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Supplementary Table S1. Impacts of metals on aquatic animals, humans, and plants. 

Constitutes Aquatic animals  Humans Plants Reference  

Hg  Reduce metabolism and liver 

function, damages gills and olfaction 

organs, and causes impaired 

reproduction, deformity, and 

mortality.   

Damages the liver and kidneys, affects 

cell functions, visual impairment, and 

prolonged exposure results in permanent 

damage to the kidney, brain as well as 

developing foetus. 

Reduce transpiration and photosynthesis, 

impairs several metabolic processes such as 

water status, nutrient uptake, etc., and affect 

physiology, morphology, and biochemistry.  

[1–3] 

As Affects organs such as the liver, 

kidney, intestines, and gall bladder as 

well as muscles. Reduces 

reproductive output and growth.  

Affects the lungs and skin, urinary 

bladder, and kidneys. Low exposure can 

cause weakness in feet and hands, 

diabetes, damage of blood vessels, and 

affects the nervous system. Acute 

toxicity affects the heart and brain. 

React with enzymes concerned with the 

assimilation of nitrogen and reduces its 

efficiency like nitrate & nitrite reductase, 

and glutamine synthetase (GS). Increase the 

efficiency of aspartate aminotransferases 

and alanine. Inhibits the overall growth of 

the seedling.  

[4–6]  

Cu Impact on intestines, kidney, liver, 

and gills, can result in vascular and 

It causes Wilson disease, disturbs 

memory and learning, it is associated 

It leads to the inhibition of seed 

germination, adverse effect on the length 

[7–9] 
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skeletal system abnormalities, lowers 

reproductivity, prolongs parturition 

time, and highest mortality rate at 10 

mg.L-1. 

 

with hepatic disorders and neuro 

disorders. 

and number of roots produced, rolling of 

leaves, chlorosis, and growth retardation, 

and increases lipoxygenase activity, lipid 

peroxidation, H2O2, and the amount of 

proline. 

Cd Irregular oocytes, partly adhesion, 

empty follicle, and increase follicular 

atresia, cytoplasmic retraction, loose 

follicular lining, growth retardation, 

affect gills, kidney, liver, and 

intestines. 

Causes liver disorder, nephrotoxicity, 

degenerative bone disease, and kidney 

dysfunction. It also causes iron 

deficiency and leads to cancer of the 

lungs, prostates, pancreas, and kidneys. 

Impact on the systematic opening and 

closing of stomata disturbs the water 

balance as the toxicity damage the 

permeability of the cell membrane and 

damages the machinery of photosynthesis. 

Lowers Zn and Fe uptake which results in 

leaf chlorosis.  

[10–13] 

Hg Inhibits sperm motility, abnormal fin, 

flexure of the posterior tail region, 

causes cloudy swellings of the cells 

with large vacuoles, degeneration of 

Causes pain in the abdomen, ulcer, 

diarrhea, inflammation, gastrointestinal, 

 nephrotoxicity, neurological disorders, 

and Minamata disease.    

Reduces the rate of photosynthesis by 

making interaction with metal ions in 

Photosystem(II) proteins. Disturbs the flow 

of water and function of stomata by 

[14–16] 
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nuclei, and vacuolation in the stroma, 

pycnotic nuclei. 

attaching with the water channels present in 

the plasma membrane. 

Cr  Blood congestion, haemorrhage, 

abnormalities in secondary gill 

lamellae, decrease growth 

performance, and after long-term 

exposure amount of spawning 

decreases. 

Kidney dysfunction, DNA and excretory 

system damage, asthma, allergy, and 

cancer of respiratory organs. 

Genotoxicity, cytotoxicity, and dermal 

sensitivity.  

Reduces the growth of the primary root and 

the number of lateral roots, development of 

intense purple colour of leaves, necrosis, 

chlorosis, wilting, and finally death of the 

affected plant.  

[17–20]  

Pb Irregular oocytes, partly adhesion, 

empty follicle, increased follicular 

atresia, and loose follicular lining. 

Affects ovarian steroidogenesis, 

irregular head, notochord defects, 

yolk-sac edema, and spinal 

curvatures.  

Lung dysfunction, high risk of 

hypertension, gastrointestinal effect, and 

Alzheimer’s disease. In men, it enhances 

the chance of infertility. If pregnant, the 

excess Pb present in the blood passes the 

placenta and causes severe abnormalities 

in the baby like neurological, low I.Q 

level, and encephalopathy. 

Affect the efficiency of ribulose 

biphosphate carboxylase which is 

responsible for carbon dioxide assimilation. 

Slows the growth of a plant and the 

germination seed and affects the length of 

the shoot, root, and biomass.  

[10,21–23] 
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Ni Shrinkage of the central vein, 

accumulation of blood cells in the 

central vein, rupture of sinusoids, 

degeneration, and necrosis in the 

hepatocytes and connective tissue. 

Causes kidney, allergy, and 

cardiovascular diseases. It also causes 

lung fibrosis, nasal, and lung cancer. 

Inhibits root growth, photosynthesis, and 

transportation. Results in ultrastructural 

modifications and affects the absorption of 

nutrients by roots.  

[24–26] 

Zn  Irregular oocytes, empty follicles, 

loose follicular lining, fibrosis, 

decreases sperm motility, low 

hatching rate, high mortality, hooked 

tail, spinal deformity, and visceral 

haemorrhage.  

Prompts diarrhea, nausea, poor appetite, 

vomiting, and headaches. High levels are 

also linked with impaired immune 

response.  

Excess zinc levels result in decreased seed 

germination, inhibit plant growth, disrupt 

enzyme activities, degrade chlorophyll, 

oxidative stress, also cause iron deficiency 

and this is due to similar ionic radii.  

[10,27–29] 
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