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Abstract
Pyrethroid-treated bed-nets (PTNs) protect individuals against malaria by blocking
and repelling mosquitoes. We develop and analyze a PTNs malaria model that explic-
itly includes mosquito host choice (also known as feeding/biting preference) and
Pyrethroid repellent effect. Our model reveals that mosquito biting/feeding prefer-
ence on infectious hosts π and repellent effect r drive for the existence of both the
endemic equilibrium points and the occurrence or elimination of backward bifurca-
tion. The threshold parameters for the mosquito biting preference on infectious hosts
π∗ and repellent effect r∗ for the occurrence and elimination of backward bifurcation
are computed. Moreover, it is shown that, increasing the mosquito host choice rate or
decreasing the repellent effect rate, annihilates backward bifurcation, thus facilitating
the control of malaria. Furthermore, we prove that the threshold of mosquito biting
preference is a monotone increasing function of the repellent effect r . We show that
the model exhibits both trans-critical forward bifurcation and backward bifurcation
when either the mosquito host choice π crosses a threshold value π1 or the repel-
lent effect r passes through a threshold repellent rate r1. Sufficient conditions for the
global asymptotic stability of the equilibrium point are derived. On the other hand, it is
established that, decreasing themosquito biting preference or increasing the rate of the
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repellent effect (i.e personal protection) or the combining both actions, decreases the
malaria control reproduction number R0. Finally, the interplay between the bed-nets
treated repellent effect and mosquito host choice and its potential on the dynamics of
malaria is investigated and illustrated numerically.

Keywords Mosquito biting preference · Repellent effect · Control reproduction
number · Backward bifurcation · Global stability · Malaria · Pyrethroid
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1 Introduction

Malaria is a life-threatening disease caused by parasites transmitted to susceptible
humans through the bites of infectious female mosquitoes of the genus Anopheles
[5]. The data released by the World Health Organization (WHO) indicates that there
were about 228 million malaria cases including 405,000 deaths in 2018 (World Health
Organization 2019 [39]). Over 40%of theworld’s population inmore than 80 countries
and areas is still at risk of contracting malaria [41].

Insecticide-treated nets (ITNs) have proven to be one of the most effective inter-
vention measures against malaria in reducing morbidity and mortality [8, 14, 17, 18,
22, 30]. Furthermore the pyrethroids insecticide are today the only insecticide autho-
rized for the impregnation of bed-nets [37, 38, 42], because of their efficiency, their
repulsive effect and their weak toxicity for humans. Interestingly, promising tests
have revealed the efficiency of pyrethroids impregnated mosquito bed-nets to limit the
contact between human and mosquito [9, 11, 38].

Mathematical models for the transmission of infectious agents have proven to be
useful tools in understanding disease dynamics and assessing the impact of mosquito
biting preference. Mosquito biting preference, also known as vector bias in malaria is
the propensity of mosquitoes for being more attracted to malaria-infected individuals
[20]. Several recent existing works [1, 3, 5, 10, 19, 28, 35, 36, 40] on the mathematical
modeling for the transmission of malaria focus only on the attractiveness of infectious
humans to mosquitoes. Chamchod and Britton [10] proposed a vector-bias term in a
malaria transmissionmodel to account for mosquito preference for infectious humans.
Abboubakar et al. [1] extended themodel of Chamchod and Britton to include exposed
mosquitoes (infected with malaria but not yet infectious to humans). In [28], Rivera et
al. extended the models of Chamchod and Britton [10] and Abboubakar et al. [1], by
proposing a general dynamic of vector-borne diseases that could be useful for mod-
eling malaria, leishmaniasis, dengue and any other vector-host-pathogen interactions.
However, none of the above-mentioned models have added the impact of bed nets
utilization to prevent infected mosquitoes form biting human hosts and preferably
infected humans. The work in [40] dealt with the study of a diffusive malaria model
with vector-bias and the main result was the establishment of threshold dynamics for
the spatially heterogeneous system in terms of the basic reproduction ratio, as well
as the exhibition of a set of sufficient conditions for the global attractiveness of the
positive steady state. Kim et al. [19] determined how vector-bias affects the changes in
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the dynamics of malaria transmission. They considered two different incidence areas;
one for a high transmission area and the other for a low transmission area. Their results
showed different dynamical behavior in the two areas and that considering the vector-
bias effect in different areas facilitates prediction of the future dynamics. In Aldila et
al. [3] proposed a reasonable mathematical modeling introducing mosquito repellent
effects and took into account the relationship between its use and the mosquito pop-
ulation dynamics. The work by Wang et al. [36] investigated the impact of bed-net
use by formulating a periodic vector-bias malaria model incorporating the juvenile
stage of mosquitoes and the use of insecticide treated bed-nets usage. The study in
[5] formulated a malaria model which included the enhanced attractiveness of infec-
tious humans to mosquitoes, as a result of host manipulation by malaria parasite, and
the human behavior, represented by insecticide-treated bed-nets usage. More recently,
Tsanou et al. [31] have explicitly modeled, incorporated and studied the role of excito-
repellent/deterrence effect on the long run dynamics of malaria and on its bifurcation
analysis. None of the above-mentioned models have investigated the combined influ-
ence of excito-repellent effect of pyrethroids treated bed-nets and themosquito feeding
preference on the transmission dynamics of malaria.

Therefore, in this paper, we fill some of modeling gaps mentioned above by formu-
lating and analyzing a pyrethroids impregnated bed-net malaria model that includes
both the role of excito-repellent/deterrence effect on the transmission dynamics of
malaria, mosquito host choice, as well as malaria prophylactic treatment are incorpo-
rated. We further assess the role of mosquito feeding preference on the occurrence and
elimination of backward bifurcation phenomenon. In so doing, we extend our previous
bed-netmalariamodel proposed in [31] in two directions: (1) wemodel the contact rate
betweenmosquitoes and humans is more realistically modeled by a nonlinear function
of bed-net usage and repellent effect; (2) we account for the mosquito biting prefer-
ence for malaria infected individuals. We show that this new contact rate decreases
as a sole function of bed-net usage or repellent effect. Additionally and contrary to
[31], we explicitly model the mortality rate of mosquitoes by a linear function of both
the pyrethroids repellent rate and the bed-net utilization rate. In order to highlight
the impacts of pyrethriods repellent effect and the mosquito feeding preference, we
perform a bifurcation analysis and find that the occurrence of backward bifurcation
depends either on the mosquito biting preference magnitude or on the range of the
pyrethroids repellent rate. Global dynamics of themodel using Lyapunov–LaSalle and
geometric approaches are established for the disease-free equilibrium and the endemic
equilibrium, respectively.

The structure of the remaining of the paper is the following. In Sect. 2, we con-
centrate on the model formulation and basic mathematical properties. Bifurcation
analysis of the model with respect to mosquito feeding preference and repellent effect
are respectively presented in Sect. 3. Section4 deals with the global dynamics of the
model. In Section5, we investigate the interplay between pyrethroids treated bed-nets
repellent effect and mosquito host choice and its potential impact on the long-term
dynamics of the model. Finally, the paper is concluded and discussed in Sect. 6.
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2 Model formulation and basic mathematical properties

2.1 Model formulation

The total human population Nh(t) at time t is divided into three different classes:
Sh(t), Ih(t) and Rh(t), where, Sh represents the susceptible, Ih the infectious and Rh

the recovered and temporary immune individuals. Susceptible humans acquiremalaria
at rate λh after being bitten by an infected mosquito, and progress to the infectious
class. After receiving prophylactic treatment at rate u while in Ih class, a proportion
ρ, of those who recover from infection without livelong immunity returns to the Sh
class, and the remaining proportion, (1−ρ), who progresses to the recovered class Rh

due to full immunity. We also assume that humans in the Ih class can recover naturally
(without treatment) at rate γh to join the recovered claas Rh . Individuals in the Rh class
lose their temporary immunity at rate σ and become susceptible to malaria. Infected
humans undergo disease-induced and mortality and natural mortality at rates δ and
μh , respectively.

The totalmosquito population Nv(t) at time t , is divided into twomutually exclusive
groups: susceptible Sv(t) and infectious Iv(t). Susceptible vectorsmove to the infected
class by acquiring malaria through contact with infected humans at a rate λv . The
total mortality rate of mosquitoes is μv . Although our model formulation follows the
classical approach in modeling malaria transmission, we stress that, in the context
of pyrethroid-treated bed-nets (PTNs) utilization and mosquito biting preference, we
emphasize here on the more realistic descriptions of λh , λv and μv in order to put
forward the influences of PTNs effects and vector-bias preference on those forces of
infection and on mosquito mortality rate. Thanks to knock-down and lethal effects
of PTNs, the female mosquitoes in search of blood meal can die when they come
into contact with a pyrethroids treated bed-net. Thus, mimicking [2], we model the
additional mortality rate for mosquitoes μb induced by the PTNs lethal effect by

μb = μv1b, 0 ≤ b ≤ 1,

where, the parameter b stands for the proportion of treated bed-net usage, and μv1
is the maximum insecticide-induced death rate of mosquitoes. We note that, thanks
to deterrence effect, female mosquitoes questing for blood meal can also experience
natural death without coming into contact with a treated bed-net. More precisely,
contrary to knock-down and lethal effects, deterrent/dissuasive effect, does not involve
any physical contact between the mosquito and the bed-net: the presence of a PTN
in a home/bedroom can cause an avoidance or repellent behavior of mosquitoes, who
are dissuaded by the smell of the insecticide. Consequently, for each additional search
of blood meal on a host, female mosquitoes encounter a risk μr of dying when they
inhale insecticide. We model this other additional death rate by a linear and increasing
function of repellent rate r as follows:

μr = Cr , 0 ≤ r ≤ 1,
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where, C is a positive constant accounting for the maximum mortality (when r = 1)
during host searching caused by the insecticide deterrent effect. A similar formulation
of μr can be found in Birget et al. [4], where the value C = 0.03 was assumed. All in
all, if μv0 denotes the natural mortality rate, the actual mortality rate of mosquitoes
μv(r , b) is therefore given by:

μv(r , b) = μv0 + μb + μr = μv0 + μv1b + Cr , 0 ≤ b ≤ 1, 0 ≤ r ≤ 1, (1)

In order to describe the forces of infection λh , λv , we follow the approach in [31].
Thus, if θ is the probability that a mosquito targets human hosts, then the probability
Ph(r , b) that a mosquito finally bites a human host, and the probability Pv(r , b) that a
mosquito initiates a bite indoors on a non-human host or a human host, are respectively:

Ph(r , b) = θ(1 − rb)

1 − θrb(1 − (μb + μr ))
, 0 ≤ b ≤ 1, 0 ≤ r ≤ 1,

Pv(r , b) = 1 − rbθ

1 − θrb(1 − (μb + μr ))
, 0 ≤ b ≤ 1, 0 ≤ r ≤ 1.

(2)

Mimicking the modeling framework in [5, 10], we assume that mosquitoes bite
humans at probability m if the host is infectious, and probability n (with m > n) if
he/she is rather susceptible or recovered. Thus, when a mosquito bites a human being,
the probability that this person gets infected is given by the ratio between the total
bitten infectious humans and the total bitten humans. That is

mIh
mIh + n(Sh + Rh)

.

Similarly, the probability that the bitten human being is susceptible or recovered is
the ratio between the total bitten susceptible or recovered humans and the total bitten
humans. That is

n(Sh + Rh)

mIh + n(Sh + Rh)
.

The ratio

π = m
n

,

is called the vector-bias parameter (or the feeding/biting preference rate. Since there
is preference for mosquitoes to bite more infected humans than susceptible ones, this
number is always greater than or equal to unity π > 1. The case π = 1 corresponds to
equal biting/feeding probability or no biting/feeding preference at all. To summarize,
the forces of infection are modeled here by explicit functions of bed-net usage rate (b),
insecticide (pyrethroids) repellent rate (r) and the mosquito feeding/biting preference
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Table 1 Description and baseline values of parameters in system (4)

Par. Descriptions Baseline value Ref.

	h Immigration rate for humans 103/(50 × 365) [7]

	v Immigration rate for mosquitoes 104/21 [32]

r Repellent probability/rate of pyrethroids/ITNs treated
bed-net

(0, 1) Variable

π = m/n Vector-bias parameter or feeding/biting preference rate > 1 variable

μv1 Maximum mosquito ITNs-induced death rate 0.5 [21, 25]

μh Natural mortality rate for humans 1/(50 × 365) [25]

μv0 Natural mortality rate for mosquitoes 1/14 [12, 25]

δ Disease-induced death rate for infected humans 1/1000 [7]

mv Human-to-mosquito probability of disease transmission 1 [2]

mh Mosquito-to-human probability of disease transmission 0.195 [12, 25]

γh Natural recovery rate of infectious humans 1 × 10−5 [23]

ρ Proportion of those who recovered from malaria infection
without livelong immunity

4/10 [23]

σ Rate at which immune humans lose recovered-induced
immunity

1/(5 × 365) [7, 23]

b Proportion of PTNs usage Variable

θ Probability that a mosquito targets a human host 1 Assumed

u Rate of treatment of malaria infection 0.003 Assumed

rate (π) as follows:

λh(r , b, π) = mh Ph(r , b)Iv
π Ih + Sh + Rh

, 0 ≤ b ≤ 1, 0 ≤ r ≤ 1,

λv(r , b, π) = π
mvPv(r , b)Ih

π Ih + Sh + Rh
, 0 ≤ b ≤ 1, 0 ≤ r ≤ 1.

(3)

Let’s recall that in (2), the terms λh(r , b, π) and λv(r , b, π) represent the forces
of infection for susceptible humans and for susceptible vectors, respectively. The
quantity mh is the transmission probability per bite from infectious mosquitoes to
humans and similarly, mv is the transmission probability per bite from infectious
humans to mosquitoes. The model’s parameters are gathered in Table 1 and the above
descriptions lead to the following system of ordinary differential equations which
models dynamics of malaria transmission.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ṡh = 	h + σ Rh − λh(r , b, π)Sh + ρuIh − μh Sh
İh = λh(r , b, π)Sh − (μh + γh + δ + u)Ih
Ṙh = (1 − ρ)uIh + γh Ih − (σ + μh)Rh

Ṡv = 	v − λv(r , b, π)Sv − μv(r)Sv

İv = λv(r , b, π)Sv − μv(r)Iv.

(4)

123

6



Mosquito feeding preference and pyrethroids repellent...

2.2 Basic mathematical properties

Since system (4) monitors human and mosquito populations, and all the model param-
eters are non-negative, we prove that the solutions with non-negative initial conditions
exist, remain non-negative and are bounded for all time t ≥ 0. For that, it suffices to
establish the following result:

Theorem 1 The compact set 
 below is positively invariant, attractive and absorbing
for System (4).


 =
{
(Sh(t), Ih(t), Rh(t), Sv(t), Iv(t)) ∈ R

5+ : 0 ≤ Nh(t)

≤ 	h

μh
, 0 ≤ Nv(t) ≤ 	v

μv(r , b)

}

.

Proof First of all, one should note that the right hand side of (4) is continuously
differentiable. Thus, thanks to Cauchy-Lipschitz theorem, for any initial condition
(say at time t0 = 0), system has a unique (local) solution defined in an interval of
the form [0, T ), T > 0. Moreover, it is not difficult to prove that such a solution is
non-negative if the initial condition is non-negative. Furthermore,we have the relations

Ṅh(t) = 	h − μh Nh(t) − δ Ih(t), Ṅv(t) = 	v − μv(r , b)Nv(t). (5)

Using Equation (5), it follows from the non-negativity of the solutions and the
Gronwall inequality that for all t ∈ [0, T ),

Nh(t) ≤
(

Nh(0) − 	h

μh

)

e−μh t + 	h

μh
, Nv(t)

=
(

Nv(0) − 	v

μv(r , b)

)

e−μv(r ,b)t + 	v

μv(r , b)
. (6)

The a priori bounds in (6) allow us to conclude that the local solution is bounded.
Indeed, one has

Nh(t) ≤ max

{

Nh(0) ; 	h

μh

}

, Nv(t) ≤ max

{

Nv(0) ; 	v

μv(r , b)

}

, ∀ t ∈ [0, T ).

Moreover, for all t ∈ [0, T ),

Nh(0) ≤ 	h

μh
�⇒ Nh(t) ≤ 	h

μh
, and Nv(0) ≤ 	v

μv(r , b)
�⇒ Nv(t) ≤ 	v

μv(r , b)
.

The last implication, together with the inequality in (6) show that 
 is a positively
invariant, attractive and absorbing set for System (4) and that every local solution of
(4) is actually global in time. The proof is achieved. 	
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Thanks to Theorem 1 it is sufficient to study System (4) in 
. Hence the System
(4) is biologically and mathematically well-posed [15].

In order to focus mainly on the role of PTNs repellent effect and the mosquito
feeding preference, without loss of generality, we assume that all the mosquitoes
target humans beings and the entire human population is protected by bed-nets which
may have lost progressively their repellent power. That is, we assume θ = b = 1
and r is variable. Based on this assumption, the probabilities Ph and Pv coincide and
become

P(r) = 1 − r

1 − r [1 − (μv1 + rC)] , 0 ≤ r ≤ 1, (7)

and the corresponding (when b = 1) mortality rate of mosquitoes becomes
μv(r , 1) ≡ μv(r), where,

μv(r) = μv0 + μv1 + Cr , 0 ≤ r ≤ 1. (8)

3 Influence of the feeding preference (�) and repellent rate (r) on the
long-term dynamics

To put more emphasis on the role of mosquito feeding preference rate and pyrethroids
repellent effect, instead of using the control/basic reproduction number as usual, we
investigate hereafter, the long-run and bifurcating behaviors of the system based on
the threshold parameters emanating from the vector-bias π and the treated bed net
repellent rate r . Nonetheless, direct links with the corresponding thresholds using
instead the control reproduction numberR0 (whose expression will be given shortly)
of the model can be easily established.

3.1 Effects of mosquito feeding preference (�) on the asymptotic and bifurcation
analysis

Proposition 1 Define the following vector-bias threshold parameter.

π1 = (μh + γh + δ + u)μ2
v(r)	h

mvmh P(r)2μh	v

. (9)

Then the disease-free equilibrium E0 is locally asymptotically stable if themosquito
feeding preference π < π1. It is unstable if π > π1.

Proof The disease-free equilibrium of the System (4) is

E0 =
(
S0h , I

0
h , R0

h, S
0
v , I 0v

)
=
(

	h

μh
, 0, 0,

	v

μv(r)
, 0

)

.

Before proceeding, we recall that according to the computational method in [33], the
reproduction number R0 of System (4) is defined as the spectral radius of the next
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generation matrix FV−1, where:

F =
⎛

⎝
0 mh P(r)

πmvP(r)
	v

	h

μh

μv(r)
0

⎞

⎠ , V =
(

(μh + γh + δ + u) 0
0 μv(r)

)

.

That is,

R0 = P(r)
√

π

μv(r)

√
mvmhμh	v

(μh + γh + δ + u)	h
. (10)

Moreover, notice that with the notation in (9), we have

R0 = π/π1.

The local asymptotic stability of the disease-free equilibrium E0 when π < π1 is
established by calculating the characteristic polynomial of the Jacobian of System (4)
at E0 giving by

1

π1
(x + μh) (x + μv(r)) (x + μh + σ)

×
(
x2 + (μh + γh + δ + u + μv(r)) x + μv(r)(μh + γh + δ + u) (π1 − π)

)
.

Clearly, whenever π < π1, all the roots the above equation have negative real parts,
and there exists exactly one root with positive real part whenever π > π1. 	


Now, we examine the existence of endemic equilibrium points and perform a
bifurcation analysis of the model to gain more insights into the asymptotic dynam-
ics of the model. If an endemic equilibrium of System (4) is denoted by EE =(
S∗
h , I

∗
h , R∗

h , S
∗
v , I ∗

v

)
, then its components satisfy the following relations:

S∗
h = (μh + γh + δ + u)	h(μh + σ)

λ∗
h(r , π)

[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]+ (μh + γh + δ + u)μh(μh + σ)
,

I ∗
h = λ∗

h(r , π)	h(μh + σ)

λ∗
h(r , π)

[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]+ (μh + γh + δ + u)μh(μh + σ)
,

R∗
h = λ∗

h(r , π)	h (γh + u(1 − p))

λ∗
h(r , π)

[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]+ (μh + γh + δ + u)μh(μh + σ)
,

S∗
v = 	v

λ∗
v(r , π) + μv(r)

, I ∗
v = λ∗

v(r , π)	v
(
λ∗

v(r , π) + μv(r)
)
μv(r)

.

With,

λ∗
v(r , π) = πmvP(r)(μh + σ)λ∗

h(r , π)

λ∗
h(r , π)

[
π(μh + σ) + γh + u(1 − p)

]+ (μh + γh + δ + u)(μh + σ)
,
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and λ∗
h(r , π) is the positive roots of the quadratic equation

B2[λ∗
h(r)]2 + B1λ

∗
h(r) + B0 = 0. (11)

The coefficients B2, B1 et B0 are as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B2 = μv

[
π(μh + σ) + γh + u(1 − p)

]

[
πmvP(r)(μh + σ) + μv (π(μh + σ) + γh + u(1 − p))

]
> 0,

B1 = 1

π1
(μh + γh + δ + u)μ2

v(r)
(μh + σ)

μh[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]
(π1G(π) − π) ,

B0 = 1

π1
(μh + γh + δ + u)2μ2

v(r)(μh + σ)2 (π1 − π) ,

with,

G(π) = πmvP(r)μh(μh + σ) + 2μv(r)μh
[
π(μh + σ) + γh + u(1 − p)

]

μv(r)
[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

] > 0.

(12)
Solving for π the equation G(π) = 1 gives the solution

π∗ = μv(r)
[
(μh + δ)(μh + σ) − μh (γh + u(1 − p))

]

μh(μh + σ) (mvP(r) + 2μv(r))
. (13)

Hereafter, we shall assume that the number π∗ is positive so that

(μh + δ)(μh + σ) > μh (γh + u(1 − p)) .

This latter assumption is actually not a limitation of our work, because Fig. 2 shows
that, using the model parameters as in Table 1, the number π∗ is always positive, and
more importantly, it is greater than one as it should be.

Now, we can state the following result about the existence equilibrium points for
System (4). In order to emphasize on the importance of mosquito biting preference
for infectious hosts, we use the mosquito host choice rate π as bifurcation parameter
to show that the backward bifurcation may occur at the threshold value π1.

Theorem 2 Assume that

μv(r)
[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]

−μh(μh + σ) (mvP(r) + 2μv(r)) π1 > 0.

Then, the equation π1G(π) = π of variable π admits a unique solution πG given
by

πG = 2μv(r)μh
[
π(μh + σ) + γh + u(1 − p)

]
π1

μv(r)
[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]− μh(μh + σ) (mvP(r) + 2μv(r)) π1
.
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If Moreover G < 1, then πG < π1, and if π ≤ πG, then B1 ≥ 0; else if π > πG then
B1 < 0.

Proof It is easy to show that πG solves the equation π1G(π) = π , and as G < 1,
we have πG = π1G(πG) < π1. For the proof of the other last statement, we set
f (π) = (π1G(π) − π). By the assumption of the theorem, we have

f ′(π) = −μv(r)
[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]+ μh(μh + σ) (mvP(r) + 2μv(r)) π1

μv(r)
[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]

< 0.

The conclusion follows because: whenever π ≤ πG , f (π) ≥ 0, otherwise (π > πG)
f (π) < 0. 	

Lemma 1 Let�(π) = B2

1 −4B0B2, then there exists a unique number πc ∈ (πG, π1)

such that �(πc) = 0.

Proof Suppose π ∈ (πG , π1) thus π > πG , according to Theorem 2, we have B1 < 0.
The derivative of �(π) with respect to π gives,

�′(π) = 2B1B
′
1 − 4B2B

′
0 > 0, since B ′

1 < 0, B1 < 0, B ′
0 < 0 and B2 > 0.

Moreover, as f (πG) = 0, we have �(πG) = −4B0B2 < 0 and �(π1) = B2
1 > 0.

Thus, there is a unique πc ∈ (πG, π1) such that �(πc) = 0. This ends the proof. 	

Now, we can state the following result about the existence and the number of

equilibrium points for (4). In order to emphasize on the importance of mosquito biting
preference for infectious hosts, we use the mosquito biting preference parameter π as
bifurcation parameter such that the backward bifurcation occurs at the threshold value
π1.

Theorem 3 : The following statements hold:

1) Suppose π ≤ πG , then system (4) has no endemic equilibrium.
2) Suppose πG < π < π1 and:

a) if π = πc, then system (4) has a unique endemic equilibrium;
b) if π < πc, then system (4) has no endemic equilibrium point;
c) if π > πc, then system (4) has two endemic equilibrium points;

3) Suppose π > π1, then System (4) has a unique endemic equilibrium.

Proof We have the following equivalence: π = πc ⇔ �(π = πc) = B2
1 − 4B0B2 =

0. From Theorem 2, if π ≤ πG , then B1 ≥ 0. Else if π > πG then B1 < 0. Now,
if π ≤ πG , then thanks to Theorem 2, we have B1 ≥ 0. Moreover, by the Theorem
2, π ≤ πG implies π < π1, thus B0 > 0. As B1 ≥ 0 and B0 > 0. Thus, Item
1 is established. The conditions πG < π < π1 and π = πc, are equivalent to
B1 < 0, B0 > 0 and B2

1 − 4B0B2 = 0. The former implies that B1 < 0 leading
to λ∗

h(r , b) = −B1/(2B2) > 0. This proves Item 2a). Notice that πG < π < π1 is
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Fig. 1 Bifurcation diagrams using the mosquito biting rate as bifurcation parameter, whenever r = 0.9:
The remaining parameters are given in Table 1. The solid lines represent stability, the dotted lines represent
instability. The computed threshold value for the vector-bias preference is π∗ = 7.0918, such that when
π < π∗, backward bifurcation occurs, see Fig. 1. When π ≥ π∗ the forward bifurcation occurs. These
results illustrate Theorem 4. Moreover, we note that, by increasing the vector feeding preference rate π ,
backward bifurcation is eliminated whenever π ≥ π∗, and the latter alleviates the control of malaria. It
further highlights the fact that, increasing the parameter of attractiveness to infectious humans reduces the
number of infectious human at the endemic level , see Fig. 1a. On the other hand increasing the parameter
of attractiveness to infectious humans increases the infectious vectors at the endemic level, see Fig. 1b

equivalent to B1 < 0 and B0 > 0. For πG < π < π1, since �(πG) = −4B0B2 < 0,
�(πc) = 0 and �(π1) = B2

1 > 0. We get �(π) < 0 whenever π < πc, then
system (4) has no endemic equilibrium. On the other hand, �(π) > 0 whenever
πc < π < π1, then System (4) has two endemic equilibrium points, and Items 2b)
and 2c) are established. Suppose π > π1, then B0 < 0 and Item 3 follows. 	


One may notice from this Theorem 3 that, as suspected earlier, the parameter π1
serves as the bifurcation parameter for the backward bifurcation to occur. Theorem 4
below actually confirms that such bifurcation phenomenon emerges.

Theorem 4 Let π∗ be the number given in (13). Then System (4) exhibits at π = π1
(or equivalently at R0 = 1) the following bifurcation behavior: 1- The backward
bifurcation if π < π∗.

2- The forward bifurcation if π > π∗.

Proof See Appendix A.
The results in Theorem 4 are numerically confirmed by Fig. 1 which plots the

infected human component I∗h of the endemic equilibrium point versusR0. Because
the illustrations are similar if one chooses to plot any other component of the endemic
equilibrium against R0. 	


Remark 1 It is worthwhile that π∗ is a mosquito biting preference threshold value for
the existence and elimination of the backward bifurcation in Theorem 4. The latter
phenomenon has important disease-control implications as it asserts that reducing the
biting preference ratio below its threshold is not enough for disease elimination and
that further control measures are needed to bring the epidemic under control.
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3.2 Effects of repellent rate (r) on the asymptotic behavior and bifurcation
analysis

Lemma 2 Let us consider the reproduction numberR0(r) as a function of the repellent
rate r . IfR0(0) > 1 then there exists a unique number r1∈ ]0, 1[, such thatR2

0(r1)=1.

Proof Set h(r) = R2
0(r) − 1, The derivative of h with respect to r gives,

h′(r) = 2R0(r)R′
0(r) = 2πmvmhμh	vP(r)

(μh + γh + δ + u)	h(μv)3

[
∂P(r)

∂r
μv(r) − CP(r)

]

.

Direct computations show that

∂P(r)/∂r = rC (r − 2) − μv1

[1 − r(1 − μv1 − Cr)]2 ≤ 0. (14)

We conclude that

h′(r) < 0.

Thus, h is strictly decreasing in ]0, 1[ . Moreover, h(0) = R2
0(0) − 1 > 0 and h(1) =

−1 < 0. Therefore, there exists a unique number r1 ∈ ]0, 1[ such that R2
0(r1) = 1.

This ends the proof. 	

Proposition 2 The disease-free equilibrium E0 is locally asymptotically stable if the
repellent effect r > r1. It is unstable if r < r1.

Proof The local asymptotic stability of the disease-free equilibrium E0 when r > r1
is established by showing that the characteristic polynomial of the Jacobian of System
(4) evaluated at E0 is

(x + μh) (x + μv) (x + μh + σ)
(
x2 + (μh + γh + δ + u + μv) x

+μv(μh + γh + δ + u)
(
1 − R2

0(r)
) )

.

Since h(r) = R2
0(r) − 1 < 0 is equivalent to r > r1, it is straightforward that,

if r > r1, all the roots the above equation have negative real parts, and there exists
exactly one root with positive real part whenever r < r1. This ends the proof.

Let us recall that the coefficients B2, B1 and B0 of Eq. 11 take the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B2 = μv

[
π(μh + σ) + γh + u(1 − p)

]

[
πmvP(r)(μh + σ) + μv (π(μh + σ) + γh + u(1 − p))

]
> 0,

B1 = (μh + γh + δ + u)μ2
v(r)

(μh + σ)

μh[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

] (
G(r) − R2

0(r)
)
,

B0 = (μh + γh + δ + u)2μ2
v(r)(μh + σ)2

(
1 − R2

0(r)
)

,
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with,

G(r) = πmvP(r)μh(μh + σ) + 2μv(r)μh
[
π(μh + σ) + γh + u(1 − p)

]

μv(r)
[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

] . (15)

	

Theorem 5 Assume that

mvμh(μh + σ)(μh + γh + δ + u)	h

−C
[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]
< 0, and G(0) − R2

0(0) < 0.

Then, the equation
(
G(r) − R2

0(r)
) = 0 has a unique solution rG in the interval (0, 1).

Moreover, one has:

(i) If
(
G(r1) − R2

0(r1)
)

< 0, then rG > r1.
(ii) If r ≥ rG, then B1 ≥ 0.
(iii) If r < rG then B1 < 0.

Proof Set H(r) = (G(r) − R2
0(r)

)
, The derivative of H with respect to r gives,

H ′(r) = mvμh(μh + σ)(μh + γh + δ + u)	h − C
[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]

(μh + γh + δ + u)	hμ2
v(r)

[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

]

×
[

∂P(r)

∂r
μv(r) − CP(r)

]

.

By the assumption of the theorem 5 and the inequation 14, we have H ′(r) > 0.
Thus, H is strictly increasing in ]0, 1[ . Moreover, H(0) = G(0) − R2

0(0) < 0 and

H(1) = 2μv(1)μh
[
π(μh + σ) + γh + u(1 − p)

]

μv(1)
[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

] > 0. Therefore, there

exists a unique number rG ∈ (0, 1) such that
(
G(r) − R2

0(r)
) = 0. 	


The proofs of (i), (i i) and (i i i) follow readily because it suffices to see that the
following three statements hold, respectively. (i) If H(r1) < 0, then r1 < rG . (i i)
r ≥ rG implies H(r) ≥ 0 and B1 ≥ 0. (i i i) Whenever r < rG , we have B1 < 0.

Since B2 > 0, the number of positive roots of Equation (11) (and of course the
number of endemic equilibrium of system (4)) are determined by the sign of B0 and
B1 which, in turn depend on the values ofR0 and G. Let �(r) = B2

1 − 4B0B2 denote
the discriminant of (11).

Lemma 3 Let �(r) = B2
1 − 4B0B2. By the assumption of the theorem 5, then there

exists a unique number rc ∈ (r1, rG) such that �(rc) = 0.

Proof Suppose r ∈ (r1, rG) thus r < rG , according to the theorem 5, we have B1 < 0.
As H ′(r) > 0, we get B ′

1(r) > 0. The derivative of �(r) with respect to r gives,

�′(r) = 2B1B
′
1 − 4B2B

′
0 < 0, since B ′

1 > 0, B1 < 0, B ′
0 > 0 and B2 > 0.
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Moreover, �(rG) = −4B0B2 < 0 and �(r1) = B2
1 > 0. Thus, there is a unique

rc ∈ (r1, rG) such that �(rc) = 0. This ends the proof. 	

We can now state the result about the existence and the number of equilibrium

points for the system (4). In order to emphasize on the importance of the repellent
effect, we use the repellent effect parameter r as bifurcation parameter such that the
backward bifurcation occurs at the threshold value r1.

Theorem 6 : The following statements hold.

1) Suppose r ≥ rG, then system (4) has no endemic equilibrium.
2) Suppose r1 < r < rG and:

a) if r = rc, then system (4) has a unique endemic equilibrium;
b) if r > rc, then system (4) has no endemic equilibrium point;
c) if r < rc, then system (4) has two endemic equilibrium points;

3) Suppose r ≤ r1, then system (4) has a unique endemic equilibrium.

Proof We have the following equivalence: r = rc ⇔ �(r = rc) = B2
1 −4B0B2 = 0.

According to the theorem 5, If r < rG , then B1 < 0 and if r ≥ rG , then B1 ≥ 0. If
r < r1, according to the proof of lemme 2, we have h(r) > 0, thus B0 < 0 and if
r ≥ r1, then B0 ≥ 0.

1) If r ≥ rG, then we have B1 ≥ 0. Moreover, r ≥ rG, implies r > r1, thus B0 > 0.
As B1 ≥ 0 and B0 > 0. Thus 1.a) is established.

2) a) The conditions r1 < r < rG and r = rc, are equivalent to B1 < 0, B0 > 0
and B2

1 − 4B0B2 = 0. The former implies that B1 < 0 leading to λ∗
h(r , b) =

−B1/(2B2) > 0. This proves of 1.b)i).
2) b) and c) r1 < r < rG is equivalent to B1 < 0 and B0 > 0. For r1 < r < rG ,

since �(rG) = −4B0B2 < 0, �(rc) = 0 and �(r1) = B2
1 > 0. We get �(r) < 0

whenever r > rc, then system (4) has no endemic equilibrium. On the other hand,
�(r) > 0 whenever r1 < r < rc, then System (4) has two endemic equilibrium
points, and 2)b) and c) are established.

3) If r = r1, then r < rG . Thus, we get B0 = 0 and B1 < 0. For r < r1, we get
B0 < 0. Therefore 1.c) is proven.

Let’s now consider π∗ as a function of the repellent rate r . This is

π∗ := π∗(r) = μv(r)(μh + δ)(μh + σ) − μhμv(r) (γh + u(1 − p))

μh(μh + σ) (mvP(r) + 2μv(r))
.

It is not difficult to prove that π∗ is monotone increasing on the interval [0,1]. In fact,

∂π∗

∂r
= 1

μh(μh + σ)

mv

(

CP(r) − μv(r)
∂P(r)

∂r

)
[
(μh + δ)(μh + σ) − μh (γh + u(1 − p))

]

(mvP(r) + 2μv(r))2
.
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Fig. 2 The threshold value for
the mosquito biting preference
π∗ versus the repellent rate r .
All parameters are given in
Table 1 . We see that π∗ > 0,
furthermore we note that as the
repellent effect increases, the
threshold value for the mosquito
biting preference π∗ increases
and vice versa
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Using the expression of π∗ in Equation (13) yields

∂π∗

∂r
= 1

μv(r)

mv

(

CP(r) − μv(r)
∂P(r)

∂r

)

π∗

(mvP(r) + 2μv(r))
.

On the other hand, we have

∂P(r)

∂r
= rC (r − 2) − μv1

[1 − r(1 − μv1 − Cr)]2 ≤ 0.

Thus ∂π∗/∂r > 0. Now, we denote its lower and upper bounds respectively by

π∗
L = (μv0 + μv1)(μh + δ)(μh + σ) − μh(μv0 + μv1) (γh + u(1 − p))

μh(μh + σ) (mv + 2(μv0 + μv1))
,

and

π∗
U = (μv0 + μv1 + C)(μh + δ)(μh + σ) − μhμv(1) (γh + u(1 − p))

2μh(μh + σ) (μv0 + μv1 + C)
.

The monotone behavior of π∗ as the function of the repellent effect rate r is illustrated
in Fig. 2 	


Theorem 7 :Assume that the feedingpreference rate satisfies the relation: max
{
1, π∗

L

}

< π < π∗
U . Then there exists a unique threshold value of the repellent effect r∗ in

(0, 1) such that G(r∗) = 1.

Proof Let F(r) = G(r) − 1, we recall that

G(r) = πmvP(r)μh(μh + σ) + 2μv(r)μh
[
π(μh + σ) + γh + u(1 − p)

]

μv(r)
[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

] .

123

16



Mosquito feeding preference and pyrethroids repellent...

Fig. 3 The function G(r) versus
the repellent effect r . The
mosquito feeding preference
π = 5 is chosen such that it lies
between π∗

L = 4.3325 and
π∗
U = 8.1235, while all the other

parameters are given as in Table
1. In this case, there exists a
unique threshold value of the
repellent effect r∗ = 0.4194 in
]0, 1[ which solves the equation
G(r∗) = 1
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Thus

F ′(r) =
πmvμh(μh + σ)[μv

∂P(r)

∂r
− CP(r)]

μ2
v

[
(μh + δ)(μh + σ) + μh (γh + u(1 − p))

] .

Direct computations show that

∂P(r)

∂r
= rC (r − 2) − μv1

[1 − r(1 − μv1 − Cr)]2 ≤ 0. (16)

We conclude that F is a decreasing function of repellent effect r . Moreover
max

{
1, π∗

L

}
< π is equivalent to F(0) > 0, and π∗

U > π is equivalent to F(1) < 0.
Thus there is a unique r∗ in (0, 1) such that F(r∗) = G(r∗) − 1 = 0.

This achieves the proof. This result stated in Theorem 7 is numerically confirmed
by Fig. 3. 	


The following theorem summarizes the role that repellent effect plays on the bifur-
cation of system (4) for a suitable range of the mosquito feeding rate π .

Theorem 8 Suppose max
{
1, π∗

L

}
< π < π∗

U . Then System (4) exhibits atR0 = 1:
1- The backward bifurcation whenever r > r∗.
2- The forward bifurcation whenever r < r∗.

Proof See Appendix B.
The results in theorem 8 are numerically confirmed by Fig.4. In this figure, we have

chosen to plot the infected human component I ∗
h of the endemic equilibrium point

versus R0, but the illustration is similar if one chooses to plot any other component
of the endemic equilibrium against R0. 	


4 Global stability of the equilibrium points

In this section, the global asymptotic stability of equilibrium points are proven under
certain condition, using Lyapunov–LaSalle techniques and the second additive com-
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Fig. 4 Illustration of the bifurcation diagrams using the repellent effect as bifurcation parameter: The
parameters are given in Table 1. The solid lines represent stability, the dotted lines represent instability.
The calculation of π∗

U and π∗
L give π∗

L = 4.3325 and π∗
U = 8.1235. π = 5, thus we have π∗

L < π < π∗
U ,

therefore there exists the threshold of repellent rate. The computation of the threshold value for the repellent
effect is r∗ = 0.4194, such that for r > r∗, the backward bifurcation occurs, see Fig. 4. When r ≤ r∗
the forward bifurcation occurs. These results illustrate theorem 8. Moreover, we note that, by decreasing
the repellent effect value, backward bifurcation is eliminated as long as r ≤ r∗, making malaria easier to
be controlled. It further shows that, decreasing the repellent effect reduces the infectious population at the
endemic level , see Fig. 4a. On the other hand decreasing the repellent effect increases the infectious vectors
at the endemic level, see Fig. 4b

pound matrix method. This method is usually applied to three-dimensional systems.
We expand its application to four-dimensional systems.

Theorem 9 The disease-free equilibrium point E0 is globally asymptotically stable
(GAS) when π ≤ π1μ

2
h/(μh + δ)2.

Proof To prove that statement, Lyapunov–LaSalle techniques are used in 
 by con-
sidering the following Lyapunov function:

L = L(Sh, Ih, Rh, Sv, Iv) = μvμh Ih + mh(μh + δ)P(r)Iv + μv(r)μh

×
(
Sh − S0h ln Sh

)
+ mh(μh + δ)P(r)

(
Sv − S0v ln Sv

)
.

Direct, yet simple computations show that

dL

dt
= −μvμ

2
h(Sh − S0h)

2

Sh
− mh P(r)(μh + δ)μv(r)(Sv − S0v )2

Sv

+
[

μvμhmh P(r)S0h
π Ih + Sh + Rh

− mh P(r)(μh + δ)μv(r)

]

Iv +

×
[
mh P(r)(μh + δ)πmvPvS0v

π Ih + Sh + Rh
− μvμh(μh + δ + γh + u)

]

×Ih − μv(r)μhρu

(
S0h − Sh

Sh

)

Ih − μv(r)μhσ

(
S0h − Sh

Sh

)

Rh .

Next, since dNh/dt ≥ 	h − (μh + δ)Nh , the application of Gronwall lemma yields
a lower bound for Nh as follows: there is a T such that

Nh ≥ 	h

μh + δ
, for all t ≥ T .
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Using the above lower bound for Nh , straightforward calculations and careful rear-
rangements lead to

dL

dt
≤ −μv(r)μ2

h(Sh − S0h)
2

Sh
− mh P(r)(μh + δ)μv(r)(Sv − S0v )2

Sv

+
(μh + δ)2mvmh P(r)P(r)	v

	hμv(r)

(

π − μ2
h

(μh + δ)2
π1

)

Ih,

for all t ≥ T . Obviously, we have L̇ ≤ 0 when π ≤ π1μ
2
h/(μh + δ)2. Moreover it is

easy to see that the largest invariant subset contained in the set

E = {(Sh, Ih, Rh, Sv, Iv) ∈ 
/L̇ = 0
}

is the disease-free equilibrium E0. Thus the LaSalle Invariance Principle applies easily
to L and E0 is globally attractive in 
. Hence, E0 is GAS. 	

Theorem 10 The endemic equilibrium point EE of System (4) is globally asymptoti-
cally stable provided:

π > π1,
	h

2mh P(r)
>

	v

μv(r)
,

and

μh > max

{

σ, γh + u(1 − ρ) + max {μv(r), δ + γh + u} − σ,

(5μv(r) + σ) μv(r)	h + 2mh P(r)	vδ

μv(r)	h − 2mh P(r)	v

}

.

The proof of the GAS of the endemic equilibrium EE uses the following instru-
mental result.

Theorem 11 (Vidyasagar [34], Theorem 3.1). Consider the following C1 system:
⎧
⎪⎨

⎪⎩

dx

dt
= f (x) x ∈ R

n

dy

dt
= g(x, y) x ∈ R

m,

(17)

with an equilibrium point (x∗, y∗) ie., f (x∗) = 0 and g(x∗, y∗) = 0.
If x∗ is globally asymptotically stable (GAS) in R

n for the system dx/dt = f (x),
and if y∗ is (GAS) in R

m for the system dy/dt = g(x∗, y) then (x∗, y∗) is (locally)
asymptotically stable for (17). Moreover, if all the trajectories of (17) are forward
bounded, then (x∗, y∗) is GAS for (17).

Now, we are going to show that System (4) has the triangular structure in Theorem
11.
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Let Nv(t) = Sv(t) + Iv(t). We have dNv/dt = 	v − μv(r)Nv , so that System (4)
is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dNv

dt
= 	v − μv(r)Nv

dSh
dt

= 	h + σ Rh − λh(r , π)Sh + ρuIh − μh Sh

d Ih
dt

= λh(r , π)Sh − (μh + γh + δ + u)Ih

d Rh

dt
= (1 − ρ)uIh + γh Ih − (σ + μh)Rh

d Iv
dt

= λv(r) (Nv(t) − Iv(t)) − μv(r)Iv.

(18)

WehavedNv/dt = 	v−μv(r)Nv . Therefore, Nv(t) −→ 	v/μv(r) as t −→ +∞.
Thus, equilibrium N∗

v = 	v/μv(r , b) is globally asymptotically stable (GAS) in R

for the system dNv/dt = 	v − μv(r)Nv . Note that the endemic equilibrium point
for System (4) translates to the endemic equilibrium point for System (18) which
we denote by Ê E = (N∗

v , S∗
h , I

∗
h , R∗

h , I
∗
v ). Therefore, the proof of the GAS EE for

System (4) is equivalent to the proof of the GAS of Ê E for System (18). To achieve
the latter, if we set

x = Nv, y = (Sh, Ih, Rh, Iv),

then System (18) takes the desirable triangular form in Theorem 11, with

f (x) = 	v − μv(r)x, g(x, y) =

⎛

⎜
⎜
⎜
⎝

	h + σ Rh − λh(r , π)Sh + ρuIh − μh Sh
λh(r , π)Sh − (μh + γh + δ + u)Ih
(1 − ρ)uIh + γh Ih − (σ + μh)Rh

λv(r , π) (Nv(t) − Iv(t)) − μv(r)Iv

⎞

⎟
⎟
⎟
⎠

.

Moreover, since x∗ = N∗
v is GAS for dx/dt = f (x), the GAS of Ê E for

R0 > 1 will be established as long as the GAS of the endemic equilibrium
Ẽ E = (S∗

h , I
∗
h , R∗

h , I
∗
v ) of the following reduced System (19) (corresponding to

dy/dt = g(x∗, y) holds.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh
dt

= 	h + σ Rh − λh(r , π)Sh + ρuIh − μh Sh

d Ih
dt

= λh(r , π)Sh − (μh + γh + δ + u)Ih

d Rh

dt
= (1 − ρ)uIh + γh Ih − (σ + μh)Rh

d Iv
dt

= λv(r , π)
(
N∗

v − Iv(t)
)− μv(r)Iv.

(19)
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One can easily show that the set,


0 =
{
(Sh(t), Ih(t), Rh(t), Iv(t)) ∈ R

4+ : Sh(t) + Ih(t) + Rh(t)

≤ 	h

μh
, Iv(t) ≤ 	v

μv(r)

}

,

is positively invariant for the flow generated by (19) and that, thanks to Theorem (3),
Ẽ E = (S∗

h , I
∗
h , R∗

h , I
∗
v ) is the unique endemic equilibrium for (19) in the interior of
0

whenR0 > 1. On the other hand, since all the trajectories of (18) are forward bounded,
then according to the Theorem 11, the GAS of Ẽ E for System (18) is complete if the
GAS of Ẽ E for System (19) is established. This GAS of Ẽ E for System (19) is done
in the following theorem.

Theorem 12 Under the assumptions of Theorem 10, the endemic equilibrium point
Ẽ E of System (19) is GAS in the interior of 
0.

Proof See Appendix A. 	

Remark 2 From the details of the proof of Theorem 12 in Appendix A, it is worth
noticing that a different choice of the matrix P in (22) will lead to different sufficient
conditions for the global stability of the endemic equilibrium of System (19). There-
fore, the suitable statement of Theorem 12 is linked to the corresponding suitable
choice of P .

5 Interplay betweenmosquito feeding preference and pyrethroids
repellent effect on disease dynamics

5.1 Impact of mosquito feeding preference and pyrethroids repellent effect on
the reproduction number

Here, we assess both theoretically and numerically the role of PTNs usage and
mosquito biting preference for infectious host on the control reproduction number
R0.

Theorem 13 The use of PTNs has a positive impacts on malaria control by decreasing
its reproduction numberR0. Furthermore, the control reproduction number is a linear
increasing function of mosquito biting preference for infectious hosts.

Proof For R0 �= 0, we have P(r) �= 0, and

∂R0

∂r
= −πmvmhμh	vP(r)

(μh + γh + δ + u)	hR0(μv)3

[
rC (r − 2) − μv1

[1 − r(1 − μv1 − Cr)]2 + CP(r)

]

< 0.

Furthermore, ifR0 = 0, then P(r) = 0 and the disease is absent in the population. In
the case where, R0 > 0, it is an increasing function of π in the sense that:

∂R0

∂π
= 1

2R0

mvmh P(r)2

(μh + γh + δ + u)

μh

(μv(r))2
	v

	h
> 0.
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Fig. 5 a Relationship between the control reproduction number R0 and the repellent effect (r ), for the
chosen parameter u = 0.06. b Illustration of the curve of the control reproduction number versus mosquito
biting preference for infectious host (π), for the chosen parameter u = 0.06. The remaining parameters are
given in Table 1. a The minimum level of repellent effect required to contain malaria disease is r = 0.87.
We note that as the repellent effect decreases,R0 increases and vice versa. bWe note that as the mosquito
biting preference for infectious host increases,R0 increases and vice versa. Themaximum level ofmosquito
biting preference for infectious host required to contain malaria disease is π = 0.78.

Fig. 6 Contour plot of the
control reproduction number
showing the potential impact of
the interplay between
pyrethroids treated bed-nets
repellent effect and mosquito
host choice on epidemic
outbreak of malaria. u = 0.06.
The remaining parameters are
given in Table 1
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These results are illustrated in the Figs. 5 and 6. 	

We additionally assess the impact of parameters of the bed-net Model (4) on the

control reproduction number R0, by computing the elasticity indexes of R0 with
respect to parameter values given in Table 1. According to the approach proposed in
[7, 23, 24, 26], the elasticity index of R0 with respect to a parameter p, where p is
any of the parameters in Table 1 reflected in the expression ofR0, is given by

∂R0

∂ p
× p

R0
.

Since these indexes quantify the ratio of relative changes on R0 in response to corre-
sponding changes in the parameters, they can identify critical parameters for disease
control. This approach states that the control reproduction number is most sensitive to
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Table 2 Elasticity indexes of the control reproduction numberR0.

Parameter μv1 r 	h 	v mv γh

Elasticity –0.9423 –0.6943 –0.5 0.5 0.5 –0.000008

Parameter mh μh π u μv0 δ

Elasticity 0.5 0.5 0.5 –0.4991 –0.1523 –0.0008

the parameter with the largest elasticity index value and least sensitive to the param-
eter with the smallest elasticity index value. Table 2 displays the elasticity indexes of
R0 to the 12 (twelve) parameters, arranged in decreasing magnitude order and hence
decreasing sensitivity. As expected, the control reproduction number is most sensitive
to the maximum mosquito ITNs-induced death rate μv1 with an elasticity index of
−0.9423. It is also highly sensitive to the probability that a vector is repelled by the
insecticide (or mechanically blocked by the net) r . Qualitatively, R0 decreases by
9.423% for an increase in maximummosquito ITNs-induced death rate of 10%,R0 is
reduced by 6.943%when the repellent effect r is increased by 10% and a 10% increase
the mosquito biting preference for infectious host, increasesR0 by 5.000%. The pub-
lic health implication of these investigation is that the use of insecticide-treated nets
with high repellent rate and lethal effects, and of course vector control are important
steps to take for the control of malaria.

5.2 Interplay between pyrethroids treated bed-nets repellent effect and
mosquito host choice onmalaria outcome

We define f (r) so thatR0 < 1 is equivalent to π < f (r), thus

f (r) = μ2
v(r)(μh + γh + δ + u)	h

mvmh P(r)2μh	v

.

For any couple (r , π) verifying π < f (r), we have R0 < 1. Thus , if π ≥ π∗, the
disease disappears in the population. If this requirement is not met, additional control
strategies (such as indoor residual spraying and human treatment) might be needed to
reduce malaria burden and control the disease. On the contrary, for any couple (r , π)

verifying π > f (r), we have R0 > 1, and malaria will persist in the population.
On the other hand, one can observe in Fig. 6 that, for a fix value of repellent effect,

the reproduction numberR0 increases when the mosquito biting preference increases.
For a fix value of mosquito biting preference, we also note that as the repellent effect
decreases, R0 increases and vice versa. Moreover, if the repellent effect rate r ∈
[0, 0.67[, irrespective of the value of the mosquito biting preference,R0 will never be
brought below one, and consequently, malaria will never be eliminated. On the other
hand, for any couple (r , π) in the set ]0.92, 1]×[1,+∞[,R0 is less that the unity, and
consequently, malaria can be controlled. All these investigations show the interplay
between π and r and its impact on the epidemic outbreak potential of malaria. One
could investigate further on the potential impacts of the interplay between π and r
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on the long-term dynamics of the model by studying (for example) the infectious
component I ∗

h of the endemic equilibrium as a function of π and r , but due to the high
complexity of that function I ∗

h , we’ve skipped it and concentrate only on the control
reproduction number R0.

6 Conclusion and discussions

For the best of the authors’ knowledge, this is the first research work which models
and analyzes a mathematical model of malaria dynamics that combines a pyrethroids
treated bed-nets repellent effect with mosquito host choice. We have proposed and
analyzed a dynamical PTNs model for malaria transmission, in which mosquito biting
preference for infectious host are explicitly incorporated and their role on the long
run of the malaria evolution is investigated. The results obtained have revealed the
existence of a backward bifurcation for certain parameter values which implies that
the reduction of mosquito host choice π below its threshold value π∗ or the increase
of the repellent effect r above its threshold value r∗ is not enough to mitigate malaria
evolution. Therefore, additional control strategies such as indoor residual spraying and
treatment might be necessary to reduce malaria burden and control the disease. More-
over, the occurrence of a backward bifurcation has been shown to depend on the range
of the mosquito biting preference for infectious host and repellent effect. Precisely,
we have computed the mosquito biting preference for infectious host threshold value
π∗ and repellent effect threshold value r∗ necessary to study the existence of both the
endemic equilibrium points and backward bifurcation when the mosquito host choice
π < π1 or the repellent effect r > r1.

We have shown that the control reproduction number is highly sensitive to themaxi-
mummosquito ITNs-induced death rate μv1 and the repellent parameter (r). We have
also proved that the control reproduction number R0 increases when the mosquito
biting preference for infectious hosts increases. The global asymptotic stability of
equilibrium points has been established under certain conditions, using Lyapunov–
LaSalle techniques and a geometric approach. We have demonstrated that the PTNs
utilization (repellent effect ) has a positive impact in reducing the control reproduction
number. This allowed us to conclude that PTNs utilization decreases the reproduction
number, thus reducing the disease burden and helping to control malaria. We have
shown that malaria eradication might be more difficult to be achieved, if the mosquito
biting preference for infectious host is less than the mosquito biting preference thresh-
old value or if the repellent effect is greatest than the repellent effect threshold value.
As a whole, the following results summarize the theoretical and numerical analyses
of our model:

(i) The incorporation of mosquito host choice in a dynamical PTNs model for
malaria transmission is one of the causes of backward bifurcation, which pre-
vents the classical requirement that, bringing the control reproduction number
below unity is sufficient to control malaria.

(ii) If the mosquito biting preference for infectious host threshold value π∗ > 0,
then π∗ is a increasing function of the repellent probability r .
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(iii) By increasing the vector feeding preference value (or decreasing the repellent
effect), backward bifurcation is eliminated as soon as π ≥ π∗ (or r ≤ r∗),
making the control of malaria easier to be achieved.

(iv) Increasing the mosquito biting preference parameter to infectious humans or
decreasing the repellent effect, reduces the number of infectious humans at the
endemic level of the disease.

It is worth noticing that among the many researches and experiments in the field,
Ogoma et al. [27] conducted an experiment to evaluate the effects of two pyrethroids
insecticides (Transfluthrin and Metofluthrin coils), by showing a scenario where 100
mosquitoes approach a house, deterrence comes into play in the first instance and
only approximately 62 and 70 mosquitoes enter the house with Transfluthrin and
Metofluthrin coils respectively. After mosquitoes were repelled and exited the house,
35 and 39 remained inside the house with Transfluthrin and Metofluthrin coils respec-
tively. Of those, approximately 1 and 3 mosquitoes managed to acquire a blood meal.
The authors concluded that through deterrence, irritancy or excito-repellency and
feeding inhibition of pyrethroid coils, more than 97% of the mosquitoes would be
prevented from contacting humans inside houses before mortality is even considered.
Although this experiment and few others could be enough to demonstrate and pave
the way to the estimation of repellent effect of pyrethroids and feeding behavior of
mosquitoes, more experiments are still needed to actually quantify these effects for
better implementation of this research work. Based on this, we emphasize that the
values of π and r used in this work, though chosen in the relevant ranges, were purely
for illustrative purposes. Thus, we recommend both the vector feeding preference
threshold values π1 and π∗, and the repellent effect thresholds values r1 and r∗ could
be quantified empirically in laboratory so that more practicability could be expected
from this research work.

Appendices

Appendix A: Proof of Theorem 4

For simplicity, denote th = mh P(r), tv = mvP(r). Then, using th as the bifurcation
parameter, and solving for th the equation π1(th) = π yields

th := t∗h = (μh + γh + δ + u)(μv(r , b))2	h

π tvμh	v

. (20)

The Jacobian matrix of System (4) evaluated at the DFE E0 can then be rewritten
as

J (E0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μh uρ σ 0 −t∗h
0 −(μh + γh + δ + u) 0 0 t∗h
0 γh + u(1 − ρ) −(μh + σ) 0 0

0 −π tv
	v

	h

μh

μv(r)
0 −μv(r) 0

0 π tv
	v

	h

μh

μv(r)
0 0 −μv(r)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The eigenvalues of J (E0) are
λ1 = −μh , λ2 = −μv(r), λ3 = −(μh + σ), λ4 = 0, λ5 = −(μh + γh + δ

+ u + μv(r)
)
.

Now, we denote by w = (w1, w2, w3, w4, w5)
T a right eigenvector corresponding

to the zero eigenvalue. Then,

w =
((

−γh + u(1 − ρ)

μh + σ
− μh + δ

μh

)

w2, w2,
γh + u(1 − ρ)

μh + σ
w2,

− π tv
	v

	h

μh

μ2
v(r)

w2, π tv
	v

	h

μh

μ2
v(r)

w2

)T

Now, it is not difficult to prove that the left eigenvector v = (v1, v2, v3, v4, v5)

corresponding to the zero eigenvalue such that v.w = 1 is given by

v =
(

0,
π tv	vμh

	h(μv(r) + μh + γh + δ + u)
, 0, 0,

(μh + γh + δ + u)μv(r)

μv(r) + μh + γh + δ + u

)

.

Let fi (i = 1, 2, 3, 4, 5) be the vector on the right hand side of system (4). The non-
vanishing second-order partial derivatives of fi (i = 1, 2, 3, 4, 5) at the disease-free
equilibrium E0 are:

∂2 f2
∂ Ih∂ Iv

(E0, t
∗
h ) = −πμht∗h

	h
; ∂2 f2

∂Rh∂ Iv
(E0, t

∗
h )

= −μht∗h
	h

; ∂2 f4
∂Sh∂ Ih

(E0, t
∗
h ) = −π tv	vμ

2
h

μv(r , b)	2
h

;

∂2 f4
∂ Ih∂Rh

(E0, t
∗
h ) = −π tv	vμ

2
h

μv(r)	2
h

; ∂2 f4
∂ Ih∂Sv

(E0, t
∗
h )

= π tvμh

	h
; ∂2 f4

∂ I 2h
(E0, t

∗
h ) = −2π2tv	vμ

2
h

μv(r)	2
h

.

Using t∗h given by Eq. (20), we obtain:

∂2 f2
∂ Ih∂ Iv

(E0, t
∗
h ) = − (μh + γh + δ + u)μ2

v(r)

tv	v

; ∂2 f2
∂Rh∂ Iv

(E0, t
∗
h )

= − (μh + γh + δ + u)μ2
v(r)

π tv	v

.

According to definitions of the coefficients A and B in [6] (Theorem 4.1), it follows
that:
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A =
4∑

k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(E0, t

∗
h ), x = (Sh, Ih, Rh, Sv, Iv),

= v2

(

2w2w5
∂2 f2

∂ Ih∂ Iv
(E0, t

∗
h ) + 2w3w5

∂2 f2
∂Rh∂ Iv

(E0, t
∗
h )

)

+

+v4

(

2w1w2
∂2 f4

∂Sh∂ Ih
(E0, t

∗
h ) + w2

2
∂2 f4
∂ I 2h

(E0, t
∗
h ) + 2w2w3

∂2 f4
∂ Ih∂Rh

(E0, t
∗
h )

+ 2w2w4
∂2 f4

∂ Ih∂Sv

(E0, t
∗
h )

)

,

and

B =
4∑

k,i=1

vkwi
∂2 fk

∂xi∂th
(E0, t

∗
h ) = v2w5

∂2 f2
∂ Iv∂th

(E0, t
∗
h ) = v2w5.

Substituting the eigenvectors and the above non-zero partial derivatives intoA and
B leads us to

A = −2(μh + γh + δ + u)μv(r) (mvP(r) + 2μv(r))

πmvP(r)	v (μh + γh + δ + u + μv(r))

[
π − π∗] ,

and

B = πmvP(r)
	v

	h

μh

μv(r) (μh + γh + δ + u + μv(r))
. (21)

Obviously, the coefficientB is positive. When π < π∗,A is positive. It follows that
model (4) undergoes a backward bifurcation when π < π∗. If the reversed inequality
holds, then the system exhibits a forward bifurcation.

Appendix B: Proof of Theorem 8

Let’s recall that

A = −2(μh + γh + δ + u)μv(r) (mvP(r) + 2μv(r))

πmvP(r)	v (μh + γh + δ + u + μv(r))

[
π − π∗]

When r > r∗, then G(r) < G(r∗), thus G < 1. Therefore G(π) < G(π∗).
G(π) < G(π∗) is equivalent to π < π∗, thus we have A > 0. therefore (4)

undergoes a backward bifurcation when r > r∗. If the reversed inequality holds, then
the system exhibits a forward bifurcation.
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Appendix C: Proof of Theorem 12

Weuse the geometric approach to establish the global asymptotic stability of Ẽ E . First,
note that
0 is simply connected inR

4+ and System (19) has a unique endemic equilib-
rium in the interior of 
0 whenever π1 < π . Moreover, the instability of the disease-
free equilibrium implies the uniform persistence of System (19) see [13], i.e. there
exists a constant c > 0 such that any solution x(t, x0) = (Sh(t), Ih(t), Rh(t), Iv(t))
of (19) with the initial condition x0 = (Sh(0), Ih(0), Rh(0), Iv(0)) in the interior of

0 satisfies the inequality

min

{

lim
t→+∞ in f Sh(t), limt→+∞in f Ih(t), limt→+∞in f Rh(t),

limt→+∞in f Iv(t)} > c.

The uniform persistence together with boundedness of 
0 is equivalent to the
existence of a compact absorbing set K in the interior of
0 [16]. Therefore, it remains
to find conditions for which the Bendixson’s criterion are verified. The Jacobianmatrix
J of System (19) is

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−mh P(r)Iv(π Ih + Rh)

(π Ih + Rh + Sh)2
− μh

πmh P(r)IvSh
(π Ih + Rh + Sh)2

+ uρ

mh P(r)Iv(π Ih + Rh)

(π Ih + Rh + Sh)2
− πmh P(r)IvSh

(π Ih + Rh + Sh)2
− (μh + δ + γh + u)

0 γh + u(1 − ρ)

−
πmvP(r)

(
	v

μv

− Iv

)

Ih

(π Ih + Rh + Sh)2

πmvP(r)
(

	v

μv
− Iv

)
(Sh + Rh)

(π Ih + Rh + Sh)2

mh Ph IvSh
(π Ih + Rh + Sh)2

+ σ − mh P(r)Sh
(π Ih + Rh + Sh)

− mh P(r)IvSh
(π Ih + Rh + Sh)2

mh P(r)Sh
(π Ih + Rh + Sh)

−μh − σ 0

−
πmvP(r)

(
	v

μv

− Iv

)

Ih

(π Ih + Rh + Sh)2
− πmvP(r)Ih

(π Ih + Rh + Sh)
− μv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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The second additive compound matrix J [2] of J is

J [2] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b11 − mh P(r)IvSh
(π Ih + Rh + Sh)2

mh P(r)Sh
(π Ih + Rh + Sh)

γh + u(1 − ρ) b22 0

l2 −l3 b33

0
mh P(r)Iv(π Ih + Rh)

(π Ih + Rh + Sh)2
0

l3 0
mh P(r)Iv(π Ih + Rh)

(π Ih + Rh + Sh)2

0 l3 0

−σ − mh P(r)IvSh
(π Ih + Rh + Sh)2

mh P(r)Sh
(π Ih + Rh + Sh)

0

l1 0 k1

0 l1 k2

b44 0 k3

−l3 b55 k4

−l2 γh + u(1 − ρ) b66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where,

b11 = −mh P(r)Iv(π Ih + Rh)

(π Ih + Rh + Sh)2
− μh − πmh Ph(r)IvSh

(π Ih + Rh + Sh)2
− (μh + δ + γh + u) ,

b22 = −mh P(r)Iv(π Ih + Rh)

(π Ih + Rh + Sh)2
− μh − μh − σ,

b33 = −mh P(r)Iv(π Ih + Rh)

(π Ih + Rh + Sh)2
− μh − πmvP(r)Ih

(π Ih + Rh + Sh)
− μv(r),

b44 = − πmh P(r)IvSh
(π Ih + Rh + Sh)2

− (μh + δ + γh + u) − μh − σ,

b55 = − πmh P(r)IvSh
(π Ih + Rh + Sh)2

− (μh + δ + γh + u) − πmvP(r)Ih
(π Ih + Rh + Sh)

− μv(r),

b66 = −μh − σ − πmvP(r)Ih
(π Ih + Rh + Sh)

− μv(r),

l1 = πmh P(r)IvSh
(π Ih + Rh + Sh)2

+ uρ, l2 =
πmvP(r)

(
	v

μv(r) − Iv
)

(Sh + Rh)

(π Ih + Rh + Sh)2
,

l3 =
πmvP(r)

(
	v

μv(r)
− Iv

)
Ih

(π Ih + Rh + Sh)2
,
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k1 = mh P(r)Sh
(π Ih + Rh + Sh)

, k2 = σ + mh P(r)IvSh
(π Ih + Rh + Sh)2

, k3 = − mh P(r)Sh
(π Ih + Rh + Sh)

,

k4 = − mh P(r)IvSh
(π Ih + Rh + Sh)2

.

Let x = (Sh, Ih, Rh, Iv). Choose now the matrix

P = P(Sh, Ih, Rh, Iv) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

k1/Ih 0 0 0 0 0
0 k1/Ih 0 0 0 0
0 0 0 k1/Ih 0 0
0 0 k2/Iv 0 0 0
0 0 0 0 k2/Iv 0
0 0 0 0 0 k2/Iv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (22)

where k1 and k2 are two undetermined positive constants. Thus we define the matrix
Pf by

(
Pi j (x)

)

f =
(

∂Pi j (x)

∂x

)T

. f (x) = ∇Pi j (x). f (x) where, f (x) = (Ṡh, İh, Ṙh, İv
)T

.

Then, Pf P−1 = diag

(

− İh
Ih

,− İh
Ih

,− İh
Ih

,− İv
Iv

,− İv
Iv

,− İv
Iv

)

, and the matrix N =
Pf P−1 + P J [2]P−1 can be rewritten in the block form

N (Sh, Ih, Rh, Iv) = (Ni j
)

1≤i, j≤4 , (23)

where,

N11 = b11 − İh
Ih

, N12 =
(

− mh P(r)IvSh
(π Ih + Rh + Sh)2

, −σ − mh P(r)IvSh
(π Ih + Rh + Sh)2

)

,

N13 =
(
k1
k2

mh P(r)IvSh
(π Ih + Rh + Sh) Ih

,
k1
k2

mh P(r)IvSh
(π Ih + Rh + Sh) Ih

)

, N14 = 0,

N21 = (γh + u(1 − ρ), 0)T , N22 =

⎛

⎜
⎜
⎜
⎜
⎝

b22 − İh
Ih

l1

mh P(r)Iv(π Ih + Rh)

(π Ih + Rh + Sh)2
b44 − İh

Ih

⎞

⎟
⎟
⎟
⎟
⎠

,

N23 =
⎛

⎝
0 0

0 0

⎞

⎠ , N24 =
(
k1
k2

mh P(r)IvSh
(π Ih + Rh + Sh) Ih

,
k1
k2

mh P(r)IvSh
(π Ih + Rh + Sh) Ih

)T

,
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N31 =
(

l2
k2
k1

Ih
Iv

, l3
k2
k1

Ih
Iv

)T

, N32 =

⎛

⎜
⎜
⎜
⎝

−l3
k2
k1

Ih
Iv

0

0 −l3
k2
k1

Ih
Iv

⎞

⎟
⎟
⎟
⎠

,

N33 =

⎛

⎜
⎜
⎜
⎜
⎝

b33 − İv
Iv

l1

mh P(r)Iv(π Ih + Rh)

(π Ih + Rh + Sh)2
b55 − İv

Iv

⎞

⎟
⎟
⎟
⎟
⎠

,

N34 =
(

σ + mh P(r)IvSh
(π Ih + Rh + Sh)2

, − mh P(r)IvSh
(π Ih + Rh + Sh)2

)T

,

N41 = 0, N42 =
(

l3
k2
k1

Ih
Iv

, −l2
k2
k1

Ih
Iv

)

,

N43 = (0, γh + u(1 − ρ)) , N44 = b66 − İv
Iv

.

Now, define a vector norm |.| in R
6+ by

|(y1, y2, y3, y4, y5, y6)| = max {|y1|, |y2| + |y3|, |y4| + |y5|, |y6|} .

Let ζ(.) denote the Lozinskii measure with respect to the above defined norm given
by

ζ(N ) = lim
h→0+

|I + hN | − 1

h
.

Using a similar argument as in [29], we have the following estimate

ζ(N ) ≤ sup {g1, g2, g3, g4} ,

where,

gi = ζ1(Nii ) +
4∑

j=1, j �=i

|Ni j |,

|Ni j |(i �= j, i, j = 1, 2, 3, 4) are matrix norms with respect to the L1 vector norm
defined for a generic matrix A = (ai j ), |A| = max1≤k≤n

∑n
j=1 |a jk | and ζ1 is the

Lozinskii measure of A with respect to that L1 norm. To calculate the values of gi , we
firstly obtain that,
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ζ1(N11) = −mh P(r)Iv(π Ih + Rh)

(π Ih + Rh + Sh)2
− μh − πmh P(r)IvSh

(π Ih + Rh + Sh)2
− (μh + δ + γh + u) − İh

Ih
,

|N12| = σ + mh P(r)IvSh
(π Ih + Rh + Sh)2

,

|N13| = k1
k2

mh Ph(r , b)IvSh
(π Ih + Rh + Sh) Ih

, |N14| = 0, |N21| = γh + u(1 − ρ),

ζ1(N22) = −2μh − σ − İh
Ih

,

|N23| = 0, |N24| = 2
k1
k2

mh P(r)IvSh
(π Ih + Rh + Sh) Ih

,

|N31| < πmvP(r)
k2
k1

(
	v

μv(r)
− Iv

)
Ih

(π Ih + Rh + Sh) Iv
,

|N32| < 2πmvP(r)
k2
k1

(
	v

μv(r)
− Iv

)
Ih

(π Ih + Rh + Sh) Iv
,

ζ1(N33) = −μh − μv(r , b) − mh P(r)
Ih

(π Ih + Rh + Sh)
− İv

Iv
,

|N34| = σ + 2
mh P(r)IvSh

(π Ih + Rh + Sh)2
, |N41| = 0,

|N42| < πmvP(r)
k2
k1

(
	v

μv(r)
− Iv

)
Ih

(π Ih + Rh + Sh) Iv
,

|N43| = γh + u(1 − ρ), ζ1(N44) = −μh − σ − πmvP(r)Ih
(π Ih + Rh + Sh)

− μv(r) − İv
Iv

.

Furthermore, from System (19), we have,

İh
Ih

= mh P(r)IvSh
(π Ih + Rh + Sh) Ih

− (μh + δ + γh + u) ,

and

İv
Iv

= πmvP(r)

(
	v

μv(r)
− Iv

)
Ih

(π Ih + Rh + Sh) Iv
− μv(r).
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Choosing k2 = 2k1 yields:

g1 < −μh + σ,

g2 = −(μh + σ) + δ + 2γh + u(2 − ρ),

g3 < 5
İv
Iv

+ 5μv(r) + σ − μh + 2mh P(r)
	v

μv(r)

μh + δ

	h
,

g4 <
İv
Iv

+ μv(r) + γh + u(1 − ρ) − (μh + σ).

Set

d1 = μh − σ, d2 = σ + μh − 2γh − u(2 − ρ) − δ,

d3 = μh + σ − γh − u(1 − ρ) − μv(r), d4 = μh − σ − 5μv(r) − 2
mh P(r)	v(μh + δ)

μv(r)	h
,

and

d = min {d1, d2, d3, d4} .

From condition (10), we have d > 0 and

g1 ≤ −d, g2 ≤ −d, g3 < 5
İv
Iv

− d, g4 <
İv
Iv

− d,

The above relations hold alongside each solution (Sh(t), Ih(t), Rh(t), Iv(t)) to system
(19) corresponding to the initial condition (Sh(0), Ih(0), Rh(0), Iv(0)) ∈ K , with K
being a compact and absorbing in 
0 shown earlier, when t > T , we have

1

t

∫ t
0 g1 ds ≤ −d,

1

t

∫ t
0 g2 ds ≤ −d,

1

t

∫ t
0 g3 ds <

1

t

∫ T
0 g3 ds + 5

t
ln

Iv(t)

Iv(T )
− d

t − T

t
,

1

t

∫ t
0 g4 ds <

1

t

∫ T
0 g4 ds + 1

t
ln

Iv(t)

Iv(T )
− d

t − T

t
.

Moreover, we have,

1

t

∫ t

0
ζ(N ) ds ≤ sup

{

−d,
1

t

∫ T

0
g3 ds + 5

t
ln

Iv(t)

Iv(T )
− d

t − T

t
,

1

t

∫ T

0
g4 ds + 1

t
ln

Iv(t)

Iv(T )
− d

t − T

t

}

.
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Therefore,

q = lim
t→+∞ sup sup

x0∈K
1

t

∫ t

0
ζ (N (x(s, x0))) ds ≤ −d < 0.

This proves the GAS of Ẽ E .
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