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ABSTRACT

Traditionally, search techniques explore a single space, namely the solution space, to find a solution to

a discrete optimisation problem. However, as the field has developed, the effectiveness of working in

alternative spaces (such as the heuristic space) has been demonstrated. In addition, the most effective

search techniques are computationally expensive. More recently, exploring more than one space to

solve a problem has been investigated. This research has involved searching in the heuristic and

solution space sequentially or alternating the search in each space. The first aim of this study is the

introduction of the concept of concurrent bi-space search (CBS) which involves searching in both

the solution and heuristic spaces concurrently. It is anticipated that this will be more effective than

searching a single space or performing a search in both spaces sequentially. Previous work has shown

that searching in alternative spaces, like the heuristic space, is computationally expensive. Furthermore,

in an attempt to improve the quality of solutions found, computationally expensive approaches are

used to explore the solution space. Thus, a secondary aim of this study is to use a search technique that

is computationally cheap to concurrently search the solution and heuristic spaces. It is hypothesised

that exploring both spaces concurrently will eliminate the need to use computationally expensive

techniques to explore the solution space to produce solutions of effective quality.

While the concept of CBS can be applied to any discrete optimisation problem, this study is restricted

to packing problems, specifically the one-two- and three-dimensional bin packing problems (1BPP,

2BPP and 3BPP). The higher dimension BPPs are chosen to investigate the scalability of the approach.

A simple local search is used to independently search the heuristic (HSS) and solution (SSS) spaces in

order to obtain a baseline against which to compare the CBS approach which also employs a local

search to concurrently search the heuristic and solution spaces.

Performance comparison of the three approaches (CBS, HSS and SSS) is conducted using three

different performance metrics, namely the number of bins, a measure of the total wasted space across

the bins, i.e. the packing efficiency, and the computational time. For all three problem domains

(1BPP, 2BPP and 3BPP) CBS outperforms both HSS and SSS in terms of the number of bins and the

amount of wasted space. However, SSS has lower runtimes, with CBS having lower runtimes than

HSS. These results are found to be statistically significant for the majority of the problem instances.

 
 
 



When compared to previous bi-space search approaches, CBS is found to both produce better quality

solutions and have faster average runtimes. The CBS approach is also compared to state-of-the-art

techniques for 1BPP, 2BPP and 3BPP. The CBS approach does not outperform the state-of-the-art

techniques for the simpler 1BPP, but is found to be scalable to the more difficult 2BPP and 3BPP,

having comparable performance to the state-of-the-art techniques and in some cases outperforming

them.
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CHAPTER 1 INTRODUCTION

The process of search involves exploring a search space, which is a set of states and operators which

can be applied to those states [1, 2]. Search techniques typically explore a single search space [2].

Traditionally this has been a space consisting of candidate solutions, this space is commonly referred

to as the solution space [2]. The progression of research in the domain of search has led to alternative

spaces being defined. For example genetic programming (GP),[3] searches a space consisting of

programs and hence this is known as a program space [3]. In the field of automated design, the space

that is searched is the design space [4]. Another search space which is commonly gaining traction is

the heuristic space [1, 4, 5]. Each point in a heuristic space represents a heuristic or combination of

heuristics [4]. A domain barrier exists between the technique searching the heuristic space and the

heuristics themselves [4, 5]. This allows the search technique to be independent of the problem domain

[4, 5]. A small move in the heuristic space can correspond to a large move in the solution space. The

research presented in this thesis investigates searching more than one space to solve the problem at

hand.

1.1 PURPOSE OF THE STUDY

Traditionally search algorithms explore a single search space. In this study, we propose a form of

concurrent search of two spaces, herein termed Concurrent Bi-space Search (CBS). The CBS approach

involves searching a heuristic and a solution space concurrently. Previous studies that have explored

searching two spaces used a sequential approach and an interleaving approach [6–8]. The sequential

approach involved a complete search of a heuristic space, followed by a complete search of a solution

space [6, 7]. The interleaving approach involved alternating the search between a heuristic space and a

solution space[6, 7]. A third approach was proposed by Beckedahl and Pillay [7] in which a genetic

algorithm (GA) was used to optimise when the search was moved between spaces. These approaches

only search in a single space at any given time. The CBS approach presented in this study differs in that
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it searches the two spaces simultaneously (concurrently). In this study, the hypothesis is that searching

two spaces concurrently may be more effective than searching a single space. The effectiveness of the

CBS approach is tested on the one-, two- and three-dimensional bin packing problems (1BPP, 2BPP

and 3BPP). The 1BPP is used to investigate the effectiveness of the approach, while the 2BPP and

3BPP are used to investigate the scalability of the approach.

1.2 AIM AND OBJECTIVES

The aim of this study is to test the hypothesis that concurrently searching the heuristic and solution

spaces, i.e. a concurrent bi-space search, CBS, is more effective than searching a single space.

1.2.1 Objectives

The objectives to achieve this aim are:

1. To design and develop an algorithm that searches the solution space to solve bin packing

problems.

2. To design and develop an algorithm that searches the heuristic space to solve bin packing

problems.

3. To design and develop a CBS algorithm that searches the heuristic and solution spaces concur-

rently.

4. To compare the effectiveness of CBS to that of solution space search.

5. To compare the effectiveness of CBS to that of heuristic space search.

1.3 SCOPE OF THE STUDY

The scope of this study is as follows:

- Local Search (LS):

The CBS approach will be developed using a local search. Both the solution and heuristic space

searches will also use a local search. Local search was chosen over more complex optimisation

techniques, such as evolutionary algorithms, due to its lower computational cost.

- Search Spaces:

The CBS approach will concurrently search a heuristic and a solution space. The effectiveness of

Department of Computer Science
University of Pretoria
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the CBS approach will be compared to that of solution space search and heuristic space search.

The same low-level, i.e. application-specific heuristics, used by the heuristic space search will

be used by the CBS approach.

- Bin Packing Problems:

The effectiveness of the CBS approach compared to that of the single space searches will be

evaluated using bin packing problems. The 1BPP was chosen to investigate the effectiveness

of the CBS approach, whilst the 2BPP and 3BPP will be used to evaluate the scalability of the

proposed approach.

- The evaluation of the performance of the CBS approach will be assessed using the number of

bins and the fitness value, which is a measure of the total wasted space across the bins. The

computational times of the searches will also be compared.

1.4 CONTRIBUTIONS

The main contribution of this work is a novel approach to bi-space search in which a heuristic space

and a solution space are explored simultaneously for solving bin packing problems. In previous studies

on bi-space search, only a single space is explored at any given time. Traditionally search is conducted

in a single space using uniform information contained in that search space to navigate the search

algorithm toward an optimal state [2]. In the proposed approach information from two search spaces is

concurrently used to drive the algorithm to the goal state.

1.5 OUTLINE OF THE THESIS

The remainder of this thesis is structured as follows:

1.5.1 Chapter 2: Related Work

A brief overview of combinatorial optimisation problems and search techniques is presented in

Chapter 2. The chapter begins with a general overview of combinatorial optimisation problems

and the search process. This is followed by a general discussion of different types of search techniques,

specifically the search spaces that they explore. This includes hyper-heuristics. The chapter leads on to

a discussion of bi-space search techniques and concludes with an overview of packing problems.

Department of Computer Science
University of Pretoria

3
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1.5.2 Chapter 3: Bin Packing Problems

Chapter 3 presents a review of selected studies focused on solving 1BPP, 2BPP and 3BPP. The studies

presented are those that have had a significant impact on the field of solving bin packing problems or

have produced state-of-the-art results. Both studies that present techniques which explore a solution

space and those that explore a heuristic space, i.e. hyper-heuristics, are discussed.

1.5.3 Chapter 4: Research Methodology

This chapter begins with a presentation and discussion of the research methodology used in this study.

The chapter then presents the benchmark datasets for each of the three problem domains that are used

in this study, followed by a description of the performance measures that will be used to evaluate the

effectiveness of the CBS approach and the statistical tests that will be used to determine the significance

of the results obtained. The chapter concludes with a description of the technical specifications for the

simulations.

1.5.4 Chapter 5: Concurrent Bi-Space Search

Chapter 5 presents the CBS approach. The chapter begins with a general overview of the local search

technique that is used to guide the single space searches against which the effectiveness of CBS is

compared as well as the CBS approach itself, discussing the general structure and components common

to all three approaches. The chapter proceeds with a discussion of the details of the local search that

are specific to each of the three approaches, namely SSS, HSS and CBS.

1.5.5 Chapter 6: Results and Discussion

Chapter 6 presents the results and a discussion of the experiments conducted to investigate the

effectiveness of the CBS approach. The chapter begins with a comparison of the performance of the

CBS approach to that of the single-space approaches, SSS and HSS. An in-depth analysis of the CBS

approach is then presented, including the effect of different move acceptance approaches, followed by

a comparison of the CBS approach to previous bi-space search approaches. The chapter concludes

with a comparison of the CBS approach to state-of-the-art approaches.
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1.5.6 Chapter 7: Conclusions and Future Work

Finally, Chapter 7 presents the conclusions of this study, as well as suggestions for future work.
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CHAPTER 2 RELATED WORK

This chapter discusses combinatorial optimisation problems and search techniques, and provides

a general overview of packing problems. The chapter begins with an overview of combinatorial

optimisation problems (Section 2.1). This is followed by a discussion of solution space search

(Section 2.2), hyper-heuristics (Section 2.3) and bi-space search (Section 2.4). The chapter concludes

with a discussion of packing problems (Section 2.5).

2.1 COMBINATORIAL OPTIMISATION PROBLEMS

Combinatorial optimisation problems are discrete optimisation problems in which the set of possible

solutions is finite. These problems can be classified into two main classes: P and NP [9]. For those

classed as P, there exists an algorithm that can solve them in polynomial time [9]. The class NP

(non-deterministic polynomial time) contains problems for which there exists an algorithm that can be

verified in polynomial time [1]. Some problems are known as being either NP-hard or NP-complete. For

both classifications, there is no guarantee that an algorithm exists which can solve them in polynomial

time. However, an NP-complete problem can be reduced to another problem which can be verified in

polynomial time, whereas an NP-hard problem cannot.

The process of solving combinatorial optimisation problems involves some manner of searching

through the finite set of solutions to find an optimal element [1, 2]. The set of elements searched is

commonly referred to as the search space [2]. More formally, the search space can be defined as a

set of states, S = {s1, . . . ,si}, and associated operators, O = {o1, . . . ,o j}, that can be applied to these

states, such that ok (sl)→ sm [1, 2]. In other words the operators are functions that enable the search to

move from one state in the space to another.
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2.2 SOLUTION SPACE SEARCH

In cases where these states are solutions to a problem, the search space is commonly referred to as

a solution space. For example, in the bin packing problem (BPP), a solution/state might be a list of

bins and a list of items placed in those bins, whilst an operator might be to place an item in a bin.

The process of searching through a solution space is referred to as solution space search [2]. Exact

methods are those that guarantee to find the optimal solution to a problem [2]. These methods perform

an exhaustive, or near-exhaustive, exploration of the solution space, i.e. checking each to see if it is the

optimum. For this reason, they tend to have high computational costs and quickly become impractical

for solving NP-hard problems with large search spaces.

Heuristic methods were proposed as a means of overcoming the limitations of exact methods [2].

These methods do not guarantee finding the optimal solution, but rather find an acceptable solution

in a reasonable amount of time [1, 2]. They typically achieve this by using some form of heuristic

information, derived from the problem domain, to guide the search process towards an effective

solution [1, 2]. This heuristic information is used to guide the search process in several ways, for

example by guiding the search towards promising regions of the search space or by guiding the search

towards solutions that are similar to those that have been found to be effective in the past [1, 2].

2.3 HYPER-HEURISTICS

A natural extension to heuristic methods, and one that has gained traction in recent years, is the

concept of hyper-heuristics [5, 6]. Hyper-heuristics are search methods that explore a search space of

heuristics, or heuristic space, rather than a solution space [4]. The heuristic space contains heuristics

or combinations of heuristics. These domain-specific heuristics are sometimes referred to as low-level

heuristics (LLHs) [4]. Hyper-heuristics can be loosely thought of as ‘heuristics to choose heuristics’

[5]. More formally, hyper-heuristics have been defined as a search technique or learning mechanism

which is used to select existing heuristics or generate new ones [4, 5]. From this definition hyper-

heuristics can be classified as either selection hyper-heuristics or generation hyper-heuristics [4, 5].

Selection hyper-heuristics are those that select heuristics from a predefined set of heuristics [4, 5],

while generation hyper-heuristics are those that generate new heuristics [4, 5]. Hyper-heuristics are

further classified as either constructive [4, 5], which build a solution from scratch, or perturbative

[4, 5], which modify an existing solution.
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Hyper-heuristics function by finding an effective method of solving a given problem [4], in the form

of one or more LLHs, rather than directly finding a solution to the problem [4]. This is achieved by

searching a space of LLHs (i.e. a heuristic space), rather than the traditional solution space [4, 5]. The

effectiveness of a hyper-heuristic is dependent on the quality of the LLHs [4], or heuristic components

in the case of generative hyper-heuristics, that are available to it. Typically, the LLHs incorporate

knowledge from the problem domain [4], whilst the higher level hyper-heuristic is usually problem

independent, operating only on a heuristic space.

Given that each LLH operates on or creates a solution, it follows that there exists a mapping between

points in the heuristic space and points in the solution space. This mapping is frequently a many-to-one

mapping from the heuristic space to the solution space. An example of this can be seen with bin

packing where the construction LLHs first fit and worst fit [10] would both place the first item in

the same bin, leading to the same point in solution space. Through this mapping between the two

search spaces, hyper-heuristics can explore a broader area of the solution space than exploring the

solution space directly [4] as small changes in the heuristic space can correspond to large changes in

the solution space [4]. It is to be noted that while each point in the heuristic space can be mapped to a

corresponding point in the solution space, the reverse is not necessarily true [4].

2.4 BI-SPACE SEARCH

Bi-space search aims to explore two search spaces, thereby maximizing the advantages and minimizing

the disadvantages that are inherent in each space.

To the best of the author’s knowledge, the first to investigate the effectiveness of searching across more

than one space was Qu and Burke [6]. In the study the authors presented a graph-based hyper-heuristic

(GHH) for solving the course and exam timetabling problems. The study also proposed two approaches

for hybridising search between the heuristic and solution spaces, termed GHH1 and GHH2. GHH1

involved local improvement on complete solutions by searching the heuristic space to find a heuristic

sequence which was used to build a complete solution. A greedy search was then performed on this

complete solution. GHH2 involved local improvement during solution construction. This was achieved

as follows. During the evaluation of a heuristic sequence, the first LLH in the sequence is applied

to obtain a partial solution. A greedy search is then performed on this partial solution until there is

no improvement at which point the next heuristic in the sequence is applied to obtain a new partial
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solution. The greedy search is again applied to this new partial solution. The process is repeated

until the entire heuristic sequence has been evaluated, and a final greedy search is applied. For the

course timetabling problem, both GHH1 and GHH2 were found to outperform the GHH approach for

all instances except the large instance where GHH1 performed slightly worse and GHH2 had equal

performance. GHH2 was able to outperform the state-of-the-art approaches for all the small instances

and two of the medium instances. For the exam timetabling problem, GHH1 had equal performance

to GHH for all instances except the hec92 and uta93 instances for which it performed better and

worse respectively. GHH2 outperformed GHH for all instances except the yor83 instance for which it

performed worse. Neither GHH1 nor GHH2 were able to compete with the state-of-the-art for exam

timetabling. For both the course and exam timetabling problems GHH2 outperformed GHH1. There

are two main drawbacks to the GHH1 and GHH2 approaches. The first is that the heuristic space is

always the first to be searched when it may be more optimal to begin with a solution space search. The

second drawback is that the switch between search spaces occurs at fixed points in the search process.

In GHH1 the switch occurs after the entire heuristic sequence has been applied whilst in GHH2 the

switch between spaces is forced to occur after the application of each heuristic. Neither of these cases

allow for a scenario in which it is more optimal to apply more than one heuristic before switching

spaces. GHH2 has an additional drawback in that it may be more beneficial to perform a partial search

in the solution space before returning to the heuristic space, as opposed to the complete search.

Beckedahl and Pillay [7] later applied the concepts of GHH1 and GHH2 to 1BPP, labelling their

version of GHH1 the sequential search approach (SSA) and GHH2 the interleaving search approach

(ISA). To overcome the drawbacks discussed above, the authors introduced a third approach which they

termed the concurrent search approach (CSA). In the study all three search approaches were driven by

a genetic algorithm hyper-heuristic (GAHH) which searched through sequences of constructive LLHs.

For both SSA and ISA the evaluation of an LLH sequence in the GAHH was performed as described

for GHH1 and GHH2 respectively. For the CSA the local search move operator was included as a

possible LLH in the heuristic sequences being searched by the GAHH. During the evaluation of a

sequence, each time the local search move operator was encountered it would be applied only once (as

opposed to repeatedly until no improvement). All three bi-space approaches were found to outperform

the standard GAHH, with the CSA being the best performing, solving 1107 out 1210 problem instances

(the Scholl benchmark datasets discussed in Section 4.2.1) to optimality and a further 88 instances to

within one bin of the optimum. Whilst CSA was found to perform best among the four approaches,

it was reported to be not competitive with the state-of-the-art. In addition, the approach had a high
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computational cost.

To reduce the computational cost, Beckedahl and Pillay [8] later extended their work, proposing an

approach the authors termed bi-space search (BSS). The approach used local search (LS) to optimise

the switching between the heuristic (HSS) and solution (SSS) space searches. Both HSS and SSS also

employed LS. The three searches were evaluated and compared against one another using the 1BPP.

BSS was found to outperform both HSS and SSS for all 1BPP benchmark datasets tested (all datasets

discussed in Section 4.2.1), finding the optimum solution for 1336 out of 1615 instances and solutions

of one bin from the optimum for a further 164 instances. Although BSS found better quality solutions

than both HSS and SSS, it was found to have longer runtimes than the single-space searches. BSS

was marginally outperformed by CSA with a difference of 23 instances solved to optimality between

the two approaches. As with the previous approaches to bi-space search, BSS produced better quality

solutions than the single-space searches, but the single-space searches had a lower computational cost.

This study aims to reduce the runtimes of bi-space search by presenting the CBS approach which

searches the two spaces simultaneously.

2.5 PACKING PROBLEMS

Cutting and packing problems are a class of combinatorial optimisation problems that cover a variety of

problems with many relevant applications to industry and logistics [11], and are known to be NP-hard

[10, 11]. Some examples of cutting and packing problems are as follows:

• knapsack problems

• bin packing problems

• cutting stock problems

• strip packing problems

The knapsack problem (KP) can be formally defined as follows. Given a list of n items each with an

associated cost ci (multiple items can have the same cost) and a unique volume vi (unique dimensions)

and a knapsack (bin) of set capacity b. The task is to find a configuration (packing) of the items

(allowing the same item to occur multiple times) that fits within the knapsack (i.e., does not exceed its

capacity b) such that the total cost of the items in the knapsack is a maximum [10].
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The bin packing problem (BPP) is similar to the knapsack problem. Given a list of items each having

an associated size (different items are allowed to have the same size) and an infinite number of bins of

fixed capacity c, place all items into a bin such that no bin exceeds its capacity, no items overlap one

another within a bin and the total number of bins used is a minimum [10]. There are also variants of

the BPP in which the sizes of the bins are variable.

The cutting stock problem (CSP) is identical to the BPP with the exception that each item has an

associated demand specifying the required number of occurrences of said item in the final packing

[10]. The KP, BPP and CSP all have one, two and three-dimensional variants. The three-dimensional

BPP is also referred to as the container loading problem (CLP).

The strip packing problem (SPP) is a two or three-dimensional problem which involves packing a

list of items into a single bin where one of the dimensions is set to infinite size and the remaining

dimensions are fixed. The objective is to pack all items into the bin in such a way that the space used

in the infinite dimension is a minimum [10]. The two-dimensional SPP fixes the width of the bin and

the height is infinite whilst for the three-dimensional case both the width and height are fixed, and the

length is infinite [10].

For each of the two and three-dimensional cutting and packing problems mentioned above there exist

variants in which item rotations are allowed as well as the variations in which the guillotine cuts

constraint is applied. The guillotine cuts constraint requires that the items be packed in a way such that

the items can be obtained through a series of cuts made between parallel edges of either the bin or a

piece resulting from a previously made (guillotine) cut [10].

The BPP can be formally defined as follows. Given a list of items, each having a specific length (1D),

area (2D) or volume (3D), denoted wi, and an infinite number of containers of fixed size C, each item

is to be placed into a container such that no item exceeds the bounds of its container (i.e. the capacity

is not exceeded), no two items within a given container overlap, and the total number of containers

used is a minimum.

Dyckhoff [12], Lodi et al. [13] and Wäscher et al. [14] each proposed a different typology for

classifying cutting and packing problems. The Dyckhoff typology [12] classifies cutting and packing

problems according to four different criteria as follows:
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1. Dimensionality of the problem:

(1) one-dimensional

(2) two-dimensional

(3) three-dimensional

(N) N-dimensional with N > 3

2. Type of assignment:

(B) assign a selection of items to all objects/containers

(V) assign all items to a selection of objects/containers

3. Variety of large objects/containers:

(O) one object/bin/container

(I) same size objects/containers

(D) different size objects/containers

4. Variety of small items:

(F) few items (of different sizes)

(M) many items (of many different sizes)

(R) many items with relatively little variation (i.e. non-congruent) in their sizes

(C) same size items (congruent)

Lodi et al. [13] proposed a typology for two-dimensional packing problems that considers whether the

items are allowed to be rotated and whether the guillotine cuts constraint is applied. The typology is as

follows.

• 2BP|O|G: two-dimensional bin packing problem, items cannot be rotated (i.e. are oriented) and

the guillotine cuts constraint is applied

• 2BP|R|G: two-dimensional bin packing problem, items can be rotated and the guillotine cuts

constraint is applied

Department of Computer Science
University of Pretoria

12

 
 
 



CHAPTER 2 RELATED WORK

• 2BP|O|F: two-dimensional bin packing problem, items cannot be rotated (i.e. are oriented) and

the cutting is free (no guillotine constraints)

• 2BP|R|F: two-dimensional bin packing problem, items can be rotated, and the cutting is free (no

guillotine constraints)

The typology proposed by Wäscher et al. [14] was developed taking into consideration the drawbacks

experienced by the previous two typologies. The proposed typology uses five different criteria to

classify cutting and packing problems, namely dimensionality, type of assignment, variety of large

objects/containers, variety of small items and shape of the small items.
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This chapter provides a review of the literature focused on solving BPPs. The studies presented are

those that solved BPPs by exploring the solution space, as well as those that explored the heuristic

space. First, studies which solved 1BPP are discussed (Section 3.1), followed by those which solved

2BPP (Section 3.2) and 3BPP (Section 3.3).

All the BPP variants discussed in Section 2.5 can be classed as either online, in which the items are

presented one at a time and must be packed immediately [10, 15], or offline, in which all items are

known in advance and can be packed at the same time [10, 15]. For the higher dimensional BPPs,

there exist two additional classifications, namely regular and irregular [16]. In the regular case, the

items are rectangular, whereas in the irregular case the items are polygons [16]. Using the typologies

discussed in Section 2.5, the BPPs used in this study are classified as 1/2/3|V|I|M (Dyckhoff [12]),

1/2/3BP|O|F (Lodi et al. [13]) or 1/2/3SBSBPP (Wäscher et al. [14]), for the offline, regular case. This

choice was made as these are the most commonly used BPPs in the literature, allowing for comparison

with a broader range of studies. The studies reviewed in the sections that follow involved solving the

offline, regular BPPs.

3.1 ONE-DIMENSIONAL BIN PACKING PROBLEM

This section provides an overview of studies that have had an impact on the field of solving the 1BPP

as well as studies that have produced state-of-the-art techniques for the 1BPP. Techniques which

explore the solution space are discussed first, followed by those that explore the heuristic space. The

nine benchmark datasets for 1BPP that are commonly mentioned in the studies below are discussed in

Section 4.2.1.
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3.1.1 Solution Space Search

The following studies solved the 1BPP by exploring a solution space:

Martello and Toth [17] proposed a reduction procedure (MTRP) for exactly solving the 1BPP, which

iteratively reduces the problem size. The authors define a dominance criterion, in which a bin A

dominates bin B if bin A has the same amount of space or more than bin B but contains fewer items.

The authors also defined lower bounds. At each iteration in the MTRP procedure, the lower bounds

and the dominance criterion are used to find the best set of items to place into a bin. This set of items

is then removed from the problem instance to create a reduced problem, to which the next iteration is

applied. The process is repeated until all items have been packed. The authors generated their 1BPP

problem instances for the study.

Scholl et al. [18] proposed a hybrid procedure for exactly solving the 1BPP. The proposed approach,

which was termed BISON (bin packing solution procedure), used new lower bounds and the dominance

criterion defined by Martello and Toth [17] in the study above to reduce the problem size. The solution

to the reduced problem was then refined using a tabu search [19]. BISON was found to outperform the

state-of-the-art at the time. The authors also introduced the commonly used Scholl benchmark datasets,

Scholl_1, Scholl_2 and Scholl_3.

Falkenauer [20] proposed a technique for the 1BPP which hybridised the dominance criterion, as

defined by Martello and Toth [17], with a grouping genetic algorithm (GGA) [21]. The dominance

criterion was used both to enhance the effectiveness of the genetic operators and to refine the offspring

produced by said operators. The proposed hybrid GGA performed better than a standard GGA and the

MTRP. The authors also presented the Falkenauer uniform and triplet benchmark datasets.

Alvim et al. [22] proposed a hybrid improvement procedure (HI-BP) for 1BPP which begins with a

pre-processing step that reduces the size of the problem by forcibly packing some items into certain

bins, creating a reduced problem. An initial candidate solution is then created for the reduced problem

using a greedy construction algorithm and then improved using a tabu search [19] augmented with

a load redistribution technique. The approach was tested on the Falkenauer, Scholl, Schwerin and

Hard28 datasets. The proposed HI-BP approach found the optimum number of bins for 1582 problem

instances out of the total 1587.

Department of Computer Science
University of Pretoria

15

 
 
 



CHAPTER 3 BIN PACKING PROBLEMS

Fleszar and Hindi [23] proposed a variable neighbourhood search (VNS) technique for 1BPP which

used modified versions of the minimum bin slack (MBS) heuristic [24] to create an initial solution,

which was then improved through the VNS. The proposed approach was tested on the Scholl and

Falkenauer datasets and found the optimum solution for 1329 instances out of the total 1370.

Fleszar and Charalambous [25] adapted the techniques presented in Fleszar and Hindi [23] by introdu-

cing a sufficient average weight (SAW). The authors defined a subset of items as having a sufficient

average weight if the average weight of all items in the subset was at least as large as the average weight

of all items still to be packed, including the items in the subset. The perturbation SAWMBS technique

(Pert-SAWMBS) was able to find the optimum number of bins for 1590 problem instances out of 1615

from the nine benchmark datasets on which it was tested. The Pert-SAWMBS technique is one of the

state-of-the-art approaches against which the CBS approach is compared in Section 6.5

Quiroz-Castellanos et al. [26] used a grouping genetic algorithm [21] with controlled gene transmission

(GGA-CGT) to solve the 1BPP. The authors defined new genetic operators which operate at the bin

level. The GGA-CGT was tested on all nine 1BPP benchmark datasets, finding the optimum number

of bins for 1602 problem instances out of the total 1615 on which it was tested. The GGA-CGT is one

of the state-of-the-art techniques against which the CBS approach is compared in Section 6.5.

Buljubašić and Vasquez [27] presented a consistent neighbourhood search technique (CNS-BP) for

solving 1BPP and 2D vector packing. The technique randomly sorts the items and applies a simple

reduction procedure followed by the first fit construction heuristic [28] to create an initial solution. A

tabu search [19] is then used in conjunction with local moves to iteratively reduce the number of bins.

The technique was applied to all nine benchmark datasets, finding the minimum number of bins for

1612 out of the total 1615 problem instances. CNS-BP is another state-of-the-art technique against

which CBS is compared in Section 6.5.

3.1.2 Heuristic Space Search

This section provides an overview of studies using hyper-heuristics to solve the 1BPP.

An evolutionary algorithm (EA) [29] selection hyper-heuristic was proposed by Ross et al. [30]

for solving 1BPP. The proposed approach uses an XCS learning classifier system [31] to learn
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a set of rules to associate different characteristics of the problem (which arise at different points

during the solution process) to different LLHs. The classifier system was tested on the Falkenauer_T,

Falkenauer_U, Scholl_1 and Scholl_3 datasets, and found the optimal solution for 78.1% of the

instances, outperforming each of the LLHs applied independently. The authors do not report a

breakdown of the number of instances for which the optimum solution was found for each of the

datasets.

Ross et al. [32] later proposed a messy-genetic algorithm (messy-GA) based selection hyper-heuristic

to learn a combination of LLHs for solving 1BPP. The authors tested their messy GA on the same 890

benchmark problem instances as in Ross et al. [30] and an additional randomly generated 126 instances,

totalling 1016 instances. The set of instances was split into training and testing sets consisting of

763 and 253 instances respectively. The messy GA performed better than each of the LLHs applied

independently for both training and testing sets, as well as outperform the XCS classifier system

[31]. The messy GA found the optimum solution or better for 98.3% of the training instances and

97.6% of the testing instances. The authors do not report a breakdown of the results for the respective

datasets.

Sim et al. [33] proposed a selection hyper-heuristic classifier for 1BPP. The proposed approach used

an evolutionary algorithm (EA) [29] to evolve predictor attributes for a k-nearest neighbour classifier

system, which was used to select the best LLH for an unseen problem instance. The approach was

evaluated using the 1370 problem instances from the Falkenauer and Scholl datasets. The hyper-

heuristic found the optimum solution for 521 (76.06%) problem instances. The authors do not report a

breakdown of the results for the respective datasets.

Burke et al. [34] proposed a genetic programming (GP)-based [3] generative hyper-heuristic for the

online 1BPP. The proposed GP system evolved LLHs that emulated the functionality of the well

known, human designed, first-fit heuristic [28]. This was achieved by evolving programs which took

into account the size of the item to be packed, the capacity of the bin and the fullness of the bin. The

approach was tested on 20 instances taken from the Falkenauer datasets. The evolved heuristics were

found to perform as well as the first-fit heuristic for all 20 instances.

A simulated annealing [35] selection hyper-heuristic (SAHH) was proposed by Bai et al. [36] for

solving the course timetabling problem and 1BPP. The SAHH employed a stochastic selection strategy
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in conjunction with a short-term memory and maintained a domain barrier between the pool of LLHs

and the higher-level search. For 1BPP the SAHH was tested using the Falkenauer, Scholl, Schwerin

and Wäscher datasets. When averaged across 20 runs per problem instance, the SAHH found the

optimum solution for 1561.9 instances out of the total 1587, being outperformed by the state-of-the-art

at the time. The SAHH approach is one of the state-of-the-art techniques against which the CBS

approach is compared in Section 6.5.

Sim and Hart [37] presented a hyper-heuristic for 1BPP which used a single node GP (SNGP) [38]

island model. The SNGP is used on its own as a generative hyper-heuristic to evolve new deterministic

LLHs for 1BPP. The authors also incorporated SNGP into an island model as a selection hyper-heuristic

to evolve sets of LLHs. The two approaches were tested on the 1370 problem instances from the Scholl

and Falkenauer datasets, split equally into training and testing sets. The best heuristic generated by the

SNGP found the optimum solutions for 518 instances, outperforming the human-derived heuristics.

The island model which combined LLHs found the optimum for 559 problem instances when using the

generated heuristics, outperforming the island model which used only human-derived heuristics.

Burke et al. [39] proposed a generative hyper-heuristic using grammatical evolution (GE) [40] to

generate new perturbative LLHs for solving 1BPP. The GE system was tested using the following sets

of benchmark instances: Falkenauer_U500, Falkenauer_U1000, Falkenauer_T501 and Scholl_3. The

GE system was run separately for each set of instances, using the first instance for training and the

remaining instances for testing the evolved heuristics. The evolved heuristics were found to perform

well, on average finding solutions that were optimal or within one bin of the optimum.

López-Camacho et al. [41] present a GA-based [29] selection hyper-heuristic for solving 1BPP and

2BPP. In the case of 2BPP the authors considered the regular case (rectangular items) as well as two

other variants in which the items are convex and non-convex polygons. The proposed approach was

applied to 397 1BPP problem instances taken from the Falkenauer, Scholl and Wäscher datasets. The

authors do not specify which instances were taken from which dataset. The 540 2BPP instances were

taken from those generated in Terashima-Marín et al. [16]. The proposed hyper-heuristic on average

found better solutions than the single heuristics for 1BPP, but worse solutions for 2BPP.

Burke et al. [42] proposed a GP-based [3] generative hyper-heuristic (GPHH) for solving 1D, 2D and

3D knapsack and bin packing problems. The proposed approach was evaluated using 18 different
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datasets across the different problem domains. For 1BPP the Falkenauer_U and Scholl_3 datasets were

used. The authors used the following 2BPP datasets in the study: beng [43], ngcut [44], gcut [45] and

cgcut [46]. The thpack9 [47] dataset was used for 3BPP. For 1BPP the GP system had mixed results

when compared with state-of-the-art. The GPHH had comparable performance to state-of-the-art for

the Falkenauer_U dataset, but had worse performance for the Scholl_3 dataset. For 2BPP the proposed

approach had comparable performance on average across the four datasets, however for 3BPP the

performance was worse than the state-of-the-art.

3.2 TWO-DIMENSIONAL BIN PACKING PROBLEM

This section provides an overview of studies which have had an impact on solving the 2BPP as well

as studies that have produced state-of-the-art techniques for the 2BPP. Techniques which explore the

solution space are discussed first, followed by those that explore the heuristic space.

3.2.1 Solution Space Search

Martello and Vigo [48] proposed an exact technique for solving 2BPP based on the branch-and-bound

algorithm [49]. The approach used a 2D version of the MTRP [17] to reduce the problem size. The

reduced problem is then solved using new upper and lower bounds that the authors presented. The

authors applied their approach to the following 2BPP datasets: beng [43], ngcut [44], gcut [45] and

cgcut [46]. The authors also generated their own 2BPP problem instances to augment the dataset

presented by Berkey and Wang [50]. These combined 500 problem instances form the commonly used

class dataset for 2BPP. Given a time limit of 300 seconds, the approach was able to find the optimum

solution for 484 problem instances out of the total 500 for the class dataset.

Lodi et al. [51] presented a tabu search [19] approach for solving 2BPP (TS2). The authors create an

initial solution for the tabu search by treating the problem first as a strip packing problem (packing the

items into a strip of infinite height and fixed width). Once the items have been packed into the strip,

the strip is then cut into pieces and the problem is solved as a 1BPP, treating each piece as an item.

The tabu search then improves this solution using one of two moves, namely to directly move an item

from one bin to another or to recombine the items from across two different bins. The tabu search

approach was found to outperform both the finite first fit [50] and the finite best strip [50] heuristics.

The approach was applied to the beng [43], ngcut [44], gcut [45], cgcut [46] and class [48, 50] datasets.

The TS2 approach found the optimum number of bins for 12 out of the 50 subclasses of problem
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instances in the class dataset. The TS2 approach is one of the state-of-the-art-techniques for 2BPP

against which the CBS approach is compared in Section 6.5.

Boschetti and Mingozzi [52] proposed an approximation technique for solving 2BPP which the authors

termed a heuristic for bin packing (HBP). The approach involves assigning a price to each item and

using some criterion to determine the order in which the items are packed. The authors presented

different methods both for assigning prices to the items and for how each item is allocated to a bin.

The HBP technique enumerates through all possible combinations of the different methods and selects

the best combination. HBP was able to find the optimal solution for 384 out of the 500 instances on

the 2BPP class [48, 50] dataset. The HBP approach is one of the state-of-the-art-techniques for 2BPP

against which the CBS approach is compared in Section 6.5.

Monaci and Toth [53] proposed an approximation technique which the authors termed a set-covering-

based heuristic (SCH) approach. SCH formulates 2BPP as a set-covering problem. The approach

involves a column generation phase and a column optimisation phase. The column generation phase

generates feasible item sets (columns). The column optimisation phase then solves the set-covering

problem using a Lagrangian-based algorithm. SCH found the optimum solution for 430 out of the

total 500 problem instances on the 2BPP class [48, 50] dataset. The SCH approach is one of the

state-of-the-art-techniques for 2BPP against which the CBS approach is compared in Section 6.5.

Faroe et al. [54] presented a guided local search (GLS) approach for solving 2BPP and 3BPP. An

initial solution is created for the GLS using a shelf approach which involves first packing the items

into two-dimensional "shelves" of fixed width and length, with a height equal to that of the boxes.

The shelves are then treated as items in a 1BPP and packed accordingly. This approach is similar

to that used by Lodi et al. [51]. The GLS then uses local search moves and a memory of beneficial

and detrimental features from previous solutions to make improvements and guide the search to more

promising areas of the search space. The GLS approach was applied to the class [48, 50] 2BPP dataset

and found the optimum solution for 194 out of the 500 instances. GLS was also applied to the 3BPP

dataset by Martello et al. [55], on which it found the optimum for 16 out of 320 instances. The GLS

approach is one of the state-of-the-art-techniques for 2BPP and 3BPP against which the CBS approach

is compared in Section 6.5.
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A greedy randomised adaptive search procedure [56] (GRASP) hybridised with a variable neighbour-

hood descent (VND) was proposed by Parreño et al. [57] for solving 2BPP and 3BPP. The GRASP

component consists of a constructive phase, an improvement phase and a diversification phase. The

constructive phase involves iteratively packing remaining items into a single bin until all items have

been packed and incorporates a randomisation strategy. The authors define four possible moves for the

improvement phase, each one defining a neighbourhood structure. These neighbourhood structures are

then used by VND to improve the solution. If the approach is unable to find an improvement for a

specified number of iterations, a modified version of the constructive phase (i.e. the diversification

phase) is used on the next iteration. The diversification phase involves prioritising the packing of items

which have most commonly been left unpacked in previous iterations. For the 2BPP class [48, 50]

dataset GRASP-VND (GVND) found the optimum solution for 430 out of the 500 instances and had

equal or better performance than the state-of-the-art for 48 out of the 50 problem instance classes.

GVND was found to be the best or tied for best performing for 27 out of the 32 classes of 3BPP

problem instances from Martello et al. [55] when compared to the state-of-the-art at the time. However,

the approach was only able to find the optimum solution for 23 out of the total 320 instances. The

GVND approach is one of the state-of-the-art-techniques for 2BPP and 3BPP against which the CBS

approach is compared in Section 6.5.

Gonçalves and Resende [58] proposed a biased random key genetic algorithm (BRKGA) for solving

2BPP and 3BPP, both with and without item rotations. BRKGA represented a solution as a vector

of random keys, with each key corresponding to an item. The keys are then sorted to determine

the order in which the items are packed. For 2BPP the BRKGA was found to have equal or better

performance than the state-of-the-art approaches for all 50 classes of problem instances from the

class [48, 50] dataset and found the optimum number of bins for 26 out of the 50 classes. Across all

500 2BPP problem instances the BRKGA approach used 61 extra bins. BRKGA was applied to the

3BPP instances from Martello et al. [55] and was found to have equal or better performance than the

state-of-the-art for 30 out of the 32 classes of problem instance. The authors do not report the number

of 3BPP problem instances for which the optimum solution was found. The BRKGA approach is one

of the state-of-the-art-techniques for 2BPP and 3BPP against which the CBS approach is compared in

Section 6.5.
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3.2.2 Heuristic Space Search

Terashima-Marín et al. [16] proposed a GA-based [29] selection constructive hyper-heuristic for

solving the regular and irregular (convex polygonal) 2BPP. Each individual in the population of the

GA specifies the LLH to be applied at each point in the solution process, i.e. at each state of the

problem. For the case of the regular 2BPP the approach was evaluated using the 500 benchmark

instances proposed by Berkey and Wang [50] and Martello and Vigo [48], the instances proposed

by Terashima-Marín et al. [59] and a set of randomly generated instances created by the authors, all

totalling 1080 instances which were divided at random into training and testing sets of 540 instances

each. The hyper-heuristics were found to perform as well as or better than the single heuristics for

89.46% of instances for the training set and 85.6% of instances in the testing set.

Beyaz et al. [60] proposed a memetic algorithm (MA)-based selection hyper-heuristic for 2BPP, both

with and without item rotations. The authors termed their approaches Hyper-Heuristic Algorithm-

O/NO (HHA-O/HHA-NO) for the oriented and non-oriented 2BPP cases respectively. Each individual

in the population of the MA specifies the order in which the items are packed as well as two LLHs to

be used during packing, one for each half of the items. The approach was applied to the 500 benchmark

instances proposed by Berkey and Wang [50] and Martello and Vigo [48]. The MA was able to find

the optimum solution for 11 out of the 50 classes of problem instances without rotations, and 9 classes

allowing item rotations. On average the proposed MA was able to find better solutions than the single

heuristics, however at the cost of longer runtimes. The HHA-O approach is one of the state-of-the-art

approaches against which the CBS approach is compared in Section 6.5.

Terashima-Marin et al. [61] proposed two selection hyper-heuristics for solving 2BPP. The first was

a XCS-based learning classifier system [31], which was trained to learn a solution procedure when

solving a given problem, and the second was a GA-based [29] approach which evolved combinations

of condition-action rules. Both of the proposed approaches were evaluated using problem instances

taken from Beasley [62], Berkey and Wang [50] and Martello and Vigo [48], Terashima-Marín et al.

[59] and a set of instances randomly generated by the authors, all totalling 1080 problem instances.

The total set of 1080 instances was divided at random into two subsets of 540 instances each. Both

approaches had mixed performance, finding solutions that were one bin better or one bin worse than

the single heuristics for a small percentage of the instances. The majority of the instances were solved

to the same number of bins as the single heuristics.
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3.3 THREE-DIMENSIONAL BIN PACKING PROBLEM

This section provides an overview of those studies which have had an impact on the field in solving the

3BPP as well as studies that have produced state-of-the-art techniques for the 3BPP. Techniques which

explore the solution space are discussed first, followed by those that explore the heuristic space.

3.3.1 Solution Space Search

Lodi et al. [63] proposed an adapted version of their previous tabu search [19], in Lodi et al. [51],

to solve 3BPP (TS3). The proposed TS3 employs a new construction technique which works in two

phases. The first phase clusters the items into layers based on their relative heights. The items in each

cluster are then sorted according to the areas of their bases. The order of the clusters together with

the sub-ordering within each cluster determines the overall order in which the items are packed in

the different layers. The different heights of each layer are treated as items and the problem is then

solved as a 1BPP. Phase two directly sorts the items according to their base areas and initialises each

of the layers produced by phase one, without packing any items into the layers. Phase two then packs

and combines the layers as in phase one. The best solution found between the two phases is the one

which is returned by the technique. This construction technique was used as the move operator in the

tabu search. The TS3 approach was applied to classes one and four to eight of the 3BPP dataset from

Martello et al. [55] and outperformed the GLS approach for 12 out of the 24 problem categories and

performed worse for 11 out of 24. The authors do not report the number of instances for which the

optimum solution was found. The TS3 approach is one of the state-of-the-art-techniques for 3BPP

against which the CBS approach is compared in Section 6.5.

Crainic et al. [64] proposed a two-level tabu search [19] (TS2PACK) for solving 3BPP. The first level

of TS2PACK reduces the number of bins while the second level improves the packing of items within a

bin. An initial solution is created by applying the extreme point first fit decreasing (EP-FFD) heuristic

[65]. The TS2PACK approach then iteratively removes a bin from the solution, using a defined metric

to select the bin to remove, and iteratively repacks the items into the other bins, whilst relaxing the

height constraints of the bins. If the new solution is feasible it is accepted and the bin is removed,

otherwise the first level tabu search is applied. The first level tabu search focuses on optimising the

total number of bins used. The second level tabu search focuses on optimising the packing of items

within a bin and reducing its infeasibility. TS2PACK was applied to classes one and four to eight from

the dataset in [55] where it outperformed the state-of-the-art at the time for six out of the 24 categories
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of problem instances and was tied with state-of-the-art for a further 15 categories. The authors do not

report the number of instances for which the optimum solution/lower bound value was found. The

TS2PACK approach is one of the state-of-the-art-techniques for 3BPP against which the CBS approach

is compared in Section 6.5.
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CHAPTER 4 RESEARCH METHODOLOGY

This chapter describes the research methodology used in this study as well as the problem domain

datasets that will be used and how the performance of the approaches will be assessed. First the research

methodology used in this study is outlined in Section 4.1, followed by the benchmark datasets that will

be used for each problem domain (Section 4.2). The metrics and statistical tests that will be used to

assess the performance of the approaches are discussed in Section 4.3. The chapter concludes with a

description of the technical specifications of the hardware and software used to run the experiments

(Section 4.4).

4.1 RESEARCH METHODOLOGY

This section provides an overview of the research methodology used in this study. Johnson [66]

presents the following methodologies for conducting research in the field of Computer Science:

• Proof by demonstration

• Empiricism

• Mathematical proof

• Hermeneutics

Oates et al. [67] asserted that some research methodologies are better suited than others to a given

research problem. The authors also assert that it is possible for a research problem to have several

suitable methodologies. The primary objective of this study is to determine whether a concurrent

search of two search spaces, specifically the heuristic and solution spaces, is more effective than

searching either of the spaces separately. To investigate this, an approach needs to be developed to

perform optimization concurrently in both search spaces and iteratively refined to improve performance.
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Hence, the proof by demonstration methodology is deemed to be the most appropriate choice for this

study.

The ‘proof by demonstration method’ involves creating an initial artefact, such as a model or algorithm

[66]. This initial artefact is then iteratively refined until the desired solution is obtained, or no further

improvements can be made [66]. The refinement process consists of three steps: testing/evaluation,

analysis and refinement [66]. If there is no improvement during the testing step, the analysis step

is used to determine the reasons for the lack of improvement [66]. The refinement step adjusts the

artefact for the next iteration, addressing the reasons for the lack of improvement [66].

4.1.1 Proof by Demonstration Methodology

As previously stated in Chapter 1, the objective of this study is to use simple search techniques with

low computational times to conduct search across the heuristic and solution spaces as opposed to

searching the spaces separately, under the hypothesis that searching the spaces concurrently will lead to

an improvement in performance. Under the proof by demonstration methodology, an initial algorithm

is created to search the two spaces concurrently by simultaneously performing perturbations in each

space. The specifics of this algorithm, as well as those of the single-space searches, are outlined in

Chapter 5.

The algorithm is evaluated using sets of known benchmark datasets for 1BPP, 2BPP, and 3BPP problem

domains. These datasets are selected for being the most commonly used within their respective

problem domains, as well as for being used by the state-of-the-art techniques against which the CBS

approach is compared to. These datasets are discussed in Section 4.2. The performance of the CBS

approach is compared to that of the HSS and SSS single-space searches to determine whether there is

an improvement. The performance metrics that are used, as well as the statistical tests that are used

to determine the significance of the results, are discussed in Sections 4.3.1 and 4.3.2 respectively.

If CBS does not outperform the single-space searches, the algorithm is refined by adjusting the

parameter values and using different perturbation operators. Once the algorithm has been refined, it

is re-evaluated and its performance compared to the single-space searches. This process is repeated

until either CBS outperforms SSS and HSS, or no further improvements can be made. In the case

of no further improvement being made, an analysis will be conducted to determine the reasons for

this.
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4.2 PROBLEM DOMAIN DATASETS

This section describes the benchmark datasets for 1BPP, 2BPP and 3BPP that are used to evaluate

the CBS approach. The datasets were selected because they are the most commonly used in the

literature, and they have been used by the state-of-the-art techniques against which CBS is being

compared.

4.2.1 One-Dimensional Bin Packing Problem

A total of nine different existing benchmark datasets, totalling 1615 instances, were used to evaluate

the approaches on the 1BPP. The characteristics of each dataset, except for the Scholl_2 dataset, are

summarized in Table 4.1.

Table 4.1. 1BPP benchmark datasets.

Source Name Size c n wi

Falkenauer [20] Falkenauer_T 80 {1000} {60, 120, 249, 501} [250, 500]
Falkenauer_U 80 {150} {120, 250, 500, 1000} [20, 100]

Scholl et al. [18] Scholl_1 720 {100, 120, 150} {50, 100, 200, 500} [1, 100]
{100, 120, 150} {50, 100, 200, 500} [20, 100]
{100, 120, 150} {50, 100, 200, 500} [30, 100]

Scholl_2 480 - - -
Scholl_3 10 {100000} {200} [20000,35000]

Schwerin and Wäscher [68] Schwerin_1 100 {1000} {100} [150, 200]
Schwerin_2 100 {1000} {120} [150, 200]

Schoenfield [69] Hard28 28 {1000} {160, 180, 200} [1, 800]
Wäscher and Gau [70] Waescher 17 {10000} [57, 239] [1, 7500]

Problem instances for the Scholl_2 dataset have the following characteristics:

• n ∈ {50,100,200,500}

• c ∈ {1000}

• wi ∈
{ c

3 ,
c
5 ,

c
7 ,

c
9

}
• δ ∈ {20%,50%,90%}

where n is the number of items, wi is the target average weight of the items and δ is the maximum

percentage that an item’s weight can deviate from wi.
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4.2.2 Two-Dimensional Bin Packing Problem

For the 2BPP, the 500 problem instances presented by Berkey and Wang [50] and Martello and Vigo

[48] were used*. The instances are divided into ten different classes, further divided into sets of ten

instances. The characteristics for each class of problem instance are summarised in Table 4.2, where

W and H are the width and height of each bin, and wi and hi are the width and height of the ith item.

Table 4.2. 2BPP problem instance characteristics.

Class W H wi hi Class W H wi hi

1 10 10 [1,10] [1,10] 6 300 300 [1,100] [1,100]
2 30 30 [1,10] [1,10] 7 100 100 [2

3W,W ] [1, 1
2 H]

3 40 40 [1,35] [1,35] 8 100 100 [1, 1
2W ] [2

3 H,H]

4 100 100 [1,35] [1,35] 9 100 100 [1
2W,W ] [1

2 H,H]

5 100 100 [1,100] [1,100] 10 100 100 [1, 1
2W ] [1, 1

2 H]

4.2.3 Three-Dimensional Bin Packing Problem

The benchmark problem instances presented by Martello et al. [55]† were used for the 3BPP. The

dataset consists of eight different classes, further subdivided into sets of ten instances. Table 4.3

summarises the characteristics for each class of 3BPP problem instance, where W , H and D are the

width, height and depth of each bin, and wi, hi and di are the width, height and depth of the ith item.

Table 4.3. 3BPP problem instance characteristics.

Class W H D wi hi di

1 100 100 100 [1, 1
2W ] [2

3 H,H] [2
3 D,D]

2 100 100 100 [2
3W,W ] [1, 1

2 H] [2
3 D,D]

3 100 100 100 [2
3W,W ] [2

3 H,H] [1, 1
2 D]

4 100 100 100 [1
2W,W ] [1

2 H,H] [1
2 D,D]

5 100 100 100 [1, 1
2W ] [1, 1

2 H] [1, 1
2 D]

6 10 10 10 [1,10] [1,10] [1,10]
7 40 40 40 [1,35] [1,35] [1,35]
8 100 100 100 [1,100] [1,100] [1,100]

*The problem instances, together with their best known solution values, were downloaded from https://site.unibo.it/
operations-research/en/research/2dpacklib

†The instance generator and the corresponding solver to determine the lower bound values are available at http:
//hjemmesider.diku.dk/~pisinger/codes.html
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4.3 PERFORMANCE EVALUATION

This section describes the different performance metrics that are used to evaluate the CBS approach

and compare it to the single-space searches and state-of-the-art techniques. The statistical tests that are

used to determine the significance of the results are also discussed.

4.3.1 Performance Metrics

The bi-space search approach is compared to the single-space search approaches using three different

performance metrics. The first metric is the number of bins in the solution found by the search

technique for a given problem instance. This metric is selected because the problem statement for bin

packing problems requires that the total number of bins used be a minimum. Chapter 5 (Eq. (4.1)) The

second metric that is used is the cost function proposed by Falkenauer and Delchambre [71] which is a

measure of the average bin efficiency, in other words how well the bins are packed or the total wasted

space across all the bins in a given solution. The cost function used in this study is a modified version

of the original so that it is a minimisation function. In addition, a value of one is added to the cost

function for each unpacked item. This modification was made specifically for this study. Given that the

search is allowed to operate on partial solutions, the modification was made so that complete solutions

are favoured over partial ones. If two solutions being compared have the same number of items packed,

then the solution with the better packing efficiency is favoured. If the two solutions have a different

number of items packed, then the solution with more items packed (i.e. the one which is closest to

being complete) is favoured. The value of the cost function is given by Eq. (4.1) below.

fBPP =

[
1− ∑

N
i=1(Fi/C)2

N

]
+n (4.1)

where N is the total number of bins used, Fi is the fullness (i.e. the occupied space (1D), area (2D) or

volume (3D)) for the ith bin, C is the total capacity of each bin and n is the number of items still to be

packed. The third metric that is used is the computational time taken by the search technique to find a

solution for a given problem instance. The CBS is compared to both SSS and HSS using each of these

metrics, for each problem instance for each problem domain.
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4.3.2 Statistical Tests

Hypothesis Test (One-Tailed z-Test)

The significance of the differences between the performance of the CBS approach and the single-space

search approaches (for each of the three metrics used) is determined using a one-tailed z-test. The

one-tailed z-test is used to determine whether the mean of one sample (e.g. sample A) is significantly

less than the mean of a second sample (e.g. sample B). The test involves two hypotheses, namely the

null hypothesis (H0) which states that the means of the two samples are equivalent, and the alternative

hypothesis (Ha) which states that the mean of sample A is less than the mean of sample B. The test

statistic z (or z-score) is calculated using the equation:

z =
B−A

σA√
nB

(4.2)

where A and B are the means of samples A and B respectively, σA is the standard deviation of sample

A and nB is the size of sample B. If the z-score is greater than the critical value (z > qα ) for a given

confidence interval α then the null hypothesis can be rejected and the alternative hypothesis accepted.

The critical values for α-levels of 1%, 5% and 10% (99%, 95% and 90% confidence respectively)

are:

q0.01 = 2.33, q0.05 = 1.96, q0.10 = 1.65

4.4 TECHNICAL SPECIFICATIONS

The approach was developed on a computer with the following specifications: Intel(R) Core(TM)

i5-8265U CPU @ 1.60 GHz, 16 GB RAM and 64-bit Windows 10 operating system. The approach

was developed using Java 1.8 on the Netbeans 8.2 Integrated Development Environment (IDE). The

simulations were run on the MITC cluster of the Department of Computer Science at the University

of Pretoria, the specifications of which are: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz running

Ubuntu version 18.04 with 377 GB RAM.
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This chapter presents the details of the CBS approach proposed in this study. The chapter consists

of four main sections. Section 5.1 describes the local search algorithm used in CBS and the single

space searches to which CBS is compared. The perturbation operators for the solution space are

then presented in Section 5.2 followed by the perturbation operators and low-level heuristics for the

heuristic space in Section 5.3. Finally, the CBS approach is described in Section 5.4.

5.1 LOCAL SEARCH

This section describes the local search used both in the CBS approach and in the single space searches

to which CBS is compared. First a general overview of the local search is presented and the processes

that are common to all three searches are discussed. This is followed by a detailed description of each

step in the local search and its application in each of the three searches.

Concurrently, exploring the two search spaces is anticipated to be computationally expensive as two

search spaces are being explored. In light of the primary objective of this study, which is to demonstrate

a proof of concept for CBS, a straightforward and cost-effective local search method is employed. This

approach is not computationally demanding. Algorithm 1 outlines the local search procedure that is

used [72].

Algorithm 1 Local Search (LS) [72]
1: Create initial solution s
2: for i← 1,N do ▷ N = number of iterations
3: s′← perturb(s) ▷ perform a perturbation on s
4: if acceptMove(s, s′) then
5: s← s′ ▷ update s for the next iteration
6: return s
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The initial solution creation in Line 1 and perturbation in Line 3 are both dependent on the search

space being explored. Both these aspects are discussed in detail in Section 5.2 for the solution space

search (SSS), Section 5.3 for the heuristic space search (HSS) and Section 5.4 for the concurrent

bi-space search (CBS). The move acceptance criterion in Line 4 is common to all three searches and is

discussed below.

5.1.1 Move Acceptance Criteria

After the perturbation, a move acceptance criterion is applied to determine whether the perturbed

solution s′ should be accepted. If the decision is to accept s′ then the current solution s is updated

for the next iteration. These two steps are shown in Lines 4 and 5 respectively. Three different move

acceptance criteria are investigated in this study: the equal or improving criterion, the improving

only criterion, and the adaptive iteration limited threshold accepting (AILTA) [73] criterion. The

AILTA criterion was selected because it has been shown to be effective for use in selection perturbative

hyper-heuristics in other studies [74].

The equal or improving criterion accepts a perturbed solution if it is of equal quality or better than the

unperturbed solution. Using a minimisation cost function this is represented mathematically as s′ being

accepted if C(s′) ≤C(s). The improving only criterion accepts perturbed solutions only if they are

of better quality, which mathematically equates to accepting s′ if C(s′)<C(s). AILTA is a dynamic

move acceptance criterion, which allows the acceptance of worsening moves under certain conditions

[73]. By allowing for the acceptance of worsening moves, AILTA escapes from local optima [73]. The

pseudocode for AILTA is presented in Algorithm 2.

AILTA begins as an equal or improving move acceptance [73] as is shown in Lines 1 and 6. In Line 12

if the number of consecutive rejections of worsening moves has reached a specified number k, which

is a parameter, then AILTA uses a threshold accepting criterion [73] as is shown in Line 13. Under

threshold accepting a worse solution can be accepted if the difference in cost between the current and

perturbed solutions is less than or equal to a specified threshold value t [73], as is shown in Line 13. If

under threshold accepting a further j or more consecutive rejections, where j is a parameter, occurs

then the threshold value is increased by an amount ε [73]. ε is a parameter to be tuned. This is shown in

Lines 19 and 20. In Lines 21 and 22 an upper limit is imposed on the threshold value by the parameter

tlimit [73].
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Algorithm 2 Adaptive Iteration Limited Threshold Accepting (AILTA) [73]
Input: k, j,ε, tstart , tlimit

1: if C (s′)<C (s) then
2: s← s′

3: re jectworse = 0
4: re jectadapt = 0
5: t = tstart

6: else if C (s′) =C (s) then
7: s← s′

8: re jectadapt = 0
9: t = tstart

10: else
11: re jectworse = re jectworse +1
12: if re jectworse ≥ k then
13: if |C (s)−C (s′)| ≤ t then
14: s← s′

15: re jectadapt = 0
16: t = tstart

17: else
18: re jectadapt = re jectadapt +1
19: if re jectadapt ≥ j then
20: t = t + ε

21: if t > tlimit then
22: t = tlimit

5.2 SOLUTION SPACE SEARCH

This section presents details of the local search that are specific to the solution space search. For local

search in the solution space, a solution s is represented by a candidate solution to the BPP namely, a

set of bins, with each bin containing items.

For all three problem domains the same initial solution is used, namely the empty solution in which

no items are packed, and no bins are in use. Two perturbation operators are used in the solution

space local search, one for 1BPP and another for both 2BPP and 3BPP. Both perturbation operators

are implemented such that if the solution being perturbed has any unpacked items, it is decided

at random whether to pack the next item using the best fit construction heuristic [28] or to apply

the perturbation operator to the partial solution. The perturbation operator used for the 1BPP is

discussed in Section 5.2.1.1 and the perturbation operator used for the 2BPP and 3BPP is discussed in

Section 5.2.1.2.
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5.2.1 Perturb Operators

This section describes the perturbation operators used in the solution space local search for each of

these three problem domains. First, the perturbation operator for the 1BPP is presented, followed by

the perturbation operators for the 2BPP and 3BPP. The same perturbation operator is used for both

2BPP and 3BPP. These operators were chosen because they were the best performing in the literature

at the time of implementation for their respective problem domains [75, 76].

5.2.1.1 1BPP Solution Space Perturb Operator

This section outlines the perturbation operator that is used in the local search for 1BPP. The operator

was adapted from the work of Levine and Ducatelle [75] and is outlined in Algorithm 3.

Algorithm 3 One-Dimensional Bin Packing Perturb Operator [75]
1: free← items from the least filled bin

2: for i← 1,n do ▷ n = number of remaining bins
3: Swap two items packed in the ith bin with two items in free if the residual capacity of the bin

is reduced after the swap

4: for i← 1,n do ▷ n = number of remaining bins
5: Swap two items packed in the ith bin with one item in free if the residual capacity of the bin is

reduced after the swap

6: for i← 1,n do ▷ n = number of remaining bins
7: Swap one item packed in the ith bin with one item in free if the residual capacity of the bin is

reduced after the swap

8: while free contains items do
9: remove the first item from free and pack it using the first fit construction heuristic [28]

The algorithm begins in Line 1 by selecting and removing the bin with the least amount of used space.

The items from this bin are then added to a list called free. In Lines 2 and 3, the operator iterates over

the bins that remain in the solution and attempts to find a feasible swap of two packed items with two

free items such that there is less available space in the bin once the swap has been made. If a feasible

swap is found the swap is made and the next bin is checked using the updated free list.

Once all bins have been checked, the operator proceeds to loop over the available bins again attempting

to swap two packed items with one free item in the same manner as before. This is shown in Lines 4
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and 5. As before, if a feasible swap is found the swap is made and the next bin is checked using the

updated free list.

A third and final loop over the bins is made in Lines 6 and 7 attempting to swap one packed item

with one free item. If a feasible swap is found the swap is made and the next bin is checked using the

updated free list. After this final pass any items that are remaining in free are repacked using the first

fit construction heuristic [28] as shown in Line 9.

Figure 5.1. Perturbation operator for 1BPP SSS.

Figure 5.1 shows an example of the first step of the perturbation operator applied to a complete

candidate solution s in the solution space for 1BPP. In figure a) the least-filled bin, containing the

items of weights 1 and 4, is removed from the solution and its items are added to the list free. In figure

b) the operator iterates over the remaining bins, finding a feasible swap in the third bin which contains

two items with a weight of 2. In figure c) the swap is made leading to less wasted space in the third bin

and the list free containing two items of weight 2.

5.2.1.2 2BPP & 3BPP Solution Space Perturb Operator

This section describes the perturbation operator that is used in the solution space local search for

both the 2BPP and 3BPP. The operator was adapted from the work of Paschos [76]. The underlying

principle of the operator is to iteratively remove items from the bin with the least amount of occupied

space until the bin is empty and can be removed from the solution [76]. The pseudocode for the

operator is presented in Algorithm 4.
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Algorithm 4 Two & Three-Dimensional Bin Packing Perturb Operator [76]

1: b← least-filled bin
2: K← set of k randomly selected other bins
3: I← all items packed into bins in K

4: while change = false ∧ items left in b do
5: w← next largest item in b
6: I← I∪{wmax}
7: pack all items in I using at most k bins
8: if packing found then
9: remove w from least-filled bin b
10: replace bins in K with new packing of I
11: change← true

The operator begins by selecting the least-filled bin b along with a set of k other random bins, shown in

Lines 1 and 2. In Line 3, all items contained in the k selected bins are placed in list I. In Lines 5 and 6,

the next largest item w is taken from bin b and added to list I. The operator then attempts to pack the

items in I using a maximum of k bins as shown in Line 7. If a valid packing is found, then in Lines 9

and 10 the item w is removed from bin b and the k other bins are replaced with the new packing of I. If

no valid packing is found, the process is repeated using the next largest item from bin b, as is shown in

Line 5. If all items from bin b could not be packed into other existing bins and no feasible packing has

been found, then the operator has no effect.

5.3 HEURISTIC SPACE SEARCH

This section presents details of the local search that are specific to the heuristic space search. The

same representation, initialisation procedure and perturbation operator are used for all three problem

domains. Each solution s in the heuristic space local search is represented as a sequence of LLHs,

which determines the order in which each LLH is applied. In the case of 2BPP and 3BPP each LLH is

a selection-placement pair, specifying the next item to be packed together with how it is to be placed

into a given bin, in other words, the item’s location within the bin.

The initial heuristic sequence is created as follows. The length of sequence l, i.e. the number of LLHs,

is randomly selected from the range [1,Linit], where Linit is a parameter to be tuned. The sequence

is then iteratively constructed by randomly selecting an LLH from the set of all possible LLHs and

appending it to the sequence. This process is repeated until the sequence has a specified length l. The

set of heuristics from which each LLH is selected comprises of both constructive and perturbative
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heuristics.

The heuristic space perturbation operator used for the three domains is implemented as follows: The

operator begins by selecting a random subsequence of consecutive LLHs and removing them from

the larger sequence. The length of this subsequence is randomly selected in the range [0,Hrepl], where

Hrepl is a parameter. A new replacement subsequence of LLHs is generated in the same manner as the

initialisation procedure, where the length of this sequence is randomly selected from the range [0,Hins]

with Hins being a parameter. This newly generated subsequence is then inserted into the original

sequence at the position of the removed subsequence. The values of both Hrepl and Hins can be zero,

allowing the perturbation operator to perform replacement, insertion or deletion.

Figure 5.2. The perturbation operator for the 1BPP heuristic space local search.

Figure 5.2 shows an example of the perturbation operator applied to the 1BPP LLH sequence

BNBFWBN. First, the subsequence NBF (indices 1−3) is randomly selected and removed from the

string. A new replacement subsequence FW is then randomly generated and inserted into the string

at the position of the removed subsequence NBF (index 1). The new, perturbed LLH sequence is

BFWWBN.

The low-level heuristics selected for all three problem domains were chosen as they are the most

commonly used in the literature for bin packing problems. The low-level construction heuristics used

are outlined below [24, 28]. In all cases if all items in the solution have been packed then the heuristic

has no effect.

• First-Fit Decreasing/Increasing (FFD/I): The remaining items are sorted in descending /as-

cending order and the largest item is placed in the first feasible bin. If no such bin exists then the

item is placed in a new bin.

• Best-Fit Decreasing/Increasing (BFD/I): The remaining items are sorted in descending or

ascending order and the largest item is placed into the bin with the minimum free space after the

item is packed. If no feasible bin exists, then the item is placed in a new bin.
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• Next-Fit Decreasing/Increasing (NFD/I): The remaining items are sorted in descending or

ascending order and the largest item is placed in the current bin if feasible, else in a new bin.

• Worst-Fit Decreasing/Increasing (WFD/I): Similar to the Best-Fit Decreasing/Increasing

heuristic, with the condition being to maximize the free space (rather than minimize).

• Minimum Bin Slack (MBS): The set of remaining items is searched for a subset of items which

completely fills a single bin. If no such subset exists, then the subset with the minimum free

space (slack) is used.

• Relaxed MBS (R-MBS): The MBS heuristic with an allowed slack (as opposed to a full bin).

• Time-Bounded R-MBS (TBR-MBS): A time-limited variant of the R-MBS heuristic.

The 2BPP and 3BPP problem domains use the following additional constructive heuristics [16]:

• Filler + FFD: Attempts to place any of the remaining items into any of the currently open bins.

Items are placed in descending order (largest area first). Each open bin is considered before

placed the next item in the list. The process is stopped once at least one item has been packed. If

no items can be packed then the FFD heuristic is applied.

• Djang and Fitch (DJD): Beginning with the largest unpacked item and moving according

to decreasing size items are placed into a new bin until the bin is at least one third full. An

allowed waste w is then initialised and the heuristic searches for combinations of one, two or

three remaining items that can be placed into the bin such that the wasted space (area) is at most

w. If no such combination exists w is increased and the process is repeated.

For each of the low-level perturbative heuristics used the heuristic is applied only if the candidate

solution has more than two bins. The rationale behind this choice is that any perturbations on solutions

with two or fewer bins would undo the effects of the constructive heuristics applied up to that point.

The low-level perturbative heuristics used are outlined as follows [36, 77].

• Local Search Swap: Swaps two randomly selected items from two different, randomly selected

bins if there is space and if the swap leads to an improvement in the solution quality. If the swap

does not lead to an improvement then the heuristic has no effect.

• Mutation Swap: Swaps two randomly selected items from two different, randomly selected

bins if there is space. If one of the items does not fit, it is placed in a new bin.
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• Split a Bin: Randomly selects a bin containing more items than the average number of items

per bin and splits it into two new bins, each containing half of the items.

• Repack Lowest Bin: Delete the least-filled bin and repack its items using the Best Fit low-level

construction heuristic.

• Destroy x Highest Bins: Delete the x most-filled bins, where x is a parameter, and repack their

items using the Best Fit Decreasing heuristic. The heuristic only has an effect if the solution

contains at least x+2 bins.

• Destroy x Lowest Bins: Delete the x least-filled bins, where x is a parameter, and repack their

items using the Best Fit Decreasing heuristic. The heuristic only has an effect if the solution

contains at least x+2 bins.

The following placement heuristics were used for 2BPP and 3BPP [58]:

• Distance to Top (Front) Right Corner 1 (DTRC-1): The item is placed in a feasible position

in the bin such that the distance from the (back) bottom left corner of the item to the top (front)

right corner of the bin is maximized.

• Distance to Top (Front) Right Corner 2 (DTRC-2): The item is placed in a feasible position

in the bin such that the distance from the top (front) right corner of the item (after placement) to

the top (front) right corner of the bin is maximized.

5.4 CONCURRENT BI-SPACE SEARCH (CBS)

This section presents the details of the local search that are specific to CBS. For all three problem

domains the same representation and initialisation procedures are used. A local search solution for

CBS consists of a candidate solution to the BPP, representing a point in the solution space search, and

a sequence of LLHs, representing a point in the heuristic space search. As with the solution space

search, the initial candidate solution for the bi-space is taken to be the empty solution. In the case of

the initial sequence of LLHs, the same initialisation procedure described in Section 5.3 is used.

The local search for the CBS approach differs from that of the single space searches in that the

perturbation step in Line 3 of Algorithm 1 involves a perturbation and move acceptance in both the

heuristic and solution spaces. The pseudocode for the CBS perturbation operator is presented in

Algorithm 5.
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Algorithm 5 Concurrent Bi-Space Perturb Operator

input: heuristic space individual H, solution space individual S

1: H ′← perturb(H) ▷ perturb H (and evaluate it on S)
2: if acceptMove(H,H ′) then ▷ apply move acceptance criteria to H ′

3: H← H ′

4: S′← evaluate H on S ▷ evaluate H on S
5: if acceptMove(S,S′) then ▷ apply move acceptance criteria to S′

6: S← S′

7: S′← perturb(S) ▷ perform a perturbation on S
8: if acceptMove(S,S′) then ▷ apply move acceptance criteria to S′

9: S← S′

10: return H,S

The operator begins by applying a perturbation and move acceptance to the point in the heuristic space

H, as shown in Lines 1, 2 and 3. The perturbation operator applied is the same as that described above

for the HSS. The operator then evaluates the current heuristic sequence H on the current solution S.

This is shown in Line 4. A new solution S′ is obtained. A move acceptance criterion is applied to S′

and the current solution S is updated accordingly, as shown in Lines 5 and 6. Finally, in Lines 7, 8

and 9 the current solution S is perturbed and move acceptance is applied to the perturbed solution S′ to

determine whether to accept it or not.
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This chapter presents the results of the computational experiments and a discussion thereof. The

chapter begins with a presentation of the results and discussion for the experiments conducted to

compare the CBS approach with the single-space searches HSS and SSS (Section 6.1). The results

are presented, in order, for the 1BPP, 2BPP and 3BPP problem domains. An analysis of the CBS

approach for each of the problem domains is then presented in Section 6.2. The sensitivity of CBS

to the move acceptance criteria is analysed in Section 6.3. Section 6.4 presents a comparison of the

CBS approach with the previous bi-space search approaches BSS and CSA. Finally, a comparison

of the CBS approach with state-of-the-art techniques is presented in Section 6.5 for 1BPP, 2BPP and

3BPP.

6.1 COMPARISON OF CBS WITH HSS AND SSS

This section presents a comparison of the performance of the bi-space CBS approach to the single-space

searches HSS and SSS. The comparisons are made using the number of bins in the solutions found

by the searches, wastage formula values of the solutions found by the searches, and runtimes of the

searches. The comparisons are made for each of the 1BPP, 2BPP and 3BPP problem domains. The

z-test (described in Section 4.3.2) is used to determine the significance of the results.

6.1.1 One-Dimensional Bin Packing Problem

Table 6.1 shows the number of 1BPP problem instances that were solved to the optimum number of

bins or one bin from the optimum for each of the three approaches (CBS, HSS and SSS), grouped

according to the benchmark datasets (described in Section 4.2.1). The best results are reported in bold.

From Table 6.1 it can be seen that the CBS approach consistently outperforms both the HSS and SSS

approaches, except for two datasets. The first is the Schwerin_1 dataset for which SSS is able to find
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Table 6.1. Number of 1BPP problem instances solved to optimum. The best results are reported in
bold.

Problem Set Concurrent Bi-Space (CBS) Heuristic Space (HSS) Solution Space (SSS)

Opt. Opt.-1 Sum Opt. Opt.-1 Sum Opt. Opt.-1 Sum

Falkenauer_T (80) 1 79 80 0 2 2 0 0 0
Falkenauer_U (80) 50 30 80 14 26 40 21 30 51
Scholl_1 (720) 695 25 720 625 52 677 616 84 700
Scholl_2 (480) 463 16 479 304 90 394 366 62 428
Scholl_3 (10) 8 2 10 0 0 0 1 3 4
Schwerin_1 (100) 97 3 100 16 84 100 99 1 100
Schwerin_2 (100) 98 2 100 65 35 100 98 2 100
Hard28 (28) 5 23 28 5 23 28 5 23 28
Wäscher (17) 12 5 17 5 12 17 9 8 17

Total (1615) 1429 185 1614 1034 324 1358 1215 213 1428

the optimum for two instances more than CBS. The second is the Hard28 dataset for which all three

approaches have equal performance.

Table 6.2. Average runtime (in seconds) per 1BPP problem instance for each dataset. The best results
are reported in bold.

CBS HSS SSS

Falkenauer_T (80) 8.543 4.263 0.834
Falkenauer_U (80) 17.753 10.967 1.188
Scholl_1 (720) 4.447 2.943 0.403
Scholl_2 (480) 3.263 1.241 0.269
Scholl_3 (10) 8.894 2.154 0.565
Schwerin_1 (100) 0.735 0.760 0.155
Schwerin_2 (100) 1.289 0.977 0.129
Hard28 (28) 5.745 2.375 0.344
Wäscher (17) 2.320 1.110 0.229

The average runtimes (in seconds) per problem instance, taken over each dataset, are reported in

Table 6.2. From the table it can be seen that SSS is the quickest approach of the three, averaging under

one second per problem instance for all datasets except Falkenauer_U, for which it is only slightly

above one second. Comparing the times for CBS and HSS one can see that the two approaches tend

to have similar runtimes, with the largest differences being for Falkenauer_U, where CBS averages

approximately two seconds faster, and for Scholl_3, where CBS averages approximately two and a half

seconds slower. As CBS is exploring two search spaces concurrently, it is anticipated that it have longer

runtimes than either SSS or HSS. This is evident in Table 6.2. However, although CBS takes longer
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to run than HSS or SSS, the average runtimes of CBS per problem instance are well within practical

limits being under ten seconds for each dataset. This, combined with the performance increase over

the single space searches evident in Table 6.1, indicates that CBS is a practical alternative to either

HSS or SSS for solving 1BPP.

For each 1BPP problem instance the hypothesis test (z-test*) was performed to determine the statistical

significance of the performance difference between CBS and HSS and SSS. The number of 1BPP

problem instances where CBS outperformed the single space searches at 1 % statistical significance

are reported in Table 6.3 for HSS and SSS using the number of bins and the wastage formula (see

Section 5.2, Eq. (4.1)) as performance metrics.

Table 6.3. Number of 1BPP problem instances where CBS performed better than HSS and SSS at 1%
significance.

CBS < HSS CBS < SSS

bins 994 697
wastage 1216 941

From the table it can be seen that the result that CBS found solutions with a lower number of bins than

HSS was found to be statistically significant at the 1% level of significance for over 60% (994/1615) of

problem instances. When compared to SSS, the result that CBS found solutions with a lower number

of bins was statistically significant at the 1% level of significance for over 43% (697/1615) of problem

instances. As the searches were guided by the value of the wastage formula, rather than the number of

bins, a more appropriate comparison between the approaches would be to use the wastage formula, i.e.

the packing efficiency. From Table 6.3 it can be seen that, when comparing on the packing efficiency,

the results that the CBS approach found better solutions than HSS and SSS was found to be statistically

significant for the majority of 1BPP problem instances. This, combined with the results reported

in Table 6.1, indicates that CBS is a more effective approach than either HSS or SSS for solving

1BPP.

6.1.2 Two-Dimensional Bin Packing Problem

In order to be consistent with the literature the values reported in this section, both for the number of

bins and the runtimes, are the averages taken across the ten instances in each subclass of 2BPP problem

*See Section 4.3.2 for a description of the statistical tests used.
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instance. Table 6.4 compares the performance, in terms of the number of bins, for the CBS, HSS and

Table 6.4. Average number of bins for each subclass of 2BPP problem instance. The best results are
reported in bold.

Class Bin size n LB CBS HSS SSS Class Bin size n LB CBS HSS SSS

1 10x10 20 7.1 7.1 7.1 7.1 6 300x300 20 1.0 1.0 1.0 1.0
40 13.4 13.4 13.4 13.6 40 1.5 1.7 1.7 1.9
60 19.7 20.0 20.0 20.2 60 2.1 2.1 2.1 2.2
80 27.4 27.4 27.5 27.7 80 3.0 3.0 3.0 3.0

100 31.7 31.7 31.7 32.3 100 3.2 3.4 3.4 3.5
2 30x30 20 1.0 1.0 1.0 1.0 7 100x100 20 5.5 5.5 5.5 6.1

40 1.9 1.9 1.9 2.0 40 10.9 11.2 11.1 11.5
60 2.5 2.5 2.5 2.6 60 15.6 15.8 15.9 16.3
80 3.1 3.1 3.1 3.3 80 22.4 23.2 23.2 23.2

100 3.9 3.9 3.9 4.0 100 26.9 27.1 27.2 27.5
3 40x40 20 5.1 5.1 5.1 5.3 8 100x100 20 5.8 5.8 5.8 6.1

40 9.2 9.4 9.4 9.8 40 11.2 11.4 11.3 11.5
60 13.6 13.9 14.0 14.2 60 15.9 16.1 16.1 16.4
80 18.7 19.0 19.1 19.5 80 22.3 22.3 22.5 22.7

100 22.1 22.3 22.4 23.2 100 27.4 27.7 27.8 28.0
4 100x100 20 1.0 1.0 1.0 1.0 9 100x100 20 14.3 14.3 14.3 14.4

40 1.9 1.9 1.9 1.9 40 27.8 27.8 27.8 28.0
60 2.3 2.5 2.5 2.6 60 43.7 43.7 43.7 43.9
80 3.0 3.1 3.2 3.3 80 57.7 57.7 57.7 57.8

100 3.7 3.8 3.8 3.9 100 69.5 69.5 69.5 69.6
5 100x100 20 6.5 6.5 6.5 6.6 10 100x100 20 4.2 4.2 4.2 4.4

40 11.9 11.9 11.9 12.3 40 7.4 7.4 7.4 7.4
60 17.9 18.0 18.0 18.5 60 9.8 10.3 10.1 10.5
80 24.1 24.7 24.7 25.2 80 12.3 13.0 13.0 13.2

100 27.9 28.3 28.3 29.0 100 15.3 15.9 15.9 16.3

SSS approaches for 2BPP. From the table it can be seen that CBS outperforms SSS for 42 out of the

50 problem subclasses and has equal performance for the remaining 8. CBS outperforms HSS for 9

out of the 50 subclasses and is equal for a further 38, being outperformed for only 3 subclasses.

The average runtime per problem instance for each of the three approaches is shown in Table 6.5.

From the table it can be seen that SSS is consistently the fastest approach, never averaging above one

second. Comparing the runtimes of CBS with those of HSS, it can be seen from the table that CBS has

lower runtimes than HSS for all but five subclasses. However, for those five subclasses the difference

in times between the two approaches is less than 0.1 seconds. As with 1BPP, if one considers the

average runtimes of CBS in isolation, the runtimes are well within feasible limits, with the highest

average runtime being only five and a half seconds and the average across all problem instances being

a mere 1.8 seconds. Given that CBS outperforms SSS and has approximately equivalent performance
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Table 6.5. Average runtime (in seconds) per 2BPP problem instance for each subclass of problem
instance. The best results are reported in bold.

Class Bin size n CBS HSS SSS Class Bin size n CBS HSS SSS

1 10x10 20 0.356 1.295 0.044 6 300x300 20 0.015 0.007 0.007
40 0.692 2.388 0.071 40 2.364 7.980 0.034
60 1.452 4.072 0.063 60 0.129 1.691 0.106
80 2.139 6.296 0.073 80 0.108 0.041 0.028

100 1.986 7.421 0.084 100 3.337 94.296 0.393
2 30x30 20 0.010 0.004 0.001 7 100x100 20 0.788 1.846 0.081

40 0.073 0.417 0.016 40 2.248 7.517 0.267
60 0.089 1.782 0.044 60 3.079 20.425 0.369
80 0.239 7.718 0.133 80 3.180 23.465 0.441

100 0.165 7.482 0.099 100 4.337 77.100 0.684
3 40x40 20 0.568 1.944 0.055 8 100x100 20 0.774 1.727 0.074

40 1.266 4.817 0.256 40 2.182 7.726 0.434
60 2.380 19.642 0.837 60 3.074 40.608 0.457
80 3.106 33.057 0.635 80 3.567 19.861 0.446

100 3.364 53.872 0.521 100 5.574 55.051 0.752
4 100x100 20 0.014 0.007 0.003 9 100x100 20 0.861 2.179 0.091

40 0.049 0.034 0.017 40 0.945 2.523 0.182
60 2.088 13.107 0.158 60 1.532 3.031 0.260
80 3.057 38.682 0.258 80 1.949 3.896 0.310

100 1.575 59.190 0.241 100 2.584 5.418 0.261
5 100x100 20 0.753 2.409 0.076 10 100x100 20 0.814 1.954 0.064

40 1.792 6.076 0.303 40 0.907 7.635 0.116
60 2.389 14.487 0.472 60 2.148 26.345 0.428
80 2.776 12.103 0.361 80 2.903 58.069 0.858

100 4.518 94.444 0.482 100 3.087 124.591 0.986

to HSS (as shown in Table 6.4), and that CBS has practical runtimes, it can be concluded that CBS is

an effective alternative to either HSS or SSS.

As with 1BPP, z-tests were performed for each problem instance, using the number of bins and the

wastage formula/packing efficiency as performance metrics. Table 6.6 shows the number of 2BPP

problem instances where CBS had a lower number of bins and wastage than HSS and SSS. These

results were found to be statistically significant at the 1% level of significance.

Table 6.6. Number of 2BPP problem instances where CBS performed better than HSS and SSS at 1%
significance.

CBS < HSS CBS < SSS

bins 28 132
efficiency 122 306
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Table 6.6 shows that for 2BPP CBS had a lower number of bins than the HSS for only 28 instances

out of 500, and a better packing efficiency for a quarter of the total problem instances. These results

were statistically significant at the 1% level of significance. These small numbers are not unsurprising

given that Table 6.4 shows that the CBS and HSS approaches have similar performance. However, as

has been noted in the discussion of Table 6.5, CBS has lower runtimes than HSS, making it a more

practical approach to 2BPP than HSS. Comparing the CBS approach to SSS, Table 6.6 shows that

CBS had a lower number of bins for approximately 25% of the problem instances and a better packing

efficiency for over 60% of the problem instances. These results were statistically significant at the 1%

level of significance. As before, with the packing efficiency being used to guide the searches, it is a

better indicator of the relative performance between the two approaches. The results of the z-tests,

coupled with the observations made in the discussions of Tables 6.4 and 6.5, indicate that CBS is a

more practical approach to 2BPP than either HSS or SSS.

6.1.3 Three-Dimensional Bin Packing Problem

To remain consistent with the literature, the values reported in this section are the averages across

the ten instances in each subclass of 3BPP problem instance. Table 6.7 compares the performance of

the CBS, HSS and SSS approaches for each subclass of 3BPP problem instance. As is done in the

literature, the values reported are the ratio of the number of bins to the lower bound value L2 for each

problem instance. The lower bound values were taken from the literature [55]. From the table it can be

seen that CBS outperforms both single space searches for 16 out of the 32 problem subclasses and is

tied with HSS for the best for a further nine subclasses. HSS outperforms CBS for the remaining seven

problem subclasses. Considering the average across all problem classes shows that CBS is the best of

the three approaches.

The average runtimes, across the ten instances per 3BPP problem class, for each of the three approaches

are shown in Table 6.8. From the table it can be seen that, as with 1BPP and 2BPP, SSS has the lowest

runtimes for all problem classes, with CBS having runtimes significantly lower than HSS. Although

CBS has longer runtimes than SSS, the runtimes are still within feasible limits, with the highest average

runtime being approximately seven minutes (for class five, n = 200). For the same class of problem

instance HSS is more than 60 times slower than CBS and SSS is less than nine times faster than CBS.

For the seven problem classes for which HSS outperformed CBS (reported in Table 6.7) HSS ranges

from 25 times slower than CBS (class two, n = 150) to over 187 times slower (class six, n = 200).
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Table 6.7. Average number of bins relative to the lower bound for each class of 3BPP problem instance.
The best results are reported in bold.

Class Bin Size n L2 CBS / L2 HSS / L2 SSS / L2

1 100x100x100 50 12.5 1.036 1.036 1.054
100 23.2 1.056 1.060 1.086
150 37.2 1.050 1.061 1.084
200 47.6 1.042 1.055 1.078

2 100x100x100 50 12.4 1.040 1.040 1.080
100 24.3 1.062 1.070 1.095
150 36.0 1.062 1.059 1.090
200 47.2 1.034 1.041 1.058

3 100x100x100 50 12.5 1.033 1.033 1.063
100 23.1 1.085 1.089 1.113
150 34.8 1.047 1.067 1.087
200 48.8 1.048 1.060 1.082

4 100x100x100 50 31.2 1.000 1.000 1.000
100 57.0 1.026 1.026 1.033
150 87.4 1.023 1.028 1.036
200 113.5 1.024 1.025 1.032

5 100x100x100 50 7.9 1.062 1.062 1.105
100 12.0 1.170 1.170 1.218
150 16.0 1.149 1.138 1.190
200 22.0 1.143 1.147 1.175

6 10x10x10 50 10.5 1.000 1.017 1.067
100 18.0 1.078 1.092 1.126
150 26.7 1.094 1.092 1.109
200 36.3 1.075 1.072 1.094

7 40x40x40 50 5.7 1.144 1.144 1.215
100 12.1 1.162 1.162 1.190
150 15.7 1.132 1.144 1.189
200 20.4 1.158 1.145 1.186

8 100x100x100 50 9.4 1.013 1.013 1.094
100 17.2 1.079 1.094 1.132
150 20.4 1.131 1.125 1.176
200 27.1 1.164 1.149 1.187

Taking the average over all 320 problem instances, CBS has an average runtime of under a minute

whilst HSS has an average runtime of over 53 minutes. Given that the runtimes of CBS are within

practical limits and are orders of magnitude faster than HSS, together with the superior performance of

CBS (as shown in Table 6.7), it can be concluded that CBS is a practical and effective alternative to

either HSS or SSS for 3BPP.

Z-tests were performed for each problem instance to determine the statistical significance of the
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Table 6.8. Average runtime in seconds for each class of 3BPP problem instance. The best results are
reported in bold.

Class Bin Size n CBS HSS SSS Class Bin Size n CBS HSS SSS

1 100x100x100 50 5.55 24.03 2.06 5 100x100x100 50 6.58 131.19 2.08
100 16.62 348.72 2.56 100 49.52 1607.38 20.21
150 44.54 696.14 2.76 150 185.15 9657.05 36.91
200 50.55 1719.08 2.89 200 428.39 26247.29 49.71

2 100x100x100 50 5.04 53.67 1.69 6 10x10x10 50 2.37 25.13 0.75
100 20.13 290.22 2.51 100 4.98 303.05 0.58
150 45.83 1165.86 3.41 150 4.18 678.98 0.65
200 63.14 2533.60 3.79 200 7.16 1342.90 0.14

3 100x100x100 50 3.94 31.08 1.47 7 40x40x40 50 5.96 168.66 1.65
100 12.78 407.51 2.24 100 41.95 1159.66 9.41
150 36.85 727.05 2.65 150 168.30 5105.30 25.36
200 43.58 3461.12 4.68 200 306.56 26394.42 30.01

4 100x100x100 50 1.33 5.68 0.36 8 100x100x100 50 5.11 73.24 1.44
100 3.12 19.54 0.37 100 20.45 500.36 3.56
150 7.09 29.62 0.58 150 101.15 5146.70 9.21
200 11.66 85.66 0.76 200 137.85 11890.79 13.50

difference in performance between the CBS, HSS, and SSS approaches. The number of bins and

wastage formula (i.e. packing efficiency) were used as performance measures. The number of problem

instances for which CBS performed better than HSS and SSS measured in terms of the number of bins

and packing efficiency at the 1% level of significance is shown in Table 6.9.

Table 6.9. Number of 3BPP problem instances where CBS performed better than HSS and SSS at 1%
significance.

CBS < HSS CBS < SSS

bins 13 154
efficiency 141 272

From the table it can be seen that CBS outperformed HSS for 13 problem instances in terms of the

number of bins and for 141 problem instances in terms of packing efficiency. From Table 6.7 one can

see that the low number of instances when comparing CBS and HSS on the number of bins is not

unexpected as the two approaches have similar results when the number of bins is used. However,

when comparing the two approaches by packing efficiency, CBS outperforms HSS for over 44% of the

problem instances. When coupling these observations with the difference in runtimes between the two

approaches, one can conclude that CBS is a practical and effective alternative to HSS for 3BPP.

For the case of SSS, CBS performed significantly better than SSS for almost 50% (154 out of 320) of

the problem instances when comparing solutions according to the number of bins, and for over 85%
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(272 out of 320) of the problem instances when comparing solutions according to packing efficiency.

Although SSS has lower runtimes than CBS, as shown in Table 6.8, the fact that CBS outperforms

SSS for almost all 3BPP problem instances, shown in Table 6.7, and that the difference is statistically

significant for the majority of problem instances, as shown in Table 6.9, indicates that CBS is a practical

and effective alternative to SSS for 3BPP.

The CBS approach is compared with the single-space searches HSS and SSS in terms of the number of

bins, packing efficiency and runtimes for each of the 1BPP, 2BPP, and 3BPP problem domains. Whilst

SSS consistently has the lowest runtimes across the three domains, CBS and HSS frequently find better

solutions, both in terms of the number of bins and packing efficiency. For all three domains CBS finds,

on average, equal or better solutions than HSS. In cases where CBS finds equal quality solutions to

HSS, it does so in less time, making it the more effective choice.

6.2 ANALYSIS OF THE APPROACH

This section presents an analysis of the CBS approach for each of the 1BPP, 2BPP and 3BPP problem

domains. An analysis of how the CBS approach moves through the search space, relative to the single-

space searches HSS and SSS, is conducted by means of plots of the packing efficiency curves of the

searches. The aim is to examine convergence of the CBS compared to SSS and HSS when it performs

better and when it performs worse than these searches to better explain its performance.

Each of the figures presented in this section show the change in wastage values over the duration of the

search for the SSS, HSS and CBS approaches. The results shown are for the best out of 30 runs, using

the equal or improving (EI) move acceptance criterion (described in Section 5.1.1). The instances were

selected such that, for each of the three domains, there is an instance where CBS performs better than

both HSS and SSS, an instance where CBS performs worse than HSS and an instance where CBS

performs worse than SSS. These cases were verified by the z-test for each problem instance.

6.2.1 CBS Performing Better than HSS and SSS

Figure 6.1 shows the change in wastage values over the duration of the search (number of iterations)

for the 1BPP Falkenauer_T t501_19 problem instance, where CBS performed better than both HSS and

SSS. From the figure it can be seen that, once all items have been packed, i.e. the wastage value is less

than one, SSS gets stuck in a local optimum and is unable to escape, thus converging prematurely. HSS
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Figure 6.1. Change in packing efficiency for the 1BPP Falkenauer_T t501_19 problem instance.

begins by making a large improvement, which is then followed by several smaller improvements. A

moderately large improvement is then made (at ∼1500 iterations) taking the search to a local optimum.

Although this new local optimum is worse than that found by SSS, HSS is able to escape its optimum

after some time (∼10000 iterations) and move the search (by means of a large improvement) to a new

local optimum, one which is better than that found by SSS. However, HSS is unable to escape its new

optimum and converges prematurely. In contrast, CBS makes several relatively large, consecutive

improvements for approximately the first 5000 iterations, at which point the search gets stuck in a

local optimum. After a further 10000 iterations CBS is able to escape this local optimum by making a

moderate improvement, thereby moving the search to a new local optimum. CBS is unable to escape

this new local optimum and converges prematurely. It should be noted that the local optimum at which

CBS converges to is of better quality than that found by either SSS or HSS. Additionally, SSS and

HSS converged prematurely quicker than CBS.

Figure 6.2 shows the change in wastage values over the number of iterations for the cl_04_080_07

2BPP problem instance, where CBS performed better than both HSS and SSS. From the figure it

can be seen that once all items have been placed SSS gets stuck in a local optimum from which it

is unable to escape, converging prematurely. HSS is able to make some initial small improvements

before getting stuck in a local optimum. After some time HSS is able to escape this local optimum to a

new slightly better optimum from which it is unable to escape. In contrast, CBS makes several small

improvements before getting stuck in a local optimum (which is worse than the initial local optimum

found by HSS). However, CBS is able to quickly escape to a global optimum.
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Figure 6.2. Change in packing efficiency for the 2BPP cl_04_080_07 problem instance, under equal
or improving move acceptance.

Figure 6.3. Change in packing efficiency for the 3BPP cl6_n100_01 problem instance, under equal or
improving move acceptance.

The change in wastage values over the number of iterations are shown in Fig. 6.3 for the 3BPP

cl6_n100_01 problem instance, where CBS performed better than both HSS and SSS. From the figure

it can be seen that SSS makes a small improvement after which it gets stuck in a local optimum and

converges prematurely (within 10000 iterations). HSS starts with a better fitness value than SSS and

makes several small improvements before making a comparatively large improvement early on in the

search (within 2500 iterations). HSS continues to make several small improvements over the duration

of the search before getting stuck in a local optimum. CBS initially makes a large improvement in the
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fitness, surpassing both SSS and HSS, followed by consecutive and increasingly smaller improvements

until it gets stuck in a local optimum (at ∼2500 iterations). CBS is able to escape this local optimum

(at∼10000 iterations) making further small improvements before getting stuck in a new local optimum

at which it converges prematurely.

6.2.2 CBS Performing Worse Than HSS

Figure 6.4. Change in packing efficiency for the 1BPP Scholl_1 N3C2W2_N problem instance.

Figure 6.4 reports the change in wastage values over time for the 1BPP Scholl_1 N3C2W2_N problem

instance. For this instance CBS performed worse than HSS. The figure shows that, as before, once all

items have been packed, the SSS approach gets stuck in a local optimum from which it is unable to

escape, before converging prematurely. The CBS approach begins with a single very large improvement,

taking the search to a local optimum, which is worse than that at which SSS converged to. After

approximately 13500 iterations, CBS makes a small improvement enabling it to move the search to

a new local optimum, one which is of equal quality to that found by SSS. CBS is unable to escape

this new local optimum and converges prematurely. In contrast, HSS makes two large improvements

early on in the search (within 1000 iterations), taking it to a local optimum of equal quality to that

found by SSS and CBS. At approximately 10000 iterations HSS makes a moderate improvement,

enabling it to escape to a new local optimum, one which is of better quality than that found by SSS

and CBS. HSS is unable to escape this new local optimum and converges prematurely. HSS and SSS

converge prematurely quicker than CBS, however HSS converges to a better value than either SSS or

CBS.
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Figure 6.5. Change in packing efficiency for the 2BPP cl_10_060_03 problem instance, under equal
or improving move acceptance.

Figure 6.5 shows the change in fitness values over the duration of the search for the 2BPP cl_10_060_03

problem instance. CBS performed worse than HSS for this problem instance. The figure shows that,

once again, SSS gets stuck in a local optimum, once all items have been packed, from which it is unable

to escape. CBS makes rapid initial improvements before quickly getting stuck in a local optimum. It is

able to quickly escape this optimum before getting stuck in another local optimum. It is again able to

quickly escape the local optimum before getting stuck in a final local optimum from which it is unable

to escape. HSS makes several rapid improvements initially before getting stuck in a local optimum

(of better quality than that of HSS). It remains stuck in this optimum for a long period of time before

finally escaping to a new optimum from which it is unable to escape.

The change in fitness values over the duration of the search for the 3BPP problem instance cl6_n200_02

are shown in Fig. 6.6. CBS performed worse than HSS for this problem instance. The figure shows

that in the case of SSS, once all items have been packed (i.e. fitness value < 1.0) the search becomes

stuck in a local optimum and is unable to escape. The CBS approach initially makes several small

improvements before making a large improvement (at ∼1000 iterations). The search then continues to

make several small improvements before getting stuck in a local optimum at approximately the same

fitness value as SSS. In contrast, the HSS approach makes a large initial improvement, taking it to

approximately the same value at which both SSS and CBS converged. However, at approximately

7000 iterations HSS makes a large improvement, escaping to a new, better local optimum at which it

converges prematurely.
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Figure 6.6. Change in packing efficiency for the 3BPP cl6_n200_02 problem instance, under equal or
improving move acceptance.

6.2.3 CBS Performing Worse Than SSS

Figure 6.7. Change in packing efficiency for the 1BPP Scholl_2 N4W2B3R3 problem instance.

Figure 6.7 shows the change in wastage values over the number of iterations for the 1BPP Scholl_2

N4W2B3R3 problem instance. For this problem instance, CBS performed worse than SSS. From

the figure it can be seen that both CBS and HSS initially make relatively large improvements in the

wastage, with the improvements becoming smaller over time, until the searches reach local optima.

The HSS approaches reaches this optimum at approximately 4000 iterations, but soon escapes to a new

local optimum of better quality (at ∼7000 iterations). The HSS approach is unable to make further

improvements and converges prematurely. CBS begins similarly to HSS, making several improvements
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before reaching a local optimum at approximately 5000 iterations. This optimum is of worse quality

than that initially found by HSS. CBS remains stuck in this local optimum for a long period of time

(∼17000 iterations) before finally escaping to a new local optimum (at ∼22000 iterations), at which it

again becomes stuck for a long period, only being able to escape to another optimum after ∼24000

iterations. CBS remains at this optimum, which is of equal quality to that found by HSS, until the

search terminates. SSS on the other hand is able to quickly find the global optimum solution (within

∼1000 iterations).

Figure 6.8. Change in packing efficiency for the 2BPP cl_01_060_09 problem instance, under equal
or improving move acceptance.

Figure 6.8 shows the change in wastage values over the duration of the search for the 2BPP

cl_01_060_09 problem instance. CBS performed worse than SSS for this problem instance. From

the figure it can be seen that both CBS and HSS make rapid initial improvements. HSS briefly gets

stuck in a local optimum early on (within 50 iterations) but is able to quickly escape to a better local

optimum from which it cannot escape. CBS, on the other hand, continues to make smaller gradual

improvements until it finds the global optimum. SSS in contrast rapidly finds the global optimum

(within 150 iterations) once all items have been packed.

Figure 6.9 shows the changes in wastage values for the 3BPP cl4_n50_02 problem instance. CBS

performed worse than SSS for this problem instance. It is worth noting that whilst the z-test showed

CBS to have a significantly higher fitness value than SSS for this problem instance, there was no

3BPP problem instance for which the best run using SSS performed better than the best run using

CBS. For SSS the figure shows a similar pattern to that of the cl6_n200_02 problem instance in
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Figure 6.9. Change in packing efficiency for the 3BPP cl4_n50_02 problem instance, under equal or
improving move acceptance.

that the search becomes stuck in a local optimum and converges prematurely once all the items have

been assigned. HSS makes several large improvements within the first 1000 iterations, reaching

the same fitness value at which SSS converged. At approximately 10500 iterations HSS escapes by

making a small improvement to get to a new local optimum at which it remains stuck. CBS makes

one large improvement early on in the search, reaching a local optimum which it soon escapes (after

approximately 1000 iterations). In escaping, CBS reaches a new local optimum at which it remains,

converging prematurely. It should be noted that both HSS and CBS converge to the same fitness value,

with CBS reaching this value significantly faster than HSS.

6.2.4 Summary of Analyses

For the chosen problem instances where CBS performs better than both HSS and SSS, Figs. 6.1, 6.2

and 6.3 show that the CBS approach makes large initial improvements, avoiding getting stuck in poor

quality local optima early on in the search. In contrast, for the same problem instances the HSS and

SSS approaches get stuck in local optima early on in the search.

For the problem instances where CBS performs worse than HSS or SSS the figures show that the

CBS approach gets stuck in local optima early on in the search and has difficulty escaping, frequently

converging prematurely. For the same problem instances, HSS and SSS also get stuck early on in the

search but are able to escape sooner than CBS.

Department of Computer Science
University of Pretoria

56

 
 
 



CHAPTER 6 RESULTS AND DISCUSSION

6.3 CBS SENSITIVITY TO MOVE ACCEPTANCE CRITERIA

This section investigates the sensitivity of CBS to different move acceptance criteria. It is not necessary

to test the sensitivity of CBS to different perturbation operators as the operators used are the best known

operators for bin packing cited in the literature. These operators are discussed in Section 5.2.1. The

performance of three move acceptance criteria commonly used in the literature is compared for CBS

for each of the problem instances used in Section 6.2. These criteria are the equal or improving (EI),

only improving (OI) and adaptive iteration limited threshold accepting (AILTA) [73]. The problem

instances were chosen both to have a diverse set of characteristics as well as to have an instance where

CBS performed better than both HSS and SSS, an instance where CBS performed worse than HSS and

an instance where CBS performed worse than SSS for each of the three problem domains. The values

shown for all figures in this section are for the best out of 30 runs.

6.3.1 Overview of Move Acceptance Criteria

As described in Section 5.1.1, the EI criterion accepts moves that lead to solutions of equal or better

quality, whilst the OI criterion only accepts moves that result in solutions of strictly better quality. The

AILTA criterion begins as an EI acceptance, but switches to a threshold accepting after a specified

number of consecutive rejections [73]. A more in-depth explanation of the AILTA criterion, together

with pseudocode for the procedure, is provided in Section 5.1.1.

6.3.2 Move Acceptance Criteria - 1BPP

Figure 6.10 shows the change in wastage values for the Falkenauer_T t501_19 problem instance. The

figure shows the run using EI to perform better than either the OI or AILTA runs. From the figure it can

be seen that for all three move acceptance criteria the CBS approach makes several large improvements

early on in the search, before reaching a local optimum (at ∼7000 iterations). It is interesting to note

that all three acceptance criteria reach the same local optimum at approximately the same time. The

AILTA run takes the longest to escape this local optimum, doing so at approximately 33000 iterations

through a large improvement to the wastage value. In escaping, the AILTA-based search reaches a new

local optimum from which it escapes (after ∼10000 iterations) by means of a small improvement. The

CBS remains at this wastage value for the remainder of the search. The AILTA run was stopped after

50000 iterations in order to limit the computational cost, however it can be seen that the search was

still making improvements and likely will have converged to a better solution had it been allowed to
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Figure 6.10. Change in packing efficiency for the 1BPP Falkenauer_T t501_19 problem instance, for
different move acceptance criteria.

continue.

The run employing the OI move acceptance criterion escapes the first local optimum (which all three

runs initially converge to) at approximately 26000 iterations (∼7000 iterations sooner than the AILTA

run) by means of a large improvement to the wastage value. This improvement takes the search to a

new local optimum at which it converges prematurely. It is to be noted that the final wastage values of

the AILTA and OI runs are of equal quality.

The EI run escapes the first optimum the quickest, doing so at approximately 16000 iterations. This is

achieved through a large improvement, which is followed by two small improvements, leaving the

search at a new local optimum. The CBS approach remains at this optimum for the remainder of the

search. It should be noted that the final wastage value of the EI run is of better quality than that of the

AILTA and OI runs.

The changes in wastage values for the 1BPP Scholl_1 N3C2W2_N problem instance are shown in

Fig. 6.11, from which it can be seen that the run employing AILTA performs the best. Figure 6.11

shows that for all three move acceptance criteria the CBS approach makes several large improvements

early on in the search, but quickly reaches local optima (within ∼1000 iterations). The OI run is able

to rapidly escape this initial optimum, but gets stuck in a new local optimum, at which it converges

prematurely.
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Figure 6.11. Change in packing efficiency for the 1BPP Scholl_1 N3C2W2_N problem instance, for
different move acceptance criteria.

The EI run reaches the same initial optimum as that of the OI run, but takes considerably longer to

escape (∼14000 iterations). In escaping the search reaches a new local optimum, at which it converges

prematurely. The final optimum found by the OI run is of equally to that found be the EI run.

The AILTA run initially converges to a local optimum (of equal quality to the final optimum found by

the OI and EI runs), but is able to escape after a considerable amount of time (∼22000 iterations). The

escape from the initial optimum is achieved by means of a large improvement to the packing efficiency.

This improvement moves the search to a new local optimum, at which it converges prematurely.

The search was assumed to have converged, and therefore stopped, after 5000 iterations without any

improvements.

Figure 6.12 shows the changes in wastage values for the 1BPP Scholl_2 N4W2B3R3 problem instance.

The figure shows that for this problem instance the run using EI move acceptance is the best. From

the figure one can see that for the OI run the search rapidly makes several large improvements before

quickly reaching a local optimum (within ∼1000 iterations). However, the search is able to escape this

local optimum after a relatively short period of time (∼5000 iterations) and reach a new local optimum,

from which it is unable to escape and at which it converges prematurely.

The AILTA run reaches a local optimum almost immediately, but quickly escapes (with ∼2000

iterations) through a series of small consecutive improvements until a new local optimum is reached.
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Figure 6.12. Change in packing efficiency for the 1BPP Scholl_2 N4W2B3R3 problem instance, for
different move acceptance criteria.

Once again the search is able to quickly escape the local optimum, this time through a moderate

improvement followed shortly by a large improvement, leaving the search at a new local optimum

where it converges prematurely.

The EI run begins with a series of moderate improvements at almost regular intervals before reaching

its first local optimum (at∼5000 iterations), one which is marginally better than the initial optimum for

the OI run. The EI run remains at this optimum for a long period of time (∼17000 iterations) before

making a small improvement, thereby escaping to a new local optimum (which is of equal quality

to that at which the OI run converged). Again the EI run remains at the local optimum for a long

period of time (∼24000 iterations). A large improvement is then made, moving the search to a new

local optimum, where it stays for the remainder of the search. It should be noted that all the optima

encountered by the AILTA run are of worse quality than any encountered by the OI or EI runs.

6.3.2.1 Move Acceptance Criteria - 2BPP

Figure 6.13 shows the change in wastage values for the 2BPP cl_04_080_07 problem instance, where

it can be seen that the EI run is the best performing. The figure shows that all three move acceptance

criteria follow the same pattern, and have very similar values, up to approximately 6000 iterations. At

this point the OI run converges prematurely whilst the AILTA run continues along its local optimum

before also converging prematurely at approximately 8500 iterations. The EI run however, makes a

Department of Computer Science
University of Pretoria

60

 
 
 



CHAPTER 6 RESULTS AND DISCUSSION

Figure 6.13. Change in packing efficiency for the CBS approach using different move acceptance
criteria for the 2BPP cl_04_080_07 problem instance.

small improvement, briefly moving to a new local optimum (for ∼1400 iterations) followed by a very

large improvement, taking the search to the global optimum.

Figure 6.14. Change in packing efficiency for the CBS approach using different move acceptance
criteria for the 2BPP cl_10_060_03 problem instance.

The change in wastage values for the 2BPP cl_10_060_03 problem instance are shown in Fig. 6.14.

The figure shows that EI is the best run. As with the previous problem instance (cl_04_080_07) all

three runs follow a similar pattern. All three make large, rapid improvements to the fitness values

within the first 200 iterations. From there EI flattens out into a local optimum which it soon escapes.

EI continues to explore local optima for different lengths of time (iterations) before escaping them.
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This happens up until approximately 3500 iterations where EI enters a local optimum that it cannot

escape from, where it converges prematurely.

Figure 6.15. Change in packing efficiency for the CBS approach using different move acceptance
criteria for the 2BPP cl_01_060_09 problem instance.

Figure 6.15 shows the change in wastage values for the 2BPP cl_01_060_09 problem instance. The

figure shows all three runs converge to the same value, but the EI run does so the quickest. In the

figure it can be seen that all three runs follow a similar pattern, making a few large improvements

in the early stages of the search (within the first 100 iterations). All three runs continue to make

small to moderate improvements over the next 100 iterations before each reaching respective local

optimum. After varying periods of time all three runs are able to escape to the global optimum. The OI

run enters the worst local optimum (out of the three runs) and remains there for approximately 1500

iterations before escaping to the global optimum (at ∼1800 iterations). The AILTA run enters the best

local optimum (out of the three runs) and makes a further small improvement after approximately 200

iterations. The search remains at this new optimum for approximately 600 further iterations before

making the final large improvement to reach the global optimum (at ∼1000 iterations). The EI run

enters an initial local optimum of equal quality to that of the EI run, but makes a small improvement

(after∼250 iterations) taking the search to an area of equal quality to that of the AILTA run. The search

remains at this optimum for approximately 300 iterations before making the final large improvement

to reach the global optimum (at ∼800 iterations). Thus, whilst all three runs for this problem instance

reach the global optimum, the EI run uses the fewest iterations to do so.
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6.3.2.2 Move Acceptance Criteria - 3BPP

Figure 6.16. Change in packing efficiency for the CBS approach using different move acceptance
criteria for the 3BPP cl6_n100_01 problem instance.

The changes in wastage value for the 3BPP cl6_n100_01 problem instance are shown in Fig. 6.16 The

figure shows the EI run to be the best of the three. The figure illustrates that the AILTA run initially

makes a moderately large improvement, followed by several smaller improvements, before reaching

a local optimum (at ∼1000 iterations). The AILTA run remains at this optimum for a long period of

time (approximately 30000 iterations) before making a small improvement, moving the search to a

new local optimum. The search remains at this optimum until just before the end of the search (for

∼20000 iterations) where it makes a final moderate improvement before terminating (all simulations

were conducted imposing a maximum limit of a total of 50000 iterations).

The OI run makes a few large improvements within the first∼500 iterations, continuing with numerous

small improvements over the next ∼3500 iterations, at which point the search enters a local optimum.

Being unable to escape this local optimum, the OI run converges prematurely.

As with the other runs, the EI run makes several large improvements within the first ∼500 iterations.

These large improvements are then followed by numerous small improvements up until approximately

4000 iterations (with a single moderately sized improvement being made at ∼2500 iterations). At

approximately 4000 iterations the search enters its first local optimum, at which it remains for approx-

imately 6000 iterations. A further series of smaller improvements are then made before the search

enters a new local optimum at approximately 13000 iterations. The search converges prematurely,

being unable to escape this new local optimum.
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It is worth noting that after approximately 500 iterations, there is a distinct separation between the

fitness curves of the three runs, and that no two fitness curves overlap. The AILTA run has the worst

fitness value, followed by the OI run, with the EI run having the best fitness value. This shows

that for this problem instance, although using EI as a move acceptance criterion leads to premature

convergence, it also enables the search to find solutions with less wasted space across the bins (i.e.

ones with better fitness values, as the fitness is a measure of the wasted space across the bins in a given

solution).

Figure 6.17. Change in packing efficiency for the CBS approach using different move acceptance
criteria for the 3BPP cl6_n200_02 problem instance.

Figure 6.17 shows the change in wastage values for the 3BPP cl6_n200_02 problem instance. The

figure shows the EI run to be the best of the three. From the figure one can see that the run for the

AILTA move acceptance criterion initially makes a large improvement, but quickly reaches a plateau

in the fitness values (within 500 iterations). However, the search is able to continue making small

improvements around this value until at approximately 3000 iterations a large improvement is made,

moving the search to a new local optimum. The AILTA-based CBS search is unable to make sufficient

further improvements in order to escape the new area of the search space and ultimately the search

converges prematurely.

The EI run follows a similar pattern to the AILTA run, making large improvements early on in the

search before reaching a plateau (again, within 500 iterations). However, the first plateau reached by

the EI run is of better quality (i.e. lower fitness value) than that of the AILTA run. Furthermore, the

EI run escapes the plateau in a much shorter time (within ∼1000 iterations as opposed to the ∼3000
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iterations in the AILTA run), and escapes to a local optimum of better quality than that of either of the

other two runs.

In contrast to the EI and AILTA runs, the OI run begins with a series of small improvements for the first

approximately 1500 iterations, at which point the search makes several large improvements, before

reaching a small plateau in the fitness value. The quality of this plateau is of equal quality to that

initially encountered by the AILTA run. However, the OI run rapidly escapes the plateau (within

∼500 iterations) to reach a local optimum of equal quality to that at which the AILTA run converged.

Similarly, the OI run is unable to escape this local optimum and also converges prematurely.

Figure 6.18. Change in packing efficiency for the CBS approach using different move acceptance
criteria for the 3BPP cl4_n50_02 problem instance.

The changes in wastage values for the 3BPP cl4_n50_02 problem instance are shown in Fig. 6.18,

where it can be seen that the run using EI move acceptance is the best. From Fig. 6.18 it can be seen

that the run using the AILTA move acceptance criterion initially makes one or two large improvements,

plateaus briefly, and continues making improvements to the fitness value, with the improvements

gradually growing in magnitude. At approximately 500 iterations the search reaches a local optimum,

from which it is unable to escape and converges prematurely.

The OI and EI runs follow identical patterns to one another, making very large improvements in

the beginning of the search, before reaching a small plateau that is quickly escaped (within ∼200

iterations). Each of the OI and EI runs escape this initial plateau into local optima of differing quality,

with the EI run reaching a point of marginally better quality than that of the OI run. Both the OI and EI
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runs converge prematurely, with the searches being unable to escape their new respective local optima.

It is worth noting that the AILTA run reaches a local optimum of notably worse quality than that of

either the OI or EI runs.

6.3.3 Discussion

For 1BPP the fitness curves for the different move acceptance criteria (Figs. 6.10, 6.11 and 6.12)

showed that whilst the EI criterion tends to be the best choice when applying CBS (as in the case of

the Falkenauer_T t501_19 and Scholl_2 N4W2B3R3 1BPP problem instances), it is not always the

best choice, as evidenced by the Scholl_1 N3C2W2_N 1BPP problem instance. The deviation from the

general trend of EI being the best acceptance criterion for 1BPP problem instances indicates that the

CBS approach is sensitive, to some degree, to the choice of move acceptance criterion.

The trend of EI being the most effective choice of acceptance criterion for CBS is again seen in the

move acceptance fitness plots for the 2BPP problem instances (Figs. 6.13, 6.14 and 6.15). Although

the shape of the fitness curves differ for each problem instance, the three different move acceptance

runs initially follow the same trend (for the same problem instance). For the cl_04_080_07 problem

instance the EI run is able to find the global optimum, whilst the two other runs merely converge

prematurely. On the cl_01_060_09 problem instance all three runs found the global optimum, however

the EI run did so in the least number of iterations. The third problem instance (cl_10_060_03) showed

that, although all three runs converged prematurely, the EI run took longer to converge and found better

quality solutions during the search than either of the two other runs. At no point in the search is the

fitness curve of the EI run worse than either of the two other runs.

As with the other problem dimensions, the 3BPP move acceptance fitness curves (Figs. 6.16, 6.17

and 6.18) indicate the greater effectiveness of using the EI acceptance criterion over either the OI or the

AILTA criteria. Problem instances cl6_n100_01 and cl6_n200_02 showed that, in spite of converging

prematurely, the EI run found solutions of a considerably greater quality than the other two runs. As

with the 2BPP cl_10_060_03 problem instance, for both problem instances, there is no point at which

the EI run has a worse fitness value than either of the two other runs. The fitness curves for problem

instance cl4_n50_02 (Fig. 6.18) show a negligible difference between the EI and OI runs, however

both runs have considerably better fitness values than the AILTA run.
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In conclusion, when considering the effectiveness of the three different move acceptance criteria (EI,

OI and AILTA) for the CBS approach, across all three problem domains (1BPP, 2BPP and 3BPP), one

can see a trend of EI being the most effective choice for CBS. However, there are instances where

EI is not the best choice (e.g. the 1BPP Scholl_1 N3C2W2_N problem instance). It is interesting to

note that the somewhat sophisticated AILTA criterion is generally the worst one to use. The fact that

the performance of the CBS approach differs according to the choice of move acceptance criterion

indicates that the approach is sensitive to the move acceptance criterion used.

6.4 COMPARISON WITH PREVIOUS BI-SPACE APPROACHES

This section presents a comparison of the CBS approach with the previous bi-space search approaches

BSS and CSA (discussed in Section 2.4). First a comparison of bi-space search approaches is made

using the number of bins. This is followed by a comparison according to average runtimes per problem

instance. The comparisons are only made for 1BPP as neither BSS nor CSA were implemented for

2BPP or 3BPP.

Table 6.10 presents the number of 1BPP problem instances solved to optimum or near-optimum for

the CBS approach and the previous bi-space search approaches BSS [8] and CSA [7]. From the table

it can be seen that CBS outperforms both the CSA and BSS approaches for all three Scholl datasets.

In addition, CBS outperforms BSS for the Falkenauer datasets and has equivalent performance to

BSS for the Hard28 dataset. Although CBS does not outperform BSS for the Schwerin and Waescher

datasets, the difference in performance is small, being at most three problem instances.

Table 6.10. Number of problem instances solved to optimum by bi-space search approaches. The best
results are reported in bold.

CBS BSS [8] CSA [7]

Opt. Opt. - 1 Sum Opt. Opt. - 1 Sum Opt. Opt. - 1 Sum
Falkenauer_T 1 79 80 0 9 9 - - -
Falkenauer_U 50 30 80 35 37 72 - - -
Scholl_1 695 25 720 671 44 715 673 44 717
Scholl_2 463 16 479 408 41 449 428 40 468
Scholl_3 8 2 10 5 5 10 6 4 10
Schwerin_1 97 3 100 100 0 100 - - -
Schwerin_2 98 2 100 100 0 100 - - -
Hard28 5 23 28 5 23 28 - - -
Waescher 12 5 17 12 5 17 - - -
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The average runtime (in seconds) per problem instance for each 1BPP dataset is presented in Table 6.11.

From the table it can be seen that CBS has the lowest average runtime for all datasets, except for the

Schwerin_1 dataset for which it is approximately half a second slower than BSS. As was pointed out

by the authors Beckedahl and Pillay [8], CSA may be an improvement over BSS, but the increase

in runtimes relative to the increase in performance makes CSA an impractical choice over BSS. In

contrast, however, CBS not only has improved performance over both BSS and CSA (as indicated in

Table 6.10), but the approach also has the lowest average runtimes for all datasets, making it the most

practical bi-space search approach for solving 1BPP instances.

Table 6.11. Average runtime (in seconds) per 1BPP problem instance for each dataset. The best results
are reported in bold.

Problem Set CBS BSS [8] CSA [7]

Falkenauer_T 8.54 22.28 -
Falkenauer_U 17.75 81.87 -
Scholl_1 4.45 26.58 817.50
Scholl_2 3.26 5.44 1589.80
Scholl_3 8.89 14.34 1761.10
Schwerin_1 0.74 0.22 -
Schwerin_2 1.29 1.86 -
Hard28 5.75 16.34 -
Waescher 2.32 5.43 -

6.5 COMPARISON WITH STATE-OF-THE-ART

This section presents an empirical comparison of the CBS approach to the state-of-the-art approaches

taken from the literature. The comparisons are made using the number of bins in the solutions found

by the searches. The comparisons are made for each of the 1BPP, 2BPP and 3BPP problem domains,

in order.

Table 6.12 reports the number of 1BPP problem instances that were solved to the optimum number

of bins for the state-of-the-art solution space searches and hyper-heuristics, namely Perturbation-

SAWMBS (P.-SAWMBS) [25], grouping genetic algorithm with controlled gene transmission (GGA-

CGT) [26], consistent neighbourhood search for bin packing (CNS_BP) [27] and simulated annealing

hyper-heuristic (SAHH) [36] and the CBS approach. These approaches are described in detail in

Sections 3.1.1 and 3.1.2. From Table 6.12 it can be seen that the CBS approach outperforms the SAHH

hyper-heuristic approach for the Scholl_3 dataset but does not outperform any of the state-of-the-art
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Table 6.12. Number of 1BPP problem instances solved to optimum. The best results are reported in
bold.

Problem Set P.-SAWMBS GGA-CGT CNS_BP SAHH CBS

Falkenauer_T (80) 79 80 80 76.5 1
Falkenauer_U (80) 80 80 80 79.8 50
Scholl_1 (720) 720 720 720 697.5 695
Scholl_2 (480) 480 480 480 473.4 463
Scholl_3 (10) 10 10 10 7.3 8
Schwerin_1 (100) 100 100 100 - 97
Schwerin_2 (100) 100 100 100 - 98
Hard28 (28) 5 16 25 - 5
Wäscher (17) 16 16 17 - 12

approaches for any of the remaining datasets. Future work will investigate why this is the case as for

2BPP and 3BPP there are cases where CBS has equal or better performance than state-of-the-art.

Tables 6.13 and 6.13 reports the average number of bins found by CBS and the state-of-the-art for

2BPP problem instance classes 1-5 and 6-10 respectively. As was done previously, and in order to

remain consistent with the literature, the reported values are the average number of bins across the ten

instances for each subclass of problem instance. The state-of-the-art approaches are the Biased Random

Key Genetic Algorithm (BRKGA) [58], the GRASP Variable Neighbourhood Descent (GVND) [57],

the Set-Covering-Based Heuristic (SCH) [53], the Guided Local Search (GLS) [54], Tabu Search

(TS2) [51], a heuristic approach (HBP) [52] and a Hyper-heuristic Algorithm for the Oriented 2BPP

(HHA-O) [60]. These approaches are described in detail in Chapter 2.

From the tables one can see that CBS is the best performing or tied for best performing approach for

problem instance classes 1,2 and 9. Of the remaining subclasses, CBS is the second best performing for

7, being only 0.1 bins away from the best approach. That leaves a total of 3 subclasses for which CBS

performs worse than second. The majority of the subclasses for which CBS is not best performing are

those for which n = 40 or n = 100. Future work will investigate why these types of problem instances

present a challenge for CBS.

The CBS approach is compared with state-of-the-art techniques for each of the 1BPP, 2BPP and 3BPP

problem domains. For the simpler 1BPP domain the CBS approach is not found to outperform the

state-of-the-art techniques. However, for the more difficult 2BPP and 3BPP domains the CBS approach
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Table 6.13. Number of bins, averaged across ten instances, obtained for 2BPP problem instance classes
1-5. The best results are reported in bold.

Class Bin size n LB BRKGA GVND SCH GLS TS3 HBP HHA-O CBS

1 10x10 20 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
40 13.4 13.4 13.4 13.4 13.4 13.5 13.4 13.6 13.4
60 19.7 20.0 20.0 20.0 20.1 20.1 20.1 20.2 20.0
80 27.4 27.5 27.5 27.5 27.5 28.2 27.5 27.7 27.4

100 31.7 31.7 31.7 31.7 32.1 32.6 31.8 32.3 31.7
2 30x30 20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

40 1.9 1.9 1.9 1.9 1.9 2.0 1.9 2.0 1.9
60 2.5 2.5 2.5 2.5 2.5 2.7 2.5 2.6 2.5
80 3.1 3.1 3.1 3.1 3.1 3.3 3.1 3.2 3.1

100 3.9 3.9 3.9 3.9 3.9 4.0 3.9 4.0 3.9
3 40x40 20 5.1 5.1 5.1 5.1 5.1 5.5 5.1 5.4 5.1

40 9.2 9.4 9.4 9.4 9.4 9.7 9.5 9.7 9.4
60 13.6 13.9 13.9 13.9 14.0 14.0 14.0 14.4 13.9
80 18.7 18.9 18.9 18.9 19.1 19.8 19.1 19.8 19.0

100 22.1 22.3 22.3 22.3 22.6 23.6 22.6 23.3 22.3
4 100x100 20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

40 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9
60 2.3 2.5 2.5 2.5 2.5 2.6 2.5 2.7 2.5
80 3.0 3.1 3.1 3.2 3.3 3.3 3.3 3.4 3.1

100 3.7 3.7 3.8 3.8 3.8 4.0 3.8 3.9 3.8
5 100x100 20 6.5 6.5 6.5 6.5 6.5 6.6 6.5 6.6 6.5

40 11.9 11.9 11.9 11.9 11.9 11.9 11.9 12.4 11.9
60 17.9 18.0 18.0 18.0 18.1 18.2 18.0 18.6 18.0
80 24.1 24.7 24.7 24.7 24.9 25.1 24.8 25.3 24.7

100 27.9 28.1 28.2 28.2 28.8 29.5 28.7 29.4 28.3

is found to be scalable, having comparable performance to the state-of-the-art techniques and in some

cases outperforming them.
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Table 6.14. Number of bins, averaged across ten instances, obtained for 2BPP problem instance classes
6-10. The best results are reported in bold.

Class Bin size n LB BRKGA GVND SCH GLS TS3 HBP HHA-O CBS

6 300x300 20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.5 1.6 1.7 1.7 1.8 1.9 1.8 1.9 1.7
60 2.1 2.1 2.1 2.1 2.2 2.2 2.1 2.3 2.1
80 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

100 3.2 3.3 3.4 3.4 3.4 3.4 3.4 3.5 3.4
7 100x100 20 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.7 5.5

40 10.9 11.1 11.1 11.1 11.3 11.4 11.1 11.5 11.2
60 15.6 15.8 15.9 15.8 15.9 16.2 16.0 16.1 15.8
80 22.4 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2

100 26.9 27.1 27.1 27.1 27.5 27.7 27.4 27.6 27.1
8 100x100 20 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.9 5.8

40 11.2 11.3 11.3 11.3 11.4 11.4 11.3 11.5 11.4
60 15.9 16.1 16.1 16.2 16.3 16.2 16.2 16.6 16.1
80 22.3 22.4 22.4 22.4 22.5 22.6 22.6 22.7 22.3

100 27.4 27.8 27.8 27.9 28.1 28.4 28.0 28.4 27.7
9 100x100 20 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3

40 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8
60 43.7 43.7 43.7 43.7 43.7 43.8 43.7 43.7 43.7
80 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7

100 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5
10 100x100 20 4.2 4.2 4.2 4.2 4.2 4.3 4.3 4.3 4.2

40 7.4 7.4 7.4 7.4 7.4 7.5 7.4 7.6 7.4
60 9.8 10.0 10.0 10.1 10.2 10.4 10.2 10.6 10.3
80 12.3 12.8 12.9 12.8 13.0 13.0 13.0 13.4 13.0

100 15.3 15.8 15.9 15.9 16.2 16.6 16.2 16.4 15.9
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Table 6.15. Ratio of number of bins to the lower bound for 3BPP. The best results are reported in bold.

Class Bin Size n L2 BRKGA TS3 GVND TS2P GLS CBS

1 100x100x100 50 12.5 1.072 1.072 1.072 1.072 1.072 1.036
100 23.2 1.060 1.060 1.060 1.064 1.064 1.056
150 37.2 1.049 1.058 1.049 1.066 1.066 1.050
200 47.6 1.050 1.058 1.052 1.056 1.058 1.042

2 100x100x100 50 12.4 1.087 1.087 1.087 - - 1.040
100 24.3 1.062 1.066 1.066 - - 1.062
150 36.0 1.043 1.060 1.051 - - 1.062
200 47.2 1.040 1.055 1.040 - - 1.034

3 100x100x100 50 12.5 1.081 1.081 1.081 - - 1.033
100 23.1 1.049 1.053 1.053 - - 1.085
150 34.8 1.042 1.047 1.044 - - 1.047
200 48.8 1.042 1.056 1.046 - - 1.048

4 100x100x100 50 31.2 1.024 1.024 1.024 1.024 1.024 1.000
100 57.0 1.024 1.024 1.024 1.023 1.024 1.026
150 87.4 1.019 1.019 1.019 1.019 1.019 1.023
200 113.5 1.021 1.021 1.021 1.021 1.023 1.024

5 100x100x100 50 7.9 1.137 1.151 1.137 1.137 1.137 1.062
100 12.0 1.163 1.163 1.163 1.178 1.171 1.170
150 16.0 1.149 1.172 1.155 1.155 1.161 1.149
200 22.0 1.111 1.131 1.111 1.123 1.115 1.143

6 10x10x10 50 10.5 1.115 1.138 1.126 1.126 1.126 1.000
100 18.0 1.080 1.091 1.086 1.091 1.091 1.078
150 26.7 1.078 1.093 1.086 1.086 1.093 1.094
200 36.3 1.066 1.077 1.069 1.077 1.077 1.075

7 40x40x40 50 5.7 1.175 1.190 1.175 1.175 1.175 1.144
100 12.1 1.119 1.147 1.147 1.128 1.128 1.162
150 15.7 1.117 1.175 1.168 1.153 1.153 1.132
200 20.4 1.114 1.138 1.119 1.119 1.119 1.158

8 100x100x100 50 9.4 1.150 1.163 1.150 1.150 1.150 1.013
100 17.2 1.080 1.080 1.080 1.074 1.080 1.079
150 20.4 1.108 1.131 1.131 1.122 1.122 1.131
200 27.1 1.097 1.135 1.116 1.124 1.120 1.164
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CHAPTER 7 CONCLUSIONS AND FUTURE

WORK

This chapter provides a summary of the work presented in this thesis, and discusses the main findings

and contributions. A discussion for each of the objectives outlined in Section 1.2 of Chapter 1 is

presented in Section 7.1. A summary of the overall findings is also presented. Finally, future work is

discussed in Section 7.2.

7.1 SUMMARY AND DISCUSSION

The conclusions drawn for each of the objectives outlined in Section 1.2 of Chapter 1 are presented

below, followed by a summary.

1. To develop an algorithm that searches the solution space to solve bin packing problems:

To achieve this objective, an algorithm, SSS (Solution Space Search), was developed that used an

LS to explore the solution space for bin packing problems. A separate algorithm was developed

for 1BPP, 2BPP and 3BPP. The LS was chosen over more complex optimisation techniques,

such as evolutionary algorithms, due to its lower computational cost because the objective of

this study was not to optimise the performance of the algorithm, but rather to establish the

effectiveness of concurrently searching two search spaces.

2. To develop an algorithm that searches the heuristic space to solve bin packing problems.

This objective was met by developing an algorithm, HSS (Heuristic Space Search), that used an

LS to search through the heuristic space of bin packing problems. The same LS that was used for

the solution space search was used for the heuristic space search with the same rationale behind

the choice of using an LS. A separate algorithm was developed for 1BPP, 2BPP and 3BPP. As

part of the design process, a set of low-level heuristics needed to be selected for each of the
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bin packing problems. These sets of low-level heuristics were created by selecting the most

commonly used low-level heuristics from the literature for each of the bin packing problems.

3. To develop a CBS algorithm that searches the heuristic and solution spaces concurrently.

To meet this objective, a CBS algorithm was developed that used an LS to concurrently search

the heuristic and solution spaces of bin packing problems. The same LS as was used for the

single space searches was used for the CBS for the same reason.

4. To compare the effectiveness of CBS to that of solution space search.

This objective was achieved by applying both the solution space search algorithm and the CBS

algorithm to a large benchmark set of problem instances for 1BPP, 2BPP and 3BPP. For each

problem instance, the CBS was compared to SSS in terms of the total number of bins used by

the solution found, the fitness value (which is a measure of the total wasted space across all bins)

and the computational time taken to find a solution. For the majority of problem instances for

1BPP, 2BPP and 3BPP, CBS found solutions that used fewer bins and had lower fitness values

than SSS. SSS had lower computational times than CBS, but the computational times of CBS

were still low enough to be considered practical.

5. To compare the effectiveness of CBS to that of heuristic space search.

To meet this objective, both CBS and HSS were applied to 1BPP, 2BPP and 3BPP. For each

problem instance, the two algorithms were compared to one another in terms of the total number

of bins used by the solution found, the fitness value and the computational time taken to find a

solution. For 1BPP, 2BPP and 3BPP, CBS found solutions that used fewer bins and had lower

fitness values than HSS for the majority of problem instances. CBS also had lower computational

times than HSS.

This study proposed an approach that concurrently searches the heuristic and solution spaces (i.e.

Concurrent Bi-space Search, CBS). The effectiveness of the approach was evaluated using 1BPP, 2BPP

and 3BPP, and its performance was compared to that of single-space searches. Both the single-space

searches (SSS and HSS) and the CBS used the same LS to search. Experimental results showed that

CBS outperformed both SSS and HSS in terms of the number of bins used and the fitness value for

the majority of problem instances for 1BPP, 2BPP and 3BPP. However, SSS had lower computational

times than CBS, with CBS having lower computational times than HSS. In spite of CBS having higher

computational times than SSS, the runtimes were still found to be within practical limits. For 2BPP and

3BPP, the CBS approach was found to be scalable to more complex problems. Additionally, the CBS

approach was found to be competitive with the state-of-the-art techniques for 2BPP and 3BPP.
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK

7.2 FUTURE WORK

Future extensions to the research presented in this study will involve the following:

• Other optimisation techniques:

This study used an LS for the CBS algorithm due to its lower computational time. However, this

came at the expense of the quality of the solutions found. Future work will investigate using

other approaches, to concurrently search the two spaces in an effort to optimise the performance

of the CBS approach.

• Use of Exploratory Landscape Analysis (ELA) features:

Exploratory Landscape Analysis (ELA) is a technique that can be used to analyse the structure or

landscape of a given search space. Future work will involve using ELA to analyse the landscape

of the heuristic and solution spaces during the search process, in an effort to gain a better

understanding of the neighbourhood structure of the two spaces as part of the concurrent space

search. This information could then be incorporated into the CBS used to search the two spaces.

• Extension to other/additional search spaces:

Whilst this study has focused specifically on concurrently searching the heuristic and solution

spaces, there exist many other search spaces such as the design space in automated design

or the program space in genetic programming. Future work will involve extending the CBS

approach to search in these other spaces, as well as extending the idea of bi-space search to that

of multi-space search (more than two search spaces).

• Extension to other problem domains:

Although this study has been restricted to bin packing problems, the CBS approach is not

restricted to this domains. Hence, future work will investigate the effectiveness of the CBS

approach on other optimisation problems, both combinatorial and continuous.
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