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Abstract  32 

Megafauna (animals ≥45 kg) have likely shaped the Earth’s terrestrial ecosystems for millions 33 

of years with pronounced impacts on biogeochemistry, vegetation, ecological communities, 34 

and evolutionary processes. However, a quantitative and global synthesis of megafauna effects 35 

on ecosystems and their generality is lacking. Here, we conducted a meta-analysis on 297 36 

studies and 5,990 individual observations across six continents to determine how wild 37 

herbivorous megafauna influence ecosystem structure, ecological processes, and spatial 38 

heterogeneity and whether these impacts depend on body size and environmental factors. 39 

Despite large variability in megafauna effects, we show that megafauna significantly alter soil 40 

nutrient availability, promote open vegetation structure, and reduce the abundance of smaller 41 

animals. Other responses (14 out of 26), including soil respiration and soil carbon, were not 42 

significantly affected. Further, megafauna significantly increase ecosystem heterogeneity by 43 

affecting spatial heterogeneity in vegetation structure and the abundance and diversity of 44 

smaller animals. Given that spatial heterogeneity is considered an important driver of 45 

biodiversity across taxonomic groups and scales, these results support the hypothesis that 46 

megafauna may promote biodiversity at large scales. Megafauna declined precipitously in 47 

diversity and abundance since the Late Pleistocene, and our results indicate that their 48 

restoration would substantially influence Earth’s terrestrial ecosystems.   49 
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Main text 50 

Large mammalian herbivores (≥45 kg body mass1,2,  henceforth megafauna) have shaped 51 

Earth’s ecosystems for more than 35 million years3,4. However, in the Late Pleistocene and 52 

Early Holocene (50,000 - 7,000 years ago), terrestrial megafauna suffered a global wave of 53 

declines and extinctions, strongly linked to the worldwide expansion of humans5–8. These 54 

extinctions led to extreme global body size downgrading to levels not seen since the extinction 55 

of dinosaurs 66 million years ago4 with profound consequences for ecosystem processes3,9–11. 56 

 57 

Megafauna are considered disproportionately important for biosphere functioning, because of 58 

their ability to access resources that are not available to smaller consumers, to digest high 59 

amounts of low-quality biomass, to shape fire dynamics and to move over very large 60 

distances12–14. This enables large animals to increase nutrient cycling, contribute to seed and 61 

nutrient dispersal15, and reshape vegetation13,16 with direct and indirect effects on soil 62 

properties and processes17,18, plant diversity, productivity and structure12,19 and animal 63 

abundance and diversity20,21. These effects are predicted to be modulated by body size22,23 and 64 

environmental conditions such as nutrient availability24 and productivity14,25.  65 

 66 

One of the key hypothesized impacts of megafauna is the promotion of ecosystem 67 

heterogeneity26, for example by creating local nutrient hotspots16,27 and heterogeneity in 68 

vegetation structure through physical disturbance28. This can translate to increased diversity of 69 

vegetation types on landscape scales12. In general, biodiversity increases with environmental 70 

heterogeneity across spatial scales, biomes and taxonomic groups29, both by increasing 71 

available niche space (allowing more species to coexist) and by promoting species persistence 72 

via the provision of refuges during environmental fluctuations29–31. By preventing one or a few 73 

species from dominating32 and therefore enabling species with similar ecological attributes to 74 

coexist in the same ecosystem, this heterogeneity may also lead to functional redundancies and 75 

thus promote ecosystem resilience33–35.  76 

 77 

Although there is strong case-specific evidence and conceptual expectations that large 78 

herbivores influence soil properties, vegetation community and structure and other animal12–79 
14, a formal quantitative test for the generality of these impacts across ecosystems and 80 

taxonomic groups is lacking14. As megafauna are particularly affected by past, current and 81 

potential future defaunation9, addressing this knowledge gap is important.  82 
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 83 

Using a meta-analytic approach, we compiled and analyzed an extensive global database to 84 

quantify the effects of megafauna on ecosystems. Further, we employed a meta-analytic effect 85 

size measure that allows estimation of effects on variability, to test their effect on the 86 

heterogeneity within each ecosystem response36.  87 

 88 

Specifically, we sought to investigate the effect of large mammalian herbivores on the diversity 89 

and abundance of different taxa (plants, birds, small mammals, invertebrates), vegetation 90 

structure and nutrient concentrations, soil nutrients and properties and biogeochemical 91 

processes. Moreover, we tested if megafauna promote spatial heterogeneity in these ecosystem 92 

responses and if these effects vary predictably with herbivore body mass and environmental 93 

covariates. 94 

 95 

   96 
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Results 97 

We conducted a systematic literature search to find studies investigating the impact of wild 98 

large mammalian herbivores on ecosystems. Studies included contrasts in megafauna density 99 

and megafauna presence/absence, with  >89 % being exclosure experiments (Fig. S1). 100 

Comparisons of areas with high and low megafauna density were only included if those areas 101 

were adjacent and were the result of management decisions (e.g., a hunting area vs a protected 102 

area). Herbivore effects were calculated as standardized mean difference (Hedges’ g) while 103 

within-treatment heterogeneity was estimated using the log-ratio between two coefficients of 104 

variation (lnCVR) 36. The final dataset consisted of 5,990 data points from 297 studies (each 105 

representing, for example, one comparison between an exclosure and control) representing 26 106 

ecosystem responses (Table S1, Table S2). The dataset was geographically biased towards 107 

Europe, North America, South Africa, and Australia (Fig. S2, Fig. S3), towards the Afrotropics 108 

(Fig. S4A) and temperate forests (Fig. S4C), and against areas with low temperatures and/or 109 

high precipitation (Fig. S4B).  110 

The median area of measurement (i.e., plot size) was 1 m2 [95% CI: 0.002 - 25,000 m2] 111 

(Fig. S5A), the median treatment duration was 2190 days [95% CI: 365 - 21,900 days] (Fig 112 

S5B), the median number of data points per study was 11 [95% CI: 1 - 97] and the median 113 

number of studies per response was 15 [95% CI: 6 - 108]. 114 

Effects of herbivorous megafauna 115 

We used random effects meta-analytic models37 to investigate the overall effect of megafauna 116 

on 26 different ecosystem responses and their heterogeneity. Despite high variability in the 117 

effects of megafauna, we found a significant impact on 50% of the investigated responses. If 118 

not stated otherwise, these are the ones presented in the results.  119 

Effects on soil 120 

Megafauna moderately decreased soil labile phosphorous (P) (Hedges’ g of 0.2 can be 121 

interpreted as small effect, 0.4 as medium effect and ≥0.8 as large effect38; Fig. 1A, Fig 2A, 122 

Table 1). Megafauna also slightly increased soil compaction and strongly increased bare 123 

ground cover while strongly decreasing litter cover (Fig. 1A, Fig 2A, Table 1). Megafauna 124 

decreased heterogeneity in bare ground cover (Fig. 1B, Fig 2B, Table 1).  125 
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Effect on vegetation 126 

Megafauna had moderate positive effects on plant nitrogen (N) content (Fig. 1A, Fig 2, Table 127 

1), moderately reducing plant carbon (C):N ratios (Fig. 1A, Fig 2, Table 1). Moreover, they 128 

moderately reduced plant cover and plant biomass and slightly reduced primary productivity 129 

(Fig. 1A, Fig 2A, Table 1). Further, megafauna increased heterogeneity in plant cover and plant 130 

biomass (Fig. 1B, Fig 2B, Table 1).  131 

Effect on other animals 132 

Megafauna strongly reduced the abundance of small mammals and had weak negative effects 133 

on bird alpha diversity and abundance (Fig. 1A, Fig 2A, Table 1). They also increased 134 

heterogeneity in the abundance of small mammals, invertebrates, and birds, as well as in bird 135 

alpha diversity (Fig. 1B, Fig 2B, Table 1).  136 

 137 

 138 
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Fig. 1 Effects of herbivorous megafauna on mean ecosystem responses and heterogeneity 139 
within these responses. Model estimates (± 95% confidence intervals) for the different 140 
response categories, derived from random-effects meta-analytic models37; see methods for 141 
details. Purple symbols indicate a significant negative impact, green symbols a significant 142 
positive impact, and white symbols a non-significant impact of large herbivores. Stars indicate 143 
different significance thresholds: *p≤0.05; **p≤0.01; ***p≤0.001. Each point in the 144 
background indicates a data point (i.e., a pairwise comparison in a study such as exclosure vs 145 
control) used in the analysis of the respective response. The numbers after each label on the y 146 
axis provide information about the sample size of the measured response: number of data points 147 
(number of studies). A: effect on mean response (Hedges g); B: effect on heterogeneity in 148 
response (lnCVR).  149 
 150 

 151 

Notable null results 152 

We found no significant mean effect of megafauna on the 14  of 26 tested responses, and on 153 

the heterogeneity of 19 tested responses ([min, max]: Hedges’ g=[-0.27, 0.14], lnCVR=[-0.23, 154 

0.23], p=[0.06, 0.96], Fig. 1). Among the more notable responses for which we detected no 155 

statistically significant effect on the overall mean response (but see Fig. 2a and Results: 156 

Influence of body mass and environmental variables on megafauna impacts) were total and 157 

labile soil N and N mineralization rate, soil total C, and plant alpha diversity and evenness. 158 
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159 
Fig. 2. Impacts of herbivorous megafauna on different ecosystem responses and their 160 
heterogeneity. Shown here are the statistically significant impacts of megafauna. All tested 161 
responses and their estimates can be found in Fig. 1. Numeric results of the significant models 162 
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can be found in Table 2. Green indicates an increase and violet a decrease of the mean response 163 
or the heterogeneity in the response; arrow widths are scaled by effect-size magnitude. Note 164 
that (1) the positive effect on soil labile N is only significant in megafauna communities with 165 
species >= 100 kg body mass (Fig. S7) and (2) the negative effect in plant alpha diversity is 166 
only significant in megafauna communities without species >= 100 kg body mass (Fig. S7).  167 
As a rule of thumb, a hedges’ g of 0.2 can be interpreted as small effect, 0.4 as medium effect 168 
and 0.8 as large effect38. A: Mean effect of megafauna herbivores on ecosystem responses. B: 169 
Effect of megafauna herbivores on spatial heterogeneity in these ecosystems.  170 
 171 
 172 
Table 1: Results of significant models. Model estimates (± 95% confidence intervals) for the 173 
different significant response categories, derived from random-effects meta-analytic models37. 174 
Here we used intercept only models which provide a mean estimate of the effect size weighted 175 
by the inverse of the sampling variance and under consideration of the included random 176 
structure (see method for details). The effect size type ‘Hedges g’ refers to the standardized 177 
mean difference between low and high megafauna herbivore density (or presence/absence) 178 
while lnCVR quantifies differences in spatial heterogeneity. CI = 95 % confidence interval  179 

Measured	response	 Effect	size	
type	 Estimate	 Lower	CI	 Upper	CI	 p	value	

Litter	cover	 Hedges	g	 -0.67	 -1.10	 -0.25	 0.004	
Soil	labile	P	 Hedges	g	 -0.47	 -0.78	 -0.17	 0.006	
Soil	compaction	 Hedges	g	 0.30	 0.11	 0.49	 0.006	
Bare	ground		 Hedges	g	 1.03	 0.65	 1.41	 <0.0001	
Bare	ground	 lnCVR	 -0.41	 -0.73	 -0.10	 0.01	
Plant	biomass	 Hedges	g	 -0.61	 -0.77	 -0.45	 0.0001	
Plant	C:N	 Hedges	g	 -0.40	 -0.73	 -0.06	 0.0002	
Primary	productivity		 Hedges	g	 -0.31	 -0.51	 -0.11	 0.003	
Plant	cover	 Hedges	g	 -0.29	 -0.38	 -0.19	 <	0.0001	
Plant	total	N	 Hedges	g	 0.34	 0.11	 0.56	 0.0005	
Plant	biomass	 lnCVR	 0.11	 0.05	 0.16	 0.0002	
Plant	cover		 lnCVR	 0.14	 0.06	 0.22	 0.0001	
Small	mammal	
abundance	 Hedges	g	 -0.78	 -1.36	 -0.19	 0.01	

Bird	alpha	diversity	 Hedges	g	 -0.15	 -0.29	 -0.02	 0.03	
Small	mammal	
abundance		 lnCVR	 0.23	 0.02	 0.43	 0.03	

Bird	abundance	 Hedges	g	 -0.19	 -0.35	 -0.03	 0.02	
Bird	alpha	diversity	 Hedges	g	 -0.16	 -0.30	 -0.02	 0.03	
Bird	abundance		 lnCVR	 0.27	 0.08	 0.45	 0.008	
Bird	alpha	diversity	 lnCVR	 0.26	 0.05	 0.47	 0.02	
Invertebrate	abundance		 lnCVR	 0.13	 0.05	 0.2	 0.003	

  180 
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Influence of body mass and environmental variables 181 

The effects of megafauna are predicted to be dependent on body size22,23 and environmental 182 

conditions such as nutrient availability24 and productivity25. Therefore, we added body mass 183 

(both mean and maximum body size of the community, weighted by relative biomass per 184 

species for responses with sufficient sample size (>10 studies); see methods for details) and a 185 

variety of environmental factors (Table S3) as variables to our models. We added each 186 

covariate as a single variable and compared the single-term model to its intercept only model, 187 

using a likelihood ratio test (LRT). If the covariate significantly improved model quality, we 188 

considered it as explaining some of the variability in the effects of megafauna. Moreover, for 189 

those responses with sufficient sample size, we divided our data in communities including 190 

megaherbivores (≥1000 kg) vs communities without megaherbivores (Fig. S6) and 191 

communities including herbivores ≥100 kg vs without those species (Fig. S7) and analyzed 192 

their impact separately.  193 

Body mass 194 

Larger-bodied megafauna communities were more likely to increase heterogeneity in total soil 195 

N (Fig 3A, Table 2). In this case, the body mass variable here reflects the body size of the 196 

biggest animal in the community (i.e., not weighted by relative biomass). Megafauna 197 

communities comprising larger-bodied species (body mass weighted by relative biomass per 198 

species) were also more likely to increase plant alpha diversity (Fig. 3B, Table 2). None of the 199 

other tested effects on ecosystem responses were significantly affected by megafauna body 200 

mass (Likelihood ratio test [LRT]=[0.00, 5.97], p=[0.10, 0.99]). 201 

 202 

Moreover, megafauna communities that included herbivores ≥100 kg significantly increased 203 

soil labile N (Fig. S7) and communities without herbivores ≥100 kg significantly decreased 204 

plant alpha diversity (Fig. S7).  205 

Environmental covariates  206 

Negative effects on litter cover were observed mainly in soils with lower cation exchange 207 

capacity  (Fig 3C, Table 2), while positive effects on heterogeneity in litter cover occurred 208 

more frequently in  soils with lower nitrogen content (Fig 3D, Table 2).  209 

 210 
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The response of plant alpha diversity was slightly more negative in more humid areas (Fig. 3E, 211 

Table 2). None of the other tested effects on ecosystem responses was significantly affected by 212 

our environmental covariates (Likelihood ratio test [LRT]=[0.00, 3.76], p=[0.06, 1.00]). 213 

 214 

 215 
Fig. 3 Predictions of significant covariates Estimates (± confidence intervals) of covariates 216 
which are significantly improving model quality. Different point colors and shades indicate 217 
different studies. Point size is determined by 1/sampling variance to indicate its weight in the 218 
model. All explanatory variables are log transformed and scaled. A. Impact of megafauna 219 
herbivore body mass on the extent to which herbivores influence the spatial heterogeneity of 220 
soil total N. Note that body size in this case is not community weighted to maintain a sample 221 
size > 10 studies; B. Impact of community-weighted megafauna herbivore body mass on the 222 
effect of megafauna herbivores on plant diversity. C. Impact of soil cation exchange capacity 223 
on megafauna herbivores’ effects on litter cover (however, we note that the used soil covariates 224 
represent regional averages rather than fine scaled gradients in soil properties); D. Impact of 225 
soil nitrogen content on the effect of megafauna herbivores on heterogeneity in litter cover; E. 226 
Impact of aridity on the effect of megafauna herbivores on plant diversity. Note that a smaller 227 
aridity index indicates arid systems while a higher aridity index indicates more humid systems. 228 
We fitted all models in a linear framework, however, when plotting the back-transformed 229 
predictions the relationship may appear non-linear.  230 
 231 
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Table 2: Model results of significant covariates. The p-value here refers to the likelihood 232 
ratio test which compares the null model with the univariate model in terms of model quality 233 
(i.e., explanatory power). p < 0.05 indicates significant improvement of the assembly model 234 
compared to the intercept only null model; test is one-sided. CI = 95 % Confidence interval.  235 
Measured	
response	

Effect	
size	type	

Tested	
covariate	

Estimat
e	

Lower	CI	 Upper	CI	 LRT	 p	value	

Influence	of	body	mass	
Soil	total	N	 lnCVR	 Body	mass	 0.13	 -0.03	 -0.23	 5.40	 0.02	
Plant	alpha	
diversity	 Hedges	g	 Weighted	body	

mass	 0.14	 0.01	 0.29	 4.30	 0.04	

Influence	of	environmental	covariates	

Litter	cover	 Hedges	g	
Soil	cation	
exchange	
capacity	

0.40	 0.07	 0.72	 5.20	 0.02	

Litter	cover	 lnCVR	 Soil	nitrogen	
content	 -0.29	 -0.49	 -0.09	 6.42	 0.01	

Plant	alpha	
diversity	 Hedges	g	 Aridity	index	 -0.18	 -0.33	 -0.03	 5.10	 0.02	

 236 

Discussion  237 

Our meta-analysis of 297 studies across six continents shows that herbivorous megafauna 238 

shape ecosystems by affecting ecosystem properties and processes across trophic levels and by 239 

increasing ecosystem heterogeneity. We confirmed that body size influenced megafauna 240 

effects on soil labile N and plant alpha diversity, but that the effect was relatively small and 241 

variable. Some environmental factors14 modulated megafauna effects on ecosystem responses 242 

such as plant alpha diversity, and litter cover, whereas we found no evidence for others. 243 

Interestingly, and contrary to former meta-analysis and theory39,40, we did not find NPP to 244 

explain variation in the effects of megafauna on any tested response. While some responses 245 

had clear and generalizable patterns (e.g., the decrease in soil labile P and plant biomass), we 246 

found large variability in others (e.g., invertebrate abundance and soil total C).  247 

 248 

Of the 13 soil responses, four were significantly affected by megafauna. Notably, megafauna 249 

did not alter the absolute amount of soil C, P and N, but rather the bioavailable forms of N and 250 

P (sample size was insufficient to include labile C). Herbivores larger than 100 kg tended to 251 

increase the amount of available nitrogen. At the same time, megafauna in general tended to 252 

decrease labile P, supporting suggestions that megafauna may push systems towards a higher 253 

degree of P-limitation41. While the increase of N-availability may be explained by megafauna 254 
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accessing N otherwise locked away in plant biomass and providing it in bioavailable forms via 255 

excreta42, P may be stored away in skeletons for longer periods41. Alternatively, the increased 256 

availability of soil labile N may stimulate plant growth until P becomes limiting43,44 with the 257 

consequence that more available P may be stored in vegetation compared to soils not affected 258 

by megafauna. 259 

 260 

Of the seven plant responses, five were significantly impacted. Megafauna increased plant 261 

nitrogen content, which could be driven by a combination of elevated soil nitrogen availability 262 

from direct megafauna inputs and reduced C:N ratios in young (regrowing) plant tissue45,46 263 

(e.g., less “dilution” by structural carbon). Higher plant nitrogen content should have various 264 

ecosystem consequences, e.g., by increasing litter quality47 or favoring phytophagous insects48 265 

and their associated food webs (although we detected no general effect on invertebrate 266 

abundance or diversity).  267 

 268 

Megafauna significantly and strongly decreased plant biomass and cover, litter cover while 269 

increasing bare ground cover. These effects are expected through biomass consumption, 270 

trampling and wallowing49,50. The increase in bare soil may result in increased day-time soil 271 

temperature and reduced moisture due to increased exposure to solar radiation and increased 272 

runoff51, which may have cascading consequences on other soil properties. However, despite 273 

the changes in organic matter (i.e., reduced quantity of biomass, increased quality of litter) and 274 

increased soil compaction, we did not find consistent changes in bulk soil C, or soil 275 

decomposition and respiration, which is in line with previous meta-analyses52,53.  276 

 277 

Our results confirm the ability of megafauna to promote open and semi-open habitats at the 278 

plot scale by decreasing plant biomass and cover12,14,54. Moreover, megafauna increased 279 

heterogeneity in vegetation structure between plots, which suggests that megafauna increase 280 

vegetation structural diversity also on the landscape scale. However, most exclosure 281 

experiments, and vegetation sampling methods, are too small to quantify megafauna impacts 282 

at larger spatial scales directly. 283 

 284 

Overall, megafauna significantly decreased primary productivity. However, this result is 285 

difficult to interpret since variables used to quantify NPP vary widely among studies. One 286 

possible reason may be that plants might shift some of their productivity belowground, 287 

resulting in e.g., increased fine root biomass and root exudation (which may ultimately 288 
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contribute to the accumulation of persistent soil organic matter17), highlighting the need for 289 

more research on the below-ground impacts of large animals. 290 

 291 

Consistent with previous work14,54, the overall effect of megafauna—from deer to elephants—292 

on plant alpha diversity was non-significant. However, we found that smaller-bodied (i.e., 293 

< 100 kg) megafauna communities tended to have more negative effects on plant alpha 294 

diversity while larger-bodied herbivore communities tended to have slight positive effects. This 295 

could be because larger animals can eat lower-quality food55,56 such as branches and stems, 296 

which may result in proportionally greater impacts on dominant plant species and thus release 297 

less competitive plants from competition 25,57. The negative effect of smaller megafauna may 298 

reflect lack of predation pressure due to anthropogenic predator-removal58, which allows 299 

smaller species to access more risky habitats. Furthermore, the differential impact of 300 

megafauna of different size classes supports the principle that smaller herbivores cannot 301 

substitute for larger megafauna14 and suggests that the anthropogenically simplified and 302 

smaller-bodied herbivore communities59,60 currently found in large parts of the world lack 303 

important functions.  304 

 305 

Megafauna effects on other animals were measured using six variables, of which four were 306 

significantly impacted. Consistent with previous work, megafauna strongly reduced the 307 

abundances of small mammals (i.e., rodents)14 at small scales, but simultaneously increased 308 

heterogeneity in this response. A decrease in small mammals in the presence of megafauna 309 

might in part be due to lower vegetation cover or trampling of burrows, although evidence 310 

suggests that feeding competition is the main mechanism of control20. A reduction of 311 

competition and increase of vegetation cover in exclosures may also lead smaller consumers to 312 

actively move into these relatively small patches that now provide habitat of a higher quality 313 

(greater cover from predators, more food abundance) for smaller consumers compared to the 314 

surroundings61. These larger numbers of smaller animals may in turn have knock-on effects on 315 

the rest of the system, e.g., by affecting plant species whose seeds are eaten primarily by 316 

rodents, resulting in lower recruitment than in areas with large herbivores20. 317 

 318 

The decrease of bird alpha diversity and abundance could potentially be explained by 319 

decreasing nesting spaces on small scales and may seem counterintuitive as both bird 320 

abundance and diversity are known to increase with increasing habitat heterogeneity62, for 321 

which we also find evidence. However, the exact shape of heterogeneity-diversity relationships 322 
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can differ between taxonomic groups, trophic levels and across scales63 and depends on other 323 

factors such as resource availability and environmental conditions64 This suggests that the 324 

megafauna-induced increases in heterogeneity may lead to non-linear effects on bird 325 

abundance and diversity. Additionally, the effect of megafauna on the abundance and diversity 326 

of birds is most likely to be positive at intermediate disturbance levels but can be negative at 327 

higher levels65. However, more research is needed to disentangle the relationship between 328 

increased heterogeneity and decreased bird alpha diversity such as found here.  329 

 330 

A key outcome of our study is the demonstration of pervasive positive impacts of megafauna 331 

on heterogeneity (not consistently statistically significant, but almost never significantly 332 

negative; Fig. 1b). By increasing heterogeneity in vegetation structure, for example, megafauna 333 

may increase the amount of available habitat types and structural complexity, allowing more 334 

species to coexist66. Given that heterogeneity is known as a key driver of biodiversity across 335 

scales and taxonomic groups29,35,67, megafauna have the potential to contribute diversity at 336 

larger scales. Moreover, increased heterogeneity in vegetation structure may also lead to 337 

microclimatic variation which has also been shown to be an important driver of community 338 

functional diversity68. Therefore, it has been suggested that small-scale environmental 339 

heterogeneity (such as studied here) is a strong predictor of functional diversity68. Previous 340 

work has also shown that megafauna may prevent one or a few species from dominating all 341 

available niches within its ecological range and thus allow different species with both similar 342 

and different ecological roles to coexist29,32. Hence, megafauna could contribute to the 343 

establishment of functional redundancies in ecological roles and subsequently to ecosystem 344 

resilience35,69. This becomes particularly important as ecosystem heterogeneity has been shown 345 

to increase the adaptive capacity of ecosystems to respond to climate change35. 346 

Limitations and recommendations for future studies  347 

Small plot sizes in exclosure experiments along with the spatial scale at which responses were 348 

measured are a major limitation to unraveling megafauna impacts at larger scales. Additionally, 349 

we found significant signs of publication bias in the studies analyzed here (Fig. S8, Table S4) 350 

and spatial bias towards better-funded and researched parts of the world64,70 (Fig. 4, Fig. S2-351 

S4), which may hamper generalisations71. Despite these biases, our results are in line with 352 

theory and recent reviews13,14 (which likely suffer from the same biases).  Although it is 353 

plausible that some of the observed effects on megafauna translate to larger spatial scales - 354 

such as the positive effects on heterogeneity - the results presented here only provide reliable 355 
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information about effects at the plot scale. Consequently, studying the impact of megafauna on 356 

ecosystems at larger scales (i.e., landscape scale and larger) is a major challenge and will 357 

contribute significantly to our understanding of megafauna effects. Since setting up 358 

experiments on landscape scales is challenging, better use of natural experiments and 359 

counterfactuals and available landscape-extent data (e.g., from remote sensing72), will be key 360 

avenues in further quantifying the role of megafauna in the Earth system. 361 

 362 

Despite testing a broad range of environmental covariates and megafauna body size, a large 363 

amount of the observed variation in megafauna impacts on ecosystems remains unexplained. 364 

Moreover, most of the covariates that significantly improved model quality had only small 365 

effect sizes. Part of this unexplained variation may be due to variation in megafauna densities 366 

and herbivory pressure, which was not reported in most studies. Other context dependencies 367 

related to historic megafauna extinctions or historic human land-use may also affect both the 368 

starting conditions when exclosure experiments were initiated and subsequent trajectories in 369 

response variables, e.g. through impacts on regional species pools, soil seed banks, fire regimes 370 

or hydrology73.  371 

Conclusion and outlook  372 

The results presented here show that megafauna have strong effects on ecosystems. By 373 

modifying soil and plant nutrients, vegetation structure and altering consumer populations, 374 

megafauna are expected to have numerous other downstream effects on ecosystem functioning 375 

and community structure. Moreover, by increasing heterogeneity megafauna may promote 376 

biodiversity at landscape scales, thus favoring diverse ecosystems that may be more 377 

ecologically resilient35,69. However, we found no evidence for other hypothesized effects of 378 

megafauna, such as on soil respiration and total soil C content, or for a modulating effect of 379 

NPP on megafauna effects. Likewise,we found high variability in megafauna effects, indicating 380 

underlying contextual complexity and highlighting the need for globally distributed 381 

experiments74. 382 

 383 

Our results provide quantitative evidence for some findings in a recent extensive review of 384 

several megafauna effects14, such as the importance of body size in modulating the impact of 385 

herbivores, top-down trophic effects on vegetation, the importance of megafauna to nutrient 386 

cycling, the suppression of smaller animals and increased ecosystem heterogeneity when 387 

megafauna are present. These general patterns in how megafauna affect ecosystems, 388 
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biodiversity and Earth system functioning underpin the global importance of megafauna and 389 

highlight the need for process-based work that allows predictions of megafauna impacts, 390 

specifically with regard to ecosystem restoration in a rapidly changing world14.  391 

 392 

Considering the variety of effects we could confirm in this meta-analysis, we argue that 393 

ecosystems that lost their wild megafauna during the late Quaternary are likely missing key 394 

processes3,8,10,75. This loss is expected to continue given ongoing declines of large-bodied 395 

species9,58,76. Therefore, we advocate for their carefully planned and implemented restoration 396 

through actions such as trophic rewilding77; actions that may become increasingly important in 397 

the face of future environmental change.  398 

  399 

Methods 400 

Literature search and digitization 401 

This meta-analysis is part of a larger project aiming to understand how large (> 45 kg body 402 

weight) terrestrial mammalian herbivores can affect different aspects of ecosystems (e.g., 403 

Lundgren et al., in revision]). We searched Web of Science (www.webofscience.com) on 18th 404 

February 2021 with a string of search terms that included the common names and latin genera 405 

of all terrestrial mammalian megafauna species (common names from HerbiTraits v1.2 78) 406 

separated with an ‘OR’ operand, combined with the following search terms: "disturb*, graz*, 407 

brows*, impact*, effect, affect, disrupt, facilitate, invasi*, ecosystem*, vegetat*, plant*, 408 

fauna*, reptil*, amphib*, bird*, rodent*, fish*, invertebrat*, insect*, soil*, carbon, climate, 409 

albedo, river*, riparian, desert*, forest*, tundra, decomposition, grassland*, savanna*, 410 

chaparral, scrub, shrub, diversity, heterogeneity, extinction, richness, environment, reptile*, 411 

ecolog*, hydrolog*, disturbance, density, biodiversity, response*, ecosystem, herbaceous, 412 

canopy, germination, cover, pollinator*, tree, nutrient*, understory, erosion, grass*, vegetation, 413 

community, exclosure, competition, effect*, abundance, productivity" in combination with the 414 

topic filter: “WC=( Ecology OR Zoology OR Environmental Sciences OR Biodiversity 415 

Conservation OR Evolutionary Biology OR Geography Physical OR Remote Sensing OR Plant 416 

Sciences OR Multidisciplinary Science OR Forestry OR Entomology OR Marine & Freshwater 417 

Biology OR Mycology OR Biology OR Oceanography OR Ornithology OR Behavioral 418 

Sciences OR Fisheries” After removing duplicate studies with the function 419 

http://www.webofscience.com/
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find_duplicates of the R package ‘revtools’ 79, this led to 62,628 hits. After screening all 420 

titles and removing obviously unsuitable articles, this number was reduced to 2369 studies.  421 

The literature list was extended by studies used in other meta-analyses e.g., 39,80 and found in 422 

reference lists of studies we downloaded. We supplemented the list further with focused 423 

Google Scholar searches on the 15th of July 2022, using the following terms: “ungulate impacts 424 

island*”, “introduced goat impact island*”, “introduced deer impact*”, “feral camel impact*”, 425 

“wild OR feral boar OR hog OR pig OR feral pig OR swine impact*”, “feral cattle impact*”, 426 

“invasive ungulate hawaii OR guam OR new zealand OR pacific island OR new caledonia OR 427 

galapagos OR caribbean OR oceanic island” and a Web of Science search on the 22nd of 428 

December 2022 using the search string “herbivore* AND (plant* OR soil) AND nutrient* 429 

AND response*”. This led to the addition of 38 and 15 studies respectively (Fig. S9 for Prisma 430 

chart).  431 

 432 

Considering that ecosystem responses can differ drastically between wild and domesticated 433 

animals 20,81, we only considered studies investigating wild megafauna populations. We 434 

excluded studies investigating only herbivores < 45 kg. Further, we only included studies that 435 

compared adjacent areas of low (mostly no megafauna) and high megafauna densities due to 436 

known factors like exclosures, policy-driven differences (hunting versus no-hunting in adjacent 437 

properties), and differences in introduction or eradication histories (adjacent islands with and 438 

without megafauna). Given that adding nativeness to our models never improved model fit 439 

(LRT=[0.00, 3.62], p=[0.12, 0.95], Fig. S10), except for plant cover (LRT = 4.03, p = 0.04, but 440 

with the same effect direction for both introduced (g = -0.42 [-0.58, -0.26]) and native 441 

megafauna (g = -0.22 [-0.32, -0.11]), Fig. S11), we also included non-native megafauna in our 442 

analysis. 443 
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444 
Fig. 4 Locations of the studies used in this meta-analysis. Points appear darker if there are 445 

several studies at the same location. More detailed maps including response directions can be 446 

found in Fig. S1 and Fig. S2.  447 

 448 

In grouping the individual ecosystem responses, we attempted to find a compromise between 449 

maximizing sample size and ecological accuracy. Apart from obviously incorrect groupings 450 

(e.g., NDVI as measurement for PP), we have essentially followed the categories used by the 451 

authors of the respective studies. For example, primary productivity responses are mainly 452 

composed of various growth rate measurements (such as tree growth rate, total crown growth, 453 

leaf growth rate, etc.).  All included types of measurements for each response can be found in 454 

the `Data and supplementary files` folder on Figshare (file name: 455 

“measured_responses_R1.csv”).  456 

We exclude all before-after comparisons (e.g., a plot measured prior to construction of an 457 

enclosure and then again afterwards) due to the high rates of change in many ecological systems 458 

over time, such as afforestation, climate shifts, and succession. Studies investigating plant 459 

nutrients but reporting nutrient values in units per area were also excluded because any 460 

differences possibly rather reflect biomass removal due to megafauna foraging than actual 461 

changes in nutrient concentrations.  462 

 463 

We digitized measures of central tendency (mean, median), variability (standard deviation, 464 

interquartile ranges), error (standard error, confidence intervals) and sample sizes for each 465 
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response in each study. We used the ‘Figure_Calibration’ plugin 82 in ImageJ 1.53k 466 

(www.imagej.nih.gov/ij/) to extract data from figures. 467 

 468 

We also digitized relevant information associated with each observation, which included time 469 

since treatment (e.g., exclosure construction or island colonization), study location (latitude, 470 

longitude; Fig. 4), reported density of megafauna (converted to biomass per hectare), 471 

megafauna nativeness and relative abundance of megafauna (in the case of multispecies 472 

megafauna communities). However, not all studies reported these variables and in most cases 473 

sample size was too small to test for them specifically (i.e., only 172 out of 297 studies reported 474 

megafauna densities).  475 

Covariates 476 

Covariates were selected based on a priori hypotheses and were expected to influence 477 

ecosystem responses to megafauna. 478 

Environmental covariates were extracted for each study location using the function 479 

exact_extract from the R package ‘exactextractr’ version 0.8.2 83 and the extract 480 

function from the ‘terra’ package version 1.7-3 84. These variables included maximum annual 481 

temperature (MAT) 85, net primary productivity (NPP) 86 and the aridity index (AI)87. 482 

Moreover, we extracted soil pH, soil cation exchange capacity, soil nitrogen and soil clay 483 

content from the SoilGrids database 88.  484 

 485 

Megafauna body mass was extracted from the HerbiTraits v1.2 database 78 for all species in 486 

our dataset (including herbivores < 45 kg that were part of the experimental manipulation, Fig. 487 

S12). Many studies manipulated multiple megafauna species simultaneously. To account for 488 

this, we calculated community-weighted body mass by multiplying species-specific body mass 489 

(BM) by the proportional contribution of that species’ biomass to the total biomass of the 490 

community(RB). For example, a megafauna community consisting of two species, one with a 491 

body weight of 100 kg that accounts for 80% of the biomass of the entire community, and the 492 

second species with a weight of 1000 kg that accounts for 20% of the biomass of the 493 

community. The unweighted mean body mass of the community would be 550, while the 494 

weighted body mass of the community would be 140 kg, which is calculated as in equation (1) 495 

and exemplified in equation (2):  496 

 497 

http://www.imagej.nih.gov/ij/
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 499 

(100	𝑥	0.8 + 1000	𝑥	0.2)/2		  (2) 500 

 501 

Relative biomass estimations were computed based on either the relative abundance or absolute 502 

density estimates per species. However, as using only these community-weighted variables in 503 

some cases reduced our sample size drastically, and weighted and unweighted covariates were 504 

strongly correlated (rho =0.94, p = < 0.0001), we decided to use the unweighted body mass in 505 

cases where using the weighted covariate would reduce sample size to < 10 studies. 506 

Data analysis 507 

All data analysis was performed in R version 4.2.2 89. We calculated the effect size and 508 

corresponding sampling variance of the megafauna treatment (low vs. high density) as 509 

standardized mean difference, also known as Hedges’ g (g)90. Hedges’ g is a unitless 510 

measurement91. As a rule of thumb, a value of 0.2 can be interpreted as small effect, 0.4 as 511 

medium effect and 0.8 as large effect. However, given the context dependency of the 512 

importance of those categories, the exact values should be interpreted with care38,91. To 513 

investigate if megafauna has an impact on the variability of the parameters of interest we further 514 

calculated the log transformed coefficient of variation ratio (lnCVR) 36,92. This effect size 515 

quantifies the between-plot heterogeneity within each reported comparison between high and 516 

low megafauna density. It therefore primarily reflects variation among plots, i.e. spatial 517 

heterogeneity within an exclosure or control site, uncorrected for differences in spatial grain 518 

(plot size) and extent (study area) between studies. First we transformed all medians to means 519 

and error measurements to standard deviation (SD) with the function qe.mean.sd from the 520 

R package ‘estmeansd’ version 1.0.0 93. Then we employed the escalc function of the 521 

‘metafor’ package version 3.5-12 37 which is using the observed mean, SD and group size of 522 

both treatment groups to calculate effect size and variation 37. 523 

  524 

To account for potential non-independence in the effect size (i.e., due to repeated measures in 525 

the same study) we fit random-effects meta-analytic models with the rma.mv function of the 526 

‘metafor’ package 37 and added citation as random effect. Because some of the studies reported 527 

time series data, we also included an ordered time series variable for each individual 528 

experiment ID (e.g., a specific nutrient response per study) in our random effects.  529 
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We modeled the response variable (hedges g or lnCVR), either against the intercept 530 

only or against one covariate of interest at a time and used the sampling variance to weigh each 531 

data point. Studies with larger sample sizes and/or lower variance thus have higher weight in 532 

models37. For modeling purposes, we took the natural logarithm of those covariates without 533 

normal distribution and standardized all covariates using the scale function in base R (R core 534 

team 2022) to approach a normal distribution and to account for the different units and thus 535 

magnitude differences between the variables.  536 

 537 

To test the influence of sample size, we selected the five responses with the largest sample size 538 

and bootstrapped the model 1000 times for different numbers of studies (n = 3, 5, 8, 10, 15, 539 

Fig. S13). We find that as the number of included studies increases, the frequency distribution 540 

of estimates narrows considerably toward the confidence interval of the model with the full 541 

sample size (Fig. S13). While we observe a large variation for models with 5 or fewer studies, 542 

we notice a stabilization toward a sample size of 10 studies, which is why we excluded 543 

responses with fewer than 10 studies from the covariate analysis. Nativeness was only tested 544 

on ecosystem responses with ≥ 5 studies with introduced and ≥ 5 studies with native species.  545 

 546 

We compared the assembly model of each covariate with the respective intercept only model, 547 

using a likelihood ratio test via the anova function of the `metafor` package37,94.  548 

After running all models we followed a leave-one-out approach to identify influential studies 549 

(Cook’s Distance > 195) using the cooks.distance function of the ‘metafor’ package37,96, 550 

and removed studies that showed cook's distance of larger than 1.  551 

 552 

For those responses which have a sufficient sample size we also tested the effect of treatment 553 

duration (Fig. S14) and area of measurement (Fig. S15). We further tested the effect of biomass 554 

lost due to treatment (as proxy of megafauna density) on the effect size magnitude of responses 555 

with sufficient sample size but did not find it to improve model quality for any tested response. 556 

To account for the specific characteristics of megaherbivores (terrestrial megafauna herbivores 557 

(≥1000 kg)23, we performed an additional sensitivity analysis were we tested the effects of 558 

megaherbivores and megafauna herbivores < 1000 kg on those responses with sufficient 559 

sample size separately (Fig. S6). We further performed a similar analysis for large herbivores 560 

≥100 kg vs smaller megafauna herbivores (<100 kg) (Fig. S7). Moreover, we tested the effect 561 

of megafauna in different biome categories (namely temperate forests, temperate grasslands, 562 
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tropical forests, tropical grasslands, and mediterranean forests) separately for those responses 563 

with sufficient sample size (Fig. S16, Fig. S17). 564 

  565 

To check for publication bias we used funnel plots 97 via the funnel function of the ‘metafor’ 566 

package 37 (Fig. S8). We further performed regression correlation tests for funnel plot 567 

asymmetry 98 via the regtest function from the ‘metafor’ package 37 to adjust for the overall 568 

mean 99 (Table S4). 569 

 570 

Data availability  571 

All data are available on figshare: 572 

https://figshare.com/projects/Data_and_scripts_for_manuscript_Worldwide_evidence_that_w573 

ild_megafauna_shape_ecosystem_properties_and_promote_spatial_heterogeneity_/180031100 574 

 575 

Code availability  576 

All core analysis and figure scripts are available on figshare: 577 

https://figshare.com/projects/Data_and_scripts_for_manuscript_Worldwide_evidence_that_w578 

ild_megafauna_shape_ecosystem_properties_and_promote_spatial_heterogeneity_/180031100 579 
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