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Abstract
The aim of this study was to examine the physical characteristics and chemical composition of microplastics in sediments 
of the Vaal River, South Africa. Microplastics were detected in all samples, with abundance ranging from 29.12 to 1095.89 
particles/kg dw. The physical identification of microplastics revealed dominance of small-sized particles of less than 0.5 mm, 
which accounted for 31.75% of the total microplastics detected in all samples. Fragments and fibres were significantly abun-
dant compared to pellets, representing 63% and 35%, respectively. Microplastics were observed in different colours, among 
which blue, white and green were the most dominant. Raman analyses of microplastics showed the presence of high density 
polyethylene, low density polyethylene, polyurethane foam, polypropylene, polyethylene co-vinyl acetate, and poly(ethylene-
co-1-hexene). Additionally, two pigments (vine black and smalt), one dye (saffron), three minerals (orthoclase, carbon, and 
microcline), and one additive (cis-13-docosanol) were also identified. The dominance of fragments and fibres, with the clear 
signs of fragmentation implied that microplastics in the Vaal River are mostly from secondary sources. The study reported 
the first data on microplastic pollution and characteristics in sediments of the Vaal River, thus, providing a benchmark and 
reference platform for relevant formulation and decision-making regarding this essential water source.
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Introduction

The benefits of plastic materials are undeniable; due to their 
lightweight, flexibility, and low-cost, they are used in vari-
ous applications (Nikiema et al. 2020a, b). However, the 
negative impact of plastics is gradually emerging due to low 
recycling rates and mismanagement. Based on current pro-
duction rates, it is expected that about twelve billion metric 
tonnes of plastic waste will be generated by 2050, which will 

end up in open dumps, landfills, and the natural environment 
(Geyer et al. 2017; Shams et al. 2021).

One of the emerging environmental concerns associated 
with plastic pollution is microplastics (MPs) (Maheswaran 
et al. 2022). MPs are categorized into primary MPs (plas-
tics manufactured in the microscopic size) and secondary 
MPs (formed by the degradation of large plastic items) 
(Sun et al. 2019; Onoja et al. 2022). Research on MPs is 
rapidly evolving; recent years have seen explosive growth 
of studies focusing on quantitative and qualitative moni-
toring of microplastics in various environmental media 
around the world (Connors et al. 2017; Cowger et al. 2020). 
A variety of sampling and processing techniques are used, 
as well as different methods of identification, quantifica-
tion, and characterization. Sampling approaches include 
selective, bulk, and volume-reduced sampling (Rocha-
Santos and Duarte 2014). Density separation is widely 
used for extracting MPs from environmental samples. 
The most frequently used density separators are sodium 
iodide, sodium polytungstate (SPT), sodium chloride, and 
zinc chloride (Wang and Wang 2018). Digestion is also a 
common pre-treatment process to disintegrate the interfer-
ing organic matter in environmental samples (Avio et al. 
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2015). Digestion methods include alkaline digestion, enzy-
matic digestion, and acid digestion (Shiye Zhao et al. 2017; 
Pfeiffer and Fischer 2020). Optical microscopy and scan-
ning electron microscopy are used for visual identification 
of MPs, while the most common chemical identification 
techniques are infrared and Raman spectroscopies (Shim 
et al. 2017).

Despite the continuous growth in MP studies, there 
exist some limitations as more attention has been paid to 
the marine environment and to the quantification of MPs 
rather than physio-chemical behaviour that has a potential 
bearing on human health. The physicochemical proper-
ties of MPs are important to understand their behaviour in 
aquatic compartments. For instance, certain shapes are dis-
tributed differently in the water column, size and density 
also influence their mobility and transport, whereas colour 
may influence their ingestion by aquatic biota according to 
similarity with natural prey (Lorenz et al. 2019). The aim 
of this investigation was, therefore, to study the physical 
and chemical characteristics of MPs in the sediment of 
the Vaal River and to define their physio-chemical behav-
iour, sources, pathways, potential anthropogenic inputs, 
as well as potential health risks. The study also aimed at 
characterizing MPs concerning chemical constituents such 
as additives and their degradation products and potential 
release to media that they are exposed to. Ultimately, the 
study provides a comprehensive analysis of MP pollu-
tion in one of the most significant freshwater systems in 
South Africa. The Vaal River has great socio-economic 

value, supplying water to important sectors such as indus-
try, agriculture, and energy (Iloms et al. 2020; Weideman 
et al. 2020).

Materials and methods

Site description

Sampling was conducted in the middle area of the river, 
starting from Lethabo weir up and to the Vaal River bar-
rage (Fig. 1). This area is regarded as the hardest working 
region of the Vaal River, where the Eskom-Lethabo power 
station and Rand Water Lethabo pump station are located. 
Rand Water supplies water to four provinces and it is the 
largest water utility in South Africa, while Eskom is the 
largest producer of electricity in Africa (Wepener et al. 
2011).

Sample collection, pre‑treatment, and analysis

A 500 mL grab sampler (Van Veen) was used to collect 
twenty-five sediment samples from the river bed. Before 
analysis, samples were digested using potassium hydrox-
ide, after which MPs were separated using sodium iodide.

Suspected MPs were physically examined using a ster-
eomicroscope. Further, their surface morphology was exam-
ined using electron microscope (SEM).
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Fig. 1   Map depicting sampling locations (Google earth, 2021)
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Polymers were identified using a Horiba LabRAM HR 
Raman spectrometer. A detailed description of the method 
is reported in a previous article (Saad et al. 2022a).

Quality control

Strict measures were followed to prevent procedural con-
tamination during the fieldwork. Sample processing and 
analysis were conducted in a laboratory dedicated to MPs. 
All samples were processed in a laminar airflow cabinet. 
Samples were kept covered with aluminium foil and metal 
lids, and filtered MPs were kept in covered glass Petri dishes. 
All reagents were vacuum filtered on Whatman glass fil-
ters GF/A filter paper (47 mm diameter, 1.6 μm pore size). 
Procedural blanks were run with filtered distilled water. No 
particles were detected in all procedural blanks.

Results and discussion

Abundance of MPs

MPs were detected in all samples indicating widespread 
contamination in this region. The average abundance was 
463.3 ± 284.1 particles/kg dw. The abundance per sample 
location is given in Fig. 2.

Physical characteristics of the detected MPs

The physical characteristics of MPs including size, colour, 
shape, and surface texture are essential for understanding 
their behaviour in the environment, as well as their bioavail-
ability and toxicity (Saad 2023). Therefore, the findings of 
this study will be discussed in light of the physio-chemical 

properties of the identified MPs, as to provide an insightful 
assessment/analysis of the pollution status in the Vaal River.

Size

MPs were grouped into six size ranges (0 to 500 µm; 500 
to 1000 µm; 1000 to 2000 µm; 2000 to 3000 µm; 3000 
to 4000 µm; and 4000 to 5000 µm). The majority of the 
MPs were observed in the 0–2000 µm range, representing 
around 82% of the total MPs. Among these, MPs of less 
than 500 µm were most prevalent, accounting for 31.8%. 
Figure 3a shows the size distribution of MPs in all samples.

In natural environments, MPs are susceptible to frequent 
fragmentation under different environmental conditions, 
resulting in a high abundance of small-sized MPs (Egessa 
et al. 2020). Gravitational forces, the magnitude of buoy-
ancy, and the magnitude of the drag force are all influenced 
by the size of MPs (Shamskhany et al. 2021). Thus, influenc-
ing their dispersal in the water column as well as accumula-
tion in sediment. Small-sized MPs sink faster when exposed 
to biofouling (Besseling et al. 2017; Du et al. 2021). This 
may explain the predominance of small MPs in the sediment 
of the Vaal River.

The relationship between MPs size and abundance in 
sediment samples was examined by Spearman correlation 
test as shown in Fig. 4. The results indicated a weak positive 
correlation with a p value of 0.03158, implying an increase 
in MPs abundance with the decrease in their size. This sug-
gests that sedimentation of MPs may occur over the long 
term, during which they are susceptible to frequent degrada-
tion. To further confirm this, SEM analysis was performed 
to examine MPs surface morphology for signs of degrada-
tion and weathering, if any. SEM images revealed cracks 
and pores on the surface of MPs. This increases surface 

Fig. 2   MPs abundance per 
sample
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heterogeneity making MPs less hydrophobic, thus, less 
buoyant (Kumar et al. 2021). Consequently, the number of 
MPs in sediments may increase without the introduction of 
additional MPs (Egessa et al. 2020).

The consumption of small MPs by different organisms 
is well documented in several freshwater and marine stud-
ies (Collard et al. 2017; Qiao et al. 2019; Roch et al. 2020; 
Saad et al. 2022b). Additionally, the greater surface area 
of small-sized MPs makes them susceptible to the attach-
ment of other pollutants, leading to additional health risks 
(Brennecke et al. 2016; Hartmann et al. 2017; Caruso 2019; 
Fred-Ahmadu et al. 2020; Santos et al. 2021). Consequently, 

smaller MPs are known to pose more hazards to aquatic 
biota; in the context of this study, the high fragmentation 
(shown by SEM images) further increases the possibility of 
adsorption of co-existing contaminants. Hamed et al (2022) 
reported the augmentation of toxicological effects of MPs 
with the decrease in their sizes.

Shape

MPs were identified under the microscope and classified 
according to their shapes. Particles with a slender and elon-
gated appearance were defined as fibres; irregular particles 
were defined as fragments; and round particles with spheri-
cal shape were classified as pellets (Su et al. 2016). Frag-
ments and fibres were dominating pellets, accounting for 
63.2% and 35%, respectively, while pellets accounted for 
about 2% (Fig. 3b).

The microplastic shape has a great effect on their behav-
iour and distribution in different environmental compart-
ments. For instance, sedimentary records have shown vari-
ation based on the shape (Kowalski et al. 2016; Kooi et al. 
2017; Khatmullina and Isachenko 2017). Further, several 
aquatic biota have been reported to preferentially ingest 
MPs of certain shapes (Schessl et al. 2019). This means 
that the shape of MPs has great implications for their bio-
availability to aquatic organisms. Nonetheless, biotic fac-
tors such as, in this case, feeding habits, are to count for 
such preference towards certain shapes.

MPs of different shapes have different retention times 
and may cause different physical damage, thus, having dif-
ferent toxicological effects. (Gray and Weinstein 2017). 
Several studies reported stronger toxicity of fibres in grass 
shrimp, amphipods, and zebrafish (Blarer and Burkhardt-
Holm 2016; Gray and Weinstein 2017; Qiao et al. 2019). 
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The prevalence of fibrous MPs in this study, therefore, has 
serious toxicological implications for aquatic organisms 
in the Vaal River. Ultimately, they could be consumed by 
humans.

Colour

Colour distribution in sediment samples is presented in 
Fig. 3c. MPs of different colours were found to be more 
abundant representing 60.3% of the total particles’ num-
ber, while transparent particles represented the remaining 
49.7%. The most abundant colours were blue, white, and 
green, accounting for 18%, 12%, and 10%, respectively. 
Other colours including yellow, black, brown, pink, and 
grey were observed in minor percentages, contributing 
20% altogether.

The predominance of coloured MPs in this study is of 
additional concern, and aquatic biota are thought to con-
sume MPs that resemble their natural prey in terms of colour 
(Roch et al. 2020). However, the concern about coloured 
MPs is not limited to their preferential ingestion by aquatic 
biota, but also due to the toxicity associated with colouring 
agents such as pigments and dyes (Onoja et al. 2022). This 
means that organisms in the Vaal are exposed to a variety of 
toxic chemicals associated with MPs.

Surface texture

SEM images of MPs showed signs of fragmentation and 
weathering on the surfaces of the MPs (Fig. 5). Exposure to 
different environmental conditions in the Vaal River, such as 
mechanical abrasion, phyto, chemical, and biological deg-
radation, could have resulted in the reported observations.

The observed fragmentation signs may result in an ongo-
ing increase in surface area, which expedites the adsorption 

of other pollutants such as metals and persistent organics 
(Yu et al. 2019; Fred-Ahmadu et al. 2020; Hanslik et al. 
2022; Iqbal et al. 2022). Consequently, MPs may become 
a “cocktail” of pollutants with varying toxicological effects 
(Saad 2023).

Chemical identification

Polyethylene (PE) (high and low density), poly(ethylene-co-
1-hexene) (PEH), polypropylene (PP), polyurethane foam 
(PU), and poly(ethylene-co-vinyl acetate) (PEVA) were 
identified. The resulting spectra of the analysed MPs are 
shown in red while corresponding reference spectra are plot-
ted in blue and black (Fig. S1).

PE and PP were observed most frequently, which is con-
sistent with other studies. This could be attributed to their 
intensive use in a wide range of applications due to their 
efficiency and cost-effectiveness (Horton et al. 2017).

The presence of PE and PP as low density polymers in 
the sediment samples could be explained by the impact of 
environmental processes such as biofouling leading to the 
sedimentation of low density particles that are known to be 
buoyant. (Kooi et al. 2017; Joo et al. 2021).

However, it is important to note that different environ-
mental conditions including daily discharge, flow velocity, 
and anthropogenic activities affect sediment mobility and 
can mobilize settled particles, thus, altering the profile of 
MPs from time to time (Ballent et al. 2016; Naden et al. 
2016).

Identification of other compounds

Besides their potential health risks, concerns about MPs 
include the hazard associated with their constituent addi-
tives (Leslie et al. 2017; Onoja et al. 2022). Further, MPs 
have the potential to act as micro-vectors for toxic elements 

Fig. 5   SEM images: (a) fragment, (b) fibre, and (c) pellet
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and organic contaminants, adsorbing and desorbing them 
depending on the prevailing environmental conditions 
(Onoja et al. 2022). This capability varies depending on 
the chemical structure of the plastic/polymer (Saad et al. 
2022c). It is therefore expected that other compounds asso-
ciated with MPs to be detected when analysing MPs. In this 
study, in addition to the six polymers presented above, three 
minerals (orthoclase, carbon, and microcline), two pigments 
(vine black and smalt), one dye (saffron), and one additive 
(cis-13-docosanol) were identified, according to Raman 
spectra (Fig. S2).

Carbon (Fig. S2a) was detected in samples collected from 
the upstream area of the river (S1 to S5). This sampling area 
is nearby Lethabo Power Station, the station burns about 
50,000 tonnes of coal and produces approximately 23,000 
tonnes of ash per day (Eskom 2022). The detection of carbon 
in these samples could be due to the MPs being coated with 
carbonaceous matter.

Cis-13-docosanol is found in a variety of consumer, 
industrial, and pharmaceutical products. It is reported to 
show environmental persistence and bioaccumulation prop-
erties, being thus considered an aquatic toxicant (USEPA, 
2020).

Saffron is a natural dye that is used for colouring textile 
fabrics, fabric rugs, and sometimes is used in painting. Fab-
rics that are dyed using saffron tend to have good colour fast-
ness, especially if pre-treated with neem oil and α-amylase 
and trypsin (Bathaie et al. 2014; El-Khatib et al. 2020).

Possible leaching of these additives from MPs is of addi-
tional concern owing to their potential toxicity (Koelmans 
et al. 2013; Leslie et al. 2017; Onoja et al. 2022).

Conclusion

Our findings revealed high prevalence of MPs that can 
potentially harm the ecosystem of the Vaal River. Further, 
the properties of the detected MPs pose additional con-
cerns, considering the implication of these properties on 
their bioavailability and toxicity. Fragmented/small-sized, 
coloured, and fibrous MPs that were mostly detected are 
easily transported and consumed by aquatic biota, which 
threatens the aquatic species in the Vaal. Additionally, the 
productivity and profitability of the different sectors that 
rely on the Vaal River are highly vulnerable to plastic and 
MP pollution. The government of South Africa, therefore, 
needs to address MP pollution within its environmental 
management frameworks, and improve waste management 
practices and develop effective waste management strat-
egies. However, effective mitigation requires collective 
efforts of all stakeholders (consumers, suppliers, authori-
ties, and the scientific community). Legislative interven-
tions and economic instruments such as tax on plastic bags 

and enforcement of policies to reduce illegal dumping and 
encourage recycling are also essential to complement these 
efforts. Simultaneously, the scientific community should 
play its role in raising awareness about MP pollution and 
its implications on the environment and human health.
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