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Abstract  
 
The effects of parameter estimation are examined for the well-known c-chart for attributes 
data. The exact run length distribution is obtained for Phase II applications, when the true 
average number of non-conformities, c, is unknown, by conditioning on the observed number 
of non-conformities in a set of reference data (from Phase I). Expressions for various chart 
performance characteristics, such as the average run length (ARL), the standard deviation of 
the run length (SDRL) and the median run length (MDRL) are also obtained. Examples show 
that the actual performance of the chart, both in terms of the false alarm rate (FAR) and the in-
control ARL, can be substantially different from what might be expected when c is known, in 
that an exceedingly large number of false alarms are observed, unless the number of inspection 
units (the size of the reference dataset) used to estimate c is very large, much larger than is 
commonly used or recommended in practice. In addition, the actual FAR and the in-control 
ARL values can be very different from the nominally expected values such as 0.0027 (or 
ARL0=370), particularly when c is small, even with large amounts of reference data. A 
summary and conclusions are offered.  

 

Introduction  
 
In many applications the quality characteristics studied are categorical and the units or items 
that are inspected are classified simply as 'conforming' (they meet certain specifications) or 
'non-conforming' (they do not meet the specifications) with respect to one or more of the 
specification(s) on some desired characteristics. Such characteristics are often labeled as 
'attributes' and the data collected for these attributes are called 'attributes data' (see for 
example, 5). Statistical process control with attributes data constitutes an important area of 
research and applications; see 7 for a review. 
 
Two widely used attributes control charts are (1) the p-chart (based on the binomial 
distribution), where one works with the fraction or the proportion of non-conforming or 
defective items produced or manufactured in a sample of size n and (2) the c-chart, where one 
works with the total number of defects or non-conformities in an inspection unit. Montgomery 



5 states 'The inspection unit is simply an entity for which it is convenient to keep records. It 
could be a group of 5 units of product, 10 units of product, and so on.' The p-chart has been 
studied in a recent paper, see 2; the c-chart is studied here. It may be noted that control charts 
have been devised for the total number of non-conformities in an inspection unit as well as for 
the average number of non-conformities in an inspection unit, the former is considered here. It 
is assumed that the number of non-conformities in a unit follows a Poisson distribution with an 
average of c, say. 
 
Estimation of process parameters and its effects on a chart's performance are of interest from a 
practical as well as a theoretical point of view. This has generated a lot of work in the recent 
control chart literature. Much of this work has focused on variables control charts, i.e. control 
charts for quality characteristics that can be expressed in terms of a numerical measurement on 
a continuous scale. It is generally known that when (point) estimates are used instead of 
known parameter values, the operational properties of control charts, for both the in- as well as 
the out-of-control situations, are substantially affected. For example, the false alarm rate 
(FAR), which is the probability of a signal being given by the control chart when the process is 
actually in-control, is often greatly increased, so that the chart gives many more erroneous 
signals or false alarms, which is clearly undesirable. Moreover, parameter estimation 
significantly alters the run length distribution of the chart and thus performance characteristics 
of the chart, such as the average run length (ARL) and the standard deviation of the run length 
(SDRL) can be highly affected. Several authors have contributed to this area, including Ghosh 
et al. 4, Del Castillo 3, Quesenberry 6 and Chakraborti 1, among others. 
 
This paper focuses on the c-chart (for the number of non-conformities in an inspection unit) 
and examines the effects of parameter estimation. While the c-chart is quite easy to apply, in 
many applications the true average c is either unknown or unspecified and thus needs to be 
estimated from historical or retrospective data (called reference or Phase I data). In order to set 
the stage, first consider the case where c is known. 
 

The c-chart for number of non-conformities: standard 
known  
   
The c-chart with standard known  
Suppose that the number of non-conformities in an inspection unit in a (production or 
manufacturing) process follows a Poisson distribution with a true average c=c0, where c0 is a 
given value, for example, specified by the management. This situation is referred to as the 
standard known case (hereafter Case K). 
 
The upper control limit (UCL), the lower control limit (LCL) and the centerline (CL) are 

  and these are typically referred 
to as 3-sigma control limits. Should these calculations yield a negative value for the LCL, the 
lower control limit is adjusted and set equal to zero, i.e. LCL = 0. 



The chart is typically implemented as follows. Independent inspection units are taken at 
random at equally spaced time intervals and the number of non-conformities in the ith 
inspection unit, Xi, is calculated and plotted on the control chart. If one of these points falls on 
or outside either of the two control limits, a 'signal' or alarm is given and the process is 
declared out-of-control. A search for assignable causes is typically started next. 
 
Properties of the c-chart with standard known 
When a plotted point falls outside the control limits, i.e. lies on or above the upper control 
limit, or lies on or below the lower control limit, the process is declared out-of-control. This is 
usually represented by a signal and such an event is called a signaling event. The 
complementary event, that is when the plotted point lies within the control limits, is simply 
referred to as 'no-signal' or a 'non-signaling event'. Thus, the probability of a 'no-signal' on the 
c-chart is the probability that a plotting or charting statistic Xi plots between the two control 
limits, with both endpoints excluded. This probability is a function of the true average number 
of non-conformities in an inspection unit (c) and the specified or the desired average number 
of non-conformities in an inspection unit (c0) and is denoted by  . Assuming that Xi follows a 
Poisson distribution with parameter c, one can write  
 

 
 
  

where  
 
 

and     and where [x] denotes the 
largest integer not exceeding x with LCL and UCL as defined in Equation (1). Note that the 
constants a and b above have been suitably modified to take account of the fact that the 
Poisson distribution only assigns non-zero probabilities to the non-negative integers. In 
addition, note that   if and only if c0<9 and in these cases the lower 
control limit is set to zero in Equation (3).  
 
 
The performance of a control chart is typically judged on the basis of its run length 
distribution. The run length distribution is the probability distribution of the random variable, 
say N, which denotes the number of inspection units that must be sampled before the first 
signal is observed on the chart. Assuming that the inspection units are mutually independent 
and that the probability of a no-signal  , given in Equation (2), stays constant over time 
(that is) the run length distribution is geometric with probability of a signal (success) equal to 

 . This is written as  . Consequently, the probability mass 



function ( pmf) of N is 

 
 
and the cumulative distribution function (cdf ) is 

 
 
   
Given that the run length distribution is geometric in Case K, the average run length (ARL) 
and the standard deviation of the run length (SDRL) are just moments of this distribution and 

are given by  
 

and              
respectively.  
 
The in-control average run length (ARL0), that is, when c=c0, is found from Equation (6), 

  whereas the false alarm rate (FAR) or, the probability 
of a signal when the process is actually in- control (i.e. c=c0), is found from Equation (2), 

   
 
 
Example  
   
(1) Suppose that the true average is c0=14 non-conformities in an inspection unit. The 3-sigma 

control limits for the c-chart are: LCL = 2.78, UCL = 25.22, and CL = 14. Using Equation 
(3), these yield   and a = [2.78] = 2. Then, using Equation (2) it is found 
that  , so that the false alarm rate  . 
Hence, the (in-control) average run length, ARL0, is equal to  . On the 
other hand, when the true average increases from c=14 to c=32 non-conformities in an 
inspection unit, one finds that   and the probability of a signal 
increases to   and the (out-of-control) average run length equals 

 . This implies that one would expect a false alarm, on average, 
every 370.4 samples if the process is in-control with an average of c=14, and if it happens 
that the true average number of non-conformities increases from 14 to 32 (and stays fixed 
at 32) one would expect to detect such a shift on (approximately) the first sample following 
the shift.  

(2) Next suppose that c0=15. The 3-sigma control limits in this case are LCL = 3.38, UCL = 
26.62 and CL = 15 and hence a=3 and b=26. Thus,   and 

  and it is seen that there is no guarantee, even in Case K, that 
the actual false alarm rate and the actual average run length for the 3-sigma c-chart will be 
equal to their nominally expected values of 0.0027 and 370.4, respectively.  



The c-chart for number of non-conformities: standard 
unknown  

   
The c-chart with standard unknown  
There are situations in practice when the true average number of non-conformities in an 
inspection unit, c, is unknown or unspecified. This can arise, for example, when a new process 
is started and not much experience and/or data are available. Such a scenario is referred to as 
the standard unknown case, or simply Case U. In this case, it is common to estimate c from a 
set of data, typically from m (mutually) independent inspection units, taken when the process 
is thought to be in-control. Such a set of data is referred to as reference data or Phase I data, 
and this phase of the analysis is called the retrospective phase or Phase I. As in Case K, let Xi 
be the number of non-conformities in the ith inspection unit. The average of these m numbers, 

  say, is used as a point estimate of 
c. Note that the random variable V denotes the total number of non-conformities in the entire 
set of m inspection units obtained in Phase I. 
The estimated 3-sigma control limits and the estimated centerline (also sometimes called the 
trial limits) of the c-chart are then given by  
 

  and, as in Case K, if the estimated 
lower control limit is negative it is set to zero, i.e. if   then set  
The chart is implemented as follows. First, m inspection units are taken when the process is 

thought to be in-control and the number of non-conformities, i.e.  , from each 
of the inspection units, is recorded. Then   is calculated (using Equation (8)) along with the 
control limits (using Equation (9)) and the Xs are plotted on the control chart together with the 
control limits. If any of the Xs fall on or outside the estimated control limits, that unit is 
investigated further and often dropped to calculate a revised estimate for  . Then, the control 
limits are recalculated based on the revised   and one checks if all of the remaining Xs plot 
within those control limits. This phase of the analysis, known as Phase I or the retrospective 
phase, is continued in an iterative fashion until all the Xs plot inside the control limits. When 
that state is achieved, the process is declared in-control and one moves on to the next phase, 
called Phase II, or the prospective phase, where one monitors new (or future) inspection units 
to see if the process remains in-control. The data at hand at the end of the Phase I analysis is 
called in-control or reference data. Phase II control charts are typically designed based on 
these in-control data and some chart performance criterion, such as the average run length. 
In what follows, it is assumed that m denotes the final number of inspection units that are used 
to calculate   in Equation (8), which is then used to calculate the control limits in Equation 
(9). 
 
 
 



Properties of the c-chart with standard unknown  
The probability of a 'no-signal' on the c-chart, denoted β, in this case is a function of the true 
average number of non-conformities (c), the (final) number of inspection units from Phase I, 
i.e. m as well as the average number of non-conformities in an inspection unit (c1) in Phase II. 
In addition, unlike in Case K, the statistical properties of the control chart are affected by the 
(sampling) variation and randomness in the estimate   or, equivalently, the variation in the 
random variable V. Consequently, one has to account for the variation when determining the 
charts' properties - in the statistical design as well as in the implementation of the control chart. 
To understand the impact of estimation, it is convenient to look at the properties of the control 
chart conditionally, on having observed a particular estimate   (or, equivalently V). The 
unconditional chart properties are then obtained by averaging over the distribution of V. This 
two-step analysis provides valuable insight into the (specific as well as the overall) effects of 
parameter estimation on the performance of the c-chart in Phase II applications. 
 
Conditional properties  
The probability of a 'no-signal', conditional on having observed a value of the estimate   (or, 
equivalently, of V) is given by 

 
 
say, where Xi for   denotes the number of non-conformities in the ith 
inspection unit and c1 is the average number of non-conformities in an inspection unit in the 
prospective monitoring phase or, in Phase II. The probability   denotes the 
conditional probability of no-signal given an observed value, i.e. v of the random variable V. 
Since, in Phase II, the number of non-conformities in the ith inspection unit Xi has a Poisson 
distribution with parameter c1, the conditional probability of no-signal in Equation (10) can be 
equivalently expressed as  
 

 
 
 

where    
 

and    
 
and as before [x] denotes the largest integer not exceeding x with   and   as defined in 
Equation (9). Note that,   if and only if  =V/m<9. Thus, for V<9m or, if we observe 
less than 9m non-conformities in the m reference samples, the lower control limit will be 



negative and is thus set to zero. Also, when one observes no non-conformities in the reference 
sample, i.e. when V=0 (or  =0), it makes sense to pause and examine the situation in more 
detail. Thus, for V=0 the conditional probability of a 'no-signal' is defined to be 0 in Equation 
(11), so in that case the conditional probability of a signal is 1.  
 
Using Equation (11), the conditional probability of a false alarm or the conditional false alarm 
rate (CFAR) is given by  

 
 
  where c0 (in this case) is some arbitrary value of c. Although one can examine the CFAR (a 
typical measure of a control charts' performance), the focus here is primarily the (conditional) 
run length distribution, i.e. the distribution of the run length random variable, say N, which 
denotes the number of inspection units that must be sampled before the first signal is observed 
in Phase II given an observed value of the random variable V from Phase I. This can be found 
using the same conditioning argument as illustrated above. To this end, note that given an 
observed value of the random variable V, the conditional run length distribution is geometric 
with the probability of a success (or a signal) equal to  . This is because, 
for a given fixed value of V, the control limits can all be calculated and the analysis can 
proceed as if the parameter c is known, which is similar to Case K studied in the earlier 
section, where the run length distribution was seen to be geometric. However, the conditioning 
changes the probability of success in the geometric distribution.  
All properties and characteristics of the conditional run length distribution follow 
(conveniently) from the well-known properties of the geometric distribution. For example, the 
probability mass function ( pmf) of the conditional run length distribution is given by 

 
 
Compare this to Equation (4). The conditional average run length (CARL) and the conditional 
standard deviation of the run length (CSDRL) distribution are given by 

 
 

and  
 
respectively. Compare Equations (15) and (16) with Equations (6) and (7) for a better 
understanding of conditioning.  
 
The in-control properties of the conditional run length distribution can be obtained by 
substituting c1=c=c0 in Equations (14) through (16). For example, the in-control conditional 
average run length is found from Equation (15), and is given by 

 
   
 
 



Unconditional properties  
Typically, users of the c-chart would have their own estimates of c   in their own 
applications, based on their data, and that estimate would determine the performance of the 
chart in that specific application, as illustrated by the conditional chart properties described 
above. However, the overall performance of the control chart is also of interest, which shows 
how the chart performs when all possible estimates, from all possible data samples, are taken 
into consideration. This performance would be the same for all users and requires studying the 
unconditional properties of the chart, which can be obtained from the conditional properties by 
'averaging' over the distribution of the estimator V. For example, using Equation (11) and the 
fact that V has a Poisson distribution with mean mc, the unconditional cumulative distribution 
function of the run length is obtained as 

 
 
  This may be compared with Equation (5) in Case K.  
The in-control unconditional cumulative distribution function can be obtained from Equation 
(18) by letting c1=c=c0. Various other characteristics of the unconditional run length 
distribution can be found similarly. For example, the unconditional false alarm rate (UFAR) is 
found from Equation (13) 

 
 
In addition, the unconditional average run length (UARL) and the unconditional variance of 
the run length (UVARRL), in general, are 

 
 
and 

  
 
respectively. Thus, all desired characteristics of the unconditional run length distribution can 



be obtained by calculating the expectation of the conditional characteristics with respect to the 
distribution of V.  
 
Note that the in-control unconditional average run length (1) (UARL0) and the in-control 
unconditional variance of the run length (UVARRL0) can be obtained from Equations (20) and 
(21), respectively, by substituting c1=c=c0. 
 
Percentiles and other moments of the unconditional run length distribution can be found using 
a similar conditioning argument. For example, using Equation (18), the unconditional median 
run length (UMDRL) is found to be the smallest integer k such that 

   
Both the conditional and the unconditional performance characteristics provide interesting 
insights into the performance of the chart. 
 
Example  
To illustrate, consider Example 6.3 in Montgomery [5, p. 310] about the quality control of 
manufactured printed circuit boards. A total of 26 successive inspection units (samples), each 
consisting of 100 individual units of product, were obtained in Phase I to estimate c. However, 
it was found that units 6 and 20 were out-of-control and were therefore eliminated. The revised 
control limits, to be used for prospective monitoring in Phase II, were calculated using the 
remaining m=24 inspection units, with the number of non-conformities in each inspection unit 
shown in Table 6.7 of Montgomery [5, p. 311]. Theoretically, the variable V, the total number 
of non-conformities in the 24 inspection units, could take on any positive integer value 
(including zero) i.e.  . However, for the given (Phase I) data, it was found 
that V=472. Hence, using Equation (8), the average number of non-conformities per inspection 
unit is estimated as  , so that the estimated 3-sigma control limits from 
Equation (9) are  ,   and  . Using Equation (12a), these 
yield c(24, 472)=6 and d(24, 472)=32. 
 
The conditional false alarm rate (CFAR) and the conditional average run length (CARL)  
For the given (observed) value of V=472 one can investigate the charts' performance using the 
conditional properties. Using Equations (11) and (13), and assuming that  , 
the conditional false alarm rate (CFAR), i.e. the false alarm rate given V=472, is found to be 
equal to 0.004983. The CFAR is approximately 72% larger than the value of 0.0029 one would 
have obtained in Case K for c0=20, and is 85% higher than the nominal value 0.0027. Note 
that this is true even though the estimated average number of non-conformities in an 

inspection unit   is within   standard deviation units of 
the true average number of non-conformities per inspection unit (c0=20). 
 
In Figure 1, the conditional false alarm rate (CFAR) is plotted as a function of the estimated 
average number of non-conformities,  , observed from an in-control reference sample in 
Phase I. It is seen that unless   is 'close' to the true average number of non-conformities, 
which is 20 in this case, the conditional false alarm rate (CFAR) can be either excessively large 
or remarkably small compared to the Case K value (0.0029) indicated by the dotted line. For 
example, suppose that instead of V=472 one observed V = 600, then the estimated average 



number of non-conformities per inspection unit is   and subsequently, using 
Equation (13), the conditional false alarm rate is 0.01086, which is approximately 275% larger 
than the Case K value (0.0029) and is 303% larger than the nominal 0.0027. Similarly, if one 
observed V=528, the estimated average   and the conditional false alarm 
rate is 0.001201, which is approximately 59% less than the Case K value and is 55% less than 
the nominal value (0.0027). 
 

   
 
Figure 1. Conditional false alarm rate (CFAR) as a function of observed from an in-control 
reference sample. 
  
In addition, also note that when V=472 (as in the current situation) and using Equation (17), 
one finds the in-control conditional average run length to be 1/0.004983 = 200.68, which is 
41% less than the Case K value of 339.72 and is 46% less than the nominal value 370.4. 
Therefore, the 3-sigma control chart incorrectly signals more often than expected. Also, for the 
two other selected values of V, i.e. when V=600 (or  =25) or V=528 (or  =22), the in-control 
conditional average run length values are 92.04 and 832.3, respectively. Thus, compared to the 
Case K value of 339.72, the control chart signals about 3.6 times more or 2.5 times less than 
would be expected if the standard was in fact known. Only when V � 473, 490  is (or, 
equivalently when   the conditional probability of no signal (obtained from 
Equations (11) and (12a)) approximately equal to the probability of no signal in Case K 
(obtained from Equations (2) and (3)). For any value of V outside this range, the performance 
of the c-chart, as measured by the false alarm rate (FAR) and the average run length (ARL), 
considerably degraded. 
 
The unconditional false alarm rate (UFAR) and the unconditional average run length 
(UARL)  
   
Finally, using Equations (19) and (20), and averaging over all the possible values and the 
corresponding probabilities of V, which follows a Poisson distribution with mean 480 (i.e. 24
20), the unconditional false alarm rate (UFAR) is found to be 0.0039 and the in-control 



unconditional average run length (UARL0) is found to be 335.30. Thus, the UFAR is 20% less 
than the CFAR of 0.0049 and the UARL0 is 67% larger than the CARL of 200.68. 
 
However, with regard to the unconditional chart properties, note that the in-control 
unconditional average run length (UARL0) is 1.3% less than the in-control average run length 
of 339.72 one would have obtained in Case K for c0=20 and the unconditional false alarm rate 
UFAR is 34% larger than the FAR of 0.0039 obtainable in Case K. 
 
To help understand and illustrate the impact of parameter estimation on the properties of the c-
chart, Tables 1 and 2 display values of the in-control unconditional average run length 
(UARL0) and the unconditional false alarm rate (UFAR) for different values of the number of 
inspection units (m) in the reference sample and the true average number of non-conformities 
per inspection unit (c), together with the corresponding values for Case K - given in the last 
row. 
 

 

        

        
 
 
 
 
 
 
 



 
 
 
 
For example, when c=10 and m=25 one finds that the UFAR = 0.0045 (which is approximately 
29% higher than the value of 0.0035 for Case K and approximately 67% higher than the 
nominal value of 0.0027) and that the UARL0 = 343.85 (which is approximately 20% higher 
than the value of 285.74 for Case K and approximately 7% less than the nominal value of 
370.4). Thus, when the reference sample from Phase I contains m=25 inspection units, the 
control chart will (on average) signal more often than would be case if the true average 
number of non-conformities in an inspection unit was in fact known or what is generally 
expected. However, when one looks at the percentage difference between the UFAR and/or the 
UARL0 values when m=1000 inspection units are used to estimate the unknown standard and 
the values of the FAR and/or the ARL0 from Case K (denoted by percentage difference), there 
is almost no discrepancy, suggesting that (on average) the control chart would perform as in 
Case K when so much data are available. 
 
However, note that neither the in-control unconditional average run length, i.e. UARL0, nor the 
unconditional false alarm rate, i.e. UFAR, converges to the nominally expected values of 370.4 
and 0.0027, respectively. In fact, they are far off from the nominal values for most m and c 
values, particularly when c is less than 10 and m is less than 1000. This should be a reason for 
concern for the practitioner. In addition, it may be noted that the ARL and the FAR values in 
Case K can also be quite different from their respective nominal values. 
 
For example, for c=6 and m=25, the UARL0 = 156.49, which is 57.7% less than the nominal 
value of 370.4, whereas the UFAR = 0.0079, which is 192.59% larger than the nominal value 
of 0.0027. Even for m=1000, the UARL0 and the UFAR values equal 163.55 and 0.0061, 
respectively which are close to their Case K values but not the nominally expected values. 
Thus, the usual c-chart with an estimated process parameter will incorrectly signal much 
frequently than if the parameter c had in fact been known, and even more frequently than is 



nominally expected. In addition, it is seen that the in-control unconditional average run length, 
i.e. UARL0 is no longer equal to the reciprocal of the unconditional false alarm rate, i.e. 
1/UFAR. 
 
From Tables 1 and 2, it appears that one needs at least 300 to 500 inspection units in the 
reference dataset to estimate the unknown standard to ensure that the c-chart performs as well 
as when the standard is in fact known. However, that can still be quite different from what is 
nominally expected, i.e. ARL0 = 370.4 (or FAR = 0.0027). For the c-chart with unknown 
standard to perform as is nominally expected, one will need to adjust the control limits, by 
solving for the charting constant k for a fixed ARL0 = 370.4 using the formulas given in the 
paper. This would mean either widening or contracting the limits depending on what k turns 
out to be relative to 3. 
 
Summary and conclusions  
Both the false alarm rate (FAR) and the average run length (ARL) of the c-chart are greatly 
affected by the estimation of the true unknown average number of non-conformities in an 
inspection unit c. Examples demonstrate that (1) a large amount of Phase I or reference data is 
needed before the in-control unconditional average run length (UARL0) can be 'near' its 
corresponding value of Case K, when c is known; (2) even if more data are available, neither 
the UARL0 nor the UFAR will necessarily be equal to the commonly used nominally expected 
values (primarily due to the discreteness of the underlying distribution); and (3) the 
unconditional FAR is not equal to the reciprocal of the unconditional ARL (and vice versa). It 
is seen that the common practice (and advice) of using 20 to 25 inspection units is simply not 
enough. If a large amount of reference data is not available or if one needs the chart to perform 
at a typically used nominal in-control average run length value, one would need to adjust the 
control limits by finding the desired value of the charting constant k>0 so that k-sigma limits 
could be used (instead of the usual 3-sigma control limits as is typically done in routine 
applications), which would lead to a desired chart performance characteristic, such as a 
specified in-control ARL value, either from Case K or some typical value such as 370.4. To 
this end the exact formulae derived in this paper is useful. 
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