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Abstract

Quantitative bounds for random embeddings of Rk into Lorentz sequence spaces

are given, with improved dependence on ε.

1 Introduction

Our starting point is Milman’s general Dvoretzky theorem [8]. The dependence on ε is
due to Schechtman [14] following Gordon [5], and the Gaussian formulation due to Pisier
[13]. We refer the reader to [9, 11, 15] for more details.

Theorem 1 There exists a universal constant c > 0 such that the following is true.
Consider any

(n, k, ε) ∈ N× N× (0, 1)

Let ‖·‖ be a norm on R
n and set

M = (2π)−
n
2

∫

Rn

‖x‖ exp
(

−1

2
|x|2
)

dx b = sup
{

‖θ‖ : θ ∈ Sn−1
}

where |·| denotes the standard Euclidean norm. Assume that k ≤ d where

d = c

(

M

b

)2

ε2

and let G be an n × k random matrix with i.i.d. standard normal random variables as
entries. With probability at least 1− 2e−d, the following event occurs: for all x ∈ R

k,

(1− ε)M |x| ≤ ‖Gx‖ ≤ (1 + ε)M |x| (1)
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If (X, ‖·‖) is a general n-dimensional normed space over R, one can put coordinates
on X by identifying it with R

n in such a way so that

b = 1 M ≥ c
√
lnn

and therefore if n is sufficiently large we can ensure that d is large. Logarithmic depen-
dence on n is the worst case scenario (for the best possible choice of coordinates), which
is the correct behavior in ℓn∞ but can be improved significantly for other spaces, such as
ℓnp for fixed p ∈ [1,∞), where one gets power dependence on n.

By rotational invariance of the normal distribution, Range(G) is a uniformly dis-
tributed random subspace in the Grassmannian Gn,k of all k-dimensional linear subspaces
of Rn. The bounds in (1) mean that on Range(G), ‖·‖ approximates the pushforward
norm ‖y‖♯ := M |G−1y|, where G−1 : Range(G) 7→ R

k denotes the inverse of the linear
map associated to G. Since the sub-level sets of this pushforward norm are ellipsoids,
Milman’s general Dvoretzky theorem can be interpreted as follows: Assuming n is suf-
ficiently large and we have chosen an appropriate coordinate system through which to
identify a given normed space X with R

n,

• Most k-dimensional subspaces of X are almost isometric to Hilbert spaces
• Most k-dimensional cross-sections of the unit ball B = {x : ‖x‖ ≤ 1} are approximately
ellipsoidal.

For ε = ε0, for any universal constant ε0 ∈ (0, 1), Theorem 1 is in a particular sense
sharp (see [6, 10]), and in this sense dependence on n is understood. However the question
of optimal dependence on ε is open. We refer the reader to [12, 16] for the best existing
bounds of the form ρ (ε) lnn in the existential Dvoretzky theorem, where one is satisfied
with a single subspace of this dimension, and bounds for general classes of spaces with
symmetries are contained in [2, 17].

Paouris, Valettas and Zinn [11] studied dependence on ε in the randomized Dvoretzky
theorem for the ℓnp spaces, both in the range 1 ≤ p ≤ C lnn and p > C lnn, improving on
the bounds in Theorem 1.
The results we now present extend results in [11] to the class of Lorentz spaces. These
spaces have a structure that is more complicated than that of the ℓnp spaces, and the
Lorentz norm of a Gaussian random vector is typically not written in terms of the sum of
i.i.d. random variables. Our approach is different to that in [11] and in the special case
of ℓnp it allows for a simpler proof without the use of Talagrand’s L1 − L2 inequality, and
with improved dependence on p (removing a factor of p−p).

2 What’s new?

Consider the finite dimensional Lorentz spaces, i.e. Rn endowed with the norm

|x|ω,p =
(

n
∑

i=1

ωix
p
[i]

)1/p
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where 1 ≤ p < ∞, (ωi)
n
1 is any non-increasing sequence in [0, 1] with ω1 = 1, and

(

x[i]
)n

1
denotes the non-increasing rearrangement of (|xi|)n1 . These spaces are the finite

dimensional counterparts to the infinite dimensional Lorentz spaces (see [7]) which play
a classical role in analysis.

Before studying the general case in Section 9, we study the special case where ωi = i−r

for 0 ≤ r <∞, using the notation

|x|r,p =
(

n
∑

i=1

i−rxp[i]

)1/p

In this special case, using Lemmas 13 and 14, Theorem 1 applies with

d =































cr,pnε
2 : 0 ≤ r ≤ 1/2, p < 2 (1− r)

cr,pn (lnn)
1− 2

p ε2 : 0 ≤ r ≤ 1/2, p = 2 (1− r)

cr,pn
2(1−r)

p ε2 : 0 ≤ r ≤ 1/2, p > 2 (1− r)

cr,pn
2(1−r)

p ε2 : 1/2 < r < 1

cr,p (lnn)
1+ 2

p ε2 : r = 1

where the coefficients cr,p > 0 do not depend on anything except r and p and can be
written explicitly. Our first main result, Theorem 17, is a little hard on the eye, and we
have hidden it near the end of the paper. Its two main corollaries, however, are simpler
(Corollaries 2 and 4). Both improve the dependence on ε.

Corollary 2 In the case ‖·‖ = |·|r,p, where 0 ≤ r ≤ 1 and 1 ≤ p < ∞, Theorem 1 holds
with the sufficient condition k ≤ d replaced with k ≤ d′, where

d′ ≥



























































cr,pnε
2 : 0 ≤ r < 1/2, p < 2− 2r

cr,pmin
{

nε2, n (lnn)1−
2
p ε

2
p

}

: 0 ≤ r < 1/2, p = 2− 2r

cr,pmin
{

nε2, n
2(1−r)

p ε
2
p

}

: 0 ≤ r < 1/2, p > 2− 2r

cr,pn (lnn)
−1 ε2 : r = 1/2, p = 2− 2r = 1

cr,pmin
{

n (lnn)−p ε2, n
1
p ε

2
p

}

: r = 1/2, p > 2− 2r = 1

cr,pmin
{

n2(1−r) (lnn)−(p−1) ε2, n
2(1−r)

p ε
2
p

}

: 1/2 < r < 1

cr,pmin
{

(lnn)3 ε2, (lnn)1+
2
p ε

2
p

}

: r = 1

For the spaces under consideration, Corollary 2 improves on Theorem 1 in all cases
except when either p < 2 − 2r or when p = 1, and in those cases it reduces to the old
bound.

We have excluded the case r > 1 from Corollary 2 because as n → ∞, the resulting
Lorentz space is isomorphic to ℓn∞, and Theorem 3 below gives better estimates. More
generally, when

p > c ln

(

1 +
1 + n1−r

1 + |1− r| lnn lnn

)
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for arbitrarily small universal constant c > 0, Lemma 10 (later in the paper) implies

|x|∞ ≤ |x|r,p ≤ C |x|∞
(

1 +
1 + n1−r

1 + |1− r| lnn lnn

)1/p

≤ C ′ |x|∞

In this case the estimates in Theorem 17 start to break down. The following result, which
generalizes the case p > c lnn (and r = 0) in [11, Theorem 1.2] can then be used instead
(with slightly improved probability bound from 1− Cn−cε/ ln(1/ε) in [11]).

Theorem 3 For all 0 < c1 < C1 there exists c2 > 0 such that the following is true: let n ∈
N and let |·|♯ be a norm on R

n that is invariant under coordinate permutations and satisfies

c1 |x|∞ ≤ |x|♯ ≤ C1 |x|∞ (for all x ∈ R
n). Let ε ∈ (0, 1) and 0 < k ≤ c2ε (ln ε

−1)
−1

lnn.
Let G be an n × k standard Gaussian random matrix. Then with probability at least
1− Cn−c2ε, for all x ∈ R

k, (1− ε)M |Ge1|♯ |x| ≤ |Gx|♯ ≤ (1 + ε)M |Ge1|♯ |x|.

Proof. Let T : Rn → R
n be the map that arranges the coordinates of a vector in non-

decreasing order. Let X and Y be independent standard normal random vectors in R
n.

From estimates for the normal distribution, see e.g. (5) in Lemma 12, with probability at
least 1− C exp (−ct2),

∣

∣

∣
|X|♯ − |Y |♯

∣

∣

∣
=
∣

∣

∣
|TX|♯ − |TY |♯

∣

∣

∣
≤ |TX − TY |♯ ≤ C1 |TX − TY |∞ ≤ CC1t

2

√
lnn

This can be converted to a deviation of |X|♯ about M |X|♯ and is the same deviation
estimate satisfied by |X|∞. The usual proof of the randomized Dvoretzky theorem (using
the (ε/4)-net argument, see e.g. [9, 15]) then transfers to |·|♯.

The second corollary of Theorem 17 applies to the classical ℓnp spaces, with improved
dependence on p compared to [11, Theorem 1.2].

Corollary 4 For all C1 > 0 there exists c2 > 0 such that the following statement is true.
In the case ‖·‖ = |·|0,p = |·|p, and under the added assumption that p < C1 lnn, Theorem
1 holds with the sufficient condition k ≤ d replaced with k ≤ d′, where d′ is defined as
follows,

d′ =

{

cnε2 : 1 ≤ p ≤ 2

c2min
{

cpnε2, pn
2
p ε

2
p

}

: 2 < p < C1 lnn

and c > 0 is a universal constant.

We end the paper with a result for general Lorentz norms.

Theorem 5 (refer to Theorem 18 for a more detailed statement) A random embedding

of
(

R
k, |·|

)

into
(

R
n, |·|ω,p

)

using a standard Gaussian matrix is, with probability at least

1−2e−d, an ε almost isometry in a sense similar to (1) provided k ≤ d, where d is defined
as follows: If 1 < p <∞ set

d =

(

1 +
1

p− 1

)−1

min











cp
(

∑n
i=1 ωi

(

ln n
i

)p/2
)2

ε2

∑n
i=1 ω

2
i

(

ln n
i

)p−1 , cB−1/p

(

n
∑

i=1

ωi

(

ln
n

i

)p/2
)2/p

ε2/p










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where

B =















∑n
i=1 ω

2
i i

−(p−1) : 1 < p < 3/2
(

∑n
i=1 ω

2
2−p

i

)2−p

: 3/2 ≤ p < 2

1 : 2 ≤ p <∞
and if p = 1 set

d =
c
(

∑n
i=1 ωi

(

ln n
i

)1/2
)2

ε2

∑n
i=1 ω

2
i

3 The main engine: Gaussian concentration

We make extensive use of the classical Gaussian concentration inequality. The simple
proof of Maurey and Pisier is contained in [13].

Theorem 6 Let f : Rn → R and let X be a random vector in R
n with the standard

normal distribution. Then for all t ≥ 0,

P {|X −Mf(X)| > CtLip(f)} ≤ 2 exp
(

−t2
)

Assuming Lip(f) <∞, the same holds true with M replaced by E.

If ‖·‖ : Rn → [0,∞) is a norm, then

Lip (‖·‖) = sup
{

‖θ‖ : θ ∈ Sn−1
}

which can be seen by applying the triangle inequality. Denoting this supremum as b (‖·‖),
Gaussian concentration implies that with probability at least 1− 2 exp (−t2),

M ‖X‖ − Ctb (‖·‖) ≤ ‖X‖ ≤ M ‖X‖+ Ctb (‖·‖)

For our purposes the right hand inequality ‖X‖ ≤ M ‖X‖ + Ctb (‖·‖) will be sufficient.
The following result due to Schechtman[14] provides a uniform bound over a sphere rather
than just at a point and reduces to Theorem 6 in the case k = 1.

Theorem 7 Let f : Rn → R and let G be an n × k random matrix with i.i.d standard
normal random variables as entries. Let t ≥ 0 and assume that k ≤ ct2. Then with
probability at least 1− 2 exp (−ct2) the following event occurs: For all θ ∈ Sk−1,

|f (Gθ)−Mf (Gθ)| ≤ tLip(f)

4 Key methods

We will deal with functions that may not be Lipschitz, or whose Lipschitz constant is not
representative of the typical behaviour of the function. For such functions we will need
to prove deviation inequalities for f(X) about Mf(X), where X is a standard normal
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random vector as in Section 3. In order to do so, it will be useful to restrict the function
f to a set K with the following two properties:

• Lip (f |K) is nicely bounded
• P {X /∈ K} is small (here X is normally distributed as in Theorem 6)

Exactly how one interprets ‘nicely bounded’ and ‘small’ may depend on the situation,
and the reader will see the details in the proofs of Theorems 17 and 18. It follows from
elementary metric space theory that f |K can be extended to a function F : Rn → R such
that Lip(F ) = Lip (f |K). One can then apply Gaussian concentration to F and transfer
the result back to f since f(X) = F (X) with high probability. This procedure appears
in Bobkov, Nayar and Tetali [1] and is further explored in [3].

The original way of applying concentration of measure to prove Dvoretzky’s theorem,
as in the classical works of Milman and Schechtman, e.g. [8, 9, 14], was to study con-
centration of ‖X‖ directly using Lipschitz properties of ‖·‖ (where ‖·‖ is the norm of the
space in question). One actually considered a random point on the sphere as opposed
to a Gaussian random vector, the Gaussian approach being made popular by Pisier [13],
but the point is that regardles of the randomness used, the function under consideration
was the norm. A trick that will be useful in the context of ‖·‖ = |·|ω,p is to study con-
centration of |X|pω,p =

∑

ωiX
p
[i] instead of |X|ω,p (using Gaussian concentration and the

procedure from [1] just mentioned), and then to convert the result back to a bound on
|X|ω,p by transforming the distribution under the action of s 7→ s1/p. As functions on R

n,
|·|ω,p and |·|pω,p are fundamentally different in terms of their local-Lipschitz properties: the
first function achieves its Lipschitz constant on any neighbourhood of the origin, while
for the second function, the problematic points where the norm of the gradient is large
have been moved far away from the origin so that a convexity argument can be used for
points within a certain convex body containing the origin.

So, we will need to bound the distribution of a gradient, which comes down to bounding
the expression

∑

i−2rX
2(p−1)
[i] . Since the terms of this sum are not independent, one cannot

use the classical theory of sums of independent random variables. For p ≥ 3/2 one can
write such a quantity in terms of a norm and use Gaussian concentration applied to norms.
For 1 ≤ p < 3/2 one cannot write the gradient as a function of a norm, and one therefore
cannot use the equation Lip (‖·‖) = b (‖·‖). This causes difficulties, but one can bound
the gradient above by a function of a norm, which is an interesting problem in its own
right, especially in the case p = 2− 2r. We postpone this discussion until Section 7.

5 Notation and once-off explanations

The symbols C and c denote positive universal constants that may take on different
values at each appearance. M and E denote median and expected value. n and k will
typically denote natural numbers and this will not always be stated explicitly but should
be clear from the context. Lip(f) ∈ [0,∞] denotes the Lipschitz constant of any function
f : Rn → R with respect to the Euclidean norm.

∑b
i=a f(i) denotes summation over

all i ∈ N such that a ≤ i ≤ b, regardless of whether a, b ∈ N. 1{·} denotes the indicator
function of a set or condition. When proving a probability bound of the form C exp (−ct2),
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we may take C sufficiently large and assume in the proof that, say, t ≥ 1, because for
t < 1 the resulting probability bound is greater than 1 and the result holds trivially. After
such a bound is proved we may replace C with 2 using the fact that there exists c′ > 0
such that

min
{

1, C exp
(

−ct2
)}

≤ 2 exp
(

−c′t2
)

Lastly, by making an all-round change of variables we may take c′ to be, say, 1 or 1/2.
The constants in the final probability bound will therefore (without further explanation)
not always match what appears to come from the proof.

6 Lemmas

We start with basic estimates for the lower incomplete gamma function suited to our
purposes.

Lemma 8 For all b, q ∈ [0,∞),

c1+q min {1 + q, b}1+q ≤
∫ b

0

e−ωωqdω ≤ C1+q min {1 + q, b}1+q

cebb1+q

1 + q + b
≤

∫ b

0

eωωqdω ≤ Cebb1+q

1 + q + b

Proof. The first integrand increases on [0, q] and decreases on [q,∞), so for b ≤ q,
comparing the integral to the area of a large rectangle,

∫ b

0

e−ωωqdω ≤ be−bbq ≤ b1+q

while for b ≥ 1 + q,

∫ b

0

e−ωωqdω ≤ Γ(1 + q) ≤ C1+q(1 + q)1+q ≤ C1+qb1+q

If q ≥ 1 this also holds for q < b < 1 + q, since in that case (1 + q)1+q ≤ C1+qb1+q. So all
that remains for the upper bound is the case where 0 ≤ q < 1 and q < b < 1 + q, which
implies

∫ b

0

e−ωωqdω ≤
∫ b

0

ωqdω ≤ b1+q

We now consider the lower bound. For b ≤ q, comparing the integral to the area of a
smaller rectangle,

∫ b

0

e−ωωqdω ≥ b

2
e−b/2

(

b

2

)q

≥ c1+qb1+q

For b ≥ q and q ≥ 1, using what we have just proved,

∫ b

0

e−ωωqdω ≥
∫ q

0

e−ωωqdω ≥ c1+qq1+q ≥ c1+q(1 + q)1+q
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For b ≥ q and 0 ≤ q < 1, we consider two sub-cases: firstly b ≤ 1 + q, in which case
∫ b

0

e−ωωqdω ≥ c

∫ b

0

ωqdω ≥ c1+qb1+q

and secondly b > 1 + q, in which case
∫ b

0

e−ωωqdω ≥ c

∫ 1

0

ωqdω ≥ c ≥ c1+q(1 + q)1+q

The second integral with eω instead of e−ω can be estimated by writing eωωq = exp (ω + q lnω)
and using lnω ≤ (ω− b)/b+ln b, valid for all ω ∈ (0, b], and lnω ≥ 2(ω− b)/b+ln b, valid
for all ω ∈ [b/2, b]. Here we also use cez/(1 + z) ≤ (ez − 1)/z ≤ Cez/(1 + z) valid for all
z > 0.

We will use the fact that for any non-increasing function f : [1, n] → R,

1

2

(

f(1) +

∫ n

1

f(x)dx

)

≤
n
∑

i=1

f(i) ≤ f(1) +

∫ n

1

f(x)dx

Lemma 9 For all a, q ∈ [0,∞) and all n ≥ 2 the following is true: If a ∈ [0, 1] then

n
∑

i=1

i−a
(

ln
n

i

)q

≤ C1+qn1−a (1 + q)1+q (lnn)1+q

((1− a) lnn + 1 + q)1+q

and if a ∈ [1,∞) the sum is bounded above by

C (lnn)1+q

(a− 1) lnn+ 1 + q
+ (lnn)q

The corresponding lower bounds hold by replacing C with c. When q = 0 and i = n in the
sum, we consider 00 = 1.

Proof. We focus on the upper bounds; the lower bounds follow the same steps. Integrals
are estimated using Lemma 8, and we use the fact that min{x, y} is the same order of
magnitude as xy/(x+ y). First, let a ∈ (0,∞). Peeling off the first term, comparing the
remaining sum to an integral using monotonicity, and setting es/a = n/x,

n−a
n
∑

i=1

(n

i

)a (

ln
n

i

)q

≤ (lnn)q +
n1−a

a1+q

∫ a lnn

0

exp

((

1− 1

a

)

s

)

sqds

If a ∈ (1,∞) set w = (1− 1/a) s to get

(lnn)q +
n1−a

(a− 1)1+q

∫ (a−1) lnn

0

ewwqdw

If a = 1 we get (lnn)q +
∫ lnn

0
sqds which can be absorbed into either the case a ∈ (0, 1)

or the case a ∈ (1,∞). If a ∈ (0, 1) then set w = − (1− 1/a) s to get

(lnn)q +
n1−a

(1− a)1+q

∫ (1−a) lnn

0

e−wwqdw
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If a = 0, setting w = ln (n/x),

n
∑

i=1

i−a
(

ln
n

i

)q

≤ (lnn)q +

∫ n

1

(

ln
n

x

)q

dx ≤ (lnn)q + n

∫ lnn

0

e−wwqdw

For a ∈ [0, 1] the factor (lnn)q gets absorbed into the remaining term since

C1+qn1−a (1 + q)1+q (lnn)1+q

((1− a) lnn + 1 + q)1+q =
C1+qn1−a (lnn)1+q

(

1 + (1−a) lnn
1+q

)1+q

The following lemma interpolates between the case a = 1 and a 6= 1.

Lemma 10 For all (a, T ) ∈ R× [1,∞),

c
1 + T 1−a

1 + |1− a| lnT lnT ≤
∫ T

1

x−adx ≤ C
1 + T 1−a

1 + |1− a| lnT lnT

Proof. First assume a 6= 1 and T 6= 1 and write

∫ T

1

x−adx =
exp ((1− a) lnT )− 1

(1− a) lnT
lnT

Then interpret s−1 (exp (s)− 1) as the slope of a secant line and bound it above and below
by C (1 + es) / (1 + |s|) in the cases s ≤ −1, s ∈ (−1, 1) \ {0} and 1 ≤ s. Then notice
that the estimate also holds when a = 1 and/or T = 1.

Define ξ1 : [0, 1] → [0, 1] by ξ1(t) = et (1− t), from which it follows, see [4], that

ξ−1
1 (t) ≤ min

{

√

2 (1− t), 1− e−1t
}

: 0 ≤ t ≤ 1

The following lemma is taken from [4], which is based on basic estimates for the bino-
mial distribution and the Rényi representation of order statistics from the exponential
distribution. Recall that the order statistics of a vector x ∈ R

n are denoted
(

x(i)
)n

1
(the

non-decreasing rearrangement of its coordinates), and the non-increasing rearrangement
of the absolute values of the coordinates of x are denoted

(

x[i]
)n

1
. So if all coordinates of

x are non-negative, then x[i] = x(n−i+1).

Lemma 11 Let (γi)
n
1 be an i.i.d. sample from (0, 1) with corresponding order statistics

(

γ(i)
)n

1
and let t > 0. With probability at least 1− 3−1π2 exp (−t2/2), the following event

occurs: for all 1 ≤ i ≤ n,

γ(i) ≤ 1− n− i+ 1

n+ 1

(

1− ξ−1
1

(

exp

(−t2 − 4 ln (n− i+ 1)

2(n− i+ 1)

)))

(2)

and with probability at least 1−C exp (−t2/2) the following event occurs: for all 1 ≤ i ≤ n,

γ(i) ≤ 1− n− i

n
exp



−cmax







(

t +
√
ln i
)√

i
√

n (n− i+ 1)
,
t2 + ln i

n− i+ 1









 (3)
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In Lemma 11, (2) is preferable for i > n/2 while (3) is preferable for i ≤ n/2.

Lemma 12 Let n ≥ 3, t ≥ 0, and let X and Y be independent random vectors in
R

n, each with the standard normal distribution. Let T : Rn → R
n be the function that

arranges the coordinates of a vector in non-decreasing order. Then with probability at
least 1− C exp (−t2), the following event occurs: for all 1 ≤ i ≤ (n + 1)/2,

X[i] ≤ C

(

ln
n

i
+
t2

i

)1/2

(4)

and

|TX − TY |∞ ≤ Cmin

{

t2√
lnn

, t

}

(5)

and with probability at least 0.51 the following event occurs: for all 1 ≤ i ≤ (n+ 1)/2,

c

√

ln
n

i
≤ X[i] ≤ C

√

ln
n

i
(6)

Proof. We will not repeat ‘with probability...’ as it is clear that there are probabilities
associated to the events in question, and what those probabilities are. To prove estimates
for a general distribution based on estimates for the uniform distribution, transform under
the action of the inverse cumulative distribution, which is increasing and preserves the

operation of arranging in non-increasing order. So we may write X[i] = Φ−1
(

1+γ(n−i+1)

2

)

,

where (γi)
n
1 is an i.i.d. sample from the uniform distribution on (0, 1), and we use the

bound

c

√

ln
1

1− x
≤ Φ−1

(

1 + x

2

)

≤ C

√

ln
1

1− x
(7)

valid for all x ∈ (1/3, 1), say. (4) now follows from (2) and (7), and includes the upper
bound in (6) as a special case. To get a lower bound on an order statistic, we apply Lemma
11 to the i.i.d. random variables (1− γi)

n
1 , which are also uniformly distributed in (0, 1)

and whose vector of order statistics is
(

1− γ(n−i+1)

)n

1
. An upper bound on 1 − γ(n−i+1)

translates to a lower bound on γ(n−i+1). So, from (3) and (7),

X[i] ≥ c

√

√

√

√

√ln



1− n− i

n
exp



−
C
(

1 +
√
ln i
)√

i

n









−1

≥ c

√

ln
n

i

which is seen to hold when n > n0 (using e
−z ≥ 1− z), and when n ≤ n0 this is bounded

below by c2 ≥ c
√

ln (n/i).
We now consider (5). Its proof, which occupies the next two pages, may later be

removed and placed in another paper. It follows from the bounds relating Φ and φ = Φ′

that
d

dx
Φ−1 (x) =

1

φ (Φ−1 (x))
≤ C

min {x, 1− x}
√

lnmin {x, 1− x}−1
(8)

10



A difference between our current calculations for (5) and what has been done for (4) and
(6) above, is that there are no absolute values involved in the definition of X(i), and we
write X(i) = Φ−1

(

γ(i)
)

, where (γi)
n
1 is an i.i.d. uniform sample. Here we are re-using

notation, and this (γi)
n
1 is not the same as the previous (γi)

n
1 , which is inconsequential

since we are now doing a new calculation. So, by (8) and (2), for all n/2 < i ≤ n,
Φ−1

(

γ(i)
)

− Φ−1
(

i
n+1

)

is bounded above by

C

∫ 1−n−i+1
n+1

(

1−ξ−1
1 exp

(

−t2−4 ln(n−i+1)
2(n−i+1)

))

i/(n+1)

(1− x)−1 (ln (1− x)−1)−1/2
dx

= C

∫ ln n+1
n−i+1

−ln

(

1−ξ−1
1 exp

(

−t2−4 ln(n−i+1)
2(n−i+1)

))

ln n+1
n−i+1

s−1/2ds

≤ C

(

ln
n+ 1

n− i+ 1

)−1/2

ln

(

1− ξ−1
1 exp

(−t2 − 4 ln(n− i+ 1)

2 (n− i+ 1)

))−1

The function s 7→ − ln
(

1− ξ−1
1 exp (−s)

)

behaves like
√
s near 0 and like s+1 when s is

large. We then consider two cases, depending on whether

t2 + 4 ln(n− i+ 1)

2 (n− i+ 1)
(9)

lies in (0, 1) or [1,∞), and in either case the estimate is bounded above by Ct2/
√
lnn.

Here we have used the fact that for all a, b ≥ 1,

ln (1 + ab) ≤ C ln (1 + a) ln (1 + b)

which is true since 1 + ab ≤ (1 + a)(1 + b) and for positive numbers uniformly bounded
away from 0 a product dominates a sum up to a constant. Therefore

ln

(

1 +
n

n− i+ 1

)

ln (1 + n− i+ 1) ≥ c lnn

which can be modified be deleting the leftmost 1+ and changing the factor ln(1+n−i+1)
to something larger such as n−i+1 or (n−i+1)/ ln(n−i+1). A zero in the denominator
doesn’t hurt since we are in practice considering the reciprocals. And assuming as we
may that t ≥ 1, 1 + t ≤ Ct2. So this is where the upper bound Ct2/

√
lnn comes from.

Obviously this bound can be improved significantly for individual order statistics; we
haven’t bothered to write out such bounds since for our purposes we need a uniform
estimate over all i. A similar calculation with a lower bound for γ(i) follows from (3)
applied to

(

1− γ(i)
)n

1
: Φ−1

(

i−1
n

)

− Φ−1
(

γ(i)
)

is bounded above by

C

∫ (i−1)/n

i−1
n

exp

(

−cmax

{

(t+
√

ln(n−i+1))
√

n−i+1

n
, t

2

n

}) (1− x)−1 (ln (1− x)−1)−1/2
dx

= C

∫ ln n
n−i+1

− ln

[

1− i−1
n

exp

(

−cmax

{

(t+
√

ln(n−i+1))
√

n−i+1

n
, t

2

n

})] s−1/2ds

11



Using
∫ b

a
s−1/2ds = 2(b−a)/(

√
b+

√
a) ≤ C(b−a)/

√
b valid for 0 < a < b, applied to this

last quantity,
√
b =

(

ln
n

n− i+ 1

)1/2

and b− a is equal to

C ln



1 +
i− 1

n− i+ 1



1− exp



−cmax







(

t +
√

ln(n− i+ 1)
)√

n− i+ 1

n
,
t2

n



















≤ C
i− 1

n− i+ 1



1− exp



−cmax







(

t+
√

ln(n− i+ 1)
)√

n− i+ 1

n
,
t2

n















The expression 1 − e−s behaves like s for 0 ≤ s ≤ 1 and like 1 when s > 1. We now
consider two cases depending on whether

cmax







(

t+
√

ln(n− i+ 1)
)√

n− i+ 1

n
,
t2

n







lies in [0, 1] or (1,∞). In the first case, for the entire expression C(b− a)/
√
b, we get the

same bound Ct2/
√
lnn as before, using similar simplifications. In the second case we get

Cn

(n− i+ 1)
√

ln n
n−i+1

However for the expression defining this case to be > 1,

t ≥ cmin

{

√
n,

n
√

ln(n− i+ 1)

}

and regardless of which term defines this minimum we end up with the same bound
Ct2/

√
lnn. We must now handle the discrepancy between i/(n+ 1) and (i− 1)/n in the

computations above. From (8),

∣

∣

∣

∣

Φ−1

(

i

n+ 1

)

− Φ−1

(

i− 1

n

)∣

∣

∣

∣

≤ C

n

(

1− i

n + 1

)−1
(

ln

(

1− i

n + 1

)−1
)−1/2

≤ C√
lnn

All of this implies that
∣

∣

∣

∣

X(i) − Φ−1

(

i

n+ 1

)∣

∣

∣

∣

≤ Ct2√
lnn

Similar bounds in the case 1 ≤ i ≤ n/2 now follow by symmetry, and they also hold for
Y since Y has the same distribution as X , and a bound on |TX − TY |∞ follows by the
triangle inequality. For large values of t this can be improved as follows. Let x∗ ∈ R

n be
defined as

x∗i = Φ−1

(

i

n + 1

)

12



Since T acts as an isometry on each of the n! overlapping regions of Rn determined by
the order of the coordinates of a vector, T is 1-Lipschitz on R

n. So x 7→ Tx 7→ Tx−x∗ 7→
|Tx− x∗|∞ is the composition of 1-Lipschitz functions and by Gaussian concentration,

|TX − x∗|∞ ≤ M |TX − x∗|∞ + Ct

which also applies to TY , and the result follows again by the triangle inequality.

Lemma 13 Let 0 ≤ r < ∞, 1 ≤ p < ∞, n ≥ 2, and let X be a random vector in R
n

with the standard normal distribution. If r ∈ [0, 1] then

M

n
∑

i=1

i−rXp
[i] ≤

Cppp/2n1−r (lnn)1+p/2

[p+ (1− r) lnn]1+p/2

and if r ∈ [1,∞) then

M

n
∑

i=1

i−rXp
[i] ≤

Cp (lnn)1+p/2

1 + (r − 1) lnn
+ Cp (lnn)p/2

with the reverse inequalities holding with C replaced by c.

Proof. The result follows from Eq. (6) of Lemma 12, together with Lemma 9.

Lemma 14 Let 0 ≤ r <∞ and 1 ≤ p <∞. Then

sup







(

n
∑

i=1

i−rθp[i]

)1/p

: θ ∈ Sn−1







=

{

(
∑n

1 i
−2r/(2−p)

)(2−p)/2p
: p ∈ [1, 2)

1 : p ∈ [2,∞)

For p ∈ [1, 2) this can be bounded above by

1 + C

(

lnn

1 + |2− 2r − p| lnn

)
2−p

2p (

1 + n
2−2r−p

2p

)

and below by the same quantity with C replaced with c. For r < r0 (for any universal
constant r0 > 1) the leftmost ‘1+’ can be deleted.

Proof. For p ∈ [1, 2) an upper bound follows by Hölder’s inequality for ℓn2/(2−p) − ℓn2/p

duality, with equality when θi = i−r/(2−p)
(

∑n
j=1 j

−2r/(2−p)
)−1/2

. Now

(

n
∑

1

i−2r/(2−p)

)(2−p)/2p

≤
(

1 +

∫ n

1

x−2r/(2−p)dx

)(2−p)/2p

which is bounded using Lemma 10 and noting that 0 < (2 − p)/(2p) ≤ 1/2 and that

c < (2− p)(2−p) < C. For p ∈ [2,∞),
(

∑n
i=1 i

−rθp[i]

)1/p

≤
(

∑n
i=1 θ

p
[i]

)1/p

≤ 1 with equality

when θ = e1.

13



We shall use the fact that for all b ∈ [1, n], not necessarily an integer,

n
∑

i=1

i−rxp[i] ≤
2n

b

b
∑

i=1

i−rxp[i]

where the sum on the right is over all i ∈ N such that 1 ≤ i ≤ b.

Lemma 15 Let ψ : Rn 7→ R and let A ⊂ R
n be convex set with nonempty interior. Let E

denote the collection of all x ∈ R
n such that the coordinates of x are distinct and non-zero.

Assume that ψ is continuous on A and differentiable on A ∩ E. Then, as an element of
[0,∞],

Lip (ψ|A) = sup
x∈A∩E

|∇ψ(x)|

Proof. (Sketch) We focus on proving that LHS ≤ RHS when RHS <∞; the rest comes
down to approximating a supremum. Note that E is dense in R

n, and by considering sets
of the form conv{z, B} where z ∈ A and B is any ball of non-zero radius contained in A,
we see that int (A) is dense in A. So, suppose |∇ψ(z)| ≤ L for all z ∈ A ∩ E and some
L <∞, and consider any x1, y1 ∈ A with x1 6= y1, and any ε > 0. We consider sequences
x2, x3, x4 and y2, y3, y4 such that each xi+1 is sufficiently close to its predecessor xi and by
continuity each ψ (xi+1) is sufficiently close to ψ (xi). Similarly so with the y’s. This can
be done so that x2, y2 ∈ int(A), x3, y3 ∈ int(A) and that all coordinates of x3 and y3 are
distinct (2n distinct coordinates in total), and that x4, y4 ∈ A∩E such that x4 and y4 also
have completely distinct coordinates between the two of them. We bound |ψ(x1)− ψ(y1)|
up to a term involving ε by integrating over the line segment joining x4 and y4, which
contains at most n+ n(n− 1)/2 points not in E. Details are left to the reader.

7 Order statistics, norms and quasi-norms

As part of the proof of Theorem 17, towards estimating the distribution of a gradient
in order to derive concentration inequalities, we need estimates for the distribution of
certain functionals of order statistics. However, in order to avoid the blowup of a quasi-
norm constant as p→ 1 we need more. We need:

• A deterministic bound of the form

n
∑

i=1

i−2rx
2(p−1)
[i] ≤ ϕ (‖x‖)

where ‖·‖ is a norm, ϕ : [0,∞) → [0,∞), and the inequality is valid for all x ∈ R
n,

• a bound on the distribution of ϕ (‖X‖), where X is a random vector in R
n with the

standard normal distribution.

Since these estimates will affect the bounds we end up with in Theorem 17, the problem
is not purely existential; we want good estimates. Of greatest interest is the case p ∈

14



(1, 3/2) where the quantity
∑n

i=1 i
−2rx

2(p−1)
[i] is not already a function of a norm of x.

Geometrically, the problem is related to finding a convex subset of a given non-convex
set whose complement has comparable Gaussian measure to the complement of the given
non-convex set.

Figure 2

Theorem 16 Let X be a random vector in R
n, n ≥ 3, with the standard normal distri-

bution, 0 ≤ r <∞, 1 ≤ p <∞ and t > 0. In each of the following four cases, definitions
are given for R, S are |·|♯, and in each case,

P

{

|X|♯ ≤ S
}

≥ 1− C exp
(

−t2/2
)

and |X|♯ ≤ S ⇒
n
∑

i=1

i−2rX
2(p−1)
[i] ≤ R

Case I: If p ∈ [3/2,∞) then for all x ∈ R
n set

|x|♯ =
(

n
∑

i=1

i−2rx
2(p−1)
[i]

)
1

2(p−1)

and R = S2(p−1) = A+Bt2(p−1) where

A =
Cpppn1−2r (lnn)p

[p+ (1− 2r) lnn]p
1{0≤r≤1/2} +

(

Cp (lnn)p

1 + (2r − 1) lnn
+ Cp (lnn)p−1

)

1{1/2<r<∞}

and

B = C

[

1 +

(

lnn

1 + |2− 2r − p| lnn

)2−p
(

1 + n2−2r−p
)

]

1{3/2≤p<2} + Cp1{2≤p<∞}
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In this case |·|♯ is a norm.
Case II: If p ∈ [1, 3/2) then for all x ∈ R

n,

n
∑

i=1

i−2rx
2(p−1)
[i] ≤ C





n/e
∑

i=1

i−2r

(

ln
n

i
+
t2

i

)p−1




3−2p

|x|2(p−1)
♯

where

|x|♯ =
n/e
∑

i=1

i−2rx[i]
(

ln n
i
+ t2

i

)

3−2p
2

(10)

and

R = S = C

n/e
∑

i=1

i−2r

(

ln
n

i
+
t2

i

)p−1

≤ Cn1−2r (lnn)p

[1 + (1− 2r) lnn]p
1{0≤r≤1/2} + C

(

(lnn)p

1 + (2r − 1) lnn
+ (lnn)p−1

)

1{1/2<r<∞}

+ C

(

1 +
1 + n2−2r−p

1 + |2− 2r − p| lnn lnn

)

t2(p−1)

Under the added assumption that p ≥ 3/2− 2r, and because the sums have been restricted
to 1 ≤ i ≤ n/e, |·|♯ is a norm.

Case III: If p < 3/2− 2r (so necessarily 0 ≤ r < 1/4 and 1 ≤ p < 3/2), then for all
x ∈ R

n,
n
∑

i=1

i−2rx
2(p−1)
[i] ≤ Cn(1−2r)(3−2p) |x|2(p−1)

♯

where

|x|♯ =
n
∑

i=1

i−2rx[i]

and

S = Cn1−2r + Cn
1−4r

2

(

lnn

1 + (1− 4r) lnn

)
1
2

t

R = Cn(1−2r)(3−2p)S2(p−1) ≤ Cn1−2r + Cn2−2r−p

(

lnn

1 + (1− 4r) lnn

)p−1

t2(p−1)

Case IV: When r ∈ (1/4, 1/2] and p = 2(1− r), in which case p ∈ [1, 3/2), the result
in Case II can be improved as follows:

Case IVa: If (1− 2r) lnn ≥ e (which excludes the case p = 1), then for all x ∈ R
n,

n
∑

i=1

i−2rx
2(p−1)
[i] ≤ C (lnn)3−2p |x|2(p−1)

♯
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where

|x|♯ =
n/e
∑

i=1

β
−(3−2p)
2(p−1)

i i
−r
p−1x[i],

and

βi =
(1− 2r)p lnn

n1−2r
i−2r

(

ln
n

i

)p−1

+ i−1

The coefficient β
−(3−2p)
2(p−1)

i i
−r
p−1 is non-increasing in i for 1 ≤ i ≤ n/e (so that |·|♯ is a norm).

In this case
S = C

1
p−1 (1− 2r)

−p

2(p−1) (lnn)
−(3−2p)
2(p−1) n

1
2 + C

1
p−1 (lnn)

1
2 t

and
R = C (lnn)3−2p S2(p−1) ≤ C(1− 2r)−1n1−2r + C (lnn)2−p t2(p−1)

Case IVb: If (1− 2r) lnn < e, then for all x ∈ R
n,

n
∑

i=1

i−2rx
2(p−1)
[i] ≤ C (lnn) |x|2(p−1)

♯

where |·|♯ = |·| is the standard Euclidean norm, S = Cn
1
2 + t, and

R = C (lnn)S2(p−1) ≤ C (lnn) t2(p−1)

Proof. Case I: p ∈ [3/2,∞). In this case |·|2r,2(p−1) is a norm and it follows by classical

Gaussian concentration that with probability at least 1− C exp (−t2/2),
n
∑

i=1

i−2rX
2(p−1)
[i] = |X|2(p−1)

2r,2(p−1) ≤
[

M |X|2r,2(p−1) + tLip |·|2r,2(p−1)

]2(p−1)

Estimates for M |X|2r,2(p−1) and Lip |·|2r,2(p−1) follow from Lemmas 13 and 14, and we
leave the computation to the reader (with the reminder that we are applying these results
with 2r and 2(p− 1) instead of r and p). Certain numerical simplifications can be made
based on the values of p and r and the existance of the factor Cp.
Proof. Case II: We consider p ∈ (1, 3/2) and reclaim the case p = 1 by taking a limit.

For all x ∈ R
n, by Hölder’s inequality,

∑n
1 i

−2rx
2(p−1)
[i] is bounded above by

C

n/e
∑

i=1

i−4r(p−1)x
2(p−1)
[i]

(ln (n/i) + t2/i)(p−1)(3−2p)
i−2r(3−2p)

(

ln (n/i) + t2/i
)(p−1)(3−2p)

≤ C





n/e
∑

i=1

i−2rx[i]

(ln (n/i) + t2/i)(3−2p)/2





2(p−1)



n/e
∑

i=1

i−2r

(

ln
n

i
+
t2

i

)p−1




3−2p

= C |x|2(p−1)
♯





n/e
∑

i=1

i−2r

(

ln
n

i
+
t2

i

)p−1




3−2p
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Eq. (4) from Lemma 12 then implies that

|X|♯ =
n/e
∑

i=1

i−2rX[i]

(ln (n/i) + t2/i)(3−2p)/2
≤ C ′

n/e
∑

i=1

i−2r

(

ln
n

i
+
t2

i

)p−1

=
S

C ′′

Assuming this event occurs, the above calculation involving Hölder’s inequality implies
that

∑n
1 i

−2rX
2(p−1)
[i] is bounded above by S. Lastly,

S ≤ C

n/e
∑

i=1

i−2r
(

ln
n

i

)p−1

+ Ct2(p−1)

n/e
∑

i=1

i−2r−p+1

which is bounded above using Lemmas 9 and 10.
Proof. Case III: p < 3/2− 2r (so necessarily 0 ≤ r < 1/4 and 1 ≤ p < 3/2). For p 6= 1,
by Hölder’s inequality,

n
∑

i=1

i−2rx
2(p−1)
[i] ≤

(

n
∑

i=1

i−2rx[i]

)2(p−1)( n
∑

i=1

i−2r

)3−2p

≤ Cn(1−2r)(3−2p) |x|2(p−1)
♯

and for p = 1 the same bound is seen to hold. An upper bound on the quantiles of |X|♯
follows from Gaussian concentration (making use of Lemmas 10 and 13).
Proof. Case IV: p = 2(1 − r) and r ∈ (1/4, 1/2], in which case p ∈ [1, 3/2). The
sub-case (1− 2r) lnn < e is clear enough by Hölder’s inequality for p 6= 1,

n
∑

i=1

i−2rx
2(p−1)
[i] ≤

(

n
∑

i=1

(

i−2r
)

1
2−p

)2−p( n
∑

i=1

(

x
2(p−1)
[i]

)
1

p−1

)p−1

and then noting that the exponent −2r/(2 − p) = −1 and applying classical Gaussian
concentration to |·|. For p = 1 there is nothing to show. In this sub-case,

(lnn)2−p

lnn
= exp (−(1 − 2r) ln lnn) ∈

[

e−1, 1
]

n1−2r = exp ((1− 2r) lnn) ∈ [1, ee)

which is how we simplify the exponents of lnn.
The rest of the proof deals with the other sub-case (1− 2r) lnn ≥ e. Throughout, we

make use of the relation p = 2(1 − r) which is not always explicitly re-stated, and the
reader should make a mental note of this. The case p = 1 is automatically excluded from
this sub-case. By taking the constant C in the probability bound to be at least

√
e we

may assume that t ≥ 1. For any sequence (αi)
⌊n/e⌋
1 with αi > 0, by Hölder’s inequality,

n
∑

i=1

i−2rx
2(p−1)
[i] ≤ C





n/e
∑

i=1

α
1

3−2p

i





3−2p



n/e
∑

i=1

i
−r
p−1α

−1
2(p−1)

i x[i]





2(p−1)

= C





n/e
∑

i=1

βi





3−2p



n/e
∑

i=1

i
−r
p−1β

−(3−2p)
2(p−1)

i x[i]





2(p−1)
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where βi = α
1

3−2p

i . This vector β ∈ R
⌊n/e⌋ is considered a variable for now, and its value

will later be fixed to match the value quoted in the statement of the result. Summing

only up to n/e will ensure that i
2r

3−2pβi is non-decreasing in i, which then implies that

|x|♯ =
n/e
∑

i=1

i
−r
p−1β

−(3−2p)
2(p−1)

i x[i] (11)

is a norm. By classical Gaussian concentration applied to |·|♯, with probability at least

1− C exp (−t2/2),

n
∑

i=1

i−2rX
2(p−1)
[i] ≤





n/e
∑

i=1

βi





3−2p
[

M |X|♯ + tLip
(

|·|♯
)]2(p−1)

(12)

The median can be estimated using (4) and the Lipschitz constant computed as the
Euclidean norm of the gradient, which gives

M |X|♯ ≤ C

n/e
∑

i=1

i
−r
p−1β

−(3−2p)
2(p−1)

i

(

ln
n

i

)1/2

Lip
(

|·|♯
)

=





n/e
∑

i=1

i
−2r
p−1β

−(3−2p)
p−1

i





1/2

We temporarily assume that
∑

βi = 1, which we may do by homogeneity, although this
condition will later be relaxed. We wish to minimize the function

ψ (β) =

n/e
∑

i=1

i
−r
p−1β

−(3−2p)
2(p−1)

i

(

ln
n

i

)1/2

+ t





n/e
∑

i=1

i
−2r
p−1β

−(3−2p)
p−1

i





1/2

over the collection of all β ∈ R
⌊n/e⌋ such that i

2r
3−2pβi is positive and non-decreasing in

i and such that
∑

βi = 1. The method of Lagrange multipliers leads us to solve the
equations

∂ψ (β)

∂βi
= −λ

which can be written as

B1i
−r
p−1

(

ln
n

i

)1/2

β
−1

2(p−1)

i +B2i
−2r
p−1β

−(2−p)
p−1

i = 1

where B1 and B2 are positive values that do not depend on i. This implies that

1/2 ≤ max

{

B1i
−r
p−1

(

ln
n

i

)1/2

β
−1

2(p−1)

i , B2i
−2r
p−1β

−(2−p)
p−1

i

}

≤ 1
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and therefore

βi ≤ max

{

22(p−1)B
2(p−1)
1 i−2r

(

ln
n

i

)p−1

, 2
p−1
2−pB

p−1
2−p

2 i
−2r
2−p

}

with the reverse inequality holding when 22(p−1) and 2
p−1
2−p are deleted. At this point, and

by homogeneity, we remove the condition
∑

βi = 1 and are led to the definition

βi = Ai−2r
(

ln
n

i

)p−1

+ i−1

for some A > 0. B1, B2 and the powers of 2 dissapear since they do not depend on i and
we have re-scaled β, and we have used the equation p = 2(1− r) to simplify the exponent
−2r/(2− p). We now minimize over A. It follows from Lemma 9 that

n/e
∑

i=1

βi ≤ CA(1− 2r)−pn1−2r + C lnn

With an eye on (12), it is clear that the bounds for M |X|♯ and Lip
(

|·|♯
)

are decreasing

in A. It therefore does not help to let A slip below the point where

CA(1− 2r)−pn1−2r = C lnn

because as A continues to decrease beyond this point
∑

βi stays the same order of mag-

nitude while M |X|♯ + tLip
(

|·|♯
)

increases. We may therefore assume that

A ≥ c(1− 2r)p lnn

n1−2r

n/e
∑

i=1

βi ≤ CA(1− 2r)−pn1−2r

If we look back at (12) with our new bound for
∑

βi and our definition of βi, and we take
A out of the expression for

∑

βi and move it into the powers of βi with corresponding

exponents −(3−2p)
2(p−1)

and −(3−2p)
p−1

in the expression M ‖X‖ + tLip (‖·‖), we see that these
powers of βi become

(

i−2r
(

ln
n

i

)p−1

+ A−1i−1

)
−(3−2p)
2(p−1)

(

i−2r
(

ln
n

i

)p−1

+ A−1i−1

)
−(3−2p)

p−1

So, in our current range for A, the expression to be minimized (or at least the bound that
we have for it) is increasing. This leads us to take

A =
(1− 2r)p lnn

n1−2r
(13)

Recall that for |·|♯ to be a norm, see (11), it is sufficient for i2r/(3−2p)βi to be non-decreasing

in i, equivalently for i−r/(p−1)β
−(3−2p)/(2p−2)
i to be non-increasing. Writing

ωi = i
−r
p−1β

−(3−2p)
2(p−1)

i =



An
4r(p−1)
3−2p

(

n

i

(

ln
n

i

)
−(3−2p)

4r

)
−4r(p−1)

3−2p

+ i
p−1
3−2p





−(3−2p)
2(p−1)
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and noting that z (ln z)−(3−2p)/(4r) is increasing for z ≥ exp ((3− 2p)/(4r)), we see that ωi

is decreasing. We now bound M |X|♯ and Lip
(

|·|♯
)

. From the definition of βi,

β−1
i ≤ min

{

A−1i2r
(

ln
n

i

)−(p−1)

, i

}

(14)

which leads us to solve,

A−1i2r
(

ln
n

i

)−(p−1)

= i

Keeping in mind that 1− 2r = p− 1, the above equation holds precisely when

n

i

(

ln
n

i

)−1

= A
1

p−1n (15)

The function z 7→ z/ ln z is increasing on [e,∞) and we will show that provided n > n0

(for a universal constant n0 > 1),

1

2
e2 ≤ A

1
p−1n ≤ 2e

3 lnn
n

3
2e (16)

so that (15) has exactly one solution for i ∈ [n1− 3
2e , n/e2], denoted A0 (not necessarily an

integer) which satisfies

n1− 3
2e ≤ A0 ≤ e−2n (17)

A0 ln
n

A0

= A
−1
p−1 (18)

ln
(

A1/(p−1)n
)

= ln
n

A0

− ln ln
n

A0

(19)

ln
(

A1/(p−1)n
)

≤ ln

(

n

A0

)

≤
(

1− 1

e

)

ln
(

A1/(p−1)n
)

(20)

The assumption n > n0 does not limit our generality since the result is directly seen
to hold when n ≤ n0 in which case many of the coefficients involved are bounded by
constants. From (20) and the defining inequality of the current sub-case, it follows that

1

2
ln ((1− 2r) lnn) ≤ (1− 2r) ln

(

n

A0

)

≤
(

1− 1

e

)

ln ((1− 2r) lnn)

For the left inequality we used the fact that p − 1 ∈ (0, 1/2) and z ln z ≥ −1/e for
z ∈ (0, 1/2). The right inequality is more straightforward. We now verify (16). Recalling
(13) and the fact that 1− 2r = p− 1, which we are using constantly, the lower bound in
(16) holds provided

lnn ≥ e(2−ln 2)(p−1)

(p− 1)p

From the definition of the current sub-case, lnn ≥ e/(p− 1), so a sufficient condition for
the above inequality to hold is

2− ln 2 ≤ 1

p− 1
+ ln(p− 1)
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which is true by considering 1/z + ln z for z ∈ (0, 1/2). The upper bound in (16) holds
provided

(p− 1) lnn ≤ exp

(

p− 1

p
ln

(

2e

3
n

3
2e

))

which holds by applying ez ≥ ez. This completes the task of verifying (16). From (14) it
follows that

β−1
i ≤

{

Ci : i ≤ A0

CA−1i2r
(

ln n
i

)−(p−1)
: i > A0

(21)

In an integral where the integrand grows or decays at a controlled rate, one can change
an upper bound of A0 + 1 to A0 at the expense of a constant. Using

∫ b

a

e−ωω1/2dω ≤ C(b− a)e−aa1/2

1 + b− a

valid as long as 1 ≤ a ≤ b, and

∫ b

0

e−ωωp−1dω ≤ C

which gives the correct order of magnitude for (say) b ≥ 1/2, M |X|♯ is bounded above by

C
1

p−1

A0
∑

i=1

i−
1
2

(

ln
n

i

)
1
2
+ C

1
p−1A

−(3−2p)
2(p−1)

n/e
∑

i=A0

i−2r
(

ln
n

i

)p−1

≤ C
1

p−1n− 1
2

∫ A0

1

(n

x

)1/2 (

ln
n

x

)1/2

dx+ C
1

p−1A
−(3−2p)
2(p−1) n−2r

∫ n/e

A0

(n

x

)2r (

ln
n

x

)p−1

dx

≤ C
1

p−1n
1
2

∫ 1
2
lnn

1
2
ln n

A0

e−ωω1/2dω + C
1

p−1A
−(3−2p)
2(p−1) (1− 2r)−pn1−2r

∫ (1−2r) ln n
A0

1−2r

e−ωωp−1dω

≤ C
1

p−1A
1
2
0

(

ln
n

A0

)
1
2

+ C
1

p−1A
−(3−2p)
2(p−1) (1− 2r)−pn1−2r

≤ C
1

p−1A
−(3−2p)
2(p−1) (1− 2r)−pn1−2r

We claim that

∫ b

0

eωω−(3−2p)dω ≤
{

C(p− 1)−1b2(p−1) : 0 ≤ b ≤ 1
C(p− 1)−1 + Cebb−(3−2p) : b ≥ 1

For 0 ≤ b ≤ 1 this is clear. For b ≥ 3 this follows because on [2,∞) the local exponential
growth rate of the integrand is

d

dω
[ω − (3− 2p) lnω] = 1− 3− 2p

ω
∈ [0.5, 1]
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and for 1 < b < 3 the bound follows by monotonicity in b. Using the claim just proved,

Lip
(

|·|♯
)

is bounded above by

[

C
1

p−1 lnA0 + C
1

p−1A
−(3−2p)

p−1 n−4r

∫ n/e

A0

(n

x

)4r (

ln
n

x

)−(3−2p)

dx

]
1
2

≤ C
1

p−1 (lnA0)
1
2 + C

1
p−1A

−(3−2p)
2(p−1) (4r − 1)1−pn

1−4r
2

(

∫ (4r−1) ln n
A0

4r−1

eωω−(3−2p)dω

)
1
2

If (4r − 1) ln (n/A0) < 1 then this is bounded by

C
1

p−1 (lnn)
1
2 + C

1
p−1A

−(3−2p)
2(p−1) n

1−4r
2

(

ln
n

A0

)p−1

≤ C
1

p−1 (lnn)
1
2

To see why the last inequality is true, note that the inequality

(lnn)
1
2 ≥ A

−(3−2p)
2(p−1) n

1−4r
2

(

ln
n

A0

)p−1

reduces to

A
3−2p

2
0

(

ln
n

A0

)
1
2

≤ n
4r−1

2 (lnn)
1
2

which in turn follows since 1 ≤ A0 ≤ n and 3 − 2p = 4r − 1. If (4r − 1) ln (n/A0) ≥ 1
then using 4r − 1 = 3− 2p and A0 ln (n/A0) = A−1/(p−1), we get the same bound, i.e.

Lip
(

|·|♯
)

≤ C
1

p−1 (lnn)
1
2

Going all the way back to (12), regardless of whether (4r − 1) ln (n/A0) lies in [0, 1) or
[1,∞),

n
∑

i=1

i−2rX
2(p−1)
[i] ≤ C(1− 2r)−pn1−2r + Ct2(p−1) (lnn)2−p

Then note that
(1− 2r)−p

(1− 2r)−1
= exp (−(p− 1) ln(p− 1)) ∈ (c, 1)

8 Statement and proof of the main result

The following diagram indicates the various cases considered in Theorem 17; it will be
useful to refer back to it when reading the proof.
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r

p

0 1
4

1
2

1 2

1

3
2

2

Figure 1

ia ib* ib**

iia iib* iib**

iii

iv

Case ia: 3
2
≤ p <∞, 0 ≤ r ≤ 1

2

Case ib*: 3
2
≤ p <∞, 1

2
< r ≤ 1

Case ib**: 3
2
≤ p <∞, 1 < r ≤ 2

Case iia: 1 ≤ p < 3
2
, 3−2p

4
≤ r ≤ 1

2
, p 6= 2− 2r

Case iib*: 1 ≤ p < 3
2
, 1

2
< r ≤ 1

Case iib**: 1 ≤ p < 3
2
, 1 < r ≤ 2

Case iii: 1 ≤ p < 3
2
, p < 3

2
− 2r

Case iv: 1 ≤ p < 3
2
, p = 2− 2r

: boundary of a region : other relevant line

Theorem 17 There exist universal constants C, c > 0 and a function (r, p) 7→ cr,p from
[0, 2]× [1,∞) to (0,∞) such that the following is true. Let

(n, k, ε, r, p) ∈ N× N× (0, 1/2)× [0, 2]× [1,∞)

and let G be a random n× k matrix with i.i.d. standard normal random variables as en-
tries. Cases i-iv will be defined as in Figure 1 above. In each case variables E and F will be
defined, and as long as k ≤ min {E, F}, with probability at least 1−C exp (−min {E, F})
the following event occurs: for all x ∈ R

k,

(1− ε)Mr,p |x| ≤ |Gx|r,p ≤ (1 + ε)Mr,p |x|

where Mr,p denotes the median of |Ge1|r,p. E and F are defined as follows:

In Case ia: 3
2
≤ p <∞, 0 ≤ r ≤ 1

2
and

E =
cpn (lnn)2 [p+ (1− 2r) lnn]p ε2

(p+ lnn)2+p ≥
{

cr,pnε
2 : r 6= 1/2

cr,pn (lnn)
−p ε2 : r = 1/2

F =
cpn

2(1−r)
p (lnn)1+

2
p ε

2
p

(

1 + n
2−2r−p

p

)

(p+ lnn)1+
2
p

(

1 + |2− 2r − p| lnn
lnn

)max{ 2−p

p
,0}

≥











cr,pnε
2
p : p < 2− 2r

cr,pn (lnn)
−( 2

p
−1) ε

2
p : p = 2− 2r

cr,pn
2(1−r)

p ε
2
p : p > 2− 2r
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In Case ib*: 3
2
≤ p <∞, 1

2
< r ≤ 1 and

E =
cpppn2(1−r) (lnn)2 [1 + (2r − 1) lnn] ε2

[p+ (1− r) lnn]2+p ≥
{

cr,pn
2(1−r) (lnn)−(p−1) ε2 : r 6= 1

cr,pn
2(1−r) (lnn)3 ε2 : r = 1

F =
cpn

2(1−r)
p (lnn)1+

2
p ε

2
p

[p+ (1− r) lnn]1+
2
p

≥
{

cr,pn
2(1−r)

p ε
2
p : r 6= 1

cr,pn
2(1−r)

p (lnn)1+
2
p ε

2
p : r = 1

In Case ib**: 3
2
≤ p <∞, 1 < r ≤ 2 and

E =
cp (lnn)3 ε2

[1 + (r − 1) lnn]2
≥
{

cr,p (lnn) ε
2 : r 6= 1

cr,p (lnn)
3 ε2 : r = 1

F =
c (lnn)1+

2
p ε

2
p

[1 + (r − 1) lnn]
2
p

≥
{

cr,p (lnn) ε
2
p : r 6= 1

cr,p (lnn)
1+ 2

p ε
2
p : r = 1

In Case iia: 1 ≤ p < 3
2
, 3−2p

4
≤ r ≤ 1

2
, p 6= 2− 2r and

E =
cn [1 + (1− 2r) lnn]p ε2

(lnn)p
≥
{

cr,pnε
2 : r 6= 1/2

cr,pn (lnn)
−p ε2 : r = 1/2

F =
cn

2(1−r)
p ε

2
p

1 + n
2−2r−p

p

(

1 + |2− 2r − p| lnn
lnn

)1/p

≥











cr,pnε
2
p : p < 2− 2r

cr,pn (lnn)
− 1

p ε
2
p : p = 2− 2r

cr,pn
2(1−r)

p ε
2
p : p > 2− 2r

In Case iib*: 1 ≤ p < 3
2
, 1

2
< r ≤ 1 and

E =
cn2(1−r) (lnn)2 [1 + (2r − 1) lnn] ε2

[1 + (1− r) lnn]2+p ≥
{

cr,pn
2(1−r) (lnn)−(p−1) ε2 : r 6= 1

cr,pn
2(1−r) (lnn)3 ε2 : r = 1

F =
cn

2(1−r)
p (lnn)1+

1
p [1 + |2− 2r − p| lnn] 1p ε 2

p

[1 + (1− r) lnn]1+
2
p

≥
{

cr,pn
2(1−r)

p ε
2
p : r 6= 1

cr,pn
2(1−r)

p (lnn)1+
2
p ε

2
p : r = 1

In Case iib**: 1 ≤ p < 3
2
, 1 < r ≤ 2 and

E =
c (lnn)3 ε2

[1 + (r − 1) lnn]2
≥ cr,p (lnn) ε

2

F =
c (lnn)1+

2
p ε

2
p

[1 + (r − 1) lnn]
2
p

≥ cr,p (lnn) ε
2
p

In Case iii: 1 ≤ p < 3
2
, p < 3

2
− 2r and

E = cnε2

F =
cn [1 + (1− 4r) lnn]1−

1
p ε

2
p

(lnn)1−
1
p

≥ cr,pnε
2
p
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In Case iv: 1 ≤ p < 3
2
, p = 2− 2r and

E =
cn [1 + (1− 2r) lnn] ε2

lnn
≥
{

cr,pnε
2 : r 6= 1/2

cr,pn (lnn)
−1 ε2 : r = 1/2

F =
cnε

2
p

(lnn)
2−p

p

The parameters E and F in Theorem 17 can be bounded as follows:

E ≥















cr,pnε
2 : 0 ≤ r < 1/2

cr,pn (lnn)
−p ε2 : r = 1/2

cr,pn
2(1−r) (lnn)−(p−1) ε2 : 1/2 < r < 1

cr,p (lnn)
3 ε2 : r = 1

and

F ≥































cr,pnε
2
p : 0 ≤ r ≤ 1/2, p < 2− 2r

cr,pn (lnn)
1− 2

p ε
2
p : 0 ≤ r ≤ 1/2, p = 2− 2r

cr,pn
2(1−r)

p ε
2
p : 0 ≤ r ≤ 1/2, p > 2− 2r

cr,pn
2(1−r)

p ε
2
p : 1/2 < r < 1

cr,p (lnn)
1+ 2

p ε
2
p : r = 1

For n ≥ n0(r, p), the coefficient cr,p can be written explicitly in terms of r and p, as can
n0(r, p).

Proof. Let G be a random matrix with i.i.d. standard normal random variables as
entries, and let θ ∈ Sn−1. Gθ therefore has the standard normal distribution in R

n.
Setting ψ(x) =

∑

i−rxp[i],

|∇ψ(x)| = p

(

n
∑

i=1

i−2rx
2(p−1)
[i]

)1/2

(22)

which is valid for all x with distinct non-zero coordinates. Fix any t > 0. With (22) in
mind, for j ∈ {0, 1} set

Aj =

{

x ∈ R
n : |x|♯ ≤

(

4

3

)j

S

}

where |·|♯ and S (and R below) are as in Theorem 16. The cases in that theorem overlap,
which is not a problem as long as you pick a case that applies to the values of p and r in
question, and stick with that case. We shall apply the cases as follows:

• If 3/2 ≤ p <∞ use Case I.
• If 1 ≤ p < 3/2 and p ≥ 3/2− 2r and p 6= 2− 2r use Case II.
• If 1 ≤ p < 3/2 and p < 3/2− 2r use Case III.
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• If 1 ≤ p < 3/2 and p = 2− 2r use Case IV (either IVa or IVb, whichever applies).

Since r ≤ 2, the bounds in Theorem 16 simplify slightly, and can be written as follows.
In each of the cases below, definitions are given for A and B, and in each case R ≤
A+Bt2(p−1), where R is as defined in Theorem 16 (with the same value of t that appears
here). Conditions defining the case (i.e. i, ii, iii, iv) come first and are either without
brackets or with square brackets [...], the square brackets indicating a redundant condition.
Conditions defining the sub-case (i.e. a, b) come last and are in parentheses (...).

Case ia: 3/2 ≤ p <∞ (and 0 ≤ r ≤ 1/2),

A =
Cpppn1−2r (lnn)p

[p+ (1− 2r) lnn]p

B = Cp

(

lnn

1 + |2− 2r − p| lnn

)max{2−p,0}
(

1 + n2−2r−p
)

Case ib: 3/2 ≤ p <∞ (and 1/2 < r ≤ 2),

A =
Cp (lnn)p

1 + (2r − 1) lnn

B = Cp

(

lnn

1 + |2− 2r − p| lnn

)max{2−p,0}
(

1 + n2−2r−p
)

Case iia: 1 ≤ p < 3/2, p ≥ 3/2− 2r, p 6= 2− 2r (and 0 ≤ r ≤ 1/2),

A =
Cn1−2r (lnn)p

[1 + (1− 2r) lnn]p

B = C
1 + n2−2r−p

1 + |2− 2r − p| lnn lnn

Case iib: 1 ≤ p < 3/2, [p ≥ 3/2− 2r], [p 6= 2− 2r] (and 1/2 < r ≤ 2),

A = C
(lnn)p

1 + (2r − 1) lnn

B = C
1 + n2−2r−p

1 + |2− 2r − p| lnn lnn

Case iii: 1 ≤ p < 3/2 and p < 3/2− 2r,

A = Cn1−2r

B = Cn2−2r−p

(

lnn

1 + (1− 4r) lnn

)p−1

Case iv: 1 ≤ p < 3/2 and p = 2− 2r,

A = Cmin
{

(1− 2r)−1, lnn
}

n1−2r

B = C (lnn)2−p
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By Theorem 16, γn (A1) ≥ γn (A0) ≥ 1−C exp (−t2/2). Since A1 is convex, a bound on
the gradient transfers directly to a bound on the Lipschitz constant (using Lemma 15 to
ignore points of non-differentiability), and Lip (ψ|A1) ≤ CpR1/2. We may now extend the
restriction ψ|A1 to a Lipschitz function ψ∗ : Rn → R such that Lip (ψ∗) = Lip (ψ|A1). By
a result of Schechtman (see his comments near the end of the paper), as long as k ≤ ct2,
with probability at least 1− C exp (−ct2), the following event occurs: for all θ ∈ Sk−1,

|ψ∗ (Gθ)− Eψ∗ (Gθ)| ≤ tLip (ψ∗) (23)

Here it is essential to have a result that applies to Lipschitz functions besides just norms
(the most typical application of Schechtman’s result is to norms). We now show that for
all θ ∈ Sk−1, Gθ ∈ A1 and therefore ψ∗ (Gθ) = ψ (Gθ). To do this, consider a 1/4-net
N ⊂ Sk−1 with cardinality |N | ≤ 12k. By the union bound, with probability at least
1− 12kC exp (−ct2) ≥ 1− C exp (−c2t2), for all ω ∈ N , Gω ∈ A0. Now for any θ ∈ Sk−1

write θ =
∑∞

i=0 εiωi, where 0 ≤ εi ≤ 4−i and ωi ∈ N . Then

|Gθ|♯ ≤
∞
∑

i=0

4−i |Gωi|♯ ≤
4

3
S

which shows that Gθ ∈ A1. (23) can then be written as

|ψ (Gθ)− Eψ∗ (Gθ)| ≤ tCpR1/2

valid for all θ ∈ Sk−1. It is an elementary calculation that concentration about any point
implies concentration about the median, with slightly modified constant, so

∣

∣

∣

∣

ψ (Gθ)

Mψ (Gθ)
− 1

∣

∣

∣

∣

≤ CptR1/2

Mψ (Gθ)
(24)

Choose t so that

4p−1 C
ptR1/2

Mψ (Gθ)
= ε (25)

and assume that ε ∈ (0, 2/p) so that pε/4 < 1/2 (in order to satisfy |1− u| ≤ 1/2 below).
The bounds for ε ∈ [2/p, 1/2) will follow from the bounds for ε ∈ (0, 2/p) by monotonicity
and by changing the value of C that appears in Cp. Using

∣

∣1− u1/p
∣

∣ ≤ p−121−1/p |1− u|,
which holds when |1− u| ≤ 1/2, with u = ψ (Gθ) /Mψ (Gθ), (24) implies

∣

∣

∣

∣

∣

ψ (Gθ)1/p

Mψ (Gθ)1/p
− 1

∣

∣

∣

∣

∣

≤ 2p−1 C
ptR1/2

Mψ (Gθ)
< ε

It then follows from homogeneity that

(1− ε) |x|M |Ge1|r,p ≤ |Gx|r,p ≤ (1 + ε) |x|M |Ge1|r,p
for all x ∈ R

k. (25) can be used to bound t in terms of ε, since R has been expressed
in terms of t in Theorem 16, and in Lemma 13 Mψ (Gθ) is bounded below in t. The
sufficient condition k ≤ ct2 and the probability bound 1 − C exp (−ct2) can then be
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written in terms of ε. The inversion can be simplified by converting a sum to a max and
using the fact that if f(x) = max {g(x), h(x)} with g, h continuous and increasing, then
f−1(x) = min {g−1(x), h−1(x)}. The result is that,

t2 ≥ min







cpA−1

(

M

n
∑

i=1

i−rXp
[i]

)2

ε2, cB−1/p

(

M

n
∑

i=1

i−rXp
[i]

)2/p

ε2/p







where A and B are as defined in cases i-iv above, and X = Ge1 follows the standard
normal distribution in R

n. Cases ib and iib split into cases ib*, ib**, iib* and iib**,
depending on whether 1/2 < r ≤ 1 or 1 < r ≤ 2. The final bounds can then be written
as in the statement of the theorem.

9 The general case

Here we study the norm

|x|ω,p =
(

n
∑

i=1

ωix
p
[i]

)1/p

where (ωi)
n
1 is any non-increasing sequence in [0, 1] with ω1 = 1. Our main interest is in

the case 1 ≤ p <∞, however our proof will force us to consider also 0 < p < 1. The proof
of Lemma 14 generalizes easily and we see that

sup







(

n
∑

i=1

ωiθ
p
[i]

)1/p

: θ ∈ Sn−1







=







(

∑n
1 ω

2
2−p

i

)
2−p

2p

: p ∈ [1, 2)

1 : p ∈ [2,∞)

and generalizing Lemma 13, for 0 < p <∞,

M |X|ω,p ≤ C

(

n
∑

i=1

ωi

(

ln
n

i

)p/2
)1/p

with the reverse inequality with C replaced by c. For 1 ≤ p < ∞, |·|ω,p is a norm, while
for 0 < p < 1 the triangle inequality is replaced with

|x+ y|ω,p ≤ 21/p
(

|x|ω,p + |y|ω,p
)

(proof just as in the classical case of ℓnp ), and |·|ω,p is no longer a norm but a quasi-norm.
For an infinite sum, using induction one can show that

∣

∣

∣

∣

∣

∞
∑

i=1

xi

∣

∣

∣

∣

∣

ω,p

≤
∞
∑

i=1

2i/p |xi|ω,p

As sometimes happens, the general result is easier to state and prove than is the special
case, since the complexity is hidden. The proof of Theorem 18 below is a variation of the
proof of Theorem 17, using the quasi-norm property instead of the triangle inequality.
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Theorem 18 There exists a universal constant c > 0 such that the following is true. Let

(n, k, ε, p) ∈ N× N× (0, 1/2)× [1,∞)

and let (ωi)
n
1 be any non-increasing sequence in [0, 1] with ω1 = 1. Let |·|ω,p denote the

corresponding Lorentz norm, and let G be a random n × k matrix with i.i.d. standard
normal random variables as entries. If p 6= 1 set

d =

(

1 +
1

p− 1

)−1

min











cp
(

∑n
i=1 ωi

(

ln n
i

)p/2
)2

ε2

∑n
i=1 ω

2
i

(

ln n
i

)p−1 , cB−1/p

(

n
∑

i=1

ωi

(

ln
n

i

)p/2
)2/p

ε2/p











where

B =















∑n
i=1 ω

2
i i

−(p−1) : 1 < p < 3/2
(

∑n
i=1 ω

2
2−p

i

)2−p

: 3/2 ≤ p < 2

1 : 2 ≤ p <∞
and if p = 1 set

d =
c
(

∑n
i=1 ωi

(

ln n
i

)1/2
)2

ε2

∑n
i=1 ω

2
i

Assume that k ≤ d. With probability at least 1− 2e−d the following event occurs: for all
x ∈ R

k,
(1− ε) |x|M |Ge1|ω,p ≤ |Gx|ω,p ≤ (1 + ε) |x|M |Ge1|ω,p

Proof. First, assume that p 6= 1 (we leave the case p = 1 to the reader). For x ∈ R
n, set

ψ (x) =
n
∑

i=1

ωix
p
[i] |x|♯ =

(

n
∑

i=1

ω2
i x

2(p−1)
[i]

)
1

2(p−1)

and so

|∇ψ(x)| = p

(

n
∑

i=1

ω2
i x

2(p−1)
[i]

)1/2

which is valid for all x with distinct non-zero coordinates. The points of non-differentiability
are not a problem, by Lemma 15. Consider any θ ∈ Sn−1. Set R = A+CpBt2(p−1), where

A = Cp
∑n

i=1 ω
2
i

(

ln n
i

)p−1
and B is defined in the statement of the theorem. For j ∈ {0, 1},

set

Aj =

{

x ∈ R
n : |x|♯ ≤

(

4q

3

)j

R
1

2(p−1)

}

where

q =

{

2−1/(p−1) : 1 < p < 3/2
1 : 3/2 ≤ p <∞

For 1 < p < 3/2 we now use (4) from Lemma 12 on order statistics from the standard
normal distribution, as used in Case II of Theorem 16, and for 3/2 ≤ p < ∞ we use
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Gaussian concentration applied to |·|♯. The result of this is that γn (A1) ≥ γn (A0) ≥
1 − C exp (−ct2). It follows by definition of A1 and by its convexity, and the expression
for |∇ψ| that Lip (ψ|A1) ≤ CpR1/2. By the extension property of real valued Lipschitz
functions on metric spaces, ψ|A1 can be extended to a function ψ∗ : Rn 7→ R such that
Lip (ψ∗) = Lip (ψ|A1). By Schechtman’s result (Theorem 7 here), as long as k ≤ ct2, the
following event occurs with probability at least 1− C exp (−ct2): for all θ ∈ Sk−1,

|ψ∗ (Gθ)−Mψ∗ (Gθ)| ≤ CtLip (ψ∗)

We now show that for all θ ∈ Sk−1, Gθ ∈ A1 and therefore ψ (Gθ) = ψ∗ (Gθ). Let
N ⊂ Sk−1 be a q/4-net in Sk−1. The standard volumetric bound shows that N can
be chosen so that |N | ≤ (12/q)k. By the bound on γn (A0) and the union bound, with
probability at least 1−C (12/q)k exp (−ct2) ≥ 1−C exp (−c′t2), the following event occurs:
for all θ ∈ N , Gθ ∈ A0, i.e.

|Gθ|♯ ≤ R
1

2(p−1)

Now for any θ ∈ Sk−1, write θ =
∑∞

1 εiθi, where 0 ≤ εi ≤ (q/4)i and θi ∈ N , to conclude
(using the quasi-norm property),

|Gθ|♯ ≤ R
1

2(p−1)

∞
∑

i=0

(q)−(i−1) (q/4)i ≤ 4q

3
R

1
2(p−1)

So Gθ ∈ A1 as desired, and ψ∗ (Gθ) = ψ (Gθ). So, conditioning on the events dealt with
above, for all θ ∈ Sk−1,

|ψ (Gθ)−Mψ∗ (Gθ)| ≤ CtLip (ψ)

The rest of the proof is identical to the proof of Theorem 17, and we may change the
coefficient of e−d from C to 2 by changing the value of c.

The bounds in Theorem 18 are non-optimal when:

• the coefficient sequence (ωi)
n
1 approximates (i−r)

n
1 , for p = 2− 2r (1/4 < r < 1/2), and

in this case we refer the reader to Theorem 17 and Corollary 2,
• when r > 1 in which case we refer the reader to Theorem 3, and when
• p → 1 (p 6= 1), which is due to the presence of the factor 1/(1 + 1/(p − 1)), but this
is not an issue in the asymptotic case n → ∞ while ω and p remain fixed. We refer the
reader to Theorem 17 and Corollary 4 for estimates that do not include this extra factor.
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