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Abstract

In this thesis we study certain vector lattice properties of the space C(X) of
continuous functions on a given topological space X. We show that C(X)
is always relatively uniformly complete, and characterize those X for which
C(X) is Dedekind complete. We characterise the bands and projection bands
in C(X), for X a Tychonoff space, and characterize those Tychonoff spaces
X for which C(X) has the projection property.
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Introduction

Many of the space of interest in functional analysis are naturally equipped
with a partial order which is compatible with linear structure of the space,
yielding a partially ordered vector space. For instance, spaces of continu-
ous, real-valued functions on a topological space and spaces of measurable
functions on a measure space may be ordered pointwise. A particularly well-
studied class of such spaces are the Riesz spaces; i.e. those partially ordered
vector spaces which are also lattices (see Section 1.1 for the definition). The
function spaces mentioned above are all examples of vector lattices.

There are several notions of completeness for Riesz spaces. Among these,
relatively uniform completeness, Dedekind completeness and the projection
property are the most important. In this thesis, we study these completeness
concepts in the context of the Riesz space C(X) of continuous, real-valued
functions on a topological space X. We show that C(X) is always relatively
uniformly complete. On the other hand, C(X) fails to be either Dedekind
complete or to satisfy the projection property for all ”reasonable” topolog-
ical spaces. We prove that C(X) is Dedekind complete if and only if X is
extremally disconnected, if and only if C(X) has the projection property.

The thesis is structured as follows. In Chapter 1 we recall general defini-
tions and results from the theory of Riesz spaces. In particular, Section 1.1
deals with elementary identities and inequalities in Riesz spaces. In Section
1.2 we introduce completeness properties in Riesz spaces: Relatively uniform
completeness and Dedekind completeness. Section 1.3 deals with order con-
vergence, and Section 1.4 concerns ideals and bands in Riesz spaces.

In Chapter 2 we consider the vector lattice C(X). In Section 2.1 we collect
such preliminary results and definitions as are required for the presentation
of the results in the rest of the chapter. In Section 2.2 we show that C(X) is
relatively uniformly complete, and in Section 2.3 we characterise those X for
which C(X) is Dedekind complete. Finally, we study bands and projection
bands in C(X) in Section 2.4.
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Chapter 1

Riesz Spaces

1.1 Elementary identities and inequalities

In this section we collect some basic results on Riesz spaces. These can be
found in [5, Chapter 1] or [11, Chapter 1].

Definition 1.1.1. Let E be a topological space equipped with the relation
≤ with the following properties:

(i) For all f ∈ E we have that f ≤ f .

(ii) For all f, g ∈ E, if f ≤ g and g ≤ f then f = g.

(iii) For all f, g, h ∈ E, if f ≤ g and g ≤ h then f ≤ h.

Then E is a partially ordered space.

Definition 1.1.2. Let E be a partially ordered space. We call E a lattice if
for every x, y ∈ E, {x, y} has a supremum in E, denoted by x ∨ y, and an
infimum in E, denoted by x ∧ y.

Definition 1.1.3. Let E be a real vector space.

(i) If E is partially ordered in such a manner that the partial ordering is
compatible with the algebraic structure (i.e. if f, g ∈ E, then f ≤ g
implies that f + h ≤ g + h for every h ∈ E, and 0 ≤ f implies 0 ≤ af
for any a ∈ [0,∞)), E is called a partially ordered vector space.

(ii) E is called a Riesz space if E is both a lattice and a partially ordered
vector space.
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From this point on we will assume that E is always a Riesz space.

Definition 1.1.4. The collection E+ = {u ∈ E : u ≥ 0} is called the positive
cone of E. Furthermore, for any f ∈ E we define f+ = f ∨0, f− = (−f)∨0,
and |f | = (−f) ∨ f .

Theorem 1.1.5. Let D be a non-empty subset of E and assume that f0 =
supD exists. If g ∈ E, then f0 ∧ g = sup{f ∧ g : f ∈ D}. Similarly if
f1 = inf D exists, f1 ∨ g = sup{f ∨ g : f ∈ D}.

Proof. Note that f0 ≥ f for all f ∈ D so f0 ∧ g ≥ f ∧ g for all f ∈ D. So
f0 ∧ g is an upper bound for {f ∧ g : f ∈ D}. Now let u ∈ L be any upper
bound for {f ∧g : f ∈ D}. Then it follows that u ≥ f ∧g = f +g− (f ∨g) ≥
f + g − (f0 ∨ g) for all f ∈ D. So we have that u − g + (f0 ∨ g) ≥ f for all
f ∈ D and hence by the supremum criterion u− g+ (f0 ∨ g) ≥ f0. Therefore
u ≥ f0 + g − (f0 ∨ g) = f0 ∧ g. This holds for all such upper bounds u so
f0 ∧ g is the least upper bound of {f ∧ g : f ∈ D}.

The second statement is proven in similar fashion. We have f1 ≤ f for
all f ∈ D so f1 ∨ g ≤ f ∨ g for all f ∈ D. So f1 ∨ g is a lower bound for
{f ∨g : f ∈ D}. Now let v ∈ L be any lower bound for {f ∨g : f ∈ D}. Then
it follows that v ≤ f ∨ g = f + g − (f ∧ g) ≤ f + g − (f1 ∧ g) for all f ∈ D.
So we have that v− g+ (f1 ∧ g) ≤ f for all f ∈ D and hence by the infimum
criterion v − g + (f1 ∧ g) ≤ f1. Therefore v ≤ f1 + g − (f1 ∧ g) = f1 ∨ g.
This holds for all such lower bounds v so f1 ∨ g is the greatest lower bound
of {f ∨ g : f ∈ D}.

Theorem 1.1.6. Let f, g, h ∈ E. The following hold:

(i) −(f ∨ g) = (−f) ∨ (−g) and −(f ∧ g) = (−f) ∧ (−g).

(ii) (f + h) ∨ (g + h) = (f ∨ g) + h and (f + h) ∧ (g + h) = (f ∧ g) + h.

(iii) (f − g) ∨ (f − h) = f − (g ∧ h) and (f − g) ∧ (f − h) = f − (g ∨ h).

(iv) (af) ∨ (ag) = a(f ∨ g) and (af) ∧ (ag) = a(f ∧ g) for every a ∈ R+.

(v) (f ∨ g) ∨ h = f ∨ (g ∨ h) and (f ∧ g) ∧ h = f ∧ (g ∧ h).

(vi) f+, f−, |f | ∈ E+; f+ ∧ f− = 0; and f+ ∨ f− = |f |.

(vii) f = 0 if and only if |f | = 0.
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(viii) (f ∨ g) + (f ∧ g) = f + g and (f ∨ g)− (f ∧ g) = |f − g|.

(ix) |f + g| ≤ |f |+ |g| and ||f | − |g|| ≤ |f − g|.

Proof. (i): First note that f ≤ f ∨ g and g ≤ f ∨ g. So −(f ∨ g) ≤ −f and
−(f ∨ g) ≤ −g and hence −(f ∨ g) ≤ (−f)∧ (−g). Now consider any k ∈ E
such that k ≤ (−f) ∧ (−g). It follows that f ≤ −k and g ≤ −k and hence
f ∨ g ≤ −k. So k ≤ −(f ∨ g) and therefore −(f ∨ g) = (−f) ∧ (−g). In the
same way it follows that −(f ∧ g) = (−f) ∨ (−g).

(ii): First note that f +h ≤ (f ∨g)+h and g+h ≤ (f ∨g)+h and hence
(f+h)∨(g+h) ≤ (f∨g)+h. Now consider any k ∈ E such that f+h ≤ k and
g+h ≤ k. It follows that f ≤ k−h and g ≤ k−h and hence (f ∨g) ≤ k−h.
Therefore (f ∨ g) + h ≤ k and hence (f + h) ∨ (g + h) = (f ∨ g) + h. Using
a similar method, it can be shown that (f + h) ∧ (g + h) = (f ∧ g) + h.

(iii): Since −(g ∧ h) = (−g) ∧ (−h) and −(g ∨ h) = (−g) ∧ (−h) from
(i), the result follows from (ii).

(iv): The proof is trivial for a = 0. For any a > 0, af ≤ a(f ∨ g) and
ag ≤ a(f ∨ g). Now consider any k ∈ E such that af ≤ k and ag ≤ k.
Then f ≤ 1

a
k and g ≤ 1

a
k and hence f ∨ g ≤ 1

a
k. It follows a(f ∨ g) ≤ k so

a(f ∨ g) ≤ (af)∨ (ag) and therefore a(f ∨ g) = (af)∨ (ag). In the same way
it can be shown that a(f ∧ g) = (af) ∧ (ag).

(v): First note that f∨g ≤ f∨(g∨h) since g ≤ g∨h. Also h ≤ (f∨(g∨h)
and hence (f ∨ g) ∨ h ≤ f ∨ (g ∨ h). Now consider any k ∈ E such that
(f ∨ g) ∨ h ≤ k. We have that f ≤ f ∨ g ≤ k and g ≤ f ∨ g ≤ k.
Also h ≤ k, so g ∨ h ≤ k and therefore f ∨ (g ∨ h) ≤ k. It follows that
f ∨ (g ∨ h) ≤ (f ∨ g)∨ h and hence (f ∨ g)∨ h = f ∨ (g ∨ h). A similar proof
shows that (f ∧ g) ∧ h = f ∧ (g ∧ h).

(vi): Firstly f+, f− ∈ E+ by definition. Also by definition f ≤ |f | and
−f ≤ |f |. It follows that |f | ∈ E+ as 0 ≤ 2|f |. It follows from Theorem
1.1.5 that

f+ ∧ f− = (f ∨ 0) ∧ ((−f) ∨ 0) = 0 ∧ (f ∨ (−f)) = 0 ∧ |f | = 0.

It also follows that

f+ ∨ f− = (f ∨ 0) ∨ ((−f) ∨ 0) = 0 ∨ (f ∨ (−f)) = 0 ∨ |f | = |f |.

(vii): If f = 0 then −f = 0 and hence |f | = 0. Now assuming |f | = 0,
we have that f ≤ 0 and −f ≤ 0. So 0 ≤ f and f = 0.
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(viii): We have the following:

f ∨ g =
1

2
(2(f ∨ g))

=
1

2
((2f) ∨ (2g)) by (iv)

=
1

2
((f + g) + (f − g) ∨ (g − f)) by (ii)

=
1

2
(f + g) +

1

2
|f − g|.

We also have

f ∧ g =
1

2
(2(f ∧ g))

=
1

2
((2f) ∧ (2g)) by (iv)

=
1

2
((f + g)− (f − g) ∨ (g − f)) by (ii)

=
1

2
(f + g)− 1

2
|f − g|.

Therefore (f ∨ g) + (f ∧ g) = f + g and (f ∨ g)− (f ∧ g) = |f − g|.

(ix): Since f ≤ |f |, −f ≤ |f |, g ≤ |g| and −g ≤ |g|, it follows that
f+g ≤ |f |+|g| and −(f+g) = −f−g ≤ |f |+|g|. Therefore |f+g| ≤ |f |+|g|.
It now follows that |f | ≤ |f − g| + |g| and hence |f | − |g| ≤ |f − g|. By
similar argument we have that |g| − |f | ≤ |g − f | = |f − g|, and therefore
||f | − |g|| ≤ |f − g|.

We use these identities to prove the Riesz decomposition property and
Birkoff’s inequalities.

Theorem 1.1.7. [Riesz decomposition property] Let u, z1, z2 ∈ E+ be such
that u ≤ z1 + z2. Then there exists u1, u2 ∈ E+ satisfying u = u1 + u2 and
u1 ≤ z1 and u2 ≤ z2.

Proof. Define u1 = u ∧ z1 and u2 = u − u1. Clearly 0 ≤ u1 ≤ z1 and
u = u1 + u2. Also u1 ≤ u so u2 ∈ E+. Lastly by Theorem 1.1.6 (ii),

u2 = u− u1 = u− (u ∧ z1) = (u− z1) ∨ 0 ≤ z2 ∨ 0 = z2.
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Theorem 1.1.8. [Birkoff’s inequalities] The following inequalities hold for
all x, y, z ∈ E:

(i) |x ∨ z − y ∨ z| ≤ |x− y|

(ii) |x ∧ z − y ∧ z| ≤ |x− y|.

Proof. Firstly we know that |p − q| = p ∨ q − p ∧ q for any p, q ∈ E from
the lattice identities established in Theorem 1.1.6. Now substituting p with
x ∨ z and q with y ∨ z we have the following:

|x ∨ z − y ∨ z| = (x ∨ z) ∨ (y ∨ z)− (x ∨ z) ∧ (y ∨ z)

= (x ∨ (z ∨ (y ∨ z)))− (z ∨ x) ∧ (z ∨ y)

= x ∨ (y ∨ z)− z ∨ (x ∧ y)

= (x ∨ y) ∨ z − (x ∧ y) ∨ z.

Also substituting p with x ∧ z and q with y ∧ z we have the following:

|x ∧ z − y ∧ z| = (x ∧ z) ∨ (y ∧ z)− (x ∧ z) ∧ (y ∧ z)

= (z ∧ x) ∨ (z ∧ y)− (x ∧ (z ∧ (y ∧ z)))

= z ∧ (x ∨ y)− x ∧ (y ∧ z)

= (x ∨ y) ∧ z − (x ∧ y) ∧ z.

Therefore it follows:

|x ∨ z − y ∨ z|+ |x ∧ z − y ∧ z|
= (x ∨ y) ∨ z − (x ∧ y) ∨ z + (x ∨ y) ∧ z − (x ∧ y) ∧ z
= ((x ∨ y) ∨ z + (x ∨ y) ∧ z)− ((x ∧ y) ∨ z + (x ∧ y) ∧ z)

= ((x ∨ y) + z)− ((x ∧ y) + z)

= x ∨ y − x ∧ y
= |x− y|.

Since |x∨ z− y∨ z|, |x∧ z− y∧ z| ∈ E+ we have that |x∨ z− y∨ z| ≤ |x− y|
and |x ∧ z − y ∧ z| ≤ |x− y|.

Notation 1.1.9. For every x, y ∈ E, we write x ⊥ y whenever |x| ∧ |y| = 0.

Theorem 1.1.10. If x ∈ E then the following hold:
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(i) x = x+ − x−

(ii) If x ≥ 0 then x = x+ and if x ≤ 0 then −x = x−.

(iii) x+ ⊥ x−.

(iv) If x = u− v where u ≥ 0 ,v ≥ 0 and u ⊥ v, then u = x+ and v = x−.

Proof. The proofs will make use of Theorem 1.1.6. Let x ∈ E.
(i):

x+ − x− = (x ∨ 0)− ((−x) ∨ 0)

= (x ∨ 0)− ((−x) ∨ (−0))

= (x ∨ 0)− (−(x ∧ 0))

= (x ∨ 0) + (x ∧ 0)

= x+ 0

= x.

(ii): If x ≥ 0 it follows that x = x∨0 = x+. Now if x ≤ 0 then (−x) ≥ 0.
It follows that −x = (−x) ∨ 0 = x−.

(iii): Since x+, x− ∈ E+, the result follows directly from the fact that
x+ ∧ x− = |x+| ∧ |x−| = 0.

(iv): Since u ⊥ v, u ≥ 0 and v ≥ 0 we have that

|u| ∧ |v| = u ∧ v = 0.

We are given that x = u− v and hence we have the following:

x+ = x ∨ 0

= (u− v) ∨ (u− u)

= u+ (−v) ∨ (−u)

= u− v ∧ u
= u.

We also have the following:

x− = (−x) ∨ 0

= (v − u) ∨ (v − v)

= v + (−v) ∨ (−u)

= v − u ∧ v
= v.
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So x+ = u and x− = v.

Definition 1.1.11. A Riesz space E is called Archimedean if for every u ∈
E+,

inf{n−1u : n ∈ N} = 0.

Example 1.1.12. Consider the following spaces:

(i) The set R equipped with the standard ordering and vector space struc-
ture is Archimedean as a result of the Archimedean property of R.

(ii) Consider R2 equipped with coordinatewise vector space structure, and
the relation � defined by 〈x1, y1〉 � 〈x2, y2〉 when either x1 < x2 or
x1 = x2 and y1 ≤ y2. This space is not Archimedean. We can see
this as 〈0, 5〉 is a lower bound of {n−1u : n ∈ N} for u = 〈4, 6〉, but
〈0, 0〉 � 〈0, 5〉.

(iii) For a topological space X, the set of all real-valued continuous functions
on X, denoted by C(X), is an Archimedean Riesz space.

For the rest of the document we shall consider E to be an Archimedean
Riesz space.
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1.2 R.u. completeness and Dedekind com-

pleteness

We now recall the relevant completeness properties in Riesz spaces. These
can be found in [11, Sections A, B], for instance.

Definition 1.2.1. Let E be a Riesz space, u ∈ E and (un) a sequence in E.
We say that (un) is relatively uniformly (r.u.) convergent to u if there exists
e ∈ E+ such that for every ε > 0 there exists Nε ∈ N so that if n ≥ Nε then
|un − u| ≤ εe.

Definition 1.2.2. Let E be a Riesz space, and (un) a sequence in E. We say
that (un) is relatively uniformly (r.u.) Cauchy if there exists e ∈ E where
e ≥ 0 such that for every ε > 0 there exists Mε ∈ N so that if n ≥ Nε then
|un − um| ≤ εe.

Remark 1.2.3. Note the element e referred to in the above two definitions
is known as a regulator for the sequence (un).

Definition 1.2.4. Let E be a Riesz space. Then E is r.u. complete if every
r.u. Cauchy sequence in E is r.u. convergent in E.

Proposition 1.2.5. Let E be a Riesz space, and let (un) be a r.u. convergent
sequence in E. Then (un) is r.u. Cauchy.

Proof. Suppose that (un) is r.u. convergent to some u ∈ E, and let e ∈ E+

be a regulator for the sequence (un). Fix any ε > 0 and note that there
exists Nε ∈ N so that |un − u| ≤ ε

2
e whenever n ≥ Nε. Now assuming that

m,n ∈ N where m,n ≥ Nε we have that

|un − um| = |un − u+ u− um| ≤ |un − u|+ |u− um| ≤
ε

2
e+

ε

2
e = εe.

This holds for all ε > 0, so (un) is r.u. Cauchy.

Definition 1.2.6. We say that E is Dedekind complete if for non-empty
every subset A ⊂ E, if A is bounded above then supA exists in E.
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1.3 Order Convergence

An important concept in the theory of Riesz spaces is that of order conver-
gence. In this section we recall the definition of an order convergent net and
collect some basic results dealing with order convergence. Several different
definitions of order convergence of nets are used in the literature, see for
instance [1]. We use the definition of [2].

Notation 1.3.1. For a net (xα) in E, we write xα ↓ 0 if (xα) is a decreasing
net with infimum 0.

Definition 1.3.2. For a net (xα) in E and x ∈ E, we write xα
o→ x if there

exists a net (qβ) satisfying qβ ↓ 0 such that for every β there exists α0 for
which if α ≥ α0 then |xα − x| ≤ qβ. We say that (xα) converges in order to
x.

The following proposition establishes the uniqueness of order limits in an
Archimedean Riesz space if the limit exists.

Proposition 1.3.3. Let (xα) be a net in E such that xα
o→ x and xα

o→ y
for some x, y ∈ E. Then x = y.

Proof. Since xα
o→ x, there exists (qβ) where qβ ↓ 0 such that for each β

there exists α0 so that |xα − x| ≤ qβ whenever α ≥ α0. Also since xα
o→ y,

there exists (pγ) where pγ ↓ 0 such that for each γ there exists α1 so that
|xα− x| ≤ pγ whenever α ≥ α1. Consider rβ,γ = qβ + pγ and suppose α ≥ α0

and α ≥ α1. Note that rβ,γ ↓ 0. We have

|x− y| ≤ |x− xα|+ |xα − y| ≤ qβ + pγ = rβ,γ.

So |x− y| is a lower bound of the net (rβ,γ) as this holds for all β and γ. It
follows that |x− y| = 0, and x− y = 0. Hence x = y.

Proposition 1.3.4. Suppose (xα) and (yα) are nets in E such that xα
o→ x

and yα
o→ y, with x, y ∈ E. Let λ ∈ R. The following holds:

(i) xα + yα
o→ x+ y.

(ii) λxa
o→ λx.

(iii) xα ∨ yα
o→ x ∨ y.
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(iv) xα ∧ yα
o→ x ∧ y.

(v) xα
+ o→ x+.

(vi) xα
− o→ x−.

(vii) |xα|
o→ |x|.

Proof. (i): There exist nets (qβ) and (pγ) satisfying qβ ↓ 0 and pγ ↓ 0 such
that, for all β and γ, there exists α0, for which |xα − x| ≤ qβ holds for every
α ≥ α0 and there exists α1 for which |xα − x| ≤ pγ holds for every α ≥ α1.
Now the net (rβ,γ) where rβ,γ = qβ + pγ satisfies rβ,γ ↓ 0. Let α2 be a mutual
upper bound for α0 and α1. Taking any α ≥ α2, we get that

|(xα + yα)− (x+ y)| ≤ |xα − x|+ |yα − y| ≤ qβ + pγ = rβ,γ.

Therefore xα + yα
o→ x+ y.

(ii): For each β there exists α0 for which |xa − x| ≤ qβ holds for every
α ≥ α0. Now the net (|λ|qβ) satisfies |λ|qβ ↓ 0 and taking any α ≥ α0, we
also have that

|λxα − λx| = |λ(xα − x)| = |λ||(xα − x)| ≤ |λ|qβ.

Therefore λxa
o→ λx.

(iii): There exist nets (qβ) and (pγ) satisfying qβ ↓ 0 and pγ ↓ 0 such that
for a given β and a given γ there exists α0 for which |xα − x| ≤ qβ holds
for every α ≥ α0 and there exists α1 for which |xα − x| ≤ pγ hold for every
α ≥ α1. The net (rβ,γ) where rβ,γ = qβ + pγ satisfies rβ,γ ↓ 0. Let α2 be a
mutual upper bound for α0 and α1. Taking any α ≥ α2, we get that from
Birkoff’s inequalities, Theorem 1.1.8

|(xα ∨ yα)− (x ∨ y)| = |(xα ∨ yα)− (x ∨ yα) + (x ∨ yα)− (x ∨ y)|
≤ |(xα ∨ yα)− (x ∨ yα)|+ |(yα ∨ x)− (y ∨ x)|
≤ |xα − x|+ |yα − y| (Birkoff’s Inequalities)

≤ qβ + pγ

= rβ,γ.

Therefore xα ∨ yα
o→ x ∨ y.

(iv): There exist nets (qβ) and (pγ) satisfying qβ ↓ 0 and pγ ↓ 0 such that
for a given β and a given γ there exists α0 for which |xα − x| ≤ qβ holds
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for every α ≥ α0 and there exists α1 for which |xα − x| ≤ pγ hold for every
α ≥ α1. The net (rβ,γ) where rβ,γ = qβ + pγ satisfies rβ,γ ↓ 0. Let α2 be a
mutual upper bound for α0 and α1. Taking any α ≥ α2, we get that from
Birkoff’s inequalities, Theorem 1.1.8

|(xα ∧ yα)− (x ∧ y)| = |(xα ∧ yα)− (x ∧ yα) + (x ∧ yα)− (x ∧ y)|
≤ |(xα ∧ yα)− (x ∧ yα)|+ |(yα ∧ x)− (y ∧ x)|
≤ |xα − x|+ |yα − y| (Birkoff’s Inequalities)

≤ qβ + pγ

= rβ,γ.

Therefore xα ∧ yα
o→ x ∧ y.

(v): The net (zα) with zα = 0 for each α is such that zα
o→ 0. So by (iii)

we have that
xα

+ = xα ∨ 0 = xα ∨ zα
o→ x ∨ 0 = x+.

The proof for (vi) is done similarly, noting the fact that −xα
o→ −x by (ii).

(vii): We are given that xα
o→ x and thus −xα

o→ −x by (ii). It follows
from (iii) that

|xα| = (xα) ∨ (−xα)
o→ x ∨ (−x) = |x|.

Definition 1.3.5. We call A ⊂ E order closed if for every net (xα) in A
such that xα

o→ x for some x ∈ E, we have x ∈ A.
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1.4 Ideals and Bands

This section deals with important classes of subspaces of a Riesz space,
namely, ideals and bands. The results presented in this section are based
on [3].

Definition 1.4.1. We call a vector subspace G of E a Riesz subspace of E
if G is closed under the lattice operations inherited from E.

Definition 1.4.2. A subset A of E is called solid if |x| ≤ |y| with x ∈ E
and y ∈ A implies that x ∈ A.

Definition 1.4.3. We call a solid vector subspace of E an order ideal, or
just an ideal for short.

Proposition 1.4.4. Every order ideal is a Riesz subspace.

Proof. Let J be an order ideal of E. By definition J is a vector subspace of
E, so it remains to be shown that J is closed under the lattice operations
inherited from E. Note that for any z ∈ J , |z| ≥ 0 by Theorem 1.1.6 and
hence −|z| ≤ 0 ≤ |z|. So ||z|| = |z| ∨ (−|z|) = |z|, and hence |z| ∈ J as J is
an order ideal. Take any x, y ∈ J . We have that x+y, x−y, y−x, |x−y| ∈ J ,
as J is an order ideal. We have

x ∨ y =
1

2
(2(x ∨ y))

=
1

2
((2x) ∨ (2y))

=
1

2
((x+ y) + (x− y) ∨ (y − x))

=
1

2
(x+ y) +

1

2
|x− y|.

So x ∨ y ∈ J since J is a vector subspace of E. We also have that x ∧ y =
x ∨ y − |x − y| as a result of Theorem 1.1.6, and hence x ∧ y ∈ J as J is a
vector subspace of E.

Definition 1.4.5. An order closed ideal B of E is called a band.

Notation 1.4.6. Given A ⊂ E, define

Ad := {x ∈ E : x ⊥ a for all a ∈ A}.
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Proposition 1.4.7. For every subset A of Riesz space E, Ad is a band of
E.

Proof. Let x, y ∈ Ad and c ∈ R. Noting that |z| ≥ 0 for any z ∈ E, we have
that for any a ∈ A

0 ≤ |x+ y| ∧ |a| ≤ (|x|+ |y|) ∧ |a| = |x| ∧ |a|+ |y| ∧ |a| = 0

and hence x+ y ∈ Ad. If |c| ≤ 1 then

0 ≤ |cx| ∧ |a| = |c||x| ∧ |a| ≤ |x| ∧ |a| = 0,

so |cx| ∧ |a| = 0. If |c| > 1 then

|cx| ∧ |a| ≤ |cx| ∧ |c||a| = |c||x| ∧ |c||a| = |c|(|x| ∧ |a|) = 0,

so |cx| ∧ |a| = 0. It follows that for any c ∈ R, cx ∈ Ad and hence Ad is a
vector subspace of E. Now suppose |x| ≤ |y| for some x ∈ E and y ∈ Ad.
Then for any a ∈ A, 0 ≤ |x| ∧ |a| ≤ |y| ∧ |a| = 0. Hence x ∈ Ad and thus Ad

is an order ideal. Now consider any net (xα) in A such that xa
o→ x for some

x ∈ E and let a ∈ A. The net (|xα|) satisfies |xα|
o→ |x| by Proposition 1.3.4.

It follows by Proposition 1.3.4 that (|xα| ∧ |a|) satisfies |xα| ∧ |a|
o→ |x| ∧ |a|.

But |xα| ∧ |a| = 0 for all α and hence |xα| ∧ |a|
α→ 0. By Proposition 1.3.3,

|x| ∧ |a| = 0 and hence x ∈ Ad. Therefore Ad is a band of E.

Definition 1.4.8. Given A ⊂ E we call the smallest band of E that contains
A the band generated by A and denote it by B(A).

Notation 1.4.9. For any x ∈ E+, define the set [0, x] := {y ∈ E : 0 ≤ y ≤
x}.

Proposition 1.4.10. If J is an ideal of E, then

B(J) = {y ∈ E : there exists (xα) in J such that xα
o→ y}.

Proof. Let B = {y ∈ E : there exists (xα) in J such that xα
o→ y}. Note

that for any band that contains J will contain B as well. This is because for
any x ∈ B and an existing net in the form of (xα) in J such that xα

o→ x we
have that any band containing J will contain (xa) and would hence contain
x as well due to the definition of a band. So it suffices to show that B is a
band as B is a subset of every band containing J . To this end, let x, y ∈ B
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and c ∈ R. There exists nets (xα) and (yα) in J which converge in order to
x and y respectively. Since J is an order ideal, it follows from Proposition
1.3.4 that (xα + yα) and (cxα) are nets in J that converge in order to x + y
and cx respectively. So x + y, cx ∈ B and hence B is a vector subspace of
E as this holds for all x, y ∈ B and c ∈ R. Now suppose |x| ≤ |y| for some
x ∈ E and y ∈ B. Then x ≤ |x| ≤ |y|. There exists a net (yα) in J such
that yα

o→ y and thus by Proposition 1.3.4 we have that |yα|
o→ |y|. So by

Proposition 1.3.4 it follows that x ∧ |yα|
o→ x ∧ |y| = x. Taking the net (zα)

where zα = x ∧ |yα| for each α, we get a net in J that converges in order to
x since J is an ideal. Therefore x ∈ B and thus B is an order ideal.

Next, let (xα) be a net in B+ such that xα
o→ x for some x ∈ E. By

Proposition 1.3.4 we have that xα = x+α
o→ x+ and hence by Proposition

1.3.3, x = x+ ∈ E+. Note that by Proposition 1.3.4, we have that

xα ∧ x
o→ x ∧ x = x.

We also have that xα ∧ x ≤ x for each α so x is an upper bound of the
net (xα ∧ x). Suppose y ∈ E+ is an upper bound of the net (xα ∧ x). By
Proposition 1.3.4,

xα ∧ x = (xα ∧ x) ∧ y o→ x ∧ y.

Therefore by Proposition 1.3.3, x = x ∧ y and hence x ≤ y so that sup{xα ∧
x : α} = x.

For each α, we have xα ∈ B and hence there exists a net (yαγ ) in J+ such
that, considering convergence in order with γ as the indexing parameter,
yαγ

o→ xα. Since (xα) and (yαγ ) are nets in J+, considering convergence in
order with γ as the indexing parameter, it follows by Proposition 1.3.4 that

0 ≤ yαγ ∧ xα
o→ xα ∧ xα = xα.

It follows from Proposition 1.3.4 that

0 ≤ yαγ ∧ xα ∧ x = (yαγ ∧ xα) ∧ x o→ xα ∧ x.

Consider the net (zαγ ) where zαγ = yαγ ∧ xα ∧ x. Note that zγα ∈ [0, x] since
0 ≤ zγα ≤ x, so x is an upper bound for the net (zαγ ). Also 0 ≤ zγα ≤ yγα so
since J is an ideal, zγα ∈ J because |zγα| ≤ |yγα| for each γ. So zγα ∈ J ∩ [0, x].

Suppose y ∈ E+ is an upper bound of the net (zαγ ). Considering con-
vergence in order with γ as the indexing parameter, it follows from Propo-
sition 1.3.4 that zαγ = zαγ ∧ y

o→ (xα ∧ x) ∧ y for each α. So by Proposition
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1.3.3, it follows that the nets xα ∧ x = (xα ∧ x) ∧ y for each α and hence
(xα ∧ x) and ((xα ∧ x) ∧ y) equal nets in E+. Considering convergence in
order with α as the indexing parameter, it follows from Proposition 1.3.4
that xα ∧ x = (xα ∧ x) ∧ y o→ x ∧ y. So by Proposition 1.3.3, x = x ∧ y ≤ y
and hence x = sup{zαγ : α, γ}. The set J ∩ [0, x] is bounded above by x. Also
note that if y ∈ E is an upper bound of J ∩ [0, x] then it is also an upper
bound of {zαγ : α, γ} since {zαγ : α, γ} and J ∩ [0, x] are non-empty sets such
that {zαγ : α, γ} ⊂ (J ∩ [0, x]). Therefore x = sup(J ∩ [0, x]).

Furthermore, J ∩ [0, x] can be considered a net that converges in order to
x (taking (yα) where yα = α for α ∈ J ∩ [0, x], yα ↑ x) so by definition of B,
x ∈ B as J ∩ [0, x] ⊂ J . Let (xα) be a net in B such that xα

o→ x for some
x ∈ E. Note that (xα

+) and (xα
−) are nets in B+ and x+, x− ∈ E+. From

Proposition 1.3.4 we have that xα
+ o→ x+ and xα

− o→ x− so x+, x− ∈ B+

and hence x = x+ − x− ∈ B by Theorem 1.1.10.

Definition 1.4.11. A Riesz subspace G of E is order dense in E if for each
0 6= x ∈ E+ there exists y ∈ G+ such that 0 6= y ≤ x.

Lemma 1.4.12. Let G be an ideal of E and for any 0 6= x ∈ E+, define the
set Hx := G ∩ [0, x]. Then G is order dense in E if and only if for every
0 6= x ∈ E+, x = sup(Hx).

Proof. Consider any 0 6= x ∈ E+. First note that 0 ∈ Hx so Hx is non-empty
and Hx is bounded above by x. Suppose that x ≤ y for any y ∈ E+ that
bounds Hx above i.e. x = sup(Hx). Since 0 6= x ∈ E+ and x bounds Hx

above, there exists a y ∈ Hx such that y ≥ 0 and 0 6= y, i.e. y ∈ G+ and
0 6= y ≤ x. Since 0 6= x ∈ E+ is arbitrary, G is order dense in E.

Assume G is order dense in E and suppose that for some 0 6= x ∈ E+,
there exists y ∈ E+ which is an upper bound of Hx and x � y. Choosing
z = x ∧ y, we have that z bounds Hx above and 0 6= x − z ∈ E+. So there
exists y′ ∈ G+ such that 0 6= y′ ≤ x − z ≤ x and thus z ≤ z + y′ ≤ x. It
follows that y′ ∈ Hx so y′ ≤ z. If y′ = z then 2y′ = z + y′ ≤ x. Hence
2y′ ∈ Hx since 2y′ ∈ G. Therefore 2z = 2y′ ≤ z so that z ≤ 0. Since z is an
upper bound for Hx, it follows that Hx = {0}, contradicting the fact that G
is order dense in E. There exists no k ∈ N such that z− (k−1)y′ is an upper
bound of Hx but z − ky′ ∈ E is not. This is because if one such k ∈ N did
exist then there exists y′′ ∈ Hx such that y′′ � z − ky′. It would then follow
that y′+ y′′ � z− (k− 1)y′. But y′+ y′′ ∈ Hx since y′+ y′′ ≤ y′+ z ≤ x and
y′ + y′′ ∈ G+. This contradicts z − (k − 1)y′ being an upper bound of Hx.
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Since z − 0y′ is an upper bound of Hx, it follows that z − y′ must be an
upper bound of Hx. In fact for any n ∈ N, if z − ny′ bounds Hx above then
so does z − (n + 1)y′. Therefore z − ky′ bounds Hx above for all k ∈ N by
induction and hence y′ ≤ z − ky′. Therefore y′ ≤ 1

k+1
z for all k ∈ N and

since 0 6= y′ ∈ G+, this contradicts the definition of an Archimedean Riesz
space. Hence x = sup(Hx).

Lemma 1.4.13. Let A is an order ideal in E. Then A is order dense in E
if and only if Ad = {0}.

Proof. Assume A is order dense in E. If x ∈ A then x ∈ Ad if and only if
|x| ∧ |x| = |x| = 0, i.e. x = 0. So suppose x /∈ A. If x 6= 0 then |x| 6= 0 and
|x| ≥ 0. So there exists y ∈ A+ such that 0 6= y ≤ |x|, i.e |x|∧|y| = y 6= 0 and
hence x /∈ Ad because x 6⊥ y. Therefore Ad = {0}. Now assume Ad = {0}
and consider any 0 6= x ∈ E+. We know x /∈ Ad so there exists y ∈ A such
that |x| ∧ |y| 6= 0. But |x| ∧ |y| ≤ |y| so |x| ∧ |y| ∈ A. It follows that

0 6= |x| ∧ |y| = x ∧ |y| ≤ x,

and hence A is order dense in E.

Proposition 1.4.14. If J is an order ideal in E, then (Jd)d = B(J).

Proof. Consider any x ∈ J . For any y ∈ Jd we have that y ⊥ x hence
x ∈ (Jd)d and it follows that J ⊂ (Jd)d. Also by Proposition 1.4.7 we have
that (Jd)d is a band of E that contains J and hence B(J) ⊂ (Jd)d.

Note that since Jd∩ (Jd)d = {0}, J is order dense in (Jd)d due to Lemma
1.4.13. So suppose x ∈ ((Jd)d)+. From the proof of Proposition 1.4.10, the
set Hx = ((J)d)d ∩ J ∩ [0, x] = J ∩ [0, x] can be expressed as a net in J
that converges in order to x since x = sup

y∈(Jd)d
(Hx) by Lemma 1.4.12. Hence

x ∈ B(J) by Proposition 1.4.10. If x ∈ ((Jd)d), x+ and x− are elements
of ((Jd)d)+ and therefore are elements of B(J). Hence by Theorem 1.1.10,
x = x+ − x− ∈ B(J).

Corollary 1.4.15. Let J be an order ideal in E. The following statements
are equivalent:

(i) J is order dense in E.

(ii) sup([0, f ] ∩ J) = f for any f ∈ E+.
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(iii) B(J) = E.

Proof. (i) ⇐⇒ (ii): This follows from Lemma 1.4.12.
(i) ⇐⇒ (iii): First note that for any f ∈ E we have that |f | ∧ |0| = 0

and hence f ⊥ 0. Due to Lemma 1.4.13 and Proposition 1.4.14, it follows J
is order dense in E if and only if B(J) = (Jd)d = {0}d = E.

Lemma 1.4.16. Let J be an order dense Riesz subspace of some Riesz space
E and suppose x ∈ J and (xα) is a net in J such that xα

o→ x in J . Then
xα

o→ x in E.

Proof. There exists a net (qβ) in J satisfying (qβ) ↓ 0 in J such that for every
β there exists α0 for which |xa− x| ≤ qβ holds for every α ≥ α0. Now (qβ) is
a net in E so it remains to show that (qβ) ↓ 0 in E. Consider any 0 6= y ∈ E+

and note that there exists z ∈ J+ such that 0 6= z ≤ y. It follows that there
exists β such that z � qβ and hence y � qβ. Therefore (qβ) ↓ 0 in E.

Notation 1.4.17. Let U and V be vector subspaces of E for which E =
U + V . If U ∩ V = 0, then we write E = U ⊕ V .

Definition 1.4.18. A band B of Riesz space E is called a projection band
if B ⊕Bd = E.

Remark 1.4.19. Let B,C be vector subspaces of Riesz space E.

(i) If x ∈ B∩Bd then |x|∧|x| = |x| = 0 and hence x = 0. So B∩Bd = {0}
and if B is a band in E then B is a projection band if B +Bd = E.

(ii) Let B ⊕ C = E and suppose x1, x2 ∈ B and y1, y2 ∈ C such that
z = x1+y1 = x2+y2 for any z ∈ E. It follows that x1 = x2+y2−y1 ∈ B
and hence y2 − y1 ∈ B ∩ C. Therefore y1 = y2 and hence x1 = x2. So
every element of z ∈ E has a unique decomposition z = x + y where
x ∈ B and y ∈ C.

(iii) If B is a projection band in E then so is Bd since Bd+(Bd)d = Bd+B =
E by Proposition 1.4.14.

Proposition 1.4.20. Let B be a projection band in E. Then there exists a
linear, idempotent map P : E → B such that 0 ≤ P (x) ≤ x for every x ∈ E+.
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Proof. Define P : E → B where for each x ∈ E, P (x) is the unique element
in B such that x− P (x) ∈ Bd. For any x, y ∈ E, α, β ∈ R,

αx+ βy − (αP (x) + βP (y)) = α(x− P (x)) + β(y − P (y)) ∈ Bd.

Since the direct sum decomposition is unique, P (αx+βy) = αP (x)+βP (y),
and hence P is a linear map. It follows that for any x ∈ E, P (x)−P (P (x)) =
P (x − P (x)) ∈ B ∩ Bd = {0}. So P (P (x)) = P (x), and hence P is an
idempotent map. Take any x ∈ E+ and note that x ≤ |P (x)| + |x − P (x)|
where |P (x)| ∈ B since B is a band and ||P (x)|| = |P (x)|. From the Riesz
decomposition property Theorem 1.1.7, it follows that there exists unique
p, q ∈ E+ which satisfy x = p + q and p ≤ |P (x)| and q ≤ |x − P (x)|. But
B and Bd are bands, so p ∈ B and q ∈ Bd. Therefore P (x) = p and hence
0 ≤ P (x) ≤ x.

Remark 1.4.21. We refer to P established in Proposition 1.4.20 as a band
projection onto B.

Lemma 1.4.22. The following statements are true.

(i) Let U and V be vector subspaces of E. If V ⊂ Ud and E = U ⊕ V ,
then V = Ud and U and V are projection bands.

(ii) If P : E → E is linear and idempotent and 0 ≤ P (x) ≤ x holds for
every x ∈ E+, then U := P (E) is a projection band, and I − P is the
band projection onto Ud.

Proof. (i): Note that for all x ∈ U and y ∈ V , x ⊥ y and hence U ⊂ V d.
Letting x ∈ Ud, there exists y ∈ U and z ∈ V such that x = y + z. Then
y = x − z ∈ U ∩ Ud = {0}. So y = 0, x = z ∈ V and thus V = Ud. It can
be shown by similar argument that U = V d. By Proposition 1.4.7 it follows
that U and V are bands and are hence projection bands since U ⊕ V = E.

(ii): Let Q = I−P where I is the identity map. Since I and P are linear
maps, so is Q. We also have the following due to P being idempotent:

QQ = (I − P )(I − P )

= (I − P )I − (I − P )P

= I − P − P + PP

= I − P
= Q.
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Therefore Q is an idempotent map. For any x ∈ E+, since 0 ≤ P (x) ≤ x we
have that Q(x) = x−P (x) ≥ 0 and Q(x) = x−P (x) ≤ x. Let U = P (E) and
V = Q(E). Since P and Q are linear maps, U and V are vector subspaces of
E. For any x in E, x = P (x) +Q(x) and hence U + V = E. Let x ∈ U ∩ V
and note that there exists y, z ∈ E such that x = P (y) = Q(z). It follows
that

P (y) = z − P (z) =⇒ z = P (y) + P (z)

=⇒ z ∈ U.

So there exists some w ∈ E such that P (w) = z and hence P (z) =
P (P (w)) = P (w) = z. It follows that

x = Q(z) = z − P (z) = z − z = 0.

So U ⊕ V = E.
It remains to show that U ⊂ V d as it would then follow from (i) that P and Q
are band projections onto projection bands U and V = Ud respectively. First
we show that U and V are ideals. Consider any f ∈ U+ and let 0 ≤ g ≤ f
for some g ∈ E+. There exists unique g1, h1 ∈ U and g2, h2 ∈ V such that
g = g1 + g2 and f − g = h1 + h2, i.e. P (g) = g1, P (f − g) = h1, Q(g) = g2
and Q(f − g) = h2. It follows that f = g + (f − g) = (g1 + h1) + (g2 + h2)
and hence g2 +h2 = f − (g1 +h1) ∈ U ∩V = {0}. Therefore g2 +h2 = 0. But
since 0 ≤ g2 ≤ g and 0 ≤ h2 ≤ f − g, it follows that g2 = h2 = 0. Therefore
g = P (g) and hence g ∈ U . Now consider any f ∈ U and g ∈ E such that
|f | ≥ |g|. Firstly we have that 0 ≤ P (|f |) ≤ |f |. Now for any u ∈ U there
exists x ∈ E such that u = P (x). Therefore P (u) = P (P (x)) = P (x) = u as
P is idempotent. Since f,−f ∈ U , we have the following:

f = P (f)

≤ P (f) + P (|f | − f) since f ≤ |f |
= P (|f |) since P is linear.

We also have that

−f = P (−f)

≤ P (−f) + P (|f |+ f) since − f ≤ |f |
= P (|f |) since P is linear.
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So |f | = f ∨ (−f) ≤ P (|f |) and hence |f | = P (|f |) ∈ U . It follows that
0 ≤ g+ ≤ |f | and 0 ≤ g− ≤ |f | and hence g+, g− ∈ U . So g = g+ − g− ∈ U
and hence U is an ideal in E. By similar argument it follows that V is also
an ideal in E. Let y ∈ V , and consider any x ∈ U . Since U and V are ideals,
0 ≤ |x| ∧ |y| ≤ |x| and 0 ≤ |x| ∧ |y| ≤ |y|, it follows that |x| ∧ |y| ∈ U ∩ V
and hence |x| ∧ |y| = 0. So y ∈ Ud and hence V ⊂ Ud.

Note that the above lemma is also the converse of Proposition 1.4.20.

Definition 1.4.23. A Riesz space E has the projection property if every
band of E is a projection band.

We will utilise Definition 1.4.23 in Chapter 2.
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Chapter 2

The Riesz space C(X)

2.1 Topological Preliminaries

In this section we recall a few concepts from topology that will be used in the
sequel. These can be found in any standard text on the subject, for instance
[10].

The natural setting for studying spaces of continuous functions is the so-
called Tychonoff spaces, see the definition below. This is due to the following
remarkable fact, see for instance [6, Section 3.9]: For every topological space
X there exists a Tychonoff space Y so that C(X) and C(Y ) are isomorphic
as rings, hence also as vector lattices.

Definition 2.1.1. A topological space X is called a Hausdorff space if for
every x, y ∈ X, if x 6= y then there exists disjoint open sets U and V such
that x ∈ U and y ∈ V .

Definition 2.1.2. A topological space X is called a Tychonoff space if it is
Hausdorff and for every closed set C in X and every x /∈ C there exists a
continuous function f : X → R so that f [C] = {0} and f(x) = 1.

An important property of Tychonoff spaces is that they admit a com-
pactification, as described in the next result. See for instance [10, Section
5.3].

Theorem 2.1.3. Let X be a Tychonoff space. There exists a compact Haus-
dorff space βX and a continuous function β : X → βX with the following
properties.
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(i) β[X] is a dense subspace of βX and β is a homeomorphism onto its
range.

(ii) For every compact Hausdorff space K and any continuous map f : X →
K there exists a unique continuous map f̂ : βX → K so that f̂ ◦β = f .

(iii) The pair (β, βX) is unique up to unique homeomorphism; that is, if Y
is a compact Hausdorff space and γ : X → Y is a continuous function
which satisfy (i) and (ii), then there exists a unique homeomorphism
g : βX → Y so that g ◦ β = γ.

Definition 2.1.4. Let X be a Tychonoff space. The space βX in Theorem
2.1.3 is called the Stone-Čech compactification of X.

Note the following:

(i) We usually suppress the map β, and simply think of X as a subspace
of βX.

(ii) Some care must be taken with closures: Given a subset of U of X, we
may take the closure of U either in X or in βX. To distinguish between

the two operations, we write U
X

for the closure of U in X, and U
βX

for the closure of U in βX.

For a Tychonoff space X, denote by Cb(X) the set of all bounded, continuous
real-valued functions on X. We equip this space with the standard norm

||u||∞ = sup{|u(x)| : x ∈ X}, u ∈ Cb(X).

The following result is standard in functional analysis, see for instance [4,
Example 1.6].

Theorem 2.1.5. Let X be a Tychonoff space. Then Cb(X) is a Banach
space with respect to the norm ‖ · ‖∞. In particular, if X is compact then
C(X) is a Banach space with respect to ‖ · ‖∞.

As is shown in Section 2.3, the following topological property is related
to Dedekind completeness of C(X).

Definition 2.1.6. Let X be a topological space. We call X extremally
disconnected if the closure of every open set in X is open.

Example 2.1.7. Clearly, every discrete space is extremally disconnected.
An example of a non-discrete extremally disconnected space is βD, with D
any infinite discrete space, see [6, 6M, p. 96].
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2.2 Relative uniform completeness of C(X)

In this section we prove that for every Tychonoff space X, the vector lattice
C(X) is relatively uniformly complete. This is a well known fact, see for
instance [8, Theorem 43.1]. The following lemma is used the prove the result.

Lemma 2.2.1. (Every continuous function is locally bounded.) Let X be a
topological space and let v ∈ C(X). For every x ∈ X there exists an open
set V containing x and a real number M > 0 such that |v(y)| < M for all
y ∈ V .

Proof. Consider any x ∈ X. For any real number δ > 0 the interval (−δ, δ)
is open in R. Therefore v−1[(−δ, δ)] is open in X as v ∈ C(X). Let V =
v−1[(−(|v(x)| + 1), |v(x)| + 1)] and choose M = |v(x)| + 1. Then V is open
in X and x ∈ V since −(|v(x)| + 1) < v(x) < |v(x)| + 1. By definition of V
and M , it follows |v(y)| < M for all y ∈ V .

Theorem 2.2.2. Let X be a Tychonoff space. Then C(X) is r.u. complete.

Proof. Let (un) be r.u. Cauchy in C(X) with regulator e′. Consider e = e′∨1.
We claim that e is a regulator for (un). To show this, fix any ε > 0. There ex-
ists Mε ∈ N so that |un−um| ≤ εe′ whenever m,n ≥Mε. Then |un−um| ≤ εe
whenever m,n ≥ Mε because e′ ≤ e and ε > 0. This holds for all ε > 0 so e
is a regulator for (un) .

Now consider the sequence (un(x)) for some arbitrary x ∈ X. Fix any ε > 0;
note that ε

e(x)
> 0. Since e is a regulator for (un), there exists Mε such that

|un(x)− um(x)| ≤ ε

e(x)
e(x) = ε

whenever m,n ≥ Mε. So (un(x)) is Cauchy and is hence convergent in R as
R is complete.

Define u : X → R by u(x) = lim
n→∞

un(x), x ∈ X i.e, u is the pointwise limit

of (un). Since e is a regulator for (un), for every ε > 0 there exists Mε ∈ N
such that |un − um| ≤ εe whenever m,n ∈Mε. It therefore follows that

|u(x)− un(x)| ≤ |u(x)− um(x)|+ |um(x)− un(x)| ≤ |u(x)− um(x)|+ εe(x)
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for all x ∈ X and n,m ≥ Mε. Since limm→∞ |u(x) − um(x)| = 0, it follows
that for every ε > 0, there exists Mε ∈ N such that

|u(x)− un(x)| ≤ εe(x) (2.1)

for all x ∈ X and n ≥Mε.
We show that u ∈ C(X). Fix any x ∈ X. Note that since e ∈ C(X),

it follows from Lemma 2.2.1 that there exists an open set V ⊂ X so that
x ∈ V , and a real number M > 0 such that |e(y)| < M for all y ∈ V . Let
ε > 0. By (2.1) there exists n0 ∈ N such that |u(z)− un0(z)| ≤ ε

3M
e(z) ≤ ε

3

for all z ∈ V . For all y ∈ V ,

|u(x)− u(y)| ≤ |u(x)− un0(x)|+ |un0(x)− un0(y)|+ |un0(y)− u(y)|

≤ 2ε

3
+ |un0(x)− un0(y)|.

But un0 ∈ C(X) so there exists an open set W ⊂ X containing x such
that |un0(x) − un0(y)| < ε

3
for all y ∈ W . Therefore if y ∈ V ∩ W then

|u(x) − u(y)| < ε. Since V ∩W is open and x ∈ V ∩W it follows that u is
continuous at x, hence on X.

So it follows from (2.1) that |u − un| ≤ εe whenever n ≥ Mε, and hence
(un) converges r.u. to u in C(X).
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2.3 Dedekind completeness of C(X)

The main results of this section are the following: If a topological space X is
extremally disconnected, then C(X) is Dedekind complete, and, conversely,
if X is a Tychonoff space so that C(X) is Dedekind complete, then X is
extremally disconnected. These results are well-known, see for instance [8,
Theorem 43.11]. We follow an approach via semi-continuous functions, which
is adapted from [5] where the result is proven for the case of a compact space
X.

Notation 2.3.1. For any subset A of a set X, denote by 1A : X → R the
characteristic function of A,

1A(x) =

{
1 if x ∈ A
0 if x ∈ X \ A

In cases where no ambiguity can arise, the characteristic function of X, i.e.
the constant function with the value 1, is denoted 1.

Definition 2.3.2. Let X be a topological space. A function u : X → R is

(i) lower semi-continuous if for every c ∈ R the set u−1[(c,∞)] is open in
X.

(ii) upper semi-continuous if for every c ∈ R the set u−1[(−∞, c)] is open
in X.

Proposition 2.3.3. Let X be topological space and let D ⊂ C(X) be non-
empty.

(i) If {u(x) : u ∈ D} is bounded above for every x ∈ X then the function
v : X → R, where v(x) = sup{u(x) : u ∈ D}, is lower semi-continuous.

(ii) If {u(x) : u ∈ D} is bounded below for every x ∈ X then the function
w : X → R, where w(x) = inf{u(x) : u ∈ D}, is upper semi-continuous.

Proof. (i): Assume that {u(x) : u ∈ D} is bounded above for every x ∈ X.
Fix any c ∈ R and consider the set v−1[(c,∞)]. If x ∈ v−1[(c,∞)] then
sup{u(x) : u ∈ D} > c, so there exists u ∈ D such that u(x) > c; that is,
x ∈ u−1[(c,∞)]. Conversely if u(x) > c for some u ∈ D then v(x) > c (i.e.
x ∈ v−1[(c,∞)]). So v−1[(c,∞)] = ∪u∈Du−1[(c,∞)]. Since (c,∞) is open in
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R and D ⊂ C(X), u−1[(c,∞)] is open in X for every u ∈ D. It follows that
v−1[(c,∞)] is open in X, being the union of open sets, and hence v is lower
semi-continuous.

(ii): Assume that {u(x) : u ∈ D} is bounded below for every x ∈ X.
Fix any c ∈ R and consider the set w−1[(−∞, c)]. If x ∈ w−1[(−∞, c)] then
inf{u(x) : u ∈ D} < c, so there exists u ∈ D such that u(x) < c; that is,
x ∈ u−1[(−∞, c)]. Conversely if u(x) < c for some u ∈ D then w(x) < c (i.e.
x ∈ w−1[(−∞, c)]). So w−1[(−∞, c)] = ∪u∈Du−1[(−∞, c)]. Since (−∞, c) is
open in R and D ⊂ C(X), u−1[(−∞, c)] is open in X for every u ∈ D. It
follows that w−1[(−∞, c)] is open in X, being the union of open sets, and
hence w is upper semi-continuous.

Proposition 2.3.4. Let X be a topological space. A function u : X → R is
continuous if and only if it is both upper semi-continuous and lower semi-
continuous.

Proof. Suppose u : X → R is continuous. Then for any c ∈ R, u−1[(c,∞)] is
open in X so u is lower semi-continuous. Also for any c ∈ R, u−1[(−∞, c)]
is open in X so u is upper semi-continuous. Now suppose u : X → R is
both lower semi-continuous and upper semi-continuous and consider any open
interval (a, b). We note that u−1[(a,∞)] and u−1[(−∞, b)] are open in X due
to u being lower semi-continuous and upper semi-continuous respectively.
Since (a, b) = (a,∞) ∩ (−∞, b) it follows that

u−1[(a, b)] = u−1[(a,∞) ∩ (−∞, b)] = u−1[(a,∞)] ∩ u−1[(−∞, b)]

which is an open set. Hence u is continuous.

Definition 2.3.5. Let X be a topological space. A function u : X → R is

(i) locally bounded from below if for every x ∈ X there exists an open set
V containing x and a real number mx so that mx ≤ u(y) for all y ∈ V .

(ii) locally bounded from above if for every x ∈ X there exists an open set
V containing x and a real number Mx so that Mx ≥ u(y) for all y ∈ V .

Definition 2.3.6. Let X be a topological space. Assume that u : X → R is
locally bounded from below. Define u : X → R as

u(x) = sup{inf{u(y) : y ∈ V } : V open neighbourhood of x}.
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Definition 2.3.7. Let X be a topological space. Assume that u : X → R is
locally bounded from above. Define u : X → R as

u(x) = inf{sup{u(y) : y ∈ V } : V open neighbourhood of x}.

Remark 2.3.8. The functions u and u introduced in Definitions 2.3.6 and
2.3.7, respectively, are well defined. For a function u : X → R, the con-
dition that u is locally bounded from below, respectively above, ensures
that the set {inf{u(y) : y ∈ V } : V open neighbourhood of x}, respectively
{sup{u(y) : y ∈ V } : V open neighbourhood of x}, is non-empty. Further-
more, the set {inf{u(y) : y ∈ V } : V open neighbourhood of x} is bounded
above by u(x) while {sup{u(y) : y ∈ V } : V open neighbourhood of x} is
bounded below by u(x).

Proposition 2.3.9. Let X be a topological space and u : X → R. Then the
following statements are true.

(1) If u is locally bounded from below then u is lower semi-continuous and
u ≤ u.

(2) If u is locally bounded from above then u is upper semi-continuous and
u ≥ u.

Proof. For the proof of (1), let u be locally bounded from below. Fix any
c ∈ R and suppose u(x) > c. By definition of the supremum, there exists
an open neighbourhood Vx of x such that inf{u(y) : y ∈ Vx} > c. For any
y ∈ Vx we have the following,

u(y) = sup{inf{u(z) : z ∈ V } : V 3 y open}
≥ inf{u(z) : z ∈ Vx}
> c

and hence Vx ⊂ u−1[(c,∞)]. We have shown that for every x ∈ u−1[(c,∞)]
there exists an open neighbourhood Vx of x such that Vx ⊂ u−1[(c,∞)]. So
u−1[(c,∞)] is open. Remark 2.3.8 shows that u ≤ u because for each x ∈ X,
u(x) is the supremum of {inf{u(y) : y ∈ V } : V 3 x open} and u(x) is an
upper bound of the same set.

For the proof of (2), let u be locally bounded from above. Fix any c ∈ R
and suppose u(x) < c. By definition of the infimum, there exists an open
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neighbourhood Vx of x such that sup{u(y) : y ∈ Vx} < c. For any y ∈ Vx we
have the following,

u(y) = inf{sup{u(z) : z ∈ V } : V 3 y open}
≤ sup{u(z) : z ∈ Vx}
< c

and hence Vx ⊂ u−1[(−∞, c)]. We have shown that for every x ∈ u−1[(−∞, c)]
there exists an open neighbourhood Vx of x such that Vx ⊂ u−1[(−∞, c)]. So
u−1[(−∞, c)] is open. Remark 2.3.8 shows how u ≥ u because for each x ∈ X,
u(x) is the infimum of {sup{u(y) : y ∈ V } : V 3 x open} and u(x) is a lower
bound of the same set.

Recall from Definition 2.1.6 that the closure of every non-empty open set
in an extremally disconnected topological space is open.

Proposition 2.3.10. Let X be an extremally disconnected topological space
and u : X → R.

(i) If u is locally bounded from above and lower semi-continuous then u is
continuous.

(ii) If u is locally bounded from below and upper semi-continuous then u is
continuous.

Proof. Suppose u both is locally bounded from above and lower semi-continuous.
From Proposition 2.3.9 it follows that u is upper semi-continuous. We
show that u is lower semi-continuous. Fix any c ∈ R and consider the set
W = {x ∈ X : u(x) > c}. For every ε > 0 define Vε = {x ∈ X : u(x) > c+ε}.
Since u is lower semi-continuous, Vε is open and so is Vε. It follows that⋃
ε>0 Vε is open being the union of open sets. We show that W =

⋃
ε>0 V ε.

Fix any ε > 0 and let x ∈ Vε. For any open neighbourhood U of x, U∩Vε 6= ∅,
i.e. there exists y ∈ U such that u(y) > c+ε. By definition of the supremum,
sup{u(z) : z ∈ U} > c + ε and since this holds for all open neighbourhoods
U of x, the set {sup{u(z) : z ∈ U} : U 3 x open} is bounded below by c+ ε.
By definition of the infimum,

u(x) = inf{sup{u(z) : z ∈ U} : U 3 x open} ≥ c+ ε > c.

Therefore x ∈ W and hence Vε ⊂ W . Since this holds for all ε > 0,
⋃
ε>0 Vε ⊂

W .
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Let x ∈ W (i.e. u(x) > c) and define εx = u(x)−c
2

so that u(x) > c + εx.
By definition of the infimum, sup{u(y) : y ∈ V } > c + εx. So there exists
yV ∈ V such that u(yV ) > c + εx. Therefore, V ∩ Vεx 6= ∅ for every open
neighbourhood V of x. So x ∈ Vεx and hence x ∈

⋃
ε>0 Vε which means

that W ⊂ ∪ε>0Vε. So W =
⋃
ε>0 Vε and is therefore open. Since c ∈ R is

arbitrary, this shows that u is lower semi-continuous. By Proposition 2.3.4
u is continuous.

Assume that u is locally bounded from below and upper semi-continuous.
From Proposition 2.3.9 it follows u is lower semi-continuous. We show that
u is upper semi-continuous. Fix any c ∈ R and consider the set W = {x ∈
X : u(x) < c}. For every ε > 0 define Vε = {x ∈ X : u(x) < c − ε}. Since
u is upper semi-continuous, Vε is open and so is Vε. It follows that

⋃
ε>0 Vε

is open being the union of open sets. We show that W =
⋃
ε>0 V ε. Fix any

ε > 0 and let x ∈ Vε. For any open neighbourhood U of x, U ∩ Vε 6= ∅, i.e.
there exists y ∈ U such that u(y) < c − ε. By definition of the infimum,
inf{u(z) : z ∈ U} < c− ε and since this holds for all open neighbourhoods U
of x, the set {inf{u(z) : z ∈ U} : U 3 x open} is bounded above by c− ε. By
definition of the supremum,

u(x) = sup{inf{u(z) : z ∈ U} : U 3 x open} ≤ c− ε < c.

Therefore x ∈ W and hence Vε ⊂ W . Since this holds for all ε > 0, ∪ε>0Vε ⊂
W .

Let x ∈ W (i.e. u(x) < c) and define εx = u(x)−c
2

so that u(x) < c − εx.
By definition of the supremum, inf{u(y) : y ∈ V } < c − εx. So there exists
yV ∈ V such that u(yV ) < c − εx. Therefore, V ∩ Vεx 6= ∅ for every open
neighbourhood V of x. So x ∈ Vεx and hence x ∈

⋃
ε>0 Vε which means

that W ⊂
⋃
ε>0 Vε. So W =

⋃
ε>0 Vε and is therefore open. Since c ∈ R is

arbitrary, this shows that u is upper semi-continuous. By Proposition 2.3.4
u is continuous.

Proposition 2.3.11. Let X be a topological space and let u : X → R. The
following statements are true:

(i) If u is upper semi-continuous then u is locally bounded from above and
u = u.

(ii) If u is lower semi-continuous then u is locally bounded from below and
u = u.
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(iii) If u is continuous then u is locally bounded from above, locally bounded
from below and u = u = u

Proof. (i): Assume u is upper semi-continuous. Fix any x ∈ X and choose
V = u−1[(−∞, u(x) + 1)]. Since u is upper semi-continuous, it follows that
V is an open neighbourhood of x in X. Choosing Mx = u(x) + 1, we have
that u(y) ≤ Mx for all y ∈ V and thus u is locally bounded from above. It
follows from Proposition 2.3.9 that u ≤ u. Fix any ε > 0 and note that for
any x ∈ X, Vε = u−1[(−∞, u(x) + ε

2
)] is an open neighbourhood of x. It

follows that

u(x) ≤ sup{u(y) : y ∈ Vε} ≤ u(x) +
ε

2
< u(x) + ε.

So u(x) < u(x)+ε for any x ∈ X and taking ε→ 0 we have that u(x) ≤ u(x).
Therefore u ≤ u and hence u = u.

(ii): Assume u is lower semi-continuous. Fix any x ∈ X and choose
V = u−1[(u(x) − 1,∞)]. Since u is lower semi-continuous, it follows that V
is an open neighbourhood of x in X. Choosing mx = u(x)− 1, we have that
u(y) ≥ mx for all y ∈ V . It follows from Proposition 2.3.9 that u ≥ u. Fix
any ε > 0 and note that for any x ∈ X, Vε = u−1[(u(x) − ε

2
,∞)] is an open

neighbourhood of x. It follows that

u(x) ≥ inf{u(y) : y ∈ Vε} ≥ u(x)− ε

2
> u(x)− ε.

So u(x) > u(x)−ε for any x ∈ X and taking ε→ 0 we have that u(x) ≥ u(x).
Therefore u ≤ u′ and hence u = u.

(iii): Assume u is continuous. By Proposition 2.3.4 u is both upper
semi-continuous and lower semi-continuous, and hence by (i) and (ii), it
follows that u is locally bounded above, locally bounded from below, and
u = u = u.

Proposition 2.3.12. Let X be a topological space and let u : X → R and
v : X → R such that u ≤ v. The following statements are true:

(i) If u is locally bounded from below then v is locally bounded from below.
Furthermore, u ≤ v.

(ii) If v is locally bounded from above then u is locally bounded from above.
Furthermore, u ≤ v.
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Proof. (i): Suppose u is locally bounded from below. Fix any x ∈ X. There
exists an open set V containing x and a real number mx such that mx ≤ u(y)
for every y ∈ V . It follows that mx ≤ u(y) ≤ v(y) for every y ∈ V , and since
this holds for all x ∈ X, v is locally bounded from below. Also for every open
neighbourhood V of x, u(y) ≤ v(y) for all y ∈ V . So inf{u(y) : y ∈ V } ≤
inf{v(y) : y ∈ V } and hence u(x) ≤ v(x) for each x ∈ X since the previous
inequality holds for all open neighbourhoods V of x. Therefore u ≤ v.

(ii): Suppose v is locally bounded from above. Fix any x ∈ X. There
exists an open set V containing x and a real number Mx such that Mx ≥ v(y)
for every y ∈ V . It follows that Mx ≥ v(y) ≥ u(y) for every y ∈ V , and since
this holds for all x ∈ X, u is locally bounded from above. Also for every open
neighbourhood V of x, u(y) ≤ v(y) for all y ∈ V . So sup{u(y) : y ∈ V } ≤
sup{v(y) : y ∈ V } and hence u(x) ≤ v(x) for each x ∈ X since the previous
inequality holds for all open neighbourhoods V of x. Therefore u ≤ v.

We now have enough tools to show for certain topological spaces X that
C(X) is Dedekind complete if X is extremally disconnected.

Theorem 2.3.13. Let X be a Tychonoff space. If C(X) is Dedekind complete
then X is extremally disconnected.

Proof. Assume C(X) is Dedekind complete. Let U be a non-empty open
subset in X. We claim that for every x ∈ U there exists a function ux ∈ C(X)
so that ux ∈ [0,1] (1 ∈ C(X)+), ux(x) = 1, and ux(y) = 0 for all y ∈ X \ U .
Note that X \U is closed in X. Since X is a Tychonoff space it follows that
for every x ∈ U there exists ux ∈ C(X) so that 0 ≤ ux ≤ 1, ux(x) = 1 and
ux(y) = 0 for all y ∈ X \U . Define D = {u ∈ [0,1]; for all x ∈ X \U , u(x) =
0}. For any given x ∈ U , the function ux belongs to D, so D is non-empty.
Since u ≤ 1 for any u ∈ D and 1 ∈ C(X), it follows that D has an upper
bound in C(X). It follows that v = supD exists in C(X) because C(X) is
Dedekind complete.

Consider the closure U of U . We show that v(x) ≥ 1 for all x ∈ U . For
any x ∈ U , there exists ux ∈ D such that ux(x) = 1. Since v = supD, u ≤ v
and hence 1 = ux(x) ≤ v(x). Now since v ∈ C(X) it follows that v(x) ≥ 1
for all x ∈ U . Indeed, because v is continuous, v−1[[1,∞)] is closed in X.
Since U ⊆ v−1[[1,∞)] it follows that U ⊆ v−1[[1,∞)] so that v(x) ≥ 1 for all
x ∈ U .
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Consider any x ∈ X \ U . Then v(x) ≥ 0 because 0 ≤ u ≤ v for all
u ∈ D. X is a Tychonoff space so there exists w ∈ C(X) so that 0 ≤ w,
w(x) = 0 and w(y) = 1 for all y ∈ U . For all y ∈ U , w(y) = 1, and for all
y ∈ X \ U we have w(y) ≥ 0. Therefore w is an upper bound for D. Since
v = supD, v ≤ w and hence v(x) ≤ w(x) = 0. So it follows that v(x) = 0
for all x ∈ X \ U .
The interval (1

2
,∞) is open in R and U = v−1[(1

2
,∞)] so U is an open set in

X. Since this holds for all non-empty open sets U ⊂ X we conclude that X
is extremally disconnected.

The converse of Theorem 2.3.13 is also true, where X need not be Ty-
chonoff.

Theorem 2.3.14. Let X be an extremally disconnected topological space.
Then C(X) is Dedekind complete.

Proof. Suppose D ⊂ C(X) is non-empty and is bounded above in C(X).
Let u′ be an upper bound for D in C(X). Define v : X → R as v(x) =
sup{u(x) : u ∈ D}, x ∈ X. We note that v is well-defined as for each x ∈ X,
{u(x) : u ∈ D} is non-empty and is bounded above in R by u′(x). For
each x ∈ X, v(x) ≤ u′(x) and hence v ≤ u′. By Proposition 2.3.11, u′ is
locally bounded above so by Proposition 2.3.12, v is locally bounded above
and hence v is defined. Since D is bounded above in C(X), it follows that
{u(x) : u ∈ D} is bounded above in R for every x ∈ X. By Proposition 2.3.3,
v is lower semi-continuous and thus by Proposition 2.3.10, v is continuous. It
follows from Proposition 2.3.9 that v ≥ v, so v ≥ u for all u ∈ D and hence
v is an upper bound of D. For any upper bound u′ of D in C(X), we know
from Proposition 2.3.11 that u′ is locally bounded from above and u′ = u′.
Also v ≤ u′ so by Proposition 2.3.12, v ≤ u′ = u′. Thus we can conclude
that v is the supremum of D in C(X).
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2.4 Characterising bands and projection bands

In this section we study ideals and bands in the Riesz space C(X). We
first give a description of the norm closed ideals in C(X) for X a compact
Hausdorff space. We then proceed to characterize bands and projection bands
in C(X), also in the case of a general Tychonoff space. These results are well
known in the compact case, see for instance [9, p. 57 - 58], and were recently
generalized to Tychonoff spaces, see [7].

Notation 2.4.1. Given a topological space X and f ∈ C(X) and F ⊂ X,
we write f |F ≡ 0 whenever f(x) = 0 for all x ∈ F .

Notation 2.4.2. Given a topological space X and F ⊂ X, we set

JF (X) = {f ∈ C(X) : f |F ≡ 0}.

Lemma 2.4.3. Let X be a topological space and let F be a subset of X.
Then J = JF (X) is an order ideal.

Proof. Suppose that J = JF (X). For any f, g ∈ J and α ∈ R, (f + g)|F ≡ 0
and (αf) ≡ 0. Therefore f + g, αf ∈ J and hence J is a vector subspace of
C(X). In order to show that J is an order ideal, it remains to show that J
is solid. So let |f | ≤ |g| where f ∈ C(X) and g ∈ J . We have that g|F ≡ 0
so for any x ∈ F we have that |f(x)| ≤ |g(x)| = 0, so f(x) = 0 for all x ∈ F
as |f(x)| ≥ 0, by definition. Therefore f |F ≡ 0, i.e. f ∈ J , and hence J is
solid.

Theorem 2.4.4. If X is a compact Hausdorff space and J a subspace of
C(X), then J is a closed order ideal if and only if J = JF (X) for some
closed set F of X.

Proof. Suppose that J = JF (X) for some closed set F of X. It follows by
Lemma 2.4.3 that J is an order ideal. Since X is a compact Hausdorff space
we have that C(X) is a Banach space. So consider any sequence (fn) in J
such that (fn) converges to some f ∈ E in norm. Then f is the pointwise
limit of (fn) and hence for any ε > 0 and any x ∈ F , there exists N ∈ N
such that |f(x)| = |f(x) − fN(x)| < ε since fN |F ≡ 0. So f(x) = 0 for any
x ∈ F and hence f ∈ J implying that J is closed.

Now suppose that J is a closed order ideal and consider the set

F := {t ∈ X : f(t) = 0 for all f ∈ J}.
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We know JF (X) is an order ideal from Lemma 2.4.3. Now for any f ∈ J ,
we have by definition of F that f |F ≡ 0. Thus f ∈ JF (X) and hence
J ⊂ JF (X). Also note that if t ∈ F then t ∈ f−1[{0}] for all f ∈ J .
Conversely, if t ∈ f−1[{0}] for all f ∈ J then f(t) = 0 for all f ∈ J so t ∈ F .
The singleton set {0} is closed in R and hence f−1[{0}] is closed in X for
any f ∈ J (since J ⊂ C(X)). So F = ∩f∈Jf−1[{0}] is closed in X being the
intersection of closed sets.

Let 0 6= f ∈ JF (X)+, let ε > 0 and let A := {t ∈ X : f(t) ≥ ε}. Since f
is continuous, A = f−1[[ε,∞)] is closed in X as [ε,∞) is closed in R. Also
since X is a compact Hausdorff space we have that A is also compact in X.
If t ∈ A then f(t) ≥ ε > 0 so A ∩ F = ∅ as f |F ≡ 0. Thus for every s ∈ A
there exists gs ∈ J with gs(s) > 0. Define hs = g+s so that hs ≥ 0. For any
given s ∈ A, the set {t ∈ X : hs(t) > 0} = h−1s [(0,∞)] is open in X as (0,∞)
is open in R and hs ∈ C(X). The collection {t ∈ X : hs(t) > 0}s∈A is an open
cover for A as s ∈ {t ∈ X : hs(t) > 0} for every s ∈ A. Since A is compact
there exists t1, t2, ..., tr ∈ A such that A ⊂

⋃r
i=1{t ∈ X : hti(t) > 0}s∈A.

Define g := ∨ri=1hti . Note that hti ∈ J for each i = 1, 2, ..., r and hence
for each i = 1, 2, ..., r, hti(x) = 0 for all x ∈ F . So g(x) = 0 for all x ∈ F
and it follows that g ∈ J . Now let δ > 0 be such that g(t) ≥ δ for all t ∈ A
and define h = f ∧ (||f ||δ−1g). Note f ∈ JF (X) while ||f ||δ−1g ∈ J because
J is a subspace of C(X). So since h ≤ f , h ≤ ||f ||δ−1g, 0 ≤ f ∧ ||f ||δ−1g
while J and JF (X) are both order ideals, h ∈ J ∩ JF (X). We also have
that 0 ≤ h ≤ f while for every t ∈ A, ||f ||δ−1g(t) ≥ ||f || ≥ f(t). So we
must have that h(t) = f(t) for t ∈ A. For any t ∈ X \ A we have that
0 ≤ h(t) ≤ f(t) < ε, while for any t ∈ A we have that h(t) − f(t) = 0. So
||h− f || ≤ ε.

It follows that f ∈ J+ and hence JF (X)+ ⊂ J+. Now for any f ∈ JF (X)
we have that f+, f− ∈ JF (X)+ ⊂ J+. By Theorem 1.1.10 (i), f = f+ − f−
and hence f ∈ J , and it follows that JF (X) ⊂ J . Therefore J = JF (X).

From this result, we can explore properties of such closed sets in X when
characterising special closed ideals such as bands in C(X).

Lemma 2.4.5. Let X be a compact Hausdorff space, and let B be a closed
ideal in C(X). Let F be the closed set such that JF (X) = B by Theorem
2.4.4. Then Bd = JX\F (X).

Proof. Let f ∈ JX\F (X) and consider any g ∈ B. Note that for any x ∈ F ,

|f(x)| ∧ |g(x)| = 0 ∧ |g(x)| = 0.
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We also have that for any x ∈ X \ F , x ∈ X \ F and hence

|f(x)| ∧ |g(x)| = |f(x)| ∧ 0 = 0.

Therefore |f | ∧ |g| = 0 and so it follows that f ∈ Bd. Hence JX\F (X) ⊂ Bd.

Let f ∈ Bd and consider any t /∈ F . The sets {t} and F and disjoint closed
sets in X. So by Urysohn’s Lemma there exists gt ∈ C(X) such that gt(t) = 1
and gt(s) = 0 for all s ∈ F . We have that gt|F ≡ 0 and hence gt ⊥ f since
gt ∈ JF (X). For each t ∈ X \F , f(t) = 0 because |gt|∧|f | = 0 holds. Indeed,
because f is continuous, f−1[{0}] is closed in X. Since X \ F ⊂ f−1[{0}] it
follows that X \ F ⊂ f−1[{0}] and therefore f |X\F ≡ 0, i.e. f ∈ JX\F (X).

So Bd ⊂ JX\F (X) and therefore Bd = JX\F (X).

Lemma 2.4.6. Let X be a compact Hausdorff space, let (fn) be a sequence
in C(X) and let f ∈ C(X). If fn → f in norm, then fn

o→ f .

Proof. It can be shown that fn
o→ f treating (fn) as a net. To see this

fact, note that since fn → f for every ε > 0 there exists N0 ∈ N such that
||fn − f || ≤ ε whenever n ≥ N0. This implies that for every ε > 0 there
exists N0 ∈ N such that |fn − f | ≤ ||fn − f ||1 ≤ ε1 whenever n ≥ N0. The
sequence of continuous functions (qm) where qm = 1

m
1 for m ∈ N serves as a

net that satisfies qm ↓ 0. Therefore for every m ∈ N, since 1
m
> 0 for each

m ∈ N, there exists N0 ∈ N for which |fn − f | ≤ qm holds for every n ≥ N0,
i.e. fn

o→ f .

Lemma 2.4.7. Let X be a compact Hausdorff space and let B be a band in
C(X). Then B is closed.

Proof. Assuming B is a band, B = B(B). Let (fn) be a sequence in B such
that fn → f in norm with f ∈ C(X). It follows from Lemma 2.4.6 that
fn

o→ f . By Proposition 1.4.10, f ∈ B and hence B is closed.

Theorem 2.4.8. Let X be a compact Hausdorff space, and let B be a closed
ideal in C(X). Let F be the closed set such that JF (X) = B by Theorem
2.4.4. Then B is a band if and only if F is the closure of an open set.

Proof. Assume B is a band. By Proposition 1.4.14, (Bd)d = B(B) = B. Let
U = X \X \ F and note that U is open. By Lemma 2.4.5, Bd = JX\F (X).

Since Bd is a band by Proposition 1.4.7, Bd is a closed ideal by Lemma
2.4.7. So by Lemma 2.4.5 again we get that (Bd)d = J

X\X\F
(X) = JU(X).
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Therefore JF (X) = JU(X) and thus it follows that U = F . To see this,
suppose U \ F 6= ∅ and let x ∈ U \ F . By Urysohn’s Lemma there exists
f ∈ C(X) such that f(x) = 1 and f(y) = 0 for all y ∈ F . It follows that
f ∈ JF (X) but f /∈ JU(X). A similar proof can be done to show that
F \ U = ∅.

Assume there exists some open set U such that U = F . Since X \ U is a
closed set, consider J = JX\U(X). Since J is a closed order ideal as a result
of Lemma 2.4.3 and Theorem 2.4.4, it follows by Lemma 2.4.5,

Jd = JX\(X\U)(X) = JU(X) = JF (X) = B,

and hence B is a band by Proposition 1.4.7.

Theorem 2.4.9. Let X be a compact Hausdorff space, and let B be a closed
ideal in C(X). Let F be the closed set such that JF (X) = B by Theorem
2.4.4. Then B is a projection band if and only if B = JF (X) for some clopen
set F ⊂ X.

Proof. Assume F is clopen and let f ∈ C(X). Consider the function 1X\F ·f ,
and let U be an open set in R. Note that X \F is also clopen. If 0 /∈ U then
(1X\F · f)−1[U ] = f−1[U ] which is open in X as f ∈ C(X). If 0 ∈ U then
(1X\F · f)−1[U ] = f−1[U ] ∪ (X \ F ) and is open being a union of open sets.
Therefore (1X\F ·f) ∈ C(X). Furthermore, (1X\F ·f)|F ≡ 0 so 1X\F ·f ∈ B.

Define P : C(X) → B by P (f) = (1X\F · f). Take any f, g ∈ C(X) and
α, β ∈ R. We have the following:

P (αf + βg) = (1X\F · (αf + βg))

= (1X\F · (αf)) + (1X\F · (βg))

= α(1X\F · f) + β(1X\F · g)

= αP (f) + βP (g).

So P is a linear map. We also have that for each f ∈ C(X),

P (P (f)) = (1X\F · (1X\F · f))

= (1X\F · 1X\F ) · f
= (1X\F · f)

= P (f).
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So P is idempotent. Take f ∈ C(X)+. Since 0 ≤ (1X\F · f) ≤ f , we have
that 0 ≤ P (f) ≤ f . By Lemma 1.4.22, B is a projection band with P being
a band projection onto B.

Suppose conversely that B be a projection band. Let P be a band pro-
jection onto B as a result of Proposition 1.4.20. Consider P ◦ 1 and note
that P ◦ 1(x) = 0 for any x ∈ F since B = JF (X). By Lemma 1.4.22,
I − P is a band projection on Bd. Therefore (I − P ) ◦ 1 = 1 − P ◦ 1 and
hence for any x ∈ X \ F , ((I − P ) ◦ 1)(x) = 1(x) − (P ◦ 1)(x) = 0 since
Bd = JX\F (X) by Lemma 2.4.5. It follows that (P ◦ 1)(x) = 1 and hence

F = P−1[{1}] = P−1[(−1
2
, 1
2
)] is clopen.

Theorem 2.4.10. Let X be a compact Hausdorff space. For a closed vector
subspace B of C(X), B is a band if and only if B = JF (X) for some F ⊂ X
which is the closure of some open set.

Proof. Assume B is a band. Then B is an ideal and hence by Theorem 2.4.4,
B = JF (X) for some closed set F . By Theorem 2.4.8 F = U for some open
set U .

Assume B = JF (X) for some F ⊂ X where F = U for some open set U .
F is closed in X so by Theorem 2.4.4 B is an ideal in C(X). Therefore by
Theorem 2.4.8, B is a band in C(X).

Theorem 2.4.11. Let X be a compact Hausdorff space. For a closed vector
subspace B of C(X), we have that B is a projection band if and only if
B = JF (X) for some F ⊂ X which is clopen.

Proof. Assume B is a projection band. Then B is an ideal and hence by
Theorem 2.4.4, B = JF (X) for some closed set F . By Theorem 2.4.9, F is
clopen in X.

Assume B = JF (X) for some clopen set F . By Theorem 2.4.4, B is an
ideal in C(X). Therefore, by Theorem 2.4.9, B is a projection band.

Note that Theorem 2.4.10 and Theorem 2.4.11 are extensions to Theorem
2.4.8 and Theorem 2.4.9 respectively, where B is a closed vector space rather
than a closed order ideal.

The above results have been proven when X is a compact Hausdorff space.
However it can also be shown that they also apply when X is a Tychonoff
space.

Proposition 2.4.12. Let X be a Tychonoff space. Then Cb(X) is an order
dense ideal in C(X).
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Proof. Under the lattice operations inherited in C(X), for any f, g ∈ Cb(X)
and a, b ∈ R we have that af + bg, f ∨ g, f ∧ g ∈ Cb(X) so Cb(X) is a
Riesz subspace of C(X). Consider any f ∈ C(X), and g ∈ Cb(X) such that
|f | ≤ |g|. Since g ∈ Cb(X), there exists M > 0 such that ||g||∞ ≤ M . But
sup{|f(x)| : x ∈ X} ≤ ||g||∞ ≤ M and hence f ∈ Cb(X) and Cb(X) is an
ideal. Take any 0 6= f ∈ C(X)+ and choose g = f ∧ 1. Since 0 6= g ∈ Cb(X)
(sup{|g(x)| : x ∈ X} ≤ 1) and g ≤ f , Cb(X) is an order dense ideal in
C(X).

Proposition 2.4.13. Let X be a Tychonoff space. The map Tβ : C(βX) 3
f 7→ f ◦ β ∈ Cb(X) is an isometric lattice isomorphism onto Cb(X).

Proof. Firstly let f, g ∈ C(βX), a, b ∈ R. We have the following:

Tβ(af + bg) = (af + bg) ◦ β
= (af) ◦ β + (bg) ◦ β
= a(f ◦ β) + b(g ◦ β)

= aTβ(f) + bTβ(g).

So Tβ is a linear map. We also can show that Tβ preserves lattice structure.

Tβ(f ∨ g) = (f ∨ g) ◦ β = (f ◦ β) ∨ (g ◦ β) = Tβ(f) ∨ Tβ(g),

Tβ(f ∧ g) = (f ∧ g) ◦ β = (f ◦ β) ∧ (g ◦ β) = Tβ(f) ∧ Tβ(g).

To show Tβ is an isomorphism, consider any f, g ∈ C(βX) such that f 6= g
and note that (f−g)−1[R\{0}] is a non-empty open set in βX. By Theorem
2.1.3 (i), (f − g)−1[R \ {0}] ∩ β[X] 6= ∅ so there exists x ∈ X such that
f(β(x)) 6= g(β(x)). Therefore Tβ(f) 6= Tβ(g) and thus Tβ is injective. For

any h ∈ Cb(X), h[X] is a closed, bounded subset of R and is hence compact
in R. We can thus define h′ : X → H, h′(x) = h(x) where H = h[X] is a
compact Hausdorff space due to being a subset of R. By Theorem 2.1.3 (ii),
there exists a unique continuous map ĥ′ : βX → H such that ĥ′ ◦ β = h′.
Choosing ĥ ∈ C(βX) such that ĥ(x) = ĥ′(x), it follows that Tβ(ĥ) = h
which shows Tβ is surjective and is thus an isomorphism between C(βX)
and Cb(X). Finally to prove the map is isometric, for any f ∈ C(βX):

||Tβ(f)||∞ = sup{|f(β(x))| : x ∈ X}
= sup{|f(y)| : y ∈ β[X]}
= sup(|f |[β[X]])

= sup(|f |[β[X]]) since |f |[β[X]] ⊂ R.
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We also have that ||f ||∞ = sup{|f(x)| : x ∈ βX} = sup(|f |[βX]) and

|f |[β[X]] ⊂ |f |[βX] ⊂ |f |[β[X]] as βX = β[X]
βX

and f ∈ C(βX). Therefore

sup(|f |[β[X]]) ≤ sup(|f |[βX]) ≤ sup(|f |[β[X]]).

It follows that ||Tβ(f)||∞ = ||f ||∞ and hence Tβ is an isometric lattice iso-
morphism.

Proposition 2.4.14. Let X be a Tychonoff space, and let B be a band in
C(X). Let Bb = B ∩ Cb(X). The following statements are true.

(i) Bb is a band in Cb(X).

(ii) If B is a projection band in C(X) then Bb is a projection band in Cb(X).

Proof. Let f ∈ Cb(X), g ∈ Bb such that |f | ≤ |g|. Since f ∈ C(X) and
g ∈ B, by virtue of B being a band in C(X), f ∈ B and hence f ∈ Bb

which shows that Bb is an ideal in Cb(X). Let (fα) be a net in Bb and let
f ∈ Cb(X) such that fα

o→ f in Cb(X). It follows that (fα) is a net in B,
f ∈ C(X) and fα

o→ f in C(X) by Lemma 1.4.16. So f ∈ B ∩ Cb(X) = Bb

by virtue of B being a band in C(X) hence Bb is a band in Cb(X).
Suppose B is a projection band in C(X). By Proposition 1.4.20 there

exists a band projection P : C(X) → B on B. Let Pb be the restriction
of P onto Cb(X) and note that Pb is a linear idempotent map such that
0 ≤ Pb(f) ≤ f for any f ∈ Cb(X)+. Note that Pb(f) ∈ Cb(X)+ for all
f ∈ Cb(X)+ since sup{Pbf [X]} ≤ ||f ||∞. For any f ∈ Bb, we have that
f ∈ B so there exists u ∈ C(X) such that f = P (u). Since f ∈ Cb(X) it
follows that

f = P (u) = P (P (u)) = P (f) = Pb(f) ∈ Pb(Cb(X)).

So Bb ⊂ Pb(Cb(X)). Also for any f ∈ Cb(X), we have that Pb(f) = Pb(f
+)−

Pb(f
−) ∈ Cb(X) and Pb(f) = P (f) ∈ B. So Pb(Cb(X)) ⊂ Bb and hence

Bb = Pb(Cb(X)). Therefore Bb is a projection band by Lemma 1.4.22.

Corollary 2.4.15. Let X be a Tychonoff space, and let B be a band in C(X).
Let Bb = B ∩ Cb(X). The following statements are true.

(i) T−1β [Bb] is a band in C(βX).

(ii) If B is a projection band in C(X) then T−1β [Bb] is a projection band in
C(βX).
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Proof. Let f ∈ C(βX), g ∈ T−1β [Bb] such that |f | ≤ |g|. Since Tβ is an lattice
isomorphism by Proposition 2.4.13 it follows that Tβ(f) ∈ Cb(X), Tβ(g) ∈ Bb

and |Tβ(f)| ≤ |Tβ(g)|. By Proposition 2.4.14 Bb is a band in Cb(X) and hence
Tβ(f) ∈ Bb. So f ∈ T−1β [Bb] and therefore T−1β [Bb] is an ideal in C(βX).

Let (fα) be a net in T−1β [Bb] such that fα
o→ f for some f ∈ C(βX). There

exists a net (qγ) satisfying qγ ↓ 0 such that for any γ there exists α0 such
that |fα − f | ≤ qγ holds for every α ≥ α0. It follows that (Tβ(fα)) is a net
in Bb and Tβ(f) ∈ Cb(X). Since Tβ is an isometric lattice isomorphism by
Proposition 2.4.13, it follows that the net (Tβ(qγ)) satisfies (Tβ(qγ)) ↓ 0 such
that for any γ there exists α0 such that |Tβ(fα) − Tβ(f)| ≤ Tβ(qγ) for any

α ≤ α0. So Tβ(fα)
o→ Tβ(f) and thus by Proposition 2.4.14, Tβ(f) ∈ Bb

since Bb is a band. So f ∈ T−1β [Bb] and thus T−1β [Bb] is a band in C(βX).
Suppose B is a projection band in C(X), then Bb is a projection band in

Cb(X) by Proposition 2.4.14. Consider any h ∈ C(βX) and note that Tβ(h) ∈
Cb(X). For a set A ⊂ Cb(X), to differentiate from Ad on C(X) we define
A⊥ := {f ∈ Cb(X) : f ⊥ g for all g ∈ A}. Since Bb is a projection band
in Cb(X) it follows from Proposition 2.4.13 that Tβ is a lattice isomorphism
and hence there exists unique f ∈ T−1β [Bb] and g ∈ T−1β [(Bb)

⊥] such that
Tβ(h) = Tβ(f) + Tβ(g) and hence h = f + g. Since Tβ(f) ⊥ Tβ(g) we have
that f ⊥ g (i.e. g ∈ (T−1β [Bb])

d). So T−1β [Bb]⊕ (T−1β [Bb])
d = C(βX) and thus

T−1β [Bb] is a projection band in C(βX).

Theorem 2.4.16. Let X be a Tychonoff space, and F be a closed subset of
X which is the closure (in X) of an open subset of X. Then JF (X) is a band
in C(X).

Proof. This proof is very similar to the case where X is a compact Hausdorff
space in Theorem 2.4.8. Set B = JF (X) and suppose U is an open set in X

such that U
X

= F . Note that X \ U is closed and consider J = JX\U(X).
Taking the proof of Lemma 2.4.5 except that Urysohn’s Lemma is replaced
with the fact that X is Tychonoff, it follows that

Jd = JX\(X\U)(X) = JU(X) = JF (X) = B,

and hence B is a band by Proposition 1.4.7.

Theorem 2.4.17. Let X be a Tychonoff space and F a clopen subset of X.
Then JF (X) is a projection band in C(X).
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Proof. This proof is very similar to the case where X is a compact Hausdorff
space in Theorem 2.4.9. Set B = JF (X) and define P = 1X\F . The result
follows in the same method as in Theorem 2.4.9 where P is shown to be a
band projection onto B.

Theorem 2.4.18. Let X be a Tychonoff space and let B be a band in C(X).

There exists an open subset U of X so that, if F = U
X

, then B = JF (X).

Proof. From Corollary 2.4.15, T−1β [Bb] is a band in C(βX). Since βX is
a compact Hausdorff space, it follows by Theorem 2.4.8 that there exists

an open subset V of βX so that T−1β [Bb] = JG(βX), with G = V
βX

. Let

U = X ∩V and F = U
X

. Note that X ∩G is a closed set in X that contains
X ∩ V = U since X is a subspace of βX. So F ⊂ X ∩G. Since F is closed
in X and X is a subspace of βX, there exists a closed set C in βX such that

F = X ∩ C ⊂ C. It follows that U ⊂ C and hence X ∩ UβX ⊂ F . Consider
any x ∈ G and let O be an open neighbourhood of x in βX. We have that
O ∩ V is a non-empty open set in βX and hence

O ∩ U = O ∩ (X ∩ V ) = X ∩ (O ∩ V ) 6= ∅

because X
βX

= βX as a result of our suppression of β. So G ⊂ U
βX

and

hence X ∩G ⊂ X ∩UβX ⊂ F i.e. F = X ∩G. We show that B = JF (X) as
β−1(G) = X ∩G by the suppression of β. First note that due to Proposition
2.4.13,

Bb = Tβ(T−1β (Bb))

= Tβ(JG(βX))

= {Tβ(f) : f ∈ JG(βX)}
= {f ◦ β : f ◦ β|β−1[G] ≡ 0}
= {g ∈ Cb(X) : g|F ≡ 0}.

Consider any f ∈ B+ and note that f ∧ 1 ∈ Bb since B is a band and
f ∧ 1 ∈ Cb(X). It follows that for any x ∈ F , we have that sup{f(x), 1} = 0
and hence f(x) = 0. So B+ ⊂ JF (X)+ and hence B ∈ JF (X) since f =
f+ − f− ∈ JF (X) for any f ∈ B. Let g ∈ Bd and consider any t /∈ F . Since
X is a Tychonoff space, there exists ft ∈ C(X) ∩ [0,1] such that ft(t) = 1
and ft(s) = 0 for all s ∈ F . So ft|F ≡ 0 and ft ∈ Cb(X) and therefore
ft ∈ Bb ⊂ B. It follows that ft ∧ g and hence g(t) = 0 for any t /∈ F . Now
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for any f ∈ JF (X), we have that |f | ∧ |g| = 0 and this holds for all g ∈ Bd.
So f ∈ (Bd)d = B(B) = B by Proposition 1.4.14 and thus JF (X) ⊂ B and
we are done.

Theorem 2.4.19. Let X be a Tychonoff space and let B be a projection band
in C(X). There exists an clopen subset F of X so that B = JF (X).

Proof. From Corollary 2.4.15, T−1β [Bb] is a band in C(βX). Since βX is a
compact Hausdorff space, it follows by Theorem 2.4.9 that there exists an
clopen subset G in βX so that T−1β [Bb] = JG(βX). Let F = X ∩ G and
note that since X is a subspace of βX, F must be clopen in X. Therefore
B = JF (X) following the exact same method used in Theorem 2.4.18.

Theorem 2.4.20. Let X be a Tychonoff space. Then C(X) has the projec-
tion property if and only if X is extremally disconnected.

Proof. Let B be a band of C(X) and assume that X is extremally dis-
connected. By Theorem 2.4.18 there exists an open set U in X so that

B = J
U

X (X). But U
X

is clopen as X is extremally disconnected. Hence B is
a projection band by Theorem 2.4.17. Now assume that C(X) has the pro-
jection property and let U be an open subset of X. By Theorem 2.4.16, we
have that J

U
X (X) is a band of C(X) and hence a projection band. Therefore

J
U

X (X) = JF (X) for some clopen set F by Theorem 2.4.19. It thus follows

that U
X

= F and hence U
X

is open. To see this, suppose U
X \ F 6= ∅ and

let x ∈ UX \ F . Since X is a Tychonoff space, there exists f ∈ C(X) such
that f(x) = 1 and f(y) = 0 for all y ∈ F . It follows that f ∈ JF (X) but

f /∈ J
U

X (X), which contradicts that J
U

X (X) = JF (X). So U
X \ F = ∅ and

by similar argument, we have that F \ UX
= ∅.

Corollary 2.4.21. Let X be a Tychonoff space. The following statements
are equivalent:

(i) C(X) is Dedekind complete.

(ii) C(X) has the projection property.

Proof. (i) =⇒ (ii): Suppose C(X) is Dedekind complete. From Theorem
2.3.13 it follows that X is extremally disconnected and hence C(X) has the
projection property by Theorem 2.4.20.

(ii) =⇒ (i): Suppose C(X) has the projection property. From Theo-
rem 2.4.20 it follows that X is extremally disconnected and hence C(X) is
Dedekind complete by Theorem 2.3.14.
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