
 
 

  
 

 

DEVELOPMENT AND APPLICATION OF A PHOTOGRAMMETRY 
BASED STATISTICAL SHAPE ANALYSIS TECHNIQUE FOR 

CONDITION MONITORING OF ROTATING STRUCTURES 

 
 

by                                                                                                                                                                          
Benjamin Katerere Gwashavanhu 

 

Submitted in partial fulfilment of the requirements for the degree 

Philosophiae Doctor (Mechanical Engineering) 

In the Faculty of 

Engineering, Built Environment and Information Technology 

University of Pretoria, Pretoria 

 

 

 

 

 

 

 

2024 

© University of Pretoria 

 



 
 

i 
 

DEVELOPMENT AND APPLICATION OF A PHOTOGRAMMETRY 

BASED STATISTICAL SHAPE ANALYSIS TECHNIQUE FOR 

CONDITION MONITORING OF ROTATING STRUCTURES 

 

Benjamin Katerere Gwashavanhu 

Supervisors: Dr A.J. Oberholster and Professor P.S. Heyns 

University of Pretoria 

Department of Mechanical and Aeronautical Engineering 

Degree: Philosophiae Doctor (Mechanical Engineering) 

 

Abstract 

Large rotating structures such as wind turbine blades require specialized measurement 

techniques for the purpose of online condition monitoring and assessment. Contact 

transducers such as accelerometers and strain gauges are traditionally used to capture 

vibrational data that can be analysed to understand the dynamics of a system. These are 

however intrusive in the sense that they must be physically attached to the structure under 

investigation. In addition, they are point-wise in nature, implying that measurements are only 

captured for those specific locations where the transducer is attached. They may also alter 

the local structural properties at the point of attachment, including additional mass loading 

effects of the sensor on light structures. Optical techniques such as photogrammetry and laser 

vibrometry are promising alternatives that have been receiving much attention.  

3D Point Tracking (3DPT) and Digital Image Correlation (DIC) constitute photogrammetric-

based optical measurement techniques that have proven to be efficient for the vibration 

analysis of rotating machinery. In addition to complex image processing software and tracking 

algorithms, these two approaches typically require surface preparation in the form of markers 

and speckle patterns. The surface preparation typically requires a system shutdown which can 

be complicated and costly. Applied surface treatments also do not last throughout the lifespan 

of the structure and often must be reapplied. In order to track specific pixels for 3DPT and 

DIC, the lighting on the surface of the structure needs to be closely monitored since the 

tracking is based on pixel gray scale values. These requirements limit the applicability of 

photogrammetry as a condition monitoring tool, especially when it comes to field or outdoor 

full-scale testing.  

Photogrammetric shape-based analysis is an alternative approach that does not require prior 

surface preparation. By focusing on the boundary outline of a structure, the technique is a 

suitable candidate for outdoor investigations where consistent uniform lighting on an entire 

structural surface may be impossible. It can also be applied to large structures with significant 

levels of rigid body motions. To date, this approach has not yet been employed for dynamic 

analysis of machines. The concept of shape analysis is typically applied for object recognition 

or shape matching in applications such as Content Based Image Retrieval (CBIR). Thus a 
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single image is captured and then analysed to be matched to another image stored in a 

database, for instance. 

This research focuses on the development and application of a shape based photogrammetric 

technique that can be used to capture dynamics of rotating structures without the requirement 

for surface preparation. The goal of the study is to develop an approach that can be used to 

distinguish faults in the system and classify machine behaviour for condition monitoring 

purposes. In this type of application, sequences of images of a structure in operation are 

captured, and boundary contours of an object in the images extracted. Through defining 

parameters that characterise contours extracted from each of these images, and then 

monitoring the variation of these parameters in time, the idea of shape analysis can be 

adopted for condition monitoring of machines as an optical non-contact measurement 

technique. Shape Principal Component Descriptors (SPCDs) determined by performing 

Shape Principal Component Analysis (SPCA) of Fourier descriptors calculated from shape 

signatures of the extracted contours are the parameters investigated in this study.  

Condition monitoring strategies for rotating structures are discussed in a literature review that 

highlights the importance of structural health maintenance and the shortcomings and 

limitations of conventional measurement techniques. Advanced optical measurement 

techniques that include photogrammetry and laser vibrometry are discussed to describe and 

illustrate the evolution of recent noncontact technologies as viable tools for condition 

monitoring purposes. Typical applications of photogrammetric techniques such as surface 

strain measurement are highlighted. Instances that demonstrate the successful use of optical 

approaches to capture dynamics of rotating structures are discussed. This lays out a 

foundation onto which the necessity of advancing optical based strategies into more suited 

techniques for industrial application purposes is built. 

The concept of shape analysis is introduced and its SPCDs investigated for a 2D shape that 

has in-plane form variations associated with it. On application to a physical rotor system, it is 

illustrated that different dynamics of the rotor resulting from different faults of unbalance, rotor-

stator rub and hydrodynamic bearing oil instabilities can be detected and classified using the 

shape-based approach. It is clearly illustrated that the multi-dimensional measurement 

technique provides insights into the behaviour of a rotor system, as confirmed by uniaxial 

conventional proximity probe measurements. The proposed approach complemented the 

widely used proximity probe sensing technique in terms of investigating rotor systems. 

An extension of the approach from 2D to 3D is also presented, starting with analysing how 

different shape descriptors influence the form of contours representing blade shapes in 3D. A 

detailed numerical investigation in which a Finite Element (FE) model of a physical rotor is 

analysed for changes in dynamic behaviour resulting from introduced damage in the blades, 

is conducted. The FE environment provides a platform in which the procedures for 3D shape 

analysis can be developed and tested before the proposed approach can be implemented 

experimentally. An experimental study that involves the use of a calibrated system of high-

speed cameras to synchronously capture stereoscopic images of a rotating turbomachine is 

then presented. Variations in the dynamics of rotating blades are investigated and through a 

revolution based Principal Component Analysis (PCA) of SPCDs, the feasibility of a shape-

based condition monitoring approach for turbine blades is illustrated.  
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A comparative study to investigate the performance of PCA of SPCDs in relation to Kernel 

Principal Component Analysis (KPCA) is also conducted, and it is shown that KPCA 

outperforms PCA in terms of classifying different blade faults. The feasibility of using Multi-

domain Statistical Features (MSFs) as feature vectors to which PCA or KPCA is applied for 

classification purposes is also presented. Results indicating how well different blade damage 

modes can be distinguished are provided, and it is clearly illustrated that MSFs are more 

robust to noise contamination in the signals compared to using the raw SPCDs time data. 
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CHAPTER 1: INTRODUCTION  
 

This chapter opens with a problem statement that paints a picture of where exactly the 

research presented in this document fits in. An outline of why there is a need for developing a 

non-contact measurement technique more suitable for rotating structures is given. A literature 

review that discusses condition monitoring of structures using conventional contact techniques 

and the more recent non-contact techniques follows. Limitations of the current approaches 

being used for analysing rotating machines are highlighted. Concepts pertaining to shape 

analysis that are either investigated or utilized in investigations presented in the following 

chapters are discussed. A document overview is then given at the end of the chapter.  

1.1 Problem statement 

Damage detection, characterization, and classification in rotating structures for Structural 

Health Monitoring (SHM) or Condition Based Maintenance (CBM) purposes require the use of 

transducers to capture vibrational information. The dynamic behaviour of a structure is directly 

associated with the condition of the machine, and a full understanding of this behaviour 

provides valuable insight into the health condition of the structure. Through understanding the 

state of the machine, condition monitoring strategies that ensure scheduling of maintenance 

at the precise moments in the machine’s life can be put in place. The maintenance must be 

conducted not too early that functioning components are disposed of, or too late that 

catastrophic failures occur. This limits the maintenance costs and reduces downtime related 

losses as well. Wind turbines represent such typical mechanical structures for which these 

maintenance strategies are quite important. With the increasing need for renewable clean 

energy, the wind energy industry is growing significantly, meaning that wind turbines are 

getting even bigger and more sophisticated.  

Vibrational information for CBM purposes is typically captured whilst a machine is in operation. 

This requires installation of transducers, the most common of which are the traditional 

accelerometers and strain gauges. Whilst these have been successfully used and are more 

popularly considered, they are limited especially when it comes to rotating structures such as 

fan and wind turbine blades. Being contact in nature, these transducers are intrusive and they 

can potentially influence the dynamics or local properties of the structure at the point of 

transducer attachment. By being point-wise, measurements are captured only for that specific 

point were the transducer is attached. Therefore multiple sensors need to be installed to 

capture the entire dynamics of the structure. Thus the data acquisition and logging system 

can easily become too complex and costly when analysing large structures. A system 

shutdown is also typically required for installing the contact sensors, unless if they are attached 

prior to assembling the full system. Attached transducers also do not generally last for the 

entire lifespan of the machines owing to the harsh conditions these machines operate in.  

The most popular alternative to these contact sensors is photogrammetry, an image 

processing based approach in which cameras are used to capture images of operating 

machines and the images are processed to extract vibrational information. Advances in high-

speed imaging technologies have produced cameras capable of astonishingly high frame 

rates at decent resolutions (McFadden, 2018), making it possible to capture even high 

frequency responses of structures superimposed with significant rigid body motions. For 
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example, the Phantom TMX 7510 manufactured by Vision Research can capture 76 000 

frames per second at 1280×800 full resolution setting, and up to 1 750 000 frames per second 

at 1280×32 resolution. Being optical and non-contact in nature, this technique is not 

associated with all the disadvantages that come with an intrusive contact-based measurement 

approach. The full-field nature of the technique implies that dynamics of entire components 

can be captured, and data transfer from sensor to data logging systems is also much more 

easily accomplished. 

The problem with current photogrammetric approaches being used to analyse rotating 

structures is that they are essentially based on specific pixel tracking algorithms. This means 

that some form of surface preparation or attachment of distinct markers on the surface of the 

structure under investigation must be done before practical information can be extracted from 

the captured images. Successful tracking of pixels is largely affected by the image quality and 

lighting in the environment, since each pixel is identified by its grey-scale value (a number 

between 0 and 255 assigned based on the brightness of the pixel for 8-bit images). This 

becomes a significant problem when analysing structures with significant rigid body motions. 

Performing these tests outdoors adds even more tracking problems, when one considers 

variations in the lighting with changes in the time of the day and possibly the weather. Thus 

there is need for better more suitable techniques for capturing vibrational information of large 

mechanical structures. 

Image processing in which boundaries of objects in a captured image are extracted is a 

common practice used in object identification or matching. No tracking of specific pixels is 

required, and provided that the object can be distinguished from its background, a contour 

defining the boundary can be obtained. This type of image processing has not been adopted 

yet for dynamic analysis of structures for SHM purposes. Considering monitoring of wind 

turbine blades, developing a robust more industrially applicable optical non-contact 

measurement technique will add significant value to the future of wind energy harnessing. 

1.2 Literature study 

1.2.1 Structural Health Monitoring and Condition Monitoring – Rotating 

Structures  

Basic online machine behaviour analysis constitutes a significant part of structural condition 

monitoring. CBM is a predictive maintenance strategy that identifies changes in the 

functionality of a machine, and detects irregularities in measured data. Condition monitoring 

strategies ensure that components are replaced at the right moment in a machine’s life to 

avoid catastrophic system failures. This saves companies significant amounts of money 

through limited, scheduled downtime. Unlike preventive maintenance strategies which are 

implemented at specific time intervals, predictive condition monitoring ensures that 

maintenance is conducted when failure is likely to occur, and when the system performance 

is decreasing. Several techniques can be applied for condition monitoring purposes. These 

include vibration analysis, thermography, ultrasound, temperature monitoring, acoustics and 

lubricant analysis. When considering online machines’ behaviour, analysing the vibrations 

associated with different components of a system can provide significant information that can 

be used to assess the condition in which the machine is operating.  

To capture the vibrational information of these machines, conventional transducers such as 

accelerometers, strain gauges and proximity probes have been successfully utilized. In a 
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practical field implementation on rotating structures, these are typically attached at the non-

moving components such as a wind turbine hub or a shaft bearing. They can also be installed 

on the rotating components as well, the shaft or turbines for instance. Whilst practical 

information about the behaviour of the system components can be gathered, that information 

is generally limited owing to the discrete nature of contact transducers. When attached to the 

rotating components, telemetry systems that allow data transfer from the transducer to the 

data logging system are typically used. These are however notorious for lowering the quality 

of the captured measurements in terms of the Signal-to-Noise Ratio (SNR). Wireless tri-axial 

accelerometers do exist, and these have been successfully used for condition monitoring 

purposes. These devices use microelectromechanical systems for sensing, and as such suffer 

from limited measurement ranges and frequency bandwidth. They also have low sensitivity 

and are generally large, making them unsuitable for some applications. 

Whilst this study addresses optical noncontact measurement techniques being applied to 

rotating structures in general, wind turbines have been adopted as the structures of interest to 

motivate the study. Illustrated in Figure 1 are some of the aspects of wind turbines that make 

them appealing as the structures of interest to which development of a novel condition 

monitoring technique can be aimed at. How these aspects contribute to the need for the 

development of advanced optical measurement techniques is discussed in the sections that 

follow. 

 

Figure 1: Motivation for choice of wind turbines as the model structures of interest 

1.2.1.1 Wind turbines 

Wind turbines are examples of large rotating machines which require specialized tools and 

strategies for condition monitoring. With the enormous drive to develop clean alternative 

sustainable renewable energy sources, the sizes of wind turbines being built are continuously 

increasing to harness more power from the wind. According to the 2023 Global Wind Energy 

Council report (GWEC, 2023), 680 GW of wind capacity are expected to be added globally 

between the years 2023 and 2027. This type of growth creates a great need for measurement 
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strategies that are better suited to easy capturing of usable operational data that can be used 

for designing structurally sound systems, and maintaining of turbines in operation. Owing to 

the harsh environments these structures operate in, failures typically resulting from strong 

winds, fatigue, moisture, lightning and fire are a present threat according to Zhou et al. (2014). 

1.2.1.2 Wind turbine failures 

Quite a significant amount of work has been done by Scotland Against Spin, an organization 

which campaign towards reforming the wind energy policy in Scotland. Some of the 

information they document relates to the accidents associated with wind turbines. In this case, 

accidents refer to incidents in a wind turbine life cycle that can potentially result in injuries or 

deaths of humans either directly working on the turbines or in the vicinity of the turbines when 

structural failures occur. Global yearly reported accidents highlighted in Figure 2 were found 

and confirmed through press reports or official information releases up to 30 June 2023. 

 

Figure 2: Documented yearly reported general wind turbine accidents (Scotland Against Spin, 2023) 

In Figure 2, an increase in incidents owing to an increasing number of built wind turbines is 

clearly apparent. These numbers however seem to be generally flattening out. In addition to 

the general understanding that the public can be protected by ensuring safer distances 

between new turbine developments and settlements, sound engineering practices in handling 

and operating these structures will go a long way in reducing these numbers. 

Most of the information relating to accidents caused by wind turbines is reported by advocacy 

groups. This means that the data can be difficult to verify, and its reliability might be 

questionable. Peer reviewed research such as the one conducted by (Ertek & Kailas, 2021) 

do provide insights in terms of the distribution of the number of accidents and fatalities 

associated with wind turbines during transportation of components, installation, operation and 

maintenance of wind turbines. Using information collected for a decade spanning from 2010 

to 2019 in which a data set of 721 reports was considered, research done by these authors 

indicates that most accidents occur during the operation and transportation phases. These 

results are shown in Figure 3. Top twelve countries in the wind energy industry were 

considered in this case. 
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Figure 3: Frequency of accidents in different phases of a wind turbine’s life cycle (Ertek & Kailas, 2021) 

Figure 4 illustrates the percentages of wind turbine malfunctions, as collected for a period of 

over 15 years at a German wind farm. The information was collected from a total of 34582 

recorded fault incidents. As can be noted, 7% of the faults are related to rotor blades. Although 

this is the case, it has been determined that about 15-20% of all costs related to a wind turbine 

are associated with the blades. 

 

Figure 4: Component percentage contributions to wind turbine malfunctions (Ciang et al., 2008) 

Additionally, they are also the most expensive to repair and the repair process is time 

consuming, based on the type and extent of the fault. A blade failure typically induces very 
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large rotor mass unbalances which can ultimately result in the collapse of the entire tower. As 

indicated by (Zhou et al., 2014), high wind failures resulting from malfunctioning rotor braking 

systems have been known to result in entire nacelles flying off towers, with one nacelle being 

thrown as far as half a kilometre. A typical case the authors indicated was recorded in a China 

wind farm (the Hedingshan Wind Farm) at which Typhoon Saomai swept turbines with wind 

speeds as high as 140 km/h, during 2006. 

Figure 5 illustrates wind turbine failures resulting in total tower collapse. At the initiation stages 

of these failures, it is essential that engineers can detect changes in the system dynamics 

from captured vibration data. This will reduce the frequency at which dangerous expensive 

visual inspections have to be conducted, and avoid these catastrophic system failures. 

 

Figure 5: Total tower collapse (Ciang et al., 2008) 

The different damage modes that can result in turbine failure can be categorized as indicated 

in Table 1, as highlighted by Ciang et al. (2008). Figure 6, shows some of these damage 

modes. 

In terms of the downtime and frequency of failures associated with different wind turbine 

components, Figure 7 adopted from (Turnbull et al., 2022) indicates that turbine blades failures 

are among the significant contributors to stop rates and downtime. 

 

Figure 6: Illustration of wind turbine blade damage types (Ciang et al., 2008) 
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Table 1: Damage types for a wind turbine blade (Ciang et al., 2008) 

Damage 

type 

Description 

1 Damage formation and growth in the adhesive layer joining skin and main spar flanges 

(skin/adhesive debonding and/or main spar/adhesive layer debonding) 

2 Damage formation and growth in the adhesive layer joining the up- and downwind 

skins along leading and/or trailing edges (adhesive joint failure between skins) 

3 Damage formation and growth at the interface between face and core in sandwich 

panels in skins and main spar web (sandwich panel face/core debonding) 

4 Internal damage formation and growth in laminates in skin and/or main spar flanges, 

under a tensile or compression load (delamination driven by a tensional or a buckling 

load) 

5 Splitting and fracture of separate fibres in laminates of the skin and main spar (fibre 

failure in tension; laminate failure in compression) 

6 Buckling of the skin due to damage formation and growth in the bond between skin 

and main spar under compressive load (skin/adhesive debonding induced by buckling, 

a specific type 1 case) 

7 Formation and growth of cracks in the gel-coat; debonding of the gel-coat from the 

skin (gel-coat cracking and gel-coat/skin debonding) 

 

 

Figure 7: Average stop rates and downtimes due to different component failures for direct and geared 
drive wind turbines (Turnbull et al., 2022) 

1.2.1.3 Conventional condition monitoring of wind turbines 

The issues discussed above illustrate the need for sound condition monitoring strategies. 

Condition monitoring relies on the ability to acquire vibration data that can be analysed to gain 

information reflecting the dynamic behaviour of the blades. As reported by Antoniadou et al. 

(2015), wind turbine responses have a non-stationarity component associated with them. This 
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is because the responses are influenced by varying loads and environmental conditions. 

Whilst a number of damage detection strategies have been developed on scaled-down rotor 

sizes in controlled environments, it is difficult to accurately solve the damage detection issue 

in real world situations using basic signal processing techniques. 

Time-domain approaches in which statistical parameters or moments such as the peak-to-

peak value, peak amplitude, crest factor, kurtosis and skewness have been used as general 

vibration levels to capture wind turbine operational conditions. These are however mostly 

related to condition monitoring of other wind turbine components, the gearbox for instance. 

When considering turbine blades, the biggest obstacle to overcome is the issue of finding a 

practical and reliable sensing technology to capture the vibration data. Antoniadou et al. (2015) 

highlighted some of the different methods that have been used to analyse turbine blades for 

condition monitoring purposes. These are listed below:  

• accelerometers 

• piezo or microelectromechanical systems  

• strain measuring devices (strain gauges or fibre optic cables) 

• Fibre Bragg Grating (FBG) strain gauges 

• piezoelectric transducers for measuring ultrasonic waves in composite structures 

• smart paint in the form of fluorescent particles 

• acoustic emissions using barrel sensors 

• impedance techniques using a piezoelectric transducer 

• scanning laser Doppler vibrometry 

• impedance tomography using carbon nanotubes 

• thermography using infrared cameras 

• laser ultrasound 

• nanosensors 

• buckling health monitoring devices  

The authors highlight that even though wireless sensors are more suitable for analysing the 

remotely situated turbine blades, their need for high power supplies tend to steer operators 

towards telemetry systems-based data acquisition techniques for damage detection purposes. 

These contact-based approaches can be very accurate when installed correctly, but they 

however suffer from a number of disadvantages highlighted by Zhou et al. (2014). In addition 

to hysteresis related errors and measurement non-linearities, strain gauges can be affected 

by changes in temperature. The degradation implies that they cannot be used over many 

years. Carrier material viscoelastic effects also influence the performance of these 

transducers, with the foil material cold working causing possible zero shifting in measurements 

as well. 

For displacement measurements, discrete conventional transducers that have been adopted 

include micrometer gauges and linear variable differential transducers. These do have very 

limited measurement ranges, and if data must be captured at multiple locations on the 

structure, the system can easily become very complex and expensive. Contact sensors 

installed on the blades will typically not last for the estimated 20-year life span of a wind turbine 

whilst being exposed to the harsh environment and cyclic loading. Reinstalling these sensors 

is quite complicated on account of the size of these structures (Mistras Group, 2019). A fatal 

accident involving a collapsing tower whilst a person was still on top has been highlighted by 
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Ciang et al. (2008). In Wasco USA at Klondike III wind farm, a maintenance worker fell to 

death after a not-yet operational wind turbine snapped and broke about halfway up the tower. 

Other incidents of collapsing turbines have been reported as well. 

Optical measurement techniques have thus been receiving significant attention as alternative 

approaches for acquiring vibrational information for condition monitoring of these rotating 

structures. The non-contact and full-field nature of some of these techniques make them better 

suited for these types of applications. 

1.2.2 Optical Measurement Techniques  

The optical techniques currently being used for capturing dynamic behaviour of rotating 

structures include the use of digital cameras (photogrammetry), Laser Doppler Vibrometry 

(LDV) and thermography. These are referred to as non-contact techniques in the sense that 

they do not interfere with the structure under investigation, something which can be 

significantly important when analysing light structures susceptible to mass loading related 

measurement errors. Whilst contact sensors capture discrete measurements for the location 

where the sensor is attached, photogrammetry for instance is capable of simultaneously 

capturing responses over an entire surface of a structure. 

1.2.2.1 Thermography and LDV  

Infrared thermography is an optical non-contact method in which surface thermal images 

captured using an infrared camera are analysed to detect subsurface defects in composite 

materials. These defects typically alter temperature distributions. According to Sanati & Wood 

(2018), thermographic inspections can be categorized as either active or passive 

thermography. Flash and halogen lamps heating sources are used to heat the structure under 

analysis in active thermography, making the approach less ideal for rotating wind turbines. 

Static laboratory tests can be successfully conducted using this approach, as indicated by the 

authors. In that investigation, defects such as cracks and delamination could be detected. 

Laser vibrometry has been successfully used for capturing dynamics of rotating structures. 

Time domain and non-harmonic Fourier analysis techniques have been proposed in applying 

Eulerian LDV. In this approach the turbine blades sweep through a fixed laser beam as they 

rotate (Oberholster & Heyns, 2011). Several investigations have been conducted in which the 

laser beam actually rotates with the blades to capture full revolution blade out-of-plane 

responses. A self-tracking technique that employs a vertex mirror attached to the rotating hub 

and a fold mirror that reflects the laser beam onto the required blade was introduced by 

Lomenzo (1998).  This approach is however not practical for large wind turbine blades since 

the laser vibrometer needs to be aligned with the wind turbine axis for it to work. Tracking 

systems that involve scanning laser vibrometers tracking blades based on the shaft angular 

position have been developed and successfully used to capture measurements 

(Gwashavanhu et al., 2016; Halkon & Rothberg, 2006). More advanced systems in which a 

video captured using a camera system is used to track full-scale wind turbine blades and then 

position the laser beam accordingly do exist, and they have been successfully adopted by 

Ebert et al. (2014).  

Continuous Scanning Laser Doppler Vibrometry (CSLDV) which involves capturing both 

temporal and spatial information as a laser beam is continuously swept over a structure, has 

been successfully employed for structural analysis. Yang & Allen (2012) performed output-only 

modal analysis of a free-free beam under random excitation and a stationary 20 kW wind 
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turbine. Qualitatively reasonable results were reported. For a scanner synchronized with a 

rotating target, Di Maio & Ewins (2010) presented line and area scanning. Complicated 

deflection shape patterns were successfully captured using area scanning. Martarelli & Ewins 

(2006) investigated the effect of speckle noise on captured CSLDV data when the approach 

was being used to analyse an arbitrary shape. In the investigation, it was deducted that the 

speckle noise typically associated with CSLDV (as the coherent laser beam scatters on an 

optically rough surface) is concentrated at the laser scanning frequency and its harmonics.  

1.2.2.2 Photogrammetry 

Photogrammetry is a non-contact measurement technique that utilizes digital cameras to 

capture sequences of images of a vibrating structure. These images are then processed to 

extract displacements resulting from changes in position, or strains resulting from structural 

deformation. Whilst in-plane vibrations can be captured using a single camera, practical 

applications typically employ two cameras that ensure synchronized capturing of two 

stereoscopic images of the same structure at a particular time instant. These sequences of 

images of a dynamic structure can then be processed to obtain 3D structural responses. 

The algorithms used in photogrammetry rely on identifying different pixels in the captured 

digital images, based on the pixel grey-scale values. Image matching techniques use the grey-

scale values to identify corresponding pixels in images from different cameras. As a specimen 

moves or deforms, the pixels also need to be identified in the sequence of captured image 

pairs so their locations can be tracked from one image pair to the next. A reference or source 

image, typically the first image captured before a structure is loaded, is required. Based on its 

grey-scale intensity variations for a particular subset on the image, tracking of subsequent 

image subsets is done by means of establishing maximum similarity between them (Pan, 

2010). 

As described by Sutton et al. (2009), it is not always possible to establish pixel correspondence 

in images from different cameras. A pixel gray-scale value in one image can be identical to 

the gray-scale values of pixels in a thousand other locations in the other image. Thus 

successful pixel tracking is significantly influenced by the quality of gray-scale variation among 

pixels in a selected subset of the full image. A speckle pattern is usually applied on the surface 

of the specimen to address this correspondence problem. These random patterns deform or 

move with the structure. 

Investigations to address how the quality of the speckle pattern affects the accuracy of the 

captured measurements have been conducted.  Lecompte et al. (2006) investigated how three 

different speckle patterns perform in terms of the correlation between photogrammetry and 

imposed displacements in a finite element environment. It was established that the speckle 

size and the pixel correspondence subset/window size used during image matching clearly 

influence the accuracy of the results. Whilst a larger subset seemed to yield more accurate 

results, it was concluded that the subset size should be chosen according to the expected 

deformations, as inaccurate measurements were registered for displacements or strains with 

steep gradient variations. This was attributed to the smoothing effect large subsets tend to 

have on the real deformation behaviour. 

In a different study, Crammond et al. (2013) did a quality assessment of the speckle pattern 

for the purposes of strain measurement using photogrammetry. In that investigation, it was 

realised that small densely populated speckles in a pattern decreased the measurement error. 
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Bigger speckles in a pattern produced more accurate results than smaller ones, owing to the 

greater speckle shape variation they provide.  

Surface preparation is therefore a crucial part of accurate data acquisition using 

photogrammetry. Not only does it require careful considerations in terms of the magnitudes of 

the displacements or deformations to be captured, a system shutdown will be necessary for 

the pattern to be applied. For large structures such as wind turbines, the process will be 

complicated and time consuming. The type of environment in which the structure is operated 

can also limit the applicability of the approach as harsh conditions can easily damage applied 

speckle patterns. 

On the other hand, even though limited to surface defect detection, visual inspection of 

captured images is a popular non-destructive inspection approach that does not require 

surface preparation. Fault identification through detection of cracks and discontinuities on a 

turbine blade surface via visual inspection was conducted by Kim et al. (2013). The authors 

developed a system for damage detection that incorporates a pan-tilt zoom camera to detect 

cracks on a blade. 2 cm cracks were detected at a standoff distance of 200 m. One of the 

problems associated with blade defect identification originates from the lack of defect images 

that can be used to limit variances in defects when considering manual inspections. Yu et al. 

(2020) proposed a method in which a Deep Convolution Neural Network (DCNN) is created 

and trained on an ImageNet Large Scale Visual Recognition Challenge dataset. According to 

Russakovsky et al. (2015), the ImageNet Large Scale Visual Recognition Challenge is a 

benchmark in object category classification and detection based on hundreds of object 

categories and millions of images. Yu et al. (2020) extracted deep hierarchical features of the 

training blade images using the trained DCNN and used these for classification. This then 

allowed blade defect classification to be conducted. Further applications of visual based 

inspections of wind turbines are discussed in the review by García Márquez & Peco Chacón, 

(2020), which highlights various strengths and weakness of some of these techniques. 

Two main forms of photogrammetry that rely heavily on prior surface preparation are Digital 

Image Correlation (DIC) and 3D Point Tracking (3DPT). These have been successfully 

employed to analyse dynamics of structures as discussed below. 

1.2.2.2.1 DIC and 3DPT 

DIC is typically used to refer to photogrammetric strain measurements in deforming structures. 

Because this approach relies heavily on tracking subsets of a speckle patterned image, DIC 

is usually employed for analysis of structures that do not have significant rigid body motions. 

The technique is especially popular for measuring strains in statically loaded specimens, and 

crack growth analysis in applications involving fatigue life investigations. 

Being a full-field measurement technique, DIC can be an invaluable tool in Finite Element 

Model Updating (FEMU). Whilst conventional contact transducers capture discrete 

measurements of mode shape responses, DIC can capture entire surface responses. Wang 

et al. (2011) used a comparison made between shape features extracted from full-field DIC 

data to those from a FE model, to identify that modelling bolted joints as springs instead of 

bolted joints, resulted in a more accurate model of an L-beam. Helfrick et al. (2011) stated that 

the significant mismatch in the degrees of freedom between experimental data and the FE 

model hindered effective and efficient analytical model correlating and updating. To address 
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this, the DIC approach they utilized provided numerous data points which could be 

geometrically correlated to nodes in a FE model. 

Through investigating functionally graded materials crack growth using DIC, Abanto-Bueno & 

Lambros (2002) also demonstrated how optical full-field techniques are better suited for strain 

analysis. Understanding strain variations in the K-dominance regions where theoretical 

asymptotic fields capture deformations at the tip of a crack accurately, is not possible using 

conventional measurement techniques that only capture boundary measurements. This was 

successfully done using DIC. Vanlanduit et al. (2009) dynamically loaded a test sample to 

investigate fatigue induced crack growth in a sample. A sub-sampling image acquisition 

approach adopted with the understanding that the fatigue cyclic loading is periodic, allowed 

for sinusoidal displacement curve fitting. In that investigation, displacements could be 

calculated with accuracies within a few hundredths of a pixel. 

Static analysis of turbine blades using photogrammetry has been conducted. In one 

investigation, LeBlanc et al. (2013) statically loaded a 9-m turbine blade at one end, whilst a 

set of cameras were being used to measure strains at different sections on the blade. These 

captured images were joined together using a stitching technique, allowing strains over the 

entire blade surface to be visualised. Damage localisation through identification of high strain 

areas on the blades was achieved. As highlighted by these authors, the load testing full-field 

strain measurements over the entire blade surface can be used for quality assurance 

purposes, in which anomalies in blades can be detected using 3D DIC.  

In another static application Baqersad et al. (2015) used a mechanical shaker to excite turbine 

blades. High speed cameras were used to track markers attached on the surface of the blades. 

A modal expansion approach was then used to transform these 3D measurements captured 

to all the nodes’ degrees of freedom in a finite element model, and full-field dynamic strains 

were extracted. Strain gauge measurements were also captured to validate the 3DPT data. 

The modal expansion of data captured using a discrete point photogrammetric technique 

proved to accurately predict the strains on the entire surface of the blades. Unlike DIC which 

requires more complicated permanent speckle pattern surface preparation for full-field 

dynamic strains, 3DPT, which requires discrete markers that are more easily attached, can 

thus be coupled with a modal expansion algorithm to obtain these strain measurements in a 

FE model environment. 

Hasanen et al. (2013) successfully captured torsional vibrations in a shaft using a single 

camera and several mirrors carefully positioned to ensure that the 2-m separated two sets of 

spots on different locations on the shaft, could be recorded in a single picture simultaneously. 

This was done with the help of a pulsed diode laser illumination. Local displacements of the 

two spots were successfully used to determine the shaft torsional vibrations, which were then 

analysed in both the time and the frequency domains. The correlation between a theoretical 

model and photogrammetry measurements captured using this proposed experimental setup 

is quite promising in terms of avoiding the use of contact transducers on rotating components. 

These contact installations are considered high risk and the use of telemetry data transfer 

systems is generally undesirable on the account of the signal contamination by noise. 

Blast loading of specimens to characterize their material properties is obviously better 

investigated using optical non-contact measurement approaches. Tiwari et al. (2009) 

successfully coupled high speed stereovision with 3D DIC to accurately capture high rate 
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surface deformations and also quantify the specimen responses. Spranghers et al. (2012) 

analysed aluminium plates under free air blast loading conditions using DIC. A good 

correlation between the captured DIC measurements and an explicit FE method was obtained, 

and the two sets of measurements were successfully used to calculate the elasto-plastic 

material properties. In that study, an inverse approach in which a tuning process to adjust 

parameters so that numerical observations are matched to the experimental data, was 

employed, this then allowing realization of the unknown material parameters.  

Helfrick et al. (2009) exploited the dense measurement capabilities of Scanning Laser Doppler 

Vibrometry (SLDV) and DIC to successfully detect, localize and quantify the damage in a 

simple cantilever beam. The damage detection technique utilized was based on the fact that 

there is a local curvature variation of a structure under excitation at the region where a crack 

is located. Measurements captured over the entire span of the structure are therefore required. 

This has the potential of being successful as a structural health monitoring approach for a 

structure that also has rotational rigid body motion (wind turbine blades). 

Data reduction of the full-field displacement data captured using DIC, through the use of the 

multivariate data analysis Principal Component Analysis (PCA), has been done to illustrate 

how the dimensionality of the displacement fields can be significantly reduced (Grama & 

Subramanian, 2014). These authors were able to extract excellent measurements for 

displacement fields that varied smoothly. Whilst 2D Savitzky-Golay is typically used to process 

noisy measurements before strains are calculated, the proposed PCA coupled with 1D filtering 

resulted in better estimated strain measurements. 

In another investigation, Wang et al. (2012) used shape features to extract only the succinct 

noise robust parameters from the highly redundant DIC full-field measurements. These shape 

features extracted from 2D Adaptive Geometric Moment Descriptor (AGMD) were then 

successfully used for modal testing. From DIC raw measurements comprised of more than 

14000 spatial data points per time step, 20 AGMD terms could be determined to accurately 

represent the DIC data. This proved to be an efficient way to represent the measurements, 

making it much easier to estimate frequency response functions at various points on the 

structure. Similarly, Pasialis & Lampeas (2015) utilized Zernike and Chebyshev Moment 

Descriptors (ZCMDs) to drastically reduce the computational effort in terms of data sizes to 

be analysed in a different investigation. 

Najafi & Vesth (2018) developed a robust 3DPT approach for analysing a 1.64 m horizontal axis 

wind turbine, at a stand-off distance of 7.5 m from two high speed-cameras. In the 

investigation, the authors found that an alternative measurement technique to the 

conventional accelerometers existed. In addition to being intrusive, the installation of 

accelerometers typically includes wiring, which can be expensive and time consuming when 

measurements are to be captured on a large scale. Due to practicalities around 2D calibration 

of a full-scale wind turbine FOV using a calibration grid, a 3D calibration approach is 

suggested. At least a 120×120 m2 grid size is required for a modern day wind turbine according 

to Najafi & Vesth (2018). 3D calibration uses exact point locations on a structure captured 

using a Leica surveillance device with a laser range finder as the calibration coordinates. To 

define the entire rotor area, the blades will have to be rotated by a specific angle in steps so 

that a collection of known coordinates can be developed for the camera calibration. The 

investigations done illustrated that this type of calibration proved to be more accurate. Blade 

out-of-plane displacements were then successfully captured using this approach. 
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In terms of wind turbine analysis using a pair of high-speed cameras, Winstroth et al. (2014) 

applied DIC on a full-scale 3.2 MW wind turbine. Surface preparations were done on four radial 

locations on the blades, and captured data was compared to aero-elastic simulations. The 

measurements obtained illustrate the applicability of using a photogrammetric approach to 

analyse a full-scale wind turbine in which the cameras are separated by 105 m and situated 

about 205 m in front of the turbine blades. In addition to demonstrating feasibility of the 

approach, in-plane, out-of-plane and torsional blade responses were also measured whilst the 

turbine was in operation. For an experiment of this magnitude, the preparations required are 

quite elaborate. Self-adhesive foils are used to apply the speckle pattern to the blade prior to 

blade mounting. This obviously limits/restricts the practicality of the proposed technique, 

something which the work presented here wishes to address. For a pitch angle step input, the 

small variations in the torsion, in-plane and out-of-plane blade responses detected illustrated 

that the optical system had a high spatial accuracy. The comparison done by the authors 

between DIC and aero-elastic simulations indicated good agreement of measurements, 

demonstrating that DIC can be used for aero-elastic simulation code validation. 

Ozbek et al. (2010) also analysed a full-scale wind turbine (2.5 MW, 80 m diameter) using four 

CCD cameras. At a stand-off distance of 220 m, operational deflection shapes of the blades 

could be captured, and displacements with an accuracy of ±25 mm identified. Whilst the 

maximum overall error for markers at the tip of the blade could reach 35 mm, the authors 

suggested that these systematic errors could be reduced by using more sophisticated camera 

calibration systems, and also by utilizing hardware and data processing methods more 

specialized for analysing wind turbines. Since this approach does not require extra cable 

installations and focuses only on the markers attached on the surface of the blade, it is 

generally more suited for analysing these large structures when compared to the conventional 

fibre optics strain gauges and accelerometers. The authors also highlighted the advantages 

of adopting this measurement approach, which include the fact that a single system can be 

used to monitor several turbines. Data capturing systems located on the ground can be easily 

accessed and data analysed to detect any faults. The measurements can also be stored to 

develop proper condition monitoring archives. Even though the installation costs can be 

reduced by replacing the markers with retroreflective paints applied in the factory during the 

manufacturing stages, in-service systems will still be interfered with for the surface 

preparation.  

Lundstrom et al. (2016) used high speed stereo-photogrammetry in the form of 3DPT to 

analyse the dynamics of rotating helicopter blades in both grounded and hovering conditions. 

The authors emphasized the advantages of using the approach for structural health 

monitoring, highlighting that the non-contact nature of the approach imply that no slip rings for 

data transmission from transducer to data logging systems are necessary. Interference with 

the structure in the form of mass loading was avoided, and the markers attached for tracking 

introduced a negligible effect on the blades’ aerodynamics as well. The full-field nature of the 

technique that allows data acquisition at hundreds of measurement locations simultaneously 

was also highlighted. The flap-wise blade dynamic responses of the centre of rotation were 

effectively analysed through coordinate transformation. In addition to that, the non-harmonic 

operational deflection shapes could be successfully captured and analysed. 

The use of Unmanned Aerial Vehicles (UAVs) to capture footage (image sequences) of blades 

has been investigated. Khadka et al. (2020) employed a DIC system installed on a drone to 

measure deflections of a six bladed 113 cm rotor with a hub height of 154 cm. Using a dynamic 
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image stitching technique of the DIC measurements, the authors were able to characterize 

the dynamics of the entire blade with high accuracy. Limitations when it comes to adopting the 

technique for large wind turbines onsite were also highlighted. These include the need for 

speckle pattern application, the requirement that the drone flight mode path be programmed 

for each specific turbine, and the windy conditions of the locations where wind turbines are 

installed. Ensuring that patterns are applied during manufacturing and equipping the drones 

with Light Detection and Ranging (LIDAR) to improve drone the control were proposed 

possible solutions to these issues. Guan et al. (2022) proposed a similar UAV based technique 

for defect detection of a 94 m diameter wind turbine. In the investigation, a combination of 

ground cameras at a standoff distance of 248 m and stereo camera system mounted on an 

UAV was used. Successfully captured were the turbine global dynamic measurements and 

local blade deformations. Inspection of the blade surfaces using data from the UAV allowed 

for a complete assessment of the wind turbine. 

A number of investigations have been conducted in which photogrammetric results have been 

correlated to measurements captured using other measurement techniques. Warren et al. 

(2010) successfully analysed a rotating 1.17-m diameter wind turbine using DIC, 3DPT and 

accelerometers. The auto-power spectra of the captured measurements showed good 

agreement, with some discrepancies, however. These were attributed to possible 

accelerometer cross-axis sensitivity, optical system noise floor and telemetry system slip ring 

noise. Unlike accelerometers that are point-wise transducers which also potentially mass load 

a structure, scanning vibrometers can measure large numbers of points in a non-contact 

manner. In addition, they also have a quite wide measurement frequency range. Being 

capable of capturing large displacements at very low frequencies, photogrammetry can be 

used to complement measurements captured using accelerometers and vibrometers. Warren 

et al. (2011) analysed a base upright specimen using digital image correlation, 3DPT, 3D laser 

vibrometry and an accelerometer. Even though good correlation was observed around the 

Frequency Response Function (FRF) peaks, differences in the system noise floors at 

particular frequencies and varying system SNRs resulted in slightly different observations. An 

investigation done by Helfrick et al. (2011) provided results that indicated great correlation of 

measurements captured using high speed cameras, accelerometers and a scanning laser 

vibrometer. This was for a dryer-cabinet panel being excited by a mechanical shaker. 

Illustrated in Table 2 are comparisons of the characteristics of different modal analysis 

techniques, as indicated by Helfrick & Niezrecki (2011). 

Ha et al. (2013) investigated the dynamic characteristics of an artificial wing mimicking the 

Allomyrina dichotoma beetle’s hind wing using photogrammetry and scanning laser 

vibrometry. Results of mode shapes at predetermined natural frequencies illustrated good 

correlation between the two techniques, with DIC being capable of providing very high 

resolution mode shapes. Gwashavanhu et al. (2016) analysed rotating blades using 3DPT 

and Tracking Scanning Laser Doppler Vibrometry (TLDV). Out-of-plane blade responses 

indicated a maximum of 2.5% difference in magnitude, and a 0.076% difference in frequency 

at the frequency peaks for percentages calculated with reference to TLDV measurements. 

These were attributed to differences in the system noise floors for the two measurement 

approaches. 
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Table 2: Comparison of contact and non-contact methods for modal analysis (Helfrick et al., 2011) 

Impact hammer test Photogrammetry Scanning laser vibrometer 

Transfer function easily 

determined 

Complex post-processing of 

results necessary 

Transfer function easily 

determined 

Sensitivity depends on the 

transducers used 

Sensitivity inversely 

proportional to the FOV 

Sensitivity related to the 

laser light wavelength 

Broadband excitation of all 

modes 

Mostly suited for excitations 

at a single frequency 

Broadband excitation of all 

modes 

Discrete responses at 

locations where transducers 

are attached  

Responses on the entire 

visible surface of a 

specimen 

Responses at pre-defined 

locations on a specimen 

Each point tested separately Each shape tested 

separately 

Each point tested in a series 

No stability requirements Generally less sensitive to 

camera rigid body motion 

Calibration is highly 

sensitive to changes in the 

set-up conditions 

Inexpensive equipment Expensive, depending on 

the quality of the high-speed 

cameras 

Very expensive 

A contact measurement 

technique, with possible 

mass loading 

Non-contact technique, but 

requires a clear line of sight 

to structure 

Non-contact technique, but 

requires a clear line of sight 

to structure 

Low spatial resolution Very high spatial resolution High spatial resolution 

 

1.2.2.2.2 Motion magnification 

Wadhwa & Rubinstein (2013) describe a video processing and motion magnification technique 

that allows visualizations of otherwise non-apparent motions in captured video footage. In this 

approach, termed Eulerian Video Magnification, processing is done by applying frame spatial 

decomposition and temporal filtering. Amplification of the resulting signal is then implemented. 

Using this technique, the authors were able to magnify the motion of a seemingly stationary 

crane being swayed by the wind. Lu et al. (2019) applied the technique to successfully observe 

the vibration of a tower through amplification of its small motions. Using a similar approach, 

Wu et al. (2012) magnified temporal colour changes using spatio-temporal processing to 

amplify motions in ordinary videos. In their investigation, they were able to visualize the human 

pulse by analysing a video sequence of a human face. 

Diamond et al. (2016) applied a complex filter to down-sampled frames, and calculated 

vibration responses from the phase of selected active pixels. The captured measurements 

were validated using accelerometer and laser vibrometry data. In the investigation, it was 
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shown that responses 450 times smaller than the size of a pixel could be captured. Yang et 

al. (2017) combined a multiscale pyramid decomposition approach, in conjunction with blind 

source separation, to manipulate image pixel phase information. In the investigation, modal 

parameters and mode shapes of a beam structure were successfully captured from video 

measurements. For a 2.3-m long wind turbine blade fixed at one end and excited by a modal 

hammer, Sarrafi et al. (2018) used phase-based motion estimation and motion magnification 

to estimate the blade’s structural motion for both baseline and damaged test scenarios. 

Operational deflection shapes and resonant frequencies were used for damage detection, 

illustrating the feasibility of using non-contact video-based measurements for condition 

monitoring purposes. 

For a more sensitive vibration detection approach on a sub-pixel level, Lado-Roigé et al. 

(2023) explored the use of learning-based video motion magnification instead of hand-

designed or manually tuned filters. The synthetically trained learning-based model was 

created using a non-related image dataset, and then successfully applied to verify and validate 

the approach on a structural system to detect different vibration scenarios. Further reviews on 

the different applications of motion magnification-based techniques are detailed in the work 

done by Śmieja et al. (2021).  

This type of video analysis to magnify the motion of objects in captured footage can become 

very useful when a shape analysis approach similar to the one described in this research is to 

be implemented. Amplified motions imply improved SNR of shape variations in captured data, 

which has significant influence on the accuracy and validity of the conducted analysis. Molina-

Viedma et al. (2018) successfully coupled DIC and motion magnification to analyse magnified 

videos. Characterisation of DIC mode shapes at high frequencies through displacement 

amplification could be performed. Whilst initial video magnification techniques focused on 

analysis of specific selected ‘active’ pixels (Diamond et al., 2016) and on non-rotating 

structures where rigid body motions where not a factor to consider (Wu et al., 2012), more 

research is being done to improve the applicability of the technique. With regards to structures 

undergoing significant rigid-body motions, Yang et al. (2020) successfully identified full-field 

vibration modes and the rigid motions of a bench-scale building structure using an output-only 

video analysis approach. Both the subtle full-field deformation modes of the structure and its 

dominant rigid-body motions could be captured. Thus, motion magnification coupled with a 

statistical shape analysis for condition monitoring of rotating structures is definitely an 

interesting possible area of research with significant potential impact on the applicability of 

optical non-contact measurement techniques.  

1.2.3 Statistical shape analysis  

One of the limiting factors of photogrammetry is the need for prior surface preparation in the 

form of a speckle pattern (DIC) and distinct markers (3DPT). As discussed earlier on, a 

speckle pattern for DIC cannot be randomly applied on the surface of the structure if accurate 

consistent results are to be obtained. This especially becomes problematic when one is tasked 

with analysing large outdoor structures. In addition to getting the ideal speckle density and 

size right, the less control one has on the overall lighting on the structure presents its own 

problems for DIC and 3DPT, especially for DIC. 

Structural boundary shape analysis is an alternative photogrammetric measurement 

technique that has not been considered as a condition monitoring approach. It is typically used 

for shape recognition and matching purposes. For instance, handwritten digits by different 
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people can appear similar to an observer but have very different pixel arrangements. If these 

digits are to be captured using an automated system, some form of shape recognition and 

matching will have to be applied.  

Shape analysis is widely used in Content Based Image Retrieval (CBIR), which entails the use 

of shape descriptors for extracting visual features from a shape boundary and/or interior 

(Kazmi et al., 2013). The authors define a shape descriptor as a vectorial representation of a 

2D or 3D shape. The vector is composed of a set of numerical values or a graphical structure 

that describe the geometrical and topological features of the shape. These features include 

unique shape signatures, boundary contour curves, shape context and histogram, and shape 

spectral features. The most visually similar image to a query image of interest, described in 

the form of these shape features, is then extracted from a database of images. Thus, CBIR is 

also referred to as Query By Image Content (QBIC). With the abundance of cameras capturing 

digital images in everyday lives, quite a few applications have been emerging to exploit the 

advantages of image-based search algorithms. According to Zhou et al. (2017), titles and tags 

have been used as the image surrounding meta data information indexed on the web in 

traditional image search engines. However, the inconsistencies between textual information 

and visual content have been the driving force for advancing CBIR. Typical different query 

schemes and their significantly distinguishable outcomes as presented by Zhou et al. (2017) 

are given in Figure 8. 

 

Figure 8: Typical CBIR query schemes and their outcomes (Zhou et al., 2017) 

Kazmi et al. (2013) conducted a survey on 2D and 3D shape descriptors in which they 

reviewed widely used descriptors. Descriptors are typically evaluated in terms of a number of 

qualities that represent how well they can define a shape. These characteristics, as highlighted 

by Kazmi et al. (2013), are stated below.  
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• Descriptor invariance to translation, scaling and rotation transformations 

• Descriptor uniqueness for unique or different shapes, with discriminative accuracy 

based on subtle differences 

• Computational complexity and memory efficiency 

• Robust shape matching in the case of partially incomplete shapes 

• Robust to accurately describe noisy shapes 

Simple descriptors that one can monitor include the area, aspect ratio, normalized central 

moments and perimeter of a shape. These geometric features are however not efficient as 

shape descriptors, and do not contain much information when compared to shape features, 

as highlighted by Mebatsion et al. (2012). More sophisticated shape descriptors such as those 

discussed by Kazmi et al. (2013) have therefore been proposed. These tend to be more 

sensitive to various shape changes, and can be classified in 2D as contour, region or hybrid-

based descriptors. The contour-based descriptors namely Fourier Descriptors (FDs), Wavelet 

Descriptors (WDs), Curvature Scale Space Descriptors (CSSDs) and the Shape Context 

Descriptors (SCDs), extract shape features from the boundary of a shape. On the other hand, 

region-based descriptors such as the Zernike Moment Descriptors (ZMDs), the Scale Invariant 

Feature Transform (SIFT) and the Angular Radial Transform (ART) obtain features from the 

whole region of the shape. For strain analysis, region-based descriptors from full-field DIC 

measurements data reduction implementation are utilized. The data reduction features are 

less computationally expensive. 3D shape descriptors can be classified as view based, 

histogram based, transform based, graph based and hybrid descriptors. These are however 

not investigated further in this study. 

When calculating FDs, the contour must first be represented by a shape signature, which is 

essentially a 1D function which can be the shape centroid distance, complex coordinates, the 

curvature function or the cumulative angular function according to (Kazmi et al., 2013). Other 

shape signatures such as the Freeman’s chain code adopted in this study are discussed 

further in the following sections. In typical applications, the discrete Fourier transform is used 

to calculate the FDs in the form of Fourier coefficients of the shape signature. FDs are 

generally easier to compute and are quite robust to noise when compared to other 2D 

descriptors. 

Wavelet descriptors involve the use of a multiresolution approach that decomposes the 

contour into several components in multiple scales. Higher resolution components represent 

the global shape features, whilst the lower resolution components capture the more detailed 

local features (Kazmi et al., 2013). They are generally known to represent local features more 

accurately than the other descriptors. 

CSSDs are computed by dividing a shape into convex and concave segments and then 

identifying a set of points where the shape curvature is zero (inflection points). The curvature 

values are calculated whilst the curve is being progressively smoothed down, and a CSSD 

plot consisting of a 2D curve of all the curvatures zero crossing points determined. On the 

other hand, the SCD is based on finding the correspondence between two shapes through 

defining a dissimilarity measure between them. Further details on determining these 2D 

descriptors can be found in the survey conducted by Kazmi et al. (2013) and the work by 

Zhang & Lu (2004). 
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Descriptors are usually picked according to the application, and significant work has been 

done to critically assess how they perform against each other. For instance, Zhang & Lu (2003) 

did a comprehensive comparison between FDs and CSSDs using standard principles and a 

standard data base in an image retrieval application. It was concluded that FDs are more 

robust than CSSDs, in addition to entailing lower computations, better retrieval performance, 

and hierarchical representation. CSSDs are shown to be robust to only local shape variations, 

not the global features. Empirical factors influence its performance to retrieve and represent 

images. These factors include the number of sample points on the boundary considered, the 

set threshold for a positive peak identification and the peak position matching tolerance. 

Most of the focus on shape descriptors for mechanical engineering applications has been on 

the use of region-based descriptors. Descriptors have been used to handle the massive 

amounts of data obtained from FEA and full-field measurement techniques prior to structural 

dynamics analysis. This includes the work done by Wang et al. (2011), in which finite element 

model updating of a panel is done through the use of the Tchebichef moment descriptor 

applied to DIC measurements. In that investigation, the region-based descriptor’s formulation 

incorporating parameter orthogonality and therefore uniqueness was exploited to determine 

shape features described as succinct and effective in representing mode shapes. The already 

mentioned work by Wang et al. (2012) and Pasialis & Lampeas (2015) also entail data analysis 

using region-based shape descriptors.  

Patterson & Patki (2012) utilized an image decomposition approach through the use of 

geometric moments to represent strain data. Different descriptors associated with different 

levels of damage in a specimen were then compared using Euclidean distance, and a good 

correlation between these distances and the level of damage was observed. A quantitative 

evaluation of damage in composite materials was therefore successfully done.  

To date, not much work has been done in terms of employing contour-based descriptors to 

investigate mechanical structures for condition monitoring purposes. Studies conducted 

typically involve shape classification and identification in the biological and medical field. 

Bhonsle et al. (2009) used the centroid distance function as a shape signature for FDs in an 

application involving clustering of cancer cells. k-means clustering with FDs made it possible 

to distinguish different cells shapes, something which is important when quantifying tumor 

cells. Mebatsion et al. (2012) classified cereal grains based on grain kernel shapes using the 

Invariant Elliptic Fourier descriptors (IEFDs). In the investigation, it was shown that the first 

three to five IEFDs could classify the grains with accuracies of more than 99%.  

1.2.3.1 The Freeman’s chain code Fourier descriptors  

Contour based FDs are considered in this study. The descriptors have the following listed 

advantages, as described by Zhang & Lu (2004). 

• They are developed from the sufficiently understood Fourier theory 

• They are simple to compute 

• They can be easily normalized, making them ideal for shape matching applications 

• They can capture both the local and global features of a shape 

In addition, and a significant factor why FDs are considered, each computed descriptor has a 

unique and specific physical meaning associated with it. This is further discussed and 

illustrated in the following chapters. 
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FDs can be determined for a closed contour describing a shape of interest. The closed contour 

representation can be obtained by the use of Freeman’s chain code (Freeman, 1974). As 

described by Jusoh & Zain (2009), a chain code represents a boundary of interest based on 

either 4-connectivity or 8-connectivity of segments. It is a 1D function (shape signature) 

created by tracing the mid-points of the boundary pixels in a counter-clockwise direction. For 

the 8-directional chain-code, each integer in the code will be assigned a value between 0 and 

7 depending on its orientation relative to the previous pixel. This is illustrated in Figure 9, 

where the starting point is the red pixel. 

 

Figure 9: 8 directional chain-code (counter-clockwise, starting point red pixel) 

As discussed by Kuhl & Giardina (1982), a Fourier series representation of the code can be 

used for extracting shape descriptors, since the code repeats itself on successive traversals 

of a closed contour. The Fourier coefficients of the chain-coded contour form the FDs for that 

particular shape. A description of the representation of a chain-code using a Fourier series is 

given below. 

Consider a chain-code 𝐶𝑐 = 𝜈1, 𝜈2, … , 𝜈𝑘 whereby 𝑣𝑖  ∈ [0: 7]. According to Kuhl & Giardina 

(1982), a continuous boundary contour can be approximated by a sequence of piecewise 

linear fits. Each fit or link 𝜈𝑖 is an integer between 0 and 7, oriented in the direction (𝜋 4⁄ )𝜈𝑖, 

and of length 1 (if 𝜈𝑖 even) or √2 (if 𝜈𝑖 odd). In phasor notation, each link can thus be 

represented as a vector using Equation (1): 

(1 + (
√2 − 1

2
) (1 − (−1)𝜈𝑖))∠

𝜋

4
𝜈𝑖  (1) 

The contour’s chain-code is then projected onto the xy-plane. Variations in the x- and y-

projections of the chain code as the link 𝜈𝑖 is traversed, can then be calculated using Equation 

(2) and Equation (3). 

∆𝑥𝑖 = 𝑠𝑔𝑛(6 − 𝜈𝑖)𝑠𝑔𝑛(2 − 𝜈𝑖) (2) 

∆𝑦𝑖 =  𝑠𝑔𝑛(4 − 𝜈𝑖)𝑠𝑔𝑛(𝜈𝑖) (3) 

In the above equations, 𝑠𝑔𝑛(𝜁) corresponds to the sign of a value, 𝜁, as defined by Equation 

(4). 
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𝑠𝑔𝑛(𝜁) = {

1, 𝑖𝑓 𝜁 > 0
0, 𝑖𝑓 𝜁 = 0

−1, 𝑖𝑓 𝜁 < 0
   (4) 

Equations (5) and (6) are adopted to calculate projections onto the xy-plane of the 𝑘 links of 

the determined chain-code. 

𝑥𝑘 = ∑∆𝑥𝑖

𝑘

𝑖

 (5) 

𝑦𝑘 = ∑∆𝑦𝑖

𝑘

𝑖

 (6) 

For a closed chain-coded contour projected on the xy-plane, the elliptical Fourier series 

approximating the contour can be defined using Equations (7) and (8) below, (Mebatsion et 

al., 2012a). 

𝑥𝑛(𝑞) = 𝐴0 + ∑ 𝑎𝑛 cos (
2𝑛𝜋𝑞

𝑄
) + 𝑏𝑛 sin (

2𝑛𝜋𝑞

𝑄
)

𝑁

𝑛=1

 (7) 

𝑦𝑛(𝑞) = 𝐶0 + ∑ 𝑐𝑛 cos (
2𝑛𝜋𝑞

𝑄
) + 𝑑𝑛 sin (

2𝑛𝜋𝑞

𝑄
)

𝑁

𝑛=1

 (8) 

In the above expressions, the geometric step to move from one pixel to the next is given by 𝑞. 

𝑄 is the geometrical period for traversing through the 𝑘 links of the chain code, and 𝑁 gives 

the number of Fourier harmonics considered. Detailed descriptions on the derivations of these 

coefficients can be found in Mebatsion et al. (2012a); Kuhl & Giardina (1982). The Fourier 

power of a harmonic, which indicates the amount of shape information described by that 

particular harmonic (Mebatsion et al., 2012), can be used to estimate the number of harmonics 

required.  

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑝𝑜𝑤𝑒𝑟 =
∑ (𝑎𝑛

2 + 𝑏𝑛
2 + 𝑐𝑛

2 + 𝑑𝑛
2)𝑁

𝑛=1

2
 (9) 

The average cumulative Fourier power percentage increases with the number of considered 

Fourier harmonics. The number of harmonics required for the truncated Fourier coefficients 

can thus be determined based on the preferred average cumulative power percentage. A high 

average cumulative power percentage ensures that the local shape features are captured 

more accurately. According to Mebatsion et al. (2012), for 𝑁 equal to half the number of 

contour boundary points, a cumulative power more than 99% can be obtained, which will 

guarantee an accurate representation of the contour. 

In the case of a 3D shape analysis, the 26-connectivity chain code must be adopted. Each 

pixel of the discretized contour is assigned a value based on its direction relative to the 

previous pixel. Figure 10 below illustrates how the different pixel directions are assigned to a 

pixel whose previous neighbour is positioned at the centroid of the cuboid. A description of the 

procedure used to transform the 26-connectivity chain code of a contour to shape descriptors, 

in the form of Fourier coefficients, that uniquely describe the contour, follows. 
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Figure 10: Direction based code assignment for the 26-connectivity chain code (Bose, 2000) 

As reported by Bose (2000), for a 26-connectivity chain code shape signature in which each 

link 𝜈𝑙 is one of the directions, the length ʆ of that link for a chain code 𝐶𝑐 = 𝜈1, 𝜈2, … , 𝜈𝑘 is given 

by Equation (10). 

ʆ (𝜈𝑙) =  {

1, 𝑖𝑓 𝜈𝑙  ∈  {0, 2, 4, 6, 𝑖, −𝑖}

√2, 𝑖𝑓 𝜈𝑙  ∈  {1, 3, 5, 7, 𝑗0, 𝑗2, 𝑗4, 𝑗6, −𝑗0,−𝑗2,− 𝑗4, −𝑗6}

√3, 𝑖𝑓 𝜈𝑙  ∈  { 𝑗1, 𝑗3, 𝑗5, 𝑗7, − 𝑗1,− 𝑗3,− 𝑗5, − 𝑗7}

 (10) 

As link 𝜈𝑙 is traced, successive pixel direction changes in x-, y- and z-projections of the chain 

can then be represented as given in the equations below. 

∆𝑥𝑙 = {

0, 𝑖𝑓 𝜈𝑙  ∈  {0, 2, 4, 6, 𝑖, −𝑖}

−1, 𝑖𝑓 𝜈𝑙  ∈  {1, 3, 5, 7, 𝑗0, 𝑗2, 𝑗4, 𝑗6, −𝑗0,−𝑗2,− 𝑗4, −𝑗6}

0, 𝑖𝑓 𝜈𝑙  ∈  { 𝑗1, 𝑗3, 𝑗5, 𝑗7, − 𝑗1,− 𝑗3,− 𝑗5, − 𝑗7}
 (11) 

∆𝑦𝑙 = {

1, 𝑖𝑓 𝜈𝑙  ∈  {0, 2, 4, 6, 𝑖, −𝑖}

−1, 𝑖𝑓 𝜈𝑙  ∈  {1, 3, 5, 7, 𝑗0, 𝑗2, 𝑗4, 𝑗6, −𝑗0,−𝑗2,− 𝑗4, −𝑗6}

0, 𝑖𝑓 𝜈𝑙  ∈  { 𝑗1, 𝑗3, 𝑗5, 𝑗7, − 𝑗1,− 𝑗3, − 𝑗5,− 𝑗7}
 (12) 

∆𝑧𝑙 = {

1, 𝑖𝑓 𝜈𝑙  ∈  {0, 2, 4, 6, 𝑖, −𝑖}

−1, 𝑖𝑓 𝜈𝑙  ∈  {1, 3, 5, 7, 𝑗0, 𝑗2, 𝑗4, 𝑗6, −𝑗0,−𝑗2,− 𝑗4, −𝑗6}

0, 𝑖𝑓 𝜈𝑙  ∈  { 𝑗1, 𝑗3, 𝑗5, 𝑗7, − 𝑗1,− 𝑗3, − 𝑗5,− 𝑗7}
 

 

(13) 

It is for these projections that the Fourier series approximation of the entire contour for 𝑁 

considered harmonics are calculated using the equations below, to determine coefficients that 

are considered the shape descriptors. 
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𝑥𝑛(𝑞) = 𝐴0 + ∑ 𝑎𝑛 cos (
2𝑛𝜋𝑞

𝑄
) + 𝑏𝑛 sin (

2𝑛𝜋𝑞

𝑄
)

𝑁

𝑛=1

 (14) 

𝑦𝑛(𝑞) = 𝐶0 + ∑ 𝑐𝑛 cos (
2𝑛𝜋𝑞

𝑄
) + 𝑑𝑛 sin (

2𝑛𝜋𝑞

𝑄
)

𝑁

𝑛=1

 (15) 

𝑧𝑛(𝑞) = 𝐸0 + ∑ 𝑒𝑛 cos (
2𝑛𝜋𝑞

𝑄
) + 𝑓𝑛 sin (

2𝑛𝜋𝑞

𝑄
)

𝑁

𝑛=1

 (16) 

Coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛, 𝑒𝑛 and 𝑓𝑛 for a closed contour for a particular captured image 

constitute the contour’s Fourier shape descriptors. A number of sources outline detailed 

derivations of these coefficients (Mebatsion et al., 2012; Kuhl & Giardina, 1982; Bose, 2000). 

The way these Fourier shape descriptors are then further processed to ultimately capture 

dynamic shape variations is described in the following section.  

1.2.4 Statistical data reduction 

The concept of data reduction using statistical methods such as PCA and Independent 

Component Analysis (ICA) is widely used as a post-processing tool in SHM. This is done to 

extract features of reduced dimensionality that retain most of the variations present in the 

original data. The technique allows classification of dynamic behaviours of machines that have 

different forms or levels of damage to be done more efficiently and accurately. 

1.2.4.1 Principal component analysis 

Using PCA in a machine learning application, dimensionality reduction and visualization of 

measurements is achieved by linearly projecting the possibly correlated data into a lower 

dimensional feature space of uncorrelated data using a linear transformation (Tippmann et al., 

2015). When performing 2D or 3D shape analysis, it is not the data reduction that is of 

importance, but rather the uncorrelated nature of the computed principal components. 

Normalized truncated Fourier coefficients determined as described in the previous section are 

considered as the multivariate vector (𝑿2𝐷 for 2D shape analysis and 𝑿3𝐷 for 3D shape 

analysis) to which a standard PCA is applied. This multivariate vector is given in the equation 

below for 3D analysis. In terms of a 2D analysis, 𝑿2𝐷 is a 4×N matrix comprising only of 

coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛 as given by Equations 7 and 8. 𝑿3𝐷 for 3D analysis is a 6×N matrix of 

coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛 , 𝑒𝑛, 𝑓𝑛 as given by Equations 14, 15 and 16. 

𝑿3𝐷 =    

[
 
 
 
 
 
𝑎1 𝑎2 … 𝑎𝑁

𝑏1 𝑏2 … 𝑏𝑁

𝑐1 𝑐2 … 𝑐𝑁

𝑑1 𝑑2 … 𝑑𝑁

𝑒1 𝑒2 … 𝑒𝑁

𝑓1 𝑓2 … 𝑓𝑁 ]
 
 
 
 
 

 (17) 

Principal Component Analysis (PCA) of the 6×N multivariate vector (𝑿3𝐷), henceforth referred 

to as simply 𝑿, can then be conducted by first computing the 6×6 covariance matrix 𝑪 of 𝑿 

according to Equation 18. In Equation 18, �̅� corresponds to the mean and 𝑋 𝑖  the ith column of 

𝑿. 
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𝑪 =
1

𝑁 − 1
 ∑(𝑋 𝑖  − �̅�)(𝑋 𝑖  − �̅�)𝑇

𝑁

𝑖=1

 (18) 

For 𝑪, eigenvector 𝑽 and eigenvalues 𝑰 that satisfy Equation 19 are determined, from which a 

new uncorrelated multivariate vector 𝑿 
𝑛𝑒𝑤 can be computed according to Equation 20.  

𝑪�⃗� 𝑖 = 𝑰𝑖�⃗� 𝑖, 𝑖 = 1: 6  (19) 

𝑿 
𝑛𝑒𝑤 = 𝑽𝑇𝑿   (20) 

Each row of matrix 𝑿 
𝑛𝑒𝑤 (which contain the principal component scores and denoted as 𝑋 𝑖

𝑛𝑒𝑤
 

for row 𝑖) represents the uncorrelated linear combinations of the original data, accounting for 

the variance in the data. Each column of matrix 𝑽 (i.e., �⃗� 𝑖) represents a specific shape feature, 

termed the Shape Principal Component (SPC). 𝑽 can be considered to be composed of 

geometric shape modes. The physical relationships between different �⃗� 𝑖 vectors and the form 

of a typical shape are investigated further in the following chapters. 

The uncorrelated �⃗� 𝑖 s represent unique shape features whose variations can be monitored 

separately to get an in-depth insight on how the overall shape changes in a dynamic situation. 

Each �⃗� 𝑖  represents an independent shape feature which allow a quantitative analysis of the 

shape to be conducted by use of 𝑿 
𝑛𝑒𝑤 as the ordinary quantitative characters (Mebatsion et 

al., 2012). 

The approach of using 𝑽 for shape analysis has been used before. Shape analysis was 

conducted by Iwata et al. (2002), in which different variations of citrus leaf shape were 

investigated and quantified using PCA. Variations in the shape of cereal grains were also 

successfully investigated using PCA. Mebatsion et al. (2012) illustrated that 𝑽 of standardized 

elliptic Fourier descriptors can be used to quantitatively capture grain shape variability. They 

concluded that this type of analysis is more objective and precise when compared to 

classification by humans.  

For a condition monitoring application, shape analysis is done for all the images captured in a 

sequence, and their variations investigated to get an insight into how the machine is behaving.  

1.2.4.2 Kernel Principal Component Analysis (KPCA) 

For data reduction purposes, PCA is based on a linear transformation approach, in which the 

feature vectors considered are assumed to be extracted from data that has a Gaussian 

distribution.  In an application where nonlinear relationships may exist among variables or time 

intervals, the use of PCA may result in a loss of the nonlinear features (Yao & Wang, 2015). 

This nonlinearity is quite common in complex industrial systems which have responses that 

are nonstationary. A linearly behaving structure can exhibit nonlinear dynamics in its 

vibrational responses as damage develops. This introduces another machine behaviour 

characteristic that is important when monitoring the health of a structure. 

KPCA addresses this issue by first transforming the original data in a nonlinear fashion into a 

different feature space using various kernels. The kernels used are typically polynomial, 

sigmoid and Gaussian kernels.  PCA is then conducted in the new feature space on the data 

with nonlinear dependencies between variables. Consider a dynamic system described by a 
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set of vibration response features in the form of an n-dimensional vector 𝜹𝑠 (𝑗 =  1, . . . , 𝑀). In 

this case, n corresponds to the number of sensors, and 𝑀 the number of samples. According 

to Nguyen & Golinval (2010), the concept of KPCA boils down to the nonlinear mapping 𝜹𝑠 ↦

 ∅(𝜹𝑠) using the kernel ∅, with 𝜹𝑠 ∈  ℜ𝑛 , (𝑠 = 1, . . . , 𝑀) which represents a higher dimensional 

space. For centred data (∑ ∅(𝜹𝑠) = 0𝑀
𝑠=1 ), the covariance matrix used in the PCA eigenvalue 

problem can then be calculated using Equation (21). 

𝑪 =
1

𝑀
∑∅(𝜹𝑠)∅(𝜹𝑠)

𝑇

𝑀

𝑠=1

 (21) 

The Gaussian kernel function, defined by Equation (22), with 𝜎 the width of the kernel, is most 

frequently used for KPCA investigations. 

𝐾(𝜹𝒊, 𝜹𝒋) = exp(
−‖𝜹𝒊 − 𝜹𝒋‖

2

2𝜎2
) (22) 

Compared to the linear PCA, KPCA can essentially extract the higher order nonlinear 

relationships between data, retaining a greater degree of the complex information between 

the data (Shao et al., 2014). With the appropriate choice of parameters, different kernel 

functions produce very similar results (Nguyen & Golinval, 2010). In classification applications 

such as optical character recognition, KPCA has been shown to outperform PCA in terms of 

feature extraction (He et al., 2007). 

1.2.5 Statistical and circular domain features 

According to He et al. (2007), mechanical systems are generally complex and difficult to 

analyse owing to the stochastic processes that essentially contribute to the measured 

structural responses. This makes deterministic time function-based investigations insufficient 

to analyse the machines. It is often difficult to capture the behaviour of a machine from the 

raw data time series directly. Feature extraction from the raw time data must be conducted 

and the ‘hidden’ patterns identified from these features.  

When analysing rotating structures, a set of angular domain features can be extracted. In 

some applications, these features can actually contain information more descriptive of the 

machine behaviour compared to their time domain counterparts. These features include the 

angular mean, angular variance, angular skewness and the angular kurtosis. 

Caesarendra et al. (2014) proposed an angular domain analysis approach based on a 

Piecewise Aggregate Approximation (PAA) data reduction process, in which the following 

listed steps are followed: 

(i) Reduction of the vibration data using PAA and construction of neighbourhood 

correlation plot of the reduced data 

(ii) Neighbourhood correlation plot ellipse least-square fitting for pattern classification 

(iii) Plotting the distribution of the ellipse shape in angular domain, and calculation of 

the circular domain features 

PAA is a data reduction technique applied to large time series data in which a sequence of 

sampled data 𝒀 = (𝑌1, 𝑌2, . . . , 𝑌𝑁) is divided into 𝑤 windows of equal size (Caesarendra et al. 

2014). These windows are termed frames, and for each frame the reduced data representation 
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is then taken as the mean value of the data in that frame. Equation (23) is used for this 

calculation, in which the vector 𝝉 = (𝜏1, 𝜏2, . . . , 𝜏𝑛) represents the PAA reduced data set, or the 

running average of the original signal 𝒀. 

𝜏𝑛 =
1

𝑤
∑ 𝑌𝑗

𝑤𝑛

𝑗=𝑤𝑛−1+1

 (23) 

A neighbourhood correlation plot is then simply 𝜏𝑛+1 against 𝜏𝑛. Caesarendra et al. (2014) 

illustrated how the orientation of an ellipse fitted onto the neighbourhood correlation plot data 

points, is frequency dependent. This becomes very useful when analysing non-stationary 

signals of a machine captured over an extended period of time. Onset of damage in a structure 

is typically associated with a change in the frequency of the vibrational responses. If 

neighbourhood correlation plots are developed for different time segments in measurement 

sequence, a change in the ellipse orientation will thus be an indication of dynamic behavioural 

changes in the machine system. Properties of the fitted ellipse such as its orientation, size and 

aspect ratio can be considered as angular domain features for the time signal of interest. 

Other angular domain features can be obtained through representing signals by features 

extracted from their random circular variables. Hilbert transformation of time signals can be 

utilized to determine the instantaneous phase angles of the time series. This is well 

documented in the work done by Martin et al. (2010). Real valued signals are represented as 

complex signals using the Hilbert transform. For a time domain signal 𝑌(𝑡), an analytical signal 

𝑌𝑎(𝑡) can be determined using Equation (24). 

𝑌𝑎(𝑡) = 𝑌(𝑡) + 𝑗ℋ{𝑡}(𝑡) (24) 

In the equation above, ℋ{𝑡} is the Hilbert transform of 𝑌(𝑡). The analytical signal can then be 

expressed as: 

𝑌𝑎(𝑡) = 𝜓(𝑡)𝑒𝑗𝜃(𝑡) (25) 

𝜓(𝑡) =  |𝑌𝑎(𝑡)| is the amplitude envelope of the analytical signal, and 𝜃(𝑡) = arg (𝑌𝑎(𝑡)) the 

instantaneous phase with 𝜃(𝑡) ∈ [0, 2𝜋]. 

1.3 Scope of research 

This research focuses on extending the applicability of photogrammetry as an optical non-

contact measurement technique for rotating structures. The concept of shape analysis, 

commonly used for object identification and shape matching, is used in developing a dynamic 

analysis procedure suitable for CBM of machines. The proposed approach entails an analysis 

of a sequence of images captured using high-speed cameras of a machine in operation. 

Shape boundary extraction of the components or regions of interest is conducted. Variations 

in the shape of extracted contours are then monitored to get details on the dynamic behaviour 

of the machine. 

Damage detection, characterization and classification for condition monitoring purposes is 

conventionally conducted through the use of contact transducers. The point-wise nature of 

contact transducers mean that multiple sensors are typically required to capture the full 

dynamics of a structure under investigation. Being contact in nature, these transducers are 

intrusive, can interfere with the structure, and often introduce complexities in terms of 
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mounting and data acquisition especially when applied to large rotating structures such as 

wind turbines. Non-contact photogrammetric techniques such as 3DPT and DIC can address 

these limitations of conventional sensing, introducing an alternative approach to SHM of 

rotating machines. Whilst technological advancements in the field of imaging have resulted in 

increased availability of high-speed cameras, use of 3DPT and DIC require surface 

preparation in the form of markers and speckle patterns. Pixel-targeted algorithms are typically 

used to extract dynamic behaviour measurements of the machines, which means that the 

robustness and applicability of the techniques can become limited for certain applications 

where the structures are large, and measurements are being captured in out-door settings. 

On the other hand, contour-based analysis techniques incorporating statistical shape analysis 

have been adopted in other scientific fields of study such as object classification. However, 

these techniques are yet to be incorporated in the dynamic analysis of rotating structures for 

condition monitoring purposes. The research presented is aimed at the development of a 

statistical shape analysis technique in a controlled laboratory environment. The aim is to 

establish an approach that can be ultimately scaled and refined to be adopted for analysing 

industrial structures such as wind turbines.  

A systematic way of investigation is adopted in this research. An investigation into how defined 

shape descriptors are related to variations in the form of a shape is conducted, and a numerical 

analysis performed to evaluate the typically required camera minimum frame rate, the smallest 

shape variation displacements detectable, and also the optimum camera positioning. The 

approach is then applied to a 2D scenario, where a single camera is used to capture in-plane 

shape variations and detect different forms of out of normal operation. An extension into 3D is 

conducted by using a pair of stereoscopic cameras on a rotating blade system. Investigations 

are then done to refine the results post-processing approach used, to develop a more reliable 

and robust behaviour classification system. 

For the 2D analysis, a portable Bently Nevada rotor system is used for the investigation. Shape 

variations imposed by different shaft ODSs are analysed. The most common forms of faults 

that are associated with turbomachines composed of long shafts and flywheels are imposed 

and investigated. These include the different forms of rotor unbalance, rotor-stator rub, and 

hydrodynamic bearing oil instabilities. Shaft misalignment is not analysed as the system used 

was not designed for such a set up. This 2D investigation focuses mainly on establishing the 

possibility and applicability of condition monitoring using a non-contact shape-based SHM 

technique. Results obtained were verified and compared to measurements captured using the 

conventional proximity probes. 

In the 3D investigation on rotating blades of a turbomachine test setup, three rotational speeds 

are considered. Two of the rotational speeds (650 rpm and 1000 rpm) were chosen based on 

the blades’ first bending mode natural frequencies. Having the rotational speeds harmonics 

coincide with the blade natural frequency meant that the out-of-plane blade responses were 

going to be significant enough to be easily captured by the system (improved SNRs). The third 

rotational speed (1460 rpm) was considered to test the applicability of the approach when the 

system is running at an arbitrary speed. At 1460 rpm, the blades are expected to exhibit 

behaviour associated with basic ODSs, instead of the natural frequency influenced mode 

shapes. Operating away from the natural frequencies will not only be the desirable setting, but 

also the most probable operational state of a rotating structure. Data acquisition was 

conducted at a frame rate of 4000 FPS, the maximum possible for the cameras used at full 

resolution. Only at full resolution is the full bladed system in the camera FOV. 
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The development of this shape analysis procedure is conducted in a laboratory setting where 

environmental conditions, especially the room lighting, could be readily controlled. In 

developing the measurement technique, it was decided that the initial investigations be 

conducted in a setting that best approximates ideal conditions. This was done to make it easier 

to identify sources of errors in measurements and to recognise aspects that may result in the 

malfunctioning of the approach. Considering a wind turbine as an example of a rotating 

structure to focus on, the literature study conducted illustrated the possibility of full-scale rotor 

system outdoor analysis using high speed cameras through complex pixel tracking. In this 

research, a smaller system is adopted as the test set up on which the investigations are 

conducted. The data analysis and results processing procedure developed here can be scaled 

up in further work aimed at investigating a full-scale system such as an operating wind turbine. 

The research conducted introduces the idea of coupling shape analysis with rotating machine 

condition monitoring. In this context, the idea of shape variation analysis-based condition 

monitoring is developed, implemented and verified to be an effective approach for identifying 

and classifying different damage modes in a system. This is achieved through introduction 

and definition of novel unique shape characteristics in the form of Shape Principal Component 

Descriptors (SPCDs). For purposes of condition monitoring, the research extends optical 

noncontact image processing approaches from being either speckle pattern (DIC) based or 

target marker (3DPT) based, to being boundary shape-based as well. This goes a step further 

in terms of exploring and establishing more applicable measurement techniques suitable 

especially for rotating structures. The research is presented in such a way to highlight the 

potential of the proposed technique. Starting with a 2D shape-based application, the flexibility 

of the approach is demonstrated through extension to a 3D application. Investigations focusing 

on the evaluation of the performance of various SPCDs analysis and processing procedures 

illustrate room for further research in terms improving the accuracy and robustness of the 

approach. 

The dissertation contributes to the field of structural health monitoring by proposing a novel 

photogrammetric methodology for analysing rotating structures for condition monitoring 

purposes. Through a comprehensive literature review, the study identifies the limitations of 

current optical measurement techniques such as DIC and 3DPT with regards to prior surface 

preparation of structures under investigation. Using numerical simulations and empirical 

analyses, a shape-based technique is developed that advances the applicability of image-

based optical condition monitoring techniques. The research findings illustrate that in cases 

where surface preparation is not practical or where machine shutdowns are not possible, a 

shape analysis approach that focuses on boundary edge extraction and statistical shape 

analysis through PCA can be adopted to provide insights on the dynamic behaviour and 

condition of a rotating machine. This work further advances the current state of knowledge in 

structural health monitoring using optical non-contact measurement techniques in terms of 

surface preparation and shaped-based image analysis. 

1.4 Document overview  

Chapter 1 contains a literature review that discusses condition monitoring of structures using 

conventional contact techniques and the more recent non-contact techniques follows. 

Limitations of the current approaches being used for analysing rotating machines are 

highlighted. Concepts pertaining to shape analysis that are either investigated or utilized in 
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investigations presented in the following chapters are discussed. A document overview is 

given at the end of the chapter.  

Chapter 2 introduces the concept of 2D shape analysis. The idea of principal component-

based shape descriptors is introduced, and the link between these descriptors and shape 

variations investigated. Also investigated is the feasibility of condition monitoring using shape 

analysis. Some simulation-based investigations to better understand the functionality of the 

proposed target-less photogrammetric measurement technique are also presented in Chapter 

2. 

Application of 2D shape analysis on an actual physical system is done in Chapter 3. Different 

operating states of a Bently Nevada rotor system are analysed using the shape analysis 

approach and the conventional proximity probes. Performances of the two approaches in 

terms of distinguishing and identifying faults are compared. 

Chapter 4 discusses the extension of shape analysis from 2D to 3D applications. A FE based 

analysis of a rotor system in which variations in the dynamic behaviour of blades as a result 

of increasing root damage is introduced as the initial step. These variations are monitored by 

first considering conventional parameters (natural frequencies), before moving on to the 

SPCDs. The feasibility of monitoring progressing damage is illustrated in a FE environment, 

and an experimental study is subsequently conducted. The experimental investigation 

introduces the determination of 3D shape principal component descriptors from 

stereoscopically captured images of rotating blades. Variations in the dynamics of different 

damage modes for rotating axial blades are investigated, and the feasibility of a condition 

monitoring shape-based approach for turbine blades is illustrated.     

An investigation into how blade damage modes can be better classified is conducted in 

Chapter 5. Full-scale turbine blade analysis requires a more robust system that can still 

perform in cases where there are many errors resulting from noise for instance. The concept 

of kernel principal component analysis is evaluated and applied to the time domain shape 

descriptors data. The performance of the system when multi-domain statistical features are 

considered instead of the typical time domain data is also evaluated. Conclusions and 

recommendations for future work are then presented in Chapter 6. 
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CHAPTER 2:  FEASIBILITY OF CONDITION MONITORING USING 

SHAPE ANALYSIS 

2.1 Introduction 

This chapter investigates the feasibility of using a statistical shape analysis approach for 

investigating the dynamics of a rotating machine. In this study, it is considered that a closed 

contour of a particular section of the machine can be extracted from images captured whilst 

the machine is online. The closed contour, whose shape form varies due to the dynamic 

behaviour of the rotating machine, is the object of interest. 

The feasibility study is conducted to verify the existence of a relationship between the dynamic 

behaviour of a system and the statistical parameters extracted for the typical shape of interest. 

With a verified correlation between shape features and the dynamics of a system, minimum 

requirements and critical constraints required to capture useful data on the behaviour of the 

machine using shape analysis can be determined. 

Similar to any other typical approach, implementation of a shape analysis-based condition 

monitoring approach can be considered to be a two stage process. 

1. Data acquisition and pre-processing 

o capturing images of a component or section of interest on a rotating structure 

▪ camera positioning 

▪ camera frame rate 

▪ extraction of contours from captured images 

2. Data post-processing 

o transformation of closed contours into shape principal components (𝑽) 

o analysis of variations in 𝑽 from one image to the next in a sequence of captured 

images 

▪ machine dynamic behaviour investigation 

Since the data post-processing component can be investigated theoretically, this chapter 

starts off by outlining theoretical descriptions of the determination of shape form parameters 

(𝑽 columns) for a given typical 2D shape of interest. An investigation is then conducted to 

better understand the correlation between the determined geometric modes 𝑽 and the form of 

the shape. This highlights the relationships between different shape principal components and 

the shape of interest, illustrating the physical meaning of the various 𝑽 terms. To bridge the 

gap between shape analysis and condition monitoring, variations in 𝑽 when known forced 

displacements are utilized to alter the form of the shapes are analysed. 

In a numerical sensitivity investigation, a FEA based approach is employed to better 

understand application constraints in condition monitoring through shape analysis. Data 

acquisition related constraints are investigated using a FE model of an actual rotating 

structure. An analysis of the physical rotor system in terms of image processing for shape 

extraction is also presented to authenticate the adopted shape of interest analysed in the 

theoretical and numerical study sections of the chapter. 
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2.2 2D shape analysis procedure 

A generic horseshoe shape typically enclosed between a shaft and a bearing/probe holder 

housing (presented in Figure 20 and Figure 23) was considered as the shape of interest for 

the 2D shape analysis. This is shown in Figure 11. 

 

Figure 11: Feasibility study shape of interest 

In this investigation, the 8-connectivity chain-code (Kuhl & Giardina, 1982) was employed as 

the shape signature of the extracted contour. As highlighted in Section 1.2.3.1, Fourier 

coefficients of the shape signatures can be calculated and four Fourier descriptors used as 

the multivariate vector for Shape Principal Component Analysis (SPCA). In this case, four 

parameters are obtained for this 2D shape analysis, according to Equations 7 and 8. Figure 

12 illustrates the determination of SPCDs. 

 

Figure 12: Calculation of Shape Principal Component Descriptors 

The four parameters in the form of column vectors contained in matrix 𝑽 (Equations 19 and 

20) are calculated for the boundary shape extracted from a single image. For a time sequence 

of captured images, variations of the four parameters from one image to the next can then be 

analysed, in the frequency domain for instance, to extract information descriptive of the 

manner in which a machine is operating. In essence, shape principal components 𝑽 are 

associated with a shape at a specific time instant, whereas SPCDs constitute the time series 

obtained by combining descriptors extracted from the individual 𝑽 of each shape from a 

sequence of captured shapes. These SPCDs are calculated by way of the Euclidean vector 

norms of columns �⃗� 𝑖 in matrix 𝑽, according to Equation 26. Thus for a column vector �⃗� 𝑖 at time 

instance 𝑡, given by �⃗� 𝑖(𝑡) = [𝑉𝑖,1, 𝑉𝑖,2, 𝑉𝑖,3, 𝑉𝑖,4]
𝑇
, the SPCD associated with that shape principal 

component at time stamp 𝑡 is defined as follows:  



 
 

33 
 

𝑆𝑃𝐶𝐷𝑖(𝑡) = ‖�⃗� 𝑖(𝑡)‖2
= {∑𝑉𝑖,𝑒

2

4

𝑒

}

1
2

 (26) 

The full procedure of the analysis implemented to determine the components 𝑽 for the shape 

of interest, and the subsequent calculation of SPCDs is summarised in the flow diagram given 

in Figure 13. The equations included in the flow diagram were introduced in Section 1.2.3.1. 

 

Figure 13: Shape principal components determination flow chart for 2D shape analysis 

Shape boundary

• xy-coordinates 

8-connectivity

chain code

• Shape boundary quantization 

• Chain code determination: 𝐶𝑐 = ν1, ν2, … , ν𝑘 , ν 𝜖 [0: 7]

Chain code
projection

•∆𝑥𝑖 = 𝑠𝑔𝑛 6 − ν𝑖 𝑠𝑔𝑛 2 − ν𝑖 ,                                                                                           Equation (2)

•∆𝑦𝑖 = 𝑠𝑔𝑛 4 − ν𝑖 𝑠𝑔𝑛(ν𝑖),                                                                                                  Equation (3)

Normalized
Fourier

coefficients

• Computation of coefficients in matrix form: 𝑿 Equations (17)   

Multivariate

vector PCA

• Eigenvectors of the covariance of the Fourier coefficients:  𝐸𝑖𝑔 𝐶𝑜𝑣 𝑿

• A 4x4 matrix of eigenvectors is obtained, each column representing a principal component: 𝑽

SPCDs

• Calculating the Euclidean norm of each column in the principal component matrix will give 
four scalar values for that particular shape: 𝑆𝑃𝐶𝐷𝑖, Equation 26.

• If a sequence of images is captured and the above procedure implimented for the extracted 
shapes, then a time series signal can be calculated to give the SPCDs designated by 
𝑆𝑃𝐶𝐷1 = 𝑆𝑃𝐶𝐷1 𝑡𝑜 , 𝑆𝑃𝐶𝐷1 𝑡1 , … for 𝑽𝟏
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2.3 Relationship between different principal components (�⃗⃗� ) and the 

form of a 2D shape 

A numerical analysis of the shape of interest was conducted. This was done to better 

understand the relationship between the principal components and the form of the shape of 

interest. The four 𝑽 columns of a shape were determined and then their scores 𝑿 
𝑛𝑒𝑤 scaled 

one at a time before reconstruction of the shape. The procedure for shape reconstruction 

using scaled principal component scores is illustrated in Figure 14, where a Scaling Factor 

(SF) scalar of 0.5 was used to test the relationship between �⃗� 1 and the form of the shape.  

 

Figure 14: Principal component score scaling and shape reconstruction flowchart for visualization of 

different geometric modes 

As highlighted in Section 1.2.4.1, each row of 𝑿 
𝑛𝑒𝑤, denoted as 𝑋 𝑖

𝑛𝑒𝑤
, is associated with a 

corresponding �⃗� 𝑖, a column vector in the SPCA matrix 𝑽. Each �⃗� 𝑖 represents a specific shape 

feature, considered as a geometric mode in this study. Thus to investigate the nature of the 

first geometric mode, or to understand the relationship between �⃗� 1 and the form of the shape, 

only 𝑋 1
𝑛𝑒𝑤

 is multiplied by an SF and Equation 20 used to calculate a new set of scaled Fourier 

coefficients 𝑿2𝐷,𝑠𝑐𝑎𝑙𝑒𝑑 that can then be used to recreate the shape. To allow for better 

visualization of the nature of each �⃗� 𝑖, different SFs were applied to different 𝑿 
𝑛𝑒𝑤. Figure 15 

illustrates the results obtained. 

From Figure 15, �⃗� 1 is associated with the overall size of the shape, without addition of any 

lobes. �⃗� 2 is mostly associated with a shape variation that conserves the distance between the 

two horizontal vertices whilst the overall shape size changes. �⃗� 3 is associated with the shape 

skewness, resulting in a three-lobe characterized shape. �⃗� 4 conserves the distance between 

the horizontal vertices, whilst the vertical vertices move to create a four-lobe geometric mode.  
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This investigation identifies the relationships between geometric modes or principal 

components and the form of the shape, by way of scaling various principal components 

scores. It is evident that each �⃗� 𝑖 has influence on more than a single degree of freedom. 

Additionally, the extent to which each principal component influences various shape forms 

differs, as is evident from the different SFs that must be applied to obtain noticeable shape 

changes for �⃗� 3 and �⃗� 4. Shape principal components 3 and 4 have a significantly reduced effect 

on the shape form as compared to �⃗� 1 and �⃗� 2. 

 

Figure 15: Nature of the different geometric modes (a) �⃗⃗� 𝟏 , (b) �⃗⃗� 𝟐 , (c) �⃗⃗� 𝟑 , (d) �⃗⃗� 𝟒 ,  

2.4 Feasibility of condition monitoring using 2D shape analysis 

The applicability of a 2D shape analysis for condition monitoring of a rotating machine is 

subsequently investigated using the adopted horseshoe shape. The outer contour of the 

shape can be assumed to represent the probe holder housing and the inner contour the shaft. 

The position of the shaft contour is varied using sinusoidal displacements to simulate shaft 

motion. For the in-plane motion, the virtual shaft can be moved in either a single direction or 

in both x- and y-directions. By using sine and cosine signals of unit amplitude to move the 

shaft in the x- and y-directions respectively, shaft whirl motion can be simulated. Three 

different shaft forced motions are simulated. These are forced displacements in the x-direction, 

y-direction, and a combination of both x- and y-direction. This is conducted to investigate the 

variation in the shape principal components descriptors calculated from 𝑽 of the 2D shape 

when forced displacements are applied. Figure 16 illustrates these enforced shaft 

displacements. 

For forced displacements at a frequency of 20 Hz, the following SPCDs (variations in the 

Euclidean norms of �⃗� ) are obtained in the frequency domain. The properties of forcing 
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displacement signals were set as a unit amplitude, 400 Hz sampling rate and with a signal 

sample length of 10s. The parameters were selected to ensure that artefacts resulting from 

signal discontinuities for instance do not contaminate the observed spectra.  

  

 

Figure 16: Enforced shape variation, (a) horizontal shaft excitation, (b) vertical shaft excitation, (c) 

circular shaft excitation (whirl) 

As can be noted in Figure 17, all the SPCDs have peaks at the excitation frequency of 20 Hz, 

as well as the 2×, 3× and 4× harmonics. 

For SPCD1, the vertical and whirl motions have the same magnitudes at the fundamental 

frequency, with the horizontal motion having the least influence on the SPCD. It is evident that 

pure shaft vertical motion has the least influence on the shape’s second, third and fourth 

SPCDs. Linking the obtained results to the relationships between �⃗�  and shape form illustrated 

in Figure 15, a correlation exists in the sense that higher SPCD magnitudes are obtained for 

SPCD1 vertical excitation in Figure 17. The shape variation illustrated in Figure 15(a) very 

much resembles shaft up and down motion. Scaled principal scores associated with �⃗� 2, �⃗� 3 and 

�⃗� 4 result in shape variations that do not resemble vertical shaft motions.  

The harmonics present in Figure 17 are expected since none of the forced motions correspond 

identically to the shape variations associated with the principal components illustrated in 

Figure 15. In the same way that sine signals are considered to be pure tones from which other 

periodic signals such as square and saw tooth waves can be created, the shape forms 

illustrated in Figure 15 can be considered as pure 𝑽 shape modes. When performing 2D shape 
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analysis in the frequency domain, general shape variations such as shaft whirling motion that 

deviate from the pure 𝑽 shape modes are approximated by sums of pure 𝑽 modes with 

frequencies corresponding to the harmonics of fundamental forcing frequency (Fourier 

analysis application). Owing to the significant differences that can exist between the pure 

shape forms and shape variations due to the forced shaft whirling motions, it is possible that 

sometimes the harmonics contain more energy than the fundamental frequency, as observed 

in some of the SPCD results presented later in this chapter. 

 

Figure 17:  Principal components descriptors frequency responses  

As an illustration, forced shape variations given in Figure 18 are identical to one cycle 

variations associated with principal component 4 (similar to Figure 15(d), �⃗� 4 shape). In this 

case one would expect frequency responses with a single peak at the forcing frequency for 

SPCD4 and different results for the other SPCDs.  

 

Figure 18: Typical one cycle forced shape variation associated with a single PC (PC 4 in this case) 

Results obtained for forced shape variations identical to each of the four �⃗� 𝑖s are given in Figure 

19 for forcing frequency of 20 Hz. 
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For enforced geometric modes (different �⃗� 𝑖s), Figure 19 shows that the �⃗� 𝑖 of interest tends to 

show significant peaks at the fundamental frequency of the SPCD it is associated with, whilst 

the rest of the �⃗� 𝑖s have significant peaks at higher harmonics. Peaks at the fundamental 

frequency of the �⃗� 𝑖  of interest also have higher magnitudes than the remaining �⃗� 𝑖s, with the 

exception of �⃗� 1 . As mentioned earlier, �⃗� 1  is associated with overall size variation. When forced 

explicitly, �⃗� 1  type of shape variation tends to effect shape changes that influence the other 

principal components more. This is a result of cross sensitivity between the �⃗� 1  type of shape 

variation and shape variations associated with the other shape principal components. 

Considering the behaviour of �⃗� 1  to forced shape variations representative of all the other 

principal component descriptors, it can be observed that �⃗� 1 always has its most significant 

peak at the fundamental frequency, but with lower magnitudes. 

 

Figure 19: SPCD responses to specific enforced geometric modes 

Thus when considering shaft whirling motion, the harmonics observed in the SPCD results do 

indicate presence of information that is associated with how the forced shape variation differs 

from the shape variation associated with a particular shape principal component. Whilst the 

physical (in this case forced) shape variation might not be identical to any of the predicted 

shape principal component forms, it is possible to obtain unique SPCDs for every physical 

shape variation. The results obtained will give an indication of how the physical variation 

relates to the predicted �⃗� 𝑖 shape forms. Determined results can then be used to complement 

conventional single point sensor measurements. 

The above investigation shows that for a 2D analysis, Fourier shape descriptors can be used 

to extract four different parameters in the form of shape principal components. These evidently 

vary with various changes in the shape, implying that they can be monitored to characterize 

dynamics of rotating structures. 
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2.5 Shape principal components descriptors basic sensitivity analysis 

A sensitivity analysis of the system was conducted through evaluation of a FE model of a 

Bently Nevada rotor kit. A FE model presents a better controlled environment in which setup 

configurations can be more accurately adjusted and measurements accurately extracted for 

post-processing analysis purposes. 

The physical model of the rotor kit is shown in Figure 20. The kit consists of two flywheels on 

a shaft supported between a hydrodynamic bearing and a bush bearing. A coupling connects 

the shaft to a motor capable of running up to a maximum of 10 000 rpm. 

 

Figure 20: Bently Nevada rotor system (Krüger, 2012) 

A FE model of the Bently system can be created from parasolids developed in Solidworks. 

These can be imported into MSC/Patran pre-processor to approximate the system. The 

system coupling can be considered to be a cylindrical hollow disk press fitted onto the shaft, 

and meshing conducted using Hex 6 elements. Material properties assigned can be assumed 

to be those of steel for the shaft, disks and journal bearing, and bronze for the coupling. Figure 

21 shows a model created this way. 

Investigations conducted by Krüger (2012) were used to estimate the material properties and 

boundary conditions for the rotor model. At this point of the study, a proper validation of the 

assumed FE model through modal updating was not necessary since none of the actual nodal 

displacements were being evaluated further or employed for further analysis. The aim of the 

investigation was solely to investigate how the shape of interest can be analysed to 

understand the sensitivity of detected 𝑽s to various experimental setup configurations. 
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Figure 21: Rotor system full model 

Rotor dynamic analysis using MSC Patran/Nastran usually requires a significant amount of 

processing resources for a model such as the one in Figure 21, since it is composed of a 

significantly large number of defined elements. For the sensitivity analysis investigation, it was 

decided to simplify the model by replacing the two disks, coupling and journal bearing with 

point masses at their respective centres on the shaft. Figure 22 shows the simplified system 

model, in which the bearing housing was assumed to be a plate at the appropriate location. 

This plate was fixed not to allow rotations and translations in any direction.  

 

Figure 22: Rotor system reduced model 

To simplify the dynamic analysis process and also make it possible to extract a shape similar 

to the one under investigation, FE groups to only focus on nodes of interest were created in 

MSC Patran/Nastran. The group of interest was composed of the elements highlighted in the 

figure above. Figure 23 shows the FEM extracted image. For contour extraction using 

LabVIEW’s Vision Assistant Toolkit, the image on the right was obtained by extracting only 

the red colour plane of the original RGB image. 

The horseshoe shaped contour that was considered for the theoretical analysis presented at 

the beginning of the chapter can be observed in the figure as the enclosed region between 

the shaft and the bearing housing. This particular 2D closed contour can actually be analysed 

for shaft translational vibrations to capture dynamics typically captured using sensors such as 

proximity probes positioned along specific shaft locations. 

Analysis of this 2D shape has the potential to allow acquisition of information representative 

of the variation in the shaft Operational Deflection Shape (ODS). This is expected because 

variation of an enclosed shape at a bearing housing is directly influenced by the shaft 

deflection shape resulting from the rotating shaft whirling motion. The shape of interest chosen 
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for theoretical investigations was therefore based on the representation of the rotor system 

illustrated in Figure 23. As illustrated in Figure 23, a virtual camera can be considered to be 

positioned in such a way that its FOV captures images from which the appropriate contours of 

interest can the extracted.  

 

Figure 23: Typical FE extracted images 

In a rotor dynamic analysis of a system in which system responses have been determined 

using Nastran, MPEG video files composed of a specified number of images can easily be 

exported. Image processing using a procedure more or less similar to the one presented later 

in Section 2.5.3 can be conducted to extract the shape of interest. The sensitivity analysis 

investigations described for the camera positioning and vibration amplitude resolution in the 

sections below were accomplished using the FEM described above, in which a statically 

unbalanced rotor dynamic system was being investigated at 1200 rpm rotational speed. 

2.5.1 Effect of camera positioning on the extracted shape principal components 

When employing shape analysis as a condition monitoring tool, the way the cameras are 

positioned play an important role in the extracted contours. It is expected that the larger the 

relative angle at which an observer is viewing a 2D shape, the easier it will be to realize shape 

variations associated with the shape. This however applies to changes in simple shape 

descriptors such as area and aspect ratio. When dealing with geometric modes in 𝑽, variations 

of a shape are 2D based and specific to a particular orientation, meaning that positioning the 

cameras at angles way off the normal FOV may not be the best approach. 

To investigate this, virtual camera positions in an FE updated model of the Bently Nevada 

rotor system were varied and SPCA performed to determine 𝑽. The variations introduced 

about the horizontal axis are shown in Figure 24. Angles were varied from 100 to 700.  

Figure 25 illustrates the results obtained for the camera angle variation about the horizontal 

axis. As can be noted, SPCD1 increases to a maximum at 500 pitch angle, then starts 

decreasing. A general increase in the magnitude is observed for SPCD2 and SPCD3, whilst 

SPCD4 generally decreases. SPCD4 second harmonic increases with pitch angle, illustrating 

how the ability of the SPCD to capture local shape variations improves. 

Yaw angle variations were also introduced for a set camera pitch angle of 600. These 

variations are shown in Figure 26. As can be noted from Figure 27, yaw angle variation does 

not significantly affect the SPCD magnitudes. However, an increase in the noise levels of the 

extracted data is observed, especially for SPCD1 and SPCD4. The increase in noise stems 
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from shape variations related to 𝐕1 and 𝐕4 not being easily identifiable at high yaw angle 

camera orientations. This in turn results in low SNR of SPCD1 and SPCD4. From Figure 25, 

the higher magnitude of SPCD5 appears to be an anomaly, for a generally decreasing trend. 

One can therefore consider the best pitch angle as the one where all SPCDs are still increasing 

in magnitude. From Figure 25 and Figure 27, it can be concluded that shape principal 

components are better captured from a plane normal to the shape of interest (00 yaw angle) 

and at 300 shaft pitch angle. This conclusion is specific to this particular case as different 

shapes will have different geometric modes, and also because the variations to which these 

different shapes will be subjected to is dependent on the dynamics of the structure under 

investigation. 

That essentially applies to this particular investigation. When utilizing SPCA in other 

applications, it will be necessary to establish the form of 𝑽 that relates closely to the expected 

physical shape variation. Through conducting an investigation similar to this one, it can then 

be established which camera positions result in the maximum SPCD magnitude for the 

established 𝑽 of interest. 

 

Figure 24: Pitch angle variation (a) 100 and (b) 700 

 

Figure 25: SPCDs variation with increasing camera pitch angle 
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Figure 26: Yaw angle variation (a) 00 and (b) 400 

 

Figure 27: SPCDs variation with increasing camera yaw angle 

2.5.2 Vibration amplitude resolution requirements for 2D shape analysis 

As with any measurement technique, it is important to have an idea of the limitations in terms 

of accurately detectable measurements. To determine the minimum shape variation that can 

be detected using 2D shape analysis, shaft deflections in FEA extracted image sequences 

were scaled by different factors before the 2D shape analysis was conducted. The radial 

displacements of the node located on the centre of the shaft at the plane of interest (where 

the 2D shape was being extracted from) were used as reference for linking 𝑽 variation to 

actual physical measurements. 

In a typical FEA rotor dynamic run at 1200 rpm in which no magnification of the system 

response results was imposed to allow visualization of the rotor dynamics, the peak-to-peak 

vibrational amplitude response of the node of interest was observed to be 0.48 µm (Figure 

28). 

No apparent shape variations can be detected for shape analysis at such small responses. 

Amplification factors (50, 100, 200 and 500) were then applied to the system responses to 

detect the minimum shaft radial displacement that results in shape variations significant 

enough to be detectable using a shape principal component-based analysis.  
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It can be observed from Figure 29 that the fundamental frequencies become apparent with 

increasing scaling factors applied to the image sequences. A scaling factor of 100 is shown to 

give results clear enough to capture the 20 Hz frequency of interest. Considering the actual 

displacements given in Figure 28, it can be concluded that one can extract practical 

information in terms of the shaft whirling frequencies using SPCA for vibrational amplitudes 

as small as approximately 50 µm (from 100 × 0.48 µm).  

 

Figure 28: FEA vibration amplitude responses 

 

Figure 29: SPCD1 frequency data for different scaling factors applied to the response 
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Very small single axis responses in the range of 50 µm can compound to overall shape 

variations significant enough be detected using a shape analysis-based approach. For this 

particular investigation, 50 µm corresponds to 0.036 of a pixel (1/27 pixel size). This means 

that in order to employ shape analysis as a condition monitoring tool, the expected responses 

should be no less than about 0.036 of the pixel size of the images captured by the cameras 

being used. For different applications, the quality of the images (in terms of lighting for 

instance) and the accuracy of the contour extraction process can introduce noise in the data. 

This can potentially increase the minimum detectable response. 

The variation of SPCD1 fundamental frequency magnitude with increasing scaling factor is 

illustrated in Figure 30. 

 

Figure 30: SPCD1 fundamental frequency magnitude variation with scaling factor 

2.5.3 Camera frame rate requirements for 2D shape analysis 

To investigate how the set camera frame rate affects the quality of the extracted 𝑽s, the setup 

shown in Figure 31 was used. In the setup, a single GOM 4M camera was used to capture 

images of the shape enclosed between the shaft and probe holder housing. The image in 

Figure 31(b) can then be processed to extract 2D contours. Figure 32 shows the captured and 

processed images from which a typical contour for analysis is obtained. The image processing 

stages were implemented in LabVIEW using the National Instruments Vision Assistant Toolkit. 

Starting with an original image, a colour plane extraction is implemented to obtain a grayscale 

image. A smoothing filter is then applied to isolate the region enclosed between the shaft and 

probe holder housing. After performing brightness, contrast and gamma corrections to 

improve the picture luminance, masking of pixels (whose intensities differ significantly from 

the rest) is performed to allow for the extraction of a smooth continuous contour of the 

boundary pixels. Pixel masking is performed by drawing polygons enclosing the regions of 

interest, and then assigning a grayscale value of zero to the covered pixels. It is not a 

requirement to mask out the probe noticeable on the top left corner of the isolated region 
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between the shaft and probe holder housing. For this analysis all that is required is a 

continuous contour. In a dynamic analysis, the shape variation is actually of more importance 

than the initial shape form. 

 

Figure 31: (a) System setup for a Bently Nevada rotor system, (b) single camera FOV 

The image processing presented here understandably depends on the quality of the images 

captured as determined by the camera resolution and the lighting conditions. Once the contour 

has been captured, a shape form investigation can then be conducted to analyse different 

properties of that contour. 

To investigate the frame rate requirements, the camera was set to record at 420 FPS, and the 

captured image sequence decimated to reduce the sampling frequency (FPS) for each 

analysis. The system was set to rotate at 1200 rpm. The results obtained for SPCD1 at different 

sampling frequencies are given in Figure 33. 

 

Figure 32: Contour extraction steps 

For data acquisition, it is required that measurements be captured at least twice the frequency 

of interest to avoid signal aliasing (Nyquist sampling criteria). When analysing shape principal 

components however, Figure 33 indicates that sampling rates of no less than four times the 

frequency of interest are required for practical information to be extracted. The harmonics at 

higher frequencies are particularly useful when diagnosing machines using vibrational 

analysis. Because of this, camera frame rates need to be high enough to allow for accurate 

capture of at least the first three frequency harmonic components. Low sampling rates result 
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in very noisy SPCD values from which usable information cannot be extracted. Generally, 

improved frequency resolution from longer measurement time can help mitigate the effects of 

a low sampling rate in cases where responses with low frequency components are involved. 

For this particular investigation where low frequency components (20 Hz and its harmonics) 

are expected, longer measurement times at low FPS are expected to improve the SNRs. It is 

worth highlighting that when it comes to high speed imaging, measurement durations are 

typically dictated by the image storage capacity of the cameras used. 

 

Figure 33: SPCD1 frequency data for different camera frame rates 

In this particular investigation where measurements are captured using the camera setup in 

Figure 31, peak-to-peak displacements in the range of about 120 µm were captured (this is 

presented later in Section 3.3 where proximity probes are employed). These values are much 

higher than the detectable simulation measurements (about 50µm peak-to-peak) presented in 

the previous section. To comment on the performance of the shape-based analysis, the 

accuracy and sensitivity of the technique in a simulation-based environment is expected to be 

significantly better owing to the improved SNR of extracted data. Accurate shapes are 

extracted from a simulation video as opposed to shapes extracted from camera captured 

images. 

2.6 Chapter conclusion 

This chapter introduces the concept of a shape analysis approach for condition monitoring of 

turbomachines. A typical image processing procedure that can be followed to extract 2D 

contours from an image is presented. Specific shape characteristics in the way of principal 

components are defined, and an investigation in the manner in which each of these �⃗� 𝑖 

geometric modes are uniquely related to the form of the shape illustrated. It is illustrated that 

changes in the four computed shape principal components (2D analysis) can be monitored to 
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indicate the way imposed shape variations are related to �⃗� . Thus, from an image captured 

with a single camera, four determined unique shape characteristics that are uniquely affected 

by enforced shape changes can be monitored.  In a sensitivity investigation, it is shown that 

the perspective at which images are captured by the camera affect the apparent shape 

variation that can be observed. It is also illustrated that a camera sampling rate of at least four 

times the frequency of interest is required to obtain shape principal component variations 

smooth enough to be monitored for accurate shape variation analysis.   
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CHAPTER 3: 2D SHAPE ANALYSIS EXPERIMENTAL 

INVESTIGATION 

3.1 Introduction 

In this chapter a Bently Nevada rotor system operating at different states of static and couple 

unbalance is analyzed using the conventional proximity probes. The measurements obtained 

are then correlated to 2D based shape analysis measurements to establish the applicability of 

shape analysis as a condition monitoring tool in a practical environment. The dynamics of the 

system when rotor-stator rub is introduced are investigated using the two techniques, and oil 

instabilities also analyzed. 

3.2 Bently system experimental setup 

The setup considered for this investigation consists of a 455 mm long, 9.5 mm diameter steel 

shaft onto which are mounted two 25 mm thick, 75.5 mm diameter flywheels. The system is 

driven by a 75 W DC motor through a flexible coupling, and the other end of the shaft is 

supported by a fluid film journal bearing. The maximum speed of the system is 10 000 rpm, 

with a maximum ramp rate of about 15 000 rpm/min. A bush bearing supports the system at 

the driven end of the shaft. Meggitt proximity transducers with sensitivities of 8 V/mm and 

measuring ranges of 2 mm were positioned as indicated in Figure 34(a). 

The system was balanced at a rotational speed of 1200 rpm. Six investigations were 

conducted to capture variations in shape principal components resulting from different 

machine faults. These faults include rotor unbalance, hydrodynamic bearing oil instabilities 

and rotor-stator rub. Rotor unbalances were introduced at disk 1 and disk 2, and shaft rub 

condition applied at the mid-point of the two disks by screwing a bronze stud onto the shaft 

(Figure 34(b)). 

 

Figure 34: (a) Positioning of proximity probes, (b) rotor-stator rub application 

Unbalance in a rotor results from an uneven mass distribution about the axis of rotation, 

causing vibration as a result of the interaction between the unbalancing mass and the 

rotational radial acceleration. Thus a centrifugal force that is ultimately transmitted to the 

bearings once every revolution is generated (MacCamhaoil, 1989). A point mass attached at 

a particular radius from the axis of rotation centre that results in eccentricity of the centre of 

gravity produces static unbalance. Couple unbalance on the other hand results from 

symmetrically attached two equal masses at 180o from each other about the centre of gravity.  

This causes the rotor inertial axis to shift from the rotation axis, also resulting in severe 

vibrations that the bearings will have to endure. A combination of the static and couple 

unbalance is what is termed dynamic unbalance. The different forms of unbalance are 

illustrated in Figure 35. 

 



 
 

50 
 

 

Figure 35: Rotor unbalance (a) static unbalance, (b) couple unbalance and (c) dynamic unbalance 

Four different unbalance cases were investigated. These are given in Table 3. 

Table 3: Unbalance cases 

Case Unbalance on Disk 1 Unbalance on Disk 2 Unbalance Type 

1 5.62 gram at 00 0 static 

2 0 5.62 gram at 00 static 

3 4.85 gram at 00 4.85 gram at 00 couple 

4 4.85 gram at 00 4.85 gram at 1800 couple 

 

3.3 System analysis using proximity probes 

Time domain measurements from the proximity transducers were analysed first to get an idea 

of how the system was behaving. Captured measurements in mV were converted to 

displacements (mm) using the sensor sensitivity values. These measurements are usually 

contaminated with possible mechanical run-out (non-uniform shaft radius) and electrical run-

out (variations in shaft electrical properties), as described by Littrell (2005). A slow roll 

compensation was therefore implemented for each sensor to ensure that the considered 

measurements reflected only the rotor dynamic response (Bently & Hatch, 2003). 

Orbit plots from probe 3 and 4 measurements (Figure 34(a)) indicate differences in the shaft 

whirling vibrations for the different operating conditions. It is these differences in vibrations 

that we aim to detect and distinguish using shape analysis for condition monitoring purposes.  

In Figure 36, the shaft whirling motion for the cases with unbalance can be recognized from 

the close to circular orbit plots. Oil instabilities result in a tilted elliptical orbit. The shaft is 

prevented from motion in the upward direction in the rotor-stator rub investigation, which can 

be clearly noticed from the flat-topped orbit plot.  
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Figure 36: Orbit plots for probes 3 and 4 

Frequency domain proximity sensor measurements are given in Figure 37 and Figure 38. 

Probes 1 and 2 are located at the bush bearing supported end of the shaft, where the coupling 

to the driving motor is also attached. At this end of the shaft, the constraints restrict shaft 

vibrations more relative to constraints at the hydrodynamic bearing end (probes 3 and 4). Due 

to that interference, the resulting dynamic nonlinearity and the low SNR of the measurements 

from probe 1 and 2 result in the more significant sub-harmonic frequency components 

observed in Figure 37 and Figure 38. Synchronous frequency integer harmonics (probe 1 and 

2) are typically associated with electrical runout as described by Adams (2010). These 

harmonics can still be observed even with runout compensation implemented, something 

which can be attributed to the low SNRs of measurements captured using probes 1 and 2.  

Focusing on probes 3 and 4, a frequency domain proximity sensor measurement analysis 

does not yield significant information in terms of classification of system unbalance. This can 

be observed by comparing Figure 37 and Figure 38. Whilst the introduction of unbalance 

clearly results in a general increase of fundamental frequency magnitudes for the probes, 

variations between different static and couple unbalance operating conditions cannot be 

detected.  

The conventional phase analysis approach, which involves determining the fundamental 

frequency phase differences between various probes, was employed to detect, classify and 

distinguish the different forms of unbalance using measurements from the proximity probes. 

A value of 90o (± 30o to account for mechanical variance (SKF, 2018)) between the vertical 

and horizontal probes at any particular bearing indicates the presence of unbalance. This is 

expected regardless of the type of unbalance present in the system. 

Distinguishing unbalances entails the analysis of phase measurements for probes measuring 

in the same direction but at different bearings. For a statically unbalanced system, a phase 

difference of 0o (± 30o) is expected. This phase difference will be approximately 180o for a 
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couple-unbalanced system. Dynamic unbalance, which is a combination of both static and 

uncouple unbalance, can be identified by a phase difference between 0o and 180o. 

 

Figure 37: Proximity probes based static unbalance 

 

Figure 38: Proximity probes based couple unbalance 

Shown in Table 4 are the phase analysis results. Probes 1 and 3 were measuring the 

horizontal shaft position at different bearings, and probes 2 and 4 the vertical shaft position 

(refer to Figure 34). 
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Table 4: Proximity probes phase analysis 

System 

state 

Phase difference 

(Probes 1 and 2)  

Phase difference 

(Probes 3 and 4)  

Phase difference 

(Probes 1 and 3) 

Phase difference 

(Probes 2 and 4) 

Balanced 289.6o 275o 12.8 o 1.8 o 

Case 1 180.7o 273.2o 0.3 o 92 o 

Case 2 89.6o 80.6o 8.5 o 0.5 o 

Case 3 174.5o 82.9o 2.6 o 89 o 

Case 4 46.3o 85.2o 2.6 o 134 o 

 

Considering signals from proximity probes 3 and 4, Table 4 indicates the presence of 

unbalance in the system, with the exception of Case 1 (static unbalance at disk 1). The effect 

of unbalance at disk 1 is not apparent enough in these results. Probes 1 and 2 only indicate 

the presence of unbalance for Case 2, something that can be attributed to the probes being 

located quite close to the journal bearing. Shaft vibration amplitudes are very low, and the 

SNR is also low.  Analysing phase values for probes at different bearings, Table 4 indicates 

the presence of dynamic unbalance in the system for all the cases investigated. This was 

expected as some form of residual unbalance always remains after a system has been 

balanced, with the unbalance effect being more significant for small systems. 

3.4 System analysis using shape analysis 

An investigation using shape analyses was then employed to check if the different system 

operating conditions could be better distinguished. From the results presented above, this 

could not be conclusively done using data from the proximity probes. A GOM 4M stereo-

videography system was used to capture images of the rotor at 420 FPS, and 2D shape 

extraction and analysis conducted as discussed in the previous chapter.  

Figure 39 illustrates the SPCD results obtained for static unbalance. It should be noted that 

SPCD results from captured images tend to have a significant noise floor. The roughness of 

the extracted shape at the local boundary pixels varies from image to image, and this tends to 

influence the determined SPCDs to some extent. The “roughness” in this case is not referring 

to the physical profile of the shaft, but rather the quality of the extracted contour based on the 

camera resolution and shaft orientation at various angular positions. If the shaft centroid is 

along the vertical axis for instance, the pixels of the shaft profile are aligned vertically, with no 

change in the direction (along the horizontal axis) implying a smooth extracted profile. If the 

centroid is along the 450 line, then a noisy or rough extracted shaft profile is expected. 

Application of static unbalance at either disk 1 or disk 2 increases the forced rotor whirling 

motion, thus resulting in more significant shape variations. This is evident from the increased 

PC magnitudes observed in Figure 39 especially for SPCD1 and SPCD4 relative to the 

balanced case. The additional unbalancing masses added produces larger shape variations 

compared to the ones resulting from the residual unbalance in a ‘balanced’ system. Case 2 

involves addition of unbalance on disk 2, which is located closer to the shaft central location 

and furthest from the two bearing supports. It is expected that the energy introduced to the 
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system in Case 2 be greater than that introduced in Case 1. This is evident from the SPCD 

magnitude differences in Figure 39. 

 

 

Figure 39: Shape principal component based frequency responses for static unbalance 
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Compared to proximity probe measurements, static unbalance results in a very different 

frequency structure for SPCDs measurements (Figure 37 and Figure 39). Energy introduced 

into the system by a static unbalance results in a shape variation that is predominantly 

associated with the rotational speed. This difference between a balanced and the two statically 

unbalanced system cases is not that apparent when considering probe-based measurements 

(Figure 37), as illustrated in Table 5. The harmonic Magnitude Increase Factors (MIFs) for 

each case are calculated relative to the balanced system values using Equation (27). A zero 

value indicates the absence of a peak at a particular harmonic for the unbalance case of 

interest. An asterisk (*) indicates absence of a peak for the balanced system, and a peak 

present for the unbalance case.  

𝑀𝐼𝐹 =
𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 − 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
 (27) 

The first harmonic SPCD MIFs from Table 5 clearly indicate an increase in the system 

response magnitudes as a result of the static unbalance. Case 2 MIFs for the SPCDs are 

significantly higher than those for case 1 as expected, making a distinction between the two 

unbalance cases possible. This can be adopted for quantifying the extent of static unbalance 

in a system. Measurements from the proximity probes do not capture the differences in static 

unbalance in this case. For static unbalance, MIFs at the higher harmonics do not yield 

significant fault classification information except for SPCD2. Higher harmonics are noticed in 

the system the moment static unbalance is introduced. 

Table 5: Harmonic magnitude increase factors for static unbalance 

 1× harmonic MIF 2× harmonic MIF 3× harmonic MIF 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

SPCD1 1.62 3.18 0 -0.18 * * 

SPCD2 0.37 1.13 * * * * 

SPCD3 0.02 0.39 0 * 0 0 

SPCD4 * * 0 0.01 0.54 0 

Probe 3 0.33 0.34 0 0 0 0 

Probe 4 0.39 0.38 0 0 0 0 

 

Figure 40 shows the PC results obtained after introducing couple unbalance into the system 

(Case 3 and 4). 
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Figure 40: Shape principal component based frequency responses for couple unbalance 

Comparing Figure 39 to Figure 40, it can be clearly noted that there are significant differences 

in shape variations introduced by the presence of either static or couple unbalance in the 

system (SPCD1 and SPCD4). Static unbalance imposes rotor whirling that results in a bent 

Operational Deflection Shape (ODS) around the shaft reference axis. The ODS has a form 

similar to the first bending mode. This results in a general increase in the magnitude of the 

fundamental frequency component for all the SPCDs, when analysed relative to a balanced 

system with some residual unbalance in it. On the other hand, depending on the positioning 

of the unbalance weights, the ODS associated with couple unbalance can be more complex 

taking forms similar to how the shaft higher bending modes would appear. Thus, the shaft 

whirling motion will result in complex shape variations, which do not correlate directly with the 

basic principal component shape variations discussed in the previous chapter, resulting in the 

higher harmonics receiving even more energy in a frequency domain analysis. This explains 

the higher frequency component magnitudes at 40 Hz for SPCD1 and SPCD4. This can be 

used as a condition monitoring tool to differentiate between static and couple unbalance in a 

system. 

To illustrate this further, Table 6 shows the MIFs determined for the rotor system. Couple 

unbalance introduced at the same angle on different shaft locations (case 3) clearly results in 

increased system energy as indicated by the higher case 3 first harmonic MIFs. Comparing 

Table 5 results to Table 6, the SPCD1 and SPCD4 second harmonic MIFs illustrate a difference 

between static and couple unbalance. Couple unbalance clearly results in a significant 

increase (case 3) or significant decrease (case 4) of the second harmonic SPCDs magnitudes. 

This is not the case with static unbalance. In addition all SPCDs show an increase in the third 

harmonic magnitudes in the presence of couple unbalance. 
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Comparing the proximity probe measurements (both phase analysis and single probe 

frequency domain measurements) to SPCA in terms of unbalance investigations, it is evident 

that the proposed shape analysis approach offers results that easily illustrate different system 

operating conditions. This applies to this specific investigation. Variations in system dynamics 

that are too small to be clearly captured using uniaxial transducers are much more easily 

identified by using a 2D based data capturing scheme. The low SNR of signals captured by 

the proximity probes too close to the bearings may limit the robustness of uniaxial transducers. 

Shape analysis makes it possible to look further away from the bearings where rotor 

responses are significant enough to be detected for condition monitoring purposes. 

Table 6: Harmonic magnitude increase factors for couple unbalance 

 1× harmonic MIF 2× harmonic MIF 3× harmonic MIF 

Case 3 Case 4 Case 3 Case 4 Case 3 Case 4 

PC 1 2.12 0.96 0.69 -0.99 * * 

PC 2 0.73 0.24 0 0 * * 

PC 3 0.71 0.16 * 0 * * 

PC 4 * * 1.42 -0.27 1.12 0.10 

Probe 3 0.54 0.003 0 0 0 0 

Probe 4 0.60 0.05 0 0 0 0 

 

Based on how the MIFs are calculated (Equation 27), unbalance magnitudes less than the 

balanced system magnitude can result in negative values that can be noticed in Table 6. 

Conventionally, one would expect the unbalance response magnitudes to be always higher 

than the balanced responses. However, in the case of SPCDs where the values are calculated 

based on the relationship between the specific geometric modes and the response shape 

variation, the unbalanced magnitude (in this case for the 2X harmonic) can be lower than the 

balanced response magnitude. 

3.5 Investigating rotor-stator rub and oil instabilities using proximity 

probes and 2D shape analysis 

The advantages of incorporating a 2D based analysis in detecting system operating changes 

are further illustrated in the case of rotor-stator rub. The rotor-stator rub was introduced by 

screwing the stud in the probe holder housing between the two flywheels further down until it 

interfered with the rotating shaft (Figure 34(b)). 

Figure 41 indicates that rotor-stator rub results in a decrease in fundamental frequency 

magnitude for the proximity probes. This is expected since the amplitude of vibration response 

in a particular direction is reduced if a component is interfering with the shaft in that direction. 

Advanced probes sensitive enough to capture signals with high SNRs might need to be 

employed to diagnose a system operating in these conditions, if the probe measurements are 

to be considered as independent signals, and not as 2D orthogonal pairs. This is however 
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different when considering SPCDs. The 2D analysis approach focuses on shape variation, an 

occurrence which can be amplified by the presence of rotor-stator rub. This is evident in 

SPCD1, SPCD2, and SPCD4 of Figure 42. In this case the decrease in the magnitudes of 

individual axis responses did not decrease the quality of the measurements captured. The 

shape variation influence on the principal components was substantially significant, even 

though the variation magnitudes were small. The multi-dimensional shape analysis approach 

proposed can therefore be used to complement proximity probe measurements when 

investigating changes in the overall behaviour of a system. 

 

Figure 41: Proximity probes rotor-stator rub 

Hydrodynamic bearing oil instabilities tend to be one of the most dangerous faults in rotating 

machines owing to the fact that the damage of a structure exhibiting oil whip characteristics 

progresses to failure in a very short period of time. Therefore hydrodynamic bearing oil 

instabilities were also investigated to check if the proposed approach can capture information 

that can allow for easier identification of bearing oil instabilities. 

When a rotor system is running at a particular speed, the fluid flows around the bearing at a 

speed that is approximately half the journal surface speed. This will then introduce oil whirl 

motion into the system, of which the sub-synchronous frequency will be slightly less than 50% 

of the shaft rotational frequency. If the shaft rotational speed is then set to twice the first critical 

speed, then the oil whirl motion will then coincide with the critical speed. Energy from the oil 

whirl instability will now be exciting the first bending mode resulting in a system instability (Liu 

et al., 2018). The vibratory responses associated with the instability often cause failure in a 

short period of time (Nelson, 2007).  
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Figure 42: Shape principal component based frequency responses for rotor-stator rub 

To experimentally determine the rotor system critical speeds, a system run up and run down 

was conducted, and the in-plane shaft positions from proximity probes 3 and 4 extracted. 

Increased shaft vibrations are expected when the rotor spin speed coincides with a critical 

speed. The speed was increased from about 175 rpm to 5420 rpm. 

 

Figure 43: Rotational speed ramp up and down system response 
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It can be noted from Figure 43 that the first critical speed of the system is 1657 rpm (27.6 Hz). 

Thus setting a rotational speed to 3314 rpm (55.2 Hz), which is twice the critical speed, will 

induce oil whirl. Figure 44 shows the responses obtained from the proximity probes when the 

rotor was being rotated at 3314 rpm. Except for probe 2, the probes reflect the highest vibratory 

frequency magnitudes to be located at the shaft critical speed, with significant peaks at the 

system rotational speed as well. 

 

Figure 44: Proximity probes oil instability effects 

 

Figure 45: Shape principal components-based oil instability effects for a system rotational frequency of 
55.2 Hz 
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A different behaviour is however observed for the SPCDs, as shown by Figure 45. Whilst 

SPCD1 and SPCD4 clearly show peaks at the shaft critical frequency (27.6 Hz), SPCD2 and 

SPCD3 show peaks at the set system rotational frequency. This indicates that the system 

dynamics introduced by oil instabilities have less influence on shape variations associated 

with SPCD2 and SPCD3. In this case, the general shaft whirling due to the set rotational speed 

has more influence on these shape variations. These distinct differences in the form of the 

four SPCDs analysed for the same system condition are noticed only for a system where oil 

instabilities are present. Currently, there is no concrete physical explanation for this 

observation, and further investigations will have to be conducted to fully understand how the 

oil instability induced shaft whirl behaviour relates to shape variations at the bearing location 

where the images are being captured. 

The 2D shape analysis variability of four different parameters extracted from an image 

captured using a single non-contact sensor can therefore be used to complement single axis 

sensor measurements from probes to fully understand the dynamics of a rotating machine. 

3.6 Chapter conclusion 

This chapter focused on the application of a 2D shape analysis approach for condition 

monitoring of a rotating machine. The distinction between different forms of system unbalance 

could be performed using this approach, complementing proximity probe measurements in 

instances where conventional phase analysis results were not conclusive. 

Even though not explicitly investigated experimentally, condition degradation monitoring due 

to increasing unbalance for instance will typically be characterized by increased shaft whirling 

amplitudes. The increasing unbalance forcing more significant shape variations would simply 

result in increasing SPCDs peak amplitudes as demonstrated in the FEM analysis in Section 

2.5.2, allowing for condition degradation monitoring. Considering Figure 39 in which a higher 

static unbalancing effect to the system (Case 2) resulted in higher SPCDs peaks relative to 

lower system unbalancing effect (Case 1), it can be concluded that the technique has the 

potential to successfully quantify damage in an experimental setting. However, establishing 

and quantifying the relationship between the level of unbalance and changes in the SPCDs 

peaks for condition degradation monitoring purposes is something that will have to be 

considered in future studies. 

From the rotor-stator rub investigation, it could be clearly shown that the multi-dimensional 

nature of shape analysis allows easier detection of changes in a system even in cases were 

the uniaxial point vibrations are very small. In these cases, conventional contact transducers 

tend to have very low SNRs, something which usually complicates accurate fault classification. 

The distinct uncorrelated nature of the computed shape principal components illustrated that 

the four parameters can be very differently influenced by the way a system behaves, making 

it much easier to distinguish between different system operating conditions. This was observed 

in the case of rotor hydrodynamic bearing oil instabilities. This makes the proposed approach 

an ideal tool for damage progression monitoring in structures. The 2D nature of the approach 

and the decomposed form of the monitored parameters ensures significant sensitivity to 

changes in the behaviour of the system. 
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CHAPTER 4: 3D SHAPE ANALYSIS NUMERICAL AND 

EXPERIMENTAL INVESTIGATION APPLIED TO MODEL ROTATING 

TURBINE BLADES 

4.1 Introduction 

This chapter focuses on the extension of a shape-based condition monitoring approach from 

2D to 3D applications. After the introduction of 3D SPCDs, an analysis into the type of 

geometric modes associated with the generic rectangular shape of an axially rotating blade in 

3D is conducted. 

A numerical investigation of 3D SPCDs using a FE model of a rotor system is introduced. This 

investigation is conducted to better understand the relationship between the 3D shape 

descriptors and the behaviour of a rotor system under various operating conditions of different 

levels of blade damage. In addition to the verification of expected system behaviours such as 

a decrease in natural frequency with increasing blade root damage, the FE investigation is 

also adopted to investigate how the proposed shape analysis approach compares and relates 

to conventional techniques. Monitoring changes in the modal analysis parameters is 

considered in this case. Through PCA of determined SPCDs, a clustering technique for easier 

identification of different damage modes is introduced and implemented. To investigate the 

applicability of the technique as a condition monitoring tool, variations of shape analysis results 

with changing system operating conditions are analysed. 

In an experimental study, the determination of 3D SPCDs from stereoscopic images of rotating 

blades is presented. Variations in the dynamics of different damage modes for actual rotating 

axial blades are investigated by monitoring these SPCDs. The developed and numerically 

investigated order based PCA of the SPCDs, is employed to verify the feasibility of a condition 

monitoring shape-based approach for turbine blades in an experimental setting. The 

applicability of the proposed shape analysis technique in a laboratory-controlled environment 

is successfully demonstrated. 

The last section of the chapter discusses the applicability of the proposed approach for 

condition monitoring of out-door full scale wind turbines. The size of a typical out-door wind 

turbine and its maximum out-of-plane deflections is considered, and that information is 

correlated to the rotor size and measurements captured in the laboratory based experimental 

investigation. The feasibility of using shape analysis to capture the dynamics of actual wind 

turbines for condition monitoring purposes is illustrated.  

4.2 3D SPCDs determination 

As highlighted in Section 1.2.4.1, four Fourier coefficients (𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛) can be calculated for 

a 2D shape, whilst six (𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛, 𝑒𝑛, 𝑓𝑛) can be determined for a 3D shape. Similar to what 

was conducted in the 2D analysis, a PCA of the multivariate vector composed of six Fourier 

shape descriptors (Equation 17) of a 3D contour was employed to extract linearly uncorrelated 

variables. Each of these principal components (columns of 𝑽) represent a specific shape 

feature form, and the procedure for characterizing a shape using these principal components 

is summarized in Figure 46. 
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Figure 46: Shape principal components determination procedure for 3D shape analysis 

Thus for two consecutive image contours from two frames 𝑓 and 𝑓 + 1, each described by a 

6×6 multivariate matrix 𝑽, the 𝑖𝑡ℎ measure of variation between two consecutive frames (Shape 

Principal Component Descriptor, SPCDi) can be considered as the difference between the 

consecutive �⃗� 𝑖 Euclidean norm values, as given by Equation 28. The difference between the 

two frames was considered for an improved SNR in this case. 

𝛥𝑆𝑃𝐶𝐷𝑖(𝑡) = ‖�⃗� 𝑖(𝑓)‖
2
− ‖�⃗� 𝑖(𝑓 + 1)‖

2 
 (28) 

Shape boundary

• xyz-coordinates

26-connectivity

chain code

• Shape boundary quantization 

• Chain code determination: 𝐶𝑐 = ν1, ν2, … , ν𝑘 , ν 𝜖 [0: 7, −𝑗7: 𝑗7,−𝑖, 𝑖]

Chain code 
projection

•∆𝑥𝑙 = 0,−1 𝑜𝑟 0,                                                                                                                        Equation (11)

•∆𝑦𝑙 = 1,−1 𝑜𝑟 0,                                                                                                                        Equation (12)

•∆𝑧𝑙 = 0,−1 𝑜𝑟 0,                                                                                                                        Equation (13)

Normalized 
Fourier 

coefficients 

•

𝑥𝑛 𝑞 = 𝐴0 + ∑𝑛=1
𝑁 𝑎𝑛 cos

2𝑛𝜋𝑞

𝑄
+ 𝑏𝑛 sin

2𝑛𝜋𝑞

𝑄

𝑦𝑛 𝑞 = 𝐶0 + ∑𝑛=1
𝑁 𝑐𝑛 cos

2𝑛𝜋𝑞

𝑄
+ 𝑑𝑛 sin

2𝑛𝜋𝑞

𝑄

𝑧𝑛 𝑞 = 𝐸0 + ∑𝑛=1
𝑁 𝑒𝑛 cos

2𝑛𝜋𝑞

𝑄
+ 𝑓𝑛 sin

2𝑛𝜋𝑞

𝑄

→ 𝑿,       Equations (14:16)   

Multivariate

vector PCA

• Eigenvectors of the covariance of the Fourier coefficients:  𝐸𝑖𝑔 𝐶𝑜𝑣 𝑿

• A 6x6 matrix of eigenvectors is obtained, each column representing a principal component: 𝑽

SPCDs

• Calculating the norm of each column in the principal component matrix will give six principal 
component values (𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6) for that particular shape.

• If a sequence of images is captured and the above procedure implimented for the extracted 
shapes, then a time series signal can be generated for each of the Vs, to give the SPCDs of the 
machine: Equation 28.
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Thus for a set of captured images, 3D contour variations can be characterized by six time 

varying SPCDs, [SPCD1(t) SPCD2(t) SPCD3(t) SPCD4(t) SPCD5(t) SPCD6(t)].  

4.3 Geometric modes for a 3D rectangular shaped contour 

Similar to what was highlighted in Chapter 2 for a 2D analysis, each column in 𝑽 is associated 

with a very specific shape feature, termed a geometric mode in this study. For a typical blade 

contour, the specific shape characteristics each �⃗� 𝑖 captures can be investigated visually by 

scaling its corresponding scores 𝑋 𝑖
𝑛𝑒𝑤  individually before reconstructing the original shape 

using the Fourier sums. This type of scaling and shape reconstruction is illustrated in the flow 

diagram in Figure 47 for a Scaling Factor (SF) of 0.5 applied to the scores associated with the 

first geometric mode. 

 

Figure 47: Principal component score scaling and shape reconstruction flowchart for visualization of 
different geometric modes 

These variations are illustrated in Figure 48 for a 3D contour described by six principal 

components. The shape variations illustrated in Figure 48 are dictated by the principal 

component scores (𝑿 
𝑛𝑒𝑤) calculated for the specific rectangular shape. This means that if a 

complex shape representative of a twisted blade is considered, then different shape variations 

unique to that particular shape will be obtained. In accordance with Figure 48 observations, 

the following discussion considers ‘in-plane’ geometric modes as those modes affecting the 

rectangularity of the shape, and ‘out-of-plane’ geometric modes to refer to modes associated 

with the smoothness of the shape. 

When performing shape analysis, it is necessary that one identifies the necessary SPCDs to 

monitor based on the direction of the response (in-plane or out-of-plane response). In that 

regard, Figure 48 points to SPCD5 and SPCD6 for an out-of-plane response. In addition to the 

direction of the response, it is also important to consider how the shape variation of the 

response relates to the geometric modes 𝑽 illustrated in Figure 48.  The sensitivity of a 

particular SPCD to a specific response under investigation is directly influenced by how well 



 
 

65 
 

the response shape variation correlates to the shape changes obtained by scaling 𝑿 
𝑛𝑒𝑤 

(correlation to the geometric modes). 

 

Figure 48: Nature of geometrical modes for a 3D rectangular shape (a) �⃗⃗� 𝟏 , (b) �⃗⃗� 𝟐 , (c) �⃗⃗� 𝟑 , (d) �⃗⃗� 𝟒 , (e) �⃗⃗� 𝟓 and 

(f) �⃗⃗� 𝟔  

As can be observed from Figure 48, �⃗� 1 to �⃗� 4  are essentially associated with in-plane contour 

variations. �⃗� 1 and �⃗� 2 geometric modes are very similar to each other and they influence the 

rectangularity form of the contour. �⃗� 5 and �⃗� 6 are associated with the out-of-plane blade 

responses, which make them the most important to monitor in a case where the blade damage 

mode is expected to have a more significant effect on the out-of-plane vibrations. Whilst the 

shape variations associated with the shape principal components might not be similar to 

expected blade physical or practical responses in terms of symmetry (�⃗� 4 to �⃗� 6), the obtained 

descriptors can still be used to monitor condition. This is because calculated SPCDs are 

composed of information regarding the relation between the geometric modes and the actual 

blade responses for a particular test. It has been demonstrated in Section 2.4 that for a 

particular ultimately calculated SPCD, the quality of the measurements in terms of signal-to-
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noise ratios improves according to how well the physical response shape variation resembles 

a certain 𝑿 
𝑛𝑒𝑤 variation. 

In the case of axial blades vibrating out-of-plane, the expected shape variations are 

predominantly associated with the rectangularity nature of a shape (first bending mode ODS). 

As can be observed in Figure 48, scaling  �⃗� 5 and �⃗� 6 are related to the local form (smoothness) 

of the shape. On account of the out-of-plane ODS responses being different from these 

geometric modes, one can therefore expect a low sensitivity of 𝑋 5
𝑛𝑒𝑤  and 𝑋 6

𝑛𝑒𝑤 to the response. 

By association, this low sensitivity behaviour extends to the calculated SPCD5 and SPCD6 as 

well. If one intends on focusing on the SPCDs whose corresponding 𝑿 
𝑛𝑒𝑤 are closely related 

to the type of response, the multi-dimensional nature of 3D shape principal component 

analysis presents further opportunities in the form of possible shape rotation and 

transformation. This is discussed further in the following sections. 

The captured blade profiles can be rotated or transformed about the blade longitudinal axis 

indicated as dotted lines in Figure 48. This coordinate transformation from an initially pure out-

of-plane shape variation to shape variations in the xy-plane will ensure that in-plane geometric 

modes components (𝑋 1
𝑛𝑒𝑤 and 𝑋 2

𝑛𝑒𝑤) are directly influenced by the response as well. In turn, 

this will allow for easier detection of the shape variation resulting from the blade response. 

This transformation is illustrated in Figure 49. 

 

Figure 49: Shape transformation illustration 

For an arbitrarily chosen rectangular original contour, Figure 49(a) shows the contour’s out-

of-plane (z-axis) deflection (300), resembling a typical blade response. Figure 49(b) is the xy-

plane view of the same figure, which shows that the out-of-plane contour does not reflect any 

in-plane shape variation for geometric modes 𝑽1 and 𝑽𝟐 to be influenced. On the other hand, 

consider Figure 49(c), where the original contour is first transformed by a 50 rotation about the 

longitudinal axis before the 300 deflection is imposed. Figure 49(d) which shows the same 

figure viewed in the xy-plane clearly shows how the exact same deflection imposed in Figure 
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49(a) is now very apparent in terms of in-plane shape variation. This makes it possible to use 

SPCD1 and SPCD2 for dynamic characterization through shape analysis in this case. The 

contour transformation can be achieved by using the rotation matrix given in Equation 29, for 

transformation of contour point (𝑥, 𝑦, 𝑧) into new coordinates (𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤, 𝑧𝑛𝑒𝑤) by ε angular 

rotation about the longitudinal y-axis. 

[

𝑥𝑛𝑒𝑤

𝑦𝑛𝑒𝑤

𝑧𝑛𝑒𝑤

] =  [
cos (ε) 0 𝑠𝑖𝑛 (ε)

0 1 0
−𝑠𝑖𝑛 (ε) 0 𝑐𝑜𝑠 (ε)

] [
𝑥
𝑦
𝑧
] (29) 

This is illustrated in the analysis presented in the following section of this chapter, where an 

FE based investigation to determine the applicability of the proposed approach is conducted. 

4.4 FE based numerical investigation of blade shape analysis 

behaviour 

FE based numerical studies offer a reliable controlled environment in which uncertainties and 

possible measurement errors can be eliminated. The FE model employed for this investigation 

was developed based on the experimental setup (five 2 mm thick, 40 mm width and 112 mm 

long blades) introduced later in Section 4.5. To reduce the size of the model and minimize the 

computational requirements, only the blades were considered in the analysis. Since only the 

behavioural trends and no direct correlation between the FE model and experimental set up 

were going to the investigated in this study, modal updating was therefore not conducted. 

Illustrated in Figure 50 are the single blade and bladed disk models. In some of the blades, 

slot damage located close to the blade roots (110 mm from the blade tips) was introduced. 6 

mm and 12 mm slot lengths from the edge of the blade were considered. 

 

Figure 50: Single blade and bladed disk models 

For the FEA, generic aluminium alloy material properties were used. These are given in Table 

7. Tet 10 elements were used to mesh the models in MSC/Patran. The curved nature at the 

blade roots and the damage slots make the blade geometry somewhat complex, implying that 

meshing using tetrahedral elements instead of hexahedral elements is more ideal. Whilst 
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hexahedral elements are generally quicker to solve when using MSC/Nastran, the geometrical 

model modification to make an imported parasolid compatible to meshing with hexahedral 

elements can be tedious and time consuming in itself. 

Table 7: Aluminium material properties 

Property Density Young’s modulus Poisson’s ratio 

Value 2770 kg/m3 70 GPa 0.33 

 

The following sections outline the different numerical investigations conducted. 

4.4.1 Model simplification 

To reduce the size of the model and minimize the computational requirements, only the blades 

were considered in the analysis. The hub onto which the blades are attached was neglected 

and a multipoint constraint (MPC) boundary condition used to connect the roots of all the 

blades to an added central node. For the MPC, rigid body elements (RBE2 type) were 

considered, with the central node defined as the master, and all the nodes at the roots of each 

blade as slaves. This is illustrated in Figure 51. Modelling the system in this manner, instead 

of simply grounding the blades individually, ensures that the coupling effect expected as the 

response of one blade influences the dynamic behaviour of the other blades is conserved. 

 

Figure 51: Multipoint constraint definition 

To test the validity of replacing the hub with an MPC in terms of preserving the global dynamic 

behaviour of the system, a frequency response analysis was conducted. With a translationally 

constrained master node, a single point load was applied to a node on one of the blades for a 

system comprising of healthy and root damaged blades. Two systems were analysed, the first 

one consisting of five healthy blades, and the second one with blades arranged in a clockwise 

order of healthy, 6 mm damaged, healthy, 12 mm damaged and 6 mm damaged. Frequencies 

were linearly defined for the range 0-1000 Hz, and no damping was specified in the analysis. 

Figure 52 illustrates the setup for this analysis. 

Frequency Response Functions (FRFs) of the system shown in Figure 53(a) illustrate that the 

healthy blades all respond in a similar manner. Comparing Figure 53(a) to Figure 53(b), it can 

be noted that the frequency responses of the system change when damaged blades are 

introduced in the system, confirming that the system global dynamic effects are conserved 

with the MPC. 
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Figure 52: Frequency response analysis setup 

 

Figure 53: System FRFs (a) healthy blades, (b) combination of healthy and damaged blades 

4.4.2 Natural modal analysis of the blades 

The static natural frequencies of blades fixed at the root were determined for four damage 

levels (blade root slot depths of 2 mm, 4 mm, 6 mm and 8 mm). The expected blade dynamic 

responses in the investigations conducted are essentially similar to the first bending modes 

(out-of-plane dynamic responses of axial blades), and therefore attention was paid to the first 

three natural frequencies. The obtained results for the blades are presented in Table 8. As 

can be observed in Figure 54, the natural frequencies decrease with increasing damage, 

owing to the decreasing blade root stiffness.  
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For the full bladed system, the first five modes are essentially bending modes associated with 

the five blades. The natural frequencies for these modes vary according to the level of damage 

in the blades. Illustrated in Figure 55 is a typical mode shape for a system with four healthy 

blades and a single damaged blade. The hub onto which the blades are attached has been 

replaced by a single centroid node constrained in all translational and rotational degrees of 

freedom. As highlighted earlier, this is done to limit the size of the model and reduce the 

required computational time. 

In the following discussions, a case presented as H-H-H-H-H consists of five healthy blades, 

whereas H-6-H-12-6 refers to a system with blades arranged as illustrated in Table 9. 

Considering healthy blades, the bending natural frequency for a full system with multiple 

blades was determined to be 129.5 Hz, which is slightly higher than the individual blade natural 

frequency (127.5 Hz, from Table 8). A system of multiple blades connected to a central node 

via a multipoint constraint boundary condition is slightly more rigid than a standalone blade 

grounded at its root, as expected.  

Whilst an increase in natural frequencies is expected for blades undergoing a rotation as a 

result of rotational stiffening, these stiffening effects were not investigated as they are 

expected to affect the responses of all the blades in a very similar way. This means that they 

were not going to influence the captured results in a way that necessarily influence the 

monitored and presented trends in the findings. 

Table 8: Single blade mode shapes and natural frequencies for different damage levels 

Mode Healthy 

blade 

Damage 1 

(2 mm slot) 

Damage 2 

(4 mm slot) 

Damage 3 

(6 mm slot) 

Damage 4 

(8 mm slot) 

First bending mode 

 

127.531 Hz 125.777 Hz 123.608 Hz 120.559 Hz 116.748 Hz 

First torsional mode 

 

733.326 Hz 724.327 Hz 712.405 Hz 696.698 Hz 676.870 Hz 

Second bending mode 

 

793.674 Hz 784.482 Hz 774.292 Hz 761.284 Hz 746.070 Hz 
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Figure 54: Variation of natural frequency with root damage level 

 

Figure 55: Typical mode shape for a system with four healthy blades and a single damaged blade 

Table 9: Rotor system clockwise blade arrangement 

Case Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 

1: H-H-H-H-H Healthy Healthy Healthy Healthy Healthy 

2: H-2-H-H-H Healthy 2 mm damage Healthy Healthy Healthy 

3: H-4-H-H-H Healthy 4 mm damage Healthy Healthy Healthy 

6: H-6-H-12-6 Healthy 6 mm damage Healthy 12 mm damage 6 mm damage 

 

4.4.3 FEA shape based dynamic analysis 

The FE model considered is based on a physical system consisting of blades being excited 

using two air nozzles positioned 1800 apart (Figure 78). The blades are thus exposed to an 

impulse form pressure load excitation with a frequency twice the set rotational speed. For a 
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bladed system with five equally spaced blades, a phase difference of 360 exists between the 

excitations of consecutive blades. 

The FE investigation is aimed at analysing the behavioural trends in differently damaged 

blades. A basic model and excitation approach was considered in the investigation. The 

dynamic response behaviour of a system rotating at a particular speed, with the blades 

undergoing periodic excitations, was approximated by imposing an out-of-plane displacement 

excitation to the added central node. It should be emphasized that whilst this type of excitation 

is not identical to a physical rotating system operational excitation, the expected bending mode 

out-of-plane responses the blades exhibit, are still dependent on the nature of blade damage 

modes in any case. With the out-of-plane responses still directly influenced by the type of 

damage at the root in the simplified FE model excitation, the only neglected effects are those 

associated with rotational stiffening. Unlike the type of excitation in which a pulsating pressure 

load is applied directly to the actual blade surfaces, the considered excitation also ensures 

that direct interference of the excitation with the blade shape response is avoided. As 

highlighted earlier on in the chapter, the FE investigation is aimed at analysing the behavioural 

trends in differently damaged blades, without necessarily directly correlating a physical system 

to a modally-updated FE model. Thus for purposes of developing and testing the applicability 

of the proposed condition monitoring approach in a simplified manner, this imposed type of 

system excitation was considered acceptable. 

Imposing an excitation frequency in the range of the system’s first bending natural frequencies 

to the central node means that the blades are expected to respond in a manner corresponding 

to a resonating first bending mode. The first five natural frequencies of a system with five 

healthy blades were determined to be in the range [129.326 – 129.496] Hz. Therefore a 

sinusoidal displacement excitation with a frequency of 129.5 Hz was applied to the central 

node, to limit the blade vibration responses to the first bending mode. 

For this investigation, MSC/Nastran SOL 109 (transient response analysis) was employed. 

Two thousand time-steps with a time increment of 0.001 s were considered, and xyz-

coordinates describing the various blade profiles extracted for 3D shape analysis. Only the 

boundary nodal points on the face of each blade were considered, as illustrated in Figure 56 

for the maximum deflection of a set of healthy blades. 

4.4.3.1 Blade tip response analysis 

Maximum deflection time domain responses for the five blades are illustrated in Figure 57. For 

Case 1 where all the blades are identical, the responses are identical as expected. In terms 

of Cases 2 to 5, the damaged blade clearly shows a response significantly different from that 

observed for the healthy blades. For Case 6, the two healthy blades show similar behaviour, 

and the same can be noted for the blades with 6 mm slot damage. 

From Figure 57, it can also be observed that interference between two signals whose 

frequencies are slightly different exists. The low frequency periodic variation in the response 

magnitudes points to the presence of signal beating. In addition to that, response magnitudes 

tend to be decreasing with increasing damage size, which contradicts with what one would 

normally expect in the case of blades whose root stiffness values are decreasing. To 

investigate these observations, the data was analysed in the frequency domain. 
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Figure 56: FEA blade shape profiles illustration

 

Figure 57: Maximum deflection time domain responses for different blade combinations 
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Figure 58 illustrates responses in the frequency domain for each of the six cases.  For better 

visualisation, Figure 59 has also been included to show the responses of the blades 

individually. 

 

Figure 58: Tip deflection frequency domain responses for different blade combinations 

 

Figure 59: Rotor responses variation for different levels of damage in blade 2 
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From Figure 58 and Figure 59, a frequency component of 129.4 Hz can be observed. This 

corresponds to the 129.5 Hz excitation frequency imposed on the centroid node. With this 

excitation frequency being close to the blade natural frequencies, and the blades’ behaviour 

being very similar to lightly damped cantilever beams, a second component is observed at a 

frequency less than the natural frequency values. As this second response frequency is close 

to the excitation frequency, a beating phenomenon is therefore apparent in the time domain 

measurements presented in Figure 57. 

As the damage levels increase for the blades, the individual blade natural frequencies are 

further away from the excitation frequency, implying that with every damage increment the 

blades are operating further away from resonance. In this particular case, the magnitudes of 

response actually decrease regardless of the blades being more flexible at the roots. 

4.4.3.2 Blade SPCDs analysis 

SPCDs were determined as outlined in Section 4.2 for the blades with different damage 

modes. A frequency domain analysis of the shape descriptors was conducted, and given in 

Figure 60 are results for a system with four healthy blades and a 2 mm slotted blade. 

 

Figure 60: Case 2 SPCDs FFTs 

SPCD5 and SPCD6 are comprised of the out-of-plane responses, as explained in Section 4.3 

and Figure 48. From the results presented in Figure 60, SPCD5 and SPCD6 measurements in 

the frequency domain do not provide sufficient information to isolate the different blades with 

respect to damage mode. The in-plane related shape varying SPCDs (SPCD1 and SPCD2) 

can be noticed to have higher magnitudes compared to the local shape varying SPCDs. This 

can be attributed to the fact that similar to in-plane geometric modes that affect the 

rectangularity of the shape, the out-of-plane responses are essentially shape rectangularity 

related. The transformation described in Section 4.3 that involves rotation of blades about their 
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individual longitudinal axes to align responses with specific geometric modes can be employed 

to improve the quality of the results. Figure 61 shows the frequency domain measurements of 

Figure 60 transformed in this manner. The measurements are clearly less noisy for the in-

plane SPCDs, and for this particular case, the slight shift in the damaged blade (blade 2) 

frequency peaks for SPCD1 can be observed. As expected, the amplitudes of the SPCDs also 

change as the modified response-based shape variations now affect the original shape 

defining principal component scores differently. 

In an FEA setting, the coordinate transformation can be easily implemented. For the following 

investigation on classification, this transformation was conducted and SPCD1 measurements 

were considered. Further discussions on the coordinate transformation are presented in 

Section 4.4.3.4. 

 

Figure 61: Case 2 SPCDs FFTs for 50 rotated blades 

4.4.3.3 Clustering technique for blade classification 

For condition monitoring purposes, a clear visually expressive representation of the results is 

usually desirable. This allows for easier identification of different damage modes, and is 

especially beneficial for online monitoring applications were the information is required for 

quick machine diagnosis. 

One viable way to accomplish this will be through a data reduction coupled with data projection 

approach, conducted to implement a variable-based clustering of calculated SPCDs. The 

SPCDs calculated are temporal parameters composed of information that is dependent on the 

way response-based shape variations influence specific geometric modes. This means that 

applying a data reduction approach that defines additional dimensional parameters presents 

an opportunity for visually grouping or clustering SPCDs, based on any detected coherent 

patterns. Thus different SPCDs captured for different blades in a system can be distinguished 
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based on the behaviour of the blades. This can be accomplished through PCA applied as a 

data reduction tool to a time series data set.  

In the investigation conducted earlier on shape principal component analysis, PCA was being 

applied to a multivariate system of parameters (Fourier coefficients 𝑿) descriptive of the shape 

geometric characteristics. Different to establishing various shape variations associated with 

parameters in the multivariate system describing the shape, PCA as a data reduction tool 

focuses on truncating the original data 𝑿 (which will now be the determined SPCDs in this 

case) by only keeping a few of the first principal components (𝑿  
𝑛𝑒𝑤 columns). Since the 

maximum variance in a data set is captured by these first few principal components, one can 

plot them against each other in the commonly termed principal component diagrams (PC 1 vs 

PC 2 or PC 1 vs PC 2 vs PC 3) to create clusters that can be used to ultimately assess 

similarities in blade responses. 

In the case of blade classification using computed SPCDs presented in Figure 61, each SPCD 

is a univariate time series that will therefore only give a single cluster point for each blade on 

a principal component diagram. When using principal component diagrams to classify data, 

clusters consisting of multiple points are usually considered. Multiple points for each blade on 

the diagram not only result in effective visualization of clusters but contribute to a deeper and 

enhanced accurate understanding of the data in terms of detecting subtler patterns or 

structures of the clusters. The stability and robustness of clusters with regards to influence 

from outliers and fluctuations in the data can also be accurately assessed. This accurate 

assessment extends to the shape, density and spread of the clusters within the principal 

component diagram as well. To take advantage of a multiple point cluster analysis, the 

univariate SPCD time series must therefore be transformed into either a single multivariate 

series or a set of multiple univariate series. Transforming SPCD1 for instance into multiple 

univariate series can be done by cutting the time domain signal into multiple shorter signals 

before computing the FFTs to which PCA for clustering is ultimately applied. 

It is worth highlighting that the FFTs of short duration signals have poor frequency resolution, 

something which can make it difficult to distinguish between frequency components that are 

very close to each other. If the signals are too short, clustering results obtained by PCA data 

reduction of FFTs calculated for these short duration signals might not be able to accurately 

capture SPCDs response properties. This will in turn result in inaccurate blade damage mode 

classification using clustering. A compromise must therefore be made between the desired 

number of points in the principal component diagrams (the more points the clearer the 

clustering) and the acceptable duration of the signal considered for accurate FFT calculations 

(shorter signals have a diminished frequency resolution). 

To investigate this for a signal that has been cut into several segments, FFTs of the originally 

2 s long and 1000 Hz sampled signal were considered. Blade 1 SPCD1 time response signal 

was segmented accordingly to analyse four different scenarios – one segment or full-length 

response, ten segments, twenty segments and forty segments response. In this case, a full-

length signal corresponds to the 2 s long signal, and ten segments correspond to ten 0.2 s 

long segments of the original signal. Illustrated in Figure 62 are FFTs of the first segment of 

each scenario. Whilst the diminished frequency resolution can be noted for the segmented 

signals, it can be observed that 0.2 s long signals (10-segmented signal) can still capture the 

two frequency peaks characteristic of the original signal in the linear scaled plot (Figure 62(a)). 

The dB scaled plot (Figure 62(b)) is also included to better highlight the differences in the data. 
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Illustrated in Figure 63 are SPCD1 principal component diagrams for Case 2, in which 

clustering was considered for different number of segments for all five blades. For this specific 

case, it can be observed from Figure 63 that a chosen set of ten segments can clearly capture 

the differences in SPCD1 for different blades without the effect of segmenting the signal into 

shorter samples completely distorting the data. The effect of significantly diminished frequency 

resolution on clustering performance is evident in the twenty and forty segments’ results.  

 

Figure 62: Effect of signal segmentation - 50 rotated blade 1 SPCD1 FFTs, (a) linear scale, (b) dB scale 

It can be observed that for a set of ten segments, the damaged blade (blade 2) is well 

separated from the healthy blades. Ten segments are subsequently used henceforth for 

analysis of simulation-based measurements.  It should be highlighted that the presented 

analysis was conducted as a preliminary investigation during the development of the shape 

analysis-based condition monitoring technique. The viability of a clustering-based 

classification technique using 0.2 s long signals was done specifically for the simulation-based 

investigation. Further studies to establish the optimum frequency resolution for the highest 

quality of clustering can be considered in future work. 

Focusing on Figure 63(b), it can be observed that cluster points of the same blade lie in the 

same vicinity on the principal component diagram, with recognisable within-cluster variations 

(points for the ten segments are not coincident). This is expected as the periodic variation in 

amplitude due to the beating effect observed in Figure 57 mean that segmented signals are 

not identical. This translates to slightly different signal PCA based properties. Regardless, 
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clusters of segments for differently damaged blades can still be clearly isolated using the 

proposed approach. 

To quantitively identify the location of the clusters, the distance R of a cluster centroid from 

the origin can be considered. Figure 64 illustrates these distances. 

 

Figure 63: Case 2 SPCD1 projected in a 3D feature space (a) 1 segment, (b) 10 segments, (c) 20 segments 
and (d) 40 segments 

 

 

Figure 64: Cluster centroid distances from origin for Case 2 SPCD1 projected in a 3D feature space (a) 1 
segment, (b) 10 segments, (c) 20 segments and (d) 40 segments 
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4.4.3.4 Sensitivity testing and effects of shape coordinate transformation 

As highlighted, geometric modes 5 and 6 are associated with the out-of-plane shape 

variations. This means that for a blade vibrating out-of-plane, SPCD5 and SPCD6 are the ones 

directly influenced by the response shape variations. However, �⃗� 5 and �⃗� 6 variations are local 

in nature (blade smoothness), different from the out-of-plane global-natured response shape 

variation. Thus the sensitivity of SPCD5 and SPCD6 to the expected responses is consequently 

low, especially for small amplitude responses. To investigate this further, clusters for SPCD5 

and SPCD6 were plotted for different scaling factors of the out-of-plane responses. For a 

system with four healthy blades and a 2 mm damaged blade, Figure 65 illustrates the obtained 

clustering results. 

For this particular system with response amplitudes of about 4 mm, it can be observed from 

Figure 65 that out-of-plane responses need to be more than 8 mm for the damaged blade to 

be clearly distinguished from the healthy blades. For purposes of quantitively visualising the 

locations of the clusters, Figure 66 illustrating the cluster centroid distances from the origin 

has been included. 

In cases where the out-of-plane SPCDs cannot capture different blade behaviour, one can 

alternatively transform the blade profiles by rotating them about their longitudinal axes to allow 

the response to influence other shape variations, as highlighted in Sections 4.3 and 4.4.3.2. 

The effect of coordinate transformation on the SPCDs is illustrated in Figure 67, and the cluster 

locations in terms of the centroid distance from the origin given in Figure 68. As can be 

observed, transformation of blade profiles results in clearly distinctive calculated SPCD1 

clusters. 

 

Figure 65: Sensitivity of SPCD5 and SPCD6 with respect to response amplitude 
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Figure 66: Cluster centroid distances - Sensitivity of SPCD5 and SPCD6 with respect to response 
amplitude 

 

Figure 67: Effect of shape coordinate transformation on clustering classification 
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Figure 68: Cluster centroid distances from the origin - Effect of shape coordinate transformation on 

clustering classification 

4.4.3.5 Classification of blades with different levels of damage 

For classification of blades, the first investigation conducted was to test cluster inter-variability 

for blades that nominally have the same fault. Figure 69 shows the cluster formation for a 

system that has a mixture of differently damaged blades, some of which being similar (Case 

6, Table 9). As can be observed, blades of similar damage levels are clustered together, 

making it simple to identify blades exhibiting similar behaviour. Also illustrated in Figure 69 

are the spherical coordinates of each cluster’s centroid relative to the origin. These 

coordinates in the PC 1-2-3 space can be defined as α the counterclockwise angle in the PC 

1-2 -plane, β the elevation angle from the PC 1-2 plane and the already introduced R, the 

distance of the cluster centroid from the origin. Considering R, the blade with the most severe 

damage (Blade 4, with a 12 mm slot) has its cluster furthest from the origin. The angular 

locations of the clusters also confirm how closely arranged blades of similar damage levels 

are clustered. 

The trend pointing towards the deterministic nature of damaged blades response observed in 

Figure 69, whereby the clusters for the damaged blades are compact and different from the 

spread-out healthy blades’ clusters, is something that will have to be further investigated in an 

analysis focusing on the quality of clustering for this type of system. 

Investigations were then conducted to analyse how clusters of similarly arranged blades with 

different levels of damage appear. As can be observed from Figure 70, the damaged blades 

(blade 2 for each case) form a cluster separated from the healthy blades. Clusters calculated 

for healthy blades are located in the same vicinity, but they do not overlap point for point. As 

the blades respond to the excitation, the existing coupling effect contributes to the blade 



 
 

83 
 

dynamics not being essentially identical for similar blades. The clusters can still be clearly 

identified as being in the same vicinity regardless. 

 

 

Figure 69: SPCD1 projected in a 3D feature space for a system with two healthy blades, two 6 mm slotted 
blades, and a 12 mm slotted blade (H-6-H-12-6) 

 

 

Figure 70: SPCDs projected in a 3D feature space for systems with a single damaged blade 
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Figure 71: Cluster centroid distances to origin - SPCDs projected in a 3D feature space for systems with 
a single damaged blade 

The damaged blade clusters can also be observed to be shifting away from the healthy blade 

clusters as the levels of damage increase, as highlighted by the centroid distance changing 

from 0.0145 for 2 mm damage level to 0.0503 for 8 mm damage level in Figure 71. This is 

investigated further in Section 4.4.3.6. 

In Figure 72, healthy blade clusters (only one for each case) for different cases have been 

presented on the same plot to further test the existence of global inter-blade interactions in 

the analysed FEA model. 2D projections for PC 2 vs PC 3 and PC 1 vs PC 2 for the same 

results have been shown. It can be observed in Figure 72 (a) that the healthy blade clusters 

for similarly arranged blades (Cases 2 to 5) are essentially in the same location (for PC 2-3 

plane) even though the systems’ levels of damage are different. Case 6 with a completely 

different blade arrangement has its healthy blades oriented in a different manner. Figure 72 

(b) illustrates that the locations of the clusters for the similarly arranged blades are actually 

shifted from each other when viewed in a different plane. To sum up these observations, a 

conclusion can be made that the interaction between blades connected by a MPC is also 

detectable when a clustering approach is used classify the SPCDs.  

It is worth noting that for a particular case, blades in the same state of damage are still 

clustered together regardless of the global dynamics of the system (Figure 69 and Figure 70). 

The shift in the location of healthy clusters as a result of changes in the global dynamic 

behaviour however highlight that in a practical setting, it might be difficult to anticipate the 

location of healthy or damaged blade clusters. This can be addressed through the use of 

supervised classification techniques, in which baseline data for training the system will have 

to be collected. In those cases, the approach can be implemented on the basis of monitoring 
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cluster deviation from a pre-captured or predefined stage in the life of a system. Simulations 

analysing captured response data and FE modal updated models can also be an alternative 

solution for identifying or classifying blades.   

 

Figure 72: Inter-blade interaction dynamic effects (healthy blade, blade 1, clusters for different cases) 

 

4.4.3.6 FEA based damage progression 

In terms of the relationship between damage level and cluster location, Figure 70 showed that 

clusters get more separated and shift away from the healthy location as the levels of the 

damage of the blades they correspond to increases. This can be a useful tool for monitoring 

progressing damage in the blades. To complement the argument on shifting cluster location 

with increasing damage, Figure 73 considers the location of damaged blade clusters for all 

the cases presented in Figure 70. Damaged blade 2 clusters (2 mm, 4 mm, 6 mm and 8 mm) 

are shown on the same plot. For better visualisation, only one single healthy blade cluster for 

the case H-2-H-H-H is shown. This is also assumed to be the healthy state for all the damage 

cases considered. In this illustration, the assumption to neglect the variable inter-blade 

interactions is made based on the results presented in Figure 72, where the cluster centroids 

of similarly arranged blade cases can be noted to be reasonably close to each other. Figure 

73 shows that the blade clusters are separated from the healthy blade location with increasing 

damage level. 

Whilst it is clear that blade clusters are well separated, it is important to be able to quantitatively 

differentiate the blades for online condition monitoring purposes. The spherical coordinates α, 

β and R are considered. These coordinates can be used as indicators monitored to track the 

change in dynamics of blades as damage progresses. 

Figure 74 shows that α and the cluster centroid distance from the origin can be used as an 

indication of the severity of damage in a blade. For a physical system whose finite element 

model has been successfully updated, simulations and investigations to identify the specific 

location of a cluster where system failure is expected to occur can provide crucial information 

necessary for predicting remaining useful life of a blade. 
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Figure 73: FEA blade 2 progressing damage illustration using SPCDs clustering 

 

Figure 74: Monitoring blade 2 damage progression by tracking the position of clusters 

In a practical setting, image sequences of the blades can be taken at regularly spaced intervals 

and the identifiers captured and logged for condition monitoring purposes. With numerical 

investigations conducted in a controlled FEA environment, an experimental study presented 

in the following section was then conducted to implement the shape analysis approach for a 

rotating physical system. 

4.5 Setting up and calibrating a stereo-photography system 

To be able to extract 3D shape information of a physical rotor, a pair of high-speed cameras 

must be employed. The cameras should be set up at a standoff distance and angle such that 

the entire test turbine is in the FOV of both cameras.  A typical system setup is given in Figure 

75. 
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Figure 75: Stereo-photography system setup 

The baseline and standoff distance must be chosen accordingly. Not only do they have to 

allow the test turbine to be in the FOV, but it also affects how effectively depth can be 

calculated from the stereo images. Generally, a shorter baseline performs better for small 

standoff distances and vice versa. Whilst correspondence estimation of the location of a point 

in the different views is easier with a small baseline, the uncertainty is greater. At the same 

time, a larger baseline allows more accurate depth determination, but with reduced 

corresponding certainty. This is important in cases where a smooth full field depth with 

constant depth accuracy over the entire volume must be determined. 

After the cameras have been set up properly, the stereo system must be calibrated for both 

spatial and stereo correction. This can be typically done using a calibration grid consisting of 

a pattern suitable for the image processing software of choice. Spatial or model calibration 

focuses on correcting each camera for perspective errors and lens distortion. Internal camera 

parameters that include the focal length and the optical centre are obtained from this 

calibration. The camera model information can then be used when stereo calibrating the 

system. 

Stereo calibration is necessary to rectify the images so that the correspondence between 

similar points in the images captured by the different cameras can be established. Image 

rectification ensures that the set of images are vertically aligned, which simplifies stereo 

correspondence of pixels of interest. A disparity value, which indicates the horizontal 

difference in position of a particular pixel in the camera views, can then be used to calculate 

the relative depth of that pixel. When using a LabVIEW NI Vision toolkit to calibrate the system, 

the procedure illustrated in Figure 76 is used. 

The left and right images of the target are corrected for distortion using the spatial calibration 

information. Stereo calibration is then done through rectification, and corresponding points in 

the different camera views matched. Depth is then computed using the determined disparity 

values. 
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Figure 76: Procedure for depth computation using stereoscopic camera images 

Stereo calibration results include the rotation matrix Rm (denoting coordinate system rotation, 

or rotation transformation between the two cameras) and the translation vector Tm (denoting 

coordinate system translation between the cameras). These matrices are used to rectify the 

images to compensate for the camera misalignment.  

For a system with a baseline of 𝑏, camera focal length 𝑓, 𝑋𝐴 the x-axis of a camera and 𝑍𝐴 the 

camera optical axis, a real-world point 𝑃 at location (𝑋, 𝑌, 𝑍) will be projected at 𝑢𝐿 and 𝑢𝑅 in 

the left and right camera respectively. This is illustrated in Figure 77. In the figure, cx and cy 

represent the camera optical centres. 

X-coordinates of the points 𝑢𝐿 and 𝑢𝑅 are calculated using Equations (30) and (31). 

𝑢𝐿 =
𝑓𝑋

𝑍
 (30) 

𝑢𝑅 =
𝑓(𝑋 − 𝑏)

𝑍
 (31) 

The depth 𝑍 of a pixel at point 𝑃 of interest can then be determined from the disparity D, 

focal length f and baseline b using Equations (32) and (33). 
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Figure 77: Stereo correspondence of a point observed from two cameras 

𝐷 = 𝑢𝐿 − 𝑢𝑅 =
𝑓𝑏

𝑍
 (32) 

𝑍 =
𝑓𝑏

𝐷
 (33) 

4.6 3D system experimental setup description and specifications 

The stereo-photography system was set up as indicated in Figure 75. The camera angle of 

separation was adjusted to have the centre of the blades located at the centre of each image. 

A camera standoff distance, d = 140 cm, and the baseline distance, b = 11.5 cm were used. 

For the investigation conducted, the baseline and standoff distance were chosen based on 

space availability on the test bench.  

High-speed IDT NX8-S2 cameras were used at their maximum resolution of 1600×1200, and 

images captured at a frame rate of 4000 FPS. 25 mm lenses were employed, and the exposure 

was set at 248 µs. Table 10 gives the internal parameters for the cameras obtained during 

spatial calibration, for which fx and fy are foci lengths along the horizontal and vertical 

directions respectively. The parameters in the table are shown in Figure 77. 

For stereo calibration and image rectification, the following 𝑅𝑚 and 𝑇𝑚 matrices were obtained.  

𝑅𝑚 = [
0.9915 0.000619 0.087663

−0.00110 0.999984 0.005498
−0.08765 −0.00557 0.996135

], 𝑇𝑚 = [
−11.366
−1.233
0.343

] 
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Table 10: Cameras spatial calibration parameters 

Left camera focal 

length (pixels) 

Left camera optical 

centre (pixels) 

Right camera focal 

length (pixels) 

Right camera optical 

centre (pixels) 

fx fy cx cy fx fy cx cy 

2950.0 2948.6 847.9 615.5 2957.6 2956.3 815.4 627.1 

 

The correlation between points from the left and the right images is dictated by these two 

matrices. For a perfectly aligned system, the rotation matrix 𝑅𝑚 will be an identity matrix, and 

the translation matrix 𝑇𝑚 will be zeros except for the first entry (baseline distance, x-axis 

direction). By multiplying left image xyz-coordinates with 𝑅𝑚 and then adding 𝑇𝑚, the two 

matrices can thus transform the left image to overlap with the right image for instance. 

Table 11: Camera calibration quality parameters 

Maximum 

projection error 

(pixels) 

Calibration          

quality (%) 

Maximum 

rectification error 

(pixels) 

Rectification    

quality (%) 

0.4075 0.9817 0.3910 0.9898 

 

Table 11 indicates the calibration quality information. A calibration is considered valid if the 

quality is greater than 0.7, making 0.9817 acceptable (National Instruments, 2018). The 

maximum rectification error indicates how well the rectified images are aligned, and is 

acceptable when less than 1.5. The maximum projection error is computed as the error 

between left image grid points projected onto the right image and the original points in the 

right image. Perfect rectification is obtained when the rectification quality is 1, and a value of 

0.9898 was considered as acceptable. Moreover, the physically measured baseline distance 

was 11.5 cm (standoff distance 140 cm), which is quite close to the translation x-axis distance 

between the cameras noticed in the translation vector (11.4 cm). Thus the calibrated stereo 

system was considered accurate enough to use for the investigation.  

The bladed system analysed was driven by an electric motor with a maximum rotational speed 

of 1470 rpm. A Computer Aided Drawing (CAD) rendering of the experimental setup is 

illustrated in Figure 78(a). Blade excitation was achieved through the use of air jets mounted 

behind the blades, as indicated in Figure 78(b). 

The 5 bladed system analysed was composed of 3 damaged blades and two healthy blades. 

Of the damaged blades, one of them had two machined slots, and the other two just a single 

slot on one side of the blade. The machined slots resembled cracks at the root of the blade. 

The aluminium blade geometries in millimetres as given in Figure 50, and their vibrational 

characteristics can be obtained from the work by Church (2015). 

Two rotational speeds of 650 rpm and 1000 rpm were considered for this investigation. The 

blades were arranged in an alternating healthy-damaged blade manner. Owing to the small 
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crack sizes and the fact that they are aluminium, unbalance effects were not considered. For 

the rest of the document, blade 1 corresponds to a blade with two cracks, blade 2 a healthy 

blade, and blade 3 a blade with a single crack. 

 

Figure 78: (a) CAD rendering of the experimental setup (Church, 2015), (b) excitation and blade markers 
setup  

When using a disparity-based approach to compute the depth of a particular point as given by 

𝑢𝐿 and 𝑢𝑅, it is critically important that the same point is considered in both the left and the 

right images. In a practical setting where image edge detection algorithms are used to extract 

contours, computational depth errors resulting from imperfectly associating corresponding 

points in the stereo-captured 2D contours can be expected. The severity of the effect these 

errors will have on the ultimately computed 3D contour is also expected to increase with 

decreasing out-of-plane responses. To illustrate this, Figure 79 shows the sequence of steps 

necessary to conduct typical edge detection for the rotor, performed using National 

Instruments Vision Assistant image processing software.  

 

Figure 79: Edge detection procedure (a) raw image, (b) brightness, contrast and gamma adjustment, (c) 
hub masking, (d) contour extraction 

Detected edges for one of the blades can be shown in Figure 80. As can be observed, the 

resolution of captured images for this particular setup is not fine enough to extract smooth 

contours for analysis. The rough contours means that the possibility of significant errors 

resulting from imperfectly associating corresponding points in the stereo-captured images is 

high. Thus for a system with small out-of-plane responses, the noisy nature of computed 3D 

contours can easily mask the small shape deformations making it impossible to accurately 

detect out-of-plane shape variations. The resolution of captured images should at least be 

high enough for contour corners to be clearly identifiable, so that accurate corresponding point 

matching can be conducted. In an investigation, the size of the specimen, magnitudes of 

responses, and set camera resolution will therefore contribute to the quality of computed 3D 

contours. 
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As evident in the computed 3D contours illustrated, the blade responses in this particular 

investigation were actually very small. In efforts to minimize possible depth computational 

errors when developing and testing the viability of the proposed shape-based condition 

monitoring approach, only the three blades with markers attached on their edges were 

considered (Figure 78(b)). By correctly matching and connecting corresponding left and right 

image markers, improved quality blade contours for three out of the five blades in the system 

could be constructed for shape variation analysis. This is illustrated in Figure 81. It is worth 

mentioning that software packages such as TEMA automotive motion analysis for contour and 

volume analysis already exist, and one can employ these for easier and accurate contour 

extraction using edge detection from raw images. 

 

Figure 80: Edge detection based contours 

 

Figure 81: (a) Left and right image contours, (b) Corresponding points matching for a single blade 
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In using a stereo camera system, two in-plane contours from the left and the right cameras 

are available at each captured timestamp. Either of these contours can be chosen to be the 

one onto which the calculated depth values are imposed in constructing a 3D profile of the 

blade at that particular timestamp. Using Equation 32, the depths of the different contour points 

were determined, and the depth values imposed on the left image contour.  For one typical 

stage in a sequence of captured images, Figure 82 shows a 3D representation of computed 

contours for the three blades with markers attached to them. In this investigation, it is expected 

that the blade operational deflection shapes will be similar to the first bending mode (low 

rotational speeds considered). Therefore the blade profile can be approximated by a smooth 

nonlinear quadratic surface fitted using the discrete blade contour points. 

 

Figure 82: Blades fitted quadratic nonlinear contours 

4.7 Experimental investigations 

4.7.1 Single point responses using 3DPT 

To first identify if there were any differences in the blade responses, data was analysed for a 

single middle point on the tip of each blade using 3DPT and the results in Figure 83 were 

obtained. 

 

Figure 83: Single point 3DPT blade responses 
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As observed, the out-of-plane blade responses are significantly composed of the 10.8 Hz and 

the 16.7 Hz harmonic components corresponding to the 650 rpm and 1000 rpm rotational 

speeds respectively. The out-of-plane first bending natural frequencies for blades 1, 2 and 3 

were determined to be 108 Hz, 127 Hz and 119 Hz respectively (Church, 2015). For each 

blade, significant peaks are expected when the rotational speed harmonics coincide with these 

natural frequencies. This can be observed at 650 rpm for blades 1 and 3, and at 1000 rpm for 

blade 2 (Figure 83). This does illustrate that the blades did have noticeably different out-of-

plane responses owing to the different blade damage modes.  

4.7.2 Shape based dynamic analysis 

Considering the SPCDs determined as outlined in Section 4.2, a frequency domain analysis 

of the time synchronous averaged responses out-of-plane descriptors (5th and 6th SPCDs) 

resulted in the measurements given Figure 84. Data cursors for some of the prominent 

frequency peaks have been added for easier identification. 

 

Figure 84: Time synchronous averaged SPCD frequency responses 

The expected 108 Hz for blade 1 and the 127 Hz for blade 2 can be identified for some of the 

650 rpm and 1000 rpm measurements, and differences are noticeable in the blade responses. 

However, the small out-of-plane blade vibrations do not result in significant shape variations 

easily identifiable from the noise-masked responses. 

In the case of a rotating structure, a transformation to an angular domain can be used to create 

multiple univariate SPCD time series, a highlighted requirement for clustering using principal 

component analysis. By considering each revolution of the blades as a separate signal, one 

can perform clustering on the data for classification purposes. Transformation of these short 

duration signals into the frequency domain before clustering can be neglected, analysing the 

SPCDs directly in the time domain in a way similar to the commonly used spike sorting signal 
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processing technique described by Ge & Farina (2013), Caro-Martín et al. (2018) and Souza et al. 

(2019). In spike sorting, spikes generated by various neurons are detected and sorted to 

differentiate and identify the neurons generating them. A single microelectrode signal from the 

brain is typically composed of spikes from a number of neurons. After detecting, isolating and 

aligning the peaks of the spikes in that particular signal, a sorting process that involves PCA 

data reduction of the spike distribution is conducted. Each spike detected corresponds to a 

point on the principal component diagram, and distributions of the detected spike sets form 

the clusters.  

Two investigations were conducted, one in which the blades were positioned with faces in the 

xy-plane, and the other one with blades staggered at 300. For a given system rotational speed, 

signal segments for all three blades’ SPCDs were combined to form a set of multiple univariate 

SPCD time series. Thus if there were N revolutions with a period of t s in a particular test, a 

single blade data set would have N-t seconds time signals, making the combined set a three 

times N set of signals to which the standard PCA data reduction and clustering described in 

Section 4.4.3.3 is applied. 

As highlighted in the calculation of 𝑿  
𝑛𝑒𝑤, Fourier coefficients 𝑒𝑛 and 𝑓𝑛 capture z-plane contour 

characteristics (Figure 48). Similar to the presented FEA, the experimental investigation where 

the blade profiles are in the xy-plane with bending operational deflection shapes which 

essentially comprise of out-of-plane responses are expected. This implies that the blade 

responses directly influence SPCD5 and SPCD6. Results for 650 rpm and 1000 rpm are given 

in Figure 85 and Figure 86, which show that the positions of clusters differ for different blade 

damage levels. Unlike the FEA investigation where the out-of-plane response magnitudes 

were not significant enough for SPCD5 and SPCD6 to provide easily distinguishable clusters, 

the responses in the experimental study clearly capture the differences in behaviour without 

the need for response amplitude scaling. The differences in the position of clusters for different 

rotational speeds (for example SPCD5 for 650 rpm and 1000 rpm) highlights that the system 

dynamics affect how the clusters are positioned. This is expected, since the rotational speed 

imposed on the system directly influences the blade operational deflection shapes. 

Illustrated in Figure 87 are results for the 3D projections at 1000 rpm for blades with faces 

aligned with the xy-plane, and for blades staggered at 300. As can be observed by comparing 

SPCD1 and SPCD2, clusters for blades that are staggered to influence shape variations in the 

xy-plane are more compact and better isolated. This is in agreement with the claims made in 

the FE investigation where the applicability of the technique was being investigated in a 

controlled environment. 
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Figure 85: 650 rpm and 1000 rpm SPCDs 5 and 6 projected in a 3D feature space 

 

Figure 86: Cluster centroid distances from origin - 650 rpm and 1000 rpm SPCD5 and SPCD6 projected in 
a 3D feature space 

As expected, Figure 87 also captures how staggering the blades minimizes the influence blade 

responses have on the out-of-plane based SPCDs. This is clearly illustrated in the 3D 

projected data (Figure 88), where the clusters for SPCD5 and SPCD6 can be observed to be 

either closer or even overlapping with each other for the 1000 rpm measurements. 
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Figure 87: 1000 rpm SPCDs projected in a 2D feature space for 00 and 300 stagger angle 

 

Figure 88: Staggered blades 1000 rpm SPCD5 and SPCD6 projected in a 3D feature space 

For a particular system, clusters can still be indistinguishable visually as a result of the 

condition and settings adopted for that system. These settings include the blade orientation, 

rotational speed, blade condition and camera positioning. In those cases the proposed 



 
 

98 
 

approach can still be valuable for monitoring blade dynamics. As the state of the machine 

changes, the behaviour can be monitored by analysing how the clusters shift from the original 

(initially undistinguishable) positions. When using this technique, it is necessary to understand 

the form of the shape under consideration, and how the structural response affects that shape. 

This will aid in identifying which SPCDs to monitor, and how the data can be transformed for 

better classification of different responses or damage modes. 

As highlighted earlier, the FEA conducted was done for a model that was not modal updated 

according to the experimental setup. The operational conditions of the two systems also differ. 

Whilst it is not possible to quantitatively and qualitatively compare the results obtained from 

the two investigations, concepts surrounding shape-based condition monitoring can be 

highlighted. The FEA based investigation clearly illustrated that damage progression in a 

system can be monitored for the blades (Figure 74). This is expected to be applicable in a 

physical rotor system, and the basis for establishing models describing the relationship 

between the amount of cluster shift and the level of damage using a modal updated FEA 

model has been created. 

4.8 Application to wind turbines 

In this investigation, wind turbines have been adopted as the structures of interest to motivate 

the study. Being outdoor large structures with significant rigid body motions, they require the 

use of non-interruptive measurement technologies to capture data that can be used to 

characterize their behaviour for condition monitoring purposes. Because the investigations 

conducted in this study were not done on an actual outdoor full scale wind turbine, it is 

necessary to address the applicability of the technique to an actual wind turbine in terms of 

feasibility and the form of measurements one would expect in that scenario. 

As highlighted in Section 1.2.2.2 describing the use of optical techniques to capture dynamics 

of rotating structures, photogrammetry has been successfully used to analyse outdoor wind 

turbines. In the studies done by Winstroth et al. (2014) a 3.2 MW full-scale wind turbine was 

successfully analysed using DIC. Cameras had to be separated by 105 m and situated about 

205 m in front of the turbine blades to capture the data. In another study by Ozbek et al. (2010), 

a 2.5 MW wind turbine with a diameter of 80 m diameter was analysed using CCD cameras 

at a stand-off distance of 220 m. Displacements with an accuracy of ±25 mm could be 

identified. In both these investigations, prior surface preparation had to be done, and tracking 

of either a speckle pattern (DIC) or markers (3DPT) conducted. The image processing 

required to extract the boundary shape of a turbine blade is much less complicated compared 

to the processing required to track and correlate specific pixels on the surface of a blade. The 

quality of the images required for the global-natured shape extraction does not have to be as 

high as the quality of images required for DIC or 3DPT. Taking into account that successful 

measurements can be captured for DIC and 3DPT, it is reasonable to claim that 

implementation of a shape-based technique under similar conditions will not only be feasible, 

but also easier. 

The approach proposed in this study considered a 300 mm diameter system being rotated at 

speeds as high as 1000 rpm in a laboratory setting. A frame rate of 4000 FPS was used for 

the cameras. Maximum out-of-plane displacements of magnitudes less than 2 mm were 

translated to usable shape variation data. In the study conducted by Winstroth et al. (2014), 

the 3.2 MW turbine has a diameter of 80 m, images were captured at 30 FPS, and out-of-

plane deflections with amplitudes around 800 mm could be captured. Using the experimental 
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data in this study as a baseline, a rotor system with a deflection-to-diameter ratio of about 

0.007 (2 mm/ 300 mm) can be successfully investigated using the proposed shape analysis 

approach. A higher deflection-to-diameter ratio means that the shape variations in the system 

are even more significant for them to be easily detectable. For the 3.2 MW turbine, the 

deflection-to-diameter ratio can be calculated to be about 0.01 (800 mm/ 80000 mm). This is 

about 1.4 times the deflection-to-diameter ratio that could be detected and consequently used 

to successfully classify different blade damage modes. Thus it is reasonable to assume that 

the proposed approach can be successfully used to analyse full scale wind turbines out-door. 

Like all condition monitoring systems, the quality of data captured significantly influence the 

feasibility of the approach, which in this case are images. In the case of wind turbines where 

the environmental conditions cannot be controlled, poor lighting conditions might make it be 

difficult to accurately capture the turbine blade profiles, thereby negatively affecting the 

accuracy of the results. As the turbine blades rotate, the camera captured blades’ profile 

overlay with the support tower profile at the vertical downward angular position. This can also 

compromise the captured measurements. Sophisticated image processing techniques such 

as Artificial Intelligence (AI) methods will have to be employed to reconstruct and fill in possible 

blade missing edges for incomplete contours, and interpolation techniques will have to be 

used to compensate for blade angular positions where the cameras do not capture the blades 

completely. These AI methods such as Active Shape Models (ASM) and Active Appearance 

Models (AAM) can automatically adjust and fit shapes to imaging data, thus allowing for 

accurate shape variation capturing and analysis. 

4.9 Chapter conclusion 

This chapter focused on the extension to a 3D environment, of the 2D shape analysis 

approach introduced and investigated in Chapters 2 and 3. The determination of 3D shape 

principal components of a rectangular shape representing the profile of a single blade on a 

typical axial bladed system is presented. How each 𝑽 affect the general form of the shape is 

also demonstrated, and two investigations (numerical and experimental) conducted to 

illustrate the applicability of a shaped based procedure as a condition monitoring tool for 

rotating turbine blades.  

The FEA based investigation conducted confirmed variations in the natural frequency as the 

levels of damage in the blades were being increased. SPCDs variation analysis for a system 

of blades connected together via multipoint constraints and a central node undergoing 

displacement excitation at a frequency in the range of the system’s first bending mode natural 

frequencies was conducted. Coupled with a clustering approach of the SPCDs’ FFTs, it was 

illustrated that a shape-based approach can be used to classify blades according to their levels 

of damage. In terms of increasing levels of damage, monitoring the location of the clusters 

proved to be a viable way to analyse and identify progressing damage in the blades, as the 

centre of each cluster digresses from the original location with damage.   

Whilst the natural frequency is a parameter that is widely and conventionally used to monitor 

changes in the state of a machine, its applicability in a physical environment where point-wise 

contact sensors have to employed to capture the data can be limited. In terms of simply being 

able to detect changes in the behaviour of a structure in a non-intrusive manner applicable 

whilst a machine is in operation, the potential of a shape-based approach was demonstrated 

in the numerical investigation presented.  
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To apply the same concepts in an experimental setting, 3D shape contours extracted from 

stereoscopic images captured using calibrated high speed cameras were considered. Three 

blades at different states of health were analysed through investigating variations of their 

calculated SPCDs. In the experimental investigation where the blades were actually rotating, 

clustering to classify the blades was conducted via PCA of revolution segmented SPCD data. 

This was successfully implemented to isolate differently behaving turbine blades. In 

comparison to point-wise out-of-plane blade responses, it was illustrated that the small 

amplitude blade responses characterized with low SNRs can better be analysed and classified 

using the proposed shape order-based approach. The shape-based measurements captured 

in a contactless manner are multi-dimensional in nature, making it possible to manipulate the 

data through rotational transformations for example. This was successfully illustrated in the 

experimental investigation of 30o staggered blades, in which the shape principal components 

that influence the in-plane geometric mode features could be engaged to better identify blades 

behaving differently. 

In order to accurately determine and verify relationships between damage severity and blade 

cluster location rate of variation, a finite element modal updated system of the rotor coupled 

with experimental investigations will have to be employed. The determined parameters can 

then be incorporated in an analysis to predict blade dynamic behaviour at different stages of 

damage, and at various operating conditions. This can also be useful in determining the 

remaining useful life of the blades. Such an investigation remains to be explored in the future 

as a next phase in adopting shape analysis as a condition monitoring tool. 

In terms of the applicability of the proposed measurement technique, preliminary 

considerations based on the size of a typical full scale turbine point towards a successful 

implementation of the approach in an out-door setting. It should be highlighted that the 

proposed clustering technique is expected to be more valuable in those cases were 

progressing type of faults are an issue. These may include misalignment, unbalance from ice 

loading for instance, and bolt loosening. In these cases, a digressing cluster identified for a 

particular blade for measurements taken at different time intervals can be a valuable indicator 

of progressing damage, and the rate at which the fault is progressing.    
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CHAPTER 5: A COMPARATIVE STUDY OF THE PERFORMANCE OF 

PCA AND KPCA  

5.1 Introduction 

This chapter focuses on investigating ways by which classification of different blade damage 

modes can be improved. If the technique is to be implemented in the field to investigate full 

scale wind turbine blades, the system considered should be robust to noise and able to reliably 

classify blades at various operating conditions.  In this chapter, the concept of kernel principal 

component analysis is evaluated and applied to the time domain SPCDs data. The 

performance of the system if SPCDs multi-domain statistical features are considered instead 

of the typical time domain SPCDs is evaluated. Finally, how robust the system is to noise is 

investigated. 

5.2 Data classification performance evaluation 

To evaluate how well a technique can distinguish between different behavioural states of a 

machine, two parameters, namely the intra-class scatter 𝑆𝑤, and inter-class scatter 𝑆𝑏 are 

calculated using Equations (34) and (35), (Gharavian et al., 2013). 

𝑆𝑏 = ∑(𝜇𝑖 −  𝜇)(𝜇𝑖 −  𝜇)𝑇

𝑐

𝑖=1

 (34) 

𝑆𝑤 = ∑ ∑ (𝑓𝑘 − 𝜇𝑖)(𝑓𝑘 − 𝜇𝑖)
𝑇

𝑓𝑘∈𝐶𝑖  

  
𝑐

𝑖=1

 (35) 

In the equations above, 𝜇𝑖  is the average value of a class 𝐶𝑖 = (1, 2, . . . , 𝑐), 𝜇 the total average 

and 𝑓𝑘 the features extracted by PCA or KPCA. Essentially, a smaller intra-class scatter and 

a larger inter-class scatter represent better clustering classification performance. The quality 

of the clustering for an investigation can then be defined as the ratio 𝑆𝑏/𝑆𝑤. In this chapter, 

because results are included for both the 2D and the 3D feature spaces, attention is focused 

on inter-class and intra-class properties of the clusters instead of the centroidal locations 

introduced in Chapter 4. 

The results presented in Chapter 4 were determined for 650 rpm and 1000 rpm. For these two 

rotational speeds, some of their harmonics almost coincided with the bending mode shapes 

of the blades, which are 108 Hz, 127 Hz and 119 Hz for blades 1, 2 and 3 respectively (Church 

(2015)). What this means is that the blade out-of-plane responses were quite pronounced and 

the shape variations more distinct. To evaluate how the approach performs for a rotational 

speed that has potentially hidden shape variation characteristics, a rotational speed of 1460 

rpm was considered.  

SPCD5 and SPCD6 for the three rotational speeds are displayed in Figure 89. Whilst all SPCDs 

show clearly isolated clusters for the three blades for 650 rpm and 1000 rpm, the proposed 

PCA approach cannot classify the blades for SPCD6 at 1460 rpm. As highlighted in Section 

1.2.4, complex system responses typically consists of nonlinearly related features. Being a 

linearly based transformation approach, PCA can thus result in loss of these features, making 

system classification impossible. To investigate if this contributes to the poor performance of 
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the proposed approach at 1460 rpm, KPCA as employed. Non-linear relationships between 

different SPCDs time segments (per rotation) were expected for all three rotational speeds. 

 

Figure 89:  PCA SPCD5 and SPCD6 projected in a 2D feature space for 650 rpm, 1000 rpm and 1460 rpm 

Three different investigations were conducted to develop post-processing approaches that are 

more robust and more suitable for processing shape analysis-based data. These are listed 

below. 

(i) PCA vs KPCA evaluation for time domain SPCDs 

(ii) raw data (time domain SPCDs) analysis vs multi-domain feature-based analysis 

(iii) noise sensitivity evaluation for PCA and KPCA 

5.2.1 PCA vs KPCA  

The choice of the kernel parameter does influence KPCA results with regards to the 

contribution of the first principal component. This contribution can be in terms of the 

percentage of the first eigenvalue variance for instance. According to Nguyen & Golinval 

(2010), the Gaussian kernel function introduced in Equation (22) is known to be flexible when 

it comes to the choice of the kernel function width. A width less than one or even a much larger 

value can be adopted. In this investigation, a width of three was arbitrarily chosen for the 

KPCA. The results obtained for projections in the 2D and 3D feature spaces are given in Figure 

90 and Figure 91 for 650 rpm rotational speed. 



 
 

103 
 

 

Figure 90: 650 rpm PCA and KPCA SPCD5 and SPCD6 projected in a 2D feature space 

 

Figure 91: 650 rpm PCA and KPCA SPCD5 and SPCD6 projected in a 3D feature space 
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For 650 rpm, using the non-linear kernel transformation of the SPCDs resulted in more 

compact clusters in which the data points are arranged in a linear manner (SPCD6). The 

improved clustering is better visualized in the 2D feature space (Figure 90). 

 

Figure 92: 1000 rpm PCA and KPCA SPCD5 and SPCD6 projected in a 2D feature space 

 

Figure 93: 1000 rpm PCA and KPCA SPCD5 and SPCD6 projected in a 3D feature space 
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Results for the 1000 rpm rotational speed are given in Figure 92 and Figure 93. As illustrated 

below, at 1000 rpm KPCA does not seem to significantly improve the clustering in the 

measurements visually. A quantitative analysis presented later on will give a better insight in 

the performance of PCA and KPCA at 1000 rpm. 

 

Figure 94: 1460 rpm PCA and KPCA SPCD5 and SPCD6 projected in a 2D feature space 

 

Figure 95: 1460 rpm PCA and KPCA SPCD5 and SPCD6 projected in a 3D feature space 
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Illustrated in Figure 94 and Figure 95 are results for 1460 rpm. At 1460 rpm, it can be observed 

that KPCA significantly improved blade cluster separation. For SPCD6, PCA is unable to 

properly cluster the data for blade visual identification. This can be attributed to the low SNR 

of SPCD6 at that speed. Unlike the rotational speeds at 650 rpm and 1000 rpm that have 

harmonics that nearly coincide with the out-of-plane blade bending natural frequencies stated 

above, at 1460 rpm the blade responses are not that well defined. Thus from the results 

presented, it is evident that the blade behaviour is better characterized by an approach that 

can capture the nonlinear relationships between the different shaft revolutions. 

To better evaluate the performance of PCA vs KPCA, the clustering parameters ratio 𝑆𝑏/𝑆𝑤 

was determined for the three rotational speeds investigated. Results obtained are shown in 

Figure 96. 

As can be noted from Figure 96, KPCA outperforms PCA for 650 rpm SPCD5 and SPCD6, and 

also 1460 rpm SPCD6 in terms of overall clustering. Overall clustering performance considers 

the intra-class parameter (𝑆𝑤). In terms of separation of clusters for accurate classification of 

different blades with varying damage, the inter-class cluster values can be argued to be of 

more importance than the spread of data points within a cluster. It can be noted that the 𝑆𝑏 

values are larger for KPCA compared to PCA for all the rotational speeds. This applies to both 

SPCD5 and SPCD6, as illustrated more clearly in Figure 97. 

 

Figure 96: PCA and KPCA clustering performance for time domain SPCDs raw data 
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Figure 97: Sb based PCA and KPCA clustering performance for time domain SPCDs raw data 

5.2.2 Multi-domain Statistical Features (MSF) based evaluation 

Advantages of dealing with statistical features over the raw time signals were discussed in 

Section 1.2.5. In investigating if these ideas extend to the proposed approach, typical time 

domain statistical features were extracted from the SPCD raw response data and used as the 

feature vectors for either PCA or KPCA. These are given in Table 12 (He et al., 2007). 

Table 12: Time domain statistical features 

Feature Formula Feature Formula 

Absolute mean 

value, |�̅�| 
1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

 
Variance, 𝐷𝑥 1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖−1

 

Maximum peak 

value, 𝑥𝑝 

𝑚𝑎𝑥|𝑥𝑖| Kurtosis, 𝜅𝑇 1

𝑁
∑𝑥𝑖

4

𝑁

𝑖=1

 

Root mean square, 

𝑥𝑟𝑚𝑠 √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 

Crest factor, 𝐶𝑓 𝑥𝑝

𝑥𝑟𝑚𝑠
 

Square root value, 

𝑥𝑟 (
1

𝑁
∑√|𝑥𝑖|

𝑁

𝑖=1

)

2

 

Shape factor, 𝑆𝑓 𝑥𝑟𝑚𝑠

|�̅�|
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Using the instantaneous phase calculated using the Hilbert transform as explained in Section 

1.2.5, circular domain features were determined using equations given in Table 13 (Martin et 

al. (2010)). 

Table 13: Circular domain statistical features 

Circular statistical feature Formula 

pth-order sample trigonometric moment, 𝜇𝑝 1

𝑁
∑ exp(𝑗𝑝𝜃𝑛)

𝑁

𝑛= 1

 

Variance, 𝜎2 1 − |𝜇1| 

Skewness, 𝛾 |𝜇2| sin(arg(𝜇2) − 2 arg(𝜇1))

(𝜎2)
3
2

 

Kurtosis, 𝜅 |𝜇2| cos(arg(𝜇2) − 2 arg(𝜇1)) − |𝜇1|
4

(𝜎2)2
 

 

Combining the time domain statistical features and the circular domain features, one can 

calculate a set of multi-domain statistical features (MSFs) that are representative of the 

properties of a signal. PCA and KPCA can then be used to analyse these features for dynamic 

behavioural classification purposes. A MSF set consisting of 12 features was considered. 

Illustrated in Figure 98, Figure 99 and Figure 100 are the determined Normalized Feature 

Values (NFVs). 

 

Figure 98: Averaged MSFs, SPCD6, 650 rpm 
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Normalization of the feature values is done to make sure that the features fall within a similar 

range, so that they have equal weightage in the classification process. For 650 rpm, it can be 

easily observed that the three blades have different statistical features. 

 

Figure 99: Averaged MSFs, SPCD6, 1000 rpm 

 

Figure 100: Averaged MSFs, SPCD6, 1460 rpm 
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For 1000 rpm, the NFVs illustrated in Figure 99 show that some of features are not significantly 

different for different blades. These include the variance (blades 1 and 2) and the maximum 

peak value (blades 2 and 3). The same can be observed for 1460 rpm NFVs illustrated in 

Figure 100. Application of PCA and KPCA on the 650 rpm MSFs resulted in the results 

indicated in Figure 101 and Figure 102. 

 

Figure 101: MSFs 650 rpm PCA and KPCA 2D 

 

Figure 102: MSFs 650 rpm PCA and KPCA 3D 
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As can be observed in Figure 101 and Figure 102, MSFs produce clusters that are much more 

distinguishable, compared to the raw data clusters presented earlier (Figure 90 and Figure 

91). The same can be concluded for the 1000 rpm and the 1460 rpm results presented in 

Figure 103, Figure 104, Figure 105 and Figure 106. 

 

Figure 103: MSFs 1000 rpm PCA and KPCA 2D 

 

Figure 104: MSFs 1000 rpm PCA and KPCA 3D 
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Figure 105: MSFs 1460 rpm PCA and KPCA 2D 

 

Figure 106: MSFs 1460 rpm PCA and KPCA 3D 
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Clustering parameter ratio 𝑆𝑏/𝑆𝑤 was also determined for the three rotational speeds 

investigated, this time for PCA and KPCA data calculated from the multi-domain statistical 

features. Results obtained are shown in Figure 107. 

Figure 107 and Figure 108 illustrate how KPCA also tends to produce better clusters than the 

PCA approach, in terms of the higher 𝑆𝑏 determined for each case analysed. Comparing the 

range of 𝑆𝑏/𝑆𝑤 for the raw SPCDs data and the multi-domain statistical features calculations 

(Figure 96 and Figure 107), it can be concluded that using multi-domain features extracted 

from the raw data provides results that make classification the blades much easier. MSFs 

𝑆𝑏/𝑆𝑤 parameters are in the range of 0 to 1. They are only between 0 and 0.4 for the raw 

SPCDs data. 

 

Figure 107: PCA and KPCA clustering performance for MSFs 
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Figure 108: Sb based PCA and KPCA clustering performance for MSFs 

5.2.3 Robustness to noise 

An investigation was conducted to analyse how sensitive the proposed approaches are to 

signal noise. The signals were contaminated with pseudorandom Gaussian white noise of zero 

mean and a variable standard deviation (power). Standard deviation values were varied from 

0.1 to 1.5 at 0.1 increments. Figure 109 shows SPCD6 signals contaminated with different 

levels (standard deviation, 𝜎) of Gaussian white noise for blade 1 measurements at 1000 rpm.  

For 1000 rpm, it can be observed in Figure 110 that the SNR is nearly 0 dB for 𝜎 = 1, indicating 

that the signal and the noise almost have the same energy at that instant. 

Illustrated in Figure 111 is the clustering performance of PCA and KPCA applied to the MSFs 

and the raw data for the SPCD6 at the three rotational speeds considered. Results in Figure 

111 indicate that 𝑆𝑏/𝑆𝑤 decreases with decreasing SNR, as the power of the noise introduced 

increases. The clustering performance of PCA and KPCA applied to the raw data degrades 

significantly with very little noise introduced into the system. For 1000 rpm for instance, 𝑆𝑏/𝑆𝑤 

approaches zero at 𝜎 = 0.4, indicating that distinguishing between the different blades’ 

clusters will not be possible. 
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Figure 109: SPCD contamination with Gaussian white noise 

 

Figure 110: SNR variation with Gaussian noise standard deviation 

MSF clustering performance on the other hand is quite robust to noise, and generally degrades 

substantially when the power of the noise gets closer to 𝜎 = 1. Illustrated in Figure 112 and 

Figure 113 are results for KPCA projections of MSF values for different levels of noise for 

SPCD 6 at 1000 rpm. 
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Figure 111: Clustering performance (𝑺𝒃/𝑺𝒘) as function of  𝝈 

 

Figure 112: Cluster variation with noise level for KPCA SPCD6 projected in a 2D feature space 
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Figure 113: Cluster variation with noise level for KPCA SPCD6 projected in a 3D feature space 

5.3 Chapter conclusion 

In this chapter, a comparative study of the performance of principal component analysis and 

kernel principal component analysis applied to shape principal component descriptors for 

condition monitoring purposes is conducted. The use of multi-domain statistical features as 

inputs for data reduction for classification purposes is successfully investigated, and the 

robustness of the technique to system noise also analysed. 

It is illustrated that the data nonlinear transformation using Gaussian kernels in KPCA 

implementation allows better classification through incorporating the nonlinear relationships 

that exist in the SPCDs data. Utilizing a multi-domain statistical feature set composed of eight-

time domain and four circular domain statistical features proved to also have better blade 

classification compared to the raw time domain SPCDs. Multi-domain statistical features 

classification is shown to be significantly robust to noise compared to classification using the 

raw time domain data. It was noted that raw data classification fails completely at a 0.4 

standard deviation noise level, whilst MSFs could still separate the heathy blade from the two 

damaged blades at 1.5 standard deviation noise level.  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

This research focused on the development and application of a photogrammetric boundary 

shape analysis-based condition monitoring technique. The development was done specifically 

to suit rotating structures that have to be analysed whilst they are in operation. Shape 

boundaries were characterized by first representing them using the chain code as the shape 

signature of choice. Elliptical Fourier coefficients of these chain codes were then decomposed 

using PCA, and four (2D analysis) or six (3D analysis) shape principal components or 

geometric modes (𝑽) obtained. These uncorrelated geometric modes are unique to the shape, 

and their relationships to the form of the shape of interest were investigated via scaling of their 

respective PCA scores. SPCDs were then defined from these shape principal components. 

SPCDs variation from one image to the next in a sequence of images could then be analysed 

to provide information in the way the shape changes. Since the way the chosen shapes 

change was directly associated with the machine responses, the dynamic behaviour of the 

machines could be characterized and investigated to classify different types and severity of 

faults. 

In the development of this non-contact measurement technique, specific shape characteristics 

associated with each of the 𝑽s were analysed. It was illustrated that each of these components 

is associated with a unique shape representation. Whilst the physical shape variation resulting 

from the behaviour of a machine might not exactly mimic a specific geometric mode, it was 

illustrated different machine behaviour affect the characterising shape principal components 

differently. This makes it possible to have four or six parameters in the form of SPCDs that 

one can monitor when investigating the dynamic behaviour of a machine. For a 2D analysis, 

a sensitivity investigation indicated that the perspective at which images are captured by a 

camera affect the apparent shape variation that can be observed. It was shown that it is 

essential to understand the shape whose variation is to be monitored. This is essential when 

deciding how the system must be set up for better detection of any shape variation resulting 

from the dynamics of the machine.   

In a 2D analysis of a Bently Nevada rotor system, different forms of unbalance in the system 

could be detected and classified. The measurements were captured using a single sensor 

(one camera) and the 2D approach was confirmed by conventional proximity probes. It can 

be concluded that the shape-based approach is very promising in terms of limiting the number 

of sensors that one has to employ to fully diagnose a rotating machine. The fact that the 

approach is non-contact and therefore non-intrusive, renders it favourable in some cases. The 

high sensitivity of shape analysis was also proven to be useful in detecting rotor-stator rub 

faults. Uniaxial conventional sensors tend to capture signals with low SNR values in those 

types of cases. On the other hand, the interference of components may result in significant 

2D variations of a shape enclosed between a shaft and a bearing housing for instance. It can 

be concluded from the investigation conducted that for some applications, the proposed 

technique can detect faults efficiently and accurately.  

For the 3D shape analysis, data reduction and classification of the SPCDs was done through 

PCA of the revolution segmented SPCD. Instead of analysing the SPCDs by transforming 

them into the frequency domain as done for the 2D shape analysis, it was successfully 

illustrated that the data reduction approach simplified the classification of different blade 
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damage modes. Clustering the SPCDs by projecting their PCs in either a 2D (PCs 1 and 2) or 

a 3D (PCs 1, 2 and 3) feature space provided three parameters in the form of spherical 

coordinates. These parameters identifying the centroid locations of the SPCDs clusters 

illustrated how the proposed technique can be utilized for tracking progressing damage. The 

3D shape analysis was firstly conducted in a FE controlled environment, before being 

extended to an actual physical system. The experimental data was correlated to 

measurements documented by other researchers in terms of size of full-scale turbines and 

recorded maximum blade responses. This was done to illustrate the feasibility of adopting a 

shape-based measurement technique as a condition monitoring tool for field applications.  

Kernel based PCA was used to reduce the SPCDs. Compared to the linear based PCA, KPCA 

implementation was proved to be a better fault classification tool. Combining the KPCA data 

reduction with multi-domain statistical features of the SPCDs, instead of reducing the raw time 

domain SPCDs, resulted in a more robust better performing system that could classify the 

blades even in significantly noise contaminated signals. 

Whilst the investigations conducted in this study demonstrate the applicability of a shape-

based condition monitoring approach, there are some limitations especially when it comes to 

industrial adaptation of the technique. Being an image-based system, the technique relies on 

having a clear line of sight of the structure under investigation. In an industrial or workshop 

setting, machine components of interest might be obscured or located in confined spaces 

making it impossible to capture images for contour extraction. For visible components, the 

quality of the images in terms of resolution, blurriness and noise should be such that edges of 

interest can be isolated from the background accurately. For outdoor applications, shadows, 

variability in contrast, lighting and uneven illumination can distort boundaries leading to 

inaccurate measurements. 

Computational complexity is also an important limitation to the applicability of the proposed 

technique. In the 3D investigation conducted, a sampling rate of 4000 FPS was used, and the 

camera capacity only allowed storage of 5173 images (measurement duration of 1.29 s) per 

measurement. Thus, the camera capacity and desired measurement duration dictate the 

sampling frequency that one can use, which in turn can be limiting to the machine’s response 

frequency range that can be captured. Advanced image processing techniques are also 

required to process the large volumes of captured image and perform the necessary edge 

detection. The real-time applicability of the technique requires significant computational 

resources and complex data analytics infrastructure. 

It has been highlighted in the previous discussions that one of the advantages of using non-

contact measurement techniques is that no machine shutdowns are needed. Without prior 

knowledge of the shape based dynamic behaviour of a machine, the approach requires that 

measurements are taken at various stages in the life cycle of a machine. This will be necessary 

to create a baseline to which deviations from normal behaviour can be compared to. In the 

case of outdoor measurements, this can be complicated as the measurement equipment 

cannot be left in harsh operating conditions. Long term continuous condition monitoring 

strategies using the proposed approach therefore requires complicated planning and 

implementation.  

In the 3D investigation, it was illustrated that corresponding point matching of the stereo 

captured images is necessary to extract depth response measurements. The investigation 
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showed that in cases were the out-of-plane responses are too small, the camera resolution 

has to be of very high quality to ensure that resolution induced contour noise does not make 

it impossible to match corresponding points accurately. Small response measurements using 

the proposed technique is therefore limited to high spatial resolution cameras.  

6.2 Recommendations and future work 

In this investigation, the elliptical Fourier descriptors were applied to the chain code shape 

signatures in characterising the contours of interest for shape analysis. Whilst this is the most 

commonly adopted approach for shape analysis in object recognition and shape matching, 

other forms of shape signatures and shape feature extraction techniques still need to be 

evaluated and their performance compared to this approach. 

Other data reduction techniques such as Independent Component Analysis (ICA) also need 

to be considered for this type of investigation. PCA and KPCA were utilized as the data 

reduction techniques as the relevance of the PCs to consider is easily recognised from the 

calculated variance values. This is not the case for ICA, but researchers have come up with 

ways to select the most dominant components, such as the variance of a histogram of the 

projected data. Further investigations still need to be conducted with regards to that matter.  

Incorporating progressing damage parameters into an updated finite element model of a 

machine for predicting remaining life of a damaged component is something that must be 

conducted. This will be useful in understanding how far shape analysis can be utilized as a 

tool for extracting information that can be used in designing more durable components. Being 

a shape-based approach, a better understanding of the way in which the determined 

geometric modes can be related to a structure’s mode shapes is also something of interest. 

This will aid in basic understanding of the dynamics of structures. Full-scale implementation 

of this technique in the field must be conducted as well. Photogrammetry on full-scale wind 

turbine blades using high speed cameras was highlighted in the literature review. The future 

work entails application of a non-contact optical approach that does not require any form of 

surface preparation in an actual wind turbine blade analysis. 

In the investigation presented, geometric mode shapes where decomposed through the use 

of vector norms to represent each shape format with four (2D) or six (3D) scalar parameters. 

This approach results in loss of some of the geometric modes’ properties, information which 

can potentially provide further insights in the dynamic behaviour of the machine. For instant, 

the use of derivatives of ODS has been known to be efficient when it comes to detecting 

localized damage. Further investigations in which multidimensional processing of geometric 

mode shapes is implemented should be explored. This can potentially elevate the applicability 

of the technique to damage localization, damage quantification and useful remaining life 

estimation. 

Motion magnification has been proven to be a powerful tool for condition monitoring purposes. 

The accuracy and reliability of the presented shape analysis technique has been shown to be 

dependent on the extent to which the shape of a structure changes from one captured frame 

to the next. As part of further investigations, it is necessary to analyse how the use of motion 

magnification can enhance the quality and applicability of shape analysis as a condition 

monitoring technique, especially for large structures that might have high frequency dynamic 

properties in addition to significant rigid body motions.  
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Research included in the literature review has indicated the feasibility of mounting cameras 

on drones to capture 3DPT and DIC data for large structures. Ideally, cameras capturing the 

data must be stationary relative to the static components of the structure under investigation. 

In the case of offshore wind turbines for example, the ocean current will make this difficult. 

Any conditions that can disturb the set camera positions/orientation (high speed wind for 

example), obscure field of view of the cameras or diminish the quality of the captured images 

will make it difficult to use image-based techniques. Having a reference static point on the 

structure in the camera field of view means that frame correction through compensation of the 

camera rig position relative to the ‘known’ reference static position can be done for each frame 

captured. Alternatively, the movement of the cameras can be measured in 6 DOFs using 

Inertial Measurement Unit (IMU) sensors, and that data used to stabilize images captured 

images as part of the preprocessing analysis. This should also be investigated further. 

In terms of validation of the technique and comparison to other measurement approaches, 

other optical techniques such as SLDV can be employed to extract ODSs of components. 

Analysis of these ODSs to evaluate how sensitive alternative methods are to different levels 

of damage will be a good way to benchmark robustness of shape-based condition monitoring. 

These types of investigations should also be considered as part of the future studies to further 

develop and verify the proposed technique. 
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