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A B S T R A C T

Malaria is a deadly vector-borne infectious disease with high prevalence in the world’s endemic tropical
and subtropical regions. Differences in individuals’ disease susceptibility may lead to their differentiation of
susceptibility to infection. We formulate a mathematical model for malaria transmission dynamics that accounts
for the host’s differential susceptibility, where partial immunity is acquired after infection. As customary, the
explicit formula for the basic reproduction number is derived and used to determine the local stability of
the model’s equilibria. An analysis of a special case with two susceptible classes shows that the model could
have two endemic equilibria when the disease threshold parameter is less than unity. Numerical simulations
are provided for a differential susceptibility when individuals are re-infected seven times after the initial
infection. Graphical representations show that the transient transmission dynamics of the infected components
are indistinguishable when there is no inflow into the susceptible classes. When there is an inflow into the
various susceptible classes, the graphs of the infected component of the model are fundamentally different,
showing that individuals who have been infected multiple times tend to be less infected over time. Knowledge
of the inflow rate and the infection reduction rate due to prior infection in each class could be key drivers to
mitigate the burden of malaria in a community.
. Introduction

Vector-borne disease epidemics are a serious global threat [1].
alaria, one of the longest-known and deadliest parasitic infectious

iseases transmitted via the bite of infected adult female Anopheles
osquitoes has been plaguing mankind for centuries [2]. Globally,

here were an estimated 241 million malaria cases and 627 000 malaria
eaths in 85 malaria endemic countries in 2020, representing about 14
illion more cases and 69 000 more deaths compared to 2019 [3].
pproximately two-thirds of these additional deaths (47 000) were

inked to disruptions in the provision of malaria prevention, diagnosis,
nd treatment due the Covid-19 pandemic [3]. Geographic conditions,
opulation characteristics, demographic factors such as age, gender,
thnicity, and occupation contribute to malaria transmission [4]. The
igh prevalence of malaria in endemic areas (tropical and subtropical
egions of the world) generally stems from recurrence events, often
ssociated with repeated infections [5,6]. While repeated exposure to
n infectious agent that causes mortality and morbidity is a major
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health issue, it has however been reported that both naturally ac-
quired and vaccine-induced immunity to malaria tend to be short-lived
in the absence of parasite exposure [7]. In fact, individuals living
in malaria hyper- or holo-endemic areas acquire natural immunity
through repeated exposures that contribute to the inefficient acquisi-
tion and relatively rapid loss of the parasite [8], and the slow devel-
opment of specific, acquired immunity to asexual blood stage parasites
[9–12]. Thus, from the aforementioned, individuals in the community
can be categorized into several states in which those with previous
malaria infection can be re-infected with the disease, but they could
have gradually developed some partial immunity [13]. It is therefore
important to study the resulting population level effect due to the
differences in individuals’ disease susceptibility. For more than a cen-
tury, mathematical models have been used to provide a framework
for understanding malaria transmission dynamics, see [14] and the
references therein.

Variation of susceptible individuals, possibly caused by genetic
factors, age, health, vaccination, or past exposure to the disease, may
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lead to their differentiation of susceptibility to infection [2,15,16].
Heterogeneity in individual’s susceptibility is a key determinant of
infectious disease dynamics, but it is often not taken into consideration
in assessing disease control measures [17]. Heterogeneity in human
societies influence virus transmission [18]. Therefore, understanding
how differential susceptibility could impact disease dynamics in a
population, and how control measures could change this distribution,
is important to predicting the dynamics of a disease. Susceptibility is
assumed to change/decrease with repeated infections. How to approx-
imate the time-varying population susceptibility has been described
in [1], while immunization through vaccination has been the corner-
stone of public health policy [19], most vaccine are only partially
effective (that is they are not perfect), and consequently, vaccinated
individuals may still contract the disease (though they may only ex-
perience mild symptoms) [20,21]. This is often the case if the virus
produces mutants (vaccine escape mutants) that are not recognized by
the antibodies to prevent them from eliminating the invaders [15]. As
a result, vaccinated individuals may still be differentially susceptible to
the infection. This is the situation with the ongoing Covid-19 pandemic
which has seen many fully vaccinated and boosted individuals getting
infected, though often with a different strain of the disease [20].
Rubella is another disease that needs two doses of live-attenuated vac-
cines to be administered for prevention [22]. Because the susceptibility
varies from individual to individual, differential susceptibility to an
infection can occur after vaccination is administered for some infectious
diseases [21].

The susceptibility of individuals may vary during their life time,
which could be due to the development of the immune system or
through immunization [23]. Individuals’ susceptibility to a particular
infection drops to virtually near zero level for a long time after success-
ful and completed vaccination, though for some diseases like Pertussis,
the immunity acquired via vaccination can wane after some time lead-
ing to a rise in the susceptibility [24], or immunity failure after measles
vaccination, despite the very reliable measles vaccine [25]. These make
mathematical models’ susceptibility-dependence particularly relevant
for health policy and decision makers.

While some studies have considered differential infectivity in dis-
eases such as HIV, in the staged progression case, the infected in-
dividuals sequentially pass through a series of stages, while in the
differential infectivity hypothesis, infected individuals enter one of
several groups, depending on their infectivity [15,26–28]. That is, for
differential infectivity model, the infected population is subdivided
into say 𝑛 subgroups 𝐼1, 𝐼2,… , 𝐼𝑛, and upon infection, an individual
enters subgroup 𝑖 and stays in that group until becoming inactive
n transmission. For the staged progression model, there are multiple
nfection stages such that infected susceptible individuals enter the first
ubgroup 𝐼1, and individuals in 𝐼1 progress to 𝐼2, . . . [29,30]. Afshar

and Razvan [31] showed that using a differential infectivity model
can help to mitigate the costs of the epidemic spreading. Ponnudurai
et al. [32] investigated a differential infectivity of Plasmodium for
the mosquito population. Malaria model with variable attractiveness
have also been studied and the authors concluded that personal pro-
tection fails with increasing degree of attractiveness [33]. Since the
impact of differential infectivity has been investigated in [15,27,28],
herein, we shall focus on assessing the potential impact of differential
susceptibility to malaria transmission dynamics.

Some studies have investigated the potential impact of individuals’
differential susceptibility to disease dynamics [31,34,35]. Differential
susceptibility typically means heterogeneity in the susceptible popula-
tion, but here, it is specifically referring to changes in susceptibility due
to repeated infections. Li et al. [34] conducted a theoretical study of a
vector-borne disease model with direct transmission and age-structured
differential susceptibility in the host population. As disease process is
different in male or female, children or adult, . . . [31], with suscep-
tibility dependent on genetic, physiological, or social characteristics
that vary between individuals, Hincapie and Ospina [35] investigated
2

the potential impact of differential susceptibility in a malaria model
with control measures, namely: insecticide-treated nets and educational
campaigns. It is important to note that susceptibility is assumed to
change with repeated infections, that is parameters indexed by 𝑖 such
as the death rate would decrease due to partial immunity, but by how
much or how exactly, is a question for future investigation. Because of
this unknown, specific values for some of the model parameters are not
provided, but for illustration purpose, a range of parameter values are
given.

The effects of variation in susceptibility to measles, smallpox, and
whooping cough have been studied by simply including periodic vari-
ations in susceptibility, but with a single equation for the susceptible
individuals. Periodic variations make the models time-dependent and
mathematically intractable. Because variation of susceptible individuals
could be due to age, health, vaccination, or past exposure to the
disease, our proposed model builds on previous studies and extends
them as follows—Li [13] investigated a malaria model with partial
immunity in humans by constructing a compartmental model with
several susceptible classes, but with inflow only in the first susceptible
subgroup. Ducrot et al. [27] considered two host types in the human
population, the non-immune comprising all humans who have never
acquired immunity against malaria and the semi-immune, and obtained
an explicit expression of the reproduction number as a function of the
weight of the transmission semi-immune-mosquito-semi-immune, and the
weight of the transmission non-immune-mosquito-non-immune. In [15],
the authors formulated compartmental differential susceptibility mod-
els by dividing the susceptible population into multiple subgroups
according to the susceptibility of individuals in each group, with one
single infective class. This paper addresses an interesting question
of how differences in host susceptibility due to repeated infection
affects malaria dynamics. The proposed model considers both differ-
ential susceptibility and infectivity, which is the first of its kind to
extend the differential susceptibility and infectivity to more than two
classes, to the best of our knowledge. Individuals coming into the
population can be classified into one of the susceptible subgroups as
in [15], therefore, there is inflow into all the 𝑛-susceptible classes in
our proposed model. Infected individuals from each susceptible class
move to a corresponding infective class. Considering the two cases with
and without inflow of individuals into the various susceptible classes
enables us to assess the potential impact of differential susceptibility
of malaria transmission transient dynamics when the disease threshold
0 < 1 or 0 > 1.

The rest of this paper is organized as follows. Section 2 introduces
our proposed mathematical model of malaria with differential suscep-
tibility. Analysis of the model is provided in Section 3, while numerical
simulations are provided in Section 4. The last Section 5 concludes the
paper.

2. Model description

The model consists of two populations, namely, the human and
mosquito population. For simplicity and mathematical tractability, we
ignore the incubating classes (exposed) and sub-divide the human pop-
ulation into groups of susceptible, infectives, and recovered individuals,
and the mosquito population into groups of susceptible and infectives.

The total human population 𝑁(𝑡) at any given time 𝑡 is stratified into
mutually exclusive compartments. Using superscript ℎ for the human
host, at any time 𝑡, we let 𝑆ℎ

1 denote the number of susceptible people
who have never been infected and, 𝑆ℎ

𝑖 , 𝑖 = 2,… , 𝑛 the number of people
who are susceptible and have been infected 𝑖-times prior to time 𝑡,
𝐼ℎ𝑖 the number of infectious individuals who have also been infected
𝑖-times prior to 𝑡. For this proposed epidemic model, a susceptible
individual is first infected and enters the infectious class 𝐼ℎ1 . After
recovery, the person becomes susceptible again with partial immunity
(different susceptibility) and enters into group 𝑆ℎ

2 . When the individual
recovers from the second infection, he/she becomes susceptible again
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Fig. 1. Human compartmental of the model.

but with more immunity and reduced susceptibility. Gradually, this
person moves to the final group 𝑆ℎ

𝑛 with (near) complete immunity.
Despite the multiple challenges to understanding immunity to Plasmod-
ium parasites and identifying the correlates of immune protection [36],
the compartment 𝑅ℎ represents individuals who have acquire immunity
and can no longer be infected by plasmodium (at least for sometime).
The process of acquisition of immunity is progressive and increases
over the course of repeated exposures/infections as reported in the
literature [12], reason why we did not consider the classes 𝑅ℎ

𝑖 (for
𝑖 = 1,… , 𝑛) because after the first infection, there is certainly a
small premunition which leads to a slightly different class from the
completely naive susceptible 𝑆ℎ

1 , but this small premunition cannot
yet prevent one from being infected with malaria, as our interest is in
the real partially immune class. That is the main reason why infected
individuals in the 𝐼ℎ1 class fall into the 𝑆ℎ

2 upon recovery, and so on.
Thus, the 𝑅ℎ

𝑖 are individuals who have had repeated exposures and in
the process have accumulated some temporary immunity.

The constant parameter 𝛬ℎ
1 is the inflow of the susceptible people

due to birth or immigration into the 𝑆ℎ
1 -class, and 𝛬ℎ

𝑖 is the inflow of the
susceptible people due to immigration into the 𝑆ℎ

𝑖 - class. The natural
death rate is 𝜇ℎ, and 𝑑𝑖 is the malaria-induced death rate for people
having been infected 𝑖-times. The parameter 𝜆𝑖 represents the recovery
rate in the 𝑖th-class. The derived parameters 𝛼ℎ𝑖 and 𝛼𝑣 are respectively
he incidence rates (forces of infection) from an infectious mosquito
o a susceptible human likely to get infected for the 𝑖th-time, and the

incidence rate of susceptible mosquitoes.
To account for the transmission dynamics between the mosquito and

human populations, we divide the mosquito population into groups of
susceptible and infective mosquitoes. Using the subscript 𝑣 for vector,
𝑆𝑣 and 𝐼𝑣 denote the number of susceptible and infective mosquitoes,
respectively. Since the lifespan of mosquitoes is shorter than their
infective period, we assume that mosquitoes are neither immune nor
can recover.

The model diagrams depicting flows respectively between the hu-
man and mosquitoes’ classes are illustrated in Figs. 1 and 2, while all
the model variables and parameters are respectively defined in Tables 1
and 2.

The case where there is no inflow to the susceptible population will
assume all susceptibles are in group 1. What happens when there is no
inflow but there is an initial condition with susceptibles in each group
is a subject of future investigation, as this could apply to a population
with little migration in/out, but that has previously been exposed to
the disease.
3

Fig. 2. Mosquitoes compartmental of the model.

Table 1
Description of the model variables.

Variable Description

Humans
𝑆ℎ
𝑖 Number of individuals likely to get infected for the 𝑖th time

𝐼ℎ
𝑖 Number of individuals infected for the 𝑖th time
𝑅ℎ Number of immune individuals in the population

Mosquitoes
𝑆𝑣 Number of susceptible mosquitoes
𝐼𝑣 Number of infectious mosquitoes

Table 2
Model parameters.

Parameter Description Value Reference

Human
𝛬ℎ

𝑖 Recruitment rate in the 𝑖th
susceptible

[0, 100] Assumed

𝛾ℎ Trans. rate of lost of immunity in
the host pop.

0.0146 [37]

𝜆𝑖 Rate of recovery in the 𝑖th host
pop.

0.0035 [37]

𝜇ℎ Death rate for humans 1
55 × 365

Assumed

𝑑𝑖 Disease-induced death rate after
the 𝑖th infection

[

10−5 , 10−3
]

[38]

𝑎 Number of bites on humans by a
one female mosquito per day

[0.5, 5]

𝑚𝑖 Inf. coefficient of humans likely
to get infected for the 𝑖th time

[0.016, 0.022] [39]

Mosquitoes
𝛬𝑣 Recruitment rate of mosquitoes 400 [13]
𝜇𝑣 Death rate for mosquitoes 0.033 [37]
𝑐𝑖 Inf. coefficient of vector due to

bite of infectious host 𝐼ℎ
𝑖

[0.42, 0.48] [39]

𝑐 Inf. coefficient of vector due to
bite of removed host group

0.048 [39]

Table 3
Derived model parameters.

Parameter Formula Description

𝛼ℎ
𝑖 𝑎

𝑚𝑖𝐼𝑣
𝑁ℎ Incidence rate of susceptible humans

likely to get infected for the 𝑖th time

𝛼𝑣 𝑎
𝑐𝑅ℎ +

∑𝑛
𝑖=1 𝑐𝑖𝐼

ℎ
𝑖

𝑁ℎ Incidence rate of susceptible
mosquitoes

Based on the model description and assumptions, we establish the
following system of non-linear ordinary differential equations (1) (see
Table 3).

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝑆ℎ ′

1 = 𝛬ℎ
1 + 𝛾ℎ𝑅ℎ − (𝛼ℎ1 + 𝜇ℎ)𝑆ℎ

1 ,
𝑆ℎ ′
𝑖 = 𝛬ℎ

𝑖 + 𝜆ℎ𝐼ℎ𝑖−1 − (𝛼ℎ𝑖 + 𝜇ℎ)𝑆ℎ
𝑖 , 2 ≤ 𝑖 ≤ 𝑛,

𝐼ℎ ′
𝑖 = 𝛼ℎ𝑖 𝑆

ℎ
𝑖 − (𝜆𝑖 + 𝜇ℎ + 𝑑𝑖)𝐼ℎ𝑖 , 1 ≤ 𝑖 ≤ 𝑛,

𝑅ℎ′ = 𝜆𝑛𝐼ℎ𝑛 − (𝛾ℎ + 𝜇ℎ)𝑅ℎ,
𝑆′
𝑣 = 𝛬𝑣 − (𝛼𝑣 + 𝜇𝑣)𝑆𝑣,

𝐼 ′ = 𝛼𝑣𝑆𝑣 − 𝜇𝑣𝐼𝑣.

(1)
⎩

𝑣
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with the following initial conditions

𝑆𝑖(𝑡) ≥ 0, 𝐼𝑖(𝑡) ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 𝑅(𝑡) ≥ 0, 𝑆𝑣(𝑡) ≥ 0, 𝐼𝑣(𝑡) ≥ 0. (2)

. Model analysis

In this section, we presents a qualitative study of the dynamic
roperties of the model (1). The model is biologically relevant if ∀𝑡 ≥ 0,
ll model variables are positive. Under the initial condition (2), the
olutions of the model (1) are positive for all time 𝑡 > 0. The feasible
egion of the model system (1) is given by

=
{

(

𝑆ℎ
1 ,… , 𝑆ℎ

𝑛 , 𝐼
ℎ
1 ,… 𝐼ℎ𝑛 , 𝑅

ℎ, 𝑆𝑣, 𝐼𝑣
)

∈ R2𝑛+3 ∶ 𝑁ℎ ≤
𝛱ℎ
𝜇ℎ

, 𝑁𝑣 ≤
𝛬𝑣
𝜇𝑣

}

,

with 𝛱ℎ =
𝑛
∑

𝑖=1
𝛬ℎ
𝑖 .

3.1. Local stability of disease-free equilibrium

The disease-free equilibrium (DFE) is obtained by setting the right-
hand side of the equations in the model (1) to zero with 𝐼ℎ𝑖 = 0, for 1 ≤
𝑖 ≤ 𝑛, 𝑅ℎ = 0 and 𝐼𝑣 = 0. The system (1) admits a trivial equilibrium
r (DFE) given by

0 =

⎛

⎜

⎜

⎜

⎝

𝛬ℎ
1

𝜇ℎ
,
𝛬ℎ
2

𝜇ℎ
,… ,

𝛬ℎ
𝑛

𝜇ℎ
, 0,… , 0
⏟⏟⏟
(𝑛+1)𝑡𝑖𝑚𝑒𝑠

,
𝛬𝑣
𝜇𝑣

, 0

⎞

⎟

⎟

⎟

⎠

. (3)

To compute the basic reproduction number 0, we use the next
eneration matrix operator [40], which consists in determining the
atrix 𝐹 and 𝑉 and determining the spectral radius of the matrix 𝐹𝑉 −1.

or this, we assemble the compartments of the infected individuals
rom the system (1), and decompose the right hand-side as  −  ,
here  is the transmission part, expressing the production of new

nfected/infectious, and  the transition part, which describes the
hange in state.

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎𝑚1𝐼𝑣
𝑁ℎ

𝑆ℎ
1

𝑎𝑚2𝐼𝑣
𝑁ℎ

𝑆ℎ
2

⋮
𝑎𝑚𝑛𝐼𝑣
𝑁ℎ 𝑆ℎ

𝑛

0

𝑎

(
∑𝑛

𝑖=1 𝑐𝑖𝐼
𝑖
ℎ

𝑁ℎ + 𝑐𝑅ℎ

𝑁ℎ

)

𝑆𝑣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and  =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝜆1 + 𝜇ℎ + 𝑑1)𝐼1ℎ

(𝜆2 + 𝜇ℎ + 𝑑2)𝐼2ℎ

⋮
(𝜆𝑛 + 𝜇ℎ + 𝑑𝑛)𝐼𝑛ℎ

−𝜆𝑛𝐼ℎ𝑛 + (𝛾ℎ + 𝜇ℎ)𝑅ℎ

𝜇𝑣𝐼𝑣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Next, we calculate the Jacobian of  and  at DFE 0

𝐹 = 𝜕
𝜕𝑋

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0 0 … 0 0
𝑎𝑚1

𝑁ℎ∗ 𝑆
ℎ∗
1

0 0 … 0 0
𝑎𝑚1

𝑁ℎ∗ 𝑆
ℎ∗
2

⋮ ⋮ ⋱ ⋱ ⋮ ⋮

0 0 … 0 0
𝑎𝑚1

𝑁ℎ∗ 𝑆
ℎ∗
𝑛

0 0 … 0 0 0

𝑎𝑐1 𝑆∗ 𝑎𝑐2 𝑆∗ …
𝑎𝑐𝑛 𝑆∗ 𝑎𝑐 𝑆∗ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

,

⎣ 𝑁ℎ∗ 𝑣 𝑁ℎ∗ 𝑣 𝑁ℎ∗ 𝑣 𝑁ℎ∗ 𝑣
⎦

4

= 𝜕
𝜕𝑋

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝜆1 + 𝜇ℎ + 𝑑1) 0 0 0 0

⋮ ⋱ ⋱ ⋮ ⋮

0 0 (𝜆𝑛 + 𝜇ℎ + 𝑑𝑛) 0 0

0 ⋱ −𝜆𝑛 (𝛾ℎ + 𝜇ℎ) 0

0 … 0 0 𝜇𝑣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The basic reproduction, unarguably one of the most important
uantity in infectious disease epidemiology [41,42], is given by 0 =
(𝐹𝑉 −1), where 𝜌 is the spectral radius of the next-generation matrix
𝐹𝑉 −1). Thus, after some algebraic manipulations, the basic reproduc-
ion number of the model system (1) is given by

0 =

√

√

√

√

𝑎2𝛬𝑣𝜇ℎ
𝛱2

ℎ𝜇
2
𝑣

[ 𝑛
∑

𝑖=1

𝑚𝑖𝑐𝑖𝛬𝑖
ℎ

(𝜆𝑖 + 𝜇ℎ + 𝑑𝑖)
+

𝑚𝑛𝑐𝜆𝑛𝛬𝑛
ℎ

(𝜆𝑛 + 𝜇ℎ + 𝑑𝑛)(𝛾ℎ + 𝜇ℎ)

]

.

Note that the square root of the reproduction number for the entire
uman–mosquito populations that takes care of the scalar matching for
he model [13] is the square root of the product of the two reproduction
umbers. That is, the square root represents the geometric mean that
akes the average number of secondary host (or vector) infections
roduced by a single infected host (or vector) [43].

Also, with differential susceptibility without recruitment into the
irst 𝑛−1 classes (𝛬𝑖 = 0, 1 ≤ 𝑖 ≤ 𝑛−1), the expression of the threshold

parameter 0 is the same as that of the model without differential
susceptibility (i.e the 𝑆𝐼𝑅𝑆-type model for malaria) . However, with
population mobility, it is expected that recruitment into the different
susceptibility classes will occur, and consequently 𝛬𝑖 ≠ 0 in malaria
ndemic communities. Hence, recruitment into the different suscepti-
ility classes has an impact on the value of 0 as this could to some

extent minimally increase initial disease transmission. As noted by
Li [13], because the reproduction number only accounts for the initial
growth of infection, it therefore characterizes the epidemic threshold
under which the number of infected individuals will either increase
or decrease as a small number of infectives introduced into a fully
susceptible population.

3.2. Endemic equilibrium

Let
(

𝑆ℎ⋆
1 ,… , 𝑆ℎ⋆

𝑛 , 𝐼ℎ⋆1 ,… , 𝐼ℎ⋆𝑛 , 𝑅ℎ⋆, 𝑆⋆
𝑣 , 𝐼

⋆
𝑣
)

be the solution of the
following system of equations. We find the endemic equilibrium for the
specific case of no disease-induced death rate.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝛬ℎ
1 + 𝛾ℎ𝑅ℎ⋆ − (𝛼ℎ⋆1 + 𝜇ℎ)𝑆ℎ⋆

1 = 0,

𝛬ℎ
𝑖 + 𝜆𝑖𝐼ℎ𝑖−1 − (𝛼ℎ⋆𝑖 + 𝜇ℎ)𝑆ℎ⋆

𝑖 = 0, 2 ≤ 𝑖 ≤ 𝑛,

𝛼ℎ⋆𝑖 𝑆ℎ⋆
𝑖 − (𝜆𝑖 + 𝜇ℎ)𝐼ℎ⋆𝑖 = 0, 1 ≤ 𝑖 ≤ 𝑛,

𝜆𝑛𝐼ℎ⋆𝑛 − (𝛾ℎ + 𝜇ℎ)𝑅ℎ⋆ = 0,

𝛬𝑣 − (𝛼⋆𝑣 + 𝜇𝑣)𝑆⋆
𝑣 = 0,

𝛼⋆𝑣 𝑆
⋆
𝑣 − 𝜇𝑣𝐼⋆𝑣 = 0.

(4)

et

𝑖 = 𝜆𝑖 + 𝜇ℎ, 𝐾𝑖 = 𝛼ℎ𝑖 + 𝜇ℎ, 1 ≤ 𝑖 ≤ 𝑛, and

= 𝐾⋆
1 −

𝜆𝑛𝛾ℎ𝛼⋆𝑛
𝛾ℎ + 𝜇ℎ

⎡

⎢

⎢

⎣

1
𝑔𝑛𝐾⋆

𝑛
𝛬ℎ
𝑘 +

𝑛−1
∑

𝑖=2

∏𝑛−1
𝑗=𝑖 𝛼

ℎ⋆
𝑗 𝜆𝑗

𝛱𝑛
𝑗=𝑖𝑔𝑗𝐾

⋆
𝑗

𝛬𝑖 +
𝛱𝑛−1

𝑖=1 𝛼
ℎ⋆
𝑖 𝜆𝑖

𝑔1𝛱𝑛
𝑖=2𝑔𝑖𝐾

⋆
𝑖

⎤

⎥

⎥

⎦

.
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T

w
e

R
b

𝑆1⋆
ℎ =

𝑔1𝜇ℎ𝑁⋆
ℎ (𝛼

⋆
𝑣 + 𝜇𝑣)

[

𝛬ℎ
1𝑁

⋆
ℎ 𝑔2𝜇ℎ𝜇𝑣(𝛾ℎ + 𝜇ℎ)(𝛼⋆𝑣 + 𝜇𝑣) + 𝑎𝛼⋆𝑣 𝑚2(𝛬1𝑔2(𝛾ℎ + 𝜇ℎ) + 𝛬ℎ

2𝜆2𝛾ℎ𝑚2)
]

(𝛬ℎ
2 )

2𝑎2𝛼⋆2𝑣 𝑚1𝑚2𝛩 +𝑁⋆
ℎ 𝑔1𝑔2𝜇ℎ𝜇𝑣(𝛾ℎ + 𝜇ℎ)(𝛼⋆𝑣 + 𝜇𝑣)

[

𝑎𝛬𝑣𝛼⋆𝑣 (𝑚1 + 𝑚2) +𝑁⋆
ℎ + 𝜇ℎ𝜇𝑣(𝛼⋆𝑣 + 𝜇𝑣)

] , (6)

Box I.
4

i
t
a
o
w
s
t

g
d
a
t
w

o

d
t
i
r
t

p
t
a
t
c
F
d
t
𝑛
p
t
i

4

4

hen,

𝑆ℎ⋆
1 =

𝛬ℎ
1

𝜛
, 𝑆⋆

𝑣 =
𝛬𝑣

𝛼⋆
𝑣 + 𝜇𝑣

, 𝐼⋆
𝑣 =

𝛼⋆
𝑣 𝑆

⋆
𝑣

𝜇𝑣
,

𝑁⋆
ℎ =

∑𝑛
𝑖=1 𝛬𝑖

𝜇ℎ
, 𝛼ℎ⋆

𝑖 = 𝑎𝑚𝑖
𝐼⋆
𝑣

𝑁⋆
ℎ
, 1 ≤ 𝑖 ≤ 𝑛, 𝐾⋆

𝑖 = 𝛼ℎ⋆
𝑖 + 𝜇ℎ,

2 ≤ 𝑖 ≤ 𝑛,

𝐼ℎ⋆
2 =

𝛼ℎ⋆
2

𝑔2𝐾⋆
2

+
𝛼ℎ⋆
1 𝛼ℎ⋆

2 𝜆1
𝑔1𝑔2𝐾2

𝑆ℎ⋆
1 ,

𝐼ℎ⋆
𝑘 = 𝛼ℎ⋆

𝑘

[

1
𝑔𝑘𝐾⋆

𝑘
𝛬ℎ

𝑘 +
∑𝑘−1

𝑖=2

∏𝑘−1
𝑗=𝑖 𝛼

ℎ⋆
𝑗 𝜆𝑗

𝛱𝑘
𝑗=𝑖𝑔𝑗𝐾

⋆
𝑗

𝛬ℎ
𝑖 +

𝛱𝑘−1
𝑖=1 𝛼

ℎ⋆
𝑖 𝜆𝑖

𝑔1𝛱𝑘
𝑖=2𝑔𝑖𝐾

⋆
𝑖

𝑆ℎ⋆
1

]

,

3 ≤ 𝑘 ≤ 𝑛,

𝑆ℎ⋆
𝑖 =

𝛬𝑖 + 𝜆𝑘𝐼ℎ⋆
𝑖

𝐾𝑖
, 2 ≤ 𝑖 ≤ 𝑛, 𝑅ℎ⋆ =

𝜆𝑛𝐼ℎ⋆
𝑛

𝛾ℎ + 𝜇ℎ
.

(5)
Now that all the variables are written as functions of 𝛼⋆𝑣 , by using

all the equations of (5) and the following definition 𝛼⋆𝑣 =
∑𝑛

𝑖=1
𝑎𝑚𝑖𝐼𝑖
𝑁⋆

ℎ
,

e can derive an explicit value of 𝛼⋆𝑣 , and consequently, the obtain
ndemic equilibrium.

Consider the particular case when 𝑛 = 2, we have 𝜛 = 𝐾⋆
1 −

𝜆2𝛼ℎ⋆2
𝛾ℎ + 𝜇ℎ

[

1
𝑔2𝐾⋆

2
𝛬ℎ
2 +

𝜆1𝛼ℎ⋆1
𝑔1𝑔2𝐾⋆

2

]

, and see Eq. (6) given in Box I, where

𝛩 = 𝑔1𝑔2(𝛾ℎ + 𝜇ℎ) − 𝜆1𝜆2𝛾ℎ = 𝜆1𝜆2𝜇ℎ + 𝜇ℎ(𝛾ℎ + 𝜇ℎ)
(

𝜆1 + 𝜆2 + 𝜇ℎ
)

.
After some algebraic computations, we obtain 𝛼⋆𝑣 as the solution of

the quadratic equation

𝑞0 + 𝑞1𝛼
⋆
𝑣 + 𝑞2𝛼

⋆2
𝑣 = 0, (7)

with

𝑞0 = 𝜇4
𝑣𝑔1𝑔2(𝛾ℎ + 𝜇ℎ)2

(

1 −2
0
)

= 𝑞′0
(

1 −2
0
)

,

𝑞1 = −𝑎2𝛬𝑣𝛬1𝑚1
[

𝑐1𝑔2(𝛾ℎ + 𝜇ℎ)
(

𝑎𝑚2𝛬𝑣 + 𝜇𝑣
(

𝛬ℎ
1 + 𝛬ℎ

2
))

+𝑎𝛬𝑣𝜆1𝜆2(𝑐𝑟𝜆2 + 𝑐2(𝛾ℎ + 𝜇ℎ))
]

− 𝑎2𝛬𝑣𝛬2𝑚2
[

𝑔1
(

𝑐2(𝛾ℎ + 𝜇ℎ) + 𝑐𝑟𝜆2
) (

𝑎𝑚1𝛬𝑣 + 𝜇𝑣
(

𝛬ℎ
1 + 𝛬ℎ

2
))

+𝑐1𝜆2𝛾ℎ𝑚1𝑚2
]

+ 𝑔1𝑔2𝜇𝑣(𝛾ℎ + 𝜇ℎ)
(

𝛬ℎ
1 + 𝛬ℎ

2
) [

𝑎𝛬𝑣𝜇𝑣(𝑚1 + 𝑚2) + 𝛬ℎ
1 + 𝛬ℎ

2
]

,

𝑞2 = 𝛬2
𝑣𝑎

2𝑚1𝑚2
[

𝜆1𝜆2𝜇ℎ + 𝜇ℎ(𝛾ℎ + 𝜇ℎ)
(

𝜆1 + 𝜆2 + 𝜇ℎ
)]

+𝑁⋆
ℎ 𝑔1𝑔2(𝛾ℎ + 𝜇ℎ)(𝑎𝛬𝑣(𝑚1 + 𝑚2) +𝑁⋆

ℎ 𝜇ℎ𝜇𝑣).

The following result summarizes the different cases of the existence
of the endemic equilibrium.

Theorem 3.1. The model system (1) with no disease-induced death rate
admits

1. a unique endemic equilibrium if 2
0 > 1,

2. a unique endemic equilibrium if 2
0 = 1 and 𝑞1 < 0,

3. two endemic equilibria if 1 −
𝑞21

4𝑞2𝑞′0
< 2

0 < 1, and 𝑞1 < 0,

4. no endemic equilibrium otherwise.

emark 3.1. Thus, in the case of two stages, that is when 𝑛 = 2, a
ackward bifurcation may occur as per the third point of Theorem 3.1.
5

. Numerical simulations

Li [13] in his investigation of a malaria model with partial immunity
n humans noted that while the initial infections are the same for the
wo cases, their endemic values and transient transmission dynamics
re different. However, their study did not include inflow into the
ther classes. Here, we investigate the impact of inflow of individuals
ith different susceptibility into the other classes besides the initial

usceptible class. Two scenarios are considered here (1) the case where
he inflow 𝛬𝑖 = 0, ∀𝑖 ≠ 1 and (2) the case where the inflow 𝛬𝑖 ≠ 0

for 1 ≤ 𝑖 ≤ 7. In addition, because the basic reproduction number can
be used to determine factors important in the ability of a disease to
invade or persist [44], the figures are generated for the case 0 < 1,
and 0 > 1. For illustrative purpose, seven different susceptible classes
are considered, compared to only two in [13]. Our results indicates
that the inflow of individuals who have gained partial immunity after
repeated infections has a meaningful effect on the dynamics of malaria
in a community, see Figs. 3(a) and 7(b). As expected, whether 0 is
reater or less than one, differential susceptibility has an effect on the
isease dynamics and can be seen by the reduced number of infections
s the number of repeated infections increases (Figs. 6(a)–7(a)). Though
he dynamics of infected mosquitoes as shown in Figs. 5(b) and 8(b)
hen 0 > 1 is independent of the inflow into the susceptible human

classes, this is not surprising because the infected class 𝐼𝑣 depends
n the vector inflow 𝛬𝑣 and not on the human inflow parameter 𝛬ℎ

𝑖 .
In fact, when there is no inflow into the other susceptible classes,
the figures are indistinguishable as depicted in Figs. 3(a)–5(b), while
when inflow is accounted for into the classes when 2 ≤ 𝑖 ≤ 𝑛 (in
this case 𝑛 = 7, the effect of the repeated infections on each class is
epicted in Figs. 3(a)–5(b). Consequently, the reduction of infection or
he immunological memory for people who have been infected before
s important. Thus, knowledge of the inflow rate as well as the infection
eduction rate due to prior infection in each class could be key drivers
o estimating/mitigating the burden of malaria in a community.

Finally, from the graphical representations depicted below, as ex-
ected, when 0 < 1, the disease can be eliminated as infections tend
o the disease-free equilibrium, while for 0 > 1, the disease will persist
t an endemic equilibrium. It is important to note that the inflow into
he human classes and the number of human differential susceptibility
lasses have no effect on the mosquitoes dynamics as depicted in
igs. 5(b) and 8(b). Most importantly, differences in host susceptibility
ue to repeated infection affects malaria dynamics; when 0 < 1,
here are fewer individuals with repeated infections (for example when
= 7). On the other hand, when 0 > 1, the cumulative number of

eople with repeated malaria infections is higher. This results answers
he question of how differences in host susceptibility due to repeated
nfection affects malaria dynamics.

.1. Case 1: No inflow into of susceptibles into the 𝑖th-class (𝛬𝑖 = 0, ∀𝑖 ≠ 1)

See Figs. 3–5.

.2. Case 2: Inflow of susceptibles into the 𝑖th-class (𝛬𝑖 ≠ 0 for 1 ≤ 𝑖 ≤ 7)

See Figs. 6–8.
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Fig. 3. Dynamic of the human infected classes 𝐼ℎ
𝑗 .
Fig. 4. Dynamic of total infectious 𝐼ℎ.
Fig. 5. Dynamic of the infective mosquitoes 𝐼𝑣.
5. Conclusion

Malaria is an infectious disease and one of the leading health
challenges globally, and its high prevalence in endemic areas generally
stems from recurrence events [5]. After malaria treatment and recov-
ery, a person can be re-infected. However, the mechanisms for humans
acquiring partial immunity to malaria after infection though not fully
understood depends on both the duration and the intensity of past
6

exposure to infection [13]. To better understand how differential sus-
ceptibility acquired through partial immunity affects the transmission
dynamics of malaria, we formulated a compartmental model, based
on a system of non-linear differential equations, where the human
population is sub-divided into groups according to their disease status
and their susceptibility levels, with disease progression stages and
partial immunity. By applying the next generation method, the model
basic reproduction number is derived. The disease-free equilibrium is
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Fig. 6. Dynamic of 𝐼ℎ
1 .
Fig. 7. Dynamic of total infectious 𝐼ℎ.
Fig. 8. Dynamic of 𝐼𝑣.
also derived and its local stability follows from a standard Theorem
in [40]. Existence of the endemic equilibrium is investigated for the
case of two stages and the model may have two endemic equilibria
under certain conditions stated in Theorem 3.1.

Numerical simulations are then carried out to assess the potential
impact of differential susceptibility of malaria transmission dynamics.
7

For illustrative purpose, the simulations are conducted for a special
case when 𝑛 = 7 (that is individuals are re-infected six times after
the initial infection). Results indicate that the equilibrium values when
0 < 1 or 0 > 1 and transient transmission dynamics are different for
each of the infective classes. However, when there is no inflow into the
susceptible classes 𝑆ℎ, 2 ≤ 𝑖 ≤ 𝑛, the graphs of the infected component
𝑖
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of the model are indistinguishable. From the graphical representations,
the total number of infections drops when increasing the number of
infected classes with inflow to all of them, with the higher classes
having decreased susceptibility.

Our modeling study has some limitations mainly due to the model
structures. For mathematical convenience, we did not account for the
incubating/exposed classes in both host and vector populations. Also,
the multi-time scale modes could have been better due to the different
vector and human lifespans. Though this could lead to infected vector
being remarkably small or almost zero, the pathogen is extremely
infectious and consequently, malaria prevalence in vectors is high,
hence the vertical transmission. Malaria treatment resistance is also
a key health issue that should be given prominence [45]. With the
recent groundbreaking malaria vaccine for children below the age
of five [46], a meta-population model that accounts for individuals
below and above 5 years old, including differential susceptibility and
infectivity is viable [47,48].
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