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Abstract. The paper concerns the well-posedness and long-term asymptotics

of growth–fragmentation equation with unbounded fragmentation rates and
McKendrick–von Foerster boundary conditions. We provide three different

methods of proving that there is a strongly continuous semigroup solution to

the problem and show that it is a compact perturbation of the corresponding
semigroup with a homogeneous boundary condition. This allows for transfer-

ring the results on the spectral gap available for the later semigroup to the one

considered in the paper. We also provide sufficient and necessary conditions
for the irreducibility of the semigroup needed to prove that it has asynchronous

exponential growth. We conclude the paper by deriving an explicit solution to

a special class of growth–fragmentation problems with McKendrick–von Foer-
ster boundary conditions and by finding its Perron eigenpair that determines

its long-term behaviour.

1. Introduction. We consider the continuous fragmentation equation with growth

∂tu(x, t) = −∂x(r(x)u(x, t))− a(x)u(x, t) +

∫ ∞
x

a(y)b(x, y)u(y, t)dy, (1a)

complemented by the initial condition

u(x, 0) = ů(x), (1b)

and the McKendrick–von Foerster boundary conditions

lim
x→0+

r(x)u(x, t) =

∫ ∞
0

β(y)u(y, t)dy, (1c)
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for t, x ∈ R+ = (0,∞). Here, u(x, t) is the density of particles of mass/size x ∈
(0,∞) at time t, a is the fragmentation rate, b is the fragmentation kernel that
describes mass distribution of x−size particles spawned by the fragmentation of
a size y particle, r is the transport coefficient that describes the rate of growth of
particles of size x, and β represents the rate at which the smallest daughter particles
enter the population. We observe that if β 6= 0, then the boundary condition
depends on the solution on the entire interval R+, making the problem nonlocal.
However, due to physical and biological interpretation of the model, we make the
restriction β ≥ 0.

The main aim of this paper is to establish the existence of a positive strongly
continuous semigroup (SKβ,m(t))t≥0 solving (1) in

Xm := L1(R+, (1 + xm)dx), m > 1,

with the norm ‖ · ‖m, and to show that under natural assumptions it has the
asynchronous exponential growth (AEG) property, that is, that there exist positive
constants ε and c such that

‖e−s(Kβ,m)tSKβ,m(t)f −Pf‖m ≤ ce−εt‖f‖m, t ≥ 0, f ∈ Xm, (2)

where P is the projection on the Perron eigenspace of the generator of (SKβ,m(t))t≥0.
This property is related to the existence of the so-called spectral gap, that is, the
existence of the isolated dominant eigenvalue of (SKβ,m(t))t≥0.

There is a large body of literature dealing with property (2) for solutions of (1)
in various settings and using different approaches. The case when x belongs to a
bounded interval has been well-understood since the work of Diekmann, Heijmans
and Thieme, [16], though unbounded rates can be tricky, see [9]. A comprehensive
theory of the classical McKendrick–von Foerster model of population theory (that
is, without the fragmentation operator) can be found in [33, 21, 20]. All known
work on the full growth–fragmentation problem in unbounded state spaces has been
done for (1) with homogeneous boundary conditions (β = 0). In particular, many
results have been obtained by the General Relative Entropy method, introduced
in [24], which in special cases can also give the exponential rate of decay, [30].
Some results have been established by probabilistic methods, see e.g., [14, 13]. In
this work, we focus on operator–theoretic methods the foundation of which can be
traced to [25, 11, 12]. The latter two papers are based on the study of the Perron
eigenvector and eigenvalue done in [17]. Quantitative estimates of the spectral gap
were obtained by means of Harris operators in [15]. Much of the analysis of the
above papers was hampered by the lack of satisfactory solvability results for (1)
with unbounded rates. Such a theory in Xm with m > 1 was established in [7]
and it allowed for building a comprehensive spectral gap theory for (1) with β = 0
in [29], paving also the way for extending it to the general case, presented in this
paper. It is also worthwhile to observe that a parallel theory in the spirit of both
[29] and this paper, but for a discrete model, was obtained in [5].

The paper is organized as follows. In Section 2 we introduce basic notation,
definitions and assumptions used in the paper. As we intend to give a comprehen-
sive panorama of possible approaches to the growth–fragmentation equation with
McKendrick–von Foerster boundary conditions, in Section 3 we present the main
steps for establishing AEG for (1) with β = 0 from [29]. The motivation for this
review is that, in principle, having proven the existence of (SKβ,m(t))t≥0, one could
redo all calculations of [29] for β 6= 0 to arrive at (2) also in this case. We present,
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however, a shorter way. In Section 4 we give three different theorems on the gener-
ation of the semigroup (SKβ,m(t))t≥0. They extend the results of [6], where we con-
sidered (1) with β 6= 0 but only in X1, and of [7], where we discussed the problem in
arbitrary Xm, but with β = 0. The third theorem, inspired by [20, Proposition 4.3,
Chapter VI], shows that, under suitable assumptions, (SKβ,m(t))t≥0 is a compact
perturbation of (SK0,m(t))t≥0, allowing thus the direct application of the results of
[29] to establish the existence of a spectral gap for the former from that of the later.
In Section 5 we present necessary and sufficient conditions for the irreducibility of
(SKβ,m(t))t≥0. It is a completely new result, significantly extending the ones in [29]
or [8, Theorem 5.2.21]. Finally, in Section 7 we apply the recent methods of ex-
plicitly solving the growth–fragmentation equations, developed in [10], to construct
solutions to a class of models with McKendrick–von Foerster boundary condition
and to find their Perron eigenpairs.

2. Notation and assumptions. We re-write (1) in a compact form as

∂tu(x, t) = −Tu(x, t) + Fu(x, t), (x, t) ∈ R2
+. (3)

The transport and the fragmentation expressions are defined, respectively, as

Tu(x) = ∂x
(
r(x)u(x)

)
,

Fu(x) = Au(x) + Bu(x) = −a(x)u(x) +

∫ ∞
x

a(y)b(x, y)(y)dy,
(4)

where the partial derivative is understood in the distributional sense and u is a
locally integrable function for which the integral operator is finite in R+. As we
mentioned above, the problem shall be analyzed in the space Xm. The symbols
Xm,+ and X∗m are reserved for the positive cone (generated by the usual a.e. partial
order for measurable functions) and the normed dual of Xm, respectively. If we want
to keep the duality pairing between Xm and X∗m as

〈g, f〉 =

∫ ∞
0

g(x)f(x)dx, (5)

then X∗m can be identified with the space of measurable functions g satisfying

‖ g ‖∗m= esssup
x∈(0,∞)

|g(x)|
1 + xm

<∞. (6)

In the presence of the transport term involving partial derivative with respect to
the state variable and of the nonlocal boundary condition, solvability of (1) is not a
straightforward procedure and there are case when the solving semigroup does not
exist, e.g., [29, p. 9]. For our analysis, we shall adopt assumption on the model
coefficients from [4, 8] with slight modifications.

The transport coefficient r is assumed to be a continuous function on R+, satis-
fying

0 < r(x) ≤ r0(1 + x), x ∈ R+, (7)

for some r0 > 0. Furthermore, since the transport part of (3) propagates input
data (initial and/or boundary) along characteristic curves, the boundary condition
(1c) makes sense if and only if the characteristics cross the t-axis transversally.
Accordingly, we shall assume that r(x) is bounded and is separated away from zero
as x→ 0+. This implies, in particular, that∫

0+

ds

r(s)
<∞, (8)
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where
∫
0+

denotes the integral in some positive neighborhood of 0.
The fragmentation rate a is assumed to satisfy

0 ≤ a ∈ L∞,loc([0,∞)). (9)

Some stronger results can be obtained if a is polynomially bounded, i.e., if for some
p > 0,

0 ≤ a(x) ≤ a0(1 + xp), x ∈ R+. (10)

The case p = 0 results in a bounded fragmentation operator and is not considered
here.

Remark 1. The adopted assumptions imply that 1/r, a/r ∈ L1,loc([0,∞)). Hence,
we can define the following functions

R(x) :=

∫ x

0

ds

r(s)
, Q(x) :=

∫ x

0

a(s)

r(s)
ds. (11)

An immediate consequence of (11) is that R is strictly increasing and Q is non-
decreasing on (0,∞). We have the following limits,

lim
x→0+

R(x) = 0, lim
x→∞

R(x) =∞,

lim
x→0+

Q(x) = 0, lim
x→∞

Q(x) = MQ.
(12)

Typically, MQ =∞ provided a is unbounded at ∞.

The fragmentation kernel b, describing the distribution of the sizes x of daughter
particles spawned by fragmentation of a parent particle of size y, is assumed to be
a non-negative measurable function of two variables satisfying

b(x, y) = 0 for x > y. (13)

Remark 2. If we allow the fragmentation rate a to be zero on some set I ⊂ R+,
that is, if we admit the situation that clusters of sizes y ∈ I do not split, then,
to be consistent with physics, we should set b(x, y) = δ(y − x) as then, using the
physical interpretation of the Dirac measure, this would correspond to getting one
cluster of size x = y after “splitting” of a cluster of size y. More precisely, using
(14) and (15), the number of daughter particles would be n0(y) =

∫ y
0
δ(y−x)dx = 1

and the mass n1(y) =
∫ y
0
xδ(y − x)dx = y. To avoid dealing with measures in the

equations, we note that the coefficient b appears only in a product with a and hence
a(y)b(x, y) = 0 for y ∈ I. However, the formulae below hold if we treat b(x, y)dx as
the Dirac measure.

For m ≥ 0, we define

nm(y) =

∫ y

0

xmb(x, y)dx. (14)

In particular, n0(y) is the mean number of daughter particles resulting from split-
ting of a y−aggregate and n1(y) is their total mass. Hence, if we consider mass
conserving fragmentation, we must assume that for any y > 0 the identity

n1(y) = y =

∫ y

0

xb(x, y)dx (15)

is satisfied. It is also physically obvious (and can be proved, see [8, Section 2.2.3.2])
that n0(y) > 1 for y /∈ I. We further assume that there is l ≥ 0 and b0 ∈ R+, such
that

n0(x) ≤ b0(1 + xl), x ∈ R+. (16)
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Clearly, b0 ≥ 1. Using (15), we find, for m 6= 0, 1,

nm(y) =

∫ y

0

xmb(x, y)dx

=

∫ y

0

xm−1xb(x, y)dx

{
≤ ym−1

∫ y
0
xb(x, y)dx = ym if m > 1,

≥ ym−1
∫ y
0
xb(x, y)dx = ym if m < 1.

(17)

We further introduce

Nm(y) = ym − nm(y). (18)

Then, based on (17), we obtain

Nm(y) ≥ 0, m > 1,

N1(y) = 0, m = 1,

Nm(y) ≤ 0, 0 ≤ m < 1.

(19)

The crucial assumption that allows for the proof of the generation theorem is that
there exists m0 > 1 such that

lim
y→∞

inf
Nm0(y)

ym0
> 0. (20)

It follows, [8, Section 5.1.7.2] or [5], that if (20) holds for some m0 > 1, then it
holds for all m > 1. Furthermore, (20) implies that for any m > 1 there is a cm < 1
and ym > 0 such that

nm(y) ≤ cmym, y ≥ ym. (21)

Assumption (20) is satisfied for most commonly used fragmentation kernels such
as the power law, homogeneous or separable kernels. However, if the sizes of the
daughter particles are distributed close to that of the fragmenting parent and, cor-
respondingly, close to zero, then such a process may not satisfy (20), see [8, Section
5.1.7.2].

Finally, we assume that

0 ≤ β ∈ X∗m, (22)

with ‖β‖∗m = βm.
It should be noted that for β = 0, we get the homogeneous boundary condition

which was considered in [8, Section 5.2] and [7, 29]. As the main results on the
spectral gap are based on the theory developed in [29], in the following section we
briefly recount its main points.

3. Spectral gap theory of [29]. Let Z0,m and K0,m be the operator realizations
of, respectively, −T + A and −T + A + B, subject to (1c) with β = 0, generating
strongly continuous semigroups (SZ0,m

(t))t≥0 and (SK0,m
(t))t≥0 in Xm. We note

that the consideration of this section hold for sufficiently large λ (see (34a)). The
first crucial results of [29] are the resolvent estimates. The resolvent R(λ, Z0,m)
satisfies for f ∈ Xm

|[R(λ, Z0,m)f ](y)| ≤ 1

(1 + ym)r(y)
‖f‖m , y ∈ R+, (23)

and ∫ +∞

0

|[R(λ, Z0,m)f ](y)| a(y)(1 + ym)dy ≤ ‖f‖m. (24)
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If y 7→ 1
(1+ym)r(y) ∈ Xm, then (23) would mean that R(λ, Z0,m) maps the unit ball

in Xm into an order interval and, since Xm is an L1 space, R(λ, Z0,m) would be a
weakly compact operator. Since, however, it does not hold, we only get that the set{

χ(0,ε−1)R(λ, Z0,m)f ; ‖f‖m ≤ 1
}
,

where χ is the characteristic function, is weakly compact for any ε > 0. If now
a was uniformly separated from 0 for large x, then (24) would give the smallness
of χ(ε−1,∞)R(λ, Z0,m)f as ε → 0, uniformly for ‖f‖m ≤ 1, and hence, together
with the previous observation, the weak compactness of R(λ, Z0,m). Otherwise, we
assume that the sublevel sets of a are ‘thin at infinity’ in the sense that for any
c > 0, ∫ +∞

1

χ{τ ; a<c}(τ)

r(τ)
dτ < +∞. (25)

We observe that if
lim

y→+∞
a(y) = +∞,

then (25) is trivially satisfied. This allows for splitting the estimates of χ(ε−1,∞)R(λ,
Z0,m)f into the parts where a is, respectively, small and large, and hence yields the
required weak compactness of R(λ, Z0,m). Since we are in L1 space, [28, Lemma
14] gives its compactness.

Next, assumption (20) allows for the application of the Miyadera–Desch theorem,
see [4, Theorem 5.1.3] or [26, Theorem 8.2], to show that K0,m = Z0,m + Bm with
the domain D(Z0,m) (where Bm = BD(Z0,m), see (41)) is the generator of the full
semigroup (SK0,m(t))t≥0 and hence, from

R(λ,K0,m) = R(λ, Z0,m)

+∞∑
n=0

[BmR(λ, Z0,m)]
n
,

R(λ,K0,m) is compact.
The last step is to transfer some benefits of the compactness of R(λ,K0,m) to

(SK0,m
(t))t≥0. We split

Z0,m +Bm =
(
Z0,m + B̂m

)
+Bm,

where 0 ≤ B̂m � Bm and Bm is a bounded integral operator on Xm with compactly
supported bounded kernel, hence is weakly compact, see [18, Theorem VI.8.10].

Thus, if (Ŝm(t))t≥0 is the semigroup generated by Z0,m + B̂m, then

SK0,m(t) = Ŝm(t) +

∫ t

0

Ŝm(t− s)BmSK0,m(s)ds

and
∫ t
0
Ŝm(t − s)BmSK0,m(s)ds is a weakly compact operator (by [32, 27]). Thus,

by a result which goes back to [22] and whose more focused proof can be found in
[26, Theorems 2.7 & 2.10], we have the equality of the essential radii,

ress(Ŝm(t)) = ress(SK0,m
(t)). (26)

On the other hand,

R(λ, Z0,m + B̂m) � R(λ,K0,m).

Under an assumption ensuring that R(λ,K0,m) is irreducible, its compactness gives
the strict inequality of spectral radii,

rσ

[
R(λ, Z0,m + B̂m)

]
< rσ [R(λ,K0,m)] ,
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by [23]. This implies inequality of spectral bounds of the generators,

s(Z0,m + B̂m) < s(K0,m), (27)

and hence, in particular,
s(K0,m) > −∞.

Since in L1-spaces the type of a positive semigroup coincides with the spectral
bound of its generator, see e.g., [4, Theorem 3.37], we get

ress(SK0,m(t)) = ress(Ŝ(t)) ≤ rσ(Ŝ(t)) = es(Z0,m+B̂m)t < es(K0,m)t = rσ(SK0,m(t)).

Using again irreducibility of (SK0,m(t))t≥0, the spectral bound s(Z0,m + Bm) of
its generator is its dominant eigenvalue and a simple pole of the resolvent, see [3,
Corollary 3.16 of Chapter C-III]. Furthermore, by [20, Proposition 3.4 of Chapter
VI], s(K0,m) is a simple eigenvalue, that is, its eigenspace is one-dimensional, which
gives the asynchronous exponential growth property of the semigroup.

4. Generation theorems. The purpose of this section is twofold. First, we dis-
cuss classical well-posedness of (1). Our analysis is based on the observation (see
[20, Section VI.4]) that in certain functional settings, the integro-differential op-
erator, defining (1a) and equipped with the nonlocal boundary condition (1c) can
be viewed as a multiplicative perturbation of the same operator but coupled with
the homogeneous boundary data. Accordingly, we show that the classical well-
posedness of (1) can be deduced directly from the known generation results for
β = 0.

Second, we characterize a connection between the semigroups associated to the
homogeneous (β = 0) and to the inhomogeneous (β 6= 0) boundary data. As we
shall see later in Section 5, this characterization, combined with the spectral theory
of [29], yields a simple description of the large time dynamics of (1).

4.1. The transport semigroup. Here, we consider

∂tu = −Tu+ Au = −∂x(ru)− au =: Zu, (28)

with the initial and boundary conditions given, respectively, by (1b) and (1c). Let
Xm, with some m ≥ 1, be fixed. First, we define the maximal realization of Z in
Xm by

Zm = Z|D(Zm), (29a)

where
D(Zm) := {u ∈ Xm : ∂x(ru), au ∈ Xm}. (29b)

Next, we introduce the operator Zβ,m, 0 ≤ β ∈ X∗m, as the restriction of Zm to the
domain

D(Zβ,m) :=

{
u ∈ D(Zm) : lim

x→0+
r(x)u(x) =

∫ ∞
0

β(y)u(y)dy

}
, (30)

defining the relevant boundary condition (1c). In particular, functions u ∈ D(Z0,m)
satisfy the homogeneous boundary condition

lim
x→0+

r(x)u(x) = 0. (31)

We note that (29b) implies that ru is absolutely continuous on R+ and hence the
boundary conditions in (30) and (31) are well-defined.

The resolvent equation, associated to (Zβ,m, D(Zβ,m)), is given by

λu+ ∂x(ru) + au = f, (32)
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with the boundary condition given in (30). The general solution to (32) is

u(x) =
e−λR(x)−Q(x)

r(x)

∫ x

0

f(y)eλR(y)+Q(y)dy + C
e−λR(x)−Q(x)

r(x)
, (33)

where C is an arbitrary constant. The special case of β = 0 is settled in [7, 29],
where it is shown that the resolvent of (Z0,m, D(Z0,m)) is given explicitly by

u(x) = [R(λ,Z0,m)f ](x) =
e−λR(x)−Q(x)

r(x)

∫ x

0

f(y)eλR(y)+Q(y)dy, λ > ωr,m := 2mr0,

(34a)

see (7), and satisfies

‖ R(λ, Z0,m)f ‖m≤
1

λ− ωr,m
‖f‖m. (34b)

The analysis of the general scenario β 6= 0 relies on two technical results.

Lemma 4.1. [7] Let m ≥ 1 be fixed. If (7), (8), (9) are satisfied and λ > ωr,m :=
2mr0, then
(a) for any 0 < a < b ≤ ∞,

Pm,1(a, b) =

∫ b

a

e−λR(s)

r(s)
(1 + sm)ds ≤ 1

λ− ωr,m
e−λR(a)(1 + am), (35)

(b) for any 0 < a < b ≤ ∞,

Pm,2(a, b) =

∫ b

a

(λ+ a(s))e−λR(s)−Q(s)

r(s)
(1 + sm)ds

≤ λ

λ− ωr,m
e−λR(a)−Q(a)(1 + am).

(36)

The second result is an analogue of [20, Lemma 4.2, p. 218], adapted to our
settings.

Lemma 4.2. Assume (7), (8), (9) and (22) are satisfied. Then the the operator

Eλ = eλ
〈β, ·〉

1− 〈β, eλ〉
, eλ(x) :=

dλ(x)

r(x)
:=

e−λR(x)−Q(x)

r(x)
, λ > ωr,m + βm, (37a)

is bounded on Xm and

‖Eλf‖m ≤
βm

λ− ωr,m − βm
‖f‖m, f ∈ Xm, λ > ωr,m + βm, (37b)

with βm defined in (22) and (6). Furthermore, for λ > ωr,m + βm, the following
holds

(I + Eλ)−1 = I − eλ〈β, ·〉, (38a)

(I + Eλ)D(Z0,m) = D(Zβ,m), (38b)

λI − Z0,m = (λI − Zβ,m)(I + Eλ). (38c)

Proof. On the account of (35), we have ‖eλ‖m ≤ 1
λ−ωr,m . Hence, for λ > ωr,m+βm,

the denominator in (37a) is strictly positive and (37b) follows. The remainder of
the proof is a verbatim repetition of the arguments from [20, Lemma VI.4.2] and is
omitted.
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Lemma 4.2 indicates that (Zβ,m, D(Zβ,m)) can be viewed as a multiplicative per-
turbation of (Z0,m, D(Z0,m)). This fact, combined with the estimates of Lemma 4.1,
yields a simple characterization of the resolvent R(λ, Zβ,m).

Theorem 4.3. Let the coefficients r, a and b satisfy (7), (8), (9) and (22). Then,
for any m ≥ 1 and λ > ωr,m + βm, the resolvent of (Zβ,m, D(Zβ,m)) is given
explicitly by[

R(λ, Zβ,m)f
]
(x) =

[
(I + Eλ)R(λ, Z0,m)f

]
(x)

=
[
R(λ, Z0,m)f

]
(x) + eλ(x)

〈β,R(λ, Z0,m)f〉
1− 〈β, eλ〉

, f ∈ Xm.

(39a)

Furthermore, the following estimate holds

‖R(λ, Zβ,m)f‖m ≤
1

λ− ωr,m − βm
‖f‖m, λ > ωr,m + βm. (39b)

Proof. Formula (39a) follows directly from (38b) and (38c). Further, on the account
of (39a) and (37b), for f ∈ Xm, we have

‖R(λ, Zβ,m)f‖m = ‖(I + Eλ)R(λ, Z0,m)f‖m ≤
λ− ωr,m

λ− ωr,m − βm
‖R(λ, Z0,m)f‖m

and (39b) is the direct consequence of (34b).

Since the operators R(λ, Z0,m), Eλ ∈ L(Xm), m ≥ 1, are positive (see formulae
(34a) and (37a), respectively), we immediately obtain

Theorem 4.4. For any given m ≥ 1, the operator (Zβ,m, D(Zβ,m)) generates a
strongly continuous positive semigroup, say

(
GZβ,m(t)

)
t≥0, on Xm.

4.2. The growth–fragmentation semigroup. Recalling notation (16), we as-
sume

m > 1 if 0 ≤ l ≤ 1,

m ≥ l if l > 1.
(40)

Next, we consider the full equation (3), written in the operator form in Xm as

∂tu = Zβ,mu+Bmu, t > 0, (41)

where Bm is the restriction of B to D(Zβ,m), see [8, Lemma 5.1.4]. Under (40),
this restriction is well-defined as D(Zβ,m) ⊂ D(Am) := {u ∈ Xm : au ∈ Xm} and,
by (14) and (16), for 0 ≤ u ∈ D(Am),

‖Bu‖m =

∞∫
0

 ∞∫
x

a(y)b(x, y)u(y)dy

 (1 + xm)dx

=

y∫
0

a(y)u(y)(n0(y) + nm(y))dy ≤ 2b0

y∫
0

a(y)u(y)(1 + ym)dy <∞.

(42)

We mention that the solvability of (41) with β = 0 is completely settled in [7, The-
orem 2.2], where it is shown that (Bm, D(Am)) is a positive Miyadera perturbation
of (Z0,m, D(Z0,m)), i.e.,

‖BmR(λ, Z0,m)f‖m ≤ c0,m‖f‖m, 0 < c0,m < 1, ωr,m < λ0 < λ, (43)
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for sufficiently large values of λ0. Using this fact, together with Lemmas 4.1–4.2,
we obtain

Theorem 4.5. Let (7), (8), (9), (22) and (40) be satisfied. Then (Bm, D(Am))
is a Miyadera perturbation of (Zβ,m, D(Zβ,m)), and hence (Kβ,m, D(Zβ,m)) :=
(Zβ,m + Bm, D(Zβ,m)) generates a positive C0-semigroup, say (SKβ,m(t))t≥0, in
Xm. Furthermore,

SKβ,m(t) ≥ SK0,m
(t), t ≥ 0. (44)

Proof. As in [7], the proof is based on the Miyadera–Desch perturbation theorem,
[4, Lemma 5.12].

Since both, Bm and R(λ, Zβ,m) are positive and the norm ‖ · ‖m is additive in
Xm,+, we only need to show

‖BmR(λ, Zβ,m)f‖m ≤ c‖f‖m, 0 < c < 1, (45)

for sufficiently large values of λ > ωr,m+βm and f ≥ 0. By (39a) and (43), we have

‖BmR(λ, Zβ,m)f‖m ≤ ‖BmR(λ, Z0,m)f‖m + ‖BmEλR(λ, Z0,m)f‖m

≤ c0,m‖f‖m +

∣∣〈β,R(λ, Z0,m)f〉
∣∣

1− 〈β, eλ〉
‖Bmeλ‖m

≤
(
c0,m +

βm‖Bmeλ‖m
λ− ωm,r − βm

)
‖f‖m =: (c0,m + cβ,m)‖f‖m.

The inclusion eλ ∈ D(Am) and bounds (36) and (42) imply that

0 < cβ,m ≤
2b0βmλ

(λ− ωr)(λ− ωr − βm)
→ 0,

as λ→∞. Hence, for λ sufficiently large, 0 < c0,m + cβ,m < 1 and (Bm, D(Zβ,m))
is the Miyadera perturbation of (Zβ,m, D(Am)). By the Miyadera-Desch theorem,
(Zβ,m + Bm, D(Zβ,m)) =: (Kβ,m, D(Zβ,m)) generates a positive semigroup in Xm,
say (SKβ,m(t))t≥0.

To prove (44), on the account of Hille’s identity (see e.g., [19, Corollary 5.5,
p. 223]), it is sufficient to verify that R(λ,Kβ,m) ≥ R(λ,K0,m) for sufficiently large
λ. Since (Bm, D(Am)) is the Miyadera perturbation of both (Z0,m, D(Z0,m)) and
(Zβ,m, D(Zβ,m)), we have, by [4, Theorem 5.10],

R(λ,Kα,m) = R(λ, Zα,m)

∞∑
n=0

(BmR(λ, Zα,m))n (46)

for α = 0, β. Since, by (39a), R(λ, Zβ,m) ≥ R(λ, Z0,m) ≥ 0 for λ > ωr,m + βm and
Bm ≥ 0, we immediately get R(λ,Kβ,m) ≥ R(λ,K0,m) for large λ.

As mentioned in Section 2, under the additional assumption (10),

0 ≤ a(x) ≤ a0(1 + xp), x ∈ R+,

we can prove that (SKβ,m(t))t≥0 is quasi-contractive in Xm, provided

m > 1 if 0 ≤ l + p ≤ 1,

m ≥ l + p if l + p > 1,
(47)

with p and l defined in (10) and (16), respectively. Let wm(x) := 1 + xm.
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Lemma 4.6. Let (7), (9), (15) and (22) be satisfied. Then, for u ∈ D(Zβ,m), we
have
∞∫
0

[(Zβ,m +Bm)u](x)wm(x)dx = −cm(u)

:=

∞∫
0

β(x)u(x)dx+m

∞∫
0

r(x)u(x)xm−1dx−
∞∫
0

(N0(x) +Nm(x))a(x)u(x)dx.

(48)

Proof. We have
∞∫
0

[(Zβ,m +Bm)u](x)wm(x)dx

=−
∞∫
0

∂x(r(x)u(x))wm(x)dx−
∞∫
0

a(x)(x)wm(x)dx+

∞∫
0

[Bmu](x)wm(x)dx

= −
∞∫
0

∂x(r(x)u(x))wm(x)dx−
∞∫
0

(N0(x) +Nm(x))a(x)u(x)dx,

where we used (42) and (18) to obtain the last line. Also, for 0 < x0 < x1 <∞
x1∫
x0

∂x(r(x)u(x))wm(x)dx

= r(x1)u(x1)wm(x1)− r(x0)u(x0)wm(x0)−m
x1∫
x0

r(x)u(x)xm−1dx. (49)

The integral on the LHS converges by the definition of D(Zβ,m) and on the RHS
converges by (7). By (30), we have

lim
x0→0+

r(x0)u(x0) =

∞∫
0

β(x)u(x)dx.

and, since the limit is finite,

lim
x0→0+

r(x0)u(x0)(1 + xm0 ) = lim
x0→0+

r(x0)u(x0) + lim
x0→0+

r(x0)u(x0)xm0 =

∞∫
0

β(x)u(x)dx.

Thus, there exists

lim
x1→∞

r(x1)u(x1)(1 + xm1 ) = L ≥ 0.

If L > 0, then there is 0 < L′ < L such that r(x)u(x)wm(x) ≥ L′ for large x, but
then u /∈ Xm. Thus

lim
x1→∞

r(x1)u(x1)wm(x1) = 0, (50)

and (48) is proved.

Proposition 1. Assume (7), (9), (10), (15) and (22) are satisfied. Then
(SKβ,m(t))t≥0 is a positive quasi-contractive C0-semigroup with type not exceeding

ωβ,m := βm + ωr,m + 4a0b0. (51)
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Proof. For u ∈ D(Zβ,m)+, by (48), (18), (7) and (10),

−cm(u) ≤
∞∫
0

β(x)u(x)dx+m

∞∫
0

r(x)u(x)xm−1dx

−
∞∫
0

N0(x)a(x)u(x)dx−
∞∫
0

Nm(x)a(x)u(x)dx

≤ βm‖u‖m + r0m

∞∫
0

u(x)(1 + x)xm−1dx+ 4a0b0‖u‖m

−
∞∫
0

Nm(x)a(x)u(x)dx

≤ (β∞ + 2mr0 + 4a0b0)‖u‖m −
∞∫
0

Nm(x)a(x)u(x)dx,

where we used

0 ≤ −N0(x)a(x)

1 + xm
≤ n0(x)a(x)

1 + xm
≤ a0b0

(1 + xp)(1 + xl)

1 + xm
≤ 4a0b0,

for m ≥ p + l, see [8, Lemma 5.1.46]. Then, by e.g., [4, Proposition 9.29], there

is a minimal extension K̃β,m of Zβ,m + Bm generating a positive quasi-contractive
semigroup, say (SK̃β,m(t))t≥0, with the growth rate not exceeding ωβ,m. Since, by

[4, Theorem 5.2],

R(λ, K̃β,m) =

∞∑
n=0

R(λ, Zβ,m)(BmR(λ, Zβ,m))n, λ > ωβ,m,

and, using (46), we see that Kβ,m = K̃β,m, (SK̃β,m(t))t≥0=(SKβ,m(t))t≥0 and hence

the latter is quasi-contractive.

4.3. A characterization of (SKβ,m(t))t≥0. By virtue of Lemma 4.2 and subse-
quent Theorems 4.4 and 4.5, ((Kβ,m, D(Zβ,m)) is a multiplicative perturbation of
(K0,m, D(Z0,m)), where the multipliers (I + Eλ) and (I + Eλ)−1 are compact per-
turbations of the identity. This fact, combined with the approach from [20, Section
6.4], yields the following characterization of (SKβ,m)t≥0, with β 6= 0.

Theorem 4.7. Assume that (7), (10) and (16), with (47), are satisfied. Addition-
ally, let

β ∈ X∗k , k + p ≤ m, (52a)

∂xβ ∈ X∗m−1. (52b)

Then (SKβ,m(t))t≥0 is similar to a compact perturbation of (SK0,m
(t))t≥0, i.e.,

(I + Eλ)−1SKβ,m(t)(I + Eλ)− SK0,m(t) ∈ K(Xm), t ≥ 0. (53)
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Proof. (a) On the account of (38), the elementary identity (λI − Zm)eλ = 0 and
the inclusions D(Z0,m), D(Zβ,m) ⊂ D(Am), for λ > ωr,m + βm, we have

(I + Eλ)−1(λI −Kβ,m)(I + Eλ)f

= (λI −K0,m)f + eλ〈β,K0,mf〉
−
[
λeλ〈β, f〉+ (I + Eλ)−1BmEλf

]
, f ∈ D(Z0,m).

(54)

Note that eλ ∈ D(Am), therefore, by virtue of (37a) and (36), the rank-one operator[
λeλ〈β, f〉+ (I + Eλ)−1BmEλf

]
is bounded in Xm and hence, is compact.

(b) We let D0,m := eλ〈β,K0,m·〉. In view of (52), for f ∈ D(Z0,m), we have

〈β,Bmu〉 =

∞∫
0

a(y)u(y)

 y∫
0

b(x, y)β(x)dx

 dy

≤ βk
∞∫
0

a(y)u(y)

 y∫
0

b(x, y)(1 + xk)dx

 dy

≤ 2βkb0a0

∞∫
0

u(y)(1 + ym)dy = 2βkb0a0‖u‖m

and

〈β, Z0,mu〉 =

∞∫
0

β(x)∂x(r(x)u(x)dx−
∞∫
0

β(x)a(x)u(x)dx

= lim
x1→∞

β(x1)r(x1)u(x1)− lim
x0→0+

β(x0)r(x0)u(x0)

−
∞∫
0

∂xβ(x)r(x)u(x)dx−
∞∫
0

β(x)a(x)u(x)dx

= −
∞∫
0

∂xβ(x)r(x)u(x)dx−
∞∫
0

β(x)a(x)u(x)dx,

where (31) and (50) (as k < m) are used to show that both limits vanish. The
estimates show that Dm extends to a bounded rank-one (and hence compact) op-
erator D̄m in Xm. Thus, from (54) it follows that (Kβ,m, D(Zβ,m)) is similar to
a compact perturbation of (K0,m, D(Z0,m)) and hence, by [20, Chapter II, Section
2.1], generates a semigroup (S1(t))t≥0 satisfying

(I + Eλ)−1S1(t)(I + Eλ)− SK0,m
(t) ∈ K(Xm), t ≥ 0,

where the compactness follows from [20, Proposition V.4.9], as in the proof of [20,
Proposition VI.4.3]. By the uniqueness of the generator, (S1(t))t≥0 must coincide
with (SKβ,m(t))t≥0 of Theorem 4.5 and (53) follows.

5. Irreducibility of the semigroup. An important part in the existence of the
spectral gap of a semigroup is played by its irreducibility. In contrast to the pure
fragmentation semigroup, which is not irreducible, here we have an interplay of the
growth mechanism and fragmentation, which reduces the size of particles, and these
antagonistic processes, under natural assumptions on the fragmentation rate a and
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the daughter particles distribution function b, yield irreducibility of the solution
semigroup.

The irreducibility can be ensured by two mechanisms. In general, if we allow a to
be zero over some set I (see Remark 2) then, to make sure that there is sufficient flow
“downward”, we must assume that the particles that can split, produce daughter
particles of sufficiently small sizes so that the process will not be confined to sizes
bigger than that in I. This can follow if the gain of particles of smaller sizes, entering
the ensemble after splitting of a y-size particle due to the fact that b(x, y) > 0 for
some x < y, is sufficiently uniform to eventually fill up R+. Otherwise, this can be
also ensured by a nonzero β, which generates particles of “zero” size entering the
system out from particles of sizes y ∈ suppβ. This corresponds to classical results
from McKendrick–von Foerster equation in population theory, where the model fails
to be irreducible if the old (in this case large) individuals cannot reproduce, see e.g.,
[21, Theorem 5.2].

To make these physical intuitions precise, we have to introduce some notation.
In this case, as a consequence of (15), we see that for any y > 0

∅ 6= supp b(·, y) ⊂ [0, y]. (55)

Here and elsewhere in the paper, for a measurable function f , by supp f we un-
derstand the essential support of f , that is, the complement of the set on which
f is almost everywhere equal to 0 and by sup and inf we understand the essential
supremum and infimum. Then, for any y ∈ R+, we define

b(y) = inf supp b(·, y).

Note that, in agreement with Remark 2, we decided to use b rather than ab here,
as then b(y) = y for y /∈ A := supp a is well-defined, whereas supp ab is empty for
such ys. The function b satisfies

0 ≤ b(y) < y,

for any y ∈A. Next, for any z > 0, we define

c(z) = inf
y≥z

b(y).

Then also

0 ≤ c(z) ≤ z.
For any z0 > 0, the sequence (z(n, z0))n≥1 = (c(n)(z0))n≥1, where c(n)(y0) :=
c(c(...c(z0)))︸ ︷︷ ︸

n times

is nonincreasing and bounded from below and thus has a limit, say

c∞(z0). Let

c̄ := sup
z0∈R+

{c∞(z0)}.

Lemma 5.1. 1. If c(c̄) ≥ c̄, then for any z ≥ c̄ we have c∞(z) = c̄.
2. If c(c̄) < c̄, then for any z > c̄, c(z) > c̄ and c∞(z) = c̄.
Hence,

c̄ = max
z∈R+

{c∞(z)}

and, in particular, c̄ is isolated in {c∞(z)}z∈R+
and it can be only approached by

sequences (c(n)(z))n≥1, z ≥ c̄, from above.
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a)

y

x

b(x, y) = 0

x = y

a(y)b(x, y) > 0

supp ab

b)

supp ab

b(y0)

y0

y

x

b(x, y) = 0

x = b(y)

x = y

Figure 1. Illustration of two cases of supp ab. On the left, supp ab
extends to infinity for any x > 0, as in Remark 3, a). On the right,
b), supp ab allows to reach x = 0 by iterations.

y

x
b(x, y) = 0 x = y

x = b(y)b(y0)

y0c∞(y0) = c̄

c̄

c(c̄)

c∞(c̄)

supp ab

supp ab

Figure 2. The case of Lemma 5.1.(2). Here c∞(c̄) < c̄ and
c∞(z) = c̄ for any z > c̄.

Proof. In case 1., first we observe that the assumption, and b(z) ≤ z, implies
c(c̄) = c̄. Further, properties of infimum imply c(z1) ≤ c(z2), provided z1 ≤ z2.
From this, it follows that for any z ≥ c̄, we have

c(n)(z) ≥ c(n)(c̄) = c̄,

and hence, c∞(z) ≥ c̄. From the definition of c̄, c∞(z) = c̄.
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a)

y

x

b(x, y) = 0

x = y

x = b(y)

b(y0) = y0

c(y0)

y0

c(2)(y0)

c∞(y0)

b)

y

x

b(x, y) = 0

x = y

x = b(y)

b(y0) = y0

c(y0) = c(2)(y0)

= c∞(y0)

y0

Figure 3. The cases when supp b allows for jumping over the gap
where b(y) = y (figure a)), and where the jump is too short (figure
b)).

In case 2., assume that for some z > c̄, we have c(z) ≤ c̄. Then for all y ≤ z it
holds c(y) ≤ c̄ and, iterating and using the assumption, c(n)(z) < c̄ for all n. By
monotonicity, c∞(z) < c̄. Using this observation, we see that it is impossible to
have c∞(x) = c̄ for any x > z. Indeed, again using the monotonicity, we would have
c(n)(x) ∈ [c̄, z] for sufficiently large n. But then, from the first part, c∞(x) < c̄,
contradicting the hypothesis. Summarizing, by the definition of c̄, the only possible
situation in this case is c(c̄) < c̄ and c(z) > c̄ for z > c̄, see Fig. 2. If we take any
such z, then c̄ < c(z) ≤ z, and we see that (c(n)(z))n≥1 is confined to [c̄, z] and thus
converges to c̄, by its definition.

This shows that c̄ cannot be approached from below by elements of the set
{c∞(z)}z∈R+

and since naturally it cannot be approached from above by such ele-
ments, it must be an isolated point and hence the supremum is attained. Since the
sequences (c(n)(z))n≥1 are nonincreasing, c̄ can be approximated by such sequences
with z ≥ c̄ only from above.

Theorem 5.2. Semigroup (SKβ,m(t))t≥0 is irreducible if and only if

sup suppβ =∞ (56)

or
sup suppβ > c̄ (57)

or
c̄ = 0. (58)

Proof. By (39a), we have

[R(λ, Zβ,m)]f(x) = [R(λ, Z0,m)]f(x) + eλ(x)
〈β,R(λ, Z0,m)f〉

1− 〈β, eλ〉
= [(I + Eλ)R(λ, Z0,m)]f(x), f ∈ Xm,

where

[R(λ, Z0,m)f ](x) =
e−λR(x)−Q(x)

r(x)

∫ x

0

f(y)eλR(y)+Q(y)dy

and

R(λ,Kβ,m) = R(λ, Zβ,m)

∞∑
n=0

[BmR(λ, Zβ,m)]
n
. (59)
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Let g > 0 and set zg = sup{z : g(z) = 0 a.e. on [0, z]}. If zg = 0, then already
R(λ, Zβ,m)g ≥ R(λ, Z0,m)g > 0, and the result is valid. Assume then that zg > 0
and observe that

Ψ0(z) := [R(λ,Z0,m)g](z) =

{
e−λR(z)−Q(z)

r(z)

∫ z
zg
g(y)eλR(y)+Q(y)dy, for z > zg,

0, for 0 ≤ z ≤ zg.

Hence, [R(λ, Z0,m)g](z) > 0 is strictly positive for z > zg, while

〈β,Ψ0〉 =

∫ ∞
zg

β(x)Ψ0(x)dx > 0

and

[R(λ,Kβ,m)g](z) ≥ [R(λ, Zβ,m)g](z) ≥ eλ(z)

1− 〈β, eλ〉
〈β,Ψ0〉 > 0,

provided (56) is satisfied. Hence, R(λ,Kβ,m)g is positivity improving.
If (56) is not satisfied, let us consider the terms R(λ, Zβ,m) [BmR(λ, Zβ,m)]

n
of

(59). Denoting ēλ = eλ/(1− 〈β, eλ〉), we see that

R(λ, Zβ,m)BmR(λ, Zβ,m)

= R(λ, Z0,m)BmR(λ, Z0,m)

+
(
R(λ, Z0,m)Bmēλ + ēλ〈β,R(λ, Z0,m)Bmēλ〉

)
〈β,R(λ, Z0,m)·〉

+ēλ〈β,R(λ, Z0,m)BmR(λ, Z0,m)·〉

= R(λ, Z0,m)BmR(λ, Z0,m) +

1∑
i=0

f1i 〈β,R(λ, Z0,m)[BmR(λ, Z0,m)]i·〉,

where f1i are scalar functions. Hence, making the inductive assumption

R(λ, Zβ,m)[BmR(λ, Zβ,m)]n = R(λ, Z0,m)[BmR(λ, Z0,m)]n

+

n∑
i=0

fni 〈β,R(λ, Z0,m)[BmR(λ, Z0,m)]i·〉 (60)

for some functions fni , i = 0, . . . , n, we have

R(λ, Zβ,m)[BmR(λ, Zβ,m)]n+1

= R(λ, Zβ,m)[BmR(λ, Zβ,m)]n(BmR(λ, Z0,m) +Bmēλ〈β,R(λ, Z0,m)·〉
= R(λ, Z0,m)[BmR(λ, Z0,m)]n+1

+R(λ, Z0,m)[BmR(λ, Z0,m)]nBmēλ〈β,R(λ, Z0,m)·〉

+

n∑
i=0

fni 〈β,R(λ, Z0,m)[BmR(λ, Z0,m)]i+1·〉

+

n∑
i=0

fni 〈β,R(λ, Z0,m)[BmR(λ, Z0,m)]iBmēλ〉〈β,R(λ, Z0,m)·〉

= R(λ, Z0,m)[BmR(λ, Z0,m)]n+1 +

n+1∑
i=0

fn+1
i 〈β,R(λ, Z0,m)[BmR(λ, Z0,m)]i·〉,

hence (60) is proved. We also obtain fn+1
i = fni−1 for i > 1 and

fn+1
0 =R(λ, Z0,m)[BmR(λ, Z0,m)]nBmēλ



18 JACEK BANASIAK, DAVID WETSI POKA AND SERGEY SHINDIN

+

n∑
i=0

fni 〈β,R(λ, Z0,m)[BmR(λ, Z0,m)]iBmēλ〉

for n ≥ 1, with f00 = ēλ.
Next, for z < zg,

Ψ1(z) : = [R(λ, Z0,m)BmR(λ, Z0,m)g](z) = [R(λ, Zβ,m)BmΨ0](z)

=
e−λR(z)−Q(z)

r(z)

∫ z

0

eλR(y)+Q(y)

(∫ ∞
zg

a(s)b(y, s)Ψ0(s)ds

)
dy,

where the inner integration is, in fact, carried out over A∩[zg,∞). Hence, Ψ1(z) > 0
for z > c(zg). So, in particular, if a(y)b(x, y) > 0 for all y > 0 and 0 < x < y, so
that b(y) = 0 for any y > 0, then the result is proved. If not, then for the third
term, we have

Ψ2(z) := [R(λ, Z0,m)[BmR(λ, Z0,m)]2g](z) = [R(λ, Z0,m)BmΨ1](z)

and thus, by the same argument, Ψ2(z) > 0 for z > c(2)(zg). Using induction, we
conclude that [R(λ, Zβ,m)g](z) > 0 almost everywhere on (c∞(zg),∞).

Hence, if c̄ = 0, the theorem is proved. If not, by sup suppβ > c̄ we obtain

〈β,R(λ, Z0,m)[BmR(λ, Z0,m)]ng〉 > 0,

for sufficiently large n and, since fnn (z) = ēλ(z) > 0 for all z > 0, the result follows.
To prove the necessity, we note that on account of the assertion 2. of Lemma

5.1 and negating (56)–(58), we have 0 < c̄ < ∞ and sup suppβ ≤ c̄ < ∞. Let us
consider f supported in [z,∞) for some z > c̄. Then, by Lemma 5.1, the supports
of [BmR(λ, Z0,m)]nf , n ≥ 0, are confined to [c̄,∞) and thus

〈β,R(λ, Z0,m)[BmR(λ, Z0,m)]ng〉 = 0,

for any n due to the assumption on β. Hence suppR(λ,Kβ,m)f ⊂ [c̄,∞) and the
semigroup is not positivity improving.

This theorem generalizes many earlier results.

Remark 3. (a) For instance, in [29] the authors used the assumption that for any
x > 0, supp a(·)b(x, ·) is infinite, see Fig. 1. In our notation, it means that for any
x > 0 and any z there is y > z such that b(y) ≤ x. This implies that for any x
and any z, c(z) ≤ x, which yields c∞(z) ≤ x and hence c̄ ≤ x. Since x is arbitrary,
c̄ = 0.

(b) If a ∈ C(R+), then the conditions of Theorem 5.2 can be made more explicit.
Indeed, by [2, Theorem 3.10], there exist increasing sequences (αk)k∈Z and (βk)k∈Z,
with 0 < αk < βk < αk+1 <∞, such that

supp a =
⋃
k∈Z

(αk, βk),

so that the null-set is given by

R+ \ supp a =
⋃
k∈Z

[βk, αk+1].

Then c̄ = 0 if and only if for each k ∈ Z there exists r > k such that b(y) < βk for
some y ∈ (αr, βr). In other words, for any gap [βk, αk+1] of the support of a, there
must be a point in one of the following intervals of the support of a on which supp b
overlaps with [βk, αk+1].
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(c) On physical grounds, we expect that if a particle fragments, it produces at
least two daughter particles, and not all daughter particles will have masses close
to y, see [8, Section 2.2.3.2]. As shown in [8, Theorem 5.2.21], for irreducibility it
is even sufficient to have n0(y) ≥ 1 + δ for some δ > 0 independent of y (that is,
b(y) ≤ 1 + δ for all y ∈ R+). We can generalize this result by showing that if there
is a continuous function φ such that

c(y) ≤ φ(y) < y,

for any y > 0, then c̄ = 0, and thus (SK0,m(t))t≥0 (and hence (SKβ,m(t))t≥0 for any
β ≥ 0) are irreducible. Indeed, consider any z > 0 and the corresponding c∞(z).
Then, from the monotonicity of c, we obtain

c(2)(z) = c(c(z)) ≤ c(φ(z)) ≤ φ(2)(z)
and hence c∞(z) ≤ φ∞(z) ≤ z. If c∞(z) 6= 0, then also φ∞(z) 6= 0. But φ∞(z)
is an equilibrium of the discrete dynamical system rn+1 = φ(rn), r0 = z, i.e.,
φ(φ∞(z)) = φ∞(z), which is impossible by our assumption on φ.

6. The spectral gap. The analysis presented in Sections 4 and 5 paves the way
for a complete description of the large time asymptotics of (1). Indeed, as observed
in [29, Corollary 22], under assumptions (7), (8), (16), (21), (40) and the additional
hypothesis (25) (see the discussion in Section 3), the semigroup (SK0,m

(t))t≥0 is
resolvent compact. Combining this fact with Theorems 4.7 and 5.2, we have

Theorem 6.1. Assume (7), (8), (10), (16), (21), (25), (47) and (52) are satisfied.
Assume further that one of the hypotheses of Theorem 5.2 holds. Then (SKβ,m(t))t≥0
has a spectral gap, i.e.,

ress
(
SKβ,m(t)

)
< rσ

(
SKβ,m(t)

)
, t > 0, (61)

where ress(·) and rσ(·) denote the essential spectral and the spectral radii, respec-
tively.

Proof. (a) The first group of assumptions ensures that the resolvents R(λ, Z0,m)
and R(λ,K0,m) are compact. These fact, combined with Theorem 4.3 and (46) (see
the proof of Theorem 4.5), indicates that R(λ, Zβ,m) and R(λ,Kβ,m), with β > 0,
are compact, provided λ is sufficiently large. In addition, from Theorem 4.3 and
(46) it follows that

R(λ,K0,m) ≤ R(λ,Kβ,m).

(b) The second group of assumptions shows that both R(λ,K0,m) and R(λ,Kβ,m)
are irreducible. Since R(λ,K0,m) 6= R(λ,Kβ,m), when β > 0, the comparison theory
of [23, Theorem 4.3], combined with the spectral theory of positive C0-semigroups
(see e.g. [20, Chapter VI]), indicates that

1

λ− s(K0,m)
= rσ(R(λ,K0,m)) < rσ(R(λ,Kβ,m)) =

1

λ− s(Kβ,m)
,

so that

rσ
(
SK0,m(t)

)
= es(K0,m)t < es(Kβ,m)t = rσ

(
SKβ,m(t)

)
, t > 0.

On the other hand, from (52) (see Theorem 4.7 and (53)), we have

ress
(
SKβ,m(t)

)
= ress

(
SK0,m

(t)
)
≤ rσ

(
SK0,m

(t)
)
.

Combining the last two inequalities, we arrive at (61) and the claim is settled.
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In the setting of Theorem 6.1, the resolvent R(λ, SKβ,m) falls into the scope of the
Perron-Frobenius theory for positive irreducible compact operators. As a byproduct
of this theory, we see that s(Kβ,m) is the simple dominant isolated eigenvalue of
(Kβ,m, D(Zβ,m)). Let uβ,m ∈ Xm,+ and u∗β,m ∈ X∗m,+ be the associated positive

eigenfunctions of (Kβ,m, D(Zβ,m)) and its transpose (K∗β,m, D(K∗β,m)), respectively.
In the usual way, we define the eigenprojector

P = uβ,m〈u∗β,m, ·〉.
With this notation, the standard asynchronous exponential growth theory for pos-
itive C0-semigroups (see e.g. [20, Theorem VI.3.5]) yields

Corollary 1. Under the hypothesis of Theorem 6.1, there exist positive constants
ε and c, such that

‖e−s(Kβ,m)tSKβ,m(t)f −Pf‖m ≤ ce−εt‖f‖m, t ≥ 0, (62)

for all f ∈ Xm.

7. Explicit solutions to the growth-fragmentation problem with
McKendrick-von Foerster boundary conditions. To illustrate the theory pre-
sented above, in this section we focus on a special case of (1) with the coefficients

r(x) = r > 0, a(x) = ax, a > 0, b(x, y) =
2

y
and β(x) = β0 + β1x, β0, β1 ≥ 0.

(63)
In this case, the theory of [10] yields closed form solutions and the abstract calcu-
lations of Sections 4–5 can be made more explicit.

7.1. Closed form solutions. Under assumptions (63), (1) takes the form

∂tu(x, t) = −r∂xu(x, t)− axu(x, t) + 2a

∫ ∞
x

u(y, t)dy, x, t > 0, (64a)

u(x, 0) = u0(x), x > 0, (64b)

u(0, t) = β0M0(t) + β1M1(t), t > 0, (64c)

where the moments of the solution are defined by Mk(t) =
∫∞
0
xku(x)dx, k ∈ N.

We see that l = 0 in (16) and p = 1 in (10), β ∈ X∗m for any m > 1 and (20) is
satisfied. Hence, there exists a quasi-contractive positive semigroup (SKβ,m(t))t≥0
solving (64), such that u(·, t) = [SKβ,m(t)u0](·) ∈ D(Zβ,m), whenever u0 ∈ D(Zβ,m).
As a consequence, for regular input data u0 the semigroup solutions are strongly
differentiable in Xm and∫ ∞

0

xi∂tu(x, t)dx =
dMi(t)

dt
, i = 0, 1.

On the account of Lemma 4.6 and (64c), the first two moments satisfy

M ′0(t) = α0M0(t) + α1M1(t),

M ′1(t) = rM0(t),
(65)

where for the sake of brevity, we let α0 := rβ0 and α1 := rβ1 + a. The eigenvalues
of the matrix, appearing in the right-hand side of (65), are

λ± =
α0 ±

√
α2
0 + 4rα1

2
(66)



GROWTH-FRAGMENTATION EQUATIONS 21

−2 −1 1 2

1

2

ξ = −rt

Region determined
by u0(ξ)

Region determined
by w(−rt, t) =

β0M0(t)+β1M1(t)

u0(ξ)ψ(ξ)
ξ

t

Figure 4. Geometry of the problem (68a)–(68b) in the character-
istic coordinates (ξ, t): u0(ξ) 6= 0 for ξ > 0; ψ(ξ) is to be determined
for ξ < 0 so that w(−rt, t) = β0M0(t) + β1M1(t), t > 0.

and the solutions are given explicitly by the formulae

M0(t) =
λ+e

λ+t − λ−eλ−t
λ+ − λ−

M0(0) +
λ+λ−(eλ+t − eλ−t)

r(λ− − λ+)
M1(0)

= K0,0(t)M0(0) +K0,1(t)M1(0),

M1(t) =
r(eλ+t − eλ−t)
λ+ − λ−

M0(0) +
λ+e

λ−t − λ−eλ+t

λ+ − λ−
M1(0)

= K1,0(t)M0(0) +K1,1(t)M1(0).

(67)

From the inequality λ− < 0 < λ+, it follows that Ki,j(t) ≥ 0, i, j = 0, 1, for t ≥ 0.
Hence, Mi(t), i = 0, 1, are positive for positive regular data u0 from D(Zβ,m)+.

As mentioned earlier, (64) falls into the scope of the theory presented in [10,
Section 5.3], with the only difference being that the boundary condition (64c) is no
longer homogeneous. To obtain closed formulas as in [10], we pass to the charac-
teristic coordinates, i.e., we let

x = rt+ ξ, v(ξ, t) = u(rt+ ξ, t).

Direct substitution transforms (64a), (64b) to

∂tv(ξ, t) = −a(rt+ ξ)v(ξ, t) + 2a

∫ ∞
ξ

v(s, t)ds, rt > max{0,−ξ},

v(ξ, 0) = u0(ξ), ξ > 0.

(68a)

The characteristic transformation maps the entire first quadrant of the (x, t)-plane
onto the region S =

{
(ξ, t) | rt ≥ max{0,−ξ}

}
of the (ξ, t)-plane, however, the

family of characteristic lines starting in the positive part of ξ-axis do not cover
the entire set S. As a consequence, in these coordinates the initial data u0(ξ)
determines the solution only for ξ > 0, see Fig. 4. To determine the solution in the
sector −rt < ξ < 0, we solve (68a) in the whole upper (ξ, t)-plane. For that, we
extend the original initial data u0 by letting u0(ξ) = 0 for ξ < 0 and define new
initial condition φ(ξ) = u0(ξ)+ψ(ξ) so that ψ(ξ) = 0 for ξ > 0, while the associated
extended solution v satisfies

v(−rt, t) = β0M0(t) + β1M1(t). (68b)
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As in [10], we set w(ξ, t) := eat
(
ξ+

rt
2

)
v(ξ, t), so that (68a) (extended to ξ < 0)

takes the form

∂tw(ξ, t) = 2a

∫ ∞
ξ

e−at(s−ξ)w(s, t)ds, t > 0, ξ ∈ R,

w(ξ, 0) = u0(ξ) + ψ(ξ), ξ ∈ R,
(69)

where u0(ξ) = 0 for ξ < 0, while ψ(ξ) = 0 for ξ > 0. By [10, Section 5.3], we have

w(ξ, t) = [(I + atJ+)2u0](ξ), ξ > 0, (70a)

w(ξ, t) = [(I + atJ+)2u0](ξ) + [(I + atJ+)2ψ](ξ)

= [(I + atJ+)2u0](ξ) + [(I + atJ)2ψ](ξ), ξ < 0, (70b)

where I is the identity operator, J+ denotes the antiderivative [J+f ](ξ) =∫∞
ξ
f(s)ds, ξ ∈ R and [Jf ](ξ) :=

∫ 0

ξ
f(s)ds, ξ < 0. From (70), it follows that

w(ξ, t) =u0(ξ) + at

∫ ∞
ξ

[
2 + at(s− ξ)

]
u0(s)ds, ξ > 0, (71a)

w(ξ, t) =at(2− atξ)M0(0) + a2t2M1(0) + ψ(ξ)

+ at

∫ 0

ξ

[
2 + at(s− ξ)

]
ψ(s)ds, ξ < 0. (71b)

On the account of (71b), (68b) and our definition of w(ξ, t), we conclude that the
unknown initial data ψ(ξ) satisfies

ψ(−rt) + 2at

∫ 0

−rt
ψ(s)ds+ a2t2

∫ 0

−rt
(s+ rt)ψ(s)ds = F (t), t > 0, (72a)

with

F (t) = e−
art2

2

[
β0M0(t)+β1M1(t)

]
−
[
2at+ra2t3

]
M0(0)−a2t2M1(0), t > 0. (72b)

As in [10], we let Y (t) = e
art2

2

∫ 0

−rt(s+ rt)ψ(s)ds. Then (72) takes the form

Y ′′(t)− arY (t) = r2e
art2

2 F (t), Y (0) = Y ′(0) = 0.

The standard variation of constant formula, together with the homogeneous initial
data, yields the solution

Y (t) =
r2√
ar

∫ t

0

sinh
[√
ars
]
e
ar(t−s)2

2 F (t− s)ds, t > 0,

which, upon backward substitution and differentiation, gives

ψ(ξ) =
[
cosh

(√a

r
ξ
)
− 2

√
a

r
sinh

(√a

r
ξ
)]
e−

aξ2

2r F (0)

− 1√
ar

sinh
(√a

r
ξ
)
e−

aξ2

2r F ′(0)

−
√
r

a

∫ 0

ξ

sinh
(√a

r
s
) d2
dξ2

[
e
as(s−2ξ)

2r F
(s− ξ

r

)]
ds, ξ < 0.

(73)
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Returning to the original variables x and t in (71) and (73), we finally arrive at the
explicit formula

u(x, t) = e
at(rt−2x)

2



u0(x− rt) + at

∞∫
x−rt

[
2 + at(s− x+ rt)

]
u0(s)ds, if x ≥ rt;

at(2 + art2 − atx)M0(0) + a2t2M1(0)

+ψ(x− rt) + at

0∫
x−rt

[
2 + at(s− x+ rt)

]
ψ(s)ds, if 0 ≤ x < rt.

(74)

Direct calculations show that (74) is indeed a C0-semigroup solutions, i.e., for u0 ∈
Xm and any m > 1, we have limt→0+ u(t) = u0 in Xm, u(t) ∈ Xm and if u(t;u(s))
is given by (74), with initial data u(s) instead of u0, u(t;u(s)) = u(t+ s).

7.2. Large time asymptotic. To begin with, we note that (74) agrees with the
theory of Section 6. Indeed, writing

u−(x, t) = χ[0,rt)(x)u(x, t), u+(x, t) = χ[rt,+∞)(x)u(x, t),

it is not difficult to verify that the contribution of u+(x, t) to the large time asymp-
totic of the solution is negligible. On the account of (74), for u0 ∈ Xm, m > 1, we
have

‖u+(t)‖m =e
−art2

2

∫ ∞
0

(1 + (x+ tr)m)e−atsu0(s)ds

+ ate
−art2

2

∫ ∞
0

u0(s)ds

∫ s

0

(1 + (x+ rt)m)
[
2 + at(s− x)

]
e−atxdx.

Partial integration, together with the elementary inequality (x+y)m ≤ 2m(xm+ym),
x, y ≥ 0, m ≥ 1, shows that the bounds

(1 + (x+ rt)m) ≤ c0tm(1 + sm),

at

∫ s

0

(1 + (x+ rt)m)
[
2 + at(s− x)

]
e−atxdx ≤ c1tm+1(1 + sm),

hold uniformly for large values of t > 0, with some c0, c1 > 0 that depend on m, a
and r only. Hence,

‖u+(·, t)‖m ≤ ctm+1e
−art2

2 ‖u0‖m, (75)

with some c > 0 and the bulk asymptotics of u(x, t) is governed by u−(x, t). Ac-
cording to (74), and in agreement with Corollary 1, u−(x, t) is solely determined by
the first two moments Mi(t), i = 0, 1.

To obtain an explicit formula for the principal asymptotic term, we employ the
theory of Sections 5–6. By virtue of Theorem 5.2 and assumptions (63), s0 :=
s(Kβ,m) is a positive simple dominant eigenvalue of (Kβ,m, D(Zβ,m)), m > 1, and
hence it satisfies

s0v −Kβ,mv = 0, v ∈ D(Zβ,m)+. (76)

In our setting, the eigenvalue problem (76) is

s0v(x) + rv′(x) + axv(x)− 2a

∫ ∞
x

v(y)dy = 0, x > 0, (77a)

v(0) = β0M0 + β1M1, v, vx ∈ Xm, m > 1. (77b)
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Differentiating (77a), we obtain the following second order linear homogeneous ODE

rv′′(x) + (s0 + ax)v′(x) + 3av(x) = 0. (78)

Thanks the special relation between the coefficients, (78) is integrable. Indeed,
upon the change of variables z = (s0 + ax), the equation takes the form

ṽ′′(z) +
z

ar
ṽ′(z) +

3

ar
ṽ(z) = 0, (79)

which is of the form of [31, Section 2.1.2.20], a particular solution of which is given
by

ṽ(z) = Φ

(
3

2
,

1

2
;− z2

2ar

)
= e−

z2

2ar Φ

(
−1,

1

2
;
z2

2ar

)
.

Here, Φ is Kummer’s function, see [1, Formula 13.1.2] (though with symbol M
instead of Φ) and we used [1, Formula 13.1.27] for the transformation. Then, using
[1, Formula 13.6.17] (or by direct substitution)

Φ

(
−1,

1

2
;
z2

2ar

)
= −He2

(
z√
ar

)
= −1

2
H2

(
z√
2ar

)
= 1− z2

ar
,

where He2 and H2 are, respectively, the probabilistic and physicist’s Hermite poly-
nomials of second order, see [1, Chapter 22]. Taking into account that the second
solution to (79) can be found by the formula

ũ(z) = ṽ(z)

∫
e−

z2

2ar

ṽ2(z)
dz, (80)

which satisfies ũ(z) = O(z) as z →∞, we see that the only (up to a multiplicative
constant) Xm-solution, m > 1, is given by

v(x) = e−
(ax+s0)2

2ar

(
(ax+ s0)2

ar
− 1

)
, x > 0.

The solution is nonnegative if s0 >
√
ar and satisfies (77b) if and only if

s20 − α0s0 − rα1 = 0. (81)

The only positive root of (81) is given by λ+, where λ+ is defined in (66). Since
λ+ >

√
ar, it follows that

(s0, v0(x)) :=

(
λ+, κe

− (ax+s0)2

2ar

(
(ax+ s0)2

ar
− 1

))
, κ =

a

λ+
e
λ+2

2ar , (82)

is indeed the simple dominant positive eigenpair of (Kβ,m, D(Zβ,m)), for any m > 1.
Our choice of the normalization constant κ in (82) guarantees that ‖v0‖0 = 1.

To determine the associated eigenprojector P, we consider the eigenvalue problem
for the transpose (K∗β,m, D(K∗β,m)) of (Kβ,m, D(Kβ,m)), in X∗m, m > 1. Direct
calculations show that the eigenvalue problem in X∗m is to find w such that

there exists lim
x→0+

w(x) = w0, w, w′ ∈ X∗m, m > 1, (83a)

and which satisfies

λw(x)− rw′′(x) + axw(x)− 2a

∫ x

0

w(y)dy − r(β0 + β1x)w0 = 0, x > 0. (83b)

As before, we differentiate (83b) with respect to x to get

−rw′′(x) + (λ+ ax)w′(x)− aw(x)− rβ1w(0) = 0. (84)
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Let

[Lλf ](x) = −rf ′′(x) + (λ+ ax)f ′(x)− af(x).

Any f satisfying

[Lλf ](x) = rβ1f(0)

is a solution of the equation

[Lλf ](x) = F,

where F is a constant, and thus it is of the form

f(x) = C1f1(x) + C2f2(x)− F

a

where f1 and f2 are arbitrary solutions to Lλ[f ] = 0. We see that we can take
f1(x) = (λ+ ax) and, as in (80), here we obtain

f2(x) = (λ+ ax)

∫ x

0

e
1

2ar (λ+aξ)
2dξ

(λ+ aξ)2
dξ.

We see that f2 grows faster than any polynomial as x→∞ so that, in X∗m,

f(x) = C1(λ+ ax)− F

a

where F and C1 are related by

[Lλf ](x) = F = rβ1f(0) = rβ1

(
C1λ−

F

a

)
.

Hence

C1 =
Fα1

aλrβ1
and

f(x) =
F

aλrβ1
(α1(λ+ ax)− λrβ1) =

F

λrβ1
(λ+ α1x)

Thus, the only (up to a multiplicative constant) eigenfunction of (84) in X∗m is given
by w(x) = λ + α1x. Returning with such a w to (83b), we find that w solves it if
and only if λ satisfies (81). Since we are looking for positive solutions, it follows
that s0 = λ+ and

(s0, w0(x)) := (λ+, σ(α1x+ λ+)) , σ =
1

λ+ − λ−
, (85)

is the positive left eigenpair of (Kβ,m, D(Zβ,m)), normalized so as 〈w0, v0〉 = 1.
Hence, Pu = 〈w0, u〉v0 and, on the account of Corollary 1, we have

e−λ+tu(x, t) = 〈w0, u0〉v0(x) + o(1)

=

[
λ+

λ+ − λ−
M0(0) +

λ+λ−
r(λ− − λ+)

M1(0)

]
v0(x) + o(1), (86)

in Xm, m > 1, uniformly for large values of t > 0.
To illustrate the asymptotic formula, we compare dynamics governed by (74) and

by (86) for large values of t > 0. For the sake of simplicity, we take

a = r = 1, β0 = β1 =
1

2
, u0(x) =

(5

2
x+ 1

)
e−2x.

In these settings,

λ+ =
3

2
, λ− = −1, u0(0) = M0(0) +M1(0) = 1,
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Figure 5. Large time asymptotics of (64): normalized semigroup
solutions governed by (74) (left column); snapshots of e−λ+tu(t),
with τ = 1

8 (right column).

so that u0 ∈ D(Kβ,m), m > 1, and the semigroup solution (74) is regular in the
spatial domain R+. The normalized exact solution e−λ+tu(x, t) of (74) and its
snapshots at t = 0 and at t = (2i + 1)τ , 0 ≤ i ≤ 4, with τ = 1

8 , are plotted
in the top-left and the top-right diagrams of Fig. 5, respectively. In agreement
with (86), after a short transition stage the solution settles to it asymptotic profile
〈w0, u0〉v0(x), which is shown in red in the top-right diagram of Fig. 5. Up to
a multiplicative constant the asymptotic profile does not depend on the particular
shape of the initial data. To illustrate this point, we repeat our calculations, but
this time for

u0(x) =
(

2x2 + 1
)
e−2x,

see the two bottom diagrams in Fig. 5. As postulated by the asynchronous expo-
nential growth property, there are no qualitative changes in the large time behavior
of e−λ+tu(x, t). As t increases, the normalized solution approaches the same limit
〈w0, u0〉v0(x) (shown in red) as in the previous example.

8. Conclusion. In the paper, we discussed global well-posedness and large-time
asymptotics of the growth-fragmentation equation equipped with unbounded trans-
port and fragmentation rates and with non-local McKendrick–von Foerster bound-
ary condition. The results of this paper build upon the well-posedness theory in
Xm,m > 1, developed in [7] for (1) with homogeneous Dirichlet boundary condi-
tions (β = 0). The novelty of this paper lies in extending the well-posedness theory,
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developed in [6] only for m = 1, to Xm with m > 1, and also in generalizing the long-
time asymptotics results, obtained in [29] for β = 0, to the general McKendrick–von
Foerster setting. Our approach is based on the observation that in an appropriate
functional setting, the semigroup, governing solution to the non-local model, can
be realized as a compact perturbation of the semigroup associated with the same
model but equipped with homogeneous Dirichlet boundary data. This significantly
simplified formal analysis and allowed us to transfer results available for the former
problem directly to our non-local settings. In particular, we demonstrated that the
very recent spectral gap theory of [29], coupled with new perturbation results and
complete characterization of the irreducibility of involved semigroups in Sections 4
and 5, respectively, yields a complete description of the long time dynamics of the
full model under mild restrictions on its coefficients.

In the last section, we found explicit solutions and the Perron eigenpair of a toy
growth–fragmentation models (64) that, nevertheless, is considered in applications.
We could see that finding large-time behaviour of solutions by direct methods is
an extremely tedious exercise. In this sense, the irreducibility and the spectral gap
theories of Sections 5–6 provide a powerful tool that, in a good number of practical
cases, yields a straightforward description of the growth–fragmentation dynamics
for large values of t > 0.
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