

1

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-04206-8&domain=pdf
http://orcid.org/0000-0003-1603-7097
mailto: u11085160@tuks.co.za
mailto: nico.wilke@up.ac.za
mailto: u11207312@tuks.co.za

in mathematical programming to efficiently resolve learning
rates and identify descent directions. However, they require
the underlying loss function to be convex or unimodal
over an identified interval. This would be the case if
full-batch training of machine learning and deep learning
neural networks would be attainable. However, when
conducting full-batch training, computational and memory
requirements are untenable for practical training. This
makes full-batch training ill-suited for DNNs on modern
memory-limited graphics processing unit (GPU) compute
devices. As a result, the standard training procedure for
machine learning and deep learning relies on mini-batch
sub-sampling.

Mini-batch sub-sampling (MBSS) reduces the computa-
tional cost by using only a sub-sample of the training data
at a time. This also provides a generalization effect [22] by
turning a smooth continuous optimization problem into a
stochastic optimization problem [25]. The stochastic or dis-
continuous nature of the loss function is due to the selected
mini-batches’ inherent sampling errors.

For line searches, the sampling errors manifest mainly
in the form of bias or variance along a descent direction,
depending on whether mini-batches are sub-sampled
statically or dynamically [8, 15]. Static MBSS sub-samples
a newmini-batch for every descent direction, while dynamic
MBSS sub-samples a new mini-batch for every function
evaluation. Hence, the loss function for static MBSS is

continuous along a descent direction. The consequence is
that the expected value of a static MBSS loss has a small
variance but a large bias compared to the expected or full-
batch response. Conversely, the loss function for dynamic
MBSS is point-wise discontinuous [8, 14]. The expected
response of the dynamic MBSS loss has a small bias but
a large variance compared to the expected or full-batch
response [8, 14]. Consider Fig. 1, which contrasts a full
batched sampled loss function (F - orange) against a static
(f̄) and dynamic (f̃) sampled loss functions for a fully
connected feedforward neural network [21] initialized with
Xavier initialization [10]. Figure 1(a) depicts 20 potential
static MBSS loss functions. Each loss has zero variance
but a large bias in this case. Figure 1(c) depicts a dynamic
MBSS loss function. It is clear that there is a large variance
in the loss response, but the expected response has a lower
bias since a mini-batch does not influence it in particular.

Line searches have been implemented for both static
MBSS and dynamic MBSS loss functions. The main
drawback of static MBSS is that it results in significant
biases in loss approximations and has been improved
by applying sample variance reduction techniques [5, 9].
Meanwhile, attempts to resolve learning rates in the point-
wise discontinuous loss approximations of dynamic MBSS
include the probabilistic line search [21] and Gradient-Only
Line Search that is Inexact (GOLS-I) [14]. The probabilistic
line search resolves learning rates by minimizing an

Fig. 1 Illustration of finding
local minima in (a) static and (c)
dynamic MBSS loss functions,
as well as locating SNN-GPPs
using (b) static and (d) dynamic
MBSS directional derivatives

(a) Minimization with static MBSS (b) Locating SNN-GPPs with static MBSS

(c) Minimization with dynamic MBSS (d) Locating SNN-GPPs with dynamic MBSS

2

approximation constructed using both function value and
directional derivative information, while GOLS-I uses only
directional derivative sign change information.

GOLS-I locates optima by searching for stochastic non-
negative gradient projection points (SNN-GPP). These
manifest as positive directional derivatives with a non-zero
probability around a ball encapsulating SNN-GPPs. Any
point around the SNN-GPP ball is taken and the directional
derivative from the SNN-GPP is computed. An SNN-GPP
along a descent direction merely manifests as a sign change
from negative to positive. Importantly, a sign change from
negative to positive is necessary and sufficient to identify
an SNN-GPP as a minimizer inferred solely from derivative
information for this univariate case. This is empirically
demonstrated in Fig. 1. Note that we multiply the unitless
learning rate with descending direction vectors to update the
weights by addition.

Learning rates resolved by locating minimizers or SNN-
GPPs are equivalent for static MBSS loss functions as
depicted by the minimizer solution, ᾱm, and SNN-GPP
solution, ᾱ∗, in Fig. 1(a) and (b), respectively. However,
minimizers are identified over the entire domain for
dynamic sampled loss functions, as shown in Fig. 1(c).
In turn, SNN-GPPs are concentrated around the full batch
solution, as shown in Fig. 1(d). SNN-GPPs indicate a lower
bias to the expected full-batch minimizer than minimizers
of SNN-GPPs resolved from the static MBSS loss.

A recent empirical study investigated the effective-
ness of dynamic mini-batch sampled function values and
directional derivatives to construct quadratic approxima-
tion models to resolve learning rates [8]. Chae and Wilke
[8] demonstrated that using only function value informa-
tion resulted in learning rates with a larger variance due to
the larger variance when predicting function values when
conducting dynamic MBSS. Using only derivative informa-
tion resulted in learning rates with smaller variance as the
derivative information predicts more consistently when con-
sidering dynamic MBSS. Hence, gradient-only quadratic
approximations result in stable and consistent learning rate
predictions. Chae and Wilke [8] constructed derivative-only
approximations using only two directional derivative eval-
uations referred to as gradient-only surrogates (GOS). One
evaluated at the origin, and the other at an “initial guess”
learning rate along the descent direction. The directional
derivative at the origin is strictly less than zero for descent
directions. If the directional derivative at the initial guess is
also less than zero, the initial guess learning rate is imme-
diately accepted. In turn, if the directional derivative at the
initial guess is positive, linear interpolation between the two
points is performed to approximate the location of a direc-
tional derivative sign change. The proposed approach served

as an initial investigation and proof of a “vanilla” line-
search concept for only stochastic gradient descent (SGD).
However, the “vanilla” gradient-only surrogate line search
(GOS-LS), proposed and investigated by [8], has no strong
convergence characteristics, lacks a robust bracketing strat-
egy, and has not been demonstrated for descent direction
strategies other than SGD. Hence, the primary contributions
of this study include:

1. Proposing GOS-LSC: It extends the shortcomings of
the vanilla GOS-LS [8] by proposing a line search with
strong convergence characteristics. This is achieved by
introducing a robust bracketing strategy to improve
linear interpolation accuracy, the conservative GOS-
LS (GOS-LSC). The bracketing strategy is based on a
modified strong Wolfe condition [26] to isolate SNN-
GPP. We essentially propose a conservative algorithm
with strong convergence characteristics, which may
sacrifice the performance for convergence.

2. Experiments on various descent directions: Both GOS-
LS and GOS-LSC are demonstrated as a suitable line
search strategy for descent direction approaches other
than SGD, including RMSPROP and ADAM on ResNet-
18 [13] and EfficientNet-B0 [28] with CIFAR-10 [16].

3. Experiments for comparing different learning rate
strategies: GOS-LS and GOS-LSC are compared to
fixed learning rates, cosine annealing, and GOLS-I
on a shallow neural network architecture, N-II [21],
with MNIST [17]. GOS-LS and GOS-LSC exhibit
competitive results compared to other line search
methods.

To compare the performance of different strategies,
we introduced a relative robustness measure (RRM) to
quantify the differences between an algorithm and the best-
performing algorithm for a given problem. In contrast to the
traditional performance measure that only considers the best
performance, the RRM considers all accounts, including
poor performance. Hence, the criterion favors the strategy
that performs well overall across different problems and
optimizers rather than a problem-specific strategy.

While the experiment results for varying the descent
directions showed that our proposed algorithm GOS-LSC-
4, which is GOS-LSC with specific hyperparameter settings
close to that of vanilla GOS-LS, outperforms GOS-LS in
robustness, the performance comparison experiment results
on a shallower architecture, N-II, showed that GOS-LSC-
4 ranked third and second for overall training and test
relative robustness among ten strategies, led by GOS-LS.
Although GOS-LS is not robust in convergence, it can be
more aggressive in training due to no curvature condition
restricting its learning rates.

3

2 Background

In general, line searches can be employed to train
deep neural networks to identify minimizers, first-order
optimality candidate solutions (directional derivatives equal
to 0), and SNN-GPPs. For convex functions, all three are
equivalent. Several line searches which implement static
MBSS have been presented, which take advantage of
continuous loss functions that often assume convexity [2, 4,
5, 7, 9, 23, 29].

However, as illustrated in Fig. 1, for dynamic MBSS loss
functions, SNN-GPPs identify sensible solutions compared
to full batch solutions. Minimizers are hampered by
local minima resulting in large variance, while first-order
optimality candidate solutions may not exist for point-
wise discontinuous loss functions. The present section
summarizes several state-of-the-art sub-sampling and line
search schemes applied to dynamic MBSS loss functions in
machine learning literature. Firstly, we formalize dynamic
MBSS and SNN-GPPs in Sections 2.1 and 2.2, respectively.

2.1 Dynamic mini-batch sub-sampling

Given weights x, the function value computed with dynamic
MBSS is expressed as

L̃(x) = 1

|Bn,i |
∑

b∈Bn,i

�(x; tb), (1)

where �(x; tb) is computed using training samples in the
sampled mini-batch, tb, with an approximate gradient given
by

g̃(x) = 1

|Bn,i |
∑

b∈Bn,i

∇�(x; tb), (2)

where i denotes the i-th function evaluation of the n-
th iteration of a given algorithm. The loss function as a
function of the learning rate, α, along a given descent
direction, dn, starting from xn is given by:

f̃n(α) = L̃(x(α)) = L̃(xn + αdn), (3)

with the directional derivative, f̃ ′
n, given by

f̃ ′
n(α) = dᵀ

n g̃(xn + αdn). (4)

DynamicMBSS loss functions are point-wise discontinuous
functions with point-wise discontinuous gradient fields.

2.2 Gradient-only optimality criterion

Multiple local minima would be found when locating
minimizers for discontinuous functions such as a dynamic
MBSS loss function. Instead, we may opt to locate
Non-Negative Gradient Projection Points (NN-GPPs) for
which its gradient-only optimality criterion was specifically

designed for deterministic discontinuous function [26],
given by

dᵀ
n∇L (xnngpp +αndn) ≥ 0, ∀‖dn ∈ R

p‖2 = 1, ∀α ∈ (0, αmax], (5)

for the 1-D case, along a given search direction, dn. NN-
GPP is representative of a local optimum because no descent
directions are allowed away from it. This is only possible
at a critical point or a local minimum in a smooth and
continuous function.

The NN-GPP definition is limited to deterministic dis-
continuous functions. Therefore, to accommodate stochastic
discontinuous functions, the NN-GPP definition was gener-
alized and extended to the Stochastic NN-GPP (SNN-GPP),
given by

dᵀ
n g̃(xsnngpp + αndn) ≥ 0, ∀‖dn ∈ R

p‖2 (6)

= 1, ∀α ∈ (0, αmax], p(xsnngpp) > 0,

with probability, p(xsnngpp), greater than 0 [14].
The difference between NN-GPP and SNN-GPP is

that NN-GPP is a point where the signs of directional
derivatives change in the deterministic setting. However, in
the stochastic setting, a directional derivative sign change
location may vary, depending on the instance of the sampled
stochastic loss. Transferred to dynamic MBSS losses, this
means that for each distinct mini-batch, B, selected, we
have a distinct location of a sign change. However, these
remain bounded in a ball, Bε, [14] of a given neighborhood.
The size of Bε is, among other factors, dependent on the
variance in the stochastic loss function, which in dynamic
MBSS losses is dependent on the mini-batch size. Hence,
the larger the difference between individual samples, Bn,i ,
the larger the size of the ball, Bε. Notably, the SNN-GPP
definition also generalizes to the NN-GPP, critical point, and
local minimum, as these are all SNN-GPPs with probability
1.

2.3 Line searches for dynamic MBSS loss functions

To the best of the author’s knowledge, only three line search
techniques have been proposed to resolve learning rates for
dynamic MBSS loss functions, namely:

1. A probabilistic line search using Bayesian optimization
with Gaussian surrogate models, built using both function
value and directional derivative information [21].

2. The Gradient-only line search, Inexact (GOLS-I),
locates SNN-GPPs along the search directions, using
only directional derivative information [14].

3. Proof of concept quadratic approximations [8].

4

All three line search methods showed competitive
training performance for dynamic MBSS losses and
outperformed various constant learning rates.

Notably, [8] the quality of function values and direc-
tional derivatives in the context of approximation-based
line searches is investigated empirically. The quality of
information used to produce approximations in dynamic
MBSS losses was studied by constructing five types of
quadratic approximation models using different informa-
tion sampled at two locations (e.g. only function value, only
directional derivative, both function value and directional
derivative models) [8]. The results showed that using direc-
tional derivative information at the origin (starting point) of
a line search is critical for constructing quality approxima-
tions, decreasing the variances in optimal learning rates. The
two best-performing models were

1. Derivative-only quadratic model: A quadratic approxi-
mation is built using two directional derivatives, values
measured at the origin and another point along the
descent direction.

2. Mixed quadratic model: A quadratic approximation is
built using the directional derivative measured at the
origin and function values at both origin and another
point.

Note that both quadratic approximation models proposed
by [8] demonstrate “vanilla” algorithms without guaranteed
convergence. Although the mixed-model has been investi-
gated by [21] and [23] before, the derivative-only model has
not been extended to a fully automated line search tech-
nique, which is the aim of this paper. Next, we discuss
the heuristics and the corresponding shortcomings of the
vanilla derivative-only approximation using the derivative-
only model proposed in [8], extending in this study.

2.4 Gradient-only surrogate line search (GOS-LS)

Given a multivariate dynamic MBSS loss function, L̃(xn),
along a given descent direction, dn, f̃ (α), we want to
resolve the learning rate, α. The quadratic approximation
model, f̂ (α), of f̃ (α) is given by

f̂ (α) := k1α
2 + k2α + k3 ≈ f̃ (α), (7)

where k1, k2, and k3 are the constants to be computed.
Similarly, the first-order derivative of the quadratic approx-
imation, f̂ ′(α), is a linear approximation given by

f̂ ′(α) := 2k1α + k2 ≈ f̃ ′(α). (8)

Note that f̂ ′(α) is the derivative-only approximation
proposed by [8], and is implemented throughout this
paper. The approximation uses only directional derivative
information. The constants at n-th iteration, k1,n and
k2,n can be solved using a linear system of equations,

constructed from two instances of (8), given by
[
2α0,n 1
2α1,n 1

] [
k1,n
k2,n

]
=

[
f̃ ′
0,n

f̃ ′
1,n

]
, (9)

where f̃ ′
0,n and f̃ ′

1,n denote the dynamic MBSS directional
derivatives measured at α0,n and α1,n respectively, where
α0,n = 0 is the current starting point and α1,n is the
initial guess (α1,n > 0). The approximate minimum, α̃∗

n, is
computed as α∗

n = −k2,n/(2k1,n), where f̂ ′(α̃∗
n) = 0. For

the implementation, we compute α̃∗
n in the closed-form as

follows:

α∗
n = α0,n − f̃ ′

0,n
�αn

�f̃ ′
n

= α0,n − f̃ ′
0,n

α1,n − α0,n

f̃ ′
1,n − f̃ ′

0,n

. (10)

The heuristics of the vanilla line search algorithm using
(10), proposed by [8], are recalled here:

1. If f̃ ′
1,n > 0, as shown in Fig. 2(a), we may perform

bounded linear interpolations, (10), to resolve the
learning rate, α̃∗

n.
2. If f̃ ′

0,n < f̃ ′
1,n < 0, as shown in Fig. 2(b), we

can perform bounded extrapolation using (10), but the
prediction error is expected to be larger than the case of
bounded interpolation. Hence, we immediately choose
the initial guess as the resulting learning rate, i.e. α̃∗

n =
α1,n.

3. If f̃ ′
1,n < f̃ ′

0,n, as shown in Fig. 2(c), it would be unwise
to perform unbounded extrapolation for the same reason
as in the case of bounded extrapolation. Therefore, we
immediately accept the initial guess α∗, as the learning
rate of the current iteration α̃∗

n = α1,n.

The examples studied by [8] used stochastic gradient
descent (SGD) with the vanilla algorithm, dn = −g̃n. The
initial guess, α1,n, for every iteration was chosen to be
the inverse of the L-2 norm of the search direction vector,
α1,n = ‖d‖−1

2 . This means that α1,n is adapted to the
magnitude of the search direction vector, dn, to prevent
overly aggressive (potentially unstable) training behavior,
when ‖∇L̃ n‖2 ≈ 0.

3 Relative robustness measure, R

Traditional performance measures only consider the top
performances of strategies in DNNs. However, we observe
rapid growth in the size of DNN problems, and the
complexity of the problems also increases. This means
that when we face an unseen problem, we might want to
choose a more robust strategy across different problems and
optimizers than a problem-specific top-performing strategy.
Hence, we propose a new relative robustness measure
(RRM) that considers both poor and excellent performances
of learning rate strategies across different problems and

5

Fig. 2 Illustration of three
possible cases when
implementing the vanilla line
search algorithm using the
derivative-only approximation:
(a) bounded interpolation, when
f̃ ′
1,n > 0, (b) bounded

extrapolation when
f̃ ′
0,n < f̃ ′

1,n < 0 and (c)
unbounded extrapolation when
f̃ ′
1,n < f̃ ′

0,n

(a) Bounded Interpolation (b) Bounded extrapolation (c) Unbounded extrapolation

optimizers instead of only the top performances. We define
the RRM for learning rate strategies as follows:

Definition 1 (Relative robustness) The relative robustness,
R, of a strategy, y, is computed by summing the absolute
differences,ψy,h,o, in the strategy’s accuracy, ηy,h,o, and the
best accuracy of all strategies, η∗

h,o, for all optimizers, O

o, and all problems, H
 h. Hence, the less the measure,
Ry , is, the more robust the strategy is. Ry is defined as

Ry =
∑

h∈H

∑

o∈O

ψy,h,o, where ψy,h,o = |η∗
h,o − ηy,h,o|. (11)

The robustness measure, Ry,h, can be computed for
a strategy, y; problem, h while applying a line search
over all considered optimizers. We will compare our
proposed algorithm’s training and test performance, GOS-
LSC, against the other learning rate strategies based on the
RRM throughout the paper.

4 Conservative gradient-only approximation
line search (GOS-LSC)

This section proposes our line search strategy, conservative
gradient-only approximation line search (GOS-LSC), using
the quadratic derivative-only approximation capable of
locating the SNN-GPPs in the stochastic loss functions
produced by dynamic MBSS. Unlike the vanilla algorithm,
GOS-LSC requires consecutive function evaluations to
converge to an interval of sign changes for a given descent
direction, dn, update.

GOS-LSC comprises two main stages: 1) An immediate
accept condition (IAC), and 2) a bracketing strategy. The
IAC means that we accept the initial learning rate guess
of the n-th iteration, α1,n, as the approximate solution, α̃∗

n,
when α1,n falls within the accepted range set by the Wolfe
condition [26]. If the IAC is not satisfied, the proposed
bracketing strategy is used to locate SNN-GPPs.

4.1 Immediate accept condition (IAC)

The IAC aims to save computational costs. When the imme-
diate accept condition (IAC) is satisfied, we immediately
accept the initial guess, α1,n, and continue to the next search
direction. The IAC is based on the Wolfe condition, consist-
ing of 1) Armijo condition and 2)Wolfe curvature condition.
The Armijo condition ensures that the function value at the
accepted learning rate decreases monotonically as outlined,

f̃1,n ≤ f̃0,n + ωα1,nf̃
′
0,n. (12)

Here, ω is a prescribed constant, often very small (e.g. ω =
10−4). Note that the Armijo condition limits the maximum
learning rate by disallowing any increase in function value.

The Wolfe curvature condition ensures that the direc-
tional derivative at the initial guess, f ′

1,n, is less than at the
starting point, f ′

0,n. The condition is given by:

−f̃ ′
1,n ≤ −cf̃ ′

0,n, (13)

where c ∈ (0, 1) is a prescribed curvature constant. The
Wolfe curvature condition limits the minimum learning
rate based solely on directional derivative information. In
contrast, the Armijo condition, (12), requires function value
information. Hence, it is not suitable for our derivative-
only purpose. However, the Armijo condition is essential
for limiting the maximum learning rates by not allowing
growth in the function value. Therefore, we will implement
the strongWolfe condition as an alternative to (12) and (13):

|f̃ ′
1,n| ≤ c|f̃ ′

0,n|. (14)

As a consequence of applying the strong Wolfe condition,
we gain control over preventing overshooting, (12), and
undershooting, (13), by changing the c constant.

Although we implement (13) as the IAC throughout
the paper, note that one could also independently control
undershoot and overshoot limits by splitting c into two
positive constants, c1 and c2, respectively, as follows:

c1f̃
′
0,n ≤ f̃ ′

1,n ≤ −c2f̃
′
0,n, c1, c2 ∈ [0, 1). (15)

6

If the IAC in (14) is satisfied, just one directional
derivative computation is required to determine the learning
rate along a descent direction, dn. Figure 3 illustrates cases
when the initial guess, f̃ ′

1,n, is either accepted (left) for
satisfying the IAC condition or not accepted (right) for not
satisfying the condition.

However, if the initial guess is not accepted, we employ
the bracketing strategy introduced in the next section
to search for SNN-GPPs. Note that the larger the c

value becomes, the larger the range of the IAC becomes.
Algorithm 1 lists the pseudocode for the main GOS-LSC
algorithm with the IAC.

Algorithm 1 GOS-LSC.

For every iteration, n, GOS-LSC requires the gradient
vector at the starting point, g̃0,n. Therefore, for n > 0,
the resulting gradient from the previous iteration, g̃∗

n−1,
can be used for g̃0,n in the next iteration. In line 2, the
tolerance value, ε, ensures that f̃ ′

0,n is numerically positive.
Otherwise, we recompute the gradient at the same point with
the resulted learning rate, α̃∗

n = 0, using a new mini-batch,
B, and continue to the next iteration.

In line 5, the initial guess, α1,n, is the default learning
rate, γ , often the recommended learning rate for the chosen
optimizer. Next, we compute the gradient vector, g̃1,n, and
directional derivative, f̃ ′

1,n, at the initial guess, α1,n. In
line 7, if the IAC satisfies, we choose the current learning
rate, α̃∗

n = α1,n, and the resulting gradient, g̃∗
n = g̃1,n.

If the IAC is not satisfied, we implement the bracketing

strategy to compute α̃∗
n and g̃∗

n. The bracketing strategy
aims to minimize the model error using linear interpolation,
introduced in the following section.

4.2 Bracketing strategy

The bracketing strategy aims to isolate an SNN-GPP inside
an interval, I ∈ [αL, αU] with lower bound, αL and
upper bound, αU , by updating I repeatedly, until the strong
Wolfe condition, (15) of α̃∗

n is satisfied. Once the directional
derivative signs at αL and αU are found to bracket an
SNN-GPP, we reduce the interval by applying the Regula-
Falsi method [12]. This is essentially a consecutive linear
interpolation method until α̃∗

n satisfies (15). We provide the
pseudocode for the bracketing strategy in Algorithm 2.

Algorithm 2 Bracketing.

In line 1, we begin with initialization of the lower, αL,
and upper, αU , bounds, and their respective directional
derivatives, f̃ ′

L and f̃ ′
U . In line 2, the interpolation interval

7

Fig. 3 Illustration of immediate
accept condition: (a) when the
IAC (15) satisfies, the initial
guess, α1,n, is accepted, and (b)
when the IAC (15) does not
satisfy, the initial guess, α1,n, is
not accepted

grows by doubling αU which is directly followed by αL,
until it reaches αmax or f̃ ′

U ≥ cf̃ ′
0,n is satisfied. In

line 7, the size of the interpolation interval is reduced by
consecutively performing linear interpolation until f̃ ′

U ≤
−cf̃0,n is satisfied. The conditions in line 7 ensure that
linear interpolation steps with the Regula-Falsi method
in lines 8, 9, 10, 11, 12, 13, 14 and 15 do not cause
any numerical instabilities. The second term, f̃ ′

U f̃ ′
L < 0,

ensures that the signs of the two-directional derivatives
are opposite. The last term, |f̃ ′

U f̃ ′
L| < ε, provides the

denominator of line 8 to be non-zero.
The Wolfe curvature conditions are divided into two

sections, as shown in lines 2 and 7, to prevent this algorithm
from searching infinitely for points that do not satisfy the
Wolfe curvature conditions. Due to the stochastic nature
of dynamic MBSS loss functions, it is not guaranteed
that continually reducing learning rates would find a
negative directional derivative with less magnitude than the
directional derivative at the origin, f̃ ′

n,0. This implies that
we can not assure that the first condition in line 2 is still
met after the second condition in line 7 is satisfied. The
risk associated with undershooting is lower than that of
overshooting because overshooting may cause divergence
in training, while undershooting, in the worst case, causes
slower training. The flowchart of GOS-LSC is shown in
Fig. 4.

4.3 Proof of convergence

Let us assume that the full-batch loss function, L (x), is
a smooth coercive function of a weight vector, x ∈ R

p,
so that we can replace L (x) with a Lyapunov function,

(x) [20]. The Lyapunov’s global stability theorem states

that a Lyapunov function,
(x), results in lim
n→∞ xn = 0,

∀ xn ∈ R
p under the following conditions:

Fig. 4 The flowchart of the GOS-LSC line search strategy

8

1. Positivity:
(0) = 0 and
(x) > 0, ∀ x �= 0
2. Coercive: lim

x→∞
(x) = ∞
3. Strict descent:
(D(x)) <
(x), ∀ x �= 0

where D(x) is a weight update function given by

xn+1 := D(xn); D : Rp → R
p. (16)

It is proven by [26] that locating an NN-GPP along a strictly
descending direction, dn, is equivalent to minimizing along
dn when L (xn + αdn) is a smooth function. Therefore,
locating NN-GPPs along descent directions in consecutive
iterations of a training algorithm behaves like D(x).
Similarly, for loss functions resulting from dynamic MBSS,
L̃ , we assume as point-wise discontinuous coercive.

Hence, the Lyapunov’s global stability theorem is relaxed
for the expected Lyapunov function, E[
(x)], where:
1. Expected positivity: E[
(0)] = 0 and E[
(x)] > 0,

∀ x �= 0
2. Expected coercive: lim

x→∞ E[(
(x)] = ∞
3. Expected strict descent: E[
(D(x))] < E[
(x)],

∀ x �= 0

Subsequently, consecutively searching for SNN-GPPs along
descent directions makes the training algorithm behave like
D(x), which tends towards a ball, Bε:

lim
n→∞ xn = {q|‖q − x∗‖ < ε} ∈ Bε (17)

where Bε is a ball function with the radius of ε, with the
true optimum, x∗, located at its center. Since our bracketing
strategy searches for SNN-GPPs with weights, xn ∈ Bε,
respectively, along a strictly descending direction, dn,

|E[
(xn+1)]−E[
(x∗)]| < |E[
(xn)]−E[
(x∗)]|, (18)

and weights outside the ball, xn ∈ B′
ε, would eventually be

inside the ball, xn ∈ Bε, as n → ∞.

5 Numerical study design

We conducted two sets of numerical studies to investigate
the performance of the proposed learning rate algorithm,
GOS-LSC. First, we prepared GOS-LSC with three
different hyperparameter settings, namely, GOS-LSC-1, 2,
3, and 4. Their details are explained in Section 5.1. We
compared them against the fixed learning rates, which are
recommended learning rates for different optimizers, and
the vanilla GOS-LS on ResNet-18 and EfficientNet-B0
with the CIFAR-10 dataset for optimizers, including SGD,
RMSPROP, and ADAM. We chose the batch size of 128
as implemented by [18]. From this experiment, we aim to
investigate the following:

1. Relative robustness of GOS-LSC on the various
optimizers that generate different descent directions;

2. Relative robustness of GOS-LSC compared to the fixed
learning rates and vanilla GOS-LS;

3. Effect of various hyperparameter settings for GOS-
LSC;

4. Generalizability of the different learning rate strategies.

Note that as previously motivated in Section 3, we
measured the performance of a strategy using the RRM in
(11) since we were interested in a learning rate strategy that
operates well over different problems and optimizers.

Generalization is an ability of a problem to perform well
on unobserved inputs [11]. Hence, to check generalizability,
we measure the ratios of training to test accuracies. When
the ratios approach one, the relative discrepancy between
the training accuracy and test accuracy is small, indicating
the problem generalizes well.

Second, we conducted a hyperparameter study for GOS-
LSC using the only SGD on a shallower DNN, N-II,
implemented by [21]. We tested all four hyperparameter
settings for GOS-LSC and the most robust setting on our
RRMwas tested against other learning rate strategies. These
included fixed learning rates, vanilla GOS-LS [8], GOLS-
I [15], and cosine annealing with warm restarts [19]. We
tested multiple batch sizes of 10, 100, 200, and 1000. The
small batch size of 10 allows us to investigate the behaviors
of strategies when the information is critically sparse. We
only used SGD as the optimizer for this experiment because
SGD is sensitive to different learning rates as we compare
strategies. We aimed to investigate the following in the
second experiment:

1. Relative robustness of GOS-LSC compared to the fixed
learning rates and vanilla GOS-LS on different batch
sizes;

2. Effect of various hyperparameter settings for GOS-
LSC;

3. Generalizability of the different learning rate strategies.

5.1 Hyperparameter settings of GOS-LSC

GOS-LSC requires three hyperparameters to be selected:

1. The initial learning rate, α0,1;
2. The curvature hyperparameter, c;
3. Selecting to use the previous learning rate for the

following initial learning rate, α0,n = α∗
0,n−1, or

resetting it to the default initial learning rate, α0,n =
α0,1.

Table 1 lists the four different settings of hyperparame-
ters for GOS-LSC.While all four settings keep the curvature
hyperparameter, c, identical and large, the initial learning
rates, α0,1, are the recommended learning rates, γ , for the
selected optimizer or the inverse of the L-2 norm of the

9

Table 1 Comparison between
the settings of vanilla GOS-LS
and GOS-LSC that are tested in
this paper

Algorithms Settings α0,1 α0,n = α∗
0,n−1 c

GOS-LSC GOS-LSC-1 γ No 0.9

GOS-LSC-2 γ Yes 0.9

GOS-LSC-3 1/‖dn‖ Yes 0.9

GOS-LSC-4 1/‖dn‖ No 0.9

GOS-LS – 1/‖dn‖ No –

We choose the initial learning rates for the first iteration, α0,1, the curvature hyperparameter, c, and decide
whether we want to use the final learning rate as the next initial learning rate, α0,n = α∗

0,n−1

search direction, 1/‖dn‖. We use GOS-LSC-1,2,3 for the
first numerical study and GOS-LSC-1,2,3,4 for the second
numerical study. We omit GOS-LSC-4 for the first numeri-
cal study because the loss function from deep network archi-
tectures is highly non-linear. Hence, constructing multiple
quadratic approximations causes significant approximation
errors and many gradient evaluations when taking an expo-
nentially growing initial guess such as 1/‖dn‖. Note that
the hyperparameter setting closest to the vanilla GOS-LS is
GOS-LSC-4 allowing for direct comparison of performance
between them.

5.2 Numerical study 1 setup

For the first numerical study, we investigate the performance
of GOS-LSC for different architectures and optimizers. It
is compared against GOS-LS and fixed learning rates for
various optimizers’ search directions: SGD, RMSPROP, and
ADAM. We chose ResNet-18 [13] and EfficientNet-B0 [28],
which are implemented by [18] in PyTorch [24], for the
test DNN models and the CIFAR-10 dataset [16] for this
experiment. The details of the dataset are shown in Table 2.
The chosen mini-batch size, |B|, for this numerical study is
128.

The following learning rate strategies were trained for 350
epochs, repeated five times: fixed learning rate, GOS-LS,
GOS-LSC-1, GOS-LSC-2, GOS-LSC-3, and GOS-LSC-4.
The fixed learning rates, γ , for SGD, RMSPROP, and ADAM

are 0.01, 0.01, and 0.001, respectively, which are the default
values provided by PyTorch [24] and TensorFlow [1].

Note that because we adopt dynamic MBSS, a different
mini-batch for every function evaluation, for the experi-
ments, the fixed number of epochs also means the fixed
number of gradient computations in training. Hence, some

strategies may have fewer search directions when more gra-
dient evaluations are required for each search direction or
iteration.

5.3 Numerical study 2 setup

For the second numerical study, we first examine the
performance of GOS-LSC with different hyperparameter
settings: GOS-LSC-1, 2, 3, and 4 to choose the most robust
hyperparameter setting, based on the RRM. Next, we test
GOS-LSC with the best hyperparameter setting against various
learning rate strategies such as GOS-LS, GOLS-I, fixed
learning rate methods, cosine annealing with warm restarts
[19] with different mini-batch sizes. We restrict ourselves to
SGD directions on shallower neural network architecture.

We used similar neural network training problems
to those proposed by [21], namely training on a fully
connected feedforward neural network problem, N-II. This
network’s architecture involves fully connected layers with
three hidden layers, ninput − 1000 − 500 − 250 − noutput .
Hence, this architecture has shallower networks compared
to the test problems in Numerical study 1. It contains the
tanh activation functions, mean square loss, and Xavier
initialization [10]. The dataset used for the problem is
MNIST in Table 2.

The descriptions of the learning rate strategies compared
against GOS-LSC are listed as follows:

1. Fixed learning rates: we test five sets of fixed learning
rates, α = 10−3, 10−2, 10−1, 100 and, 101;

2. The cosine annealing scheduler with warm restarts [19]:
starting learning rates used are α = 10−1 and 100, the
initial restart period, the multiplying factor is chosen to
be T0 = 1 epoch, and Tmult = 2;

Table 2 Descriptions of
datasets used in the numerical
study

Datasets Classes Input sizes Training samples Test samples

MNIST [17] 10 28 × 28 6 × 104 1 × 104

CIFAR-10 [16] 10 32 × 32 5 × 104 1 × 104

10

3. The gradient-only line search that is Inexact (GOLS-I)
[14];

4. The vanilla gradient-only surrogate line search (GOS-
LS) [8];

5. The conservative gradient-only surrogate line search
(GOS-LSC) allows various hyperparameter settings.
For the comparison, we choose GOS-LSC-4 in Table 1.

This makes ten strategies in total. The training is limited
in the number of directional derivative computations per
training run, and the limit is 4 × 104. The mini-batch sizes
chosen were |B| ∈ {10, 100, 200, 1000}. We include the
batch size of 10 to investigate how the strategies behave
when insufficient information is provided for them. As
mentioned earlier, we select the SGD direction as the search
directions, computed using the same mini-batch size, |B|.
For each setting, we take ten runs for generating results.

6 Results of numerical study

6.1 Results of numerical study 1

Figures 5 and 6 show the results for SGD, RMSPROP and
ADAM, respectively. The 5-step moving average values of
the training errors, test errors, learning rates, and the number
of gradient computations is plotted along 350 epochs using
error bars on a log10 scale for each optimizer. The lower
errors and upper errors represent the minimum and the
maximum errors of the five runs. Note that dynamic MBSS
requires a new mini-batch for every function evaluation.
Hence, the larger the number of function evaluations
computed per iteration, the fewer search direction updates
per epoch.

A common phenomenon observed in most of the results
in Figs. 5 and 6 is that the average learning rates of both
GOS-LS and GOS-LSC increase as the epoch increases.
This happens because the directional derivative at the origin,
f̃ ′
0,n, decreases throughout training. This means that the

average number of gradient computations for GOS-LSC
may increase over epochs to satisfy the curvature condition
on the flatter domains of the functions. On the other hand,
the average number of gradient computations for GOS-
LS decreases since the chance of observing a directional
derivative at α1,n, f̃ ′

1,n is less than the initial directional

derivative, f̃ ′
0,n, grows. In this case, it is the immediate

accept condition (IAC). Hence, we accept α1,n as the final
learning rate, α∗

n.
The ResNet results in Fig. 5 indicate that the initial

convergence rate in GOS-LS’s training is slightly lower than
for the fixed learning rates and GOS-LSC. GOS-LS has a
small initial learning rate since the inverse of the norm of
search direction is small and does not extend the learning

rate to be inside the ball like GOS-LSC. Fig. 5(a) shows that
although the training error of GOS-LS is relatively high, its
test error is one of the lowest. The performance of GOS-
LSC-1 is similar to that of the fixed learning rate since the
initial learning rate, α0,n = γ , happens to satisfy the Wolfe
condition most of the time. Hence, note the slight increase
in the gradient evaluations only toward the end of training.
GOS-LSC-2 shows a large variance in the performance
since using previous learning rates may cause a large model
error as the previous learning rate might be far from the
ball. Hence, it is more challenging to find the SNN-GPPs
for possibly multimodal distributions of sign changes.

Note that the lower limit of GOS-LSC’s learning rates
is softly bounded since we satisfy the lower curvature
condition before satisfying the upper independently. Con-
sequently, when the model error is largely due to using the
previous learning rates as initial guesses, it may allow learn-
ing rates to be numerically zero. For the same reason, we
also observe the phenomenon of diminishing learning rate
in GOS-LSC-3. However, it starts with larger learning rates
and a steeper convergence rate in training, and it also shows
the lowest test error for SGD. Although GOS-LSC-4 has a
similar hyperparameter setting as GOS-LS, it shows quicker
convergence in both training and test. The growth rate of its
learning rate is also faster than GOS-LS, and the average
number of gradient evaluations increases faster than in the
other hyperparameter settings.

Figure 5(b) shows that the ResNet-18 results for
RMSPROP show that GOS-LSC-4 has the lowest training
and test errors, while both GOS-LSC-2 and GOS-LSC-
4 show large fluctuations in learning rates, GOS-LSC-
1 and the fixed learning rate perform similarly since
the recommended learning rate approximations SNN-GPPs
well.

The ResNet-18 results for ADAM in Fig. 5(c) show that
while both GOS-LSC-2 and GOS-LSC-3 again perform
poorly, both GOS-LS and the fixed learning rate perform
similarly. Note that GOS-LSC-1 and GOS=LSC-4 show
the best training and test performance. Also, note that the
average number of gradient computations for GOS-LSC-
4 increases as the epoch increases, showing the largest
values among the optimizers. This means the recommended
learning rate, γ , for ADAM requires more adjustments to
satisfy the curvature condition close to the end of training.

The EfficientNet-B0 results shown in Figs. 6(a) and (b)
indicate that SGD and RMSPROP are mostly unaffected by
GOS-LSC-1 and GOS-LSC-2. This is because their default
learning rates mostly satisfy the curvature condition. Hence,
the IAC continues through the whole training. However,
ADAM with GOS-LSC affected the learning rates close to
the end of training with slightly lower training and test
errors. GOS-LSC-3 for SGD, shown in Fig. 6(a), has a
high initial convergence rate. However, the large variance

11

Fig. 5 Comparisons of the performances of (a) SGD, (b) RMSPROP,
and (c) ADAM between with and without GOS-LSC applied, tested on
ResNet-18 for the CIFAR-10 dataset, the results are averaged over five

runs and smoothened out with moving average over five epochs. Left to
right presents the training errors, test errors, learning rates on the log10
scale, and the average number of gradient evaluations per iteration

in learning rates resulted in fluctuations in the training
error. GOS-LSC-4 shows the lowest training and test errors
for both SGD and RMSProp followed by GOS-LS. Yet,
it requires fewer gradient computations. Figure 6(c) shows
the average gradient computation numbers for both GOS-
LSC-1 and GOS-LSC-2 increase for ADAM, unlike SGD
and RMSPROP. This results in more adjustments in learning
rates and improved train accuracies compared to the fixed
learning rate.

Tables 3 and 4 present the top average training and test
accuracies, the performance differences, �y,h,o for them,
and the ratios of the training to test accuracies for Numerical
study 1. The ratio measures the generalization of each
learning rate strategy. The closer the ratio becomes to one,
the smaller discrepancy between the training accuracy and
test accuracy. This implies that the strategy generalizes well
for the optimizer and problem. The tables also provide the
RRM, Ry,h, over different optimizers, o, by summing the

12

Fig. 6 Comparisons of the performances of (a) SGD, (b) RMSPROP,
and (c) ADAM between with and without GOS-LSC applied, tested
on EfficientNet-B0 for the CIFAR-10 dataset, the results are averaged
over five runs and smoothened out with moving average over five

epochs. Left to right presents the training errors, test errors, learning
rates on the log10 scale, and the average number of gradient evaluations
per iteration

differences, �y,h,o, and the average ratios of test accuracies
to training accuracies over the optimizers.

Table 3 shows the results of ResNet-18. The Ry,h values
indicate that GOS-LSC-1 and GOS-LSC-4 are the most
robust strategy for training and test, respectively, over
the optimizers for ResNet-18 among the six strategies.
Concerning the ratios, GOS-LS and GOS-LSC-3 have the
highest generalizability as their ratios are the closest ones,
followed by GOS-LSC-4. On the other hand, the lowest

ratio, shown by GOS-LSC-2, indicates that GOS-LSC-2
experiences more overfitting than others on ResNet-18. On
average, the ResNet-18 results show that GOS-LSC-1 and
4 outperform GOS-LS in the training results, while only
GOS-LSC-4 outperforms GOS-LS in test results.

Table 4 shows the results of EfficientNet-B0. The
Ry,h values indicate that GOS-LSC-4 is the most robust
strategies for both training and test, over the optimizers
for EfficientNet-B0 among the six strategies. GOS-LSC-1

13

Table 3 Top average training and test accuracies over the five runs tabulated for optimizers, including SGD, RMSPROP, and ADAM, with the
fixed recommended learning rates, vanilla GOS-LS, and GOS-LSC with various settings on ResNet-18

Models Optimizers Strategies Train acc. [%] Diff., ψy,h,o Test acc. [%] Diff., ψy,h,o Te./Tr.

ResNet-18 SGD Fixed 99.94 0.02 91.88 1.9 0.919

GOS-LS 99.72 (-0.22) 0.24 92.93 (+1.05) 0.85 0.932

GOS-LSC-1 99.96 (+0.02) 0 91.96 (+0.08) 1.82 0.92

GOS-LSC-2 99.43 (-0.51) 0.53 92.33 (+0.45) 1.45 0.929

GOS-LSC-3 99.93 (-0.01) 0.03 93.78 (+1.90) 0 0.938

GOS-LSC-4 99.8 (-0.14) 0.16 93.02 (+1.14) 0.76 0.932

RMSPROP Fixed 99.64 0.15 92.37 0.65 0.927

GOS-LS 99.78 (+0.14) 0.01 93.02 (+0.65) 0 0.932

GOS-LSC-1 99.65 (+0.01) 0.14 92.59 (+0.12) 0.43 0.929

GOS-LSC-2 99.56 (-0.08) 0.23 93.02 (+0.65) 0 0.934

GOS-LSC-3 99.25 (-0.39) 0.54 92.24 (-0.13) 0.78 0.929

GOS-LSC-4 99.79 (+0.15) 0 93.01 (+0.64) 0.01 0.932

ADAM Fixed 99.87 0.09 93.3 0.28 0.934

GOS-LS 99.86 (-0.01) 0.1 93.23 (-0.07) 0.35 0.934

GOS-LSC-1 99.96 (+0.09) 0 93.58 (+0.28) 0 0.936

GOS-LSC-2 93.79 (-6.08) 6.17 86.08 (-7.22) 7.5 0.918

GOS-LSC-3 99.31 (-0.56) 0.65 92.53 (-0.77) 1.05 0.932

GOS-LSC-4 99.94 (+0.07) 0.02 93.16 (-0.14) 0.42 0.932

Ry,h Fixed – 0.26 – 2.83 –

GOS-LS – 0.35 – 1.2 –

GOS-LSC-1 – 0.14 – 2.25 –

GOS-LSC-2 – 6.93 – 8.95 –

GOS-LSC-3 – 1.22 – 1.83 –

GOS-LSC-4 – 0.18 – 1.19 –

Avg. Te./Tr. Fixed – – – – 0.927

GOS-LS – – – – 0.933

GOS-LSC-1 – – – – 0.928

GOS-LSC-2 – – – – 0.927

GOS-LSC-3 – – – – 0.933

GOS-LSC-4 – – – – 0.932

The differences in performance compared to the fixed learning rate are given inside the brackets. It measures the relative robustness, Ry,h, by
computing summing the differences, ψy,h,o, between the performance and the best one from the same optimizer. The ratios of test to training
accuracies are given in the last column, and the average ratios for each optimizer are computed in the last row. The highest train, test accuracies,
and the lowest robustness measures are indicated in bold

gave the most robust test result among GOS-LSC. GOS-
LS shows the average ratio closest to one. Hence, GOS-LS
is again the most generalizing strategy, followed by fixed
recommended learning rates and GOS-LSC-1. Note that
it is more challenging to generalize on EfficientNet-B0
compared to ResNet-18. GOS-LSC-3 shows the lowest ratio
of test to training accuracies, meaning that GOS-LSC-3
experiences more overfitting. On average, the EfficientNet-
B0 results show that GOS-LSC-3 and 4 outperform
GOS-LS in the training results, while only GOS-LSC-4
outperforms GOS-LS in test results.

Table 5 computes the overall training and test robustness
measures, Ry , and the average test to training accuracies
over the two problems, ResNet-18 and EfficientNet-B0.
Hence, the relative robustness, Ry , for a strategy is
computed as the sum of Ry,h from Tables 3, and 4.
While both training and test Ry is the lowest with
GOS-LSC-4, followed by GOS-LS, GOS-LS has the
highest generalizability ratio, followed by GOS-LSC-4.
According to the results, GOS-LSC-4 is the most robust
hyperparameter setting for GOS-LSC in DNNs, while GOS-
LSC-3 is the least robust in testing and generalization,

14

Table 4 Top average training and test accuracies over the five runs tabulated for optimizers, including SGD, RMSPROP, and ADAM, with the
fixed recommended learning rates, vanilla GOS, and GOS-LSC with various settings on EfficientNet-B0

Models Optimizers Strategies Train acc. [%] Diff., ψy,h,o Test acc. [%] Diff., ψy,h,o Te./Tr.

EfficientNet-B0 SGD Fixed 98.18 0.7 85.37 4.48 0.87

GOS-LS 97.94 (-0.24) 0.94 89.44 (+4.07) 0.41 0.913

GOS-LSC-1 98.25 (+0.07) 0.63 85.39 (+0.02) 4.46 0.869

GOS-LSC-2 98.15 (-0.03) 0.73 84.97 (-0.4) 4.88 0.866

GOS-LSC-3 98.64 (+0.46) 0.24 87.8 (+1.43) 2.05 0.89

GOS-LSC-4 98.88 (+0.7) 0 89.85 (+4.48) 0 0.909

RMSPROP Fixed 97.6 1.53 89.44 0.15 0.916

GOS-LS 98.43 (+0.83) 0.7 89.0 (-0.44) 0.59 0.904

GOS-LSC-1 97.51 (-0.09) 1.62 89.55 (+0.11) 0.04 0.918

GOS-LSC-2 97.46 (-0.14) 1.67 89.42 (-0.02) 0.17 0.918

GOS-LSC-3 98.4 (+0.8) 0.73 81.51 (-7.93) 8.08 0.828

GOS-LSC-4 99.13 (+1.53) 0 89.59 (+0.15) 0 0.904

ADAM Fixed 99.21 0.15 89.96 0.34 0.907

GOS-LS 98.85 (-0.36) 0.51 90.22 (+0.26) 0.08 0.913

GOS-LSC-1 99.34 (+0.13) 0.02 90.22 (+0.26) 0.08 0.908

GOS-LSC-2 99.36 (+0.15) 0 90.13 (+0.17) 0.17 0.907

GOS-LSC-3 99.0 (-0.21) 0.36 90.3 (+0.34) 0 0.912

GOS-LSC-4 98.57 (-0.64) 0.79 90.18 (+0.22) 0.12 0.915

Ry,h Fixed – 2.38 – 4.97 –

GOS-LS – 2.15 – 1.08 –

GOS-LSC-1 – 2.27 – 4.58 –

GOS-LSC-2 – 2.4 – 5.22 –

GOS-LSC-3 – 1.33 – 10.13 –

GOS-LSC-4 – 0.79 – 0.12 –

Avg. Te./Tr. Fixed – – – – 0.898

GOS-LS – – – – 0.91

GOS-LSC-1 – – – – 0.898

GOS-LSC-2 – – – – 0.897

GOS-LSC-3 – – – – 0.877

GOS-LSC-4 – – – – 0.909

The differences in performance compared to the fixed learning rate are given inside the brackets. It measures the relative robustness, Ry,h, by
computing summing the differences, ψy,h,o, between the performance and the best one from the same optimizer. The ratios of test to training
accuracies are given in the last column, and the average ratios for each optimizer are computed in the last row. The highest train, test accuracies,
and the lowest robustness measures are indicated in bold

leading to overfitting. The only difference between the
GOS-LSC-3 and GOS-LSC-4 is that GOS-LSC-4 resets the
next initial learning rate to the default initial learning rate.

From the results of Numerical study 1, we discovered that
using the previous resultant learning rates from the previous
iteration, α∗

n−1, as the next initial guess, α0,n, is not a reliable
plan for using quadratic approximations. When for a highly
non-linear problem, we expect a large discrepancy in the
shapes of the approximation in different iterations. Hence,
starting the initial guess with the recommended learning
rate, γ , is much more conservative for the chosen optimizer

at every iteration. This phenomenon was apparent when the
optimizer was ADAM.

As a result, we recommend the user employ the GOS-
LSC-4 hyperparameter setting, as it resets the initial guess
as the fixed recommended learning rates, γ , at every
iteration. Among the different hyperparameter settings,
GOS-LSC-4 had the best relative robustness measures
(RRMs) for both training and test accuracies, and it
also had the best generalizability among the different
hyperparameter settings. This means that GOS-LSC-4 is
least likely to fail to an unseen problem.

15

Table 5 The training and test
relative robustness, Ry , for
different strategies are given by
summing the training and test
relative robustness, Ry,h, over
different problems, given in
Tables 3 and 4

Strategies Training Ry Test Ry Avg. Te./Tr.

Fixed 2.64 7.8 0.913

GOS-LS 2.5 2.28 0.922

GOS-LSC-1 2.41 6.83 0.913

GOS-LSC-2 9.33 14.17 0.912

GOS-LSC-3 2.55 11.96 0.905

GOS-LSC-4 0.97 1.31 0.921

The average ratios of training to test accuracies for each strategy are given as the average values of the
ratios (Te./Tr.) from the two problems in Tables 3 and 4. The lowest train and test accuracies robustness
measures are indicated in bold

GOS-LSC-4 tended to show more aggressive learning
rates followed by GOS-LS, which led to better performance
than GOS-LS. However, GOS-LS does not have any
convergence proof enforced, and it is not robust in terms of
convergence.

6.2 Results of numerical study 2

This section studies GOS-LSC on a shallower DNN
problem, N-II. We start with the hyperparameter study of
four different settings, as shown in Table 1. We expect
GOS-LSC-4 to outperform other settings because the setting
does not use the previously resolved learning rate, α∗

n−1,
as the next initial guess, α0,n. This reduces the model
error based on the previous study. Additionally, we use the
1/‖dn‖2 value as the initial guess, which elongates as the
magnitudes of gradients reduce. This helps to increase the
model accuracy.

Next, we determine the most robust GOS-LSC setting
based on the RRM and compare it to nine other strategies
only on SGD, which is an optimizer that is sensitive to the
choice of learning rates. The results we obtain from this
numerical study help us to determine which strategies are
robust in training DNNs.

6.2.1 Performance test for different hyperparameter
settings

Figure 7 shows the training error, test error, and learning
rates for the various hyperparameter settings on the N-II
architecture with MNIST. Note that the training and test
errors for MNIST are plotted on the log10 scale, averaged
over ten runs.

GOS-LSC-1, which starts every iteration with the initial
learning rate of 0.01, did not modify the learning rates. This
means that the fixed recommended learning rate of SGD
continuously satisfied the curvature condition, resulting in
the IAC condition. Hence, it would perform almost exactly

like the fixed learning rate of 0.01. Both GOS-LSC-2 and
GOS-LSC-3 reuse the previously resolved learning rates. As
a result, both settings experience significant approximation
errors, and the learning rates are unstable, often approaching
zeros.

On the other hand, GOS-LSC-4, whose setting is similar
to GOS-LSC-1 except for the initial guess equals 1/‖dn‖2,
outperforms other hyperparameter settings, and the learning
rates are close to the vanilla GOS-LS. The differences in
learning rates tend to increase as the larger batch sizes grow.
GOS-LSC-4 shows its best performance when its learning
rates are closest to GOS-LS. This is when the batch size is
100.

Table 6 shows the top average training and test accuracies
for each hyperparameter setting and the differences, ψy,|B|,
for each batch size on N-II. The ratios of test to training
accuracies are given in the last column. Note that there are
ratios greater than one. This might happen due to biases
existing in the test dataset when the problem is simple
to generalize. The lowest ratios are given by GOS-LSC-
3 except for the batch size, |B|, of 100, meaning that
GOS-LSC-3 has the least generalizability. Except when the
batch size, |B|, is 10, the difference values, ψy,|B|, show
that the aggressive vanilla GOS-LS tends to outperform all
GOS-LSC settings again because no convergence condition
restricts its learning rate.

Table 7 shows the training and test relative robustness,
Ry , and the average ratios of test to training accuracies of the
results in Table 6 over the batch sizes. The measures indicate
that GOS-LS is the most robust strategy in training and test
results for this problem, followed by GOS-LSC-4. Note that
this result is consistent with the previous numerical study.
Since the N-II architecture is not challenging to generalize,
the average ratios are practically alike. Still, the results show
that the least generalizable strategies are GOS-LS and GOS-
LSC-3 on this problem with the smallest average ratios.
Based on these results, we chose GOS-LSC-4 for further
comparison against other strategies.

16

Fig. 7 N-II MNIST dataset with batch size, |B| = 10, 100, 200, and
1000 from left to right for various hyperparameters settings of GOS-
LSC which are listed in Table 1. The comparison of training dataset

error (the 1st row), test set error (the 2nd row), and learning rate (the
3rd row) on a log10 scale versus the number of function evaluations

6.2.2 Performance comparison for different strategies

Next, Fig. 8 shows the training error, test error, and
learning rates for the ten strategies on the N-II architecture
with MNIST. The constant learning rates generally show
low variance in error during training. Its error noticeably
reduces from |B| = 10 to |B| = 100 since the SGD
direction becomes more representative of the exact (full-
batch) SGD direction. The learning rates are independent
of noisy information when |B| is small. Hence, the more
straightforward strategies may perform better than more
sophisticated ones.

The best performing strategy for SGD overall is GOS-LS,
which is consistent with Section 5. Although the learning

rates of GOS-LS are continuously larger than others, SGD
benefits from overshooting because it causes conjugacy in
search directions. The training performance of GOS-LS
noticeably improves as |B| increases.

Cosine annealing with warm restarts changes the learning
rates over epoch periods and resets them to the initial
learning rates. Hence, we observe slight fluctuations in
both training and test errors. Although this method sweeps
through an extensive range of learning rates, the results
show that initial learning rate choice significantly affects the
strategy’s performance.

Both GOS-LSC and GOLS-I try to locate SNN-GPPs.
However, GOS-LSC, which uses the quadratic model,
outperforms GOLS-I without any approximation model.

17

Table 6 Top average training and test accuracy over the ten runs for the GOS-LSC settings, GOS-LSC-1, GOS-LSC-2, GOS-LSC-3, GOS-LSC-4,
and GOS-LS on the N-II architecture with different batch sizes, |B| = 10, 100, 200, 1000 for the SGD optimizer

Batch size, |B| Strategies Train acc. Diff., ψy,|B| Test acc. Diff., ψy,|B| Te./Tr.

10 GOS-LSC-1 91.95 0 92.26 0 1.003

GOS-LSC-2 88.05 3.9 88.63 3.63 1.007

GOS-LSC-3 10.05 81.9 10.02 82.24 0.997

GOS-LSC-4 89.4 2.55 89.55 2.71 1.002

GOS-LS 90.62 1.33 90.93 1.33 1.003

100 GOS-LSC-1 92.33 7.29 92.57 5.49 1.003

GOS-LSC-2 88.05 11.57 88.66 9.4 1.007

GOS-LSC-3 9.95 89.67 9.93 88.13 0.998

GOS-LSC-4 98.89 0.73 97.55 0.51 0.986

GOS-LS 99.62 0 98.06 0 0.984

200 GOS-LSC-1 92.43 7.44 92.62 5.64 1.002

GOS-LSC-2 89.23 10.64 89.83 8.43 1.007

GOS-LSC-3 9.98 89.89 9.78 88.48 0.98

GOS-LSC-4 98.8 1.07 97.53 0.73 0.987

GOS-LS 99.87 0 98.26 0 0.984

1000 GOS-LSC-1 92.44 7.49 92.62 5.75 1.002

GOS-LSC-2 91.49 8.44 91.74 6.63 1.003

GOS-LSC-3 10.31 89.62 10.12 88.25 0.982

GOS-LSC-4 96.51 3.42 96.18 2.19 0.997

GOS-LS 99.93 0 98.37 0 0.984

It also measures the difference, ψy,|B|, between the performance and the best one from the different batch sizes. The ratios of test to training
accuracies are given in the last column. The highest train and test accuracies are indicated in bold

Both strategies double the learning rates to grow, but GOS-
LSC uses quadratic approximations to shrink, while GOLS-
I halves the learning rates to shrink. Hence, GOS-LSC may
perform worse if the quadratic approximation has a large
approximation error due to noisy information.

Table 8 shows each strategy’s top average training and
test accuracies and the differences measured for the same
experiment. The last column in the table shows the ratios
of test to training accuracies. The fixed learning rate results
indicate that the performance of SGD differs considerably
with the choice of learning rates. The fixed learning rate
of 0.1 presents the best training and test accuracies for

the batch size of 10. For the larger batch sizes, GOS-LS
shows the highest accuracies of all strategies with SGD.
The average ratios show that some are greater than one.
This could mean the test data is biased when the problem
is not challenging to generalize. The highest and lowest
ratios are shown by the fixed learning rate of 0.001 and 10,
respectively. When the ratios are lower, the strategy is more
overfitted.

Table 9 shows the training and test relative robustness, R,
and the average ratios of test to training accuracies of the
results in Table 8 over the different batch sizes. The most
robust training and test results are obtained from GOS-LS

Table 7 The training and test
relative robustness, Ry , for
different strategies are given by
summing the differences,
�y,|B|, given in Table 6

Strategies Training Ry Test Ry Avg. Te./Tr.

GOS-LSC-1 22.22 16.88 1.003

GOS-LSC-2 34.55 28.09 1.006

GOS-LSC-3 351.08 347.1 0.989

GOS-LSC-4 7.77 6.14 0.993

GOS-LS 1.33 1.33 0.989

The average ratios of training to test accuracies for each strategy are given as the average values of the
ratios listed in Table 6 across the different batch sizes. The lowest robustness measures are indicated in
bold

18

Fig. 8 N-II MNIST dataset with batch size, |B| = 10, 100, 200,
and 1000 from left to right for various line search methods: con-
stant learning rates, cosine annealing, GOLS-I, vanilla GOS-LS, and

GOS-LSC-4. The comparison of training dataset error (the 1st row),
test set error (the 2nd row), and learning rate (the 3rd row) on a log10
scale versus the number of function evaluations

and the fixed learning rate of 0.1, respectively. GOS-LSC-4
ranked fourth in both training and test results, led by GOS-
LS, with a fixed learning rate of 0.1 and cosine annealing
with α = 0.1. However, note that the results of learning rate
and cosine annealing are highly responsive to learning rates.

The table also computes the RRMs of each strategy
when the impractical mini-batch size of 10 is excluded
from computing the measures. Note that GOS-LSC-4 now
ranks third and second in both training and test robustness,
respectively. This happens because the information for the
batch size of 10 makes the information sparse, affecting the
approximation accuracy for GOS-LSC. The fixed learning
rates and cosine annealing are not sensitive to the sparsity
of the information like GOS-LSC, but GOS-LSC can adopt
learning rates based on the available information.

7 Conclusions

Dynamic mini-batch sub-sampling (MBSS) in deep neural
network problems causes the loss of functions point-wise
discontinuous. This makes the function value minimization
approach impractical as line searches because it would
find infinitely many local minima in discontinuous settings.
Dynamic MBSS also causes sampling errors, manifesting
as small bias and large variance. To minimize the variance,
a recent study introduced gradient-only surrogates (GOS)
to resolve learning rates. GOS is a quadratic function
approximation model constructed using only directional
derivative information. It approximates the spatial locations
of sign changes in directional derivatives to choose
learning rates. The previous study showed the competitive

19

Table 8 Top average training and test accuracies over the ten runs for
the SGD optimizer with various learning rate strategies, y, including
the fixed learning rates, cosine annealing with warm restart, GOLS-I,

GOS-LSC-4, and GOS-LS on the N-II architecture with different batch
sizes, |B| = 10, 100, 200, 1000

Batch size, |B| Strategies Train acc. Diff., ψy,|B| Test acc. Diff., ψy,|B| Te./Tr.

10 Fixed, α = 0.001 84.54 12.13 85.3 11.06 1.009

Fixed, α = 0.01 92.1 4.57 92.4 3.96 1.003

Fixed, α = 0.1 96.67 0 96.36 0 0.997

Fixed, α = 1 10.09 86.58 10.14 86.22 1.005

Fixed, α = 10 10.05 86.62 9.74 86.62 0.969

Cosine, α = 0.1 95.73 0.94 95.55 0.81 0.998

Cosine, α = 1 36.2 60.47 36.4 59.96 1.006

GOLS-I 83.29 13.38 83.39 12.97 1.001

GOS-LSC-4 89.4 7.27 89.55 6.81 1.002

GOS-LS 90.62 6.05 90.93 5.43 1.003

100 Fixed, α = 0.001 84.59 15.03 85.27 12.79 1.008

Fixed, α = 0.01 92.41 7.21 92.61 5.45 1.002

Fixed, α = 0.1 97.64 1.98 97.02 1.04 0.994

Fixed, α = 1 10.05 89.57 9.95 88.11 0.99

Fixed, α = 10 10.03 89.59 9.86 88.2 0.983

Cosine, α = 0.1 96.35 3.27 96.03 2.03 0.997

Cosine, α = 1 36.68 62.94 36.84 61.22 1.004

GOLS-I 94.66 4.96 94.68 3.38 1

GOS-LSC-4 98.89 0.73 97.55 0.51 0.986

GOS-LS 99.62 0 98.06 0 0.984

200 Fixed, α = 0.001 84.46 15.41 85.28 12.98 1.01

Fixed, α = 0.01 92.53 7.34 92.65 5.61 1.001

Fixed, α = 0.1 97.72 2.15 97.08 1.18 0.993

Fixed, α = 1 10.07 89.8 9.89 88.37 0.982

Fixed, α = 10 10.02 89.85 9.84 88.42 0.982

Cosine, α = 0.1 96.42 3.45 96.11 2.15 0.997

Cosine, α = 1 19.14 80.73 19.07 79.19 0.996

GOLS-I 94.56 5.31 94.6 3.66 1

GOS-LSC-4 98.8 1.07 97.53 0.73 0.987

GOS-LS 99.87 0 98.26 0 0.984

1000 Fixed, α = 0.001 84.42 15.51 85.29 13.08 1.01

Fixed, α = 0.01 92.39 7.54 92.65 5.72 1.003

Fixed, α = 0.1 97.79 2.14 97.12 1.25 0.993

Fixed, α = 1 10.31 89.62 10.14 88.23 0.984

Fixed, α = 10 10.06 89.87 9.94 88.43 0.988

Cosine, α = 0.1 96.77 3.16 96.45 1.92 0.997

Cosine, α = 1 18.5 81.43 18.52 79.85 1.001

GOLS-I 94.55 5.38 94.57 3.8 1

GOS-LSC-4 96.51 3.42 96.18 2.19 0.997

GOS-LS 99.93 0 98.37 0 0.984

It measures the difference, ψy,|B|, between the performance and the best one from the different batch sizes. The ratios of test to training accuracies
are given in the last column. The highest train and test accuracies are indicated in bold

performance of GOS line search (GOS-LS) in training
DNNs. However, it does not have a convergence proof
developed, and it makes GOS-LS not conservative.

Hence, we extended the vanilla GOS-LS to a more robust
line search by enforcing GOS-LS with the convergence
proof and the bracketing strategy. We implemented the

20

Table 9 The training and test
relative robustness, Ry , for
different strategies are given by
summing the differences,
�y,|B|, given in Table 8

Strategies Training Ry Test Ry Avg. Te./Tr.

Fixed, α = 0.001 58.08 (30.54) 49.91 (38.85) 1.009

Fixed, α = 0.01 26.66 (14.75) 20.74 (16.78) 1.002

Fixed, α = 0.1 6.27 (4.12) 3.47 (3.47) 0.994

Fixed, α = 1 355.57 (179.19) 350.93 (264.71) 0.99

Fixed, α = 10 355.93 (179.46) 351.67 (265.05) 0.981

Cosine, α = 0.1 10.82 (6.43) 6.91 (6.1) 0.997

Cosine, α = 1 285.57 (144.37) 280.22 (220.26) 1.002

GOLS-I 29.03 (10.34) 23.81 (10.84) 1

GOS-LSC-4 12.49 (4.15) 10.24 (3.43) 0.993

GOS-LS 6.05 (0) 5.43 (0) 0.989

The average ratios of training to test accuracies for each strategy are given as the average values of the
ratios listed in Table 8 across the different batch sizes. The lowest robustness measures are indicated in
bold. The relative robustness, Ry , measured excluding |B| = 10, is listed in brackets

Wolfe curvature condition as the convergence proof because
it only requires directional derivative information. The
bracketing strategy is empowered by the Regular-Falsi
method. It aims to restrict the domain of GOS-LS for
higher model accuracy because the accuracy could have
been reduced by implementing the simplistic quadratic
models for computational efficiency. Unlike GOS-LS,
which constructs an approximation once for a descent
direction, GOS-LSC consecutively constructs the GOS
models until the curvature condition is satisfied. This makes
GOS-LSC more robust in terms of convergence. However,
in return for the robustness, the curvature condition also
restricts the large learning rates, making the convergence
rate of GOS-LSC slightly lower.

We introduced a new relative robustness measure (RRM)
for assessing the performance of GOS-LSC. The traditional
performance measure for a learning rate strategy only
considers the top performance for a specific problem
and optimizer. On the other hand, our RRM considers
all accounts, including poor performances. Hence, the
robustness measure favors a strategy that performs well
overall across different optimizers and problems.

We conducted hyperparameter studies for GOS-LSC on
ResNet-18 and EfficieintNet-B0 with the CIFAR-10 dataset
using various optimizers, including SGD, RMSPROP,
and ADAM. Testing on various optimizers showed the
adaptability of GOS-LSC as a learning rate strategy. We
learned it is essential to choose the data point close to the
origin based on the robustness measure to reduce the model
error. Using the fixed recommended learning rate for the
specific optimizer to determine the data point for every
descent direction turned out to be a better choice to reduce
the approximation error than using the previously resolved
learning rate as the next initial guess. The experimental
results showed that one hyperparameter setting close to
GOS-LS outperformed GOS-LS in both training and test

accuracy for both test problems. It also showed that GOS-
LSC, led by GOS-LS, generalizes better and is more robust
than the recommended learning rates for each optimizer.

We further compared the performance of GOS-LSC
against nine other learning rate strategies on a shallower
DNN, N-II, using only the SGD optimizer, as the
performance of SGD is sensitive to learning rates. For
this less non-linear problem compared to ResNet-18 and
EfficientNet-B0, extending the initial data point for GOS-
LSC farther than the recommended learning rates helped
with performances based on the RRMs. On the N-
II architecture, GOS-LSC ranked third and second for
the training and test robustness based on the RRMs,
respectively, led by less conservative GOS-LS among
ten learning rate strategies in total. Hence, the overall
investigation shows that GOS-LSC outperforms GOS-
LS when the architecture is more complex. The results
warrant future investigations of approximation approaches
to resolve learning rates because it is competitive against
other well-known learning rate strategies.

Acknowledgements This research was supported by the National
Research Foundation (NRF), South Africa, and the Center for Asset
Integrity Management (C-AIM), Department of Mechanical and
Aeronautical Engineering, University of Pretoria, Pretoria, South
Africa. We would like to express our special thanks to Nvidia
Corporation for supplying the GPUs on which this research was
conducted.

References

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro
C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S,
Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz
R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R,
Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V,
Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu

21

22

