + γ
+

[
I2 +

A

θ + γ

]
e−(θ+γ)(t−t2) t2 ≤ t ≤ T (5.18)

From Equation (5.12), the inventory level, I(t1), at time t1, can be described by the
following equation

I (t1) =

[
(1− d1) k1
θ + γ

− A

θ + γ

] [
1− e−(θ+γ)t1

]
(5.19)

On the other hand
I (t1) = I1 (5.20)

Equating Equations (19) and (20) leads to

I1 =

[
(1− d1) k1
θ + γ

− A

θ + γ

] [
1− e−(θ+γ)t1

]
(5.21)

Dividing both sides of Equation (5.21) by
[
(1−d1)k1

θ+γ
− A

θ+γ

]
leads to

(θ + γ)I1
[(1− d1) k1 − A]

= 1− e−(θ+γ)t1 (5.22)
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e−(θ+γ)t1 = 1− (θ + γ)I1
[(1− d)k1 − A]

(5.23)

Solving for t1 in Equation (5.23) results in

ln e−(θ+γ)t1 = ln

[
1− (θ + γ)I1

[(1− d1) k1 − A]

]
(5.24)

t1 = − 1

(θ + γ)
ln

[
1− (θ + γ)I1

(1− d1) k1 − A

]
(5.25)

From Taylor’s series expansion, and the assumption that (θ+ γ)2 ≪ 1 (neglecting higher
powers of (θ + γ), the expansion of the logarithmic function of Equation (5.25) leads to
the following approximation

t1 = − 1

θ + γ

[
− (θ + γ)I1
(1− d1) k1 − A

− (θ + γ)2I21
2 [(1− d1) k1 − A]2

]
(5.26a)

=
I1

(1− d1) k1 − A
+

(θ + γ)I21
2 [(1− d1) k1 − A]2

(5.26b)

=
I1
ρ1

+
(θ + γ)I21

2ρ21
(5.26c)

≈ I1
ρ1

(5.26d)

With
(1− d1) k1 − A = ρ1 (5.27)

Thus, t1 can be written in terms of I1 and so, t1 is not a decision variable.

From Equation (5.15), under the boundary condition I(t2) = I2, one can obtain

I2 =

[
(1− d2) k2
θ + γ

− A

θ + γ

]
+

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t2−t1) (5.28)

Subtracting
[
(1−d2)k2

θ+γ
− A

θ+γ

]
from both sides of Equation (5.28) leads to

I2 −
[
(1− d2) k2
θ + γ

− A

θ + γ

]
=

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t2−t1) (5.29)

Dividing both sides of Equation (5.29) by
{
I1 −

[
(1−d2)k2

θ+γ
− A

θ+γ

]}
leads to

(θ+γ)I2−(1−d2)k2+A
θ+γ

(θ+γ)I1−(1−d2)k2+A
θ+γ

= e−(θ+γ)(t2−t1) (5.30)

(θ+γ)I1−(1−d2)k2+A
−(1−d2)k2+A

(θ+γ)I2−(1−d2)k2+A
−(1−d2)k2+A

= e(θ+γ)(t2−t1) (5.31)
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e(θ+γ)(t2−t1) =

[
1− (θ + γ)I1

(1− d2) k2 − A

] [
1− (θ + γ)I2

(1− d2) k2 − A

]−1

(5.32)

Solving for t2 in Equation (5.32) results in

ln e(θ+γ)(t2−t1) = ln

[
1− (θ + γ)I1

(1− d2) k2 − A

] [
1− (θ + γ)I2

(1− d2) k2 − A

]−1

(5.33)

t2 − t1 =
1

θ + γ
ln

[
1− (θ + γ)I1

(1− d2) k2 − A

]
− 1

θ + γ
ln

[
1− (θ + γ)I2

(1− d2) k2 − A

]
(5.34)

From Taylor’s series expansion, and the assumption (θ + γ)2 ≪ 1 (neglecting higher
powers of (θ+ γ), the expansion of the logarithmic function of Equation (54) leads to the
following approximation

t2 − t1 =
1

θ + γ

[
− (θ + γ)I1
(1− d2) k2 − A

− (θ + γ)2I21
2 [(1− d2) k2 − A]2

]
− 1

θ + γ

[
− (θ + γ)I2
(1− d2) k2 − A

− (θ + γ)2I22
2 [(1− d2) k2 − A]2

] (5.35)

t2 − t1 =
I2 − I1

(1− d2) k2 − A
+

(θ + γ) (I22 − I21 )

2 [(1− d2) k2 − A]2
(5.36a)

t2 =
I2 − I1
ρ2

+
(θ + γ) (I22 − I21 )

2ρ22
+
I1
ρ1

+
(θ + γ)I21

2ρ21
(5.36b)

t2 ≈
I2 − I1
ρ2

+
I1
ρ1

(5.36c)

With
(1− d2) k2 − A = ρ2 (5.37)

Thus, t2 can be written in terms of I1 and I2. Therefore, t2 is not a decision variable.
Applying the boundary condition I(T ) = 0 in Equation (5.18), results in

0 = − A

θ + γ
+

[
I2 +

A

θ + γ

]
e−(θ+γ)(T−t2) (5.38)

Factoring out
[
I2 +

A
θ+γ

]
from Equation (5.38), and solving for T yields

A
θ+γ[

A+(θ+γ)I2
θ+γ

] = e−(θ+γ)(T−t2) (5.39)

T − t2 =
1

(θ + γ)
ln

[
A+ (θ + γ)I2

A

]
(5.40)

For small values of (θ+ γ) and using Taylor series to approximate Equation (5.40) yields

T − t2 ≈
1

(θ + γ)

[
(θ + γ)

A
I2 −

(θ + γ)2

2A2
I22

]
(5.41)
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Substituting Equation (5.36b) into Equation (5.41) leads

T =
I2
A

− (θ + γ)I22
2A2

+
I2 − I1
ρ2

+
(θ + γ) (I22 − I21 )

2ρ22
+
I1
ρ1

+
(θ + γ)I21

2ρ21
(5.42a)

≈ I2
A

+
I2 − I1
ρ2

+
I1
ρ1

(5.42b)

≈
(
1

A
+

1

ρ2

)
I2 +

(
1

ρ1
− 1

ρ2

)
I1 (5.42c)

≈ ψI2 + τI1 (5.42d)

with (
1

A
+

1

ρ2

)
= ψ (5.43a)(

1

ρ1
− 1

ρ2

)
= τ (5.43b)

Extracting I2 from Equation (5.42d), yields

I2 =
T − τI1

ψ
(5.44a)

=
T −

(
ρ2−ρ1
ρ1ρ2

)
I1

ρ2+A
Aρ2

(5.44b)

=
ρ1ρ2T + (ρ1 − ρ2) I1

ρ1ρ2

Aρ2
ρ2 + A

(5.44c)

=
Aρ1ρ2

ρ1 (ρ2 + A)
T +

A (ρ1 − ρ2)

ρ1 (ρ2 + A)
I1 (5.44d)

= ξT + υI1 (5.44e)

with

ξ =
Aρ1ρ2

ρ1 (ρ2 + A)
(5.45a)

υ =
A (ρ1 − ρ2)

ρ1 (ρ2 + A)
(5.45b)

I2 can be written in terms of I1 and T . Therefore, I2 is not a decision variable.

5.3.2 Manufacturer’s cost components

To determine the optimal quantities, the total cost per cycle is first calculated by summing
the following costs: ordering cost, deterioration cost, production cost, setup cost for
production, inventory holding cost, lost sales cost, lost production cost, shortage cost,
and purchasing cost.

5.3.2.1 Manufacturer’s ordering cost of raw material

The ordering cost of raw materials is considered fixed and represented by

OCr = Fr (5.46)
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5.3.2.2 Manufacturer’s inventory holding cost of raw material

The holding cost of raw material is the product of the average inventory, and the holding
cost per unit of raw material per unit time ( hr). To find the average inventory of raw
materials, the area in Figure 5.1 is divided by the cycle length. The graph in Figure 5.1
was decomposed into two trapezoids and a triangle, and then the area of each trapezoid
was calculated and summed up to find the total area. Hence, the total area representing
the inventory of raw materials is given by

y + (y − k1ts)

2
ts +

[(y − k1ts − qy) + (y − k1t1 − qy)]

2
(t1 − ts)

+
(y − k1t1 − qy)

2
(t2 − t1)

(5.47a)

=
[2qy + k1t1]

2
ts +

[(y − qy − k1ts)]

2
t1 +

(y − qy − k1t1)

2
t2 (5.47b)

The quantity of raw material required for the exact production in each cycle is given by

y = k1t1 + k2 (t2 − t1) + qy (5.48a)

=
k1t1 + k2 (t2 − t1)

1− q
(5.48b)

Substituting Equations (5.4) and (5.48b) into Equation (5.47b), yields

q [k1t1 + k2 (t2 − t1)]
2

x(1− q)2
+

(k1 − k2) t
2
1 + k2t

2
2

2
(5.49)

Substituting Equations (5.26d) and (5.36c) into Equation (5.49), leads to

q

x(1− q)2

[
k1
I1
ρ1

+ k2
I2 − I1
ρ2

]2
+

1

2
(k1 − k2)

(
I1
ρ1

)2

+
1

2
k2

(
I2 − I1
ρ2

+
I1
ρ1

)2

(5.50)

Hence, the inventory holding cost of raw materials is given by

THR = hr

{
q

x(1− q)2

[
k1
I1
ρ1

+ k2
I2 − I1
ρ2

]2
+

1

2
(k1 − k2)

(
I1
ρ1

)2

+
1

2
k2

(
I2 − I1
ρ2

+
I1
ρ1

)2
}

(5.51)

5.3.2.3 Manufacturer’s purchasing cost of raw material

To calculate the cost of procuring raw materials, TCRM , the unit cost cr is multiplied
by the quantity y required for one production cycle.

TCRM = Cr × y (5.52)

Substituting Equation (5.48b) into Equation (5.52) leads to

TCRM =
Cr

1− q

[
k1
I1
ρ1

+ k2
I2 − I1
ρ2

]
(5.53)
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5.3.2.4 Manufacturer’s set up

The setup cost in the manufacturing process varies over different intervals, denoted as
SC, with specific values assigned during distinct time periods. In the initial interval, from
0 to t1, the setup cost is represented by G1, reflecting the corresponding requirements
and expenses during that phase. Subsequently, in the interval t1 to t2, the setup cost
transitions to G2, capturing the effect of switching from production rate k1 to k2

SC =

{
G1 0 ≤ t ≤ t1
G2 t1 ≤ t ≤ t2

(5.54)

Therefore, the total setup cost is given by the following

TSC = G1 +G2 (5.55)

5.3.2.5 Manufacturer’s inventory holding cost

The manufacturer incurs a holding cost, THC, which is the product of the holding
inventory carried throughout the production-consumption cycle and the cost of holding
a single unit per time unit (hp). Thus

THC = hp

[∫ t1

0

I(t)dt+

∫ t2

t1

I(t)dt+

∫ T

t2

I(t)dt

]
(5.56)

∫ t1

0

I(t)dt =

∫ t1

0

{[
(1− d1) k1
θ + γ

− A

θ + γ

] [
1− e−(θ+γ)t

]}
dt (5.57a)

=

[
(1− d1) k1
θ + γ

− A

θ + γ

] ∫ t1

0

[
1− e−(θ+γ)t

]
dt (5.57b)

=

[
(1− d1) k1
θ + γ

− A

θ + γ

](
t1 +

1

θ + γ
e−(θ+γ)t1

)
(5.57c)

=

[
(1− d1) k1
θ + γ

− A

θ + γ

](
t1 +

1

θ + γ
e−(θ+γ)t1

)
− 1

θ + γ

[
(1− d)k1
θ + γ

− A

θ + γ

]
(5.57d)

=
1

θ + γ
[(1− d1) k1 − A]

[
t1 +

1

θ + γ

[
e−(θ+γ)t1 − 1

]]
(5.57e)

Multiplying both sides of Equation (5.23) by −1
(θ+γ)

leads to

− I1
[(1− d1) k1 − A]

=
1

(θ + γ)

[
−1 + e−(θ+γ)t1

]
(5.58)

Substituting Equations (5.26b) and (5.58) into Equation (5.57e), leads to

=
1

θ + γ
[(1− d1) k1 − A]

[
I1

(1− d1) k1 − A
+

(θ + γ)I21
2 [(1− d1) k1 − A]2

− I1
[(1− d1) k1 − A]

] (5.59)
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=
I21

2 [(1− d1) k1 − A]
(5.60a)

=
I21
2ρ1

(5.60b)

∫ t2

t1

I(t)dt =

∫ t2

t1

{[
(1− d2) k2
θ + γ

− A

θ + γ

]
+

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t−t1)

}
dt

(5.61)

=
1

θ + γ
[(1− d2) k2 − A] t2 −

1

θ + γ

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t2−t1)

− 1

θ + γ
[(1− d2) k2 − A] t1

+
1

θ + γ

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t1−t1)

(5.62)

=
1

θ + γ
[(1− d2) k2 − A] t2 −

1

θ + γ

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t2−t1)

− 1

θ + γ
[(1− d2) k2 − A] t1 +

1

θ + γ

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t1−t1)

(5.63)

=
1

θ + γ
[(1− d2) k2 − A] (t2 − t1)−

1

θ + γ

[
(1− d2) k2
θ + γ

− A

θ + γ

]
− 1

θ + γ

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t2−t1) +

1

θ + γ
I1

(5.64)

Multiplying both sides of Equation (5.28) by − 1
θ+γ

results in

− 1

(θ + γ)

[
(1− d2) k2
θ + γ

− A

θ + γ

]
− 1

(θ + γ)

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t2−t1)

= − 1

θ + γ
I2

(5.65)
Substituting Equations (5.36a) and (5.65) into Equation (5.64), yields

=
1

θ + γ
[(1− d2) k2 − A]

[
I2 − I1

(1− d2) k2 − A
+

(θ + γ) (I22 − I21 )

2 [(1− d2) k2 − A]2

]
− 1

θ + γ
I2 +

1

θ + γ
I1

(5.66a)

=
(I22 − I21 )

2 [(1− d2) k2 − A]
(5.66b)

=
(I22 − I21 )

2ρ2
(5.66c)
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∫ T

t2

I(t)dt =

∫ T

t2

[
− A

θ + γ
+

[
I2 +

A

θ + γ

]
e−(θ+γ)(t−t2)

]
dt (5.67)

= − A

θ + γ
(T − t2)−

1

θ + γ

[
I2 +

A

θ + γ

]
e−θ(T−t2) +

1

θ + γ

[
I2 +

A

θ + γ

]
(5.68)

= − A

θ + γ
(T − t2)−

1

θ + γ

[
− A

θ + γ
+

(
I2 +

A

θ + γ

)
e−(θ+γ)(T−t2)

]
+

1

θ + γ
I2 (5.69)

Using Equation (5.38) to simplify Equation (5.69) leads to

− A

θ + γ
(t3 − t2)−

1

θ + γ
0 +

1

θ + γ
I2 (5.70a)

= − A

θ + γ

[
I2
A

− (θ + γ)I22
2A2

]
+

1

θ + γ
I2 (5.70b)

=
I22
2A

(5.70c)

Summing up Equations (5.60b), (5.66c), and (5.70c) results in the following expression
for the total inventory carrying cost over the period [0, T ]

THC = hp

[
I21
2ρ1

+
(I22 − I21 )

2ρ2
+
I22
2A

]
(5.71)

5.3.2.6 Manufacturer’s deterioration cost

The total number of deteriorated items over the time interval [0, T ] is obtained by inte-
grating the deterioration function over the interval [0, T ]. Therefore

QDp =

∫ t1

0

[(1− d1) k1 − A− γI(t)] dt+

∫ t2

t1

[(1− d2) k2 − A− γI(t)] dt−
∫ T

t2

[A+γI(t)]dt

(5.72)
In order to evaluate the total quantity of deteriorated products (QDp), one proceeds by
solving each integral in Equation (5.73).

∫ t1

0

[(1− d1) k1 − A− γI(t)] dt

=

∫ t1

0

{
(1− d1) k1 − A− γ

[
(1− d1) k1
θ + γ

− A

θ + γ

] [
1− e−(θ+γ)t

]}
dt

(5.73)

= [(1− d1) k1 − A]

[
I1

(1− d)k1 − A
+

(θ + γ)I21
2 [(1− d)k1 − A]2

]
− γ

[
(1− d1) k1
θ + γ

− A

θ + γ

] [
t1 +

1

θ + γ
e−(θ+γ)t1

]
+ γ

[
(1− d1) k1
θ + γ

− A

θ + γ

] [
1

θ + γ

] (5.74)
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= [(1− d1) k1 − A]

[
I1

(1− d)k1 − A
+

(θ + γ)I21
2 [(1− d)k1 − A]2

]
− γ

θ + γ
[(1− d1) k1 − A]

{
t1 +

1

θ + γ

[
e−(θ+γ)t1 − 1

]} (5.75)

Substituting Equations (5.26b) and (5.57) into equation (5.74), leads to

[(1− d1) k1 − A]

[
I1

(1− d1)k1 − A
+

(θ + γ)I21
2 [(1− d1)k1 − A]2

]
− γ

θ + γ
[(1− d1) k1 − A]

[
I1

(1− d1) k1 − A
+

(θ + γ)I21
2 [(1− d1) k1 − A]2

− I1
[(1− d1) k1 − A]

]
(5.76a)

= I1 +
θI21

2 [(1− d1) k1 − A]
(5.76b)

∫ t2

t1

[(1− d1) k2 − A− γI(t)]dt

=

∫ t2

t1

[(1− d2) k2 − A] dt

− γ

∫ t2

t1

{[
(1− d2) k2
θ + γ

− A

θ + γ

]
+

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t−t1)

}
dt

(5.77)

=

∫ t2

t1

[(1− d2) k2 −A] dt− γ

∫ t2

t1

[
(1− d2) k2
θ + γ

− A

θ + γ

]
dt

− γ

∫ t2

t1

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t−t1)dt

(5.78)

Equation (5.78) can be integrated separately as follow∫ t2

t1

[(1− d2) k2 − A] dt = [(1− d2) k2 − A] (t2 − t1) (5.79)

Substituting Equation (5.36a), yields

[(1− d2) k2 − A]

[
I2 − I1

(1− d)k2 − A
+

(θ + γ) (I22 − I21 )

2 [(1− d)k2 − A]2

]
(5.80a)

=

[
I2 − I1 +

(θ + γ) (I22 − I21 )

2 [(1− d2) k2 − A]

]
(5.80b)

∫ t2

t1

[
(1− d2) k2
θ + γ

− A

θ + γ

]
dt =

1

(θ + γ)
[(1− d2) k2 − A] (t2 − t1) (5.81)

Substituting Equation (5.36a) into Equation (5.81), yields

1

(θ + γ)
[(1− d2) k2 − A]

[
I2 − I1

(1− d2) k2 − A
+

(θ + γ) (I22 − I21 )

2 [(1− d2) k2 − A]2

]
(5.82a)

=
1

(θ + γ)
(I2 − I1) +

(I22 − I21 )

2 [(1− d2) k2 − A]
(5.82b)
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∫ t2

t1

[{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t−t1)

]
dt (5.83)

= − 1

(θ + γ)

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t2−t1)

+
1

(θ + γ)

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t1−t1)

(5.84a)

= − 1

(θ + γ)

[
(1− d2) k2
θ + γ

− A

θ + γ

]
− 1

(θ + γ)

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t2−t1)

+
1

(θ + γ)
I1 (5.84b)

Substituting Equation (5.65) into Equation (5.84b) yields

−(I2 − I1)

θ + γ
(5.85)

Combining Equations (5.80b), (5.82b), and (5.85) yields the revised form of Equation
Equation (5.78), which can be expressed as[

I2 − I1 +
(θ + γ) (I22 − I21 )

2 [(1− d2) k2 − A]

]
− γ

[
I2 − I1
(θ + γ)

+
(I22 − I21 )

2 [(1− d2) k2 − A]
− I2 − I1

θ + γ

]
(5.86a)

= I2 − I1 +
θ (I22 − I21 )

2 [(1− d2) k2 − A]
(5.86b)

∫ T

t2

[A+ γI(t)]dt =

∫ T

t2

Adt+ γ

∫ T

t2

[
− A

θ + γ
+

(
I2 +

A

θ + γ

)
e−(θ+γ)(t−t2)

]
dt (5.87)

= I2−
(θ + γ)I22

2A
− γA

θ + γ
(T − t2)−

γ

θ + γ

[
− A

(θ + γ)
+

(
I2 +

A

θ + γ

)
e−(θ+γ)(T−t2)

]
+

γ

θ + γ
I2

(5.88)
Using Equations (5.38) and (5.41) to simplify Equation (5.88) leads to

= I2 −
(θ + γ)I22

2A
− γA

θ + γ

[
I2
A

− (θ + γ)I22
2A2

]
+

γ

θ + γ
I2 (5.89a)

= I2 −
(θ + γ)I22

2A
+ γ

I22
2A

(5.89b)

= I2 −
θI22
2A

(5.89c)

Summing up Equations (5.76b), (5.86b), and (5.89c) yields the total quantity of deterio-
rated products throughout the entire cycle. This is represented by

QDp =I1 +
θI21

2 [(1− d1) k1 − A]
+ I2 − I1 +

θ (I22 − I21 )

2 [(1− d2) k2 − A]
− I2 +

θI22
2A

(5.90a)

=
θI21

2 [(1− d1) k1 − A]
+

θ (I22 − I21 )

2 [(1− d2) k2 − A]
+
θI22
2A

(5.90b)

=
θI21
2ρ1

+
θ (I22 − I21 )

2ρ2
+
θI22
2A

(5.90c)
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Hence, the manufacturer’s cost for deteriorating inventory, TCD, is obtained by multi-
plying the quantity of deteriorated products QDp by the unit cost of a deteriorated unit
(cd)

TCD = Cd

[
θI21
2ρ1

+
θ (I22 − I21 )

2ρ2
+
θI22
2A

]
(5.91)

5.3.2.7 Manufacturer’s production cost

The total production cost over the period [0, T ] is given by

TPC =
1

(1− q)

[
pc1 +

ϕ

k1
+ ζk1

]
k1t1 +

1

(1− q)

[
pc2 +

ϕ

k2
+ ζk2

]
k2 (t2 − t1) (5.92a)

=
1

(1− q)

[
pc1 +

ϕ

k1
+ ζk1

]
k1

(
I1
ρ1

)
+

1

(1− q)

[
pc2 +

ϕ

k2
+ ζk2

]
k2

(
I2 − I1
ρ2

)
(5.92b)

5.3.2.8 Manufacturer’s lost production cost

In many practical cases, a penalty is incurred if the producer fails to deliver the agreed
quantity in time. The lost production cost captures the penalty involved due to the above
reasons, and it represents the opportunity cost for not producing the planned quantity,
k1t2. Mathematically, it can be written as (Ben- Daya et al., 2008)

LP = pl (k1 − k2) (t2 − t1)

= pl (k1 − k2)

(
I2 − I1
ρ2

)
(5.93)

5.3.2.9 Total cost rate

The total cost rate is the sum of all the costs incurred at each of the two echelons.
Therefore, the total cost per unit time, CT , is the sum of Equations (5.46), (5.51), (5.53),
(5.55), (5.71), (5.91), (5.92b), and (5.93) dived by the cycle time T . The mathematical
expression of the total cost rate is thus

TC1 =
1

T



1

(1− q)

[
pc1 +

ϕ

k1
+ ζk1

]
k1

(
I1
ρ1

)
+

1

(1− q)

[
pc2 +

ϕ

k2
+ ζk2

]
k2

(
I2 − I1
ρ2

)
+ pl (k1 − k2)

(
I2 − I1
ρ2

)
+ hp

[
I21
2ρ1

+
(I22 − I21 )

2ρ2
+
I22
2A

]
+ cd

[
θI21
2ρ1

+
θ (I22 − I21 )

2ρ2
+
θI22
2A

]
+G1 +G2 +

cr
1− q

[
k1

(
I1
ρ1

)
+ k2

(
I2 − I1
ρ2

)]
+

qhr
x(1− q)2

[
k1

(
I1
ρ1

)
+ k2

(
I2 − I1
ρ2

)]2
+

1

2
hr (k1 − k2)

(
I1
ρ1

)2

+
1

2
hrk2

(
I2 − I1
ρ2

+
I1
ρ1

)2

+ Fr


(5.94)
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5.3.2.10 Manufacturer’s total revenue per time

The total revenue function (TR) represents the sum of revenue from sales of finished
products with perfect quality and discounted sales of imperfect items produced, as well
as imperfect raw materials. That is

TR1 = spQs + sd(1− q) [d1k1t1 + d2k2 (t2 − t1)] + srq

[
k1t1 + k2 (t2 − t1)

1− q

]
(5.95)

With Qs, representing the total quantity of products of good quality sold, which is ob-
tained by integrating the demand function, D[I(t)], over the specified time intervals [0, t1],
[t1, t2], and [t2, T ] respectively. Hence, the quantity Qs is

Qs =

∫ t1

0

D[I(t)]dt+

∫ t2

t1

D[I(t)]dt+

∫ T

t2

D[I(t)]dt (5.96)

Integrating each component of Equation (5.96) separately yields

∫ t1

0

D[I(t)]dt =

∫ t1

0

[
A+ γ

[
(1− d1)) k1
θ + γ

− A

θ + γ

] [
1− e−(θ+γ)t

]]
dt (5.97)

= At1 + γ

[
(1− d1)) k1
θ + γ

− A

θ + γ

] [
t1 +

1

(θ + γ)
e−(θ+γ)t1

]
−γ

[
(1− d1)) k1
θ + γ

− A

θ + γ

] [
1

(θ + γ)

] (5.98)

= At1 + γ

[
(1− d1)) k1
θ + γ

− A

θ + γ

] [
t1 +

1

(θ + γ)

[
−1 + e−(θ+γ)t1

]]
(5.99)

Substituting Equations (5.22) and (5.26b) into equation (5.99) leads to

= A

[
l1

(1− d)k1 − A

]
+ γ

[
(1− d1)) k1
θ + γ

− A

θ + γ

]
×

[
l1

(1− d)k1 − A
+

(θ + γ)l21
2 [(1− d)k1 − A]2

− l1
[(1− d1) k1 − A]

]
(5.100)

= A

(
I1
ρ1

)
+
γI21
2ρ1

(5.101)

The solution of the second integral is∫ t2

t1

D[I(t)]dt =

∫ t2

t1

[
A+ γ

{[
(1− d2) k2
θ + γ

− A

θ + γ

]
+

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t−t1)

}]
dt.

(5.102)

= A (t2 − t1) + γ

[
(1− d2) k2
θ + γ

− A

θ + γ

]
(t2 − t1)

− γ

θ + γ

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t2−t1)

+
γ

θ + γ

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
.

(5.103)
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By substituting Equation (5.36c) in Equation (5.103), one can get the folowing

= A

[
I2 − I1

(1− d)k2 − A

]
+ γ

[
(1− d2) k2
θ + γ

− A

θ + γ

] [
I2 − I1

(1− d)k2 − A
+

(θ + γ) (I22 − I21 )

2 [(1− d)k2 − A]2

]
− γ

θ + γ

{
I1 −

[
(1− d2) k2
θ + γ

− A

θ + γ

]}
e−(θ+γ)(t2−t1) − γ

θ + γ

[
(1− d2) k2
θ + γ

− A

θ + γ

]
+ γ

I1
θ + γ

(5.104)
Substituting Equation (5.65) into Equation ((5.104) results in

= A

[
I2 − I1

(1− d)k2 − A

]
+ γ

[
(1− d2) k2
θ + γ

− A

θ + γ

] [
I2 − I1

(1− d)k2 − A
+

(θ + γ) (I22 − I21 )

2 [(1− d)k2 − A]2

]
− γI2
θ + γ

+
γI1
θ + γ

(5.105)

= A

[
I2 − I1

(1− d)k2 − A

]
+ γ

[
(I2 − I1)

θ + γ
+

(I22 − I21 )

2 [(1− d)k2 − A]

]
− γ

(I2 − I1)

θ + γ
(5.106)

= A

(
I2 − I1
ρ2

)
+
γ (I22 − I21 )

2ρ2
(5.107)

Lastly, the remaining quantity of good quantity sold over [t2, T ], which is represented by
the third integral, yields∫ T

t2

D[I(t)]dt =

∫ T

t2

Adt+ γ

∫ T

t2

[
− A

θ + γ
+

(
I2 +

A

θ + γ

)
e−(θ+γ)(t−t2)

]
dt (5.108)

= I2 −
(θ + γ)I22

2A
+ γ

[
− A

θ + γ
T − 1

θ + γ

(
I2 +

A

θ + γ

)
e−(θ+γ)(T−t2)

]
−γ

[
− A

θ + γ
t2 −

1

θ + γ

(
I2 +

A

θ + γ

)] (5.109)

= I2 −
(θ + γ)I22

2A
− γA

θ + γ
(T − t2)−

γ

θ + γ

[
− A

(θ + γ)
+

(
I2 +

A

θ + γ

)
e−(θ+γ)(T−t2)

]
+

γ

θ + γ
I2

(5.110)
Substituting Equation ((5.38) into Equation (5.110) leads to

I2 −
(θ + γ)I22

2A
− γA

θ + γ
(T − t2) +

γ

θ + γ
I2 (5.111)

= I2 −
(θ + γ)I22

2A
− γA

θ + γ

[
I2
A

− (θ + γ)I22
2A2

]
+

γ

θ + γ
I2 (5.112)

= I2 −
θI22
2A

(5.113)
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Qs is then obtained by grouping together equations (5.101), (5.107), and (5.113)

Qs = A

(
I1
ρ1

)
+
γI21
2ρ1

+ A

(
I2 − I1
ρ2

)
+
γ (I22 − I21 )

2ρ2
+ I2 −

θI22
2A

(5.114)

Therefore, the total revenue is

TR1 =

[
spA+ k1sd(1− q)d1 +

k1srq

1− q

](
I1
ρ1

)
+

[
spA+ k2sd(1− q)d2 +

k2srq

1− q

](
I2
ρ2

− I1
ρ2

)
+sp

[
γI21
2ρ1

− γI21
2ρ2

+ I2 +

(
γ

2ρ2
− θ

2A

)
I22

]
(5.115)

Dividing the above equation by T, the following expression representing the average
revenue per cycle is obtained

TR1 =
1

T

[
spA+ k1sd(1− q)d1 +

k1srq

1− q

](
I1
ρ1

)
+

1

T

[
spA+ k2sd(1− q)d2 +

k2srq

1− q

](
I2
ρ2

− I1
ρ2

)
+
sp
T

[
γI21
2ρ1

− γI21
2ρ2

+ I2 +

(
γ

2ρ2
− θ

2A

)
I22

]
(5.116)

TR1 =
1

T


[
spA+ k1sd(1− q)d1 +

k1srq

1− q

](
I1
ρ1

)
+

[
spA+ k2sd(1− q)d2 +

k2srq

1− q

](
I2
ρ2

− I1
ρ2

)
+ sp

[
γI21
2ρ1

− γI21
2ρ2

+ I2 +

(
γ

2ρ2
− θ

2A

)
I22

]


(5.117)

5.3.2.11 Manufacturer’s profit rate

The profit rate is calculated by subtracting the total cost per time from the total revenue
generated. That is

TP = TR− CT (5.118)

TP1 =
1

T


[
spA+ k1sd(1− q)d1 +

k1srq

1− q

](
I1
ρ1

)
+

[
spA+ k2sd(1− q)d2 +

k2srq

1− q

](
I2
ρ2

− I1
ρ2

)
+ sp

[
γI21
2ρ1

− γI21
2ρ2

+ I2 +

(
γ

2ρ2
− θ

2A

)
I22

]


− 1

T



1

(1− q)

[
pc1 +

ϕ

k1
+ ζk1

]
k1

(
I1
ρ1

)
+

1

(1− q)

[
pc2 +

ϕ

k2
+ ζk2

]
k2

(
I2 − I1
ρ2

)
+ pl (k1 − k2)

(
I2 − I1
ρ2

)
+ hp

[
I21
2ρ1

+

(
I22 − I21

)
2ρ2

+
I22
2A

]

+ cd

[
θI21
2ρ1

+
θ
(
I22 − I21

)
2ρ2

+
θI22
2A

]
+G1 +G2 +

cr
1− q

[
k1

(
I1
ρ1

)
+ k2

(
I2 − I1
ρ2

)]
+

qhr
x(1− q)2

[
k1

(
I1
ρ1

)
+ k2

(
I2 − I1
ρ2

)]2
+

1

2
hr (k1 − k2)

(
I1
ρ1

)2

+
1

2
hrk2

(
I2 − I1
ρ2

+
I1
ρ1

)2

+ Fr


(5.119)
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5.3.3 Second scenario’s Formulation

In this scenario, imperfect raw materials that have been screened are retained until the
end of the cycle and returned to the supplier upon arrival of the next order. The inventory
profile of raw materials is shown in Figure 5.3.

Figure 5.3: Raw material inventory level with imperfect items returned to supplier

The total cost per cycle is identical to that of the first scenario except that the holding
costs of the raw material in the two scenarios are different. The area under the curve
representing the inventory level in Figure 5.3 is

[y − (y − k1t1)] t1
2

+ [(y − k1t1)− qy]
(t1 + t2)

2
+ qyT =

k1t
2
1

2
+ [y − qy − k1t1]

t2
2
+ qyT

(5.120)
Substituting Equations (5.48a) and (5.48b) into Equation (5.120), we obtain

k1t
2
1

2
+
k2 (t2 − t1) (t1 + t2)

2
+ q

[
k1t1 + k2 (t2 − t1)

1− q

]
T (5.121)

5.3.3.1 Manufacturer’s inventory holding cost of raw material

The inventory cost of holding raw material is calculated by multiplying the unit holding
cost of the raw material by the area represented in Figure 5.3, resulting in the total
holding cost of raw material. Hence the total holding cost of raw material is

THR = hr

{
k1t

2
1

2
+
k2 (t2 − t1) (t1 + t2)

2
+ q

[
k1t1 + k2 (t2 − t1)

1− q

]
T

}
(5.122)

Substituting Equations (5.26d), and (5.36c) into equation (122) leads to

HR = hr

{
k1
2

(
I1
ρ1

)2

+
k2
2

(
I2 − I1
ρ2

)(
I2 − I1
ρ2

+
2I1
ρ1

)
+

q

1− q

[
k1

(
I1
ρ1

)
+ k2

(
I2 − I1
ρ2

)]
T

}
(5.123)
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where

t2 + t1 =
I2 − I1
ρ2

+
2I1
ρ1

(5.124)

5.3.4 Total cost rate

The mathematical expression for the average total cost incurred, TC, is obtained by
combining Equations (5.46), (5.53), (5.55), (5.71), (5.91), (5.92b), (5.93), and (5.123)
divided by the cycle time T . Hence, the total cost per time is

TC2 =
1

T



1

(1− q)

[
pc1 +

ϕ

k1
+ ζk1

]
k1

(
I1
ρ1

)
+

1

(1− q)

[
pc2 +

ϕ

k2
+ ζk2

]
k2

(
I2 − I1
ρ2

)
+ pl (k1 − k2)

(
I2 − I1
ρ2

)
+ hp

[
I21
2ρ1

+
(I22 − I21 )

2ρ2
+
I22
2A

]
+ cd

[
θI21
2ρ1

+
θ (I22 − I21 )

2ρ2
+
θI22
2A

]
+G1 +G2 +

cr
1− q

[
k1

(
I1
ρ1

)
+ k2

(
I2 − I1
ρ2

)]
+
hrk1
2

(
I1
ρ1

)2

+
hrk2
2

(
I2 − I1
ρ2

)(
I2 − I1
ρ2

+
2I1
ρ1

)
+

hrq

1− q

[
k1

(
I1
ρ1

)
+ k2

(
I2 − I1
ρ2

)]
T + Fr


(5.125)

5.3.5 Manufacturer’s total revenue per time

Since a portion of the scanned raw material is of poor quality and the decision-maker
chooses to retain it until the end of the cycle and return it to the supplier rather than
selling it and recovering a portion of the cost of purchasing raw material, the mathematical
expression of the total revenue per time for this new scenario is thus defined as follows

TR2 = spQs + sd(1− q) [d1k1t1 + d2k2 (t2 − t1)] (5.126)

TR2 =
1

T


[spA+ k1sd(1− q)d1]

(
I1
ρ1

)
+ [spA+ k2sd(1− q)d2]

(
I2
ρ2

− I1
ρ2

)
+ sp

[
γI21
2ρ1

+
γ
(
I22 − I21

)
2ρ2

+ I2 −
θI22
2A

]
 (5.127)

5.3.6 Manufacturer’s profit rate

The profit rate generated is the difference between the revenue rate and the total cost
rate across the entire system. The mathematical formulation of the proposed scenario of
the profit rate is thus
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TP2 =
1

T


[spA+ k1sd(1− q)d1]

(
I1
ρ1

)
+ [spA+ k2sd(1− q)d2]

(
I2
ρ2

− I1
ρ2

)
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[
γI21
2ρ1

+
γ
(
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)
2ρ2
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θI22
2A

]


− 1
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ϕ
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+
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(
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+
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)(
I2 − I1
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+
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(
I1
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(
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(5.128)

5.4 Solution

5.4.1 Determination of the decision variables

The aim is to determine the optimum values of I1 and T so as to maximise the total
profit of the inventory system. The optimum values of I1 and T for the maximum profit
are the solutions of the equations

scenario 1.

∂(TP )

∂I1
= 0 (5.129)

∂(TP )

∂T
= 0 (5.130)

Where
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∂(TP1)

∂I1
=

1

T
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]
1

ρ1
+
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γ
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+
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+
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∂(TP1)

∂T
=
1
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]
ξ
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+
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(5.132)
Taking the second derivatives with respect to I1 and T in the Equations (5.131) and
(5.132), we have

∂2(TP1)

∂I21
=
sp
T

{
γ

ρ1
− γ

ρ2
+

(
γ

ρ2
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A
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+
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+
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1
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1
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(5.133)
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∂2(TP1)

∂I1∂T
=
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+
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∂2(TP1)

∂T 2
=
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scenario 2.

Similar to scenario 1, under the conditions (5.129) and (5.130), the first and second partial
derivatives of Equation (5.128) with respect to I1 and T are

∂(TP2)
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∂(TP2)

∂T
=
1

T

{
[spA+ k2sd(1− q)d2]

ξ

ρ2
+ sp

[
ξ +

(
γ

ρ2
− θ

A

)
I2ξ

]}

− 1

T



1

(1− q)

[
pc2 +

ϕ

k2
+ ζk2

]
k2

(
ξ

ρ2

)
+ pl (k1 − k2)

(
ξ

ρ2

)
+ (h+ Cdθ)

(
I2ξ

ρ2
+
I2ξ

A

)
+

Cr

1− q

(
k2
ξ

ρ2

)
+
hrk2
2

(
ξ

ρ2

)(
I2 − I1
ρ2

+
2I1
ρ1

)
+
hrk2
2

(
I2 − I1
ρ2

)(
ξ

ρ2

)
+

hrq

1− q
k2

(
ξ

ρ2

)
T +

hrq

1− q

[
k1

(
I1
ρ1

)
+ k2

(
I2 − I1
ρ2

)]


− 1

T
(TP2)

(5.137)
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∂2(TP2)
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∂2(TP2)

∂T 2
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5.4.2 Optimality condition

Now, the problem is to determine the optimal values of I1 and T , which maximise the
profit function, TP . Since TP is a function of two variables I1 and T , where both are
continuous variables, therefore, for optimal value of I1 and T , the sufficient conditions
have to be met
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∂2(TP )

∂I21
≤ 0 (5.141)

∂2(TP )

∂T 2
≤ 0 (5.142)

HM =


∂2(TP )

∂I21

∂2(TP )
∂I1∂T

∂2(TP )
∂T∂I1

∂2(TP )
∂T 2

 ≥ 0 (5.143)

which are then verified numerically due to the complexity of the equations. The nature
of the objective function is also shown graphically in Figure 5.4.

5.4.3 Numerical results

A numerical example is presented to illustrate the use of the models developed in this
chapter. Consider a production process where the daily production rates k1 and k2 are 85
and 55 units per hour, respectively. A supplier orders raw materials for production, with
10% of the items received being defective. Screening for imperfect quality raw material
items is conducted at a rate of 1500 items per hour. The ordering cost for the raw material
is $1000, and the setup costs, G1 and G2 are $1000 and $1500. The holding cost of raw
material is $0.12 per unit per hour, while the holding cost of one unit of the finished
product is $0.15 per unit per hour. The purchasing cost of one item of raw material is
$5. The cost of a deteriorated unit product is $1.5, and the lost production cost for not
producing the planned quantity is estimated to be $1.1 per product. The selling price
of products of perfect quality is $66 per unit product, and the selling price of defective
products produced is $55 per product. The manufacturer may sell imperfect quality items
screened at a price of $3 at the end of the screening period, or they may keep the items in
stock and return them when the next order arrives. A comparison of the two scenarios is
conducted to determine the optimal order policy. The other parameters of the problem
are: A = 40, γ = 0.02, d1 = 0.08, d2 = 0.06, pc1 = $1, pc2 = $1.4, ϕ = $100, and ζ =
0.05. Upon evaluating the policy in which imperfect quality items are sold, the optimal
inventory level I1 and optimal cycle time T were determined using equations (5.131) and
(5.132) as 11778 units and 21480 hours, respectively. The optimal number of products
manufactured, Q∗, is 88667 units, with an optimal order quantity y∗ of 98520 units of raw
materials procured. The initial production period is denoted as t1 = 243 hours, while the
entire production period is represented by t2 = 1480 hours. The maximum stock level
attained, denoted as I2, amounts to 26224 units. The total cost per time is calculated as
$7297.1 per hour, while the total revenue per hour is $7560. Consequently, the maximum
total profit per hour is determined to be $267.

In contrast, when the imperfect quality items are returned, the optimal inventory level
I1 and optimal cycle time T are derived from equations (5.136) and (5.137) as 26349
units and 47023 hours respectively. The optimal number of items produced during the
production cycle is found to be 201359, with an optimal order quantity y∗ of 223733
units of raw material. The first production period, denoted as t1, amounts to 690 hours,
while the entire production period t2 is calculated as 3285 hours. The total inventory
carried during this scenario, I2, is determined to be 56712 units. The total cost per
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Figure 5.4: Graph of the net profit function of the two echelons supply chain per
quantity, per time

hour is assessed as $17426, whereas the total revenue per hour is $13017.8. The total
profit per time is estimated to be -$4438.4. In the case where imperfect quality items are
returned, the negative maximum total profit per cycle indicates that the overall financial
outcome is unfavourable. This means that the costs of managing such a system outweigh
the potential revenue generated from the sale. Based on the analysis above, the optimal
operating policy suggests selling the imperfect raw material instead of returning it to the
supplier when the subsequent order is received.

5.4.4 Sensitivity analysis and managerial implications

A sensitivity analysis was performed to assess the impact of various parameters. The
findings of the sensitivity analysis are presented in Tables 5.2 and 5.3. Based on these
results, the following inferences can be drawn

• The optimal values of the initial stock level (I1) and the cycle time (T ) are insensitive
with respect to cr, d1, Fr, G1, G2, pc1, pc2, pl, q, sr, x and ζ. However, the initial stock
level is less sensitive with respect to cd and sd. On the other hand, the cycle time
(T ) is less sensitive with respect to k1, cd, ϕ and sd. The profit per time is insensitive
with respect to d1, Fr, G1, G2, pc1, pc2, pl, sd and sr.

• The profit per time is sensitive to changes in k1, k2, sp, hr, θ, γ, cr, cd, hp, d2, pc2, ϕ, ζ, x,
and q. However, the most significant changes are observed with respect to k1, k2, sp, θ
and γ. Specifically, the selling price (sp) has the greatest positive impact on increas-
ing the total profit. Although production/holding costs increase with higher inven-
tory levels at higher sp, the revenue impact outweighs this effect due to a slower
scaling up of production costs compared to revenue based on price increment alone.
On the other hand, the production parameter k2 has the greatest negative impact
on the total profit. Note that a higher value of k2 causes a decrease in profitability.
The model indicates that faster production capacities do not necessarily result in
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higher revenues. It also indicates that having consistently high values of k2 can
negatively impact profit outcomes.

Table 5.2: Sensitivity analysis for various inventory model parameters

% change inventory level I1 Inventory level I2 Production time t1 production cycle t2 Cycle time T Profit per time TP
units % change units % change hours % change hours % change hours % change USD % change

Base 11753 26224 243 1480 2135 263

k1

-20 14582.11 24% 29007.14 10% 301.2832 24% 1534.192 3% 2259.37 6% -191.732 -173%
-10 12553.18 6.58% 26973.54 2.65% 259.3632 6.58% 1491.873 0.62% 2166.211 1.24% 162.6069 -38%
10 11384.68 -3.34% 25975.65 -1.15% 235.2207 -3.34% 1482.312 -0.03% 2131.703 -0.37% 294.5775 12%
20 11153.08 -5.30% 25828.15 -1.71% 230.4356 -5.30% 1484.715 0.14% 2130.419 -0.43% 298.4331 13%

k2

-20 * * * * * * * * * * * *

-10 * * * * * * * * * * * *

10 6992.566 -41% 11542.7 -56% 144.4745 -41% 414.1918 -72% 702.7593 -67% -675.994 -357%
20 7939.372 -33% 9480.577 -64% 164.0366 -33% 233.9643 -84% 470.9787 -78% -2066.26 -885%

cr

-20 11778.59 0.01% 26278.62 0.0% 243.3593 0.0% 1482.679 0.0% 2139.644 0.0% 309.1318 17%
-10 11778.17 0.00% 26278.38 0.0% 243.3506 0.0% 1482.685 0.0% 2139.645 0.0% 286.1318 9%
10 11777.33 0.00% 26277.9 0.0% 243.3333 0.0% 1482.698 0.0% 2139.645 0.0% 240.1315 -9%
20 11776.91 -0.01% 26277.66 0.0% 243.3247 0.0% 1482.704 0.0% 2139.646 0.0% 217.1313 -17%

cd

-20 12560.81 6.65% 28619.59 8.9% 259.5209 6.6% 1632.066 10.1% 2347.556 9.7% 332.3135 26%
-10 12149.34 3.16% 27389.46 4.2% 251.0195 3.2% 1553.594 4.8% 2238.331 4.6% 297.3031 13%
10 11440.49 -2.86% 25269.08 -3.8% 236.3738 -2.9% 1418.304 -4.3% 2050.031 -4.2% 229.7022 -13%
20 11133.01 -5.47% 24348.67 -7.3% 230.0209 -5.5% 1359.564 -8.3% 1968.281 -8.0% 196.9337 -25%

hp

-20 14111.37 19.81% 33252.38 26.5% 291.5573 19.8% 1927.54 30.0% 2758.85 28.9% 443.6964 69%
-10 12783.57 8.54% 29285.39 11.4% 264.1233 8.5% 1674.535 12.9% 2406.67 12.5% 350.1691 33%
10 10989.23 -6.69% 23918.11 -9.0% 227.0503 -6.7% 1332.083 -10.2% 1930.035 -9.8% 180.7757 -31%
20 10354.39 -12.09% 22015.4 -16.2% 213.9336 -12.1% 1210.602 -18.4% 1760.987 -17.7% 101.9627 -61%

hr

-20 15202.28 29.08% 40717.03 54.9% 314.0968 29.1% 2494.844 68.3% 3512.77 64.2% 697.6982 165%
-10 12970.21 10.12% 31321.42 19.2% 267.9796 10.1% 1836.459 23.9% 2619.495 22.4% 463.1355 76%
10 11026.91 -6.38% 23091.06 -12.1% 227.8286 -6.4% 1258.953 -15.1% 1836.229 -14.2% 85.87859 -67%
20 10505.74 -10.80% 20873.85 -20.6% 217.0607 -10.8% 1103.224 -25.6% 1625.071 -24.0% -74.5856 -128%

d1

-20 11707.02 -0.60% 26258.1 -0.1% 241.8806 -0.6% 1485.562 0.2% 2142.015 0.1% 267.4338 2%
-10 11741.63 -0.31% 26267.85 0.0% 242.5957 -0.3% 1484.153 0.1% 2140.849 0.1% 265.4548 1%
10 11815.49 0.32% 26289.01 0.0% 244.1216 0.3% 1481.175 -0.1% 2138.4 -0.1% 260.4416 -1%
20 11854.94 0.66% 26300.5 0.1% 244.9369 0.7% 1479.6 -0.2% 2137.113 -0.1% 257.3593 -2%

d2

-20 10000.19 -15.09% 21753.38 -17.2% 206.6156 -15.1% 1157.521 -21.9% 1701.355 -20.5% 189.4274 -28%
-10 10794.09 -8.35% 23796.32 -9.4% 223.0185 -8.4% 1303.835 -12.1% 1898.743 -11.3% 226.5295 -14%
10 13016.02 10.51% 29346.12 11.7% 268.926 10.5% 1705.171 15.0% 2438.824 14.0% 299.908 14%
20 14605.94 24.01% 33219.99 26.4% 301.7756 24.0% 1987.831 34.1% 2818.33 31.7% 338.0191 28%

Fr

-20 11797.8 0.17% 26350.6 0.3% 243.756 0.2% 1487.58 0.3% 2146.35 0.3% 265.848 1.0%
-10 11797.9 0.17% 26351.1 0.3% 243.759 0.2% 1487.62 0.3% 2146.4 0.3% 265.777 1.0%
10 11798.2 0.17% 26352.1 0.3% 243.765 0.2% 1487.69 0.3% 2146.49 0.3% 259.542 -1.4%
20 11798.4 0.18% 26352.7 0.3% 243.768 0.2% 1487.72 0.3% 2146.54 0.3% 259.471 -1.4%

G1

-20 11797.8 0.17% 26350.6 0.3% 243.756 0.2% 1487.58 0.3% 2146.35 0.3% 265.848 1.0%
-10 11797.9 0.17% 26351.1 0.3% 243.759 0.2% 1487.62 0.3% 2146.4 0.3% 265.777 1.0%
10 11798.2 0.17% 26352.1 0.3% 243.765 0.2% 1487.69 0.3% 2146.49 0.3% 259.542 -1.4%
20 11798.4 0.18% 26352.7 0.3% 243.768 0.2% 1487.72 0.3% 2146.54 0.3% 259.471 -1.4%

G2

-20 11797.8 0.17% 26350.6 0.3% 243.756 0.2% 1487.58 0.3% 2146.35 0.3% 265.848 1.0%
-10 11797.9 0.17% 26351.1 0.3% 243.759 0.2% 1487.62 0.3% 2146.4 0.3% 265.777 1.0%
10 11798.2 0.17% 26352.1 0.3% 243.765 0.2% 1487.69 0.3% 2146.49 0.3% 259.542 -1.4%
20 11798.4 0.18% 26352.7 0.3% 243.768 0.2% 1487.72 0.3% 2146.54 0.3% 259.471 -1.4%

q

-20 11801.16 0.20% 26350.87 0.3% 243.8256 0.2% 1487.391 0.3% 2146.162 0.3% 275.7799 5%
-10 11789.62 0.10% 26315.16 0.1% 243.5872 0.1% 1485.086 0.2% 2142.965 0.2% 269.5561 2%
10 11765.54 -0.10% 26239.75 -0.1% 243.0897 -0.1% 1480.201 -0.2% 2136.195 -0.2% 256.4988 -3%
20 11752.97 -0.21% 26199.91 -0.3% 242.83 -0.2% 1477.611 -0.3% 2132.609 -0.3% 249.6495 -5%

• The parameter γ for demand enhancement has the second greatest impact on profit
over time. Like the selling price (sp), this parameter significantly affects the man-
ufacturer’s EPQ. This indicates that more products would need to be produced,
along with increased raw material procurement and hold more inventory for both
raw materials and finished products; however, the effect on profit is positive be-
cause an increase in γ makes demand more sensitive to changes in inventory levels.
A higher value of γ indicates a greater responsiveness of demand, meaning that
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customers are strongly influenced by product availability or scarcity in inventory.
With a more responsive demand driven by an increased γ, the system can better
adapt to fluctuating inventories and seize revenue opportunities by aligning supply
with demand effectively.

Table 5.3: Sensitivity analysis for various inventory model parameters

% change inventory level I1 Inventory level I2 Production time t1 production cycle t2 Cycle time T Profit per time TP
units % change units % change hours % change hours % change hours % change USD % change

Base 11753 26224 243 1480 2135 263

pc1

-20 11806 0.24% 26356.2 0.3% 243.925 0.2% 1487.53 0.3% 2146.44 0.3% 265.848 1.0%
-10 11806 0.24% 26356.2 0.3% 243.925 0.2% 1487.53 0.3% 2146.44 0.3% 265.777 1.0%
10 11794.2 0.14% 26349.3 0.3% 243.681 0.1% 1487.71 0.3% 2146.45 0.3% 259.142 -1.5%
20 11790.2 0.11% 26347.1 0.3% 243.599 0.1% 1487.77 0.3% 2146.45 0.3% 258.719 -1.7%

pc2

-20 11767 -0.09% 26271.9 0.0% 243.119 -0.1% 1482.86 0.0% 2139.65 0.0% 274.828 4.4%
-10 11772.4 -0.05% 26275 0.0% 243.231 0.0% 1482.77 0.0% 2139.65 0.0% 268.979 2.2%
10 11783.1 0.05% 26281.3 0.0% 243.453 0.0% 1482.61 0.0% 2139.64 0.0% 257.285 -2.2%
20 11788.5 0.09% 26284.4 0.0% 243.565 0.1% 1482.52 0.0% 2139.63 0.0% 251.44 -4.4%

sp

-20 9167.77 -22.16% 16928.1 -35.6% 189.417 -22.2% 852.694 -42.5% 1275.9 -40.4% -420.38 -259.8%
-10 10183 -13.54% 20591.9 -21.6% 210.392 -13.5% 1100.04 -25.8% 1614.84 -24.5% -99.521 -137.8%
10 14691.8 24.74% 36606.2 39.3% 303.549 24.7% 2176.58 46.8% 3091.73 44.5% 682.532 159.4%
20 21968.9 86.53% 62333 137.2% 453.903 86.5% 3903.83 163.3% 5462.15 155.3% 1212.21 360.7%

sd

-20 11637.1 -1.19% 25985.2 -1.1% 240.436 -1.2% 1466.77 -1.1% 2116.4 -1.1% 259.313 -1.5%
-10 11707.4 -0.60% 26131.7 -0.6% 241.889 -0.6% 1474.73 -0.5% 2128.02 -0.5% 261.223 -0.7%
10 11848.1 0.60% 26424.6 0.6% 244.795 0.6% 1490.65 0.5% 2151.27 0.5% 265.04 0.7%
20 11918.4 1.19% 26571.1 1.1% 246.248 1.2% 1498.61 1.1% 2162.89 1.1% 266.947 1.4%

sr

-20 11805.3 -0.21% 26333.6 -0.2% 243.91 -0.2% 1485.65 -0.2% 2143.99 -0.2% 401.515 -0.1%
-10 11817.8 -0.11% 26360.6 -0.1% 244.169 -0.1% 1487.15 -0.1% 2146.17 -0.1% 401.706 0.0%
10 11842.8 0.11% 26414.7 0.1% 244.685 0.1% 1490.15 0.1% 2150.52 0.1% 402.089 0.0%
20 11855.2 0.21% 26441.7 0.2% 244.943 0.2% 1491.65 0.2% 2152.69 0.2% 402.281 0.1%

lp

-20 11773.6 -0.04% 26275.7 0.0% 243.256 0.0% 1482.76 0.0% 2139.65 0.0% 267.642 1.7%
-10 11775.7 -0.02% 26276.9 0.0% 243.299 0.0% 1482.72 0.0% 2139.65 0.0% 265.387 0.9%
10 11779.8 0.02% 26279.3 0.0% 243.385 0.0% 1482.66 0.0% 2139.64 0.0% 260.877 -0.9%
20 11781.9 0.04% 26280.5 0.0% 243.428 0.0% 1482.63 0.0% 2139.64 0.0% 258.622 -1.7%

θ

-20 * * * * * * * * * * * *
-10 22851.6 94.02% 56752.9 116.0% 472.141 94.0% 3369.69 127.3% 4788.51 123.8% 710.588 170.1%
10 8598.83 -26.99% 17756.5 -32.4% 177.662 -27.0% 960.373 -35.2% 1404.29 -34.4% -17.366 -106.6%
20 7029.82 -40.31% 13678.7 -47.9% 145.244 -40.3% 713.522 -51.9% 1055.49 -50.7% -242.64 -192.2%

γ

-20 7777 -33.97% 13187.8 -49.8% 160.682 -34.0% 623.144 -58.0% 952.839 -55.5% -785.54 -398.5%
-10 8796.42 -25.31% 16787.8 -36.1% 181.744 -25.3% 864.77 -41.7% 1284.47 -40.0% -280.77 -206.7%
10 41931.2 256.02% 118668 351.6% 866.346 256.0% 7425.05 400.8% 10391.7 385.7% 1279.35 386.2%
20 * * * * * * * * * * * *

η

-20 11790 0.10% 26285.2 0.0% 243.595 0.1% 1482.5 0.0% 2139.63 0.0% 289.704 10.1%
-10 11783.9 0.05% 26281.7 0.0% 243.469 0.1% 1482.6 0.0% 2139.64 0.0% 276.418 5.0%
10 11771.6 -0.05% 26274.6 0.0% 243.215 -0.1% 1482.79 0.0% 2139.65 0.0% 249.847 -5.0%
20 11765.5 -0.10% 26271 0.0% 243.088 -0.1% 1482.88 0.0% 2139.65 0.0% 236.562 -10.1%

µ

-20 11726.6 -0.43% 26017.4 -1.0% 242.284 -0.4% 1463.72 -1.3% 2114.16 -1.2% 287.429 9.2%
-10 11752.1 -0.22% 26147.4 -0.5% 242.811 -0.2% 1473.18 -0.6% 2126.87 -0.6% 275.332 4.6%
10 11803.6 0.22% 26409.6 0.5% 243.877 0.2% 1492.25 0.6% 2152.49 0.6% 250.829 -4.7%
20 11829.7 0.44% 26541.8 1.0% 244.416 0.4% 1501.86 1.3% 2165.4 1.2% 238.426 -9.4%

x

-20 11747.5 -0.26% 26169 -0.4% 242.718 -0.3% 1475.32 -0.5% 2129.54 -0.5% 259.278 -1.5%
-10 11764.3 -0.11% 26229.5 -0.2% 243.064 -0.1% 1479.4 -0.2% 2135.14 -0.2% 261.418 -0.7%
10 11788.8 0.09% 26318.1 0.2% 243.571 0.1% 1485.39 0.2% 2143.35 0.2% 264.535 0.5%
20 11798.1 0.17% 26351.6 0.3% 243.762 0.2% 1487.65 0.3% 2146.44 0.3% 265.706 1.0%

• The initial stock level I1 is sensitive to changes in k1, k2, hr, hp, d2, sp, γ and θ. The
initial stock level is highly sensitive in a positive way with respect to the demand
enhancement parameter γ. This shows the fact that if γ increases, then the cus-
tomers’ demand also increases, and so, the manufacturer needs to produce and store
a large quantity of products to handle customers’ high demand. More inventory is
justified to capitalise on this demand-enhancing effect. On the other hand, I1 is
highly sensitive in a negative way with respect to the changes in the deterioration
parameter of the products produced ( θ ). For a higher value of θ, the initial in-
ventory level I1 decreases significantly and then, the manufacturer needs to store
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a small number of products to avoid the higher carrying cost for products that
deteriorate faster and that might be unusable.

• The cycle time (T ) time is sensitive to changes in k1, k2, sp, sd, hr, θ, γ, cd, hp, d2, ϕ,
and ϕ. However, the most significant changes are observed with respect to in
k2, sp, hr, θ, γ, hp, d2, and ϕ. and θ. Specifically, the demand enhancement parame-
ter (γ) increases the cycle time quite drastically. The increase in cycle time with an
increase in γ is likely due to the adjustments made in the production cycle to ac-
commodate changes in demand dynamics caused by varying γ. The manufacturer
might be adapting the production strategy to respond to the changing demand
landscape influenced by γ, and this adaptation appears to have the side effect of
increasing the cycle time. On the other hand, the production parameter k2 has the
greatest negative impact on the cycle time (T). Note that the decrease in cycle time
associated with changes in k2 may indicate a complex relationship between manu-
facturing efficiency, inventory control, financial performance and customer demand.
This highlights the intricate interplay of various factors, such as cost structures and
customers within the production process or potential issues in aligning production
with actual demand.

• The parameter θ has the second negative impact on the cycle time T . Decreasing
the cycle time when θ increases acts as a strategic response to the challenges posed
by high deterioration rates. Deteriorating products are at a higher risk of quality
degradation over time. A shorter cycle time helps maintain the quality of products,
ensuring that they reach consumers in a state that meets quality standards. The
model suggests that small cycle times are not just preferred but also a practical
strategy for effectively managing goods with a high rate of deterioration.

5.5 Conclusion

The model presented in this chapter extends the classic economic production quantity
(EPQ) model to the case where raw materials with imperfect quality items are used dur-
ing the production process. In this model, we considered both deterioration of products
and a flexible production process. This later effect is captured by using the concept of
shifts in production rate. In addition, the traditional assumption of constant demand is
relaxed to a stock-dependent demand function, reflecting the impact of current inventory
levels on demand. As the authors have shown, the quantity purchased by customers
may be affected by the quantity of stock displayed. Two scenarios were considered in
this chapter. The optimal operating policy was derived by maximising the total profit
per unit of time. The uniqueness of the optimal solutions was demonstrated through
a numerical example and the sensitivity analysis of the model was analysed. One of
the unique contributions of this model is considering the effect of shifts in production
rate in conjunction with the ordering of imperfect raw material in a two-echelon supply
chain. The analysis demonstrated that, at the optimum, the higher the production rate
is, the lower the inventory level and the cycle time, and the lower the profit. From a
practical point of view, this means that an increase in production rate may boost the
number of units produced but could also lead to higher operational costs and decrease
the profit quite substantially. Another important characteristic of this model is that it
incorporates defective products into an EPQ model during shifts in production rates.
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In this regard, the results show how a high rate of defective products would result in
higher inventory levels, longer inventory cycle times and a moderate increase in profit.
This counter-intuitive outcome of an increase in defective products contributing to an
increase in profit is rooted in the strategic decision to salvage and sell defective products
at a discount. Salvages, when carefully implemented, can enhance overall revenue, offset
losses, and improve profitability.

This chapter contributes to the existing research on managing perishable product inven-
tory with demand dependent on stock levels. However, there are limitations in the model
presented that suggest opportunities for further exploration and expansion. For instance,
in this model, the rate of imperfect products is modelled by a constant parameter that
is proportional to the rate of production. A possible extension of the model could be
to adopt other forms of defective rates, such as the exponential increase over time. An-
other possible interesting extension could be to use the probability density function to
capture the percentage of imperfect raw material contained in the lot size. We could
consider using a multiplicative model of stock-level components instead of the additive.
The model may be made even more realistic by introducing elements such as stochastic
timing of shifts, probabilistic production rates, and uncertain duration for production by
modelling these factors as random variables with probability distributions. Other exten-
sions could include incorporating freshness degradation, non-instantaneous deteriorating
products, and introducing discount schemes. Additionally, future research could explore
competitors’ pricing strategies’ impact on profit-maximisation.
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Chapter 6

An integrated EPQ Model for
deteriorating products with
declining production rate, increasing
defects, stock and price-dependent
demand, and effects of corporate
social responsibility activities

6.1 Introduction

6.1.1 Context

In the dynamic field of inventory modelling, many approaches often treat production rates
as either constant or discrete functions, with defect rates frequently overlooked or consid-
ered constants. However, in reality, production systems undergo continuous changes, and
defective rates can exhibit dynamic patterns tied to production rates over time. At the
heart of inventory models lies the crucial factor of demand, serving as the driving force
behind inventory levels and guiding managerial decisions on production and inventory.
Despite many models relying on a constant demand rate, this assumption rarely applies
because of several factors such as price, stock level, quality, consumer preferences, sea-
sonal changes, market trends, and competitors’ actions. Furthermore, customer demand
can be influenced by external factors such as natural disasters, pandemics, international
politics and corporate events. Recognising these factors, organisations increasingly ac-
knowledge their responsibilities towards promoting societal welfare, commonly known as
corporate social responsibility (CSR). This involves voluntarily integrating social, envi-
ronmental, and health-related objectives into business practices. A practical example
involves companies contributing a portion of sales revenue to charitable organisations,
fostering goodwill and bolstering their reputation, ultimately leading to improved prof-
itability.
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6.1.2 Purpose

This study aims to address the research gap identified in the literature regarding con-
tinuously declining production systems, particularly focusing on deteriorating products.
Previous studies have extensively examined isolated components within manufacturing
systems, leaving a need for deeper exploration of systems characterised by declining pro-
duction rates and increasing defective rates over time. To this end, an integrated EPQ
model is proposed to account for the impact of Corporate Social Responsibility (CSR)
activities. The demand function is modelled as a function of various factors, including
selling price, stock levels, quality, and CSR contributions. The problem is formulated as
a cost minimisation scheme with the inventory level Im as the sole decision variable.

6.1.3 Relevance

Typical models for production systems overlook speed losses and equipment failures.
However, conceptualising the manufacturing process as a series of distinct unit opera-
tions has emphasised the need to address issues related to manufacturing. While pre-
vious studies have focused on ideal production scenarios with consistently high-quality
outputs, manufactured goods often have defects due to human error, machinery malfunc-
tions, mishandling, or imperfect raw material. Traditionally, system reliability studies
have employed binary modelling (operational state vs complete failure). Nevertheless,
an increasing body of literature now considers multiple scenarios throughout the lifespan
of systems. Multi-Production Systems (MPS) and Multi-State Systems (MSS) are two
types of systems with distinct characteristics. MPS usually start with a low production
rate before increasing to minimize average holding costs by maintaining smaller stock
levels for longer periods and larger stocks for shorter periods. On the other hand, a
MSS is a system designed to automatically reconfigure upon any failure, enabling the
degraded machine or equipment to remain operational but deliver services at reduced
a performance level. The continuity of these systems relies heavily on the state of the
manufacturing system, where the breakdown of any component minimally or partially
affects their performance.
The proposed inventory model addresses several essential aspects of manufacturing sys-
tems, including factors such as the degradation behaviour of a typical process represented
by declining production rates and the incorporation of corporate social responsibility
among various influential elements affecting demand, deterioration, and imperfect quality.
Manufacturing systems, like any other system, are susceptible to degradation. Ensuring
high-quality output remains crucial at the other end of the production spectrum. The
model acknowledges the complex nature of demand, deterioration, and imperfect quality
while integrating CSR principles to align with societal and environmental objectives.

6.1.4 Organisation

The remainder of the chapter is organised as follows: Section 6.2 provides an overview
of the assumptions and notation used throughout the study, while Section 6.3 provides
a description of the production system and the inventory control policies to enhance our
understanding of the problem. Section 6.4 presents a numerical example and sensitivity
analyses to illustrate the model’s features. Finally, Section 6.5 concludes the paper and
suggests directions for future research.
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6.2 Notations and assumptions

6.2.1 Notations

The following notations are utilised in this chapter

A Demand parameter
b Elasticity parameter of the unit selling price
cd Deterioration cost per unit item
cdp Disposal cost per unit item
D(sp, I(t), s) Demand for the product
G Set-up cost
hp Inventory carrying cost per item produced per time
I(t) Instantaneous inventory level
k0 Initial production rate at the start of the cycle
k(t) Declining production function
Li∈{1,2} Constant of integration
LP Lost production cost
MC Maintenance cost
pc Unit production cost
pl Lost production cost per product
s Social donation amount per sale
sp Market selling price of the product
T Cycle time
TC Average total cost per time
THC Total holding cost
TDC Total deterioration cost
TPC Total production cost
TDPC Total disposal cost
t1 Time duration of production cycle
θ(t) Deterioration rate
ω Rate at which the production rate declines
λ Rate at which the proportion of defective items increases over time
σ Elasticity parameter that reflects the impact of defects on customer demand
ηm Maximum proportion of defective products that can be produced
γ Demand enhancement parameter for inventory level
q Elasticity factor of quality of stock

δ Elasticity factor of social donation amount
ψ Aggregation parameter for some known variables
µ Aggregation parameters for some known variables
ξ Constant

6.2.2 Assumptions

This section is based on the following assumptions

• The inventory procedure is appropriate for a single product.
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• The deterioration rate of the products is time-dependent and of the form

θ(t) = θe−θt (6.1)

• Neither replacement nor repair is permitted for deteriorated products.

• Su et al. (2021) proposed a demand pattern that incorporates various factors,
including selling price, social donation amount, and investment in green industrial
development. In this paper, the demand rate is formulated as a function of selling
price, stock level, quality of stock and social donation amount

D (sp, I(t), s) = A− bsp + γI(t) + qI(t) + δs, (6.2)

where A represents the market potential, b represents the elasticity factor of selling
price, γ represents the elasticity factor of stock level, q represents the elasticity
factor in quality of stock, and δ represents the elasticity factor of social donation
amount.

• The degradation behaviour of the process is modelled by a declining production
rate k(t) that is considered a continuous function of the form

k(t) = k0e
−ωt (6.3)

and not as a discrete function proposed by Ben-Daya et al. (2008) and Tshinangi
et al. (2022), with k0 as the initial production rate and ω as the rate at which the
production rate declines over time.

• Considering that the production system continuously deteriorates, the defective
pattern proposed by Tshinangi et al. (2022) is extended by assuming that the
function that captures the proportion of defective items produced is a continuous
function of time that increases over time. This is represented by the formula

η(t) =
(
1− e−λt

)
ηm (6.4)

where λ is the rate parameter that determines the slope of the exponential function,
and ηm is the maximum proportion of defective items that can be produced.

• There is no rework or replacement of poor-quality products.

6.3 Problem description

In this section, a production system is set to produce a single product at a rate, k(t) to
satisfy a demand that is dependent on the selling price, stock level, quality, and social
donation amount dependent (k(t) > D (sp, I(t), s) ). However, the system is subject to
wear and degradation, leading to a decrease in the production rate over time. As time
increases, the production rate decreases, and the number of defective products increases
until production is stopped at time t1. Once production is stopped, the remaining in-
ventory is depleted at the rate D (sp, l(t), s) until the stock level reaches zero. The time
duration from where the process stops production until the inventory level reaches 0 is
defined as the consumption cycle during which the machine also undergoes maintenance.
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After the maintenance is completed, the machine resumes production at the rate k(t).
Furthermore, the inventory is not only depleted by the demand but also by the prod-
uct’s natural deterioration over time. Although products are inspected immediately after
production, errors and inconsistent inspection result in some defective products being
passed on to customers and subsequently returned to the manufacturer. This problem
has significant implications for the company, increasing costs due to waste and decreas-
ing customer satisfaction due to the production of low-quality products being passed
to customers. The proposed model aims to optimise the total cost per unit time, with
the decision variables being the maximum inventory (Im) and the cycle time (T ). The
production process is illustrated in Figure 6.1.

Figure 6.1: Inventory profile of a manufacturing system with a decline in production

6.4 Model formulation

The differential equations that describe the inventory situations outlined above within
the time interval [0, T ] are

dI(t)

dt
+ θeθtI(t) =

[
1−

(
1− e−λt)

)
ηm

]
k0e

−ωt

− [A− bsp + γI(t) + q(1− σ)I(t) + δs] 0 ≤ t ≤ t1

(6.5)

dI(t)

dt
+ θeθtI(t) = − [A− bsp + γI(t) + q(1− σ)I(t) + δs] t1 ≤ t ≤ T (6.6)

With the boundary conditions I(t) = 0 at t = 0, I(t) = Im at t = t1, and I(t) = 0 at t = T .

Linearising θ(t) by using Taylor’s series expansion leads to the following

θeθt = θ

∞∑
m=1

θmtm

m!
= θ

[
1 +

θt

1
+
θ2t2

2!
+
θ3t3

3!

]
≈ θ (6.7)
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With θ ≪ 1

The solution to Equation (6.5) is

I(t) =
(1− ηm) k0

[θ + γ + q(1− σ)− ω]
e−ωt +

ηmk0
[θ + γ + q(1− σ)− ω − λ]

e−(ω+λ)t

− [A− bsp + δs]

[θ + γ + q(1− σ)]
+ L1e

−[θ+γ+q(1−σ)]t 0 ≤ t ≤ t1

(6.8)

From Equation (6.8) under the boundary condition I (t) = 0 at t = 0 , the following is
obtained

L1 = − (1− ηm) k0
[θ + γ + q(1− σ)− ω]

− ηmk0
[θ + γ + q(1− σ)− ω − λ]

+
[A− bsp + δs]

[θ + γ + q(1− σ)]
(6.9)

Substituting Equation (6.9) back into Equation (6.8) leads to the following

I(t) =
(1− ηm) k0

[θ + γ + q(1− σ)− ω]

[
e−ωt − e−[θ+γ+q(1−σ)]t

]
+

ηmk0
[θ + γ + q(1− σ)− ω − λ]

[
e−(ω+λ)t − e−[θ+γ+q(1−σ)]t

]
− [A− bsp + δs]

[θ + γ + q(1− σ)]

[
1− e−[θ+γ+q(1−σ)]t

]
0 ≤ t ≤ t1

(6.10)

Solving Equation (6.6), the following result is obtained

I(t) = − [A− bsp + δs]

[θ + γ + q(1− σ)]
+ L2e

−[θ+γ+q(1−σ)]t (6.11)

From Equation (6.11) under the boundary condition I (t) = Imax at t = t1 , we get

L2 = Ime
[θ+γ+q(1−σ)]t1 +

[A− bsp + δs]

[θ + γ + q(1− σ)]
e[θ+γ+q(1−σ)]t1 (6.12)

Substituting Equation (6.12) into (6.11) yields

I(t) = − [A− bsp + δs]

[θ + γ + q(1− σ)]

[
1− e−[θ+γ+q(1−σ)](t−t1)

]
+ Ime

−[θ+γ+q(1−σ)](t−t1) t1 ≤ t ≤ T

(6.13)
Applying the continuity condition from Equations (6.10) and (6.13) at time t = t1, the
production cycle time t1 can be determined as follows

(1− ηm) k0
µ

[
e−ωt1 − e−υt1

]
+
ηmk0
ψ

[
e−(ω+λ)t1 − e−υt1

]
− [A− bsp + δs]

υ

[
1− e−υt1

]
= Im

(6.14)
with

[θ + γ + q(1− σ)] = υ (6.15a)

[θ + γ + q(1− σ)− ω] = µ (6.15b)

[θ + γ + q(1− σ)− ω − λ] = ψ (6.15c)
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Linearising the exponential terms containing t1 in Equation (6.14) by using Taylor’s series
expansion for ex, we get

e−ωt1 =
∞∑
ξ=1

(−1)ξtξ1
ξ!

=

[
1− ωt1

1
+
ω2t21
2!

]
≈ 1− ωt1 (6.16)

e−υt1 =
∞∑
ξ=1

(−1)ξtξ1
ξ!

=

[
1− υt1

1
+
υ2t21
2!

]
≈ 1− υt1 (6.17)

e−(ω+λ)t =
∞∑
ξ=1

(−1)ξtξ

ξ!
=

[
1− (ω + λ)t1

1
+

(ω + λ)2t21
2!

]
≈ 1− (ω + λ)t1 (6.18)

Substituting Equations (6.16)-(6.18) into (6.14) yields

(1− ηm) k0
µ

[1− ωt1 − 1 + υt1] +
ηmk0
ψ

[1− (ω + λ)t1 − 1 + υt1]

− [A− bsp + δs]

υ
[1− 1 + υt1] ≈ Im

(6.19)

(1− ηm) k0t1 + ηmk0t1 − [A− bsp + δs] t1 ≈ Im (6.20)

t1 ≈
Im

k0 − [A− bsp + δs]
(6.21)

Thus, t1 can be written in terms of Im. Therefore, t1 is not a decision variable.

Solving Equation (6.13) while satisfying the boundary condition I(T ) = 0 yields the
following result

0 = − [A− bsp + δs]

[θ + γ + q(1− σ)]
+

[A− bsp + δs]

[θ + γ + q(1− σ)]
e−[θ+γ+q(1−σ)](T−t1)

+Ime
−[θ+γ+q(1−σ)](T−t1)

(6.22)

e[θ+γ+q(1−σ)](T−t1) = 1 +
[θ + γ + q(1− σ)]Im

[A− bsp + δs]
(6.23)

T − t1 =
1

[θ + γ + q(1− σ)]
ln

[
1 +

[θ + γ + q(1− σ)]Im
[A− bsp + δs]

]
(6.24)

Linearising the logarithmic term containing Im in Equation (6.24) leads to the following

T − t1 =
1

[θ + γ + q(1− σ)]

[
[θ + γ + q(1− σ)]

[A− bsp + δs]
Im − [θ + γ + q(1− σ)]2

2 [A− bsp + δs]2
I2m

]
(6.25)

T ≈ t1 +
1

[A− bsp + δs]
Im (6.26)

Thus, T can be written in terms of Im. Therefore, T is not a decision variable.
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6.4.1 Cost components

6.4.1.1 Inventory holding cost

The total holding cost, denoted as THC, is determined by multiplying the area under
the inventory profile by the holding cost per unit per time. Therefore

THC = hp

[∫ t1

0

I(t)dt+

∫ T

t1

I(t)dt

]
(6.27)

Solving each integral in Equation (6.27) leads

∫ t1

0

I(t)dt =

∫ t1

0

[
(1− ηm) k0

[θ + γ + q(1− σ)− ω]

[
e−ωt − e−[θ+γ+q(1−σ)]t

]
+

ηmk0
[θ + γ + q(1− σ)− ω − λ]

[
e−(ω+λ)t − e−[θ+γ+q(1−σ)]t

]
− [A− bsp + δs]

[θ + γ + q(1− σ)]

[
1− e−[θ+γ+q(1−σ)]t

]]
dt

(6.28)

=
(1− ηm) k0

[θ + γ + q(1− σ)− ω]

[
− 1

ω
e−ωt1 +

1

[θ + γ + q(1− σ)]
e−[θ+γ+q(1−σ)]t1

]
+

ηmk0
[θ + γ + q(1− σ)− ω − λ]

[
− 1

(ω + λ)
e−(ω+λ)t1 +

1

[θ + γ + q(1− σ)]
e−[θ+γ+q(1−σ)]t1

]
− [A− bsp + δs]

[θ + γ + q(1− σ)]
[t1 +

1

[θ + γ + q(1− σ)]
e−[θ+γ+q(1−σ)]t1]

(6.29)∫ T

t1

I(t)dt =

∫ T

t1

[
− [A− bsp + δs]

[θ + γ + q(1− σ)]

[
1− e−[θ+γ+q(1−σ)](t−t1)

]
+Ime

−[θ+γ+q(1−σ)](t−t1)
]
dt

(6.30)

= − [A− bsp + δs]

[θ + γ + q(1− σ)]
(T − t1)−

1

[θ + γ + q(1− σ)]

[
− [A− bsp + δs]

[θ + γ + q(1− σ)]

+
[A− bsp + δs]

[θ + γ + q(1− σ)]

[
e−[θ+γ+q(1−σ)](T−t1)

]
+ Ime

−[θ+γ+q(1−σ)](T−t1)

]
+

1

[θ + γ + q(1− σ)]
Im

(6.31)
Recalling that Equation (6.22) = 0, Equation (6.31) becomes

− [A− bsp + δs]

[θ + γ + q(1− σ)]
(T − t1) +

1

[θ + γ + q(1− σ)]
Im (6.32)

Substituting expression (6.26) into (6.32) leads to

− [A− bsp + δs]

[θ + γ + q(1− σ)]

[
[θ + γ + q(1− σ)]

[A− bsp + δs]
Im

]
+

1

[θ + γ + q(1− σ)]
Im

=

[
1

[θ + γ + q(1− σ)]
− 1

]
Im

(6.33)
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Therefore, the total holding cost is

THC = hp

{
(1− ηm) k0

µ

[
− 1

ω
e−ωt1 +

1

υ
e−υt1

]
+
ηmk0
ψ

[
− 1

ω + λ
e−(ω+λ)t1 +

1

υ
e−υt1

]
− [A− bsp + δs]

υ

[
t1 +

1

υ
e−υt1

]
+

[
1

υ
− 1

]
Im

}
(6.34)

Linearising Equation (6.34), we get

THC =hp



(1− ηm) k0
µ

[(
1

υ
− 1

ω

)
+
(υ
2
− ω

2

)
t21

]
+
ηmk0
ψ

[(
1

υ
− 1

ω + λ

)
+

(
υ

2
− (ω + λ)

2

)
t21

]
− [A− bsp + δs]

υ

[
1

υ
+
υt21
2

]
+

[
1

υ
− 1

]
Im


(6.35)

6.4.1.2 Deterioration cost

The deterioration cost, denoted by TDC, is the cost associated with the loss of value of
the inventory over time. This is equal to the unit cost incurred per unit of inventory that
deteriorates at the rate θ over the cycle [0, T ]. Therefore,

TCD = cdθ

⌈∫ t1

0

I(t)dt+

∫ T

t1

I(t)dt

⌉
(6.36)

TCD =cdθ

{
(1− ηm) k0

µ

[(
1

υ
− 1

ω

)
+
(υ
2
− ω

2

)
t21

]
+
ηmk0
ψ

[(
1

υ
− 1

ω + λ

)
+

(
υ

2
− (ω + λ)

2

)
t21

]
− [A− bsp + δs]

υ

[
1

υ
+
υt21
2

]
+

[
1

υ
− 1

]
Im

}
(6.37)

6.4.1.3 Production cost

The manufacturer’s total production cost, TPC, is computed by multiplying the unit
production cost by the total production over the cycle [0, t1], that is,

TPC = pc

∫ t1

0

k0e
−ωtdt (6.38)

TPC = −pc
ω
k0e

−ωt1 +
pc
ω
k0 ≈ pck0

⌈
t1 −

ωt21
2

⌉
(6.39)

6.4.1.4 Lost production cost

The manufacturer’s lost production cost, LP , represents the opportunity cost for not
producing the planned quantity, k0t1. Mathematically, it can be written as

LP = pl

∫ t1

0

[
k0 − k0e

−ωt
]
dt ≈ plk0

ωt21
2

(6.40)
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6.4.1.5 Disposal cost

The disposal cost is computed by multiplying the cost associated with disposing of a
product with the total number of defective products manufactured, that is

DSC = cdp

[∫ t1

0

(
1− e−λt)

)
ηmk0e

−ωtdt

]
≈ cdp

[(
1

λ+ ω
− 1

ω

)
ηmk0 +

[
(λ+ ω)

2
− ω

2

]
ηmk0t

2
1

]
(6.41)

6.4.2 Total cost per time

The total cost per unit time, TC , is computed by summing Equations (6.35), (6.37),
(6.39), (6.40) and (6.41), hence

TC =
1

T



G+MT + (hp + θcd)

{
(1− ηm) k0

µ

[(
1

υ
− 1

ω

)
+
(υ
2
− ω

2

)
t21

]
+
ηmk0
ψ

[(
1

υ
− 1

ω + λ

)
+

(
υ

2
− (ω + λ)

2

)
t21

]
− [A− bsp + δs]

υ

(
1

υ
+
υt21
2

)
+

(
1

υ
− 1

)
Im

}
+ pck0

(
t1 −

ωt21
2

)
+ plk0

ωt21
2

+ cdp

[(
1

λ+ ω
− 1

ω

)
ηmk0 +

(
(λ+ ω)

2
− ω

2

)
ηmk0t

2
1

]


(6.42)

The first term in Equation (6.42) is the fixed set-up cost, which is the cost incurred when
preparing the process for production. The second term is the fixed cost of maintaining
the system (MT ), which the manufacturer incurs at the beginning of each cycle. The
third term is the manufacturer’s holding cost plus the deterioration cost per cycle as
determined in Equations (6.35) and (6.37). The fourth and fifth terms are the production
cost and lost production cost, respectively. The last term is the disposal cost per cycle,
as determined in Equation (6.41).

6.5 Solution

6.5.1 Determination of the decision variables

There is one decision variable in the cost function of this model, denoted as Im. The
optimal solution to the proposed inventory system is determined by setting the first-
order partial derivative of the objective function with respect to Im to zero.

∂TC

∂Im
=
1

T

{
(hp + θcd)

[
t1 +

(
1

υ
− 1

)]
+

pck0
[k0 − (A− bsp + δs)]

+ (−pck0ω + plk0ω + cdpληmk0)
t1

[k0 − (A− bsp + δs)]

}
− 1

T

[
k0

[k0 − (A− bsp + δs)] (A− bsp + δs)

]
TC = 0

(6.43)

6.5.2 Optimality condition

The problem is to determine the optimal value of Im, which minimises the total cost
function TC. Since TC is a function of one variable Im, with Im a continuous variable,
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for an optimal value of Im, the necessary condition has to be met

∂2(TC)

∂I2m
≥ 0 (6.44)

Taking the second derivatives with respect to Im in the Equation (6.43), we have

∂2TC

∂I2m
=
1

T

{
(hp + θcd)

k0 − (A− bsp + δs)

+ (−pck0ω + plk0ω + cdpληmk0)

[
1

k0 − (A− bsp + δs)

]2}

− 2

T

[
k0

[k0 − (A− bsp + δs)] (A− bsp + δs)

]
∂TC

∂Im

(6.45)

6.5.2.1 Numerical example

To illustrate the use of the model developed above, we consider the following input
parameters

Demand parameter, A = 70

Elasticity parameter of the unit selling price, b = 0.6

Deterioration cost per unit item, cd = $1.5/ item

Disposal cost per unit item, dp = $0.8/ item

Set-up cost, G = $12500

Inventory carrying cost per item produced per time, hp = $0.5 per item/per hour

Initial production rate at the start of the cycle, k0 = 150 items/hour

Maintenance cost, MT = $5000

Unit production cost, pc = $10 per unit

Lost production cost per product, pl = $14/ item

Social donation amount per sale, s = $20

Market selling price of the product, sp = $80/ item

Deterioration rate, θ = 0.004

Rate at which the production rate declines, ω = 0.025

Rate at which the proportion of defective items increases over time, λ = 0.035

Elasticity parameter that reflects the impact of defects on customer demand, σ =
0.12

Maximum proportion of defective products that can be produced, ηm = 0.35
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Demand enhancement parameter for inventory level, γ = 0.8

Elasticity factor of quality of stock, 0.95

Elasticity factor of social donation amount, δ = 0.9

The model yields the following results

Table 6.2: Summary of the results from the numerical example

Variable Units Quantity
I∗m items 2246
t∗1 hour 20
T ∗ hour 76
TC∗ $/hour 787

Based on the results of the numerical example, which are summarised in Table 6.2, the
company should keep a maximum inventory level of 2246 units. Assuming that time
is measured in hours, the production time should take 20 hours. The batch should be
produced after every 76 hours, which is the duration of the cycle. The manufacturer will
incur an average cost of $787 per hour. Figures 6.2 and 6.3 show the response of the
average total cost function to different inventory levels.

Figure 6.2: Graph of total cost per unit time versus inventory level Im
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Figure 6.3: Graph of total cost per unit time, production time t1 and inventory level Im

Figure 6.2 depicts the total cost per time with varying values of the inventory Im. The
graphical representations presented in Figure indicate that the total cost per time, TC,
is strictly convex. Figure 6.3 further illustrates the convexity of the total cost per time
when varying values of inventory Im and production time t1. The total cost per unit time
decreases with the t1 until it reaches the minimum at the optimal Im and t1.

6.5.2.2 Sensitivity analysis

To gain deeper insights into the behaviour of the model, we conducted a sensitivity anal-
ysis where we varied several of the model parameters and analysed their effects on the
decision variable and the total cost of the manufacturer. These analyses have been im-
plemented by altering each input factor in relative steps of 10%(−30%,−20%,−10%, +
10%,+20%,+30% ) and keeping static the all the other input factors at a time. The
findings of these experiments are summarised in Table 6.3.

• The manufacturer’s optimal inventory level I∗m is highly sensitive to A, k0, hp, G
and pc. The manufacturer’s optimal inventory level I∗m is most sensitive to k0.
A 30% increase in k0 result in a 17% increase in I∗m. If the manufacturer has a
huge capacity, obviously, more items would need to be produced in a short space
of time. The manufacturer’s optimal inventory level I∗m is moderately sensitive to
b,MT , pl, sp, s and δ. Changes to all other inputs did not affect I∗m.

• The manufacturer’s production time t∗1 is highly sensitive to k0, hp, G and pc. The
manufacturer’s production time t∗1 is most sensitive to k0. A 30% decrease in t∗1
result in a 30.5% increase in t∗1. t

∗
1 was moderately sensitive to A, b,MT , pl and sp.

Changes to all other inputs had no effect on t∗.
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• The manufacturer’s optimal cycle time T ∗ is highly sensitive to A, b, and sp. The
demand parameter A had the greatest effect on T . A 30% decrease in A resulted
in a 95.57% increase in T ∗, and A 30% increase in A resulted in a 29% decrease
in T ∗. This suggests that When there is an increase in the initial demand A,
the manufacturer adjusts their production and inventory management accordingly
to meet the growing customer demand. This can be observed by the increase in
production time t1. Longer production cycles t1 allow the manufacturer to produce
larger quantities to meet the rising demand. The inventory level Im decreases with
the increase in A. This decrease in Im can be attributed to the fact that products
are consumed at a faster rate. optimal cycle time T ∗ was moderately sensitive to
k0, hp, G, pl, s and δ. The optimal cycle time T ∗ was not affected by changes to all
the remaining input parameters.

• The manufacturer’s optimal total cost per time TC∗ is highly sensitive to A, b and
sp. Among these parameters, the demand parameter, A, has the greatest impact
on the optimal total cost. TC∗ is moderately sensitive to k0, hp, G, pc, pl, s and δ.
The optimal total cost TC∗ was not affected by changes to all the remaining input
parameters.
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Table 6.3: Sensitivity analysis for various inventory model parameters

% of change inventory level Im Time t1 Cycle time T Total cost TC
units %change hours %change hours %change $ % change

Base 2246 20 76 787

A

-30% 2497.552 11.2% 18.674 -6.6% 149.3932 96.6% 386.5744 -50.9%
-20% 2416.247 7.6% 19.086 -4.6% 111.5832 46.8% 523.355 -33.5%
-10% 2332.471 3.9% 19.528 -2.4% 89.946 18.4% 656.8302 -16.5%
10% 2156.609 -4.0% 20.51 2.6% 66.3252 -12.7% 913.6283 16.1%
20% 2063.849 -8.1% 21.06 5.3% 59.28 -22.0% 1036.715 31.7%
30% 1967.721 -12.4% 21.656 8.3% 53.96 -29.0% 1155.946 46.9%

b

-30% 2058.459 -8.4% 21.092 5.5% 58.9304 -22.5% 1043.641 32.6%
-20% 2122.47 -5.5% 20.708 3.5% 63.46 -16.5% 959.8252 22.0%
-10% 2185.133 -2.7% 20.344 1.7% 69.0308 -9.2% 874.2783 11.1%
10% 2305.519 2.7% 19.672 -1.6% 84.9452 11.8% 698.1477 -11.3%
20% 2363.915 5.3% 19.36 -3.2% 96.8012 27.4% 607.6427 -22.8%
30% 2420.963 7.8% 19.062 -4.7% 113.1792 48.9% 515.6424 -34.5%

k0

-30% 1732.115 -22.9% 26.102 30.5% 69.4336 -8.6% 846.1037 7.5%
-20% 1924.597 -14.3% 23.564 17.8% 71.6376 -5.7% 825.0908 4.8%
-10% 2094.17 -6.8% 21.592 8.0% 73.8492 -2.8% 805.2584 2.3%
10% 2383.455 6.1% 18.676 -6.6% 78.0672 2.7% 770.1582 -2.1%
20% 2508.557 11.7% 17.552 -12.2% 80.0356 5.3% 754.6543 -4.1%
30% 2623.328 16.8% 16.578 -17.1% 81.8976 7.8% 740.4096 -5.9%

cd

-30% 2249.594 0.2% 20.032 0.2% 76.1216 0.2% 786.5278 -0.1%
-20% 2248.246 0.1% 20.02 0.1% 76.076 0.1% 786.6852 0.0%
-10% 2247.123 0.1% 20.01 0.1% 76.038 0.1% 786.8426 0.0%
10% 2244.877 -0.1% 19.99 -0.1% 75.962 -0.1% 787.1574 0.0%
20% 2243.754 -0.1% 19.98 -0.1% 75.924 -0.1% 787.3148 0.0%
30% 2242.631 -0.2% 19.97 -0.2% 75.886 -0.2% 787.4722 0.1%

cdp

-30% 2274.749 1.3% 20.256 1.3% 76.9728 1.3% 789.5971 0.3%
-20% 2265.316 0.9% 20.172 0.9% 76.6536 0.9% 788.7314 0.2%
-10% 2255.658 0.4% 20.086 0.4% 76.3268 0.4% 787.8657 0.1%
10% 2236.342 -0.4% 19.914 -0.4% 75.6732 -0.4% 786.1343 -0.1%
20% 2226.684 -0.9% 19.828 -0.9% 75.3464 -0.9% 785.1899 -0.2%
30% 2217.251 -1.3% 19.744 -1.3% 75.0272 -1.3% 784.3242 -0.3%

hp

-30% 2594.579 15.5% 23.104 15.5% 87.7952 15.5% 745.8399 -5.2%
-20% 2463.413 9.7% 21.936 9.7% 83.3568 9.7% 760.4781 -3.4%
-10% 2348.193 4.6% 20.91 4.6% 79.458 4.6% 774.0932 -1.6%
10% 2154.363 -4.1% 19.184 -4.1% 72.8992 -4.1% 799.1198 1.5%
20% 2071.71 -7.8% 18.448 -7.8% 70.1024 -7.8% 810.61 3.0%
30% 1996.469 -11.1% 17.778 -11.1% 67.5564 -11.1% 821.4706 4.4%

G

-30% 1945.934 -13.4% 17.328 -13.4% 65.8464 -13.4% 734.5071 -6.7%
-20% 2050.823 -8.7% 18.262 -8.7% 69.3956 -8.7% 752.8442 -4.3%
-10% 2150.545 -4.3% 19.15 -4.3% 72.77 -4.3% 770.3156 -2.1%
10% 2337.412 4.1% 20.814 4.1% 79.0932 4.1% 802.9761 2.0%
20% 2425.455 8.0% 21.598 8.0% 82.0724 8.0% 818.4013 4.0%
30% 2510.354 11.8% 22.354 11.8% 84.9452 11.8% 833.2756 5.9%

MT

-30% 2131.005 -5.1% 18.976 -5.1% 72.1088 -5.1% 766.9315 -2.6%
-20% 2170.085 -3.4% 19.324 -3.4% 73.4312 -3.4% 773.6997 -1.7%
-10% 2208.267 -1.7% 19.664 -1.7% 74.7232 -1.7% 780.3892 -0.8%
10% 2283.059 1.7% 20.33 1.7% 77.254 1.7% 793.4534 0.8%
20% 2319.444 3.3% 20.654 3.3% 78.4852 3.3% 799.8281 1.6%
30% 2355.38 4.9% 20.974 4.9% 79.7012 4.9% 806.1241 2.4%

pl

-30% 2089.005 -7.0% 18.602 -7.0% 70.6876 -7.0% 696.495 -11.5%
-20% 2137.518 -4.8% 19.034 -4.8% 72.3292 -4.8% 726.9519 -7.6%
-10% 2189.85 -2.5% 19.5 -2.5% 74.1 -2.5% 757.094 -3.8%
10% 2306.867 2.7% 20.542 2.7% 78.0596 2.7% 816.6699 3.8%
20% 2372.674 5.6% 21.128 5.6% 80.2864 5.6% 846.025 7.5%
30% 2444.771 8.9% 21.77 8.9% 82.726 8.9% 875.0653 11.2%

pc

-30% 2540.451 13.1% 22.622 13.1% 85.9636 13.1% 741.5114 -5.8%
-20% 2429.723 8.2% 21.636 8.2% 82.2168 8.2% 757.2514 -3.8%
-10% 2332.471 3.9% 20.77 3.9% 78.926 3.9% 772.4405 -1.9%
10% 2168.513 -3.5% 19.31 -3.5% 73.378 -3.5% 801.0086 1.8%
20% 2098.438 -6.6% 18.686 -6.6% 71.0068 -6.6% 814.6237 3.5%
30% 2034.876 -9.4% 18.12 -9.4% 68.856 -9.4% 827.7666 5.2%
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Table 6.4: Sensitivity analysis for various inventory model parameters

% of change inventory level Im Time t1 Cycle time T Total cost TC
units %change hours %change hours %change $ % change

Base 2246 20 76 787

sp

-30% 2058.459 -8.4% 21.092 5.5% 58.9304 -22.5% 1043.641 32.6%
-20% 2122.47 -5.5% 20.708 3.5% 63.46 -16.5% 959.8252 22.0%
-10% 2185.133 -2.7% 20.344 1.7% 69.0308 -9.2% 874.2783 11.1%
10% 2305.519 2.7% 19.672 -1.6% 84.9452 11.8% 698.1477 -11.3%
20% 2363.915 5.3% 19.36 -3.2% 96.8012 27.4% 607.6427 -22.8%
30% 2420.963 7.8% 19.062 -4.7% 113.1792 48.9% 515.6424 -34.5%

s

-30% 2312.931 3.0% 19.632 -1.8% 86.2448 13.5% 686.8936 -12.7%
-20% 2290.92 2.0% 19.752 -1.2% 82.4828 8.5% 720.4985 -8.5%
-10% 2268.46 1.0% 19.876 -0.6% 79.0856 4.1% 753.8673 -4.2%
10% 2223.315 -1.0% 20.128 0.6% 73.188 -3.7% 819.8966 4.2%
20% 2200.406 -2.0% 20.256 1.3% 70.6192 -7.1% 852.5571 8.3%
30% 2177.272 -3.1% 20.39 2.0% 68.2632 -10.2% 882.9353 12.2%

θ

-30% 2249.369 0.2% 20.03 0.2% 76.114 0.2% 786.5278 -0.1%
-20% 2248.246 0.1% 20.02 0.1% 76.076 0.1% 786.6852 0.0%
-10% 2247.123 0.1% 20.01 0.1% 76.038 0.1% 786.8426 0.0%
10% 2244.877 -0.1% 19.99 -0.1% 75.962 -0.1% 787.1574 0.0%
20% 2243.754 -0.1% 19.98 -0.1% 75.924 -0.1% 787.3148 0.0%
30% 2242.631 -0.2% 19.97 -0.2% 75.886 -0.2% 787.4722 0.1%

ω

-30% 2227.134 -0.8% 19.832 -0.8% 75.3616 -0.8% 759.3763 -3.5%
-20% 2241.508 -0.2% 19.96 -0.2% 75.848 -0.2% 769.9221 -2.2%
-10% 2246.898 0.0% 20.008 0.0% 76.0304 0.0% 778.9726 -1.0%
10% 2241.059 -0.2% 19.956 -0.2% 75.8328 -0.2% 794.3191 0.9%
20% 2233.198 -0.6% 19.886 -0.6% 75.5668 -0.6% 801.0086 1.8%
30% 2223.315 -1.0% 19.798 -1.0% 75.2324 -1.0% 807.3046 2.6%

γ

-30% 2226.909 -0.9% 19.83 -0.9% 75.354 -0.9% 785.1899 -0.2%
-20% 2233.872 -0.5% 19.892 -0.5% 75.5896 -0.5% 785.8982 -0.1%
-10% 2240.385 -0.3% 19.95 -0.3% 75.81 -0.3% 786.4491 -0.1%
10% 2251.166 0.2% 20.046 0.2% 76.1748 0.2% 787.4722 0.1%
20% 2255.882 0.4% 20.088 0.4% 76.3344 0.4% 787.9444 0.1%
30% 2260.15 0.6% 20.126 0.6% 76.4788 0.6% 788.3379 0.2%

q

-30% 2225.786 -0.9% 19.82 -0.9% 75.316 -0.9% 785.1112 -0.2%
-20% 2233.422 -0.6% 19.888 -0.6% 75.5744 -0.6% 785.8195 -0.2%
-10% 2239.936 -0.3% 19.946 -0.3% 75.7948 -0.3% 786.4491 -0.1%
10% ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
20% ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
30% ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

σ

-30% 2248.246 0.1% 20.02 0.1% 76.076 0.1% 787.2361 0.0%
-20% 2247.572 0.1% 20.014 0.1% 76.0532 0.1% 787.1574 0.0%
-10% 2246.674 0.0% 20.006 0.0% 76.0228 0.0% 787.0787 0.0%
10% 2245.326 0.0% 19.994 0.0% 75.9772 0.0% 786.9213 0.0%
20% 2244.428 -0.1% 19.986 -0.1% 75.9468 -0.1% 786.8426 0.0%
30% 2243.529 -0.1% 19.978 -0.1% 75.9164 -0.1% 786.7639 0.0%

λ

-30% 2259.701 0.6% 20.122 0.6% 76.4636 0.6% 787 0.0%
-20% 2254.759 0.4% 20.078 0.4% 76.2964 0.4% 786.9213 0.0%
-10% 2250.267 0.2% 20.038 0.2% 76.1444 0.2% 786.9213 0.0%
10% 2241.957 -0.2% 19.964 -0.2% 75.8632 -0.2% 787.0787 0.0%
20% 2238.139 -0.4% 19.93 -0.4% 75.734 -0.4% 787.2361 0.0%
30% 2234.321 -0.5% 19.896 -0.5% 75.6048 -0.5% 787.3935 0.1%

ηm

-30% 2266.439 0.9% 20.182 0.9% 76.6916 0.9% 788.1805 0.2%
-20% 2259.476 0.6% 20.12 0.6% 76.456 0.6% 787.787 0.1%
-10% 2252.738 0.3% 20.06 0.3% 76.228 0.3% 787.3935 0.1%
10% 2239.262 -0.3% 19.94 -0.3% 75.772 -0.3% 786.6065 -0.1%
20% 2232.524 -0.6% 19.88 -0.6% 75.544 -0.6% 786.213 -0.1%
30% 2225.786 -0.9% 19.82 -0.9% 75.316 -0.9% 785.8195 -0.2%

δ

-30% 2312.931 3.0% 19.632 -1.8% 86.2448 13.5% 688.4676 -12.5%
-20% 2290.695 2.0% 19.752 -1.2% 82.4828 8.5% 721.6003 -8.3%
-10% 2268.46 1.0% 19.874 -0.6% 79.0856 4.1% 754.4182 -4.1%
10% 2223.315 -1.0% 20.128 0.6% 73.188 -3.7% 819.267 4.1%
20% 2200.406 -2.0% 20.258 1.3% 70.6192 -7.1% 851.2979 8.2%
30% 2177.272 -3.1% 20.39 2.0% 68.2632 -10.2% 882.9353 12.2%
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6.6 Conclusion

This section deals with a continuously declining production system for deteriorating items
under social donation. The inventory model is designed for a single product, where nei-
ther replacement nor repair is permitted for deteriorated and imperfect products. The
degraded behaviour of the process is modelled by a continuously declining production
rate as a function of time. The constant rate of the defective products manufactured is
extended to include a continuous function that increases over time. Defective products
are assumed to be scrapped, and customers’ returns are accounted for by introducing
a parameter to quantify the impact of defects on customer demand. Furthermore, the
demand rate is formulated as a function of selling price, stock level, quality of stock, and
social donation amount. The theoretical results derived in this section prove the exis-
tence and uniqueness of the optimal solution for the given problem, strengthening the
model’s validity and practical applicability. Looking ahead, future research can extend
this inventory model by incorporating an integrated joint inventory approach, consid-
ering both manufacturer and retailer perspectives. Moreover, investigating the impact
of carbon emissions at the manufacturer’s facility and considering scenarios with partial
backlogging would further enhance the model’s realism and relevance to real-world man-
ufacturing scenarios. This perspective aligns with the growing interest in sustainability
and green practices in the manufacturing industry.
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Chapter 7

Conclusion

7.1 Summary

The primary aim of this thesis was to develop inventory models for managing deterio-
rating products in a multi-state system. Three lot sizing models were developed, each
addressing a different aspect of the research objective. The multi-state structure of the
models, the flexibility of the production systems, and the fact that a vast majority of prod-
ucts are subject to deterioration make these models good representations for large-scale
production systems in various industries. To enhance their practicality, each of the mod-
els accounts for specific characteristics of production systems, such as stock-dependent
demand, price-dependent demand, freshness-dependent demand, product quality, and
multi-echelon. Apart from addressing gaps in existing literature, the developed inventory
models hold significant practical value for professionals in operations and supply chain
management within the manufacturing environment.

7.2 Contributions to knowledge

Chapter 4: An inventory model with a shifting production rate, for perish-
ables products with freshness, price, and stock-dependent demand rate and
price discounting
The first model proposed an inventory system with a shifting production rate and other
product characteristics such as product deterioration with a limited life span and product
demand that is dependent on the stock level, the state of freshness of the product, and
the selling price. The product also needed to be discounted as it got close to the expiry
date to boost demand and prevent wastage beyond its life span. The inventory system
was formulated mathematically to determine the optimal selling price and cycle time
that maximises the net profit. The presence of freshness conditions on products means
that if the product’s freshness drops, the demand drops correspondingly. Consequently,
since products are already made, the cycle time lengthens, which increases the quantity,
which deteriorates and subsequently depletes the profit. This finding should motivate
production and operations managers to pay attention to the shelf life of the products
they manufacture and ensure to strike a balance between cycle time and the freshness of
the products to maintain their profit margin.

Chapter 5: A two-echelon supply chain inventory model for perishable prod-
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ucts with a shifting production rate, stock-dependent demand rate and im-
perfect quality raw material
The second model considered a two-echelon inventory system that considered a shift in
production rate and imperfect raw materials. The model integrated the cost of raw ma-
terials necessary for production and considered the presence of imperfect quality items
within the acquired raw materials. Upon the immediate receipt of raw materials, a 100%
screening process was implemented to identify imperfect quality items. By combining
imperfect raw materials and shifting production rates, two different sub-models for dete-
riorating products were formulated under imperfect production and a demand function
that was dependent on the stock level. In the first sub-model, imperfect raw materials
were sold at a discounted price at the end of the screening period, whereas in the second
one, imperfect items were kept in stock until the end of the inventory cycle and then
returned to the supplier. Numerical illustrations demonstrated that selling the imperfect
raw material after the screening process was beneficial, as opposed to returning it to the
supplier at the end of the cycle.

Chapter 6 An integrated EPQ Model for deteriorating products with declin-
ing production rate, increasing defects, stock and price-dependent demand,
and effects of corporate social responsibility activities
The last model proposed an inventory system in which the production declined contin-
uously with time while considering various factors, including the stock level, product
quality, Corporate Social Responsibility impacts (CSR), and deterioration of end prod-
ucts. It is assumed that the defective function is a continuous and increasing function
and that the demand increases with the social donation amount. The main aim of the
inventory model developed in this chapter was to find the ideal inventory level that min-
imised the manufacturer’s total cost per unit of time. To illustrate the effectiveness of the
proposed inventory model, this chapter included a numerical example. Through the anal-
ysis of the model, it was found that investing in CSR led to a decrease in inventory. This
indicates CSR has a considerable impact on inventory management as it may increase
consumer trust and loyalty, and this presents operations managers with opportunities to
reduce excess inventory through better management practices.

7.3 Suggestions for future research

This research work addressed the challenge of managing unreliable production systems
with continuous quality control. In this thesis, various production policies were devel-
oped. However, there is still room for further research expansion. For instance, extending
the models to accommodate popular extensions, such as shortages and permissible delays
in payment. Additionally, future research could explore the integration of learning effects
in the screening process.

The model with shifting production rates can be extended to include multiple products
and multiple machines. The assumption that the facility has only one machine and
produces one product type may not necessarily hold. Furthermore, the model can be
extended to include other popular EPQ extensions such as time discounting, trade credit
financing, inflation, and environment policies, to name a few.
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All three models developed in this thesis assumed that production is deterministic, as
well as the time at which the production shifts. Further investigation could involve in-
tegrating probabilistic or stochastic processes to represent uncertainties related to shift
occurrences to enhance the model’s ability to reflect actual production system dynamics
more realistically. This expansion would increase the model’s relevance by better aligning
it with the unpredictable nature of production processes in practical environments.

The models developed in this thesis were derived under deterministic demand conditions.
This assumption can be relaxed to accommodate stochastic demand, leading to more
accurate representations of real-world inventory systems.
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Kenné, J. P., & Nkeungoue, L. (2008). Simultaneous control of production, preventive
and corrective maintenance rates of a failure-prone manufacturing system. Applied
numerical mathematics , 58 (2), 180–194.

Khan, M., Jaber, M., & Wahab, M. (2010). Economic order quantity model for items with
imperfect quality with learning in inspection. International journal of production
economics , 124 (1), 87–96.

Khan, M., Jaber, M., Zanoni, S., & Zavanella, L. (2016). Vendor-managed-inventory
with consignment stock agreement for a supply chain with defective items. Applied
Mathematical Modelling , 40 , 7102–7114.

Khan, M. A.-A., Halim, M. A., AlArjani, A., Shaikh, A. A., & Uddin, M. S. (2022).
Inventory management with hybrid cash-advance payment for time-dependent de-
mand, time-varying holding cost and non-instantaneous deterioration under back-
ordering and non-terminating situations. Alexandria Engineering Journal , 61 (11),
8469–8486.

Khan, M. A.-A., Shaikh, A. A., Khan, A. R., & Alrasheedi, A. F. (2023). Advertising
and pricing strategies of an inventory model with product freshness-related demand
and expiration date-related deterioration. Alexandria Engineering Journal , 73 ,
353–375.

150



Khan, M. A.-A., Shaikh, A. A., Konstantaras, I., Bhunia, A. K., & Cárdenas-Barrón,
L. E. (2020). Inventory models for perishable items with advanced payment, linearly
time-dependent holding cost and demand dependent on advertisement and selling
price. International Journal of Production Economics , 230 , 107804.

Khanra, S., Mandal, B., & Sarkar, B. (2013). An inventory model with time dependent
demand and shortages under trade credit policy. Economic Modelling , 35 , 349–355.

Kharde, B., Vikhe-Patil, G., & Nandurkar, K. (2012). Eoq model for planned shortages
by using equivalent holding and shortage cost. International Journal of Industrial
Engineering Research and Development (IJIERD), 3 (1), 43–57.

Khouja, M. (2005). The use of minor setups within production cycles to improve product
quality and yield. International Transactions in Operational Research, 12 (4), 403–
416.

Khouja, M., & Mehrez, A. (1994). Economic production lot size model with variable
production rate and imperfect quality. Journal of the Operational Research Society ,
45 (12), 1405–1417.

Kim, M.-S., Kim, J.-S., Sarkar, B., Sarkar, M., & Iqbal, M. W. (2018). An improved way
to calculate imperfect items during long-run production in an integrated inventory
model with backorders. Journal of manufacturing systems , 47 , 153–167.
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