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Abstract. Reservoir computing systems are essentially dynamical systems influenced by an
exogenous input. Such systems are extensively used in biologically inspired information processing,
and are the state-of-the art techniques for several machine learning tasks. If the statistics of the
response or output of the system depends discontinuously on the distribution of the inputs, a fun-
damental challenge arises in applications where inherent changes in the input stochastic source or
noise is expected. This problem can be experimentally demonstrated by showing that altering input
statistics can drastically affect the statistics of the response. We solve this instability problem by
providing sufficient conditions under which both the marginals and the joint distributions of the
response depend continuously on that of the input. To prove our results, we establish the existence
of an invariant measure and show that its dependence on the input process is continuous when the
processes are endowed with the Wasserstein distance. The main tool in these developments is the
characterization of those invariant measures as fixed points of naturally defined Foias operators that
appear in this context and which are examined extensively in the paper. These fixed points are
obtained by imposing a newly introduced stochastic state contractivity on the driven system that is
readily verifiable in examples. Stochastic state contractivity can be satisfied by systems that are not
state-contractive, which is a need typically evoked to guarantee the echo state property in reservoir
computing. As a result, it may actually be satisfied even if the echo state property is missing.
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state property, unique solution property, Frobenius-Perron operator, Foias operator, transport, in-
variant measure, stochastic contraction, Wasserstein distance.
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1. Introduction. Transport in dynamical systems is studied at both micro-
scopic and macroscopical levels. On the one hand, at the microscopic level, if one is
interested in the motion of a particle in a fluid, and the particle is assumed to be so
light that it can do nothing but follow the liquid, then the motion of the fluid totally
determines the fate of the particle. In particular, the different dynamical properties
of the fluid can create transport barriers for the particle (see, for instance, [2, 42])
trapping its trajectory in a subset of the phase space. When the motion of individual
trajectories is not possible due to the inherent loss of predictability that is typical in
very general classes of dynamical systems, transport at the macroscopic level is useful.
In such a macroscopic study, one aims to make predictions regarding the longtime evo-
lution of ensembles of trajectories and the term transport refers to the properties of
the time evolution of measures [26]. Loosely stated, such transport does not describe
anymore the motion of a particle but instead describes how mass “accumulates” over
a period of time. In the language of dynamical systems, such transport concerns the
evolution of an ensemble of initial conditions. Such macroscopic transport can yield
very simple measure dynamics even when the underlying microscopic dynamics is very
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complex.
An important case takes place when the simplified macroscopic dynamics exhibits

a single limit. This feature is related to certain statistical stability which means
that a swarm of initial conditions with different initial distributions/densities can all
converge (typically in the L1 norm) to an asymptotic distribution/density which is
known as an invariant measure/density [26]. The invariant measure/density sheds
light on how the asymptotic states of the system get distributed. In the case of time-
independent or autonomous systems, the time evolution of measures/densities is well-
studied using the Frobenius-Perron operator (see, for instance, [26] and Figure 2).
Non-autonomous extensions of these results present serious challenges since the input
affects the time-evolution of the measures at each time step. These difficulties are even
more pronounced whenever other natural metrics like, for instance, the Wasserstein
distance are used in the space of measures. In order to visualize why this is so, recall
that for autonomous systems the Wasserstein distance intuitively corresponds to the
effort in moving a mount of mass that is not disturbed during transportation; for a
nonautonomous system, it would correspond to the effort of moving a mount of mass
that can also be disarranged during transportation.

In this work, we consider a class of time-dependent dynamical systems that arise in
the field of systems theory and, more specifically, in reservoir computing (RC) [21,
22, 30, 29, 28, 40]. RC uses input-output systems that are defined with the help of
a driven or state-space system, that is, a continuous function g : U × X →
X on an input space U and a state space X (both are metric spaces). The
main difference between general driven systems and RC is that for the latter and for
supervised machine learning applications, the function g is not trained but (partially)
randomly generated, and the corresponding input-output system is obtained out of a
(functionally simple) observation equation of the states. Various families of reservoir
computing systems have been shown to exhibit universal approximation properties
[18, 17, 15, 8, 16, 14]. A solution of g for a given bi-infinite input {un}n∈Z is a
bi-infinite sequence {xn}n∈Z whenever the equality xn+1 = g(un, xn) is satisfied for
all n ∈ Z. The terms xn of the solution are referred to as state values or reservoir
states in the RC context.

If for each input {un}n∈Z there exists exactly one solution {xn}n∈Z, then g is said
to have the echo state property (ESP) [21] or the unique solution property
(USP) [32]. Often in practice, only a class of inputs is considered when formulating
the ESP, like for instance the one coming from the realizations of a stochastic process.
In this work, we place ourselves in a setup that does not necessarily imply the ESP
for all possible inputs, as it has been empirically demonstrated, for instance across
the echo state networks (ESNs) literature [21, 22], that the performance of ESNs is
sometimes enhanced when the reservoir dynamics does not have this property [28].

From a qualitative dynamics point of view, the unique solution property is equiv-
alent (at least for compactly driven systems) to the fact that for repeated runs of
the RC system with a given input sequence and using different initial conditions in
the state space, the resulting state sequences get closer and closer to a solution when
the RC runs are longer and longer. This property is called the uniform attracting
property (UAP) [32, Definition 3] and amounts to the system exhibiting what is
called a uniform point attractor. In [32, Theorem 1] it has been shown that the
UAP is equivalent to the USP.

In order to develop some intuition about these facts, we will use as an example
echo state networks (ESNs), a family of RC systems that has been profusely used in
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applications. ESNs are determined by a state map g : Rd × RN → RN defined as

(1.1) g(u, x) = tanh(Cu+ αAx),

where A and C are called the reservoir (or connectivity) and input matrices, re-
spectively, which have appropriate dimensions and, in the RC context, are randomly
generated. The symbol tanh denotes the nonlinear activation function tanh applied
in a component-wise manner. Notice that when a large-amplitude input is used in
this RC system, the activation function tanh is saturated because the reservoir neu-
rons become highly stimulated, the tanh quenches strongly and, as a consequence,
the initial condition is forgotten. On the other hand, for small-amplitude inputs,
such “washing out” qualities may be lost. For instance, a constant zero input, is a
good candidate for the USP to cease to hold. In practice, however, the relevant input
range frequently contains zero. More specifically, all that is often mentioned about
permissible inputs is their range, which consequently yields non-typical inputs like the
constant-zero signal as an allowable input, that must hence be accounted for when
determining the USP. Much has been studied regarding the intricacies associated to
the USP and its dynamical implications. For instance, in [33], the USP with respect
to an input has been considered and, in particular, it has been shown that even if the
USP with respect to all inputs does not hold, the USP can still hold with probability
1 when some given stationary ergodic process is considered as the input. However,
vital questions remain unanswered.

Fig. 1. Consider a driven system that is a
recurrent neural network (RNN) of the type (1.1)
with input and reservoir matrices randomly ini-
tialized and with a reservoir matrix set to having
a spectral radius of 1.5. This condition makes the
RNN incompatible with the USP [21]. Input is fed
into the RNN that follows an exponential distri-
bution with parameter λ. In blue we depict the
Wasserstein-1 distance (introduced later on) be-
tween the exponential distributions with parame-
ters λ and λ + ε (with ε = 0.01) against λ. In
red is the corresponding Wasserstein-1 distance
observed between the distributions of the states of
a single neuron observed. The distances are cal-
culated using 3500 data points. Larger values on
the vertical axis point to the discontinuity of the
distribution of the states of the neuron as λ is var-
ied.

This paper studies how measures
are transported in the RC framework
with the goal of answering the follow-
ing fundamental questions: (i) If in-
put sequences originate from a station-
ary stochastic process, how would the
output reservoir states get asymptoti-
cally distributed? In particular, is there
an invariant distribution/measure avail-
able for the output states of RC systems?
(ii) When such an invariant measure ex-
ists, does it depend continuously on the
input stationary measure when a natural
measure of dissimilarity between prob-
ability measures like, for instance, the
Wasserstein distance is employed? The
Wasserstein distance is a particularly ap-
propriate choice first because of its good
analytical properties but, more impor-
tantly, because of its relation with opti-
mal transport (see [41, 37] and references
therein).

These questions are relevant in two
contexts: (a) Any future notion of sto-
chastic reservoir computing where the
stochasticity of the reservoir is controlled
by the input requires the properties (i)
or (ii). (b) The echo state property or
the USP in the RC framework has been
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found to yield certain stability properties; for instance, the USP guarantees an input-
related stability [31] that implies that close-by input sequences lead to close-by reser-
voir state sequences. In this context, it is natural to ask what other hypotheses may
be required so that close-by input stationary distributions/measures lead to close-by
invariant reservoir stationary distributions/measures. At this point, it is important
to emphasize that in the absence of the USP, such robustness is actually not available
in general. Indeed, as we numerically illustrate in Figure 1 with a ESN of the type
introduced in (1.1) that does not have the USP, large variations in the distributions of
the reservoir states can be obtained even when the input distribution is varied slightly.

In this work we propose to deal with the questions (i) and (ii) by providing
sufficient conditions under which these properties are satisfied and that, in particular,
guarantee that behaviors similar to the one depicted in Figure 1 cannot occur. Since
we intend to ensure that these features are available even when the USP is not satisfied,
we consider a notion in which the resulting reservoir state sequences can be separated
from each other possibly with non-vanishing probability. More precisely, given a
probability measure θ on the input space U and 0 < c < 1, we say that the driven
system g is a (θ, c)-stochastic contraction when

(1.2)

∫
U

dX(g(u, x), g(u, y)) dθ(u) ≤ c dX(x, y) holds for all x, y ∈ X.

We stress that contractivity, a requirement commonly invoked to ensure the echo
state property (called USP here) in reservoir computing, can be satisfied by systems
that are not state-contractive, and may even be satisfied in the absence of the echo
state property (see Remark 4.4). Similar conditions have been formulated in the lit-
erature, mostly in the Lp context to, for example, prove the stability of functional
autoregressive models (see [10, Chapter 6] and references therein). In our setup, and
since the questions (i) and (ii) above concern distributions of solution sequences in X
rather than just the values in X, we shall introduce later on in Definition 3.1 a system
G in sequence space induced by g, and use the above contraction property to handle
(i) and (ii) in Theorems 4.5 and 4.14. Regarding the time evolution of measures,
in the context of autonomous systems the Frobenius-Perron operator [26] has been
traditionally used. In our non-autonomous setup, we utilize one of its generalizations,
namely the the so-called Foias operator, which was used, for instance, in [26, Chap-
ter 12] to analyze systems driven by IID noise and studied mostly on spaces equipped
with the L1 norm (see Figure 2 for an illustration). Also, while transport problems
in autonomous dynamical systems are completely solved when the exit times from
each measurable set is known [42], with RC systems such questions have not yet been
addressed. In that respect, this paper can be viewed as the first step to answer the
question of the convergence towards a stationary distribution or invariant measure
and, more generally, whether we can reliably use the statistical information of the
reservoir for information processing.

The statistical properties of nonautonomous dynamical systems have been studied
before. The idea of “loss of memory” of initial densities was introduced in [36] that is
a generalization of the notion of decay of correlations (e.g., [27, 43]). The phrase “loss
of memory” comes from the assumption that all relevant densities are drawn to the
same moving target in the space of densities in an impartial manner. In particular, the
authors in [36] deal with a family of piecewise expanding maps on a compact interval
with uniform expanding properties and show that if ρ0 and ρ̂0 are two arbitrary
initial densities with respect to a reference measure m, then their time-evolutions ρt
and ρ̂t get closer to each other with exponential speed, that is,

∫
|ρt− ρ̂t|dm < Ce−αt.
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Other extensions or generalizations in different settings concerning the speed of loss of
memory in results can be found in the literature. Among them, we can refer to results
for piecewise expanding maps in [20], and for random composition of two-dimensional
Anosov diffeomorphisms in [39]. More specifically, [39] consider a weaker convergence
notion where it is shown that |

∫
f ◦ T1,ndµ1 − f ◦ T1,ndµ2| ≤ Ce−αn, where f is

a Hölder observable and T1,n denotes the composition of n maps. A variation of
convergence called “conditional memory loss” was established in [34] for expanding
Lasota-Yorke maps interval maps. Although there are variations of such results we
refer to Stenlund in [39] who makes the general statement: “Much of the statistical
theory of stationary dynamical systems can be carried over to sufficiently chaotic
non-stationary systems.” So to fill this relative sparseness for statistical properties of
nonautonomous systems, weaker hypotheses with less expanding properties as in the
mixing or chaotic situations need to be considered. The work in [1] pertains to results
for a class of maps on a compact interval that have a neutral fixed point, while the
work in [3] relaxes the topological transitivity conditions on an interval. Our work
here also relaxes on the global expanding hypotheses since the composition of maps
induced when an input sequence drives a driven system can be allowed to have only
some local expanding properties which the stochastic contraction property permits.

The general organization of the paper is as follows: Section 2 introduces the setup
in relation with driven systems and their associated Foias operators. In particular,
Proposition 2.3 determines when such an operator is well-defined as a map between
Wasserstein spaces. Section 3 contains a detailed account on how a driven system g
naturally induces another driven system G in sequence space. The sequence space
representation is important since it provides additional tools for the characterization
of the solutions of a driven system. Section 4 is the core of the paper and contains the
main results. More specifically, we prove in this section the existence and unique-
ness of invariant measures for the Foias operators in both the state (Theorem
4.14) and sequence spaces (Theorem 4.15), as well as the continuity of their de-
pendences on the input process. The main tool to achieve this is Banach’s Fixed
Point Theorem, which requires two conditions, namely contractivity and continuity,
which will be implied for the Foias operators in both the state and sequence spaces
by conditions that are readily verifiable and exclusively formulated for the
driven system g defined in the state space. Indeed, most of the developments
in that section consist in showing that the contractivity and continuity conditions
imposed on g translate to similar properties at the level of the Foias operators in both
the state and sequence spaces. The contractivity question is mostly treated in Sub-
section 4.1 where it is shown that the newly introduced notion of stochastic state
contractivity (1.2) for the driven system g, ensures that the Foias operators in state
and in sequence spaces are also contractive with respect to the Wasserstein distance
(see Figure 3 for a summary of the implications between contractivity in different
spaces). We emphasize that stochastic state contractivity is less restrictive than the
standard state contractivity condition evoked to ensure the USP. All the continuity
questions are contained in Subsection 4.2 (see Figure 4 for a summary of the different
continuity implications). Subsection 4.3 contains the two main results Theorem 4.14
and Theorem 4.15. Section 5 concludes the paper.

2. Preliminaries. As we already mentioned in the introduction, we place our-
selves in the context of driven systems induced by a function g : U ×X → X which
has as domain the metric input space (U, dU ) and the metric state space (X, dX).
We say that a bi-infinite output sequence x = {xn}n∈Z ∈ XZ is compatible or is
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a solution for the input sequence u = {un}n∈Z ∈ UZ when the following identity
is satisfied

(2.1) xn+1 = g(un, xn), for all n ∈ Z.

The driven system g has the unique solution property (USP) if for each input
sequence there is a unique output sequence that is compatible with it. In the reservoir
computing framework, the USP is usually referred to as the echo state property (ESP)
and is often ensured by imposing various contraction properties. The USP guarantees
the existence of a unique causal and time-invariant filter Ug : UZ → XZ (see [6] or
[19] for detailed definitions) which is characterized by the relation

(2.2) Ug(u)n+1 = g (un, Ug(u)n) , for all n ∈ Z.

We shall show in our work that in the presence of stochastic inputs, even if the USP
condition is not satisfied by the driven system, we can still use the Foias operator to
associate to it a continuous input-output system in the space of stochastic processes.

Wasserstein distances. We recall some relevant definitions next. Suppose that
(Y, dY ) is a Polish space (that is, it is complete and separable) and denote by P (Y )
the set of Borel probability measures. Let p ∈ [0,∞) and define the Wasserstein
space Pp(Y ) of order p as

Pp(Y ) :=

{
µ ∈ P (Y )

∣∣∣∣ ∫
Y

dY (y0, y)pdµ(y) < +∞
}
,

where y0 ∈ Y is arbitrary since it can be shown that this definition does not depend on
the point y0. This space can be made into a Polish space by using the Wasserstein-p
distance Wp : Pp(Y )× Pp(Y )→ [0,∞) (see [41, Theorem 6.18])

(2.3)
Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
Y×Y

dY (x1, x2)pdπ(x1, x2)

)1/p

= inf
π∈Π(µ,ν)

{
(E [dY (X1, X2)p])

1/p | law(X1) = µ, law(X2) = ν
}
,

where Π(µ, ν) is the set of all joint Borel probability measures on Y × Y whose
marginals are µ and ν, that is, µ(A) = π(A×Y ) and ν(A) = π(Y ×A) for all regular
Borel subsets A ⊂ Y . The pair of random variables (X1, X2) in the second line of the
definition are defined on Y × Y .

All the work in this paper will be conducted using the Wasserstein-1 distance
W1 that in the sequel will be denoted just as W . The Kantorovich-Rubinshtein
duality formula (see [23, 25] or [9, Theorem 11.8.2]) provides an alternative expression
for the Wasserstein-1 distance, namely

(2.4) W (µ, ν) = sup
f∈Lip1(Y,R)

{∫
Y

fdµ−
∫
Y

fdν

}
,

where Lip1(Y,R) denotes the set of all real-valued functions f on Y so that |f(y1)−
f(y2)| ≤ dY (y1, y2), for all y1, y2 ∈ Y or, equivalently, the set of real-valued Lipschitz
continuous functions with Lipschitz constant smaller or equal to one.

An important fact that we will use repeatedly is that W metrizes the weak con-
vergence in P1(Y ) (see [41, Theorem 6.9]). More specifically, we say that the sequence
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{µn}n∈N of measures in P1(Y ) converges weakly to µ ∈ P1(Y ), whenever for any
continuous real-valued function f such that |f(y)| ≤ C(1 + d(y0, y)), for some C ∈ R,
and some (and then any) y0 ∈ Y , we have that

(2.5)

∫
Y

f(y)dµn(y)→
∫
Y

f(y)dµ(y).

We say that W metrizes the weak convergence in P1(Y ) because the statement
{µn}n∈N converges weakly to µ ∈ P1(Y ) is equivalent to W (µn, µ) → 0. See [41,
Definition 6.8] for other characterizations of weak convergence in P1(Y ).

We refer to the Chapter 6 of the monograph [41] for the central role of the Wasser-
stein metric in the study of optimal transport. In particular, unlike the total variation
norm or the Kullback-Leibler divergence, it helps in comparing measures that are not
absolutely continuous with respect to each other, a situation that often arises in prac-
tice while considering empirical distributions.

The Frobenius-Perron and the Foias operators. Using the terminology in [26,
Chapter 12] and in the same setup as in the previous paragraph, we can associate
to each Lipschitz continuous discrete-time dynamical system on Y a natural operator
Pf : P1(Y ) → P1(Y ) that describes how probability distributions on Y are mapped
by the dynamical system. More specifically, let f ∈ Lip(Y ) be a Lipschitz continuous
self-map of Y . The Frobenius-Perron operator Pf : P1(Y )→ P1(Y ) associated to
f is defined by Pf (µ) = f∗µ, with f∗µ the pushed-forward measure of µ ∈ P1(Y ) by f
given by f∗µ(A) = µ

(
f−1(A)

)
, for any Borel subset A ⊂ Y . The Lipschitz condition

on f implies that Pf (µ) ∈ P1(Y ). Notice that if dY is a bounded metric, then the
Frobenius-Perron operator Pf : P1(Y )→ P1(Y ) is defined for any measurable self-map
f of Y and if Y is compact then Pf is defined for any continuous map f . Additionally,
if Lipc(Y ) denotes the space of c-Lipschitz continuous dynamical systems on Y and
f ∈ Lipc(Y ), then Pf ∈ Lipc(P1(Y )) when P1(Y ) is endowed with the Wasserstein-1
distance.

The notion of Frobenius-Perron operator for a dynamical system can be extended
to driven systems g of the type introduced in (2.1), in which case is called the Foias
operator (see [26, Definition 12.4.2]).

Definition 2.1. Let g : U × X → X be a measurable driven system that has
as domain the input (U, dU ) and state (X, dX) spaces that are assumed to be Polish
spaces. The Foias operator Pg : P (U)× P1(X)→ P1(X) associated to g is defined
by

(2.6) Pg(θ, µ) =

∫
U

gu ∗µdθ(u),

where gu : X → X is defined by gu(x) = g(u, x), for all u ∈ U . The term measurable
means that the preimage g−1(A) by g of any Borel subset A ⊂ X of X is a Borel subset
of U ×X. The equality that defines Pg(θ, µ) ∈ P1(X) in (2.6) is an abbreviation for
the measure that for any Borel subset A ⊂ X takes the value

(2.7) Pg(θ, µ)(A) =

∫
X

(∫
U

1A (g(u, x)) dθ(u)

)
dµ(x),

with 1A : X → {0, 1} the indicator function of A.
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Fig. 2. An illustration of Frobenius-Perron and the Foias operators. The Frobenius-Perron op-
erator pushes forward measures using a dynamical system. The Foias operator is a non-autonomous
generalization that integrates the push-forwards given by a driven system with respect to a measure
in the input space.

Remark 2.2. It is easy to show using Fubini’s Theorem that the Foias operator
coincides with the push-forward map g∗ : P (U × X) −→ P (X) when restricted to
product measures in P (U × X) of the form τ(C × A) = θ(C) · µ(A), with C and A
Borel sets in U and X, respectively, and θ ∈ P (U), µ ∈ P1(X). In other words, the
Foias operator Pg coincides with the push-forward map g∗ of a driven system g when
applied to independent random variables in U and X (that is, the ones that have laws
θ and µ). Indeed, for any such measure and any Borel set A ⊂ X, Fubini’s theorem
guarantees that:

(2.8) g∗τ(A) =

∫
X

1A(x) d (g∗τ) (x) =

∫
U×X

1A(g(u, x)) dτ(u, x)

=

∫
U×X

1A(g(u, x)) dθ(u)dµ(x) =

∫
X

(∫
U

1A (g(u, x)) dθ(u)

)
dµ(x)

= Pg(θ, µ)(A).

The following result provides conditions that ensure that the Foias operator is
well-defined and that, in particular, maps into P1(X). Most of the time in this paper
we shall be working under the hypothesis in part (i).

Proposition 2.3. In the setup of the previous definition, the Foias operator is
well-defined under any of the following hypotheses:
(i) dX is a bounded metric and g is measurable.
(ii) The input U and state X spaces are compact and g is continuous.
(iii) The input U space is compact, g is continuous, and the maps gu are all Lipschitz

continuous with constants cu such that supu∈U {cu} = c < +∞.
Proof.

All that it needs to be shown is that for an element x0 ∈ X (and hence for any)
and (θ, µ) ∈ P (U)× P1(X), the integral∫

X

dX(x, x0)dPg(θ, µ)(x) =

∫
X

∫
U

dX(gu(x), x0)dθ(u)dµ(x)
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is finite in the presence of any of the three hypothesis in the statement. It is clearly
the case when dX is a bounded metric. Under the hypotheses in (ii), the continuous
function dX(gu(x), x0) reaches a maximum M > 0 at a point (u′, x′) and hence∫

X

dX(x, x0)dPg(θ, µ)(x) =

∫
X

∫
U

dX(gu(x), x0)dθ(u)dµ(x)

≤M
∫
X

∫
U

dθ(u)dµ(x) = M < +∞.

Regarding part (iii) we shall show that

∫
X

dX(x, gu0(x0))dPg(θ, µ)(x) < +∞ for some

fixed u0 ∈ U . By the triangle inequality and the Lipschitz condition

dX(gu(x), gu0
(x0)) ≤ dX(gu(x), gu(x0)) + dX(gu(x0), gu0

(x0)) ≤ cdX(x, x0) +M,

where M is the maximum of the function dX(gu(x0), gu0
(x0)) thought of as a contin-

uous function of the variable u on the compact set U . Consequently,∫
X

dX(x, gu0
(x0))dPg(θ, µ)(x) ≤ c

∫
Y

dX(x, x0)dµ(x) +M < +∞,

since µ ∈ P1(X). �

3. Driven systems in sequence spaces. In this section we study how driven
systems induce natural maps between input and output sequence spaces that will be
used later on in the paper.

Sequence spaces. We saw in the previous section how driven systems that satisfy
the USP naturally induce input / output systems between the corresponding sequence
spaces and that is why it is important to look into their mathematical properties.
First of all, given a topological space Y , we denote the space of bi-infinite and left
semi-infinite countable Cartesian products by

Y =

∞∏
i=−∞

Zi and
←−
Y =

−1∏
i=−∞

Zi, respectively, where Zi = Y,

and equipped with the product topology. Alternatively, we can write
←−
Y = Y Z−

, where
Z− (respectively Z−) denotes the set of strictly negative integer numbers (respectively

Z− ∪ {0}). Note that there is a natural projection π←−
Y

: Y −→
←−
Y that extracts from

each bi-infinite sequence its left semi-infinite part. We also note that if Y is a Polish

space then so are Y and
←−
Y since we are considering countable products. Additionally,

if dY is a metric that makes Y complete and w ∈ RN is a weighting sequence (zero-
limit strictly decreasing sequence with w1 = 1) then

(3.1) d←−
Y

(x,y) = sup
i∈N

{
widY (x−i, y−i)

}
induces the product topology on

←−
Y (which does not depend on w) and makes it

into a Polish space (see [17, Theorem 2.6] for a proof). The symbol dY denotes the
standard bounded metric in Y defined by dY (x, y) = min {dY (x, y), 1}. The distance

d←−
Y

can be used to define a corresponding Wasserstein-1 space P1(
←−
Y ) and an associated

Wasserstein distance on it that makes it in turn into a Polish space. This metric can
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be easily extended to bi-infinite sequences Y . Indeed, one first formulates a metric

similar to (3.1) for the space
−→
Y of semi-infinite sequences towards +∞ . Then, we

write Y as the Cartesian product of
←−
Y and

−→
Y , and we finally put together those two

metrics by taking their maximum, which yields a metric dY for Y .
Regarding notation, elements in sequence spaces will be written in bold and their

entries in normal font. For any t ∈ Z−, we define time delay operator T−t :
←−
Y →

←−
Y

by T−t(y)s = ys+t. This definition can be extended to the case in which
←−
Y is replaced

by Y , in which case one can also consider the case t ∈ Z.

Driven systems in sequence spaces. We now introduce driven systems in sequence
spaces induced by the original driven system g : U ×X → X. These objects will be
central to the next developments in the paper. It is worth recalling at this point that
when dealing with driven systems that have the USP one can make an identification

between their solutions in the spaces
←−
X and X of left semi-infinite and bi-infinite

sequences, respectively. More specifically, a bi-infinite solution x ∈ X of g for the

input u ∈ U determines a unique left semi-infinite sequence ←−x = π←−
X

(x) ∈
←−
X that

we shall also call solution of g for the input u ∈ U . Analogously, given the input

u ∈ U and ←−x ∈
←−
X such that ←−x n+1 = g(un,

←−x n), for all n ∈ Z−, the same recursion
determines an element x ∈ X that solves g for u and that is necessarily the unique
solution, as g has the USP by hypothesis. In the next pages, we shall use these two
spaces interchangeably without making a distinction between x and ←−x ; the space to
which these sequences belong will be either explicitly specified or determined by the
context.

Definition 3.1. Let g : U×X → X be a driven system. We define its extension

G :
←−
U ×

←−
X →

←−
X to sequence space by

(3.2) G(u,x) = (. . . , g(u−2, x−2), g(u−1, x−1)).

Observe first that the semi-infinite solutions of the system associated to a driven
system g : U × X → X are exactly the fixed points of the map T1 ◦G with T1 the

one-lag delay map. More specifically, x ∈
←−
X is a solution for the input u ∈

←−
U if and

only if

(3.3) T1 ◦G(u,x) = x.

In what follows, we focus on the driven system associated to G in sequence space,
its solutions, and their relation with those of the original driven system g. Given a

sequence (of sequences) {un}n∈Z with elements in
←−
U , we say that the sequence (of

sequences) {xn}n∈Z with elements in
←−
X is a solution of G for the input {un}n∈Z

when

(3.4) xn+1 = G(un,xn), for all n ∈ Z.

In the following paragraphs we discuss the relation between the solutions of the
driven systems associated to g and G and, more explicitly, the equivalence of the USP
for the two systems. This statement is shown under two different sets of hypotheses.
In Proposition 3.2 this is done under the assumption g and G have the existence
of solutions property, that is, for every input they both have at least one solution.
Subsequently, in Proposition 3.5 a similar equivalence is proved without the need for
the existence of solutions hypothesis in G that, in exchange allows us to conclude the
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USP for that map only for a class of inputs that we call time-folded sequences (see
Definition 3.3).

Proposition 3.2. Let g : U×X → X be a driven system and let G :
←−
U ×
←−
X →

←−
X

be its extension to sequence space. Suppose that these systems are such that for every
input there exists at least one solution. Then, g has the USP if and only if G has the
USP.

Proof. We first prove that if g has the USP then so does G. Assume that G
does not have the USP. This means that there exists an input {un}n∈Z with elements

in
←−
U for which there are two distinct solutions {xn}n∈Z, {yn}n∈Z with elements in

←−
X . This implies that (xm)k 6= (ym)k, for some k ∈ Z− and m ∈ Z. Now, since
{xn}n∈Z and {yn}n∈Z are both solutions for the G-system (3.4), they satisfy that:
g((un)j , (xn)j) = (xn+1)j and g((un)j , (yn)j) = (yn+1)j , for all j ∈ Z− and all n ∈ Z.
In particular, since (xm)k 6= (ym)k, this implies that there are two different solutions
{(xn)k)}n∈Z and {(yn)k)}n∈Z of the g-system for the same input {(un)k)}n∈Z which
contradicts the hypothesis that g has the USP.

Next, we show that if G has the USP then g has the USP. By contradiction,
suppose that g does not have the USP and let x,y ∈ X be two distinct solutions for

the same input u ∈ U . Define the input {un}n∈Z with elements in
←−
U by (un)j = un,

for all j ∈ Z−. Also, define the sequences {xn}n∈Z, {yn}n∈Z with elements in
←−
X by

(xn)j = xn and (yn)j = yn, for all j ∈ Z−. Clearly, by definition of G we have that
G(un,xn) = xn+1 and G(un,yn) = yn+1, for all n ∈ Z. This implies there are two
different solutions of G for the same input, which implies G does not have the USP.
�

The existence of solutions hypotheses on g and G in the previous proposition
can be ensured under very general hypotheses. For instance, if the state space X
is compact and convex, it can be shown [17, Theorem 3.1(i)] that the g and the
G-systems have solutions for any input. This is a consequence of Schauder’s Fixed
Point Theorem (see [38, Theorem 7.1, page 75]) when the product topology is used
in the corresponding sequence spaces. An extension of this result to a non-compact
framework can be found in [19, Theorem 7(ii)]. It is worth emphasizing that much
like autonomous systems defined on unbounded spaces exhibit interesting dynamics
on bounded invariant sets, the relevant dynamics of many non-autonomous systems
induced by driven systems is contained in bounded absorbing sets [24]. This all
implies that the hypothesis in the previous proposition on the existence of solutions
is in practice not a strong one.

Having said all this, another equivalence result for the equivalence of the USP for
g and G can be formulated in which there is no need to invoke an a priori knowledge
on the existence of solutions for them. The price to pay for this added generality is
the restriction the inputs for the G system to what we call time-folded inputs, a
notion that we introduce in the next definition.

Definition 3.3. Let {xn}n∈Z be a sequence of elements in the space
←−
X of left

semi-infinite sequences in X. We say that the sequence (of sequences) {xn}n∈Z is
time-folded whenever

(3.5) T−txn = xn+t, for all t ∈ Z− and n ∈ Z.

The time delay operator T−t :
←−
X −→

←−
X , t ∈ Z−, in the definition is the one that was

already introduced at the end of Section 2, in view of which, the time-folding relation
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(3.5) can be rewritten as

(xn)s+t = (xn+t)s, for all t, s ∈ Z− and n ∈ Z.

The following lemma shows that time-folded sequences in
←−
X have a very simple

structure and that all their terms can be constructed out of a single element in X.

Lemma 3.4. Let {xn}n∈Z be a time-folded sequence of elements in
←−
X . Then,

there exists a unique sequence x0 ∈ X such that

(3.6) xn = x0
(−∞,n], for all n ∈ Z,

where x0
(−∞,n] ∈

←−
X is defined by x0

(−∞,n] = (. . . , x0
n−1, x

0
n) or, equivalently, by

(3.7)
(
x0

(−∞,n]

)
j

= x0
n+j+1, for all j ∈ Z−.

Proof. Let x0 ∈ X be the sequence defined by

(3.8) x0
n = (xn)−1 , for all n ∈ Z.

We now verify that the invariance condition of {xn}n∈Z implies the relation (3.6).
Indeed, for any j ∈ Z− and n ∈ Z we have that

(xn)j =
(
T−(j+1)xn

)
−1

= (xn+j+1)−1 = x0
n+j+1 =

(
x0

(−∞,n]

)
j
,

and hence xn = x0
(−∞,n], for all n ∈ Z, as required. In the previous expression, the

first equality follows from the definition of the time delay operator, the second one
follows from the time-folding hypothesis, the third one from (3.8), and the last one
from (3.7). �

Proposition 3.5. Let g : U×X → X be a driven system and let G :
←−
U ×
←−
X →

←−
X

be its extension to sequence space. Then x = {xn}n∈Z is a solution of g for the input

u = {un}n∈Z if and only if the sequence {x(−∞,n]}n∈Z in
←−
X is a solution of G for

the input sequence {u(−∞,n]}n∈Z in
←−
U , where x(−∞,n] and u(−∞,n] are defined as in

(3.7). Consequently, the driven system g has the USP if and only if the induced map
G in sequence space has the USP when restricted to time-folded inputs.

Proof. Suppose first that x = {xn}n∈Z is a solution of g for the input u =
{un}n∈Z, that is, xj+1 = g(uj , xj) for all j ∈ Z. We now show that {x(−∞,n]}n∈Z
is a solution of G for the input {u(−∞,n]}n∈Z. To prove this, we just need to
verify G(u(−∞,n],x(−∞,n]) = x(−∞,n+1]) for all n ∈ Z. By the definition of G,
G(u(−∞,n],x(−∞,n]) = (. . . , g(un−1, xn−1), g(un, xn)) for any n ∈ Z. Since xj+1 =
g(uj , xj) for all j ∈ Z, we have that G(u(−∞,n],x(−∞,n]) = (. . . , xn, xn+1) = x(−∞,n+1],
as required.

Conversely, suppose that {x(−∞,n]}n∈Z is a solution of the extension G, for some

input sequence {u(−∞,n]}n∈Z in
←−
U , that is, G(u(−∞,n],x(−∞,n]) = x(−∞,n+1], for all

n ∈ Z. By the definition of G, G(u(−∞,n],x(−∞,n]) = (. . . , g(un−1, xn−1), g(un, xn)).
Therefore, x(−∞,n+1] = (. . . , g(un−1, xn−1), g(un, xn)), which implies xj+1 = g(uj , xj),
for all j ≤ n. Since n is arbitrary, we can conclude that the sequence x = {xn}n∈Z is
a solution of g for the input u = {un}n∈Z.
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Finally, since the sequences u = {un}n∈Z ∈ U and x = {xn}n∈Z ∈ X uniquely
determine the time-folded sequences {u(−∞,n]}n∈Z and {x(−∞,n]}n∈Z, respectively,
and vice-versa, the two implications that we just proved imply that g has the USP if
and only if G has the USP when restricted to time-folded inputs. �

Remark 3.6. If in the last statement in the previous proposition we drop the
restriction to time-folded inputs, the claim is in general false (unless we add the
existence of solutions property as a hypothesis as we did in Proposition 3.2). More
specifically, even if g has the USP, the system in sequence space induced by the
corresponding G may not have that property. As an example, consider the one-
dimensional linear system g(u, x) = ax + u, |a| < 1, for which X = U = R and the
sequence of (non-time-folded) input sequences given by (un)t = n2/t2, n ∈ Z, t ∈ Z−.

Note that for any n ∈ Z, the system induced by g has a unique solution xn ∈
←−
X

associated given by (xn)t = n2
∑∞
j=0

aj

(t−j)2 , n ∈ Z, t ∈ Z−. On the other hand, the

solutions {xn}n∈Z for the G system in sequence space that have {un}n∈Z as input
satisfy that xn+1 = G(xn,un), for all n ∈ Z or, equivalently, that a (xn)t + (un)t =
(xn+1)t, for all n ∈ Z and t ∈ Z−. This relation implies that if a solution {xn}n∈Z
exists, it must satisfy that (xn)t = 1

t2

∑∞
j=0 a

j(n− j)2. Since this series is divergent,
we can conclude that the system induced by G does not hence have the USP for these
inputs.

4. Stochastic contractions and invariant measures for driven systems.
We place ourselves in this section in a setup similar to the one in Definition 2.1 which
ensures the existence of a well-defined Foias operator by using, for instance, the hy-
potheses that we introduced in Proposition 2.3. The main goal in the following pages
is proving the existence and uniqueness of invariant measures for the Foias opera-
tors in both the state and sequence spaces and the continuity of their dependences
on the input process. The main tool to achieve the results requires two conditions,
namely contractivity and continuity. These two conditions will be treated for the
maps of interest in two different subsections.

We start by formally introducing the notion of stochastic state contraction
which will be at the core of our developments and whose importance is given by the fact
that it is, in general, less restrictive than the standard contractivity conditions evoked
to ensure that (2.1) has the unique solution property (see, for instance, [21, 18, 17]).
This concept was already informally discussed in the introduction.

Definition 4.1. Let g : U × X → X be a measurable driven system that has
as domain the input (U, dU ) and state (X, dX) spaces that are assumed to be Polish
spaces. Given θ ∈ P (U) and 0 < c < 1, we say that g is a (θ, c)-contraction when

(4.1)

∫
U

dX(gu(x), gu(y)) dθ(u) ≤ c dX(x, y) holds for all x, y ∈ X.

We emphasize that given a fixed driven systemg the constant c in (4.1) depends
in general on the input process θ ∈ P (U). This leads us to define the optimal or
best contraction constant for a given input process θ ∈ P (U) as

(4.2) cθ = inf {c ∈ (0, 1) such that (4.1) holds} .

This condition is satisfied by many parametric models commonly used in time series
analysis, as seen in the examples below that have been explored also in [13] using a
different approach.
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Example 4.2 (VARMA process with time-varying coefficients). Suppose
X = (Xt)t∈Z, with Xt ∈ RN , is a vector autoregressive process of first order with time-
varying coefficients on RN endowed with the Euclidean metric, which we write as:

(4.3) Xt = A(ut−1)Xt−1 + f(ut−1), t ∈ Z,

where f : Rd → RN is a measurable map and u = (ut)t∈Z ∼ IID with ut ∈ Rd,
that is, u is a Rd-valued sequence of independent and identically distributed random
variables. The matrix A(u) ∈ MN is assumed to satisfy that E [||A(u)||] < 1, where
||A(u)|| denotes the operator norm with respect to the Euclidean metric in RN (recall
that ||A(u)|| = σmax(A), the top singular eigenvalue of A).

The recursions (4.3) can be encoded as a driven system of the form (2.1) by
defining g : Rd × RN → RN as g(u, x) = A(u)x+ f(u). Let now θ ∈ P (U) be the law
of the components of u. Then, g is a (θ,E [||A(u)||])-contraction. Indeed, in this case:∫

U

dX(gu(X), gu(Y )) dθ(u) =

∫
U

‖A(u)(X − Y )‖ dθ(u)

≤
∫
U

||A(u)|| ‖X − Y ‖ dθ(u) ≤ E [||A(u)||] dX(X,Y ).

We emphasize that the condition E [||A(u)||] < 1 is in general less restrictive than
||A(u)|| < 1, for all u ∈ U , which would be the standard condition evoked to ensure
that (4.3) has the unique solution property (see, for instance, [17, Theorem 3.1]).

Example 4.3. GARCH process We now consider a particular case of the
model introduced in (4.3) which is extensively used to describe and eventually to
forecast the volatility of financial time series, namely the generalized autoregressive
conditional heterostedastic (GARCH) family [11, 4, 12]. The GARCH(1,1) model
given by the following equations:

rt = σtut−1, ut ∼ IID(0, 1), t ∈ Z(4.4)

σ2
t = ω + αr2

t−1 + βσ2
t−1, t ∈ Z(4.5)

with parameters that satisfy α, β, ω ≥ 0, α + β < 1. We now show that the
GARCH(1,1) process in (4.4)-(4.5) falls in the framework introduced in the previ-
ous example. Indeed, define

Xt =

(
r2
t

σ2
t

)
, f(ut) :=

(
ωu2

t

ω

)
, A(ut) =

(
αu2

t βu2
t

α β

)
, t ∈ Z.

It is easy to verify that with this choice one has E[||A(u)||] = E[αu2 + β] = α+ β < 1.
In this case it is particularly obvious that the condition E[||A(u)||] < 1 is much less
restrictive than ||A(u)|| = αu2 +β < 1, for all u ∈ U , which is false, for instance when
the innovations ut are not bounded.

Remark 4.4 (Stochastic contractivity without the USP). Consider g :
[0, 1] × [0, 1] → [0, 1] defined by g(u, x) = ux, where subsets of R are endowed with
standard Euclidean metric. The system does not have the USP since for an input
sequence comprising of just ones, every constant sequence contained in [0, 1] is a so-
lution for that input. On the other hand, if θ = δ0, that is, θ is a point measure at 0,
we observe that

∫
U
dX(gu(x), gu(y)) dθ(u) = 0 < cdX(x, y), for every value of c > 0.
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4.1. Stochastic contractivity and contractive Foias operators. This sub-
section shows that the stochastic contractivity of a driven system guarantees that its
Foias operator is a contraction with respect to the Wasserstein distance (see Theorem
4.5). Moreover, we also spell out conditions, mostly the stationarity of the input
process, which guarantee that the corresponding driven system in sequence space and
its Foias operator are also a contraction (see Propositions 4.7 and 4.6). All these
different implications are summarized in Figure 3.

Stochastic state contractivity yields contractive Foias operators. The follow-
ing results shows that if a driven system is stochastic state contractive with respect
to a fixed measure in the input space, then the corresponding Foias operator has the
same property.

Theorem 4.5. Let g : U × X → X be a measurable driven system that has as
domain the input (U, dU ) and state (X, dX) spaces that are assumed to be Polish.
Fix θ ∈ P (U) and suppose that g is a (θ, c)-contraction with 0 < c < 1. If g has
a well defined Foias operator Pg : P (U) × P1(X) → P1(X) then it is necessarily a
c-contraction with respect to the Wasserstein-1 distance on the second entry, that is,

(4.6) W (Pg(θ, µ1), Pg(θ, µ2)) ≤ cW (µ1, µ2), for any µ1, µ2 ∈ P1(X).

Proof. First of all, given f ∈ Lip1(X,R), define the function

rf (x) =
1

c

∫
U

f(gu(x)) dθ(u).

It is easy to show that rf ∈ Lip1(X,R). Indeed, for any x, y ∈ X,

|rf (x)− rf (y)| =
∣∣∣∣1c
∫
U

f(gu(x)) dθ(u)− 1

c

∫
U

f(gu(y)) dθ(u)

∣∣∣∣
≤ 1

c

∫
U

|f(gu(x))− f(gu(y))| dθ(u) ≤ 1

c

∫
U

dX(gu(x), gu(y))dθ(u) ≤ dX(x, y).

We now establish (4.6). Take µ1, µ2 ∈ P1(X) arbitrary and let τ1 = θ × µ1, τ2 =
θ × µ2 ∈ P (U × X) be the product measures. Then, using the characterization in
(2.8) of the Foias operator, we have:

W (Pg(θ, µ1), Pg(θ, µ2)) = sup
f∈Lip1(X,R)

(∫
X

f(x)dPg(θ, µ1)(x)−
∫
X

f(x)dPg(θ, µ2)(x)

)
= sup
f∈Lip1(X,R)

(∫
X

f(x) d (g∗τ1(x))−
∫
X

f(x) d (g∗τ1(x))

)
= sup
f∈Lip1(X,R)

(∫
U×X

f ◦ g(u, x) d (τ1(u, x)− τ2(u, x))

)
= sup
f∈Lip1(X,R)

(∫
U

∫
X

f(gu(x))d
(
µ1(x)− µ2(x)

)
dθ(u)

)
,

= sup
f∈Lip1(X,R)

(∫
X

(∫
U

f(gu(x))dθ(u)
)
d
(
µ1(x)− µ2(x)

))
= c sup

f∈Lip1(X,R)

(∫
X

rf (x)d
(
µ1(x)− µ2(x)

))
≤ cW (µ1, µ2),



16 G MANJUNATH AND JUAN-PABLO ORTEGA

where Fubini’s theorem was used in the fourth and the fifth equalities, which is
available because f ∈ Lip1(X,R). The last inequality follows from the fact that
rf ∈ Lip1(X,R).

The conclusion in the previous theorem can be immediately applied to induced
driven systems in sequence spaces, in which case, the metric dX in the contractivity
condition (4.1) has to be replaced by a bounded weighted metric d←−

X
of the type that

we introduced in (3.1). We shall see later on in Proposition 4.7 that the stochastic
contractivity in sequence space is naturally inherited under very general hypotheses
from a stochastic contractivity hypothesis for the original system g : U ×X → X.

Proposition 4.6. Let g : U ×X → X be a measurable driven system with Polish

input and output spaces and let G :
←−
U ×

←−
X →

←−
X be the induced driven system in

sequence space defined in (3.2). The induced system has a well-defined Foias operator

PG : P (
←−
U )×P1(

←−
X )→ P1(

←−
X ) associated with it. Moreover, let Θ ∈ P (

←−
U ) and suppose

that G is a (Θ, c)-stochastic contraction, then PG(Θ, ·) is also a c-contraction with
the Wasserstein-1 metric.

Proof. The operator PG : P (
←−
U )×P1(

←−
X )→ P1(

←−
X ) is well-defined because of the

boundedness of the metric d←−
X

in (3.1) and part (i) of Proposition 2.3. We recall that

this metric induces the product topology and makes
←−
X into a Polish space. With this

in mind, the contractivity claim is a direct corollary of Theorem 4.5 that is obtained
by replacing g by G.

Contractive driven systems and their counterparts in sequence spaces.
There are situations in which the previous corollary exhibits a special significance,
namely, when the contractivity hypothesis on G can be obtained out of a contractiv-
ity hypothesis on the driven system g that generates it. In the next result we show
that is the case when, for instance, X is bounded and the input process is stationary.

Proposition 4.7. Let g : U ×X → X be a measurable driven system with Polish

input and output spaces and let G :
←−
U ×

←−
X →

←−
X be the induced driven system in

sequence space defined in (3.2). Additionally, suppose that (X, dX) is bounded and

let Θ ∈ P (
←−
U ) be the law of a stationary process with time-independent marginals

θ ∈ P (U). Then, if g is a (θ, c)-contraction then G is also a (Θ, c)-contraction. More

specifically, when in
←−
X we consider any weighted metric d←−

X
of the type introduced in

(3.1), we have that:

(4.7)

∫
←−
U

d←−
X

(G(u,x),G(u,y)) dΘ(u) ≤ c d←−
X

(x,y), for all x,y ∈
←−
X .

Proof. First of all, the boundedness hypothesis on X allows us to define a weighted

metric (3.1) in
←−
X without using the bounded metric dX and by replacing it in the

definition just by dX . More explicitly, given the weighted sequence w, the expression

(4.8) d←−
X

(x,y) = sup
i∈N
{widX(x−i, y−i)}

defines a metric on
←−
X that induces the product topology.

Now, since g is a (θ, c)-contraction, we have that for each t ∈ Z− and each
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x,y ∈
←−
X

(4.9) w−t

∫
U

dX(gu(xt), gu(yt)) dθ(u) ≤ cw−t dX(xt, yt) ≤

c sup
s∈Z−

{w−s dX(xs, ys)} = c d←−
X

(x,y).

Now, in order to prove the claim (4.7), define for fixed x,y ∈
←−
X and t ∈ Z− the

sequence of functions

ft :
←−
U −→ R
u 7−→ maxs∈{t,t+1,...,−1} {w−sdX(gus

(xs), gus
(ys))} .

It is clear that

ft(u) ≤ d←−
X

(G(u,x),G(u,y)) and that lim
t→−∞

ft(u) = d←−
X

(G(u,x),G(u,y)).

Additionally, ft−1(u) ≥ ft(u), for any t ∈ Z−, and hence the Monotone Convergence
Theorem allows us to conclude that

(4.10)

∫
←−
U

d←−
X

(G(u,x),G(u,y)) dΘ(u) = lim
t→−∞

∫
←−
U

ft(u) dΘ(u).

We now bound

∫
←−
U

ft(u) dΘ(u) by defining, for any s ∈ {t, t+ 1, . . . ,−1}, the set

As ⊂
←−
U given by

As =
{

u ∈
←−
U | ft(u) = w−sdX(G(u,x)s,G(u,y)s)

}
.

In other words, As is the measurable subset of
←−
U for which the maximum that defines

the map ft is realized for the index s. Using this notation and the inequality in (4.9),
we can write:∫

←−
U

ft(u) dΘ(u) =

−1∑
s=t

∫
As

ft(u) dΘ(u) =

−1∑
s=t

∫
As

w−sdX(G(u,x)s,G(u,y)s) dΘ(u)

=

−1∑
s=t

∫
As

w−sdX(gus(xs), gus(ys)) dΘ(u) ≤
−1∑
s=t

∫
As

cd←−
X

(x,y) dΘ(u)

= cd←−
X

(x,y)

−1∑
s=t

∫
As

dΘ(u) = cd←−
X

(x,y) ,

that is, ∫
←−
U

ft(u) dΘ(u) ≤ cd←−
X

(x,y) , for all t ∈ Z−.

Consequently, by (4.10):∫
←−
U

d←−
X

(G(u,x),G(u,y)) dΘ(u) = lim
t→−∞

∫
←−
U

ft(u) dΘ(u) ≤ cd←−
X

(x,y) ,

as required. �
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4.2. Continuity of driven systems and their Foias operators. Given a
driven system g : U ×X → X between Polish spaces for which the Foias operator Pg
exists (see, for instance, the conditions in Proposition 2.3) it is natural to study if the
continuity of the driven system induces the same property in Pg. More specifically, if
we consider the restriction Pg : P1(U)×P1(X)→ P1(X) to input measures in P1(U),
then both the domain and the target of Pg are endowed with the Wasserstein-1 metric
and hence the continuity of this map can be studied. The following uniform continuity
hypothesis will be needed in the sequel.

Definition 4.8. Let g : U × X → X be a driven system with Polish input and
output spaces. We say that g is uniformly continuous on the first entry if for any
ε > 0 there exists δ(ε) > 0 such that if dU (u, v) < δ(ε) then dX(g(u, x), g(v, x)) < ε,
for all x ∈ X. This definition is extended to the uniform continuity on the second
entry in a straightforward manner.

Theorem 4.9. Let g : U × X → X be a measurable driven system with Polish
input and output spaces and (X, dX) compact. If g is uniformly continuous on the
first entry, then the corresponding Foias operator Pg : P1(U) × P1(X) → P1(X) is
continuous on the first entry, that is, the maps Pg(·, µ) : P1(U) → P1(X) are all
continuous for any µ ∈ P1(X).

Before we present the proof we introduce the following lemma.

Lemma 4.10. Let g : U×X → X be a measurable driven system that is uniformly
continuous on the first entry, with Polish input and output spaces, and (X, dX) com-
pact. Let f : X → R be a continuous (and hence uniformly continuous) function.
Given µ ∈ P (X), the map sf : U → R defined by

(4.11) sf (u) =

∫
X

f(g(u, x))dµ(x)

is uniformly continuous and bounded.

Proof of Lemma 4.10. By the compactness of X and the continuity of f , there
exists M > 0 such that |f(x)| ≤M for all x ∈M . This implies that for any u ∈ U :

|sf (u)| =
∣∣∣∣∫
X

f(g(u, x))dµ(x)

∣∣∣∣ ≤ ∫
X

Mdµ(x) = M,

which proves that sf is bounded. We now prove that sf is uniformly continuous. Let
ε > 0 and let δ(ε) > 0 be the scalar that by the uniform continuity of f implies that

(4.12) |f(x)− f(y)| < ε whenever dX(x, y) < δ(ε).

Let now δ′(ε) > 0 be the element that by the uniform continuity of g on the first entry
guarantees that

(4.13) dX(g(u, x), g(v, x)) < δ(ε) for any x ∈ X and whenever dU (u, v) < δ′(ε).

Now, if u, v ∈ U are such that dU (u, v) < δ′(ε) then:

|sf (u)− sf (v)| =
∣∣∣∣∫
X

(f(g(u, x))− f(g(v, x))) dµ(x)

∣∣∣∣
≤
∫
X

|(f(g(u, x))− f(g(v, x)))| dµ(x) < ε,
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where the last inequality is a direct consequence of (4.13) and (4.12), which proves
the uniform continuity of sf . �

Proof of Theorem 4.9. We will proceed by using the fact that the Wasserstein
distance metrizes the weak convergence as characterized in (2.5). Let µ ∈ P1(X) be
arbitrary but fixed and let {θn}n∈N be a convergent sequence in P1(U), that is, there
exists θ ∈ P1(U) such that

(4.14) lim
n→∞

W (θn, θ) = 0.

The continuity property that we are interested in is guaranteed if lim
n→∞

W (Pg(θn, µ), Pg(θ, µ)) = 0,

which by (2.5) is established if for any continuous function f : X → R that satisfies
that |f(x)| ≤ C(1 + dX(x, x0)), we have that

(4.15) lim
n→∞

∫
X

f(x) dPg(θn, µ)(x) =

∫
X

f(x) dPg(θ, µ)(x).

Using the notation introduced in Lemma 4.10 we rewrite∫
X

f(x) dPg(θn, µ)(x) =

∫
X

∫
U

f(g(u, x)) dθn(u) dµ(x)

=

∫
U

∫
X

f(g(u, x)) dµ(x) dθn(u) =

∫
U

sf (u) dθn(u).

Consequently, the equality (4.15) holds whenever

lim
n→∞

∫
U

sf (u) dθn(u) =

∫
U

sf (u) dθ(u),

which is the case because by (4.14) and by (2.5) we have that limn→∞
∫
U
h(u) dθn(u) =∫

U
h(u) dθ(u), for all h : U → R continuous such that |h(x)| < C(1 + dU (u0, u)),

for some C > 0. The map sf has that property because due to Lemma 4.10 it
is continuous and bounded by some constant M > 0, and hence |sf (x)| < M ≤
M(1 + dU (u0, u)). �

The following result extends the continuity statement in the previous theorem to

the induced Foias operator PG : P (
←−
U )× P1(

←−
X )→ P1(

←−
X ) on the sequence space.

Corollary 4.11. Let g : U ×X → X be a measurable driven system with Polish

input and output spaces, and X compact. Let G :
←−
U ×

←−
X →

←−
X be the induced

driven system in sequence space as defined in (3.2) and assume that G is uniformly

continuous on the first entry. Then, the corresponding Foias operator PG : P1(
←−
U )×

P1(
←−
X )→ P1(

←−
X ) is continuous on the first entry.

Proof. It can be obtained in a straightforward manner from Theorem 4.9 by
replacing in its statement the driven system g by G, which inherits measurability

from g. Note that if U and X are Polish then so are
←−
U and

←−
X . Moreover,

←−
X is also

compact because of Tychonoff’s Theorem [35, Theorem 37.3]. Finally, the induced

Foias operator PG : P (
←−
U ) × P1(

←−
X ) → P1(

←−
X ) is guaranteed to be well-defined by

part (i) in Proposition 2.3 and by the boundedness of the metric (3.1) on the product
space. �

In order to apply Corollary 4.11 on G, we shall now establish conditions on g
in the next corollary which guarantee the uniform continuity of G on the first entry.
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Before we state it, we define some general properties that a metric generating the
product topology can possess.

Definition 4.12. Let (Y, dY ) be a metric space and let d←−
Y

be a metric that gen-
erates the product topology.
(i) We say that d←−

Y
is a uniform-product metric if for any ε > 0 there exists a

δ > 0 such that d←−
Y

(y, z) < ε whenever dY (y−i, z−i) < δ, for all i ≥ 1 and for

all y, z ∈
←−
Y .

(ii) We say that d←−
Y

is a uniform-factor metric if for any β > 0 there exists an
α > 0 such that dY (y−i, z−i) < β whenever d←−

Y
(y, z) < α, for all i ≤ −1 and

for all y, z ∈
←−
Y .

It can be readily verified that any metric of the form (3.1) is both a uniform-factor
and a uniform-product metric.

Corollary 4.13. Let g : U ×X → X be a driven system with Polish input and
output spaces. Suppose that d←−

U
is a uniform-factor metric, that d←−

X
is simultaneously

a uniform-product and a uniform-product metric, and that g is uniformly continuous
on the first entry. Then the extension G of g to sequence space defined in (3.2) is also
uniformly continuous on the first entry. Additionally, if g is uniformly continuous,
then G is also uniformly continuous.

Proof. We first show that G is uniformly continuous when g is uniformly continuous.
Then the proof of the uniform continuity of G on the first entry follows from the
uniform continuity of g on the first entry easily. We proceed in three steps:

Step 1. Fix ε > 0. Since d←−
X

is a uniform-product metric, we can find a τ > 0
such that if dX(G(u,x)i,G(v,y)i) < τ for all i ≤ −1, then d←−

X
(G(u,x),G(v,y)) < ε.

Fix any such τ > 0.
Step 2. When g is uniformly continuous, we can find a γ > 0 independent of

ui, vi, xi, yi and independent of i ≤ −1, so that dX(g(ui, xi), g(vi, yi)) < τ whenever
dU (ui, vi) < γ and dX(xi, yi) < γ.

Step 3. Since d←−
U

and d←−
X

are uniform-factor metrics, given γ there exits a δ > 0
so that if d←−

U
(u,v) < δ and d←−

X
(x,y) < δ then dU (ui, vi) < γ and dX(xi, yi) < γ, for

all i ≤ −1. This implies in particular that dX(xi, yi) < γ, for all i ≤ −1, whenever
d←−
U×
←−
X

((u,x), (v,y)) < δ.

Hence, we have from the above three steps that if d←−
U×
←−
X

((u,x), (v,y)) < δ, we

then necessarily have that d←−
X

(G(u,x),G(v,y) < ε.
In particular, when g is only uniformly continuous on the first entry, we can set

x = y in the steps above to obtain the implication d←−
U

(u,v) < δ =⇒ d←−
X

(G(u,x),G(v,x) <
ε. �

The implications about the continuity of the different maps that we have proved
in this subsection is summarized in Figure 4.

4.3. The fixed points of the Foias operator.

We do not know if the Foias operator Pg of the driven system is jointly continuous,

that is, continuous on P (
←−
U )×P1(

←−
X ) when it is equipped with the product topology.

However, the importance of the contractivity and continuity results in the previous
two subsections lies in the fact that they can be used in conjunction to prove the
continuity of the dependence of the fixed points of Pg on the input process. The
following theorem provides a specific statement in this direction for a driven system
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Fig. 3.

Implications between contractivity in different

spaces.

Fig. 4.

Implications of continuity between the different

maps.

Fig. 5. Graphical illustration of the map Sg, its continuity, and of its relation with the fixed
points of the Foias operator.

g and its Foias operator Pg. We generalize later on this result in Theorem 4.15 to the
driven system G in sequence space its Foias operator PG.

Theorem 4.14 (Fixed points of Pg). Consider a measurable driven system
g : U × X → X with Polish input and output spaces and (X, dX) compact. Assume
that for each θ ∈ P (U) the map g is a (θ, cθ)-stochastic contraction, with cθ as in
(4.2), and that one of the following hypotheses holds true:
(i) There exists a constant c0 ∈ (0, 1) such that 0 < cθ < c0 < 1 for all θ ∈ P1(U)

and g is uniformly continuous on the first entry.
(ii) g is uniformly continuous.
Then, for any θ ∈ P1(U) there exists a unique µθ ∈ P1(X) which is a fixed point of
the map Pg(θ, ·) : P1(X)→ P1(X) and, moreover, the map Sg : P1(U)→ P1(X) that
assigns θ 7→ µθ, is continuous.

Proof. Notice first that part (i) of Proposition 2.3 implies, together with the com-
pactness of X that the Foias map Pg : P (U) × P1(X) → P1(X) is well-defined. Fix
now θ ∈ P (U) and recall that by Theorem 4.5, the (θ, cθ)-stochastic contractivity
hypothesis on g implies that Pg(θ, ·) : P1(X) → P1(X) is a cθ-contraction with re-
spect to the Wasserstein distance. Since the completeness of (X, dX) implies that of
(P1(X),W ) by [41, Theorem 6.18], Banach’s Fixed Point Theorem implies the exis-
tence of a unique µθ ∈ P1(X) such that Pg(θ, µθ) = µθ for each θ ∈ P (U), as well as
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the existence of the map Sg : P (U)→ P1(X) that assigns θ 7→ µθ.
The remainder of the proof is dedicated to showing that the restriction Sg :

P1(U)→ P1(X) is continuous in the presence of the hypotheses in (i) or (ii).
Assume first that (i) holds and suppose that we have a sequence {θn}n∈N ⊂ P1(U)

such that lim
n→∞

θn = θ ∈ P1(U). It suffices to show that lim
n→∞

µθn = µθ. Let cθn be

the the best contraction constant associated to θn, for any n ∈ N, as defined in (4.2),
that is,

(4.16) cθn = inf

{
c ∈ (0, 1)

∣∣∣∣ ∫
U

dX(gu(x), gu(y))dθn(u) ≤ c dX(x, y), ∀x, y ∈ X
}
.

By Theorem 4.5, we have

(4.17) W (Pg(θn, µθ), Pg(θn, µθn)) ≤ cθnW (µθ, µθn).

We hence have that

W (µθ, µθn) ≤W (µθ, Pg(θn, µθ)) +W (Pg(θn, µθ), µθn) (by the triangle inequality)

= W (µθ, Pg(θn, µθ)) +W (Pg(θn, µθ), Pg(θn, µθn)) (since µθn = Pg(θn, µθn))

Hence, by (4.17),

(4.18) W (µθ, µθn) ≤ 1

1− cθn
W (µθ, Pg(θn, µθ)).

Notice now that the hypotheses in point (i) and Theorem 4.9 guarantee that
the maps Pg(·, µ) : P1(U) → P1(X) are all continuous, for any µ ∈ P1(U), and
hence as n → ∞, W (µθ, Pg(θn, µθ)) → W (µθ, Pg(θ, µθ)) = W (µθ, µθ) = 0. In addi-
tion, since lim sup

n→∞
cθn ≤ c0 < 1, then 1

1−cn is bounded above, and hence from (4.18),

lim
n→∞

W (µθ, µθn) = 0, as required.

We next consider the case (ii). If lim supn→∞ cθn = c0 < 1, then it reduces
to the result in part (i). Suppose hence that lim supn→∞ cθn = 1. For a fixed
x, y ∈ X, the map hx,y : U → R given by hx,y(u) = dX(gu(x), gu(y)) is bounded
by some constant M > 0 since g is uniformly continuous and X is compact. Thus
|hx,y(u)| < M ≤M(1+dU (u, u0)). Given that the sequence {θn}n∈N ⊂ P1(U) is such
that lim

n→∞
θn = θ ∈ P1(U), the characterization of the weak convergence (2.5) implies

that
(4.19)

lim
n→∞

∫
U

dX(gu(x), gu(y)) dθn(u) =

∫
U

dX(gu(x), gu(y)) dθ(u) for all x, y ∈ X.

Consider now the sequence of functions fn : X×X → R, n ∈ N, defined by fn(x, y) :=∫
U
dX(gu(x), gu(y)) dθn(u). We shall now show that {fn}n∈N is equicontinuous when

in X ×X we consider the product metric

dX×X((x, y), (a, b)) = max {dX(x, a), dX(y, b)} .

Notice first that for any (x, y), (a, b) ∈ X ×X:

|fn(a, b)− fn(x, y)| =
∣∣∣∣∫
U

(dX(gu(a), gu(b))− dX(gu(x), gu(y)) dθn(u)

∣∣∣∣
≤
∫
U

| (dX(gu(a), gu(b))− dX(gu(x), gu(y)) | dθn(u).(4.20)
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The compactness of X implies that dX : X × X → R is uniformly continuous, and
hence for any ε > 0 there exists δdX (ε) > 0 such that for any (x, y), (a, b) ∈ X × X
such that dX×X((x, y), (a, b)) < δdX (ε) we have that |dX(x, y) − dX(a, b)| < ε. Since
the uniform continuity of g implies its uniform continuity on the second entry, for any
ε > 0 there exists δg(ε) > 0 such that dX(gu(x), gu(y)) < ε for any u ∈ U and any
x, y ∈ X such that dX(x, y) < δg(ε).

By the definition of the product metric dX×X , if dX×X((x, y), (a, b)) < δg(δdX (ε))
then dX(x, a) < δg(δdX (ε)) and dX(y, b) < δg(δdX (ε)) and hence dX(gu(x), gu(a)) <
δdX (ε) and dX(gu(y), gu(b)) < δdX (ε), for any u ∈ U . This implies that

dX×X((gu(x), gu(y)), (gu(a), gu(b))) < δdX (ε)

and hence that

|dX(gu(a), gu(b))− dX(gu(x), gu(y))| < ε for all u ∈ U.

Since θn is a probability measure, from (4.20), we have that |fn(a, b)− fn(x, y)| < ε,
which proves the equicontinuity of {fn}.

Let now {cθnj
} be a subsequence of {cθn} such that limj→∞ cθnj

= 1. By (4.16) we

can find a sequence {(xnj
, ynj

)} in X ×X such that fnj
(xnj

, ynj
) = cθnj

dX(xnj
, ynj

)

for all j ∈ N. Without loss of generality we assume {(xnj , ynj )} converges to some
point (x0, y0) ∈ X ×X.

Next, we note that {fnj
} converges point-wise to

f(x, y) =

∫
U

dX(gu(x), gu(y)) dθ(u)

by (4.19) and by the Arzela-Ascoli theorem we have a convergent subsequence of
{fnj
}. Hence, without loss of generality assume that {fnj

} itself converges uniformly
to f . Since f is continuous:

f(x0, y0) = lim
j→∞

fnj (xnj , ynj ) = lim
j→∞

cθnj
dX(xnj , ynj ) = dX(x0, y0)

which contradicts that
∫
U
d(gu(x0), gu(y0)) dθ(u) < cθdX(x0, y0) for some 0 < cθ < 1.

Hence, lim supj→∞ cθnj
< 1 necessarily and the theorem is proven.

The goal of our last theorem is showing that the conclusions about the existence
of fixed points of the maps Pg(θ, ·) and their continuous dependence on θ that we
proved in Theorem 4.14 can be extended to PG(Θ, ·) by using hypotheses that are
exclusively formulated in terms of g, provided that the inputs Θ are stationary. We
hence denote as

PS(
←−
U ) =

{
Θ ∈ P1(

←−
U ) | T1 ∗Θ = Θ

}
the set of stationary input processes in P1(

←−
U ). In the second part of the statement,

we shall prove that in the presence of the unique solution property (and hence when
(3.3) has unique fixed points), the fixed points of PG(Θ, ·) can be characterized using
the push-forward of the filter Ug that is available in that case.

Theorem 4.15 (Fixed points of PG). Let g : U × X → X be a measurable
driven system with Polish input and output spaces and (X, dX) compact. Let G :
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←−
U ×
←−
X →

←−
X be the induced driven system in sequence space defined in (3.2). Assume

now that for any element Θ ∈ PS(
←−
U ) with marginal time-independent laws θ ∈ P1(U),

the map g is a (θ, cθ)-stochastic contraction and that one of the hypotheses (i) or (ii)
in Theorem 4.14 are satisfied for g. Then,

(i) For any Θ ∈ PS(
←−
U ) there exists a unique MΘ ∈ PS(

←−
X ) which is a fixed point of

the map PG(Θ, ·) : P1(
←−
X )→ P1(

←−
X ) and, moreover, the map SG : PS(

←−
U )→

PS(
←−
X ) that assigns Θ 7→MΘ, is continuous when the domain and the image

are endowed with the Wasserstein-1 distance.
(ii) When g has the unique solution property and a unique measurable, causal, and

time-invariant filter Ug :
←−
U −→

←−
X can be associated to it using (2.2), we

have that

(4.21) SG(Θ) = Ug ∗Θ, for all Θ ∈ PS(
←−
U ).

Proof. (i) This part is proved by mimicking the proof of Theorem 4.14, where the
driven system g is replaced by G and the Foias map Pg by PG. In order to achieve
that, we have first to show that our hypotheses on g about contractivity and uniform
continuity in Theorem 4.14 translate into analog conditions for G. We recall, first of

all, that since U is Polish and X is Polish and compact, then so are
←−
U and

←−
X with

the product topology induced by any of the metrics d←−
U

and d←−
X

introduced in (3.1).

This fact allows us in particular to define the Wasserstein-1 metrics on PS(
←−
U ) and

P1(
←−
X ). The hypothesis on the (θ, cθ)-stochastic contractivity of g and the stationarity

of Θ imply by Propositions 4.7 and 4.6 that G is a (Θ, cθ)-stochastic contraction and
that PG(Θ, ·) is a cθ-contraction. Additionally, recall that by Corollary 4.13, if g is
uniformly continuous or continuous on the first entry (as in the hypotheses in Theorem
4.14) then so is G. Given all these facts, the proof of Theorem 4.14 can be reproduced
in our setup for G and PG in order to obtain all the claims in part (i) except for the
time-stationarity of SG(Θ) that we postpone to the end of the proof.

(ii) Using the uniqueness property of the map SG that was established in part (i), it
suffices to verify that

(4.22) PG(Θ, Ug ∗Θ) = Ug ∗Θ, for any Θ ∈ PS(
←−
U ),

in order to prove the equality (4.21). We first recall that, as we pointed out in (3.3),

the filter Ug :
←−
U −→

←−
X is the unique solution of the relation

(4.23) T1 ◦G(u, Ug(u)) = Ug(u), for all u ∈
←−
U .

By the definition of G it is easy to see that

(4.24) T1 ◦G = G ◦ T1,

which, together with the uniqueness property in (4.23) implies that Ug is necessarily
T1-equivariant, that is,

(4.25) T1 ◦ Ug = Ug ◦ T1.

These relations imply that (4.23) can be rewritten as

(4.26) G ◦ (T1 × Ug ◦ T1) = Ug.
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This expression implies that for any time-invariant Θ ∈ PS(
←−
U ) (which hence satisfies

T1 ∗Θ = Θ), we have that

(4.27) G∗ (Θ, Ug ∗Θ) = Ug ∗Θ.

We now observe that the relation (2.8) that was proved in Remark 2.2 for g and Pg

can be extended to G and PG. More specifically, if we consider in the space
←−
U ×

←−
X

the product measure determined by the laws of Θ and Ug ∗Θ, then

PG (Θ, Ug ∗Θ) = G∗ (Θ, Ug ∗Θ) = Ug ∗Θ,

which proves (4.22), as required.
We conclude the proof by showing the last statement in part (i) that was left to

be proved, namely, the stationarity of SG(Θ). We see now that this is a consequence
of the uniqueness of SG(Θ) as a fixed point of PG(Θ, ·) and of the T1-equivariance of
G in (4.24). Indeed, on the one hand SG(Θ) satisfies that

(4.28) PG(Θ, SG(Θ)) = SG(Θ).

If we now apply T1 ∗ on both sides of (4.28), use again the relation (2.8) for G and
PG, and the equivariance (4.24), we have that

(4.29) T1 ∗SG(Θ) = T1 ∗PG(Θ, SG(Θ)) = T1 ∗G∗(Θ, SG(Θ))

= G∗(T1 ∗Θ, T1 ∗SG(Θ)) = G∗(Θ, T1 ∗SG(Θ)) = PG(Θ, T1 ∗SG(Θ)).

This equality shows that T1 ∗SG(Θ) is also a fixed point of PG(Θ, ·), but since that
point is unique we necessarily have that T1 ∗SG(Θ) = SG(Θ) and hence SG(Θ) ∈
PS(
←−
X ), as required.

We refer the reader to the examples of convergence with respect to the Wasserstein
distances in Example 4.16 next.

Example 4.16 (The unique solution of the VARMA and GARCH pro-
cesses). In the examples 4.2 and 4.3 above we saw that the conditions E [||A(u)||] < 1
and α+β < 1 guarantee the stochastic contractivity of the VARMA model with time-
dependent coefficients and of the GARCH(1,1) model, respectively. We saw that these
conditions are vastly less restrictive than enforcing the standard contractivity of the
state map that defines these models. Using now Theorem 4.15 we can conclude that
both models have a unique stationary solution that corresponds to the fixed points
of their respective associated Foias operators. In the case of VARMA, the solution
process is

Xt = f(ut−1) +

∞∑
k=1

A(ut−1)A(ut−2) · · ·A(ut−k)f(ut−k−1), t ∈ Z−,

and for GARCH(1,1) it can be written as rt =
√
htut−1, where

ht =

{
1 +

∞∑
i=1

a(ut−2) · · · a(ut−i−1)

}
ω, a(u) := αu2 + β, t ∈ Z−.

When using the standard approach in time series analysis it is proved that these series
convege almost surely (see [7], [5, Theorem 1.1], or [12]). Theorem 4.15 shows that
this convergence takes also place with respect to the Wasserstein distance.
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5. Conclusions. In this paper we have provided conditions that guarantee the
existence and uniqueness of asymptotically invariant measures for driven sys-
tems and we have proved that their dependence on the input process is continuous
when the set of input and output processes are endowed with the Wasserstein dis-
tance. These conditions ensure that the invariant measures are robust to changes in
the input stochastic source.

These results have been obtained by proving the existence and uniqueness of fixed
points of the associated Foias operators, which have been profusely studied in the
paper in both the state and sequence spaces. This has been achieved by using Ba-
nach’s Fixed Point Theorem in the context of Foias operators by imposing readily
verifiable contractivity and continuity hypotheses that are exclusively formulated for
the driven system g defined in the state space. The most important condition is a
newly introduced notion of stochastic state contractivity for the driven system g,
ensures that the Foias operators in state and in sequence spaces are also contractive
with respect to the Wasserstein distance. Stochastic state contractivity is less restric-
tive than the standard state contractivity condition evoked to ensure the USP. In a
future work we hope to answer more in depth the intriguing question as to how the
echo state property with respect to all typical trajectories is related to the stochastic
contraction property that was profusely used in this paper.

In a forthcoming paper we shall study the embedding properties of the mappings
Sg and SG and, in particular, their potential injectivity properties so, that two in-
puts with different distributions are discriminated in the response. Progress in that
direction would make the techniques introduced in this paper very valuable in the
construction of dynamical classification tasks.

Acknowledgments: The authors are indebted to two anonymous referees for
carefully reviewing the paper and for their suggestions, which have made the presen-
tation more engaging.
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