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Abstract
Semi-parametric Gaussian mixtures of non-parametric regressions (SPGMNRs) are a flexible extension of Gaussian mixtures
of linear regressions (GMLRs). The model assumes that the component regression functions (CRFs) are non-parametric
functions of the covariate(s) whereas the component mixing proportions and variances are constants. Unfortunately, the
model cannot be reliably estimated using traditional methods. A local-likelihood approach for estimating the CRFs requires
that we maximize a set of local-likelihood functions. Using the Expectation-Maximization (EM) algorithm to separately
maximize each local-likelihood function may lead to label-switching. This is because the posterior probabilities calculated
at the local E-step are not guaranteed to be aligned. The consequence of this label-switching is wiggly and non-smooth
estimates of the CRFs. In this paper, we propose a unified approach to address label-switching and obtain sensible estimates.
The proposed approach has two stages. In the first stage, we propose a model-based approach to address the label-switching
problem. We first note that each local-likelihood function is a likelihood function of a Gaussian mixture model (GMM).
Next, we reformulate the SPGMNRs model as a mixture of these GMMs. Lastly, using a modified version of the Expectation
Conditional Maximization (ECM) algorithm, we estimate the mixture of GMMs. In addition, using the mixing weights of the
local GMMs, we can automatically choose the local points where local-likelihood estimation takes place. In the second stage,
we propose one-step backfitting estimates of the parametric and non-parametric terms. The effectiveness of the proposed
approach is demonstrated on simulated data and real data analysis.

Keywords EM algorithm · Local-likelihood · Mixture models · Gaussian mixtures of regressions · Local-polynomial
regression

1 Introduction

Finitemixturemodels have become a useful tool for studying
any variable, say y, that takes its values from a popu-
lation that is made up of a number of a priori known,
say K , sub-populations mixed randomly in proportion to
their relative sizes π1, π2, . . . , πK . In this case, each sub-
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population, known as a component, is usually distributed by
a parametric distribution having a density function f (·|θk),
for k = 1, 2, . . . , K . The component parameters θk , often
vector-valued, and the relative sizes (weights), positive and
summing to unity, are distinct across the components.

The most frequently used mixture model for a univariate
variable y arises when each component density is assumed to
be normal, henceforth Gaussian. In this case, the parameter
vector θk = (μk, σ

2
k ). The mixture density function of y is a

convex combination of the Gaussian component densities

f (y) = π1 f (y|μ1, σ
2
1 ) + · · · + πK f (y|μK , σ 2

K )

=
K∑

k=1

πkN {y|μk, σ
2
k } (1)

whereN {·|μ, σ 2} = f (·|μ, σ 2) denotes a Gaussian density
withmeanμ and variance σ 2. Theweightsπk are also known
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as mixing proportions or probabilities. Model (1) is known
as a Gaussian mixture model (GMM). For the theory and
application of GMMs and mixture models, in general, see
Titterington et al. (1985); McLachlan and Peel (2000) and
more recently (Fruhwirth-Schnatter et al. 2019).

Suppose the variable y depends on a set of D covariates
x = (x1, x2, . . . , xD) and we are interested in studying this
dependence. In this case, each component, known as a regres-
sion component, is typically a linear regressionmodel of y on
x having a Gaussian error distribution. The resulting model
is a Gaussian mixture of linear regressions (GMLRs) given
as

f (y|X = x) =
K∑

k=1

πkN {y|mk(x), σ 2
k } (2)

where mk(x) = xᵀβk is the regression function of the kth

regression component, x = (x0, x1, x2, . . . , xD), with x0 =
1, and βk = (β0, β1, . . . , βK ) is the regression parameter
vector of the kth regression component.

GMLRswere first introduced byQuandt (1972) as switch-
ing regressionmodels. Themodels have receivedwidespread
adoption in areas such as economics (Quandt and Ramsey
1978), marketing (DeSarbo and Cron 1988), machine learn-
ing (Jacobs et al. 1991), environmental economics (Hurn
et al. 2003), medicine (Schlattmann 2009), among many
other fields. See Chapter 8 of (Frühwirth-Schnatter 2006)
for more details on the theory of GMLRs, in particular, and
mixtures of regression models, in general.

The linearity assumption imposed on model (2), through
the component regression functions (CRFs), is quite restric-
tive. The main reason for this assumption is that an additive
covariate effect makes for ease of interpretation ( Hastie and
Tibshirani 1990). Efforts to relax this assumption, partly or
completely while retaining the desirable additive covariate
effect, have emerged in the literature. The proposed models
assume that some of the covariates are linearly related to the
response variable y while the relationship between y and the
other variables is characterised by additive non-parametric
univariate functions. Let x = (x, t), the general form of this
class of models is

f (y|X = x,T = t) =
K∑

k=1

πkN {y|mk(x, t), σ 2
k }, (3)

where mk(x, t) = xβk + ∑D2
r=1 gk(tr ).

In model (3), the covariates x ∈ R
D1 are assumed to

enter the model linearly (hence, parametric) characterised
by the regression parameters βk, for k = 1, 2, . . . , K . On
the other hand, the covariates t ∈ R

D2 are assumed to be
characterised by smooth unknown (hence, non-parametric)
additive univariate functions gk(tr ) of the covariates tr , r =

1, 2, . . . , D2, respectively.Thus, theCRFs are semi-parametric
functions.

Model (3) was first introduced and studied by ( Zhang
(2020)) as a finite semi-parametric Gaussian mixture of
partially linear additive models (SPGMPLAMs). For iden-
tifiability, E{gk(tr )} = 0, for t = 1, 2, . . . , D2. Moreover,
without loss of generality, we assume that the covariates
tr : r = 1, 2, . . . , D2 take values on the compact interval
[a, b], where b > a.

If K = 1, model (3) reduces to an additive partial lin-
ear model (APML) ( Opsomer 1999). If each gk(tr ), for
tr , r = 1, 2, . . . , D2, is a linear function of the correspond-
ing covariate, then model (3) is the same as model (2). Thus,
model (3) is a natural extension of an APLM and a GMLRs
model.

Model (3) encompasses many Gaussian mixtures of
regressions some of which were introduced recently. The
following list is in no way exhaustive:

1. If D2 = 0 and D1 = 1, model (3) reduces to the semi-
parametric Gaussian mixture of non-parametric regres-
sions model (SPGMNRs) introduced by Xiang and Yao
(2018).

2. If D2 = 1, model (3) reduces to the semi-parametric
Gaussian mixture of partially linear models (SPGM-
PLMs) introduced by Wu (2016).

3. If D1 = 0, model (3) reduces to the semi-parametric
Gaussian mixture of additive regressions model (SPG-
MARs) introduced by Zhang (2017).

From a statistical inference point of view, the advantage
of model (3) is that it combines the flexibility of a non-
parametric model and the simplicity, in particular inter-
pretability, of a parametric model. However, in practice, due
to the presence of both parametric and non-parametric terms,
model (3) poses an estimation and computational challenge.
First, a likelihood approach for estimating the non-parametric
functions requires that we maximize a set of locally defined
likelihood functions. Using the Expectation-Maximization
(EM) algorithm to separately maximize each local likeli-
hood function may lead to label switching ( Huang 2012 and
Huang and Li (2013)). This problem is illustrated in Sect. 3.
Second, note that efficient parametric estimation requires all
the observed data whereas non-parametric estimation uses
data in the neighbourhood of a local point. Thus, how can
we construct an estimation procedure that is appropriate for
estimating both the parametric and non-parametric term?

In this paper, we propose a unified approach to address all
of these challenges. The proposed approach has two stages.
In the first stage, we propose a model-based approach to
address the label-switching problem. Briefly, we first note
that each local likelihood function is a likelihood function of
a GMM (1). Next, we rewrite model (3) as a mixture of these
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GMMs. Lastly, using a modified Expectation-Conditional-
Maximization (ECM) algorithm, we estimate the mixture
of GMMs thus simultaneously estimating the component
non-parametric functions. We refer to this approach as a
model-based approach. More details are given in Sect. 4. In
the second stage, we propose one-step backfitting estimates
of the parametric and non-parametric terms.

To aid the reader’s comprehension of the novelty of the
proposed ideas, in this paper we will develop the proposed
estimation approach for a simple special case of the general
model (3), the SPGMNRs given by

f (y|X = x) =
K∑

k=1

πkN {y|mk(x), σ
2
k }, (4)

An extension of the method proposed in this paper to the
general model (3) can be found in Appendix A. Throughout
the paper, we assume that the number of components K is
known. In practice, K is unknown and its optimal value is
obtained using a data-driven approach such as the informa-
tion criteria (see Huang and Li (2013)).

The rest of the paper is organized as follows: Sect. 2
presents the traditional (naive) local likelihood approachused
to estimatemodel (4). Section3 discusses the label-switching
problem encountered when estimating the non-parametric
term. Section4 presents the proposed estimation strategy to
estimate model (4) and address label-switching. Section5.2
and 6 presents a simulation study and two real data appli-
cations to demonstrate the performance of the proposed
approach, respectively. Section7 concludes the paper and
then provides direction for future research.

2 Estimation

Consider a random sample {(xi , yi ) : i = 1, 2, . . . , n} of size
n obtained frommodel (4). The corresponding log-likelihood
function is given as

�(θ) =
n∑

i=1

log

[ K∑

k=1

πkN {yi |mk(xi ), σ
2
k }

]
(5)

where θ = (π ,m, σ 2) = (π1, . . . , πK ;m1, . . . ,mK ;
σ 2
1 , . . . , σ 2

K ), with mk = (mk(x1), . . . ,mk(xn)), for k =
1, 2, . . . , K , is the vector of all the model parameters.

In order to estimate model (4), we must estimate θ , this
is done using a likelihood approach. Direct maximization of
the log-likelihood function (5) with respect to θ poses a chal-
lenge due to the presence of both a parametric term (π , σ 2)

(henceforth, global parameters) and a non-parametric term
m. It is straightforward to maximize (5) with respect to either
π or σ 2, however this is not the case for m. Maximizing

(5) with respect to m without any constraints or restrictions
on the component regression functions m would result in
estimates that are practically useless due to overfitting ( Tib-
shirani andHastie 1987). Toovercome this problem,wemake
use of the local-likelihood estimation (LLE) ( Tibshirani and
Hastie 1987). LLE is an extension of local-polynomial kernel
estimation (see Fan and Gijbels (1996)) for likelihood-based
models (see Tibshirani and Hastie (1987) for more details).

2.1 Local-polynomial likelihood (LPL) estimator

The local polynomial likelihood (LPL) estimation procedure
proceeds as follows. Let U = {u1, u2, . . . , uN } be a set of N
local points on the domain of the covariate x . Assume that
at each u ∈ U , each component regression function mk(x),
for k = 1, 2, . . . , K , has a (p + 1)th derivative. By Taylor
expansion, a pth degree polynomial function can be used
to locally approximate each component regression function
mk(x), for k = 1, 2, . . . , K , in the neighbourhood of u, as

mk(x) ≈ m(0)
k (u)[x − u]0 + · · · + m(p)

k (u)

p! [x − u]p

=
p∑

j=0

mkj (u)[x − u] j (6)

where m(r)
k (u) denotes the r th derivative of mk(u) at local

point u and mkj (u) = m( j)
k (u)

j ! for k = 1, 2, . . . , K .
Let m(u) = (m1(u), . . . ,mK (u)), with mk(u) =

(mk0(u),mk1(u), . . . ,mkp(u)), be the vector of all local
parameters at local point u. The estimate of mk(u), denoted
m̂k(u), for k = 1, 2, . . . , K and u ∈ U , is obtained by
maximizing the following weighted (local) log-likelihood
function

�[m(u)] =
n∑

i=1

log

[ K∑

k=1

πkN
{
yi |mk(u), σ 2

k

}]

×Kh(xi − u) (7)

wheremk(u) = ∑p
j=0 mkj (u)[xi −u] j , Kh(x) = K (x/h)/h

and K (x) is a kernel function used to assign weights to the
data points in the neighbourhood of a given local point u
and h > 0 is the bandwidth used to specify the size of the
neighbourhood.

From (6), we obtain the estimator of mk(u), denoted by
m̂k(u), for k = 1, 2, . . . , K , as

m̂k(u) = m̂k0(u) (8)

m̂k0(u) can be referred to as a local polynomial likelihood
(LPL) estimator. To estimate mk(u), for all u ∈ U , we
repeat the abovemaximization. To obtain the estimatedCRFs
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m̂k(xi ), for i = 1, 2, . . . , n and k = 1, 2, . . . , K , we interpo-
late over m̂k(ut ), for t = 1, 2, . . . , N and k = 1, 2, . . . , K .

2.2 Local-likelihood fitting algorithm

To maximize the likelihood function for any mixture model,
the standard algorithm is the Expectation-Maximization
(EM) algorithm (Dempster et al. 1977). Recall that we have
both global and local parameters. As alreadymentioned, esti-
mation of the latter uses only the data in a neighbourhood of
some local point whereas efficient estimation of the former
requires the use of all the observed data. Thus, to satisfy
these competing interests, the estimation procedure must be
implemented in two stages. In the first-stage, we locallymax-
imize (7) with respect to m(u), π(u) and σ 2(u), for u ∈ U .
Let m̂k(u) = m̂k0(u), for k = 1, 2, . . . , K , be the result-
ing local parameter estimates obtained from maximizing (7)
at local point u. Obtain m̂k(xi ), for i = 1, 2, . . . , n and
k = 1, 2, . . . , K by linear interpolation. In the second-stage,
given m̂k(xi ), for i = 1, 2, . . . , n and k = 1, 2, . . . , K , glob-
ally estimate π and σ 2 by maximizing

�(π , σ 2) =
n∑

i=1

log

[ n∑

k=1

πkN {yi |m̂k(xi ), σ
2
k }

]
(9)

with respect to π and σ 2. Let m̂ and (π̂ , σ̂
2) be the resulting

estimates from the first-stage and second-stage, respectively.
These estimators are the so-called one-step estimators of the
local and global parameters, see Carroll et al. (1997). The
one-step algorithm is an intermediate step of the one-step
backfitting algorithm of Xiang and Yao (2018) for fitting
model (4). The one-step procedure is summarized in Algo-
rithm 1.

Algorithm 1 One-step algorithm for the SPGMNRs model
(4)
Ensure: 1:Maximize (7), for each u ∈ U , in turn, with respect tom(u),

π(u) and σ 2(u) and then obtain m̂ by interpolation.
Ensure: 2: Given m̂, maximize (9) with respect to π and σ 2 to obtain
the respective estimates π̂ and σ̂

2.

Notice that, in Stage 1 of Algorithm 1, we must define N
local likelihood functions, where N is the number of local
points (see (7)). Thereafter, the natural way to proceed is to
apply the EM algorithm to each local likelihood function in
turn. This is demonstrated below.

For each u ∈ U , the EM algorithm to maximize (7) pro-
ceeds as follows. Define a K−dimensional latent variable
zi = (zi1, zi2, . . . , ziK )ᵀ for i = 1, 2, . . . , n. The kth ele-
ment of this variable is set equal to 1 if observation (xi , yi )
belongs to the kth component and the rest of the elements

are set equal to 0. Let {(xi , yi , zi ) : i = 1, 2, . . . , n} be the
complete data. Then the corresponding complete-data log
likelihood is

�c{θ(u)} =
n∑

i=1

K∑

k=1

zik
[
logπk(u) +

logN {yi |mk(u), σ 2
k (u)}]Kh(xi − u) (10)

where θ(u) = (π(u),m(u), σ 2(u)), with π(u) =
(π1(u), . . . , πK (u)), m(u) = (m1(u), . . . ,mK (u)) and
σ 2(u) = (σ 2

1 (u), . . . , σ 2
K (u)), is a vector of the local

parameters at local point u. At the E-step, we calculate the
expected value of �c(θ(u)) with respect to the conditional
distribution of z, denoted Q{θ(u)|θ (r)(u)}. This corresponds
to calculating the latent variable zik , for i = 1, 2, . . . , n
and k = 1, 2, . . . , K , using its conditional expectation
E(zik |xi , yi , θ (r)(u)) as

γ
(r+1)
ik (u) = π

(r)
k (u)N {yi |m(r)

k (u), σ
2(r)
k (u)}

∑K
�=1 π

(r)
� (u)N {yi |m(r)

� (u), σ
2(r)
� (u)}

(11)

for i = 1, 2, . . . , n and k = 1, 2, . . . , K .
γ

(r+1)
ik (u) is referred to the responsibility of the kth com-

ponent for the i th observation (see Bishop (2006) and Hastie
et al. (2009)). It gives the probability that the i th observation
belongs to the kth component.

From (11), it follows that Q{θ(u)|θ (r)(u)} is

Q{θ(u)|θ (r)(u)} =
n∑

i=1

K∑

k=1

γ
(r)
ik (u)

[
logπk(u)

+logN {yi |mk(u), σ 2
k (u)}]Kh(xi − ut ) (12)

At the M-step, we maximize Q(θ(u)|θ (r)(u)) to update
θ(u). For instance, to update m(r)

k (u), for u ∈ U and

k = 1, 2, . . . , K , let (m̂(r)
k0 (u), m̂(r)

k1 (u), . . . , m̂(r)
kp (u)) be the

maximizers of

n∑

i=1

γ
(r+1)
ik (u)logN

{
yi |

p∑

j=0

mkj (u)[xi − u] j , σ 2
k (u)

}

×Kh(xi − u) (13)

Then m(r+1)
k (u) = m̂(r+1)

k0 (u), for k = 1, 2, . . . , K . An

expression for m̂(r+1)
k0 (u) using matrix notation is useful and

can be easily obtained.
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Let

X =

⎡

⎢⎢⎢⎣

1 (x1 − u) . . . (x1 − u)p

1 (x2 − u) . . . (x2 − u)p

...
...

. . .
...

1 (xn − u) . . . (xn − u)p

⎤

⎥⎥⎥⎦

be the design matrix at local point u and set y =
(y1, y2, . . . , yn)ᵀ andmk(u) = (mk0(u),mk1(u), . . . ,mkp(u))ᵀ.
Moreover, let

Wk = diag{γ (r+1)
1k (u)Kh(x1 − u), . . . ,

γ
(r+1)
nk (u)Kh(xn − u)} (14)

be the n × n diagonal matrix of the weights at local point u.
The maximum likelihood criterion can be written as

max
mk (u)

−(y − Xᵀmk(u))ᵀWk(y − Xᵀmk(u)) (15)

Solving (15), gives the following expression for m̂(r+1)
k0 (u)

(and consequently m(r+1)
k (u))

m(r+1)
k (u) ≡ m̂(r+1)

k0 (u) = eᵀA−1
k Bky (16)

where Ak = (XᵀWkX), Bk = XᵀWk and e is a (p +
1)−dimensional vector where the first entry is 1 and the other
entries are set to zero. The local estimators of the other local
parameters (π(u), σ 2(u)) can be obtained in a similar fash-
ion. However, note that for p > 0, LPL estimator of π(u)

does not have a closed form expression. Thus, we estimate
this local parameter using the LCE. Furthermore, with the
assumption that the regression components are homoscedas-
tic, an LCE can be used to estimate σ 2(u) and the additional
improvement from using an LPL estimator with p > 0 will
be negligible.

The above EM algorithm proceeds by repeatedly iterating
between the E-Step and M-Step until convergence.

3 Label-switching problem

In this Section, we give a description of the label-switching
problem encountered when usingAlgorithm 1 andwe review
previous work proposed to address the problem.

3.1 A brief description of the label-switching
problem

In order to obtain m̂k(xi ), for xi /∈ U and k = 1, 2, . . . , K ,
we interpolate over m̂k(u), for u ∈ U . Let m̂k =
(m̂k(x1), m̂k(x2), . . . , m̂k(xn)), for k = 1, 2, . . . , K , be the

Fig. 1 Label switching problem: a A K = 2 component case show-
ing the true component regression functions (solid curves). The dotted
curves are the fitted component regression functions at three local grid
points −1, 0 and 1 which shows that there was a switch at grid points
−1 and 1

resulting component non-parametric functions. The latter
may be non-smooth, exhibiting irregular and non-uniform
behaviour. This is because, for each local point u ∈ U ,
the M-step is based on a unique set of local responsibilities
{γik(u) : i = 1, 2, . . . , n; k = 1, 2, . . . , K }. These sets of
local responsibilities are not guaranteed to be aligned across
the local points. In the event of a misalignment, the labels
attached to the mixture components may switch from one
local grid point to the next. The practical consequence of this
label-switching is estimates of the non-parametric functions
that are characterised by discontinuities near the pointswhere
the switch took place. Figure1 illustrates this label-switching
phenomenon. The figure shows a simple example of a K = 2
component mixture of non-parametric regressions where the
regression function of one component is consistently above
that of the other component (given by the solid black curves).
Consider maximising the local-likelihood functions at three
local points u = −1, 0 and 1 using Algorithm 1. There are
(2!)3 = 8 possible configurations of the component regres-
sion functions when we join the local parameter estimates at
the three local points. Figure1 shows two of these configu-
rations, the true configuration given by the solid curves and
another configuration given by the dotted curves where the
labels of the local parameter estimates at local point -1 and 1
have switched. Note that only 2 of these configurations will
result in the correct CRFs. Thus, there is 0.75 probability that
Algorithm 1 will result in label-switching. This probability
is approximately 1 for K > 2.

Thus, Algorithm 1 does not work. Henceforth, we refer to
Algorithm 1 as the naive EM algorithm.
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3.2 Previous work addressing label-switching

This form of label-switching problem was first mentioned
by Huang (2012) and subsequently (Huang and Li 2013).
To address the problem, the authors proposed a modi-
fied EM-type algorithm that simultaneously maximizes the
complete-data local-likelihood functions (12) using the same
(common) responsibilities γ

(r)
ik = γ

(r)
ik (u) for all u ∈ U . In

other words, the responsibilities are independent of the local
points. This algorithm has been applied by many authors to
estimate models of the form (3). It is used in the estimation
procedure (PL-EM) of Wu (2016) for estimating SPGM-
PLMs. It is an intermediate part of the one-step backfitting
(LEM) algorithm of Xiang and Yao (2018) for estimating
model (4) and the spline-backfitted kernel (SBK) EM algo-
rithm of Zhang (2017) for estimating SPGMARs.

In particular, the LEM algorithm is a modified version of
Algorithm 1 where in Stage 1, the responsibilities (11) at the
E-step are replaced by

γ
(r+1)
ik = π

(r)
k (xi )N {yi |m(r)

k (xi ), σ
2(r)
k (xi )}

∑K
�=1 π

(r)
� (xi )N {yi |m(r)

� (xi ), σ
2(r)
� (xi )}

(17)

In other words, the responsibilities are independent of the
local grid points. This implies that theLEMalgorithmand the
other above-mentioned EM-type algorithms do not directly
maximize the observed local log-likelihood functions but the
complete-data local log-likelihood functions. Thus, the cal-
culation of the common responsibilities does not take into
account the local information. In a previous work ( Skhosana
et al. 2022), the authors of the current paper proposed a
novel EM-type algorithm that obtains the common respon-
sibilities {γik : i = 1, 2, . . . , n; k = 1, 2, . . . , K } from
the local responsibilities {γik(u) : i = 1, 2, . . . , n; k =
1, 2, . . . , K ; u ∈ U} thus incorporating the local informa-
tion. As with the LEM algorithm, the proposed EM-type
algorithm is a modified version of Algorithm 1. Briefly,
the algorithm replaces the responsibilities (1) with com-
mon responsibilities selected as the local responsibilities that
correspond to the smoothest estimates of the component
non-parametric functions. See the paper for more details.
The algorithm was later extended to estimate SPGMPLMs
( Skhosana et al. 2023). In the next section, we propose an
alternative estimation strategy to address label-switching.

4 The proposed approach

In this section, we propose to address label-switching by
reformulating model (4) as a mixture of GMMs. Estimating
the mixture of GMMs is, in effect, equivalent to simulta-
neously estimating all the parameters of each local GMM

and hence the component non-parametric functions. Note
that, in contrast to existing estimation strategies, this implies
that the proposed estimation strategy estimates all the local
parameters by maximizing only one likelihood function.
Nevertheless, the strategies follow the same principle, simul-
taneous maximization (estimation) of the local likelihood
functions (parameters).

At the end of Sect. 4.1, we show that the proposed
approach encompasses, as a special case, an estimation strat-
egy similar to the one proposed in ( Skhosana et al. (2022)).

4.1 Themixture of GMMs

As discussed in Sect. 3, label-switching takes place when
estimating the local parameters by separately maximizing
each local-likelihood function (7). In the following, we pro-
pose an estimation strategy that can

1. simultaneously estimate the local parameters in order to
address label switching; and

2. select the optimal set of local grid points.

Towards that end, we reformulate the model (4) by introduc-
ing a second source of missing information. We assume that
the parameters πk and σ 2

k are also non-parametric functions
of x and let U = {u1, u2, . . . , uN } be a set of N local points
in the domain of the covariate x . It follows that, at each local
point ut , for t = 1, 2, . . . , N , model (4) is a GMM (1)

fut (y) =
K∑

k=1

πk(ut )N
{
y|mk(ut ), σ

2
k (ut )

}
(18)

where πk = πk(ut ), μk = mk(ut ) and σ 2
k = σ 2

k (ut ).
One of these local GMMs can be viewed as a distribution

of the response variable y. Since we do not observe the iden-
tity of this local GMM, y follows a mixture of these local
GMMs

f (y) =
N∑

t=1

λt fut (y)

=
N∑

t=1

λt

[ K∑

k=1

πk(ut )N
{
y|mk(ut ), σ

2
k (ut )

}]

=
N∑

t=1

K∑

k=1

λtπk(ut )N
{
y|mk(ut ), σ

2
k (ut )

}
(19)

where λt > 0 (satisfying
∑N

t=1 λt = 1) is the mixing pro-
portion, probability or weight. As a mixing proportion, λt
can be viewed as the relative number of data points that were
generated by the t th local GMM. As a mixing probability, λt
can be interpreted as the probability that a given data point,
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say yi , was generated by the t th local GMM. Thus, the larger
the value of λt , the more data will be associated with the
t th local GMM. Alternatively, the larger the value of λt , the
more likely that a given data point was generated by the local
model fut (y). As a mixing weight, λt can be viewed as spec-
ifying the relative importance of the t th local GMM. The
larger the weight, the more significant the local model is to
the the overall model. Stated differently, a local model with
a small weight (λt ≈ 0) is indicative of a sparse local region
with few to no data points in the neighbourhood of the local
point.. This in turn implies that the local model has little to
no information about the data and consequently about the
overall model. Thus, the use of the corresponding local point
is of little value to the overall fit of the model.

From the previous discussion, the benefits of the weights
(λ1, λ2, . . . , λN ) become apparent. They can be used in var-
ious innovative ways as we discuss below.

To estimate model (19), we first need to specify the set
of local grid points U . We can follow convention and use
the observed covariate values or a set of equally-spaced val-
ues from the domain of the covariate. Alternatively, we can
use the weights as follows: we begin by setting U as all the
observed covariate values. Next, we modify the EM algo-
rithm by introducing a step between the E- and M- step that
determines all the weights that are below a certain threshold,
say λ0, that measures relative importance. Recall that the
weights correspond with the local grid points. Thus, all the
local grid points whose corresponding weights are below λ0
are removed and the algorithm continues with the remaining
local grid points. We repeat the steps of this modified EM
algorithm until convergence. The advantage of this approach
is that it finds both the number, N , and location of the grid
points.

Another benefit of the weights is in suggesting an alter-
native approach to address label-switching. As mentioned
before, estimating model (19) is equivalent to simultane-
ously estimating all the local parameters thus addressing
label-switching. Moreover, the estimation can be done using
the classical EM algorithm or the modified EM algorithm
described above. An alternative strategy to addressing label-
switching is to estimate all the local GMMs and choose the
one with the largest weight and use its resulting local respon-
sibilities as the common responsibilities used tomaximise all
the local-likelihood functions. In this manner, this proposed
alternative approach is, in principle, similar to the approach
proposed in Skhosana et al. (2022).

Note that since the set of local points U is determined
by the range X of the covariate x , model (19) represents a
reformulation of model (4). Moreover, due to the mixture of
mixtures structure (19), the new model is a hierarchical. To
highlight this hierarchy, model (4) can be written as

f (y|X = x) =
N∑

t=1

λt

K∑

k=1

πt,kN
{
y|mt,k, σ

2
t,k

}
, (20)

where πt,k = πk(ut ), mt,k = mk(ut ) and σ 2
t,k = σ 2

k (ut ).

4.2 Estimation procedure

In this section,we propose an estimation procedure formodel
(20). Consider a random sample {(xi , yi ) : i = 1, 2, . . . , n}
from model (20). The corresponding log-likelihood function
is

�0(λ, θ) =
n∑

i=1

log

[ N∑

t=1

K∑

k=1

λtπt,kN
{
y|mt,k, σ

2
t,k

}]

(21)

where λ = (λ1, . . . , λN ) and θ = (θ(u1), . . . , θ(uN ))

with θ(ut ) = (π t ·,mt ·, σ 2
t ·), π t · = (πt,1, . . . , πt,K ),

mt · = (mt,1, . . . ,mt,K ) and σ 2
t · = (σ 2

t,1, . . . , σ
2
t,K ), for

t = 1, 2, . . . , N .
We propose a modified Expectation Conditional Maxi-

mization (ECM-) type ( Meng and Rubin 1993) to maximize
(21). The ECM is a modified version of the classical EM
algorithm where the M-step is split into simpler M-steps
also known as conditional M (CM-) steps. Note that we now
have two latent variables. The first latent variable serves as
an indicator variable for the identity of the local model that
generated a given data point. For each data point, we define
this latent variable as vi = (vi1, vi2, . . . , vi N )where vi t = 1
if the i th data point belongs or was generated by the t th

local model and 0 otherwise. The second latent variable, zi t ,
serves as an indicator variable for the identity of theGaussian
component, from the t th local model, that generated a given
data point. Thus, zi t = (zit1, zit2, . . . , zit K ), where zitk = 1
if the i th data point was generated by the kth component
from the t th local mixture model. Given the completed-data
{(xi , yi , zi t , vi ) : i = 1, 2, . . . , n; t = 1, 2, . . . , N }, the cor-
responding (complete-data) log-likelihood is

�c0(λ, θ) = �1c0 (λ) + �2c0 (π) + �3c0 (θ), (22)

where

�1c0 (λ) =
N∑

t=1

n∑

i=1

vi t logλt ,

�2c0 (π) =
N∑

t=1

n∑

i=1

K∑

k=1

vi t zi tk logπt,k,

�3c0 (θ2) =
N∑

t=1

n∑

i=1

K∑

k=1

vi t zi tk logN
{
yi |mt,k, σ

2
t,k

}
,
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with π = (π t ·)1≤t≤N and θ = (mt ·, σ 2
t ·)1≤t≤N .

Let T = {t |λt > λ0} be the set of all indices of the
local models where the weights λt ’s are greater than some
constant 0 < λ0 < 1. The constant λ0 is a threshold that
specifies a level beyondwhich a local point can be considered
to be significant in the sense discussed above. The threshold
λ0 is a free parameter (hyperparameter) that can be chosen
subjectively or objectively based on the data. More details
will be given below.

At the (r + 1)th iteration of the E-step, we calcu-
late the conditional expected value of �1c0 (λ), �2c0 (π) and
�3c0 (θ), denoted by Q(λ|λ(r)), Q(π |π (r)) and Q(θ |θ (r)),
respectively, with respect to the conditional distribution of
v and z. This corresponds to estimating the latent vari-
ables vi t and zitk for i = 1, 2, . . . , n, k = 1, 2, . . . , K
and t ∈ T (r) using E[vi t |xi , yi , λ(r)

t ,π
(r)
t · , θ (r)(ut )] and

E[zitk |xi , yi , vi ,π (r)
t · , θ (r)(ut )], respectively. Using Bayes’

theorem, the latter are calculated as

P(vi t = 1|yi , xi ) = P(vi t = 1)P(yi |vi t = 1, xi )

P(yi |xi )

v̂
(r+1)
i t =

λ
(r)
t

∑K
k=1 π

(r)
t,kN

{
yi |m(r)

t,k , σ
2(r)
t,k

}

∑
�∈T (r) λ

(r)
�

∑K
k=1 π

(r)
�,kN

{
yi |m(r)

�,k, σ
2(r)
�,k

} (23)

and

P(zitk =1|vi , yi , xi )= P(zitk =1|vi )P(yi |zitk =1, vi , xi )
P(yi |vi , xi )

ẑ(r+1)
i tk =

π
(r)
t,kN

{
yi |m(r)

t,k , σ
2(r)
t,k

}

∑K
�=1 π

(r)
t,�N

{
yi |m(r)

t,�, σ
2(r)
t,�

} (24)

Note that (24) is similar to (11), with the difference being
that we now have to take into account the value of vi , for
i = 1, 2, . . . , n. Expression (23) v̂

(r+1)
i t can be interpreted as

the probability that the i th data point was generated by the t th

local model. In other words, it represents the responsibility
of the t th local model for the i th data point. Given that the
i th data point belongs to the t th local model, ẑ(r+1)

i tk has the
same interpretation as γik(ut ).

After replacing vi t with v̂i t and zitk with ẑi tk in (22), we
obtain Q(λ|λ(r)), Q(π |π (r)) and Q(θ |θ (r)).

At the first CM-step, on the (r + 1)th iteration, we update
λ(r), by maximizing Q(λ|λ(r)), given T (r), to obtain

λ̂
(r+1)
t =

∑n
i=1 v̂

(r+1)
i t

n
for t ∈ T (r) (25)

To update T (r), let

T (r+1) = {t |λ̂(r+1)
t > λ0}. (26)

At the second CM-step, we update π (r) and θ (r) by max-
imizing Q(π |π (r)) and Q(θ |θ (r)), respectively. Note that
if we maximize, say Q(θ |θ (r)), with respect to mt,k , for
t ∈ T (r), the resulting estimated function mk(xi ), for i =
1, 2, . . . , n, may exhibit wild oscillations. This is because, at
each local point ut , the contribution of all the covariate values
{x1, x2, . . . , xn} to the likelihood function is equal. Thus, the
local parameter estimate, say m̂t,k , will be sensitive to values
of the covariate that are not within its neighbourhood. This
might possibly lead to a biased estimate.

To remedy this, we propose to maximize kernel weighted
versions of these complete-data log-likelihood functions

Qw(π |π (r)) =
∑

t∈T (r+1)

n∑

i=1

K∑

k=1

v̂
(r+1)
i t ẑ(r+1)

i tk

×Kh(xi − ut )logπt,k (27)

Qw(θ |θ (r)) =
∑

t∈T (r+1)

n∑

i=1

K∑

k=1

v̂
(r+1)
i t ẑ(r+1)

i tk

×Kh(xi − ut )logN
{
yi |mt,k, σ

2
t,k

}
(28)

where the kernel function Kh(xi − ut ) is used to provide
a weight to xi relative to the local point ut . Note that if we
choose Kh(·) as the uniform kernel function, the above prob-
lem persists. Thus, Q(π |π (r)) and Q(θ |θ (r)) are implicitly
kernel weighted, where the kernel function is uniform.

Maximizing (27) with respect to πt,k , we get

π
(r+1)
t,k =

∑n
i=1 v̂

(r+1)
i t ẑ(r+1)

i tk Kh(xi − ut )
∑n

i=1 v̂
(r+1)
i t Kh(xi − ut )

(29)

Maximizing (28) with respect to mt,k and σ 2
t,k we get

m(r+1)
t,k =

∑n
i=1 w

(r+1)
i tk yi

∑n
i=1 w

(r+1)
i tk

(30)

σ
2(r+1)
t,k =

∑n
i=1 w

(r+1)
i tk (yi − m(r+1)

t,k )2

∑n
i=1 w

(r+1)
i tk

(31)

where w
(r+1)
i tk = v̂

(r+1)
i t ẑ(r+1)

i tk Kh(ti − ut ).
We repeat the above E- and CM-steps until convergence.
The derivations of (29), (30) and (31) are given in

Appendix B.
Let r = R be the iteration index at convergence. To obtain

m̂k(xi ) for i = 1, 2, . . . , n and k = 1, 2, . . . , K , we linearly
interpolate overm(R)

t,k , for k = 1, 2, . . . , K and t ∈ T (R). The
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first-stage estimates of the other non-parametric functions
can be obtained in a similar manner.

We refer to the above algorithm as the model-based EM-
type (henceforth, MB-EM) algorithm. Model-based because
of its hierarchical mixture of mixtures structure as well as its
ability to select the local grid points in a principled manner
by making use of a probability distribution (model) and EM
because it is amodified version of the classical EMalgorithm.

Note the following properties of the MB-EM algorithm:

Choice of λ0: Based on empirical evidence in Sect. 5.2,
we showed that the algorithm is not sensitive to the choice
of the parameter λ0;
Ascent property: An important and attractive property
of the classical EM algorithm is the ascent property. That
is, at each iteration �

(r+1)
0 (λ,β) ≥ �

(r)
0 (λ,β). Empirical

evidence shows that the MB-EM algorithm also has this
property;
Convergence: The convergence of the algorithm can be
evaluated in either one of the followingways: (1) Stop the
algorithm when the increase in the likelihood from one
iteration to the next is below some small pre-specified
threshold. (2) Stop the algorithm when the change in the
estimated parameters from one iteration to the next is
smaller than some small value. For instance, ||λ(r+1) −
λ(r)||1 < 10−5 or ||λ(r+1) −λ(r)||2 < 10−5, where || · ||1
and || · ||2 denotes the L1 and L2 norm, respectively,
on R

N (r+1)
. The superscript N (r+1) is used to denote the

number of local grid points at the (r + 1)th iteration.
Algorithm complexity:At each iteration of theMB-EM
algorithm, the overall time complexity of the E-step is
O(n×N (r+1) ×K ). In comparison, the time complexity
of the NaiveEM algorithm and the LEM algorithm is
O(n × N × K ) and O(n × K ), respectively. It is known
that the slowconvergence of the classical EMalgorithm is
largely as a result of theE-step computations (seeChapter
2 of Fruhwirth-Schnatter et al. (2019)). This implies that
the LEMalgorithm should be computationally faster than
the proposed algorithm.
Note that the overall time complexity of the proposed
CM-steps is O(n × N (r+1) × K ) and that of the M-step
of both the NaiveEM algorithm and LEM algorithm is
O(n × N × K ). However, as shown in the simulations,
the computational advantage of the LEM comes at the
cost of inaccurate estimation.

Let (π̂ , m̂, σ̂
2) be the estimates of the parametric and non-

parametric terms (π , σ ) and m, respectively, obtained from
estimating model (20). Note that when defining the mix-
ture of GMMs (20), we assumed that the global parameters
(π , σ 2) were local. However, to obtain efficient estimates of
the global parameters, wemust use all of the data during esti-

mation. Thus, in an effort to improve the estimates (π̂ , σ̂
2),

given m̂, we propose updated estimates π̃ and σ̃ 2 obtained
by maximizing the global log-likelihood function

�1(π , σ 2) =
n∑

i=1

log

[ K∑

k=1

πkN {yi |m̂k(xi ), σ
2
k }

]
(32)

Given the global parameter estimates π̃ and σ̃ 2, we can
improve the local estimate m̂. To achieve this, we propose the
estimate m̃ obtained by maximizing the local log-likelihood
function

�2[m(ut )] =
n∑

i=1

log

{ K∑

k=1

π̃kN {yi |mk(ut ), σ̃
2
k }

}

×Kh(xi − ut ), (33)

over all grid points ut , t = 1, 2, . . . , N .
Note that the global parameter estimates π̃ and σ̃ 2 arewell

labelled. This implies that the local log-likelihood functions
(33) can be maximized separately without being concerned
about label switching.

In summary, the proposed estimation procedure proceeds
in two stages. In the first stage, we obtain the estimates
(π̂ , m̂, σ̂

2). Thereafter, in the second stage, we obtain the
estimates (π̃ , σ̃ 2, m̃).

We refer to the second-stage estimates (π̃ , σ̃ 2, m̃) as the
one-step backfitting estimate.

4.3 One-step backfitting algorithm

In this section, we propose a one-step backfitting algorithm
to obtain the one-step backfitting estimates θ̃ . The MB-EM
algorithm is an intermediate part of this algorithm.

Stage 0: Initializing the algorithm

Obtain appropriate initial estimates of the global parameters
and the non-parametric functions, denoted (m(0), σ 2(0)) and
π (0), respectively, by making use of, say mixture of regres-
sion splines (see Xiang and Yao (2018)). Moreover, let U be
the set of N grid points, T (0) = {1, 2, . . . , N } be the initial
set of indices and specify λ0. In our preliminary numerical
experiments, we found that themodel estimates are not sensi-
tive to the specified value of λ0 provided that the value is not
chosen too large. In this case, the algorithm may fail because
it is using few to no local points. In the extreme case, T will
be empty. Thus, we recommend using the parameter value
λ0 = 1 × 10−5.
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Stage 1: MB-EM algorithm tomaximize �0

Let λ(r), θ (r)
1 and θ

(r)
2 be the parameter estimates obtained at

the r th iteration.
E-Step: At the (r + 1)th iteration, calculate Q(λ|λ(r)),

Q(π |π (r)) and Q(θ |θ (r)) by first estimating vi and zi , for
i = 1, 2, . . . , n, using (23) and (24), respectively.

CM-Step 1: Maximize Q(λ|λ(r)) to obtain λ(r+1) and
T (r+1) using (25) and (26), respectively.

CM-Step 2: Given T (r+1), maximize Q(π |π (r)) and
Q(θ |θ (r)) to obtain π (r+1) and θ (r+1) using (29), (30) and
(31), respectively.

Repeat the above E- and CM-steps until convergence.

Stage 2(a): EM algorithm to maximize �1

Given m̂ obtained from Stage 1, we obtain the global
estimates π̃ and σ̃ 2 of the global parameters π and σ 2,
respectively, by maximizing �1 in (32) using the usual EM
algorithm.

E-Step: At the (r + 1)th iteration, calculate the expected
value of the latent variable as

γ
(r+1)
ik = π

(r)
k N {yi |m̂k(xi ), σ

2(r)
k }

∑K
�=1 π

(r)
� N {yi |m̂�(xi ), σ

2(r)
� }

(34)

M-Step: We obtain the global parameter estimates π (r+1)

and σ 2(r+1) using the following equations

π
(r+1)
k =

∑n
i=1 γ

(r+1)
ik

n
(35)

σ
2(r+1)
k =

∑n
i=1 γ

(r+1)
ik

(
yi − m̂k(xi )

)2
∑n

i=1 γ
(r+1)
ik

(36)

Repeat the above E- and M-step until convergence

Stage 2(b): EM algorithm tomaximize �2

Given π̃ and σ̃ 2 obtained from Stage 2(a), we propose an
improved estimate of the component non-parametric func-
tions, denoted by m̃, obtained by maximizing each local
log-likelihood function in (33) using the usual EMalgorithm.

E-Step: At the (r + 1)th iteration, calculate the expected
value of the latent variable as

γ
(r+1)
ik (ut ) = π̃kN {yi |m(r)

k (ut ), σ̃ 2
k }

∑K
�=1 π̃�N {yi |m(r)

� (ut ), σ̃ 2
� }

(37)

M-Step: We obtain m(r+1)
k (ut ), for t = 1, 2, . . . , N , using

(16).
Repeat the above E- and M-step until convergence.

At convergence of the EM algorithm of Stage 2(b), we
obtain m̃ = (m̃1, m̃2, . . . , m̃K ), where m̃k = (m̃k(x1), . . . ,
m̃k(xn)) by linear interpolation over m(R)

k (ut ) for t =
1, 2, . . . , N and k = 1, 2, . . . , K .

We refer to the estimates π̃ , σ̃ 2 and m̃ as the one-step
backfitting estimates. To further improve the one-step back-
fitting estimates, we can repeat Stage 2(a) and 2(b) of the
algorithm until convergence.

Remark 1 Note that label-switching is not a concern when
obtaining the non-parametric estimates m̃. This is because
the global parameter estimates π̃ and σ̃ 2 are the same across
all the local points in Stage 2(b).

5 Simulations

In this section, we perform numerical experiments to demon-
strate the performance of the proposed method. The purpose
of these experiments is two fold. First, we want to demon-
strate the effectiveness of the proposed method towards
addressing label-switching. Second, we want to evaluate the
accuracy of the proposed one-step backfitting estimators.
Moreover, we want to demonstrate the practical suitability
of the fitted model based on these estimators. For the rest of
the chapter, we refer to the proposed model-based one-step
backfitting algorithm, simply as the MB-EM algorithm. All
numerical experiments are performed using the R program-
ming language (R Core Team 2023).

5.1 Choosing the bandwidth, h

Among other things, local polynomial fitting requires the
bandwidth, h. In practice, this component is usually chosen
using a data-driven approach such as cross-validation (CV).
In this paper, we propose a generalized CV (GCV) approach
(see Craven andWahba (1979)) for bandwidth selection. The
GCV approach is less computationally intensive compared
to the ordinary multi-fold CV approach, it alleviates the ten-
dency of the ordinary CV approach to undersmooth ( Hastie
et al. 2009) and, more importantly, it allows us to express the
CV error as a function of the complexity (number of param-
eters) of the estimator. This is important when comparing
two different local polynomial estimators as will be shown
in section 5.2.

Let ŷk = (ŷ1k, . . . , ŷnk)ᵀ be the vector of fitted values,
where ŷik = m̃k(xi ) is the one-step backfitting estimate of
mk(xi ). Using (16), it can be shown that m̃k(xi ) = s(xi )y,
where s(xi ) = eᵀA−1

k Bk after replacing u by xi . Then

ŷk = Shky for k = 1, 2, . . . , K (38)

where Shk = (s(x1), s(x2), . . . , s(xn))ᵀ is known as the
smoother matrix, see Buja et al. (1989) for more details. The
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first subscript shows that the smoother matrix depends on the
bandwidth h, among others. We propose the following GCV
error

GCV(h) =
K∑

k=1

(y − ŷk)ᵀWk(y − ŷk)/nk
(1 − dfk/nk)2

=
K∑

k=1

ASEk

(1 − dfk/n)2
(39)

where ASEk=(y− ŷk)ᵀWk(y− ŷk)/nk , with nk = ∑n
i=1 γ̂ik ,

is the average squared error (ASE) of the fitted kth CRF,
Wk = diag(γ̂1k, γ̂2k, . . . , γ̂nk) is the diagonal matrix of the
responsibilities of the kth component obtained based on the
one-step backfitting estimates θ̃ = (π̃ , σ̃ 2, m̃) and

dfk = trace(Shk) =
n∑

i=1

sii (40)

where sii , for i = 1, 2, . . . , n, are the diagonal entries of the
smoother matrix Shk . Expression (40) denotes the degrees
of freedom of the kth component. The latter quantifies the
complexity of the fitted CRF as it gives the effective number
of parameters used to estimate the kth CRF, see Buja et al.
(1989) for more details. This concept is very useful for com-
paring local polynomial estimates of different degrees. We
will demonstrate this in our simulation study.

5.2 Simulation studies

For each of our numerical experiments, we generate 500 data
sets of sizes n = 250, 500, 1000 and 2000. We make use of
N = 100 local points chosen uniformly on the domain of
x . In all our simulations, the covariate x is generated from a
uniform distribution on the interval (0, 1). We make use of
the Gaussian kernel function.

To initialize the proposed method, we make use of the
mixture of regression splines (MRS) ( Xiang and Yao 2018).
To estimate the MRS, we make use of the bs and ns func-
tions from the R package splines. The knots are chosen
as the quartiles of x .

To evaluate the performance of the proposed method, we
make use of the following measures:

Root average squared error (RASE):

RASE2(y) =
K∑

k=1

ASEk (41)

RASE2(m) = 1

n

n∑

i=1

K∑

k=1

[
m̃k(xi ) − mk(xi )

]2

(42)

RASE2( fθ ) = 1

n

n∑

i=1

[
f̂
θ̃
(yi |xi ) − fθ (yi |xi )

]2

(43)

Adjusted Rand Index (ARI) is used to evaluate the clus-
tering ability of the fittedmodel (ARI; Hubert and Arabie
(1985)).
Kolmogorov-Smirnov (KS) statistic is used to assess the
goodness of the fit F̂

θ̃
as

KS = maxi |Fθ (yi |xi ) − F̂
θ̃
(yi |xi )|, (44)

for i = 1, 2, . . . , n.
Finally, to evaluate the accuracy of the estimated param-
eters (π̃ , σ̃ 2), we make use of the ASE.

where fθ and Fθ are the true conditional probability dis-
tribution (4) and the corresponding cumulative conditional
probability distribution, respectively, and f̂

θ̃
and F̂

θ̃
are the

respective estimates.
Evaluating theperformanceof theproposedmethod towards
addressing label-switching We first demonstrate that the
proposed method is less sensitive to label-switching and
produces reliable model estimates. First, we consider data
generated from a K = 2 component SPGMNRs given in
Table 1.

The CRFs, mk(x)′s, in Table 1 are given in Fig. 2a. We
fit model (4) for K = 2 on the generated data using the
LCEs obtained via the naive EM algorithm (naiveEM), the
proposed MB-EM algorithm and the local EM algorithm of
Xiang and Yao (2018). The bandwidths were chosen as 0.05,
0.045, 0.04 and 0.035 for the sample sizes n = 250, 500,
1000 and 2000, respectively.

Fig. 3 shows examples of the fitted CRFs for typical sam-
ples of sizes n = 250, 500, 1000 and 2000. These fitted
CRFs were each chosen from the fitted models, among the
500 replicates, with the largest likelihood value based on
the results of the naiveEM. As can be seen from the fig-
ure, the estimates based on the naiveEM (right-column) are
wiggly and non-smooth whereas those based on both the
proposedMB-EM(center) and theLEM(right-column) algo-
rithmappear to be stable. For a full picture of the performance
of the proposedmethod comparedwith both the naiveEMand
LEMalgorithm,Table 2gives the average and standarddevia-

Table 1 Data generating model

k 1 2

πk 0.65 0.35

mk(x) 1 − cos(2πx) exp(2x)

σ 2
k 0.09 0.16
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Fig. 2 CRFs for the model in (a) Table 1, (b) Table 3 and (c) Table 5

Table 2 Average (and standard deviations) of the performance measures over the 500 replications using data generated from the model in Table 1

n RASE( fθ ) KS ASEπ ASEσ 2
1

ASEσ 2
2

RASE(m) ARI

250 naiveEM 0.142 (0.026) 0.020 (0.009) 0.082 (0.038) 0.003 (0.004) 0.005 (0.002) 0.280 (0.075) 0.676 (0.062)

MB-EM 0.108 (0.022) 0.022 (0.01) 0.082 (0.043) 0.004 (0.004) 0.005 (0.002) 0.186 (0.043) 0.699 (0.060)

LEM 0.114 (0.028) 0.023 (0.011) 0.074 (0.042) 0.003 (0.004) 0.005 (0.002) 0.185 (0.043) 0.686 (0.106)

500 naiveEM 0.112 (0.019) 0.016 (0.006) 0.085 (0.028) 0.004 (0.003) 0.005 (0.002) 0.239 (0.053) 0.686 (0.043)

MB-EM 0.081 (0.016) 0.016 (0.007) 0.081 (0.040) 0.005 (0.004) 0.004 (0.002) 0.140 (0.032) 0.703 (0.045)

LEM 0.097 (0.043) 0.021 (0.015) 0.075 (0.039) 0.004 (0.003) 0.004 (0.002) 0.145 (0.033) 0.641 (0.178)

1000 naiveEM 0.090 (0.014) 0.013 (0.004) 0.086 (0.025) 0.004 (0.002) 0.005 (0.001) 0.217 (0.038) 0.693 (0.030)

MB-EM 0.061 (0.011) 0.012 (0.005) 0.078 (0.041) 0.005 (0.003) 0.004 (0.002) 0.107 (0.021) 0.709 (0.028)

LEM 0.064 (0.020) 0.012 (0.007) 0.076 (0.036) 0.004 (0.003) 0.004 (0.002) 0.112 (0.023) 0.701 (0.067)

2000 naiveEM 0.075 (0.010) 0.012 (0.003) 0.087 (0.019) 0.005 (0.002) 0.005 (0.001) 0.201 (0.029) 0.694 (0.020)

MB-EM 0.047 (0.008) 0.009 (0.004) 0.081 (0.038) 0.005 (0.003) 0.004 (0.002) 0.084 (0.016) 0.707 (0.020)

LEM 0.047 (0.008) 0.009 (0.003) 0.079 (0.031) 0.004 (0.002) 0.004 (0.002) 0.090 (0.016) 0.708 (0.020)

Table 3 Data generating model

k 1 2

πk 0.65 0.35

mk(x) 1 + cos(2xπ) exp(2x)

σ 2
k 0.09 0.16

tions of the performancemeasures over all the 500 replicates.
The results from Table 2 show that the proposed MB-EM
algorithm significantly outperforms the naiveEM.Moreover,
for small sample sizes, MB-EM generally gives stable (small
standard deviations) and slightly better estimates compared
with the LEM algorithm.

Next, we consider data generated from the model given in
Table 3. The CRFs in Table 3 are plotted in Fig. 2b.

We fitted model (4) for K = 2 on the data using the LCEs
obtained via the naiveEM, the MB-EM and the LEM. The
results are given in Table 4. The results from Table 4 show
that MB-EM performs slightly better than both the naiveEM
and the LEM algorithm. To further emphasise this last point,
Fig. 4 shows examples of the fitted CRFs for typical samples

of sizes n = 250, 500, 1000 and 2000 chosen as before. As
can be seen from the figure, the fittedCRFs based onMB-EM
appear to be stable and, more importantly, in line with the
true CRFs. In contrast, the fitted CRFs based on the naiveEM
exhibit wild oscillations and hence are unstable whereas the
estimates based on the LEM, although stable, may not be
in line with the true CRFs. Thus, given the instability of
the naiveEM, the latter is not useful in practice. Moreover,
the estimates based on the LEM cannot be relied upon as
they may lead to wrong conclusions. This serves as a further
motivation for the proposed method.
Local-constant estimator vs. Local-linear estimator Next,
we compare the LCEs and LLEs obtained using the proposed
MB-EM. The data for this experiment is generated from the
model in Table 5. A plot of the CRFs is given in Fig. 2c. It is
known that the first and second derivatives of the regression
function is a multiplicative and additive term, respectively, in
the theoretical bias of a LCE of the regression function (see
Fan (1992)). Thus, the CRF for component 2 was chosen so
that its first and second derivatives are large. Since we are
interested in the performance of the estimators in estimating
the CRFs, we only report the RASE(m).
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Fig. 3 True (black curves) and fitted (red curves) CRFs obtained via
the NaiveEM algorithm (left-column), the MB-EM algorithm (center)
and LEM algorithm (righ-column) for samples of sizes n = 250 (first-

row), 500 (second-row), 1000 (third-row) and 2000 (fourth-row)
generated from the model in Table 1. These CRFs were chosen from the
fitted models with the largest likelihood value based on the naiveEM
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Fig. 4 True (black curves) and fitted (red curves) CRFs obtained via
the NaiveEM algorithm (left-column), the MB-EM algorithm (center)
and LEM algorithm (righ-column) for samples of sizes n = 250 (first-

row), 500 (second-row), 1000 (third-row) and 2000 (fourth-row)
generated from the model in Table 3. These CRFs were chosen from the
fitted models with the largest likelihood value based on the NaiveEM
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Table 4 Average (and standard deviations) of the performance measures over the 500 replications using data generated from the model in Table 3

n RASE( fθ ) KS ASEπ ASEσ 2
1

ASEσ 2
2

RASE(m) ARI

250 naiveEM 0.116 (0.021) 0.016 (0.007) 0.076 (0.032) 0.004 (0.002) 0.004 (0.002) 0.237 (0.074) 0.766 (0.058)

MB-EM 0.107 (0.024) 0.018 (0.008) 0.074 (0.045) 0.003 (0.004) 0.005 (0.002) 0.180 (0.039) 0.763 (0.070)

LEM 0.129 (0.046) 0.023 (0.014) 0.070 (0.038) 0.004 (0.002) 0.004 (0.002) 0.193 (0.059) 0.614 (0.193)

500 naiveEM 0.094 (0.016) 0.012 (0.005) 0.078 (0.031) 0.004 (0.002) 0.004 (0.002) 0.195 (0.047) 0.768 (0.040)

MB-EM 0.079 (0.017) 0.014 (0.006) 0.074 (0.041) 0.004 (0.003) 0.004 (0.002) 0.139 (0.028) 0.775 (0.046)

LEM 0.133 (0.028) 0.018 (0.006) 0.072 (0.036) 0.004 (0.002) 0.004 (0.002) 0.154 (0.035) 0.527 (0.106)

1000 naiveEM 0.077 (0.013) 0.009 (0.003) 0.082 (0.026) 0.004 (0.001) 0.004 (0.001) 0.168 (0.036) 0.774 (0.026)

MB-EM 0.058 (0.011) 0.010 (0.005) 0.076 (0.039) 0.004 (0.003) 0.004 (0.002) 0.105 (0.019) 0.784 (0.028)

LEM 0.130 (0.016) 0.015 (0.004) 0.077 (0.032) 0.004 (0.002) 0.004 (0.002) 0.133 (0.026) 0.498 (0.051)

2000 naiveEM 0.064 (0.011) 0.007 (0.003) 0.082 (0.026) 0.004 (0.001) 0.004 (0.001) 0.148 (0.026) 0.777 (0.018)

MB-EM 0.044 (0.008) 0.007 (0.003) 0.078 (0.036) 0.004 (0.002) 0.004 (0.002) 0.082 (0.014) 0.786 (0.018)

LEM 0.124 (0.010) 0.013 (0.003) 0.081 (0.028) 0.004 (0.001) 0.004 (0.001) 0.118 (0.021) 0.496 (0.028)

Table 5 Data generating model

k 1 2

πk 0.65 0.35

mk(x) 1 − cos(2xπ) exp(2x2)

σ 2
k 0.09 0.16

Following (Buja et al. 1989), we obtain the bandwidths
such that the two estimators have the same total degrees of
freedom (tdf),

∑K
k=1 dfk , where dfk is given by (40). This is

done so thatwe canbe able to compare the results basedon the
LCEandLLE (seeBuja et al. (1989) formore details). Table 6
gives the average and standard deviations of the RASE, over
all the 500 replicates, using the LCEs and LLEs obtained
via the proposed MB-EM. As can be seen from the table,
LLEs perform better than the LCEs for estimating the CRFs.
This is not unexpected. As alluded to above, if the true non-
parametric function has a large first and second derivative,
then the LCEs will be subject to bias (see Fan (1992)).

Evaluating the sensitivity of the proposed MB-EM algo-
rithm on the value of the parameter λ0 Next, we evaluate the
sensitivity of the proposed MB-EM algorithm on the value
of the parameter λ0. Before presenting any empirical results,
intuitively, the value of λ0 should not be too large because it
might lead to the choice of an inadequately small (or zero!)
number of local points. In the extreme case the algorithm
will fail. On the other hand, if λ0 is chosen too small, the
algorithm may not be able to select the optimal set of local
points. The resulting local neighbourhood will include all the
initial local points.

We evaluate the sensitivity of the fitted model on the value
of λ0 using data generated from the models in Tables 1 and
3. For a sample of size n = 500, Table 7 gives the results of

the MB-EM algorithm for a range of values of λ0. The value
1 × 10−5 = 0.00001.

As can be seen from the table, for values of λ0 at most
1 × 10−4, the performance of the algorithm is virtually the
same. However, when λ0 is chosen greater than 1 × 10−4,
the performance deteriorates. In terms of choosing the num-
ber of local points where the estimation takes place, for
λ0 = 1 × 10−2, the algorithm tends to choose 2 − 10 local
points thus resulting in an inadequate fit. On the other hand,
for λ0 = 1 × 10−8, the algorithm tends to choose 95 − 100
local points. This results are consistent with our above intu-
ition. Thus, any value of λ0 that is not too small (to prevent
a large non-local neighbourhood) and not too large (to pre-
vent empty neighbourhoods) will suffice. Clearly, the latter
scenario results in the most undesirable outcome. In our sim-
ulations and applications, we chose our value of λ0 to be
sufficiently small.

Note that the above results still hold if we increase the
sample size to say n = 1000. The results can be provided
upon request from the authors.

Evaluating the computational time Finally, we evaluate the
computational time when practically implementing the pro-
posed algorithm compared with the LEM algorithm. The
simulations were conducted on a computer with 2 Skylake
CPUs each with 24-cores at 2.6 GHz frequency and a 512
GB RAM. Table 8 gives the average time (in minutes) it
takes to run the MB-EM algorithm and the LEM algorithm
for samples of sizes n = 250, 500, 1000 and 2000 using data
generated from the models in Tables 1 and 3. The results
show that the LEM algorithm is computationally faster than
the proposed MB-EM algorithm. However, we believe that
the practical performance of the MB-EM algorithm, in terms
of producing accurate estimates as clearly shown in Table 4
and Fig. 4, justifies the computational cost of the algorithm.
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Table 6 Average (and standard
deviations) of the RASE(m)

over the 500 replications based
on the LCEs and LLEs obtained
using the MB-EM algorithm

Estimator n

250 500 1000 2000

LCE 0.210 (0.054) 0.165 (0.029) 0.132 (0.022) 0.109 (0.016)

LLE 0.157 (0.045) 0.113 (0.025) 0.088 (0.020) 0.067 (0.014)

Table 7 Evaluating the sensitivity of the MB-EM algorithm on the value of λ0: average (and standard deviations) of the performance measures
over the 500 replications for samples of size n = 500

Model λ0 RASE( fθ ) RASE(m) KS ASEπ ASEσ 2
1

ASEσ 2
2

ARI

Table 1 1 × 10−8 0.081 (0.015) 0.016 (0.007) 0.082 (0.041) 0.005 (0.004) 0.004 (0.002) 0.141 (0.030) 0.703 (0.043)

1 × 10−6 0.081 (0.015) 0.016 (0.007) 0.083 (0.040) 0.005 (0.004) 0.004 (0.002) 0.141 (0.030) 0.703 (0.044)

1 × 10−5 0.081 (0.015) 0.016 (0.007) 0.085 (0.040) 0.005 (0.004) 0.004 (0.002) 0.141 (0.030) 0.703 (0.043)

1 × 10−4 0.081 (0.015) 0.016 (0.007) 0.081 (0.042) 0.005 (0.004) 0.004 (0.002) 0.141 (0.030) 0.702 (0.044)

1 × 10−2 0.142 (0.067) 0.017 (0.008) 0.090 (0.056) 0.365 (1.613) 0.035 (0.122) 0.166 (0.049) 0.594 (0.147)

Table 3 1 × 10−8 0.078 (0.018) 0.013 (0.006) 0.076 (0.041) 0.004 (0.003) 0.004 (0.002) 0.138 (0.028) 0.778 (0.043)

1 × 10−6 0.078 (0.018) 0.013 (0.006) 0.076 (0.040) 0.004 (0.003) 0.004 (0.002) 0.138 (0.028) 0.778 (0.043)

1 × 10−5 0.078 (0.017) 0.013 (0.006) 0.076 (0.041) 0.004 (0.003) 0.004 (0.002) 0.138 (0.028) 0.778 (0.043)

1 × 10−4 0.078 (0.017) 0.013 (0.006) 0.075 (0.041) 0.004 (0.004) 0.004 (0.002) 0.138 (0.028) 0.778 (0.043)

1 × 10−2 0.139 (0.063) 0.015 (0.007) 0.070 (0.043) 0.184 (0.690) 0.020 (0.088) 0.153 (0.045) 0.697 (0.116)

Fig. 5 SA Covid-19 data: a Scatter plot of the data. b Fitted CRFs for the SA Covid data using the LLE estimator via the MB-EM algorithm. Also
included are the 95% pointwise bootstrap confidence intervals

6 Applications

In this section, we demonstrate the practical usefulness of
the proposed method on real data. For real data analysis,

1. we present results based on the proposed MB-EM algo-
rithm and compare them with the results based on the
LEM algorithm;

2. we initialize each fitting algorithm by making use of the
fitted model based on the local constant estimator;

3. we use the GCV criterion to to select the bandwidth for
the local constant estimator. We then choose a bandwidth
for the local linear estimator such that the total degrees
of freedom (tdf) of the two estimators are the same. As
before, this renders the fit based on the two estimators
comparable;

4. we measure the goodness-of-fit using the RASE and
Bayesian information criterion (BIC)

BIC = −2� + df × log(n) (45)
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Table 8 Average computation time (in minutes) of the MB-EM and
LEM algorithm over 200 replications based on the LCEs

Model Algorithm n

250 500 1000 2000

Table 1 MB-EM 0.401 0.614 1.341 6.145

LEM 0.021 0.058 0.321 3.591

Table 3 MB-EM 0.391 0.624 1.394 6.327

LEM 0.022 0.055 0.326 3.648

where df = tdf + 2K − 1 is the overall model degrees
of freedom and � is the maximum log-likelihood value.
Moreover, we assess the predictive ability of the fitted
model using the mean squared prediction error (MPSE).
Following (Xiang and Yao 2018), we calculate the MSPE
via a Monte Carlo cross validation (MCCV) procedure.
The MCCV procedure randomly partitions the data into
a training set with size n(1 − r) and a test set with size
nr , where r is the proportion of data in the test set. The
model is estimated using the data in the training set and
then validated using data in the test set. The procedure is
repeated T times and we take the average of the MSPEs.
We use r = 0.1 and T = 200; and

5. lastly, we use a conditional bootstrap approach to cal-
culate the pointwise 95% confidence intervals of the
fitted CRFs and the 95% confidence intervals of the
component mixing proportions and variances. That is,
for a given value of x , we sample the corresponding
value of the response, denoted by y∗, from the fitted
SPGMNRs model

∑K
k=1 π̂kN {y|m̂k(x), σ̂ 2

k }. We repeat
this sampling process n times to get a bootstrap sample
S = {(xi , y∗

i ) : i = 1, 2, . . . , n}. We generate B boot-
strap samples S(1),S(2), . . . ,S(B) in the above manner.
We fit the SPGMNRsmodel (4) on each of these bootstrap
samples, thus generating a sampling distribution of π̂k , σ̂ 2

k
and m̂k(x). To compute the 95% confidence intervals, we
take the 2.5th and 97.5th percentiles of the sampling dis-
tributions as the lower and upper limits, respectively, of
the interval. We set B = 200.

6.1 South African Covid-19 data

For our first application, we consider the Covid-19 infec-
tion rates (rt ) over time (t) in two South African provinces,
Kwa-Zulu Natal (KZN) and the Eastern Cape (EC), for the
period December 2020 to 15 February 2021. This data set
was previously used by Millard and Kanfer (2022) where a
description can be found. The data was collected from the
Data Science for Social Impact COVID-19 data repository.

Figure5a gives a scatter plot of the data along with the
identity of the province that generated each data point. The

purpose of this application is to demonstrate the effectiveness
of the proposed method in addressing label-switching and
identify each data point with the province that generated it.
Thus, we take province as a latent variable. It is clear from
Fig. 5a that the relationship between the infection rate, rt , and
time, t , is non-linear in each province. Thus, we fit a K = 2
component SPGMNRs to the data.

The GCV criterion gave a bandwidth of 1.0249 for the
local constant estimator which corresponds with a tdf of
about 71. The bandwidth for the local linear estimator with
about the same tdf is 1.0468.

Table 9 gives the results of the fitted model obtained
using the MB-EM algorithm and LEM algorithm. Since we
know the actual component (province) where each data point
belongs to, we also measure the clustering ability of the fit-
ted models using the ARI. For this data, the local constant
estimated model is slightly better than the local linear esti-
mate, with a small BIC and RASE. However, the predictive
ability of the two estimates is virtually the same. The results
based on the proposed MB-EM and the LEM algorithm are
virtually the same for this data set.

Figure5b shows the fitted component regression functions
(CRFs) using the proposed MB-EM algorithm. We can see
that the proposedmethodwas able to detect the "latent" struc-
ture.

6.2 African CO2 data

For our next analysis on real data, we consider the relation-
ship between carbon dioxide (CO2) emissions, a measure
of environmental degradation, and gross domestic product
(GDP), a measure of themonetary value produced by a coun-
try in a given period. Figure6a shows a scatter plot ofCO2 per
capita (inmetric tons) onGDP per capita (inUS$) for a group
of 51 African countries in 2014. The countries includes,
among others, South Africa (ZAF), Botswana (BWA) and
Zimbabwe (ZWE). The data were obtained from the World
Bank’s World development indicators database (accessed on
10 April 2023). A quick visual inspection of Fig. 6a reveals
two clusters (groups) of countries based on the relationship
betweenCO2 andGDP.Moreover, this relationship is not lin-
ear in either of the two groups. A mixture of non-parametric
regression analysis is apt for this data. Such an analysis can
assist us in answering questions such as

• What development path is adoptedby eachgroupof coun-
tries? Especially, the low GDP countries.

• Which countries, if any, are pursuing economic growth
at a high cost to the environment?

• Is a linear relationship between CO2 and GDP appropri-
ate for each group of countries?

• Are there more than two groups of countries?
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Table 9 SA Covid-19 data: The
fitted model using the local
constant estimator (LCE) and
local linear estimator (LLE) via
the MB-EM algorithm and the
LEM algorithm

MB-EM LEM

LCE LLE LCE LLE

RASE(×10) 0.0237 0.0241 0.0238 0.00241

BIC −1204.1 -1198 −1212.4 −1207.7

ARI 1 1 1 1

MSPE 0.0002 (0.0002) 0.0001 (0.0001) 0.0002 (0.0002) 0.0001 (0.0001)

Table 10 BIC values obtained
for the SPGMNRs fitted using
the MB-EM algorithm and the
GMLRs model fitted using the
EM algorithm. The SPGMNRs
and GMLRs with K = 1
corresponds with the
non-parametric regression
model and simple linear
regression model, respectively

K Model

SPGMNRs GMLRs

1 70.888 100.420

2 −15.046 9.793

3 10.598 25.520

4 16.355 32.574

5 26.168 56.975

After standardizing the variables, we fit a K = 2 compo-
nent SPGMNRs model to the data on Fig. 6a in an attempt
to answer some of the questions above. The GCV criterion
chose a bandwidth of 0.1725 for the LCE which corresponds
to a tdf of about 14. To obtain about the same tdf, the band-
width of the LLE was chosen to be 0.2343. To confirm that
there are indeed two groups and the regression relationships
are non-linear, we also fitted the SPGMNRs and GMLRs
models with K = 1, 3, 4 and 5 components and compared
them based on the BIC. The SPGMNRs and the GMLRs
for K = 1 are essentially the non-parametric regression and
linear regression models, respectively. These models were
fitted using the R functions: locfit ( Loader 2023) and
glm, respectively.

The results (Table 10) show that the K = 2 compo-
nent SPGMNRs model is appropriate for this data having
the smallest value of the BIC. Thus, we have confirmed that
there are indeed two groups of countries. We therefore pro-
ceed with the fitted K = 2 component SPGMNRs model.

Table 11 gives the results from the fitted model. It can be
seen that the model based on the local linear estimator is the
best as it attains the best overall model goodness-of-fit and
good performance on out-of-sample prediction. Moreover,
the overall performance of the proposed MB-EM algorithm
is slightly better than that the other LEM for this data set.

Based on the proposed local linear one-step backfitting
estimators via theMB-EMalgorithm, themixing proportions
and and variances, alongwith their 95%bootstrap confidence
intervals, were obtained as 0.4775 (0.2425 - 0.5054), 0.5225
(0.4946 - 0.7576), 0.0106 (0.0047 - 0.0343) and 0.0053
(0.0010 - 0.0148), respectively. Figure6c and 6d gives the fit-
ted CRFs obtained using the proposed LLEs via the MB-EM
algorithm. Included in Fig. 6 are the 95%pointwise bootstrap

confidence intervals. The estimated CRFs based on the LEM
are similar and hence they are excluded.

The estimated CRF in Fig. 6c reveals an interesting phe-
nomenon. CO2 emissions increase up until a certain level
of GDP. Thereafter, beyond this level, they exhibit a slow
down in further increases of CO2 emissions. This is con-
sistent with the well-known environmental Kuznets curve
(EKC) hypothesis in environmental economics (see Dinda
(2004)). The EKC says that, at the development phase, the
value of a country’s economy increases at a high cost to the
environment due to high carbon emissions from the industri-
alization process. Beyond a certain level of growth, this effect
is reversed and economic growth leads to lower carbon emis-
sions. This phenomenon hypothesizes a non-linear negative
parabolic-like relationship between CO2 and GDP. Assum-
ing that all countries follow the sameEKC, for a cross-section
of countries, the estimated EKC’s in Fig. 6 show countries at
different stages of development ( Dinda 2004). Usingmodel-
based clustering (see McNicholas (2016)), we can use the
fitted model to assign each country to a given group. The
results are given in Fig. 6b. We find that the developmental
path given by the curve in Fig. 6c ismade up by countries such
as Namibia, Swaziland and Botswana. Countries in which
the energy mix is becoming less dominated by fossil fuels.
Whereas the developmental path given by the curve in Fig. 6d
is made up by countries such as South Africa, Morocco and
Egypt. Countries in which the energy mix is still heavily
dominated by fossil fuels.

7 Conclusion

This paperwas concernedwith addressing the label-switching
problemencounteredwhenestimating semi-parametricGaus-
sian mixtures of non-parametric regressions (SPGMNRs)
using local likelihood methods. Applying the EM algorithm
to maximize each local likelihood function separately does
not guarantee that the component labels on the local param-
eter estimates will be aligned. We proposed a two-stage
approach to: (1) address label-switching and (2) obtain good
estimates of the parametric and non-parametric terms of the
model. In the first-stage, we use a model-based approach
to, in effect, simultaneously maximize the local-likelihood
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Table 11 CO2 data: The fitted
model using the LCE and LLE
via the MB-EM algorithm and
LEM algorithm

MB-EM LEM

LCE LLE LCE LLE

RASE 0.1264 0.1233 0.1213 0.1072

BIC −34.4426 −39.2662 −16.9129 −28.6801

MSPE 0.1143 (0.1414) 0.0954 (0.1256) 0.1390 (0.16274) 0.1003 (0.1356)

Fig. 6 a Scatter plot of the CO2 data. Fitted K = 2 component SPGMNRs model obtained using the LLE via the MB-EM algorithm. b hard
clustered data based on the fitted model. c–d Fitted CRF for component 1 and component 2, respectively

functions thus addressing label-switching.Within themodel-
based framework, we use a modified ECM algorithm, to
automatically choose the number and location of the local
points. In the second-stage, to improve the first-stage esti-
mates, we propose one-step backfitting estimates of the
parametric and non-parametric terms. We demonstrated the
effectiveness and usefulness of the proposed method on sim-
ulated and two real datasets.

The proposed approach incorporates a tuning parameter
(threshold) λ0 which was shown by simulation, under differ-
ent scenarios, to have less influence on the results if chosen
to be neither too small or too large. This is similar to the bias-
variance trade-off when choosing the optimal bandwidth. As
with the bandwidth, we can use a data-driven approach to
choose the optimal λ0. This will be a subject for future stud-
ies. Given the success of the proposed method when only the
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CRFs are semi- or non-parametric, it could be interesting,
and of practical use for future studies, to investigate the effec-
tiveness of the approach when, in addition to the CRFs, the
mixing proportions and/or variances are also non-parametric.

Appendix A

In this appendix, we show how the proposed estimation strat-
egy can be extended to estimate the general model (3).

Let π̄k , β̄k , σ̄ 2
k and ḡk(tr ), for r = 1, 2, . . . , D2 and

k = 1, 2, . . . , K , be the pilot or initial estimates of πk , βk ,
σ 2
k and gk(tr ), for r = 1, 2, . . . , D2 and k = 1, 2, . . . , K ,

respectively. To estimate gk(tq), for k = 1, 2, . . . , K , using
the model-based approach, define the pseudo response vari-
able yq = y−∑K

k=1 π̄k
[
xᵀβ̄k+

∑
r 	=q ḡk(tr )

]
corresponding

to the covariate tq . Then, model (3) reduces to

f (yq |Tq = tq) =
K∑

k=1

πkN {yq |gk(tq), σ 2
k }, (A1)

Model (A1) is the SPGMNRs (4). The estimation of model
(A1) can be done similar to that of model (4) as discussed in
section 4.

Let ĝk(tq), for k = 1, 2, . . . , K ,- be the estimates of
gk(tq), for k = 1, 2, . . . , K , obtained from fitting model
(A1).

To obtain the estimates ĝk(tr ), for r 	= q and k =
1, 2, . . . , K , for the other non-parametric additive functions,
we repeat the above procedure.

Finally, let ĝk(tr ), for r = 1, 2, . . . , D2 and k =
1, 2, . . . , K , be the model-based estimates of the non-
parametric additive functions.

Given the estimates ĝk(tr ), for r = 1, 2, . . . , D2 and k =
1, 2, . . . , K , we can improve the estimates π̄k , β̄k and σ̄ 2

k by
maximizing the log-lilekihood function

�1(π ,β, σ 2) =
n∑

i=1

log

[ K∑

k=1

πkN {yi |xᵀβk +
D2∑

r=1

ĝk(tir ), σ
2
k }

]

(A2)

Let π̃k , β̃k and σ̃ 2
k be the global parameter estimates obtained

from maximizing (A2).
Given π̃k , β̃k and σ̃ 2

k and ĝk(tr ), for r 	= q and k =
1, 2, . . . , K , we can improve the estimates of the non-
parametric additive functions ĝk(tq), for k = 1, 2, . . . , K ,
by maximizing the local-likelihood function

�2{g(ut )} =
n∑

i=1

log

[ K∑

k=1

π̃kN {yi |xᵀβ̃k +

∑

r 	=q

ĝk(tir ) + gk(ut ), σ̃
2
k }

]
Kh(tq − ut )

(A3)

for u ∈ U , where U is the set of all the local grid points in
the domain of the covariate tq .

Let g̃k(tq), for k = 1, 2, . . . , K , be the new estimates of
gk(tq), for k = 1, 2, . . . , K and set ĝk(tq) = g̃k(tq), for
k = 1, 2, . . . , K . We repeat the above procedure to obtain
the estimates g̃k(tr ), for r 	= q and k = 1, 2, . . . , K .

Finally, let π̃k , β̃k , σ̃
2
k and g̃k(tr ), for r = 1, 2, . . . , D2 and

k = 1, 2, . . . , K , be the one-step backfitting model-based
EM estimates.

The above estimating strategy for estimating model (3)
is a three-stage estimation procedure. In the first-stage, we
obtain the pilot or initial estimates of the parameters and
non-parametric additive functions. This can be done using
B-splines as in Zhang (2020). In the second-stage, we use
the proposed model-based approach to estimate the non-
parametric additive functions. Finally, in the third-stage, we
re-estimate the parameters and then the non-parametric addi-
tive functions.

Appendix B Derivations

B.1 Derivation of�(r+1)
t,k

Note that
∑K

k=1 πt,k = 1, for t ∈ T (r+1). Thus, the maxi-
mization of Qw(θ |θ (r)) with respect to πt,k is subject to the
above constraint.

Let η be the Lagrange multiplier, the Lagrangian function
is given as

Qw
η (θ |θ (r)) = Qw(θ |θ (r)) + η

[ ∑

t∈T

( K∑

k=1

πt,k − 1
)]

(B1)

Maximizing (B1) with respect to πt,k gives

∂Qw
η (θ |θ (r))

∂πt,k
=

∑n
i=1 v̂

(r+1)
i t ẑ(r+1)

i tk Kh(xi − ut )

πt,k
+ η

0
set=

∑n
i=1 v̂

(r+1)
i t ẑ(r+1)

i tk Kh(xi − ut )

π
(r+1)
t,k

+ η

−ηπ
(r+1)
t,k =

n∑

i=1

v̂
(r+1)
i t ẑ(r+1)

i tk Kh(xi − ut ) (B2)
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Summing both sides of (B2) over k = 1, 2, . . . , K , we obtain

− η

K∑

k=1

π
(r+1)
t,k =

n∑

i=1

v̂
(r+1)
i t Kh(xi − ut )

K∑

k=1

ẑ(r+1)
i tk

−η =
n∑

i=1

v̂
(r+1)
i t Kh(xi − ut ) (B3)

Note that
∑K

k=1 πt,k = 1 and
∑K

k=1 ẑi tk = 1, for t ∈ T (r+1)

and i = 1, 2, . . . , n.
Substituting (B3) into (B2) followed by a bit of algebra

gives

π
(r+1)
t,k =

∑n
i=1 v̂

(r+1)
i t ẑ(r+1)

i tk Kh(xi − ut )
∑n

i=1 v̂
(r+1)
i t Kh(xi − ut )

(B4)

B.2 Derivation ofm(r+1)
t,k and�2(r+1)

t,k

Let w(r+1)
i tk = v̂

(r+1)
i t ẑ(r+1)

i tk Kh(xi − ut ), then Qw(θ |θ (r)) can
be expressed as

Qw(θ |θ (r)) = −
∑

t∈T (r+1)

n∑

i=1

K∑

k=1

w
(r+1)
i tk

[
1

2
log(2πσ 2

t,k) +

1

2σ 2
t,k

(yi − mt,k)
2
]

(B5)

Maximizing Qw(θ |θ (r)) with respect to mt,k gives

∂Qw
η (θ |θ (r))

∂mt,k
=

∑n
i=1 w

(r+1)
i tk (yi − mt,k)

σ 2
t,k

0
set=

∑n
i=1 w

(r+1)
i tk (yi − m(r+1)

t,k )

σ 2
t,k

m(r+1)
t,k

n∑

i=1

w
(r+1)
i tk =

n∑

i=1

w
(r+1)
i tk yi

m(r+1)
t,k =

∑n
i=1 w

(r+1)
i tk yi

∑n
i=1 w

(r+1)
i tk

(B6)

Maximizing Qw(θ |θ (r)) with respect to σ 2
t,k gives

∂Qw
η (θ |θ (r))

∂σ 2
t,k

= −
n∑

i=1

w
(r+1)
i tk

[
1

2σ 2
t,k

− 1

2(σ 2
t,k)

2
×

(yi − m(r+1)
t,k )2

]

0
set= −

n∑

i=1

w
(r+1)
i tk

[
1

2σ 2(r+1)
t,k

− 1

2(σ 2(r+1)
t,k )2

×

(yi − m(r+1)
t,k )2

]

∑n
i=1 w

(r+1)
i tk

2σ 2(r+1)
t,k

=
∑n

i=1 w
(r+1)
i tk (yi − m(r+1)

t,k )2

2(σ 2(r+1)
t,k )2

σ
2(r+1)
t,k =

∑n
i=1 w

(r+1)
i tk (yi − m(r+1)

t,k )2

∑n
i=1 w

(r+1)
i tk

(B7)
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