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Abstract 

 

Rapid advances in technologies and complementary improvements in the Industrial 

Internet of Things have contributed to the exponential growth in data availability. This has 

resulted in a new level of dynamism and complexities manufacturing organisations must 

overcome to maintain performance levels, competitiveness and create value. Big data 

research has been primarily positioned as a conduit through which manufacturing 

organisations can improve performance through higher-order analytical techniques, which 

contribute to improved data-driven decision-making. Despite all the benefits that big data 

can have for manufacturing organisational performance, research on how big data should 

be implemented in these dynamic, continuously evolving environments is limited. 

 

This research is theoretically positioned within the organisation's resource base view and 

dynamic capabilities. Organisational information technology capabilities (management, 

infrastructure and expert skills) are the foundational cornerstone of big data analytics 

capabilities influence performance in manufacturing organisations. This research has a 

particular focus on the impact process-orientated dynamic capabilities have on 

organisational performance. This is of significant importance to manufacturing 

organisations which consists of many distinct interrelated concurrent processes. Research 

into this construct is limited, and the findings could prove beneficial to organisations in 

overcoming current and future challenges that may impact the performance of the broader 

organisation. 

 

This study analysed 165 online survey responses from South African manufacturing sector 

respondents. The research employed a higher-order formative-reflective PLS-SEM model. 

The findings of all three research hypothesis questions found that big data analytics 

capabilities positively influenced manufacturing organisations' performance and process-

orientated dynamic capabilities. The study highlighted notable insights for manufacturing 

and academia through dynamic and process-orientated capabilities to extract value. 
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1 Chapter 1: Introduction  

 

1.1 Primer on this research 

 

Data generated from sensors monitoring equipment have been an ever-present feature 

on the factory floors of manufacturing organisations over the last few decades. Initially, 

sensors were only able to generate one-dimensional insights from the equipment the 

sensor was allocated to. Advances in technology, supported by the increase in the 

significance of the Internet, have allowed manufacturing operations to collate vast 

volumes of operational and commercial data to aid decision-making by the organisation 

(Tao et al., 2018b). Kitchin (2014) shares that big data analytics (BDA) represents a 

fundamental change in the manner which organisation will make decisions. 

 

The increasing use of big data in organisations has been transformational on business 

models and influences both internal and external relationships (Rachinger et al., 2018). 

As the role and significance of BDA intensifies, manufacturing organisations are facing the 

challenge of establishing the best configuration of infrastructure, skills, and management 

to be leveraged in order to generate meaningful insights through which competitive 

advantages can be sustained in dynamic, continuously evolving business environments 

(Belhadi et al., 2019; Dubey et al., 2019a). BDA is recognised for its significant potential 

to identify opportunities of value and improve performance; however, many organisations 

need to clarify their big data strategy to achieve these objectives (Comuzzi & Patel, 2016). 

 

There has been a concentrated effort into understanding the notion of big data analytics 

capabilities (BDAC) and its untapped value creation potential from a theoretical viewpoint, 

but organisations are still discovering how to identify, analyse and derive value from the 

underlying data (Belhadi et al., 2019; Dubey et al., 2019a; Garmaki et al., 2016). Kim et 

al. (2011) posit that to understand BDAC, organisations need to go beyond the data 

generated and focus on the organisation's core information technology (IT) capabilities 

from management, infrastructure and skills that can support in unleashing untapped 

opportunities that only big data analytics can discover. 

 

Seminal research by Wamba et al. (2017) and Akter et al. (2016) highlight that 

organisations must fully understand the mechanisms underpinning BDA and, therefore, 
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can learn how to fully extract value. This research intends to build on the information 

system research, which has established that an organisation's internal IT capability can 

improve organisational performance (Mikalef & Pateli, 2017). The influence of big data on 

daily life is irrefutable, as was illustrated during the COVID-19 pandemic when 

manufacturing companies relied on data to ensure that essential medical and consumer 

goods could reach consumers. 

 

Rodrik (2018) shares that the rapid advances in technology will undoubtedly minimise the 

competitive positions of manufacturing organisations and the growth potential of 

developing economies such as South Africa. This research study will explore big data as 

a latent strategic resource which requires the mobilisation of internal organisation 

capabilities. The study will be an exploration of the association between the IT capabilities 

of manufacturing organisations and their performance within a data-determined 

ecosystem. 

 

1.2 Research problem 

 

The accelerated development of all technology-related segments and unprecedented 

growth in the Industrial Internet of Things (IIoT) has created a restrictive global network 

through which suppliers and all manufacturers compete for market share (Belhadi et al., 

2019). The new status quo has resulted in organisations developing innovative 

technology-driven strategic solutions to overcome the new competitive complexities 

(Gupta & George, 2016; Dubey et al., 2019a; Belhadi et al., 2019). Manufacturing 

organisations have no choice but to transcend their established production management 

processes or face the threat of not being competitive (Cheng et al., 2018). 

 

Manufacturing organisations have always embraced innovation as a means to improve 

organisational performance. Singh and Sharma (2020) have tracked the innovation path 

of manufacturing over the last four industrial development cycles and have clearly 

illustrated how manufacturing has continuously adapted to the evolving technological 

frontier. This industry’s adaptive capabilities and ability to accept change have resulted in 

the industry transitioning from the human and animal production system to sophisticated 

cyber-physical systems that can replicate physical environments digitally (Mohajan, 

2019a; Sharma & Singh, 2020; Dogaru, 2020; ElMaraghy et al., 2021). 
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The advances in technology, specifically monitoring and sensor equipment, have resulted 

in organisations being able to collect significant volumes of data or big data. Manufacturing 

organisations’ challenge is generating value-adding insights from the data under 

management (Belhadi et al., 2019; Comuzzi & Patel, 2016; Dubey et al., 2019a; Wamba 

et al., 2017). Manufacturing organisations can employ big data effectively, characterised 

by high capital expenditures and stringent time constraints on production targets. The 

intensity and stringent adherence to time-monitored processes in order to be the low-cost 

competitive leader highlights the need for BDA techniques. Despite the data being 

available for decision-making, manufacturing organisations have not fully defined how to 

integrate BDA into the manufacturing processes (Wamba et al., 2015; Belhadi et al., 2019; 

Kwon et al., 2014). 

 

Big data relates to the volume of data collected from numerous resources and stored for 

further analysis (Gupta & George., 2016; Acharya et al., 2018; Mikalef et al., 2020). Kwon 

et al. (2014) describe BDA as a combination of organisational IT capabilities and analytical 

procedures that are applicable to large data sets which identify insights and opportunities 

to improve the competitive position of the organisation. BDA is the transmission 

mechanism that allows manufacturing organisations to transition from established 

processes to technology-enabled intelligent processes, which supports organisations in 

overcoming the complexities in the form of big data and the operating environment (Li et 

al., 2022). 

 

Given the rapid changes in the business landscape, manufacturing organisations need to 

be aware of how technology is changing, employing an adaptive approach and 

incrementally evolving big data strategy across all business spheres to ensure no value is 

lost (ElMaraghy et al., 2021). Manufacturing organisations rely on many simultaneous 

processes that all require constant monitoring. It is these distinctive process orientation 

characteristics that differentiate manufacturing organisations apart from other 

organisations and where the most significant challenge lies as most companies do not 

know how to utilise BDA to improve distinctive processes that need to have high-

performance levels to safeguard organisational competitiveness in this dynamic 

environment (Belhadi et al., 2019; Wamba et al., 2017; Kim et al., 2011; Kwon et al., 2014). 
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The challenge of the research is to identify the resources and dynamic capabilities 

manufacturing requires to ensure that the BDA strategy is effective at generating value 

and improving individual processes and organisational performance. This research 

investigates BDAC and its influence on the performance of manufacturing organisations 

from the lens of IT capabilities, focusing on managing the IT capabilities, organisational 

infrastructure and the skill levels of employees. The above three constructs combined 

constitute BDAC, and from this perspective, the research will attempt to understand how 

firm performance (FPer) and process-orientated capabilities are impacted. 

 

1.3 Objective of this study 

 

The objective of this research is to develop a framework to understand how BDAC 

influences strategic decision-making regarding processes-orientated dynamic capabilities 

(PODC) and ultimately influences FPer. Research into how manufacturing organisations 

develop organisation-wide big data strategies to build value is limited (Dubey et al.,2019a; 

Belhadi et al., 2019; Belhadi et al., 2019). Through research rigour, the objective of the 

study is to identify the key IT capabilities manufacturing organisations require to implement 

BDA strategies that improve FPer competitiveness and generate value in an active, 

evolving global business environment. 

 

This research is focused on how manufacturing organisations can create strategies that 

best utilise IT resource capabilities, and as such, the following research objectives are 

derived. 

 

1. Identify what are the key IT capabilities that underpin BDAC in manufacturing 

organisations, 

2. Establish the optimal mix of capabilities that can work in harmony and be fully 

leveraged by the organisation to improve FPer, 

3. Identify how the capabilities can best be used in specifically identified processes 

to improve the performance of that process and the broader organisation. 

 

This research is bound to establish a base from which BDAC and PODC influence the 

performance of manufacturing organisations through a reflective evaluation of the 

dynamism of organisational IT capabilities. 
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1.4 Theoretical reasoning for this research  

 

Over the past few years, a significant volume of research has concentrated on the 

connection between big data, IT capabilities and FPer (Wamba et al., 2015; Comuzzi & 

Patel, 2016; Mikalef & Pateli, 2017). It is a natural association for big data to be linked with 

organisational IT capabilities, and these relationships have been evaluated using the 

resource base and dynamic capabilities theoretical frameworks (Kim et al., 2011; Akter et 

al., 2016; Dubey et al., 2019a; Lin & Wu, 2014). Research exploring how to consolidate 

big data dynamic capabilities successfully so that organisations can improve FPer is still 

in the early stages of the research curve (Kim et al., 2011; Wamba et al.,2017; Akter et al., 

2016). 

 

The research has expanded the baseline understanding of how BDAC can improve FPer 

with a continuously evolving ecosystem. While attempts have been made to explore 

dynamic capabilities from an organisational context, there is no prescribed guiding 

framework with a manufacturing viewpoint (Belhadi et al., 2019). The research undertaken 

by Wamba et al. (2017), Akter et al. (2016) and even Gupta and George (2016), although 

similar, did not evaluate the relationship from a designated process-orientated industry 

point of view, and it is at this point that research differentiated itself. The justification for 

focusing on the manufacturing organisations is grounded in the view that manufacturing 

organisations must continuously adapt to survive (Sharma & Singh, 2020; ElMaraghy et 

al., 2020). In addition, the manufacturing organisations are process-orientated, and testing 

big data strategies on smaller processes within the organisation would allow the company 

to develop a big data strategy that can support the entire organisation. Understanding how 

BDAC influences the manufacturing process needs to be better developed (Wamba et al., 

2017; Kim et al., 2011; Belhadi et al., 2019). This is where the research is bound to make 

an academic contribution. 

 

1.5 Relevance to manufacturing organisations 

 

The significance of big data and its potential influence on organisational performance and 

competitiveness has been discussed at length over the past few years (Wamba et al., 

2015; Dubey et al., 2019a). Literature on big data positions the topic as the next seismic 

shift that will determine all aspects of organisational strategy, management and operations 
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(Comuzzi & Patel, 2016; Belhadi et al., 2019; Wamba et al., 2015). Big data can support 

organisations in achieving higher investment returns using big data to improve decision-

making by employing higher-order analytical methods of analysis (Wamba et al., 2015; 

McAfee et al., 2012). 

 

Notwithstanding all factors favouring the use of big data in organisations. Organisations 

face many challenges in obtaining the expected benefits associated with big data because 

organisational management structures need to gain experience and knowledge on 

utilising big data resources and capabilities (Vassakis et al., 2018). Raut et al. (2021) 

reinforces this perspective by identifying senior management structures in manufacturing 

organisations as needing to be more supportive of big data projects regarding leadership 

and finances and understanding how big data can positively impact organisations. Big 

data's significance needs to be interwoven into all organisational structures to succeed. 

 

This research is positioned in the manufacturing industry to support the sector in 

overcoming internal operational challenges in the present but also use the learning to 

overcome future obstacles. The research aims to identify the critical management, 

infrastructure, and expert IT capabilities required to ensure that manufacturing companies 

can capitalise on vast data resources under management. In addition, this study aims to 

understand how effectively BDAC influences PODC. This is of significant value to 

manufacturing organisations because a single bottleneck in an integrated manufacturing 

process can significantly influence performance and competitiveness. 

 

From a manufacturing perspective, big data should anticipate expected production 

outages based on past trends. Data generated from singular processes should be 

integrated into a larger data set that can provide value chain-wide insight that is of 

commercial benefit to the organisation. 

 

1.6 Report structure  

 

This research is developed in the following sequence: 
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Chapter 1: Discusses the research topic and provides context for selecting the area of 

research and chosen boundary parameters, the research challenge, the research 

objective, academic justification and business relevance. 

 

Chapter 2: Begins with a review of the evolution of the manufacturing industry and 

highlights factors that could influence its future. The chapter reviews the underlying 

theories that support the research construct. The chapter concludes by evaluating the 

salient topics relating to dynamic capabilities, PODC, BDAC and the performance of 

manufacturing firms. 

 

Chapter 3: Describes the hypothesis questions developed from the literature review 

chapter. 

 

Chapter 4: Outlines the method by which this research was undertaken. The chapter 

highlights the research design, justifies the sample population, the level of aggregation of 

the sample population, discusses the survey instrument, the data collection process and 

an overview of the statistical method used to analyse the data. 

 

Chapter 5: Pertains to the demographic analysis and hypothesis test results. The 

hypothesis tests were undertaken using the partial least squares method, which entails 

testing the outer and inner structural models and evaluating each hypothesis question. 

 

Chapter 6: Discusses the results from analysis provided in Chapter 5. Highlighting critical 

inferences from the sample survey and in-depth review of each research question. 

 

Chapter 7: Closes the research report with an overview of the findings for each of the 

three hypothesis questions, in addition to proposing new avenues of research, 

implications for organisations, contributing to the growth in the current knowledge base 

and expanding of factors restricting this research. 
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2 Chapter 2: Literature Review  

 

2.1 Introduction  

 

The literature underpinning this research is focused on understanding BDAC's influence 

on manufacturing firm performance. Big data has been described as the mechanism to 

improve firm FPer. The execution of how big data can enhance FPer remains vague as 

organisational complexities take precedence over developing dynamic capabilities due to 

the emergence of global value chains. Organisational competitiveness is now measured 

worldwide as such, priorities shift and developing dynamic capabilities become secondary. 

This research develops a combination of hypothesised perspectives on how data-driven 

ecosystems can improve the performance of manufacturing firms. 

 

The chapter presents an overview of the current, emerging, seminal and theoretical 

literature pertaining to the research objectives and, as such, will be segmented into two 

broad themes. The first theme will focus on the origin and evolution of manufacturing. 

Most research on BDAC is mainly focused on a specific challenge rather than an industry. 

In contrast, there is no prescribed definition of manufacturing activities. This theme will 

focus on the evolution of manufacturing through the critical Industrial Revolution (IR) 

cycles and how they have influenced manufacturing systems and society. The final 

components of this theme will explore the future of manufacturing and expected 

challenges. This serves as the bridge in which this chapter can focus on the second 

literature theme relating to BDAC and how it can improve organisational performance. The 

section will begin with a review of the theories underpinning BDAC and subsequently 

progress to a review of research constructs. Illustrating how BDAC influences constructs 

on developing dynamic capabilities, which affects business processes and, ultimately, 

FPer. The purpose of the literature review is to validate that manufacturing is as vital today 

as it was during the Industrial Revolution and why BDAC is a crucial mechanism to 

improve organisational performance in an environmentally conscious world.  

 

2.2 Evolution of manufacturing through the IR cycles 

 

Manufacturing has long been regarded as a key driver of a country’s economic and social 

development (Haraguchi et al., 2017; Kelly et al., 2023). This section of the literature 



9 
 

review explores the influence of manufacturing across the socioeconomic spectrum 

through global IR cycles. Sharma and Singh (2020) classify IR cycles into four distinct 

periods. These periods will form sub-sections through which the evolution of 

manufacturing will be reviewed. 

 

2.2.1 The First IR 

 

The first IR occurred during the eighteenth century in England. This period represents a 

significant turning point in the way humanity lived. Before this period, people worldwide 

mostly lived a rural subsistence way of life. The IR represented a considerable shift from 

human and animal-powered production to coal-powered machinery (Mohajan, 2019a). 

The coal powered steam engine and weaving loom machine were both invented during 

this period (Mohajan, 2019a; Sharma & Singh, 2020). These two inventions were 

significant machinery that allowed for a dynamic shift in how the world operated (Kelly et 

al.,2023). These two pieces of machinery transformed organised labour and significantly 

improved production (Mohajan, 2019a; Kelly et al., 2023). 

 

The steam engine influenced many industries, but the most significant change occurred 

in the British textile industry. The spinning looms powered by coal fired steam engines 

significantly increased textile production. This resulted in the creation of factories that 

required artisanal labour. This resulted in a labour migration from rural to urban areas as 

workers transitioned from rural earners to waged employees (Mohajan, 2019a; Sharma & 

Singh, 2020; Kelly et al., 2023). This migration also contributed to the significant 

development in infrastructure with factories, cities and formalised service institutions 

(Mohajan a, 2019; Sharma & Singh, 2020; Kelly et al., 2023). 

 

Shifts in the socioeconomic paradigm were not the only changes during the IR. There was 

now a need to manage and organise workplace practices to ensure that production output 

and FPer were sustained (Sharma & Singh, 2020). The factory system represented a 

significant change to manual production methods. The factory system resulted in a 

clustering of related activities, which influenced the allocation of investment, labour, 

machinery and innovation that supported the production of finished products (Geraghty, 

2007). Trace elements of early manufacturing systems can still be prevalent in present 

manufacturing operations. 
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2.2.2 The Second IR 

 

The first IR originated in England, but its influence spanned the globe. The second IR is 

considered the American IR. The first IR was coal-powered, and the second IR was 

powered by electricity (Mohajan, 2019b; Sharma & Singh, 2020). The second IR is 

significant because of the many innovations it generated during the nineteenth century, 

which contributed to the rapid growth of the manufacturing industry (Agarwal & Agarwal, 

2017; Sharma & Singh, 2020). 

 

The electrification of manufacturing operations brought forth opportunities to improve 

overall productivity through continuous innovation (Atkeson & Kehoe, 2001; Sharma & 

Singh, 2020). Technological innovations during this period were identifiable across 

industries, with growth in the petroleum, chemical, and automobile industry (Mohajan, 

2019b). Innovations in steel manufacturing contributed to the expansion of railway 

infrastructure, which meant that products could reach customers faster. Adoption of mass 

production and the introduction of production lines were implemented as producers sought 

to increase productivity (Atkeson & Kehoe, 2001; Mohajan, 2019b; Sharma & Singh, 

2020). According to Sharma and Singh (2020), mass production created research and 

development departments and interchangeable components on manufacturing lines 

because factories had to be operational due to increased competition. 

 

The second IR also resulted in a transformation of financial institutions as banks now 

accepted deposits from workers for savings (Agarwal & Agarwal, 2017). With America 

being the epicentre of this IR, many workers migrated to America from all corners of the 

world. Manufacturing improvements also enhanced living standards as infrastructure 

improved, and many households had access to running water and indoor plumbing. This 

innovation spillover also contributed to an improvement in medicine and medical 

technology, which increased the living age (Mohajan, 2019b). 

 

2.2.3 The Third IR 

 

The preceding two sections on the first and second IR illustrate how manufacturing 

evolved from human and animal to steam and electricity. These innovations resulted in 
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the formation of the factory system, standardised production lines, and improved 

infrastructure for factories and adjacent towns and cities, which were serviced through 

mass production (Mohajan, 2021). The third IR, which started in the 1950s, represents a 

period in which mechanical, electronic and digital innovations converge to support 

improvements in manufacturing efficiency (Troxler, 2013; Taalbi, 2019; Sharma & Singh, 

2020; Mohajan, 2021). 

 

The third industrial revolution occurred at a point in history when the world was undergoing 

significant change. The oil crisis during 1970s, combined with the growth in consumerism, 

necessitated that manufacturers automate a significant proportion of production lines to 

reduce costs and improve efficiencies (Taalbi, 2019; Sharma & Singh, 2020; Mohajan, 

2021). Innovations in electronic devices, such as transistors and circuit boards, improved 

the efficiency and accuracy of machinery. The advances and integration of electronics in 

manufacturing systems prompted many producers to cut costs and move manufacturing 

operations to developing countries with lower labour rates (Sharma & Singh, 2020; 

Mohajan, 2021). Manufacturers now could automate a significant proportion of production 

and utilise semi-skilled labour for tasks that could not be automated at a lower labour rate. 

As manufacturing operations became more dispersed across the world, there was a need 

to develop supply chain management practices (Sharma & Singh, 2020). The dispersion 

of manufacturing operations to different locations was only possible due to the significant 

advances in digital communications through the creation of the internet, which led to 

emails, mobile phones, cloud computing and data accumulation, allowing faster decision 

making. 

 

The third industrial revolution significantly impacted global economic growth and 

development as countries now traded more easily through improved logistics 

infrastructure and more efficient modes of transport. Living standards, life expectancy and 

entrepreneurship increased worldwide (Mohajan, 2021). 

 

2.2.4 The Fourth IR 

 

The ongoing fourth IR further develops advancements made during the third IR. The 

critical distinction between the two IR cycles is that the current cycle accelerated advances 

in digital technologies have become deeply embedded in all aspects of manufacturing 
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administrative and operational systems (Sorooshian & Panigrahi, 2020; Sharma & Singh, 

2020; Rymarczyk, 2020; Dogaru, 2020). Advances in information communication and 

technology (ICT) are the main instruments through which new digital technologies are 

introduced in manufacturing operations (Sharma & Singh, 2020; Dogaru, 2020). 

 

During this period, there have been significant advancements in software and sensor 

technologies. Connecting to the internet allows factories to operate smartly and efficiently. 

(Sharma & Singh, 2020; Rymarczyk, 2020). Intuitively, the fourth IR operates on the 

premise that the operational performance of machines is monitored through sensors 

connected to the internet. The type of monitoring is called the IoT (Sharma & Singh, 2020). 

Manufacturing competitiveness relies on more than just the monitoring of machines. A 

consequence of globalisation implies that manufacturing companies need lean supply 

chains, and the IIoT provides a real-time link between vendors, creditors and operations. 

These information flows generate data that enable organisations to become more 

intelligent and remain competitive (Sharma & Singh, 2020; Rymarczyk, 2020). 

 

Dogaru (2020) presents the view that the fourth IR will raise living standards through the 

spillover of technologies. New technologies' accelerated growth and sophistication have 

presented a skills challenge to organisations (Ellitan, 2020). Prior IRs have always 

contributed to a positive impact on economic development. The influence of digital 

technologies on economic development during this IR still needs to be clarified, as 

employment levels can be reduced due to increased automation because of the skills 

deficit (Sutherland, 2020). Organisations, too, are at risk of becoming uncompetitive and 

limiting potential revenues due to the skills shortage. 

 

2.2.5 Summary of IR cycles  

 

In summary, IR have made a significant contribution to the quality of human life through 

technological innovation. IR has evolved as technology has developed, starting with the 

steam engine, which created factories and the need for infrastructure development 

(Mohajan, 2019a). Each cycle of IR has required manufacturing firms to continuously 

innovate to improve performance and remain competitive. A compelling case exists for 

using data strategically due to globalisation and the rapid integration of ICT into 
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manufacturing. The literature review will now explore the future of manufacturing post the 

fourth IR. 

 

2.3 Future of manufacturing 

 

The previous section illustrated the evolution of manufacturing systems from animal power 

to highly integrated digital platforms that relay information instantaneously through the IoT. 

The fourth IR is viewed as a period in which industry built on and enhanced the innovations 

of the third IR (Sharma & Singh, 2020; ElMaraghy et al., 2021). Manufacturing of the future 

is expected to be complex as organisations can no longer rely on any form of competitive 

advantage, as in past IR. Manufacturing organisations now face numerous ecosystem 

challenges due to increased digital interconnectedness and complex global value chains. 

 

Manufacturing systems continuously evolve, and the organisational ecosystem no longer 

follows the traditional buy-make-sell model. The traditional approach of purchasing raw 

materials and converting the materials via manufacturing processes into finished products 

to sell is no longer applicable. Manufacturing ecosystems of the future resemble the 

characteristics outlined in Figure 2.1. Manufacturing organisations of the future must be 

aware of the trends, drivers, and enabling attributes that influence technology adoption, 

product development, manufacturing processes, and business strategies (ElMaraghy et 

al., 2021). 
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Figure 2.1: Manufacturing systems evolution trends and scope 

Adapted from “ElMaraghy, Hoda, Laszlo Monostori, Guenther Schuh, and Waguih ElMaraghy. 
"Evolution and future of manufacturing systems." CIRP Annals 70, no. 2 (2021): 635-658.  

 

This literature review section examines how issues around sustainable manufacturing, 

technology disruptors, and the influence of global value chains impact organisational 

performance. The purpose of the section is twofold: firstly, review recent literature on 

emerging issues that could impact future manufacturing. The second component of this 

section demonstrates the significant role BDAC will have in overcoming these future 

challenges. 

 

2.3.1 Disruptive technologies  

 

The fourth IR was broad in scope, focusing on a range of technological innovations 

designed to increase levels of ICT within organisations, which resulted in the creation of 

a globally interconnected cyber-physical ecosystem. The new wave of disruptive 

technologies is expected to revolutionise manufacturing organisations' operations and 

significantly influence value chains from sourcing materials, logistics and consumer 

preferences (Choi et al., 2022; Hughes et al., 2022). This proposition contrasts past IR, 

where there was always a positive external spillover that benefited the human condition 
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(Choi et al., 2022). This section intends to review the recent literature on the leading 

disruptive technologies and evaluate how these big data-powered technologies influence 

organisational performance and society. Choi et al. (2022) outline the main archetypes of 

disruptive technologies that will impact manufacturing organisations and society in future 

in Figure 2.2. 

 

 

Figure 2.2: Main disruptive technologies. 

Choi, Kumar, Yue, and Chan: “Disruptive Technologies and Operations Management in the 

Industry 4.0 Era and Beyond”. Production and Operations Management 31(1), pp. 9–31.  

 

2.3.1.1 Blockchain 

 

Blockchain technology refers to a distributed digital ledger connected to a highly secure 

network of computers (Abeyratne & Monfared, 2016; Leng et al., 2020; Lohmer & Lasch, 

2020; Kurpjuweit et al., 2021; Choi et al., 2022). Blockchain technology was initially used 

in the financial industry as the foundation for cryptocurrency. The high degree of security 

in the technology has expanded its applications to include aspects of design, 

manufacturing operations management and supply chains (Abeyratne & Monfared, 2016). 

Trusted partners can securely analyse BDAC generated from IoT to manage risk, quality 

and FPer (Lohmer & Lasch, 2020; Kurpjuweit et al., 2021). There are numerous positives 

to employing blockchain technologies, such as accelerating sustainable manufacturing 

practices and overcoming global value chain obstacles. Caveats to consider when 

implementing blockchain technology are limited regulation. Governance protocols need to 

be developed. There is no prescribed method to distribute the cost across the network, 

and sharing information may reduce the organisation's comparative advantage (Choi et 

al., 2022). 
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2.3.1.2 Artificial intelligence (AI) and robotics 

 

Integrating big data, AI, and robotics can create a robust ecosystem. This ecosystem is 

where human cognitive abilities, powered by big data along with AI machine learning 

algorithms, can efficiently harness the power of robotics. As a result, it can increase output 

and improve FPer cost-effectively. AI-based applications can analyse trends and patterns 

in big data that traditional approaches do not identify (Arinez et al., 2020). There are many 

AI and AI-powered robotics applications, like collecting data from IoT sensors to analyse 

production levels, historical breakdown patterns and automated maintenance founded on 

AI data (Arinez et al., 2020; Choi et al., 2022). AI can also improve logistics, inventory 

control, production management and business intelligence, thereby improving decision-

making (Arinez et al., 2020; Chien et al., 2020; Choi et al., 2022). By all accounts, AI can 

positively improve manufacturing FPer, but with all innovations, there is always a 

significant upfront investment cost. AI-powered robots also present a legal liability for 

organisations should an accident occur (Choi et al., 2022). While AI presents a 

tremendous opportunity for cost reduction, conversely, there is also potential for significant 

reductions in staff, which will meet opposition in most countries. 

 

2.3.1.3 Five G (5G) and IoT 

 

Wireless network infrastructure is an integral component in ensuring manufacturing firms 

maintain levels of competitive FPer (Cheng et al., 2018a; Choi et al., 2022). Five G is an 

integral component in ensuring that organisations can capitalise on the full potential of big 

data transmitted from the IoT (Cheng et al., 2018b). Five G enables greater automation 

across the value chain, improving FPer and cost efficiency. Like AI, the initial investment 

is significant, and staff reductions are possible. 

 

2.3.1.4 Three D (3D) printing 

 

Three-D printing allows designers to customise and innovate complex new products with 

minimal waste and reduced cost (Ngo et al., 2018; Choi et al., 2022). This process entails 

printing levels of materials successively above of each other (Ngo et al., 2018). Advances 

in printing technologies now allow printing across various materials, ranging from alloys to 

metals and polymers. The wide range of source materials allows for printing complex 
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designs across industries and applications. This flexibility lowers the cost of prototyping 

and can even be used in cases where speciality parts are required to mitigate supply chain 

risk (Choi et al., 2022). While this technology has many benefits, it has yet to be ready for 

mass production as the cost is too high. BDAC can analyse data for material and design 

defects and expedite the product life cycle, thus allowing for a greater degree of 

personalisation in future. 

 

2.3.1.5 Digital twinning and augmented reality (AR) 

 

Throughout the fourth IR, physical and cyber manufacturing systems were integrated into 

one digital ecosystem (Kritzinger et al., 2018; Choi et al.,2022). Kritzinger et al. (2018) 

explain digital twins as cyber replications of physical systems generated from data 

collected from the physical system through the IIoT. Both systems are linked with digital 

twin learning using big data AI machine learning models to improve decision-making (Tao 

et al., 2018a; Helu,2020; Choi et al.,2022). Digital twinning is an effective tool for 

manufacturing organisations to improve FPer. From an operational perspective, data is 

analysed to optimise processes, monitor equipment, and prevent breakdowns. New plant 

designs and simulated operational throughput can reduce fixed-cost investments. Real-

time monitoring would improve customer value and ensure no repeated supply chain 

disruptions. This technology, while beneficial, still cannot fully replicate real-world 

outcomes. 

 

2.3.2 Sustainable manufacturing systems  

 

In recent decades, the swift advancement of technology has contributed to the significant 

and continuous expansion of manufacturing operations as companies strive to enhance 

their output to meet the public's desire for goods that better their lives (McLean et al., 

2017; Swarnakar et al., 2021). Manufacturing organisations incur significant sustainability-

related challenges across their value chains from operational bi-products, supply chain 

and customer consumption behaviour (Ahmad et al., 2018). The global adoption of the 

United Nations Sustainable Development Goals has segmented social, economic and 

environmental sustainability challenges that all organisations have to support in 

overcoming. Manufacturing activities are harmful to the environment. Manufacturers must 
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develop sustainable strategies to remain competitive and maintain organisational 

performance across their value chains (Ren et al.,2019; Leng et al., 2020). 

 

Sustainable development strategies must be identifiable across the value chain and 

product life cycles for an organisation to improve organisational performance and 

competitiveness (Dubey et al., 2016; Ren et al., 2019). The shift towards cyber-physical 

systems has enabled manufacturing organisations to accumulate vast amounts of big data 

through the IIoT to access smart manufacturing platforms and reduce their environmental 

impact across a spectrum of activities relating to material sourcing, process optimisation, 

supply chain inefficiencies and new product development aimed at a growing sustainably 

consumer base (Majeed et al., 2021). Three-D printing and additive manufacturing allow 

for faster complex prototyping at lower costs. In contrast, insights attained from big data 

allow organisations to adopt sustainable sourcing channels, improve operational 

processes, reducing waste and negative externalities from the production process (Ren 

et., 2019; Raut et al.,2019; Leng et al., 2020; Majeed et al., 2021). The current global 

environment, which has an environmental, social and governance (ESG) centric focus, 

strongly advocates for faster integration of BDAC to empower smart manufacturing 

applications and holistic decision-making. 

 

2.3.3 Influence of disruptive technologies on global value chains (GVC) 

 

Improvements in ICT and modality that happened during the third IR allowed multinational 

corporations (MNC) to segment production processes across geographical regions, 

therefore creating value by reducing costs and improving FPer (Hernández & Pedersen, 

2017; Taalbi, 2019; Sharma & Singh, 2020; Mohajan, 2021; Antràs & Chor, 2022). Timmer 

et al. (2014) present an intuitive, simplistic description of a global value chain (GVC) as a 

process where the last step in the manufacturing process occurs before reaching the final 

consumer. There are many approaches to configuring GVC, which are based on the 

nature of the product. Aspects like proximity to raw materials, labour cost based on the 

manufacturing stage, cost of manufacturing, marketing and support services are all 

considered when segmenting a GVC (Hernández & Pedersen, 2017). 

 

The accelerated sophistication with which disruptive technologies have emerged is bound 

to significantly change the structure of GVC (Strange & Zucchella, 2017). Implementing 
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IIoT and blockchain applications will improve an organisation's overall performance with 

access to reliable real-time data from sensors on machines and enterprise resource 

software to improve decision-making across regions (Strange & Zucchella, 2017; 

Egwuonwu et al., 2022). MNCs have traditionally used emerging economies for labour-

intensive activities; improvement in robotics will signal a shift in the value chain as MNCs 

look to control costs and performance with reliable and sustainable robotics. AI, additive 

manufacturing and digital twinning will become integral tools that ensure organisations 

maintain competitive performance in the GVC with an increasing number of sustainable, 

aware customers (Strange & Zucchella, 2017; Ahmad et al., 2018; Leng et al., 2020; 

Majeed et al., 2021). 

 

2.3.4 Consolidating views on the future of manufacturing  

 

Manufacturing activities have come a long way since the coal-powered steam-powered 

steam of the eighteenth century. Technological innovations have improved living 

standards, infrastructure and multiple reliable modes of transport (Mohajan, 2019 a; 

Mohajan, 2019 b; Sharma & Singh, 2020). Advances in ICT led to the first phase of digital 

integration into manufacturing activities during the third IR (Sharma & Singh, 2020; 

Dogaru, 2020). This integration intensified during the fourth IR with the introduction of 

cyber-physical systems. Manufacturing of the future is powered by the IoT, which has 

transformed how MNCs operate and compete on a global scale (Choi et al., 2022; Hughes 

et al., 2022) 

 

There has been much research on BDAC in recent years, with many organisations 

believing that insights obtained from big data will improve FPer. The first section in this 

chapter chronicled the evolution of manufacturing and how technological innovation 

improved performance and competitiveness. The following sections review the underlying 

framework of BDAC and its influence on an organisation's performance. The remaining 

literature is segmented because research on the use of BDA in manufacturing is 

underdeveloped (Ren et al.,2019; Belhadi et al., 2019). 
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2.4 Understanding Data, Big data, BDA, BDAC: a manufacturing perspective  

 

The previous section of the literature review demonstrated how technological 

advancements have enhanced the productivity of manufacturing companies. The 

capability to obtain and use data in decision-making purposes is now considered a 

fundamental tool for improving business performance and competitiveness. As data is a 

significant topic across various disciplines, it is important to clarify key terms to prevent 

confusion regarding their meaning (Mikalef et al., 2018). 

 

2.4.1 Data  

 

Data is the accumulation of digital information from structured and unstructured activities 

that occur within and outside of an organisation (Grover et al., 2018; Baig et al.,2019). 

This indicates that data can originate from a spectrum of sources ranging from documents, 

sensors, enterprise resource system, video and audio to name a few (Baig et al.;2019; 

Sorooshian & Panigrahi, 2020; Sharma & Singh, 2020; Rymarczyk, 2020; Dogaru, 2020). 

With a variety of tools and applications to collect data, there has been an acceleration in 

the volume of data available for data driven decision making (DDDM) (Sharma & Singh, 

2020; Rymarczyk, 2020). The expansion in the volume of data is now termed big data. 

 

2.4.2 Big data  

 

Big data is described as large, real-time, intricate data which requires astute management 

and relevant situational analytical techniques to develop value-adding management 

insights (Acharya et al., 2018; Mikalef et al., 2018; Dubey et al., 2019a; Mikalef et al., 

2020). Schroeck et al. (2012) define big data as combining four Vs: volume, velocity, 

veracity, and variety. 'Volume' describes the quantity of data that can be managed and 

warehoused, 'Velocity' is the pace with which data can be collected, 'Veracity' refers to the 

integrity of the information and 'Variety' infers the number of different sources that the data 

collected from (Mikalef et al., 2018; Grover et al., 2018). This definition helps organisations 

to create opportunities that give them a competitive advantage in a global marketplace. 

BDA is data that is modified through analytical data techniques, with the findings visualised 

in a way that identifies and creates opportunities for organisations to attain material value 

(Gantz & Reinsel, 2012; Wamba et al., 2017). To benefit from BDA and achieve a 

competitive advantage, organizations must continuously develop BDAC. 
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2.4.3 BDAC  

 

Mikalef et al., 2020 believe that firms use human capital to manage and analyse data, 

creating valuable insights. BDAC are essential skills through which organisational 

strategies are identified, developed and achieved, ensuring that financial and competitive 

performance is realised. More than just allocating financial resources is required to build 

the required BDAC. Organisations must have a holistic strategy that is innovative in 

identifying resources and merging capabilities to grow BDAC and improve organisational 

performance and competitiveness (Gupta & George., 2016; Mikalef et al., 2018). This 

approach is in adherence to the RBV, which guides organisations on identifying and 

allocating resources so that the resources under management can improve FPer and 

sustain competitiveness. 

 

2.5 Resource based view (RBV) 

 

RBV operates around the proposition that organisations can realise competitive positions 

by producing strategic resource capabilities (Barney, 1991; Dubey et al., 2019a; Mikalef 

et al., 2020). Gupta and George (2016) present the view that dynamic capabilities are 

developed within RBV as a distinctive combination of resources (tangible and intangible) 

that are identified and combined to assist the firm in improving overall FPer. The resource-

based model outlined in Peteraf (1993) posits that an organisation's long-term profitability 

cannot exclusively be attributable to market fluctuations. In the context of manufacturing 

organisations, long-term profitability depends on how resources within organisations are 

managed to improve FPer (Ashrafi et al., 2019; Kristoffersen et al., 2021). Resources need 

to be scarce, unique, immobile and most importantly, in demand to avoid the product being 

replicated (Peteraf, 1993; Ashrafi et al., 2019; Kristoffersen et al., 2021). Intangible assets 

refer to organisational culture, human capital and management expertise (Gupta & 

George, 2016; Kristoffersen et al., 2021). 

 

RBV is the platform most suited to this research because manufacturing organisations 

operate globally. Organisations must first understand the resources under management 

and how best to utilise them to capitalise on decision making underpinned by data (Gupta 

& George, 2016). 
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Research suggests that RBV improves organisational performance (Lin & Wu, 2014), but 

having the assets alone is insufficient to improve economic returns. Tangible, intangible 

and human capital resources must continuously be strategically developed to ensure that 

FPer continuously improves (Gupta & George., 2016; Acharya et al., 2018; Mikalef et al., 

2018; Dubey et al., 2019a; Mikalef et al., 2020; Kristoffersen et al., 2021). RBV research 

postulates that organisational capabilities are elevated variables that require strategically 

consolidating resources (Mikalef et al., 2018; Dubey et al., 2019a). An overview of the 

RBV structure in Figure 2.3 will be explained in the next paragraph. 

 

 

 

Figure 2.3: RBV framework 

Adapted from “Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics 
capability. Information & Management, 53(8), 1049-1064”.  

 

Tangible resources 

Tangible resources can be freely acquired, disposed, and identified in an organisation’s 

financial statements. These resources are available to comparable organisations and do 

not yield any form of competitive advantage individually but are required to create resource 

capabilities (Gupta & George., 2016). Data differentiation can create competition over 
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competitors (Mikalef et al., 2020) and support firms in reducing costs (Dubey et al., 2016). 

It has been previously mentioned that it can originate from various sources (Baig et al., 

2019; Sorooshian & Panigrahi, 2020; Sharma & Singh, 2020; Rymarczyk, 2020; Dogaru, 

2020). For BDAC tools to support manufacturing activities in the future, a significant 

financial investment is required to procure and set up the technology ecosystems (Sharma 

& Singh, 2020; Dubey et al., 2019a). While these platforms may not be one of a kind, they 

empower DDDM when amalgamated with other resources (Gupta & George., 2016; 

Dubey et al., 2019a). 

 

Human capital 

In the big data world, technical skills that support the implementation of BDAC are required 

to improve FPer and competitiveness (Dubey., 2019a; Kristoffersen et al., 2021). In this 

model, skills are segmented into technical and managerial. Technical skills include 

managing data storage and statistically building models to forecast and develop quality 

insights that empower DDDM with organisations’ available digital platforms (Dubey et al., 

2019a). 

 

The skills necessary to manage organisational processes are normalised and accepted 

practices (Gupta & George., 2016). Mikalef et al. (2018) pointed out that there are 

instances when management does not trust the insights generated from BDAC. This 

presents a challenge for practitioners of BDA as uninformed responses limit the 

development validity of the BDA discipline. Kushwaha et al. (2021) state that the 

manufacturing industry has IoT, and cloud computing driven by BDA. However, they 

express caution when management challenges arise and opt to objectively question 

results based on experience instead of an emotional reaction. 

 

Intangible resources 

In order to remain competitive, the manufacturing industry has always been the first 

adopter of technological innovations, as illustrated in the first section. This view, as 

illustrated by the global growth in manufacturing, aligns with the organisational culture is 

essential to ensure that cross-functional teams can share knowledge successfully (Gupta 

& George., 2016) 
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2.6 Dynamic capabilities manufacturing organisation perspective  

 

The rationale behind the Dynamic Capability Theory (DCT) was first introduced by Teece 

et al. (1994), and the concepts were further clarified in a follow-up paper by Teece et al. 

(1997). The central theme was coherence, which postulated that FPer improves when 

organisational activities are aligned regarding strategy, business process and 

organisational cultures (Teece et al.,1994). Organisations with a high degree of coherence 

are the first in line adopters of new technologies, which have allowed new technology-

driven organisations to gain a competitive advantage over competitors (Teece et al.,1994; 

Teece et al.,1997). This quest for achieving competitive advantage requires that 

organisational resources are combined in a way that allows for dynamic capabilities to 

develop (Lin & Wu, 2014). 

 

DCT complements RBV in that organisational resources must be intentionally evolving 

through modification or expansion (Ambrosini et al., 2009; Helfat & Peteraf, 2003). The 

principle that underscores DCT is the view that organisation and accumulation of 

endogenous resources, expertise and capabilities determine FPer and competitiveness 

(Barney et al., 2001). While organisations are an amalgamation of resources, there is a 

differentiation in the resources grouping and competencies between organisations, which 

influences the organisation's competitive state. Barney (1991) states that for an 

organisation to sustain a competitive position, resources and capabilities characteristics 

need to be valuable, rare, inimitable and not substitutable (VRIN). The perspective aligns 

with the view presented in Figure 2.3 by Gupta and George (2016). In order for an 

organisation to achieve a competitive advantage, both types of resources tangible and 

intangible must be differentiated. Rugman et al. (2011) refer to this differentiation as the 

Firm Specific Advantage (FSA), which could be for licenced technology, skilled workers, 

brand awareness and geographical positioning, allowing organisations to leverage their 

unique capabilities into competitive market positions. 

 

The traditional perspective on DCT has evolved as the world has become more digitally 

integrated. Transposing the DCT principle to manufacturing organisations is relatively 

straightforward, given the chronological overview provided earlier in the chapter on the 

evolution of manufacturing. Manufacturing, in its simplest form, is a series of processes 

that allow for the transformation of primary materials into final goods. The management of 

this distinct process is knowledge accumulated over the years by management, and this 
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knowledge must be coded, digitalised and communicated to ensure that the competitive 

advantage is sustained (Cepeda & Vera, 2007; Macher & Mowery., 2009). Knowledge 

management is essential to ensure manufacturing organisation can maintain their FSA, 

as described in (Rugman et al., 2011). This codification of knowledge relating to business 

processes is the first foray of manufacturing organisations' transition into digital 

technologies, which need to be stored and managed in order to maintain the organisation's 

competitive position (Cepeda & Vera, 2007; Macher & Mowery., 2009). For manufacturing 

organisations to be competitive in a global marketplace with increased competition and 

complexity, organisations must adapt faster to changing customer preferences by using 

digital technology to support manufacturing systems (Tracey et al., 1999). 

 

Dynamic capabilities are positioned as applications for steady-state environments where 

standardised workflow processes can be incrementally improved, contributing to 

increased competitiveness (Zollo & Winter, 2002; Ambrosini et al., 2009). In the case of 

manufacturing, market outlooks and consumer preferences are continuously changing, 

this market dynamism requires that organisations integrate both ordinary and dynamic 

capabilities and leverage both to bring about improved FPer in dynamic environments 

(Eisenhardt & Martin, 2000; Schriber & Löwstedt, 2020). While these perspectives may 

appear to contrast each other, they do imply that realising a competitive advantage is 

possible by strategically leveraging and enhancing both dynamic and ordinary capabilities. 

This alignment of viewpoints highlights the significance of BDA as a determinant of this 

study. Manufacturing organisations have long been proponents of developing tangible and 

intangible resource capabilities to achieve competitive firm performance (Sharma & Singh, 

2020; Rymarczyk, 2020). 

 

2.7 Synthesising BDAC and IT process capabilities within manufacturing 

organisations 

 

The influence of IT capabilities within organisations is well-researched in academia 

(Mikalef & Pateli, 2017; Dubey et al.,2019a). The RBV and DCT are the foundational 

cornerstones of IT capabilities. They present the view that although resources between 

organisations may be similar, organisations with unique capabilities are not copied, 

reducing the risk of the organisation losing its competitive position. Research undertaken 

by Kim et al. (2012), Gupta and George (2016), and Dubey et al. (2019) support this view. 

Much research asserts that organisations with dynamic IT capabilities can improve Fper 
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directly and indirectly (Mikalef & Pateli, 2017; Brynjolfsson & McElheran, 2016; Dubey et 

al.,2019a). 

 

Despite the growth in interest in BDA, key IT capabilities concerning manufacturing have 

yet to be established (Belhadi et al., 2019). Most organisations, not only manufacturing, 

want to embrace big data in their operational and commercial processes but need to learn 

how to exploit big data to generate value fully (Wamba et al., 2017; Belhadi et al., 2019). 

Attempts to fully explain the linkages between BDA and manufacturing process have 

lacked substance and did not provide a holistic view of how value can be attained from a 

complex and dynamic system with many interrelated and integrated processes (Belhadi 

et al., 2019; Dubey et al., 2019a). 

 

Belhadi et al. (2019) propose a conceptual framework for BDAC and the manufacturing 

process in Figure 2.4. This framework has three layers to analyse the BDAC's influence 

in manufacturing. 

 

 

Figure 2.4: Framework BDAC in manufacturing organisations. 
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Adapted from “Belhadi, A., Zkik, K., Cherrafi, A., & Sha'ri, M. Y. (2019). Understanding big data 

analytics for manufacturing processes: insights from literature review and multiple case studies. 

Computers & Industrial Engineering, 137, 106099”.  

 

Manufacturing process challenges  

Level one of this framework relates to connecting sensors that monitor equipment at 

operational sites which submit large amounts of data through the IIoT (Sorooshian & 

Panigrahi, 2020; Sharma & Singh, 2020; Rymarczyk, 2020; Dogaru, 2020). This real-time 

data allows for effective quality monitoring and predicts process deviations ahead of 

competitors through advanced analytics techniques (Belhadi et al., 2019). BDAC allows 

the introduction of the next generation of statistical process control (SPC) methods which 

focus on identifying abnormalities in processes to prevent unplanned shutdowns in 

production (He & Wang et al., 2018; Belhadi et al., 2019). 

 

Growing concerns about reducing natural and mounting environmental concerns have 

prompted manufacturing organisations to use BDA to manage and mitigate environmental 

risks (Zhang et al., 2018; Belhadi et al., 2019; Ren et al.,2019; Leng et al., 2020). BDAC 

capabilities allow organisations to understand the emission discharges from their 

operational processes, optimise the process, and mitigate the environmental impact 

(Chiang et al., 2017; Belhadi et al., 2019). 

 

A critical competitive advantage for organisations developing BDAC is for early detection 

and maintenance of equipment to avoid unplanned shutdowns (Krumeich et al., 2014; 

Chiang et al., 2017). Advances in sensor technology and IIoT allow for abnormalities 

patterns in equipment to be easily identifiable before critical breakdown (Belhadi et al., 

2019; Sharma & Singh, 2020; Rymarczyk, 2020; Dogaru, 2020). 

 

As the manufacturing process becomes sophisticated, analysing patterns of behaviour 

relating to health and safety becomes more critical (Choi et al., 2018). BDAC can provide 

insights into harmful behaviours and allow the establishment of more robust safety-related 

policies and procedures, better-protecting workers, equipment and the environment 

(Belhadi et al., 2019). 
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Big data analytical faculties 

Ensuring high-quality data is a significant challenge for effective BDAC. Technological 

applications require data to be in a prescribed format and quality (Belhadi et al., 2019; Cui 

et al., 2020). Figure 2.4 shows the BDA ecosystem, including technological support 

systems (faculties) that can improve manufacturing competitiveness. 

 

Data generated as a result of the manufacturing process can originate from defined or 

undefined sources (Grover et al., 2018; Baig et al.,2019; Belhadi et al., 2019). 

Warehousing and managing data are essential in manufacturing, especially considering 

that most data is sourced from disaggregated sources (Baig et al.,2019). Cleaning, 

transforming, and integrating data into a structured format allows for practical big data 

mining, significantly improving organisations’ ability to process real-time data (Cheng et 

al., 2018). 

 

Data mining and analytical methods allow the organisation to generate insights and 

deeper levels of insight trends from the large volume of data accumulated from the 

manufacturing process (Cheng et al., 2018). Creating a closed-looped system where data 

mining algorithms are integrated into process monitoring and decision support systems 

identifies compromised processes and corrects them before escalating (Zhang et al., 

2017). 

 

Fostering a data-driven culture within an organisation allows for continuous monitoring 

and refinement of operational processes (Mikalef et al., 2017; Belhadi et al., 2019). 

Historically, operational data is used for monitoring operational processes with BDA 

embedded in the process, now creates a platform to improve the process (Sadati et al., 

2018; Belhadi et al., 2019). 

 

Big data analytics values 

 

Applying BDA techniques in manufacturing processes creates many opportunities for an 

organisation to expand its competitive position by leveraging the insights gathered from 

the data process (Rugman et al., 2011; Lee et al., 2018; Belhadi et al., 2019). 
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The most significant value an organisation can obtain from using BDA is improved 

transparency of all data within the ecosystem, irrespective of whether the source is internal 

or external (Chongwatpol, 2015; Dubey et al., 2019b; Belhadi et al., 2019). Research has 

shown that using BDA in manufacturing does improve Fper across manufacturing 

processes (Chiang et al., 2017; Belhadi et al., 2019). Isaksson et al. (2018) share the view 

that BDA develops new perspectives and expands the body of knowledge on the 

manufacturing process, which lends to an improvement in decision making. Sophisticated 

statistical and analytical techniques can be employed using the data, and this unearths a 

new level of patterns and trends that were previously unknown (He & Wang et al., 2018; 

Zhang et al., 2018; Belhadi et al., 2019). BDA improves more than just the technical value 

aspects of the manufacturing process. Li (2016) states that BDA creates opportunities for 

workers to expand their skills and knowledge through skills training from online platforms 

that simulate processes and generate new insights. 

 

This chapter started with a historical overview of manufacturing through the various IRs. 

The purpose of this was to illustrate that technical innovation has been a critical 

determinant in the growth of innovation. Figure 2.4 from Belhadi et al. (2019) 

contextualises how significant BDAC's influence on manufacturing in the future as 

organisations have to grapple with sustainability and value chain challenges to be 

competitive and improve FPer. 

 

2.8 BDAC influence on manufacturing FPer 

 

The interest in BDA as an enabling mechanism to improve Fper has gathered much 

momentum in recent years as many organisations have invested in BDA, but the research 

on how value is created is not well structured and defined in academic literature 

(Maroufkhani et al., 2019, Popovič et al., 2018). Understanding the linkages between BDA 

and FPer requires a structured approach, the first section will provide context to this 

relationship guided by the underlying theoretical constructs and the second and third 

sections will examine the direct and indirect influence from a manufacturing point of view. 

 

Organisations that perform better than competitors have a combination of resources that 

are of value, unique, and scarce (Barney, 1991). Sustaining a competitive advantage 

requires organisational resources to be flexible (Barney, 1991; Wamba et al., 2017). The 

confirmed connection between the RBV and DCT allows for the organisation to grow the 
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dynamic capabilities required by the organisation to realise a competitive advantage and 

improve Fper (Ambrosini et al., 2009; Helfat & Peteraf, 2003; Rugman et al., 2011; Wamba 

et al., 2017; Popovič et al., 2018). Both Wamba et al. (2017) and Chen et al. (2014) share 

the view that developing an organisations internal IT capabilities will positively impact 

FPer, as the higher order constructs BDAC and FPer. BDAC allows organisations via 

DDDM to achieve competitive advantages over competitors as a result of higher-order 

dynamic IT capabilities (Gupta & George, 2016) 

 

Data ecosystems are in a state of continuous change, implying that the organisation's 

BDA insights must be strategically and timeously implemented to sustain the organisations 

competitiveness. Lin and Wu (2014) share the view that organisations with distinctive 

capabilities must continuously and strategically ensure that resources and capabilities 

evolve to improve FPer. Organisations need to prioritise leveraging dynamic capabilities 

as mechanisms with which to remain competitive in dynamic, changing business 

environments (Mikalef and Pateli, 2017; Akter et al., 2016; Wamba et al., 2017). 

 

BDAC directly enables manufacturing organisations to generate insights from operations 

that impact a cross-section of organisational activities and improve competitiveness and 

performance (Belhadi et al., 2019). According to Wamba et al. (2017 ) who clarify that 

BDAC capabilities allow organisations to observe live processes, which in turn allows for 

the improved management of operational assets and capital expenditure. A feature of the 

fourth IR has been the integration of sensor technology with IIoT, which monitors process 

patterns and allows for the early detection and correction of abnormalities in operational 

processes (Belhadi et al., 2019; Sorooshian & Panigrahi, 2020; Sharma & Singh, 2020; 

Rymarczyk, 2020; Dogaru, 2020). The nature and pace of manufacturing imply that any 

disruption could impact competitiveness and Fper. BDAC improves the overall visibility of 

the entire value chain and can protectively identify potential deviations and mitigate them 

without impacting FPer (Wamba et al., 2017; Belhadi et al., 2019; Ren et al.,2019; Leng 

et al., 2020). Popovič et al. (2018) state that leveraging BDAC capabilities in 

manufacturing creates external spillovers which bring about societal and economic 

changes. Earlier in this chapter, the idea of a sustainable manufacturing approach was 

introduced, which delved into why manufacturing organisations need to utilise technology 

for environmental risk across the value chain (Ren et al.,2019; Leng et al., 2020; Majeed 

et al., 2021). BDAC allows organisations to monitor their process emissions and mitigate 

potential risks (Chiang et al., 2017; Belhadi et al., 2019). 
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An indirect link created by developing BDAC in manufacturing organisations is that there 

are now new insights into customer behaviour and preferences (Rachinger et al., 2018) 

as customer preferences change in favour of more sustainable and circular products. 

Organisations can strategically position themselves using the BDAC to understand the 

changing customer patterns and thereby establish a competitive advantage to improve 

Fper (Strange & Zucchella, 2017; Ahmad et al., 2018; Leng et al., 2020; Majeed et al., 

2021). Generic manufacturing strategies like just-in-time (JIT), total quality management 

(TQM) and enterprise resource planning (ERP) have been largely ineffective at combating 

dynamism in the market (Gunasekaran et al., 2018). Belhadi et al. (2019) highlight BDA 

values that combine this dynamism and create a platform for evolving strategies to 

dynamically restructure resources to develop capabilities to adjust to the changing 

environment of business (Omar et al., 2019). 

 

BDAC positively influences FPer by developing dynamic capabilities (Ambrosini et al., 

2009; Popovič et al., 2018; Wamba et al., 2017). BDAC directly influences manufacturing 

FPer and competitiveness by using a spectrum of technologies that monitor and control 

operational processes Belhadi et al. (2019), and this allows for better management of 

costs, improving competitiveness and profitability. Omar et al. (2019) presents the view 

that organisations are dynamic in resource allocation can develop capabilities that allow 

flexible strategy changes due to changes in consumer preferences and maintain market 

share and FPer as an indirect consequence of BDAC. 

 

2.9 Conclusion  

 

This literature was structured to demonstrate the symbiotic relationship between BDA and 

competitive FPer within a manufacturing context. To better understand this relationship, a 

recollection of the evolution of manufacturing was included to demonstrate how influential 

technology has been in manufacturing (Sharma & Singh, 2020). The review progressed 

to understanding the concepts of data, its progression to BDAC and the link to its role in 

manufacturing. The complementary theoretical constructs RBV and DCT that underpinned 

this research contextualised that manufacturing organisation resources must continuously 

evolve to grow the dynamic capabilities needed in a competitive manufacturing 

environment (Ambrosini et al., 2009; Helfat & Peteraf, 2003; Dubey et al., 2019). 
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The latter part of this chapter explored the link between BDAC IT capabilities in 

manufacturing settings using the framework developed by (Belhadi et al., 2019). This 

framework demonstrates why BDAC is needed across the entire manufacturing 

organisation to maintain efficiency and competitiveness in the dynamic manufacturing 

space that is highly technological and globally integrated. This literature review sets the 

foundations for the research objectives of understanding the connection between BDAC 

and the performance of manufacturing organisations in South Africa. 

 



33 
 

3 Chapter 3: Study inquiry methodology 

 

3.1 Overview of chapter  

 

Prior chapters have established the primary research objectives which is to understand 

the importance of BDAC in developing dynamic capabilities in terms of direct 

manufacturing processes and indirectly in terms of skills development and improved 

environmental and supply chain sustainability from theoretical and industry perspectives. 

Utilising recent literature on BDA and dynamic capabilities within the context of 

continuously changing environments, the research proposes the hypothesised model in 

Figure 3.1. Guided by prior research on the manufacturing industry, this research was 

informed by the theory of dynamic capabilities. BDA is identified as the core driver of the 

dynamic capabilities viewpoint suggested for this research. The core ambition of this 

research was to attain a more profound understanding of how manufacturing 

organisations could improve real DDDM by exploiting BDAC to influence FPer in a 

continuously progressing environment. 

 

3.2 Proposed hypothesis questions 

 

To achieve the main research objective, the following research questions were formulated 

as three individual hypotheses, which is explained in the following sub-sections. 

 

3.2.1 Hypothesis 1 

 

Does BDAC have positive influence on the on manufacturing FPer? 

 

This research question aims to establish if there is an influential relationship between 

BDAC and the performance of manufacturing organisations. Early studies attempting to 

understand why some organisations have competitive advantages over contemporaries 

was explained through varying dynamic capabilities states (Mikalef & Pateli, 2017). 

 

Literature supports the view that there is a positive association between IT capabilities, 

BDAC and manufacturing organisational performance (Brynjolfsson & McElheran, 2016; 

Mikalef & Pateli, 2017; Dubey et al.,2019a; Chen et al., 2014; Wamba et al., 2017). 



34 
 

 

H1: BDAC is positively related to manufacturing FPer. 

 

3.2.2 Hypothesis 2 

 

Do process-orientated dynamic capabilities (PODC) and manufacturing FPer have 

a positive relationship? 

 

Question 2 concentrated on the relationship between PODC and manufacturing FPer. 

Belhadi et al. (2019) developed a structure for BDAC relevant for manufacturing 

organisations, starting with operational processes. Building of a Dynamic Capability 

Theoretical Base Belhadi et al. (2019) identify how developing dynamic capabilities can 

support manufacturing organisations in mitigating manufacturing process challenges 

regarding the operational process, environmental sustainability, proactive maintenance 

diagnosis and safety and risk. Wamba et al. (2017) backs this view by suggesting that 

BDA enables the effective monitoring of operational assets. 

 

H2: PODC has a positive relationship with manufacturing FPer 

 

3.2.3 Hypothesis 3 

 

Is there a positive association between BDAC and PODC in manufacturing 

organisations? 

 

The third research question aims to understand how BDAC influences PODC of 

manufacturing organisations. Belhadi et al. (2019) state that manufacturing organisations 

have numerous process-related challenges that big data can resolve. This relationship is 

also tested by Wamba et al. (2017) from an IT managers perspective. This construct is 

differentiated in this research by selecting respondents who are employees in the 

manufacturing sector and use any form of BDA. 

 

H3: BDAC are positively linked and influential on PODC  
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Figure 3.1: Conceptualised research model 

Modified from “Big data analytics and firm performance: Effects of dynamic capabilities, by Wamba et al., 2017, Journal of Business Research, 70, p. 363”.  
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4 Chapter 4: Research methods framework 

 

4.1 Overview 

 

The purpose of this chapter is to outline a comprehensive methodology for answering this 

study’s hypothesis questions. The goal of the research project is to add to the existing 

literature around how big data generated from manufacturing organisation systems and 

processes can improve organisational performance and competitiveness guided by 

Wamba et al. (2017) hypothesised model on the effect of BDA and organisational 

performance. The literature review in Chapter 2 outlines the position of technology in the 

evolution of manufacturing through the four industrial revolution periods and positions the 

role of technology and data in manufacturing of the future. Guided by the overarching 

theory of dynamic capabilities and Belhadi et al. (2019) framework for BDAC in 

manufacturing. The remainder of Chapter 2 explored how big data dynamic capabilities 

can improve the performance and competitive position of manufacturing organisations. 

The hypothesis questions described in the third chapter were derived from the research 

model in Wamba et al. (2017) and the proposed BDAC strategic framework by Belhadi et 

al. (2019). Expanding on the insight and knowledge obtained from the preceding chapters, 

this chapter will explain the research method used to achieve this study’s research 

objectives. 

 

The chapter will clarify the research design, population sample composition and expand 

on the reason behind selecting this specified unit of analysis. Thereafter, discuss the 

survey as the primary means to collect data, followed by data collection, preparing and 

analysing the data methodologies. 

 

4.2 Research design  

 

Pandey and Pandey (2021) describe the research design as the process used to 

accumulate and analyse the data most efficiently, yielding reliable, informative results. The 

object of this research is to assess the influence of BDAC and PODC on manufacturing 

FPer. Chapter 2 reviewed the theoretical framework and recent research on this subject 

from the perspective of the manufacturing industry. The hypothesis questions presented 

in the third chapter were designed from the relationships identified in the literature review. 
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The research intends to empirically evaluate the identified variables related to BDAC and 

manufacturing FPer. 

 

The research will be exploratory as it aims to identify the causal associations between 

variables (Zikmund et al., 2019; Rahi, 2017). Aligning with Wamba et al. (2017), 

Ghasemaghaei et al. (2017) and Gupta & George (2016), this research utilises the survey 

method to collect data from the identified population. Chapter 2 provided the foundation 

of the research constructs, and a non-experimental survey strategy was used on the 

survey population (Zikmund et al., 2013). Surveys are recommended for explanatory 

research because they can accurately establish the norm, quickly identify outliers and 

analyse relationships between variables (Gable, 1994; Wamba et al., 2017). Surveys are 

recommended for explanatory research because the generalised results offer greater 

surety (Straub et al., 2004). The explanatory research method is used because of the 

research objective to establish if there are significant and influential linkages between 

BDAC, PODC and manufacturing FPer. 

 

This research is explanatory in nature, and a positivist philosophy underpins this. This 

philosophy ensures that results are generated using techniques that reflect any form of 

bias or ambiguity (Saunders & Lewis, 2018). Positivists use scientific methods to acquire 

knowledge (Rahi, 2017). The standard philosophical approach used in studies exploring 

the impact of BDAC and IT capabilities of FPer is positivism (Wamba et al., 2017; 

Upadhyay & Kumar, 2020; Gupta & George, 2016). The research aims to understand how 

BDAC can improve FPer in manufacturing. This is a common purpose shared by all 

manufacturing organisations and is closely related to Nyein et al. (2020) view that a 

positivist philosophy is developed from the perspective that there is a need to understand 

the cause and effect of an outcome from a shared population. 

 

This research adheres to a deductive method which aims to describe the causal linkages 

between the research constructs (Saunders & Lewis, 2018). This aligns to the positivist 

philosophy which uses scientific method to develop an understanding of the relationships 

(Rahi, 2017). This method solidified from the viewpoint of Saunders & Lewis (2018) who 

assert that a deductive approach is employed when testing a theoretical construct via a 

hypothesis using a quantitative method. 
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This study uses a mono-quantitative method where surveys are used the collect 

quantitative data. The survey for this research will be an adaptation of surveys undertaken 

by Dubey et al. (2016) and Wamba et al. (2017), as they are similar to this study's research 

questions. Surveys are generally associated with a deductive approach (Saunders et al., 

2012). Measurement instruments such as surveys enable researchers to collect 

quantitative data for descriptive and inferential statistics (Mercer et al., 2017). Surveys 

allow researchers to collect standardised data to analyse the causal relationships among 

variables (Pinsonneault & Kraemer, 1993). In addition, surveys can obtain information 

from a targeted population and analyse the research constructs, knowing that the 

information is not biased by emotions (Rahi, 2017). 

 

The data required for this research was accumulated during a cross-sectional time frame. 

Cross-sectional time frames imply that data is gathered over short periods and specified 

locations (Zikmund et al.,2013; Zikmund et al., 2013). Wamba et al. (2017) concentrated 

their survey deployment in the region with an intense concentration of retail-focused 

internet-based companies. 

 

4.3 Justification of the research population  

 

Within a research context, a population is described as a complete and specified group of 

observations sharing similar attributes and features (Pandey & Pandey, 2021). Rapid 

technological advancements in ICT and the IIoT have resulted in the volume of data being 

generated increasing exponentially. This has contributed to manufacturing organisations 

using big data to derive insights and intelligence to support real-time decision-making (He 

& Wang, 2018). As access to data improves, so has the appetite for all manufacturing 

organisations to use big data in one form or another. According to Kuo and Kusiak (2019) 

and Dubey et al. (2019a), there has been significant interest from the manufacturing 

industry on how to exploit big data and increase performance in manufacturing 

organisations. Accounting for the growth in consuming BDA, establishing the actual 

population would require a significant allocation of resources. Aligning to the research 

objectives of understanding the nature of the relationship between BDAC and PODC on 

manufacturing FPer, the population for this research is characterised as manufacturing 

organisations that use a form of BDA to support DDDM to improve FPer ultimately. 
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No restrictions were placed on the scale and type of manufacturing activities on the 

population. In addition, there was no restriction on the type of data being collected, 

analytical methods used, and volume of data stored. The thought process behind this 

decision was that BDA has been utilised in a spectrum of activities and functions from 

operational processes, supply chain, new product development, strategic intelligence and 

marketing (Wamba et al., 2017; Belhadi et al., 2019; Kuo & Kusiak, 2019). Past research 

limited the population by focusing on specific designations of employees like IT managers 

and professionals in Wamba et al. (2017) and Ghasemaghaei et al. (2017). Meanwhile, 

Belhadi et al. (2019) share that much research has concentrated on specific processes 

and regional industries. 

 

This research does not restrict the designation of manufacturing employees because a 

feature of the fourth IR and future manufacturing is based on pairing technologies with 

people capabilities (Sharma & Singh, 2020; Ghasemaghaei et al., 2017). On the premise 

of the aforementioned, this research does not place any restrictions on the population-

relating characteristics, employee designation and manufacturing classification type. The 

underlying rationale for limited restrictions is a safeguard that the findings of this 

hypothesis questions on BDAC and PODC influence on the performance of manufacturing 

organisations are robust and generalisable. 

 

4.4 About the unit of analysis 

 

Kumar (2018) describes the unit of analysis in business research as the collection of data 

from whom or what organism is being researched at the prescribed level of aggregation. 

The identified unit of analysis for this study is manufacturing organisations that use big 

data. To answer the hypothesis questions posed in the preceding chapter, which relate to 

how manufacturing organisations use big data. The data in this research is collected from 

an employee’s viewpoint. In business research, data is primarily collected per individual, 

as this research pertains to a perception of the organisation or population under review 

(Kumar, 2018). 

 

This objective of this study is to empirically understand the relationship between the 

research constructs of BDAC and PODC and manufacturing FPer, which were developed 

from existing research on BDA and dynamic capabilities from an IT perspective. The unit 
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of analysis is aligned to the research population to generate robust generalisable results 

applicable to the manufacturing industry as a collective. 

 

4.5 Method to obtaining the sample population 

 

Taherdoost (2016) advises that the first action in the sampling processes is defining the 

research population clearly, followed by establishing the sampling frame, which identifies 

all of the attributes of the sample population. The sample frame’s characteristics were 

outlined in this chapter’s population section. Taherdoost (2016) and Rahi (2017) share that 

probability, and non-probability are only two probability sampling techniques. Probability 

sampling is when each unit or item tested, while non-probability does not disclose which 

unit of the sample will be selected (Rahi, 2017). The researcher does not have a list of all 

employees in manufacturing organisations using big data. Hence the non-probability 

sampling method is used in this research. 

 

A mixture of purposive and snowball sampling was deployed in this research. Rahi (2017) 

describes purposive sampling as using defined criteria and characteristics when selecting 

respondents, while snowball sampling uses initial respondents as leverage to get 

supplementary respondents (Zikmund et al., 2019). Snowball sampling uses the initial 

respondents to encourage new respondents to participate, resulting in an increase in the 

sample size (Taherdoost, 2016). The purposive component of the sample size was 

attained from the researcher’s network, while the remainder of the sample population was 

generated from the sampling method. 

 

4.6 Defining the sample size 

 

Survey research aims to obtain data that adequately represents the sample to generalise 

findings in line with the population (Kotrlik et al., 2001). Ahmad and Halim (2017) state that 

there has been an increase in demand for organisational management research, and this 

requires a scientific method to determine a research sample. Selecting the appropriate 

sample size is essential because statistical outcomes are strongly influenced by the 

sample size (Rahi, 2017). 

 

There is a significant degree of variability and differentiation between manufacturing 

organisations. The size of the research for this study was determined based on the 
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statistical tests required from the proposed model in in Figure 3.1. Kim et al. (2011), 

Ghasemaghaei et al. (2017) and Wamba et al. (2017) used a similar research method in 

past studies. 

 

The sample size is crucial when undertaking structural equation modelling (SEM). There 

are many techniques that can be employed to calculate the respondents required in SEM. 

Hair et al. (2021) suggest a general guideline stating that the smallest allowable sample 

should be approximately ten times (10X) the highest number of links directed to any 

dependent variable in the model. Kock and Hadaya (2018) state that the size of the sample 

does not only rely on the number of connections to the dependent variables, but the 

magnitude of R-squared value needs to be considered as well. 

 

The following minimum sample sizes were calculated using the ten times rule suggested 

by Hair et al. (2021) and the minimum R-squared and inverse root square method outlined 

by Kock and Hadaya (2018) in Table 4.1. The research has 165 responses, deemed 

sufficient based on the guiding criteria. 

 

Table 4.1: Sample size guideline 

Article reference Calculation method Prescribed 
sample size 

Hair et al. (2021)  10 times rule  20 

Kock and Hadaya (2018) Minimum R-squared (3 
arrows, 0.10 r-squared) 

110 

Kock and Hadaya (2018) Inverse root square method  159 

 

4.7 Characteristics of the survey 

 

Prior research on BDA, IT capabilities and FPer utilised a survey strategy to understand 

the researched phenomena (Kim et al., 2011; Wamba et al., 2017; Ghasemaghaei et al., 

2017). The survey questions were divided into two sections. The survey consists of two 

sub-sections, the first being demographic questions and the latter section consisting of 

questions relating to the three research constructs. The demographic questions provide 
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descriptive insights into the sample population and characteristics of the type of 

respondents who work in manufacturing organisations. The second part of the survey 

comprises of twelve questions associated with the study parameters BDAC, PODC and 

manufacturing FPer. The questions in the survey were slighted modified from Kim et al. 

(2011), and these questions were re-used by Wamba et al. (2017). This research adopted 

the same approach to ensure that the research could be reproduced objectively. The 

survey question assesses the perception of big data capabilities in organisations. 

 

4.7.1 Qualifying questions  

 

The survey had one pre-qualifying question that allowed participation since the research 

focused on understanding BDAC's influence amongst manufacturing organisations. This 

was implemented to ensure that the target population participated and respondents who 

did not qualify did not participate. There was also an option for “other” should the 

respondent not feel that their classification of manufacturing was not included. 

 

4.7.2 Demographic information 

 

The demographic information required pertained to gender, age, education level, field of 

specialisation, level within the organisation, years of employment, intensity of use relating 

to big data in the organisation and the basis for the respondents using big data. The 

demographic questions went into some depth because this is the baseline in which 

insights can be attained from the character of manufacturing sector respondents. 

 

4.7.3 Questions relating to the research constructs 

 

The survey contains twelve questions relating to the IT capabilities of a manufacturing 

organisation. The literature review determined that IT capabilities of an organisation 

seamlessly transform into big data as a result of advances in technology (Sharma & Singh, 

2020; Dubey et al., 2019a). The twelve questions of the survey relating to the research 

construct are as follows. The twelve questions are divided into five sections relating to 

manufacturing FPer, process-orientated dynamic capabilities, BDA infrastructure flexibility, 

BDA management capabilities and BDA expertise capabilities. The latter three sections 
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reflect on ten questions (independent variables) relating to three sub-sections reflecting 

BDAC. 

 

4.7.4 Survey pilot test  

 

Following on from the ethical clearance process and prior to the official data gathering 

process, a trial test was performed. Collins (2003) states that pre-testing is necessary to 

ensure that there is no misrepresentation or misunderstanding in the hypothesis 

questions, which could bias the findings of this study. The pilot test was deployed to ensure 

that Qualtrics was collecting the data correctly. 

 

While there is no definitive guideline on the number of surveys that can be distributed to 

respondents for a pilot survey, the number of surveys sent out during the pilot phase was 

guided by Perneger et al. (2015), who state that 10-15 surveys should be distributed in a 

pilot and Hill (2008) who state that a pilot survey size should not be less than 10 surveys. 

For this pilot, 15 surveys were distributed to respondents from the Toyota Wessels Institute 

of Manufacturing class. Respondents were sent a Qualtrics survey link via email and 

WhatsApp. The pilot survey respondents were requested to identify anomalies of 

vagueness or grammatical errors in the questions. 

 

The pilot survey was implemented for two weeks, and all 15 respondents completed it. 

Most of the suggested improvements related to grammatical errors and formatting were 

corrected. Three respondents said the survey needed to be shorter. Comments regarding 

the length of the survey were acknowledged. A further four respondents suggested 

explaining the technical term in more detail. This prompted an adjustment to clarify specific 

questions in the survey. These were the only changes made to the survey to make certain 

that the survey design remained consistent with past research. 

 

4.8 Data collection method  

 

An anonymous survey link was generated using Qualtrics. The researcher emailed and 

WhatsApped this link to their manufacturing network and requested assistance in soliciting 

new respondents. The anonymous link was posted on LinkedIn within the researcher's 
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network with a note asking that those employed in manufacturing and using a computer 

to perform work-related tasks, participate in the research. 

 

The survey link was posted on manufacturing and data forums on LinkedIn. The 

researcher connected with more than 600 new connections on LinkedIn who were 

identified by the organisation they were employed at or their job title, which included 

keywords such as manufacturing, operation, strategy, and intelligence. A hybrid selection 

of organisations and job titles expanded the researcher's network. Once the connection 

request was received, the researcher sent the link and requested participation in the 

research. Two additional reminders to participation requests were conveyed to each 

respondent. The survey was created on 7 November 2023 and closed on 11 February 

2024. There were 259 survey responses attempted during the specified dates mentioned. 

The raw data was extracted to a Microsoft Excel document for further investigation. 

 

4.9 Data analysis process 

 

The survey data was exported from Qualtrics and needed to be transformed to statistically 

analyse and uncover insights on the research constructs. The data transformation process 

was guided by the four step process outlined in Zikmund et al. (2013). The process 

outlined to transform the raw data entails editing, coding and creating the data file for 

analysis. 

 

4.9.1 Data editing 

 

Editing assesses the data for abnormalities through missing data and inaccuracies 

(Zikmund et al., 2013). Researchers have developed many alternative techniques to 

overcome the challenge of missing data. Recent or rather modern techniques to address 

missing data entail using multiple imputation and or maximum likelihood calculations to 

resolve instances where data is missing (Baraldi & Ender, 2010). The single imputation 

and deletion method is the more common approach to address the challenge of missing 

data (Baraldi & Ender, 2010). Newman (2014) describes the single imputation technique 

as a best guess estimation for the missing data made by the researcher. Newman (2014) 

and Baraldi and Ender (2010) suggest that these methods are bias analysis estimates 

because an average value would be selected for the missing value.  
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The survey's conception, design, and implementation in Qualtrics negated the need to 

compute missing values. The initial screening question requesting respondents to identify 

which manufacturing sector they belong to allowed for participants not part of the 

manufacturing sector to be removed from the final data. Allowing for the unit of analysis 

to align with the research goals. In addition, through Qualtrics, respondents had to 

complete each question before progressing to the next question. This created the room to 

omit incomplete surveys and avoid the missing completely at random (MCAR) challenge 

identified by Newman (2014). 

 

4.9.2 Data coding  

 

The survey questions relating to the research constructs needed to be coded because the 

results were generated using a seven point Likert scale. South et al. (2022) shares that 

Likert scales allow for researchers to gather quantitative data through subject inquiry, 

generating empirical estimates that can be analysed and evaluated. The Likert scale code 

used in the research is shown in Table 4.2.  

 

Table 4.2: Likert scale coding  

Likert Scale Value 

Strongly Disagree 1 

Disagree 2 

Somewhat disagree 3 

Neither agree nor 
disagree 

4 

Somewhat agree 5 

Agree 6 

Strongly agree 7 
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4.9.3 Preparing the data file and storage  

 

Zikmund et al. (2013) describe the data file as the instrument containing all the research 

information once it has been coded and edited. In line with established practices, all 

versions of data and report transcripts about this research are stored in a Google Drive 

folder for seven years in addition to a universal memory device that only contains 

information related to this research. 

 

4.9.4 Overview of the statistical analysis process 

 

This part of the report will describe the structure and detail the analytical techniques used 

to analyse the data collected. This research required the imputation of different analytical 

techniques. The first process in the data analysis was examining the descriptive statistics 

computed using Microsoft Excel and the Statistical Package for the Social Sciences 

(SPSS). The next component of the analysis relates to the inferential statistics. 

 

The inferential statistics component of the analysis can have a few sub-elements. The first 

part of analysis process was to explain the construct validity and reliability of the research 

constructs in the measurement model using SmartPLS-4. The second part of the statistical 

analysis was to derive the structural Partial Least Square (PLS)-SEM after validating the 

measurement model. SmartPLS was the software package selected for this step of the 

analysis because of its suitability for PLS-SEM analysis Hair et al. (2021), and according 

to Ammad et al. (2021) it simplifies the analysis of complex data sets. 

 

4.9.4.1 Descriptive Statistics  

 

A descriptive analysis was conducted to understand the features of the sample population. 

Cooksey and Cooksey (2020) describe descriptive statistics as the process whereby a 

general description and summation of the sample data characteristics and behaviours. In 

this section of the survey, the researcher formulated insights on the gender, age, and level 

of education of the respondents in the survey population. In addition, descriptive statistics 

were generated on respondents' occupation (field of specialisation), level within the 

organisation, years of employment in the organisation, organisation's use of BDA, and the 

respondents' basis for using big data. Descriptive statistics were employed for the final 
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sample of 165 respondents. The researcher used a blend of means, frequencies and 

graphical visualisations to describe the demographic data in the sample population. 

 

4.9.4.2 Exploratory statistical analysis 

 

This research has more than three variables, and as such, Zikmund et al. (2013), suggests 

that in order to test the reliability, validity and each hypothesis a Multivariate Statistical 

Analysis (MSA) should be used. Zikmund et al. (2013) further adds that multivariate 

techniques can consider the influence of many variables at once. The researcher 

established that SEM was the most applicable MSA approach, as this technique is used 

to assess complex relationships involving the model variables. 

 

4.9.4.2.1 Validity test  

 

Bagozzi (2011) states that there are two types of construct validity tests, the first being 

divergent and the latter being convergent. This research is a reflective model assessing 

manufacturing organisations' various big data IT capabilities to understand how the big 

data generated can improve manufacturing FPer. Hair et al. (2021) advocates that 

reflective models test for convergent and discriminate validity. Becker et al. (2012) do 

caution that discriminate validity scores can be challenging to draw stable results and thus 

should be evaluated with caution for higher-order models with 2nd and 3rd level constructs 

similar to what is presented in this model. 

 

Convergent validity is described as reflecting the magnitude of two variables measuring a 

common construct (Carlson & Herdman, 2012). Hair et al. (2021) assert that convergent 

validity is achieved when the standard factor loading is above 0.708, and values below 

0.4 should be deleted. The second condition for convergent validity suggests that the 

average variance extracted (AVE) be greater than 0.5, implying that the dependent 

variable explains half of the variance in the observed variables. 

 

Discriminate validity is evaluated using the Heterotrait–Monotrait (HTMT) ratio. This test 

assesses the correlations between the latent constructs. An indication of discriminate 

validity requires that HTMT values to be smaller than 0.85 or 0.9 (Hair et al., 2021; 

Rasoolimanesh, 2022). 
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4.9.4.2.2 Reliability test  

 

Testing the reliability of the research construct is crucial as it ensures that the 

measurement instruments are valid and accurate. In 1951, Lee Cronbach developed a 

measure of internal consistency between 0 and 1. Tavakol and Dennick (2011) define 

internal consistency as the degree with which all test variables measure the common 

research construct. According to Cronbach (1951), variables need to have similar 

attributed measures and be related to each other. The most common test used for 

measuring reliability is Cronbach’s coefficient alpha. 

 

Cronbach’s has been proven to be sensitive with a tendency to underestimate the 

reliability of PLS models (Becker et al., 2012; Hair et al., 2014). The composite reliability 

test is more consistent with PLS models (Hair et al.,2021). Cronbach’s alpha assumes 

that latent variables and measured variables are equally related and substitutable, while 

the composite reliability factors in the different factor loadings are from the measured 

variables (Hair et al., 2021). Both tests produce scores between 0 and 1, with Hair et al. 

(2021) stating that variables achieving a score below 0.7 be deleted. 

 

4.9.4.2.3 PLS-SEM model 

 

As mentioned earlier, this research will use a PLS-Sem model to evaluate and analyse 

the data to extract insights into the connection between BDAC, PODC and manufacturing 

FPer. A PLS-SEM model consists of multiple stages, the first being specifying the inner 

model and thereafter calibrating the outer model from which the structural model is 

estimated and evaluated. 

 

The SEM in the research was derived from past studies relating to big data and FPer. The 

research model used in this was an interpretation of similar models and theories about 

dynamic capabilities, BDAC and FPer. This research model is a variant of similar models 

used by Kim et al., (2011), Wamba et al. (2017), Gupta and George (2016) and Akter et 

al. (2016). This model, however, concentrated on manufacturing because the sectors are 

the first adopters of new technologies, and the increasingly complex business 

environment warrants developing BDAC to realise a competitive advantage and improve 
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FPer (Dubey et al., 2019a). Therefore, the unit of analysis focuses on big data from an IT 

capabilities viewpoint amongst manufacturing companies. 

 

The modelling technique used in this research is described as a reflective-formative 

model. Reflective-formative models can be viewed as two components, the reflective 

component is essentially the measured variable reflecting on the dependent variable as 

the identifiable measured behaviour, the second component is the consolidation of the 

reflective dependent variables forming the next level dependent variable through which 

the research hypothesis is influenced and assessed (Esposito, 2010), as illustrated in 

Figure 4.1. This model contains three orders of latency. The first-order latent model is for 

manufacturing FPer, the second-order latent model is PODC, and the third-order latent 

model is for BDAC, which reflects manufacturing IT capabilities that generate large 

volumes of data which need to be filtered by analytical techniques (Belhadi et al., 2019). 

PLS-SEM method of analysis consists of two broad staged with sub-elements. The first 

the stage being the outer model evaluation and there after the structural model evaluation 

and assessment. 

 

 

Figure 4.1: Reflective model illustration 

 

The outer model describes the relationship between measured (observed/reflective) and 

the research construct (Esposito, 2010). Outer model evaluation tests the reliability and 

validity of the quantifiable variables (survey questions) (Esposito, 2010; Hair et al., 2014). 

The inner structural model can only be accurately run only when the outer model has been 

evaluated. 
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The structural model evaluation can only begin once the measurement model is specified, 

verified in addition to evaluated based on the selected reliability and validity criteria 

(Esposito, 2010; Hair et al., 2014). The inner model evaluation acts as surety that the 

theoretical model is appropriate (Esposito, 2010). Guided by Hair et al. (2021), the 

procedure outlined in Figure 4.2 will guide the assessment of the structural model. 

 

The first stage in evaluating the PLS-SEM structural inner model is to test for collinearity. 

An Ordinary Least Squares (OLS) method generates the path weightings from the latent 

variables to the higher-order variables. Hair et al. (2021) state that a collinearity test must 

be undertaken to avoid the path coefficient estimates not being biased by the predicted 

variables and compromising the interpretation of the relationship constructs. Collinearity 

can influence the significance of the model even when there is a high R2. Values. Henseler 

et al. (2015), Hair et al. (2021), and Esposito (2010) advocate for using the Variance 

Inflation Factor (VIF). The VIF is viewed as the inverse tolerance, whereby the variance 

of the independent variables are Unrelated to each other (Hair et al., 2021). 

 

 

Figure 4.2: PLS inner model evaluation. 

“Hair Jr, J., Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on 
partial least squares structural equation modeling (PLS-SEM). Sage publications.” 
 

There are differing suggestions for the threshold limits. Hair et al. (2021) propose 5, while 

Henseler et al. (2015) propose 10. The researcher has aligned with Hair et al. (2021) limit 

of 5 to quantify the level of collinearity among the OLS estimates. This statistical technique 
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was used by Wamba et al. (2017) and Akter et al. (2017). Measured variables with a VIF 

value greater than 5 would therefore be removed. 

 

Path weightings in the research model identify the research interaction between the model 

variables. Path coefficients are standardised estimated values within band between 0 to 

1 with the resulted closer to 1 implying that there is strong link amongst the variables (Hair 

et al., 2021). A bootstrap algorithm was used to assess the path coefficients and Hair et 

al. (2021) suggests that for a critical value to be significant at the 99% level the t-statistics 

must be 2.57. 

 

A bootstrap procedure was performed on the structural model using SmartPLS-4 to test 

the linkages, between the various hypothesis questions identified in Chapter 3. The 

bootstrapping procedure was highlighted as helpful in testing for mediation in PLS-SEM 

models (Nitzl et al., 2016; Hair et al., 2021). The Coefficient of determination (R2) 

demonstrates that the variance between the latent variable can be because of an 

independent variable and influences the explanatory capabilities of the model (Esposito, 

2010). R2 value band from 0 to 1, closer to 1 implying stronger explanatory power 

(Henseler et al., 2015; Hair et al., 2021). Cohen's f2 assesses the degree of influence of 

the estimated variable on the latent construct. Hiar et al. (2021) classify values as weak 

at 0.02 and strong at 0.35. Stone-Geisser’s Q2 evaluates the estimated significance of 

explanatory variables in the model (Esposito, 2010). A value greater than 0 is an indicator 

of strong predictive power in line with Hair et al. (2021) assessment of Cohen's f2. 

 

The Standardised Root Mean Square Residual (SRMR) test is used to assess the overall 

model fit of PLS-SEM (Hair et al., 2021; Henseler et al., 2015). The SMRS assess the 

mean deviations amongst the expected and observed relations as a determining factor in 

determining the congruence of the model. An SMSR value which is less than 0.08 implies 

that overall model is a good fit and appropriately specified (Hair et al., 2021). 

 

4.10 Conclusion 

 

This chapter concludes the overview the research method framework followed by this 

research to which aims to answer the hypothesis questions proposed in the preceding 

chapter. The upcoming chapter will discuss the finding from the undertaken analysis. 
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5 Chapter 5: Research analysis findings 

 

5.1 Introduction 

 

The research outcomes presented in this chapter are described in the sequence of the 

preceding chapter. The chapter begins with a review of the descriptive statistical analysis 

about the survey sample and demographic characteristics guided by the process 

identified. The inferential statistics is then discussed guided by steps in section 4.9.4.2. 

The inferential statistics will cover the research question from chapter 3. 

 

5.2  Descriptive analysis about survey population 

 

5.2.1 Survey population  

 

The initial goal of this research was to collect 200 surveys from BDA practitioners 

employed by manufacturing organisations in South Africa. From the researcher’s 

perspective, a BDA practitioner is any individual in a manufacturing company that uses a 

computer to analyse any variant of information that has been transformed into data that 

can be analysed to obtain new depths in insights and improve DDDM. Past studies by 

Wamba et al. (2017), Chen et al. (2014) and Mikalef and Pateli (2017) all aimed for a 

range of 200 to 300 responses. 

 

Table 5.1 summarises the method used to attain the final sample data set. The raw survey 

sample size realised was 259 responses, of which 93 were removed because of being 

incomplete. One respondent was disqualified from the sample data based on the response 

from the qualifying survey question, “Are you employed in any of the following South 

African manufacturing sub-sectors?” see Appendix A. In which the response recorded was 

“Banking and Finance”, this respondent was removed. 

 

The final survey sample data comprises 165 respondents from the manufacturing sector, 

representing 64% of the raw sample data. This completion rate is encouraging, 

considering the online survey completion rate is 44% (Wu et al., 2022). Surveys must be 

sent to an identified population to influence the response rate, and more surveys do not 

have higher responses (Wu et al., 2022). 
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Table 5.1: Overview of survey screening process 

Survey screening process 
sample 

size 

% of the raw 

survey sample  

Raw survey sample data  259 100% 

Respondents did not finish the survey  93 36% 

Respondents were removed from the survey 

because of the qualifying criteria 

1 0.4% 

Final sample data set  165 64% 

 

5.2.2 Features of respondent in the sample  

 

This research used eight demographic questions to summarise the respondents' 

characteristics and provide an intuitive link to the potential insights that can be attained in 

the next step in the analysis process. 

 

In Figure 5.1, there were 116 male respondents compared to 49 female respondents who 

completed the survey. The male respondents account for 70% of this survey sample 

insights, while 30% are gathered from a female point of view. 

 

Figure 5.2 illustrates the age dispersion of the research sample. Age categories 42-55 

accounted for the most significant proportion of the sample, with 59 or 36% of the sample 

responses. Categories 34-41 comprised 56 responses or 34% of the sample responses. 

These two categories combined constituted 115 or 70% of the total sample responses. 

The age category 26-33 provided 41 or 25% of the sample responses. The remaining 9 

or 6% of the sample respondents were from the age category greater than 55 and 3 from 

the age category 18-25. 

 

This sample of manufacturing employees is highly skilled, as 162 or 98% of all 

respondents have some form of tertiary qualifications. In Figure 5.3, the highest categories 

of education in the sample are equally shared among respondents who have a 

Master's/Ph.D. or a Post-graduate diploma, with each category consisting of 69 or 42% of 

all respondents. Eighteen respondents have an undergraduate degree, and 3 respondents 

had some form of secondary schooling. 
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Figure 5.1: Gender of respondent  

 

 

Figure 5.2: Categorisation of survey respondent age  
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Figure 5.3: Survey respondents level of education 

Question 5 is a demographic question related to the field of manufacturing specialisation 

that respondents' specialist skills. This question permitted respondents to choose multiple 

options from the specified list in addition to stating other specialist skills. Table 5.2 shows 

that in this sample population, 29% of respondents specialise in engineering, while 21% 

specialise in operations. The remainder is closely distributed between finance, supply 

chain, marketing, and sales specialisations. The fact that this sample population has a 

high level of education makes it plausible for respondents to have more than one field of 

specialisation. Interestingly, respondents stated that other specialisations include data 

analytics, chemistry, sustainability, economics, strategy, IT and human resource 

management. 
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Table 5.2: Frequency of respondents manufacturing specialisations 

Specialisation Frequencies 

 Responses Percent 

of Cases N Percent 

Field of 

specialisation 

1 Financial 34 16,7% 20,6% 

2 Engineering 60 29,4% 36,4% 

3 Supply Chain 22 10,8% 13,3% 

4 Marketing and Sales 23 11,3% 13,9% 

5 Operations 43 21,1% 26,1% 

6 Other 22 10,8% 13,3% 

Total 204 100,0% 123,6% 

 

Figure 5.4 illustrates the composition of respondents' positions within their respective 

organisations. In this survey population, 50% or 82 of all respondents are in some form of 

management position. At the same time, 42 or 25% of respondents are classified as 

professionals. Respondents in executive positions accounted for 20% or 33 responses in 

the sample. Graduates are essential assets in manufacturing organisations, and the 

survey contained insights from 6 graduates. One respondent selected other and stated 

they were a department supervisor, which can be considered management. However, in 

line with not adjusting the data, a decision was made not to change the respondent's 

designation. 

 

 

Figure 5.4: Level within organisation 
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In Figure 5.5, the respondent provided the number of years that they have worked for their 

respective manufacturing organisations. This distribution of the respondents is pretty 

balanced and aligns with the age classifications of respondents. Employees who were 

employed for longer than 10 years but not more than 20 years accounted for the most 

significant proportion of respondents, with 45 responses, 27% of the total survey 

population. Notably, only 14 or 8% of respondents worked with their current employers for 

more than 20 years. This is understandable, considering that the manufacturing sector is 

highly competitive and continuously evolving (Sharma & Singh, 2020; Belhadi et al., 2019) 

 

 

Figure 5.5: Years of employment 

 

It is crucial to understand whether the organisations represented by the respondents in 

the survey have increased their dependency on BDA in the last five years. Belhadi et al. 

(2019), Dubey et al. (2019a) and Wamba et al. (2017) have expressed that big data is an 

essential tool that ensures manufacturing organisations remain competitive. Figure 5.6 

shows that 142 or 86% of the sample population has indicated that their respective 

manufacturing organisations have increased their dependency on big data. Only 19 or 

12% of respondents have indicated that big data use has stayed the same over the last 

five years in their respective organisations. Of the four selected respondents, two were 
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unsure if using big data has increased or not, while the other respondents stated that big 

data use was only noticeable in specific functions like finance. 

 

 

Figure 5.6: Has the use of BDA increased in the last 5 years 

 

The final demographic question relates to the basis for using BDA in manufacturing 

organisations. The respondents were allowed to select multiple options such as 

operational and financial reporting, strategic operational improvement, strategic 

commercial improvement executive review and others. Table 5.3 shows that 25% of 

respondents use big data for operational reporting. This is aligned with Wamba et al. 

(2017), Belhadi et al. (2019), and Dubey et al. (2019a), who all share the view that 

advances in sensor technology generate large volumes of data to improve organisational 

performance. This view is further solidified in Table 5.3, where 23% of respondents believe 

that BDA to be a strategic tool to improve operational performance. 

 

Financial reporting accounts for 20% of respondents using big data, while 16% of 

respondents use big data to improve commercial performance. From Table 5.3, the 

researcher has intuitively deduced that big data is being used for multiple applications by 

respondents across manufacturing organisations. 
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Table 5.3: Basis for using big data  

Big Data USE - Frequencies 

 Responses Percent of 

Cases N Percent 

BDAUSEa 1 Operational reporting 100 25,0% 61,0% 

2 Financial reporting 79 19,8% 48,2% 

3 Strategic operational 

improvement 

92 23,0% 56,1% 

4 Strategic commercial 

improvement 

62 15,5% 37,8% 

5 Executive review 55 13,8% 33,5% 

6 Other 12 3,0% 7,3% 

Total 400 100,0% 243,9% 

a. Dichotomy group tabulated at value 1. 

 

Table 7.1 in Appendix B demonstrates the descriptive statistics generated for the survey 

questions relating to the research hypothesis. The table shows that the sample population 

has, on average, somewhat agreed with the survey question about BDAC's influence on 

manufacturing FPer. 

 

5.3 Exploratory data analysis   

 

In Chapter 4, the research design section stated that this research will be exploratory. To 

understand the higher level BDAC constructs in manufacturing organisations, this 

research employed the PLS-SEM analysis method. This method simply explains complex 

hierarchical models (Hair et al., 2011; Esposito, 2010; Wamba et al., 2017). 

 

5.4 Measurement model evaluation  

 

In the preceding chapter, Esposito (2010), Hair et al. (2014) and Wamba et al. (2017) state 

that in SEM, the outer model evaluation process tests the reliability and validity of the 

model variables. Measuring the effects of the outer (measurement) model specification 

safeguards the reliability and validity of the independent variables and the research 

constructs. This section will evaluate the measurement model by employing the above 

mentioned evaluation techniques. 
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5.4.1 Outcomes from the reliability test  

 

In determining the reliability of the hypothesis questions, two forms of reliability tests were 

performed on the underlying data. The Cronbach alpha and composite reliability tests 

were generated using SmartPLS-4. The rationale for using two tests for reliability was 

guided by Becker et al. (2012) and Hair et al. (2014), who both stated weaknesses in the 

Cronbach alpha test which was deemed sensitive and could underestimate the results. 

This is guided by the Cronbach alpha and composite reliability ranges, which of Hair et al. 

(2021) states that the internal reliability value should be bigger than 0.7 while the stronger 

and more robust composite reliability should exceed 0.8. 

 

The researcher followed a multi-stage process of iterative recalibrating the model to 

ensure the specified conditions were met. This research utilises a higher-order reflective-

formative model. As such, much consideration was given to verifying the outer model. In 

Table 5.6, the second and third construct Cronbach alpha values should be between 0.80 

to 0.92. Meanwhile, the first-order Cronbach alpha values range from 0.80 to 0.91 in Table 

7.2. of Appendix B. The Composite reliability values for the higher-order constructs in 

Table 5.6 are also above the 0.8 specified level, ranging from 0.80 to 0.95. The first-order 

constructs also demonstrate a similar trend with values that range between 0.80 to 0.93. 

From these results, the reliability of the outer model was verified. 

 

5.4.2 Outcomes from the validity test 

 

The purpose of the convergent and discriminate tests is to evaluate the validity of the 

measurement model. Two prescribed methods to test convergent validity are the factor 

analysis method and the AVE method (Hair et al., 2021; Esposito et al., 2010). 

Discriminate validity is tested using the HTMT test (Hair et al., 2021; Rasoolimanesh, 

2022). 

 

Hair et al. (2011) state that a factor analysis indicates how well the interdependent 

variables measure the latent construct. Purwanto (2021) and Hair et al. (2021) state that 

higher-order reflective models' prescribed loading factor value should be greater than 0.7. 

This implies that the indicator/independent variable adequately measures the latent 

variable/construct. Purwanto (2021) states that a factor loading value greater than 0.5 is 
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considered adequate. For the purpose of this research, values less than 0.5 will be 

removed across all order levels. Guided by Purwanto (2021) and Hair et al. (2021), the 

identified factor loading values in Table 5.4 were identified and removed from the model. 

 

Table 5.4: Independent variables removed because of factor loading values- 1st iteration   

First-order factor loading 

BDAMOD4 <- BDAMOD -0,334 

Second-order factor loading 

BDAIDM3 <- BDA Management 
Capabilities 

0,430 

BDAMOD4 <- BDA Infrastructure 
Flexibility 

-0,292 

Third-order factor loading 

BDACOEC2 <- BDAC 0,484 

BDACOEC3 <- BDAC 0,356 

BDACOMP4 <- BDAC 0,443 

BDAMOD1 <- BDAC 0,406 

BDAMOD2 <- BDAC 0,456 

BDAMOD4 <- BDAC -0,196 

 

Removing the independent variables with factor loading estimates lower than 0.5 

improved the revised model factor loading value. However, a second review of the factor 

loading values highlighted that an additional variable needed to be removed. 

 

Table 5.5: Independent variables removed because of factor loading values- 2nd iteration 

Third-order factor loading 

BDACOEC4 <- BDAC 0,495 

 

The revised model constructs based on the factor loading values have been recorded in 

Table 7.2 in Appendix B. Table 7.3 in Appendix contains all of the outer model factor 

loading values 

 

The AVE results for the second and third-order latent test results are close to the 0.5 value 

prescribed by Hair et al. (2021) in Table 5.6. The third-order construct BDAC has an AVE 

value of 0.48, which may raise questions about why the decision was made to include this 

variable in the model design. The result value is close to the prescribed value of 0.5 when 

applying the root-squared method guided by Hulland (1999). The Root AVE now becomes 
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0.69, which is deemed sufficient in terms of the acceptable ranges, Hulland (1999) 

advised. The convergent reliability is confirmed based on the AVE and factor analysis 

results.  

 

The discriminant reliability is confirmed in Table 5.7, where a significant proportion of 

HTMT values did not exceed the stipulated level of 0.85 or 0.9 (Hair et al., 2021; 

Rasoolimanesh, 2022). In reviewing Table 5.7 and acknowledging the complexities 

associated with higher-order reflective-formative models while guided by Becker et al. 

(2012). The researcher has decided to keep the first-order latent construct BDATK in the 

model in the model because it was the only first-order construct reflecting on a second-

order construct after rounds of calibration. Becker et al (2012) advocates for a holistic 

approach to discriminate validity in reflective-formative models such as these. The 

researcher includes this variable in the model because it refers to BDA technical 

knowledge which is relevant in this study which is positioned in the manufacturing industry. 

This variable needs to be included because technical knowledge around equipment 

sensors provides much insight on how to improve FPer. Using both the HTMT values and 

some justification, discriminant validity is confirmed for the outer model. 

 

Table 5.6: Summary of higher order validity and reliability results  

Model 

Construct  

Construct  Cronbach'

s alpha 

Composite 

reliability 

(rho_a) 

Composite 

reliability 

(rho_c) 

Average 

variance 

extracted 

(AVE) 

2nd order  BDAEC  0,919 0,921 0,939 0,756 

BDAIF 0,800 0,808 0,883 0,717 

BDAMC  0,920 0,922 0,932 0,535 

3rd order  BDAC 0,952 0,955 0,956 0,481 

Note: BDA Expertise Capabilities (BDAEC), BDA Infrastructure Flexibility (BDAIF), BDA Management 

Capabilities (BDAMC) 
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Table 5.7: HTMT results overview  

HTMT BDAE

C  

BDAIF BDAMC BDAC BDACOMP BDACON BDADPER BDAIDM BDAPLAN BDAPODC BDATK 

BDAEC                       

BDAIF 0,569                     

BDAMC 0,752 0,564                   

BDAC 0,931 0,737 0,990                 

BDACOMP 0,569 1,250 0,564 0,737               

BDACON 0,741 0,593 0,976 0,937 0,593             

BDADPER 0,382 0,266 0,402 0,436 0,266 0,358           

BDAIDM 0,684 0,465 1,016 0,905 0,465 0,794 0,396         

BDAPLAN 0,625 0,477 0,968 0,856 0,477 0,695 0,342 0,787       

BDAPODC 0,630 0,519 0,580 0,662 0,519 0,525 0,498 0,520 0,533     

BDATK 1,088 0,569 0,752 0,931 0,569 0,741 0,382 0,684 0,625 0,630   

Note: BDA Expertise Capabilities (BDAEC), BDA Infrastructure Flexibility (BDAIF), BDA Management Capabilities (BDAMC) 
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5.5 Inner model evaluation 

 

Concluding the outer model evaluation and establishing its credibility the analysis now 

proceeds to systematically evaluate the structural model using the PLS-SEM guidelines 

provided in Figure 4.2 of Chapter 4. 

 

5.5.1 Collinearity test results  

 

High levels of multicollinearity have been acknowledged to bias regression estimates. In 

order for a model to be robust and have reliable estimates, multicollinearity must be tested 

and controlled using standardised methods. In the model, collinearity was conducted 

using the SmartPls-4 software. In Chapter 4, under the PLS-SEM model section, it was 

highlighted that there are differing opinions on a suitable VIF value. Hair et al. (2021) 

propose that variables with VIF values greater than 5 be removed, while Henseler et al. 

(2015) propose that VIF values greater than 10 be removed. For the purposes of this 

research, a middle ground of VIF values greater than 7.5 be removed, giving allowance 

for the model design, which is reflective of higher order. 

 

The VIF inner model was assessed because the structural model is reflective-formative in 

design. Hair et al. (2021) advise that the measurement model VIF estimates should be 

verified to establish if the advised thresholds have not been breached; if the estimates 

have breached the threshold limits, the explanatory variable must be excluded from the 

measurement model. Guided by Hair et al. (2021), the VIF inner model limits are less than 

5. The findings of the VIF tests revealed that this research model did face a challenge 

relating to collinear variables influencing the model estimates. The Inner VIF model values 

in Table 7.6 did not exceed 1.6, while the outer model VIF values in Table 7.5 did not 

exceed the researcher's prescribed guidance of 7.5. 

 

5.5.2 Structural Model Assessment 

 

Guided by the research methodology from Chapter 4, the structural model assessment is 

developed from the diagnostic result obtained from the bootstrapping algorithm in 

SmartPLS-4. The path coefficient identifies the strength of the relationship between the 

constructs in the structural model, which reveals that all three higher order construct levels 
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have a significant relationship between each other because the t-values are larger than 2 

and the p-values are smaller than 0.05 (Hair et al., 2021). 

 

Table 5.8: Path coefficient values of the inner structural model 

Path coefficients - Mean, 

STDEV, T values, p values 

Original 

sample 

(O) 

Sample 

mean (M) 

(STDEV

) 

T - 

Values 

P 

values 

BDA Expertise Capabilities -> 

BDATK 

1,000 1,000 0,000 89630,

887 

0,000 

BDA Infrastructure Flexibility -

> BDACOMP 

1,000 1,000 0,000 26116,

776 

0,000 

BDA Management Capabilities 

-> BDACON 

0,863 0,864 0,022 39,721 0,000 

BDA Management Capabilities 

-> BDAIDM 

0,892 0,892 0,020 45,636 0,000 

BDA Management Capabilities 

-> BDAPLAN 

0,875 0,875 0,026 34,204 0,000 

BDAC -> BDA Expertise 

Capabilities 

0,885 0,885 0,019 47,484 0,000 

BDAC -> BDA Infrastructure 

Flexibility 

0,634 0,631 0,063 10,121 0,000 

BDAC -> BDA Management 

Capabilities 

0,919 0,918 0,015 60,076 0,000 

BDAC -> BDADPER 0,220 0,219 0,095 2,327 0,020 

BDAC -> BDAPODC 0,615 0,618 0,045 13,563 0,000 

BDAPODC -> BDADPER 0,321 0,323 0,104 3,073 0,002 

 

The next step is to evaluate the coefficient of determination (R2) of the structural model, 

demonstrating that the variance in latent variables is because of the independent 

explanatory variables (Esposito, 2010). R2 values range from 0 to 1, with values closer to 

1 implying stronger predictive power (Henseler et al., 2015; Hair et al., 2021). 
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In Table 5.9, it becomes apparent that while the overall model is sound based on all the 

variables in the model having p-values of smaller than 0.05 and t-values larger than 2. 

Some variables have questionable R2 values. 

 

Table 5.9: Coefficient of determination (R2) 

R-square-Mean, STDEV, T 

values, p values 

Original 

sample 

(O) 

Sample 

mean (M) 

(STDEV

) 

T 

values 

P 

values 

BDA Expertise Capabilities 0,783 0,784 0,033 23,852 0,000 

BDA Infrastructure Flexibility 0,402 0,402 0,078 5,170 0,000 

BDA Management Capabilities 0,844 0,843 0,028 30,193 0,000 

BDACOMP 1,000 1,000 0,000 13059,

440 

0,000 

BDACON 0,744 0,747 0,037 19,944 0,000 

BDADPER 0,238 0,251 0,064 3,716 0,000 

BDAIDM 0,796 0,797 0,035 22,994 0,000 

BDAPLAN 0,765 0,766 0,044 17,243 0,000 

BDAPODC 0,379 0,384 0,056 6,802 0,000 

BDATK 1,000 1,000 0,000 44816,

210 

0,000 

 

Cohen’s f2 test measures the impact of the predicted variable on the latent construct. The 

guiding principle by Hair et al. (2021) is that the f2 values are considered weak when less 

than 0.2 and stronger when greater than 0.35. In Table 5.10, not all the predictor variables 

in the model can describe the variances amongst other predictors. 

 

The Stone-Geisser’s (Q2) was run to determine the extrapolative impact of the 

independent variables in a predictive model. Hair et al. (2021) state that a value greater 

than 0 indicates significant predictive power. In Table 5.11, the Q2 estimates for the inner 

model constructs were greater 0; therefore, predictive relevance was proven. 
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Hair et al. (2021) and Henseler et al. (2015) suggest that the SRMR should be used to 

evaluate the fit of the PLS-SEM model. SMSR value of less than 0.08 indicates a good-

fitting model (Hair et al., 2021). The SRMR values shown in Table 5.11 are above the 

threshold values and imply that further evaluation is required to understand the influence 

of BDAC on manufacturing FPer. 

 

Table 5.10: Cohen's f2 test results  

f-square -Mean, STDEV, T 

values, p values 

Original 

sample 

(O) 

Sample 

mean (M) 

(STDEV

) 

T 

values 

P 

values 

BDA Expertise Capabilities -> 

BDATK 

58004,0

13 

57769,34

2 

76535,0

05 

0,758 0,449 

BDA Infrastructure Flexibility -> 

BDACOMP 

163088,

790 

207789,5

50 

3877648

,652 

0,042 0,966 

BDA Management Capabilities -> 

BDACON 

2,910 3,043 0,602 4,838 0,000 

BDA Management Capabilities -> 

BDAIDM 

3,906 4,059 0,849 4,603 0,000 

BDA Management Capabilities -> 

BDAPLAN 

3,255 3,427 0,856 3,801 0,000 

BDAC -> BDA Expertise 

Capabilities 

3,604 3,729 0,726 4,966 0,000 

BDAC -> BDA Infrastructure 

Flexibility 

0,672 0,703 0,232 2,898 0,004 

BDAC -> BDA Management 

Capabilities 

5,406 5,595 1,185 4,562 0,000 

BDAC -> BDADPER 0,040 0,047 0,037 1,067 0,286 

BDAC -> BDAPODC 0,609 0,636 0,152 4,021 0,000 

BDAPODC -> BDADPER 0,084 0,096 0,061 1,378 0,168 
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Table 5.11: Stone-Geisser’s (Q2) test result 

LV prediction summary Q²predict RMSE MAE 

BDA Expertise Capabilities 0,779 0,477 0,361 

BDA Infrastructure Flexibility 0,394 0,790 0,620 

BDA Management Capabilities 0,842 0,405 0,288 

BDACOMP 0,395 0,789 0,619 

BDACON 0,699 0,555 0,431 

BDADPER 0,164 0,926 0,736 

BDAIDM 0,637 0,616 0,471 

BDAPLAN 0,600 0,649 0,472 

BDAPODC 0,372 0,804 0,654 

BDATK 0,779 0,477 0,361 

 

Table 5.12: SRMR – Model Fit 

SRMR Original 

sample 

(O) 

Sample 

mean (M) 

95% 99% 

Saturated model 0,115 n/a n/a n/a 

Estimated model 0,120 n/a n/a n/a 

 

This reflective-formative research model design was selected for this research. Guided by 

the research method prescribed in Chapter 4, an extensive array of statistical techniques 

was performed on the data to establish statistical relevance to extract value-adding 

inference around the research constructs, and while the end results may not be as desired, 

further analysis and deeper interrogation are required. The outer model was evaluated in 

accordance with the research method, and a bootstrapping algorithm was run to draw 

inferences on the survey population (Hair et al., 2021). Sarstedt et al. (2016) and Dijkstra 

and Henseler (2015) acknowledge that higher-order factors bias the model fit results. 

Becker et al. (2012) suggest employing the root mean square error (RMSE) as an adjunct 

test along with the SRMR test for higher-order latent construct models. Lower RMSE 

values indicate that the model is simpler to interpret and generalisable to interpret by 

capturing the core relationships and patterns in the underlying data. The RSME values for 
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all the higher-order constructs in Table 5.11 indicate an RSME range between 0.4 and 0.8 

at an average of 0.6, indicating that the model is parsimonious. 

 

The researcher employed a rigorous systematic process for each hypothesis with 

repeated attempts to re-calibrate the measurement and structural models. The amended 

research model is shown in Figure 5.7.  

 

 

Figure 5.7: Revised research model  

 

5.5.3 Evaluating the structural model relationship 

 

The hypothesis questions in this research were guided by the seminal studies undertaken 

by Kim et al. (2011), Wamba et al. (2017) and Akter et al. (2016), focusing on BDAC and 

organisational performance. The key departure points are focusing exclusively on the 

manufacturing sector and focusing on a practitioner level because all employees who work 

in the manufacturing sector have access to some version of a technological device that 

houses big data. 
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5.5.3.1 Hypothesis 1 path assessment 

 

The first hypothesis being assessed in this research was transposed to the research 

undertaken by Wamba et al. (2017), which attempted to understand how BDAC influences 

organisational performance. Hypothesis one of this research proposes a positive link 

between BDAC and the performance of manufacturing organisations. The outcomes of 

the evaluation are reflected in Table 5.13. 

 

Table 5.13: Hypothesis one – path model estimates 

Hypothesis 

Construct 

Path 

Coefficient 

T-value 

 

P-value 

BDAC -> 

BDADPER 
0.220 2.327 0.020 

 

From Table 5.13, it is confirmed that BDAC is positively linked to the performance of 

manufacturing organisations, albeit not strongly linked with a path coefficient of 0.220 

(t=2.37; P<0.02). The test result concur with rejecting the null hypothesis as BDAC 

influence manufacturing FPer (BDADPER) albeit modestly. This result aligns with the 

research finding disclosed in Wamba et al. (2017) and Akter et al. (2016), who did have 

higher path coefficient estimates. The results for hypothesis one confirm that while BDAC 

positively influences manufacturing FPer, it does so modestly. 

 

5.5.3.2 Hypothesis 2 path assessment 

 

The purpose of hypothesis question two is to define the linkages between PODC and the 

impact on manufacturing organisations' performance. Belhadi et al. (2019) framework of 

BDAC established a model through which manufacturing organisations can harness big 

data generated from the IIoT, ICT and advances in monitoring technologies to resolve 

manufacturing process-related challenges emanating throughout the value chain by 

improving the competences relating to the process-related challenge. Wamba et al. (2017) 

and Akter et al. (2016) concentrated on a similar construct, evaluating how distinct 

dynamic capabilities influenced organisational performance. The results to evaluate this 

hypothesis is displayed in Table 5.14. 
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Hypothesis two in Table 5.14 displays a positive yet slightly improved path coefficient when 

compared to hypothesis one. The path coefficient for measuring the influence of big data 

process-orientated dynamic capabilities (BDAPODC) on BDADPER (manufacturing FPer) 

is 0.321 (t=3.073; P<0.002). Based on the results of the statistical tests, the null hypothesis 

can be rejected as BDAPODC has a positive influence on BDADPER. 

 

Table 5.14: Hypothesis two-path model estimates 

Hypothesis 

Construct 

Path 

Coefficient 

T-value 

 

P-value 

BDAPODC -> 

BDADPER 
0.321 3.073 0.002 

 

5.5.3.3 Hypothesis 3 path assessment  

 

Hypothesis three aims to assess BDAC's influence on the process-orientated capabilities 

of manufacturing organisations. Belhadi et al. (2019) are of the view BDAC can improve 

the PODC capabilities of manufacturing organisations. A similar approach to generate 

insights on how big data can improve internal organisational capabilities was used by 

Wamba et al. (2017). The path coefficient scores are illustrated in Table 5.15. 

 

Table 5.15: Hypothesis three-path model estimates 

Hypothesis 

Construct 

Path 

Coefficient 

T-value 

 

P-value 

BDAC -> 

BDAPODC 
0.615 13.563 0.000 

 

The path coefficient results in the table are much improved from the prior two hypothesis 

tests. The path coefficient results are positive, with BDAC explaining 0.615 (t=13,563; 

p<0.000) of the variance in BDAPODC. The null hypothesis is rejected because BDAC 

positively influences PODC of manufacturing organisations. Intuitively, this link was 

established through the literature review, which illustrated the advancement of 

manufacturing organisations as a result of being the first adopter of technology to improve 

processes and competitiveness.  
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6 Chapter 6: Discussion of analysis findings 

 

6.1 Introduction  

 

The primary goal of this research was to understand BDAC's influence on manufacturing 

organisations' performance. Advances in technology coupled with transformative 

capabilities of the IIoT in an industry characterised by being pioneers in innovation to 

remain competitive in a continuously organically and inorganically evolving environment 

and guided by the evolution of manufacturing systems and processes starting from the 

first IR to the expectations of the industry beyond the fourth IR (Sharma & Singh, 2020; 

Dogaru, 2020). Using this foundation of technological evolution, a summary of theories 

underpinning the main constructs of this study allowed the research to establish path 

linkages between BDAC, FPer and PODC (Akter et al., 2016; Belhadi et al., 2019; Wamba 

et al., 2017). The primary objectives of the research are expressed in Figure 3.1 of Chapter 

3. 

 

This research is positioned as a baseline to understand if manufacturing organisations 

that generate large volumes of big data that can harness their resources and leverage 

existing capabilities to improve existing processes and organisational performance. As 

this research is slanted towards establishing a baseline perspective, all three research 

questions focus on understanding the direct linkages between BDAC, FPer and PODC. 

The chapter will focus on discussing research outcomes from Chapter 5. The first part of 

this chapter will analyse key observations identified in the demographic questions 

because this research requires a greater understanding of the sample population 

characteristics of the manufacturing industry, which is needed to contextualise the latter 

discussion of the three research questions. 

 

6.2 Discussion on demographic survey questions 

 

In Chapter 4, the population sample was described as employees of (practitioners) 

manufacturing organisations and who used some form of BDA for decisions with the goal 

of improving organisational performance. Similar research on this topic positioned the 

population sample to concentrate on IT managers (Wamba et al., 2017; Akter et al., 2016; 

Gupta & George., 2016). However, this research will not restrict the respondents by their 
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designation because, in manufacturing, BDA is used across many activities and 

applications from operations, marketing, strategy and new product development (Wamba 

et al., 2017; Belhadi et al., 2019; Kuo & Kusiak, 2019). The demographic question 

becomes integral in providing context. Hughes et al. (2016) share that demographic 

questions clearly describe the sample population to make the research findings 

generalisable. 

 

The gender of the sample population comprised of 70% male and 30% female 

respondents. The composition of this representation in this sample is aligned with the view 

of Samuel et al. (2020), who share that there is lower female representation compared to 

males in science, technology, engineering and mathematics (STEM) related careers. In 

this sample population, 70% of all respondents fall within two age categories, starting from 

34 to 55 years old. This is an essential fact because more experienced respondents have 

established ways of working and may need more support to embrace BDA fully. 

Sutherland (2020) shares that there needs to be a balance between people and 

technology for BDA to succeed because there is a risk that the rate of innovation 

surpasses the availability of skills. 

 

In terms of skills and technical expertise, 98% of respondents who qualified for this survey 

have acquired a level of education that exceeds that of a post-graduate degree. This would 

imply that all respondents have above-average competency in using BDA tools and 

applications. The respondents in the sample have indicated that they have more than one 

area of specialisation, and this flexibility is due to the high level of skill they have acquired 

through years of studying. Half of the respondent in this sample have indicated that they 

are in management positions, and 27% of the survey population indicated that they have 

been employed for more than 10 years but less than 20 years with their current employer. 

 

The survey question relating to whether the use of BDA has increased in use at the 

respondents organisations over the last 5 years and has had an overwhelming yes 

response with 86% of respondents. The final demographic question relates to the type of 

applications big data reports are predominantly used for in the respondents' organisations. 

The respondents highlighted that big data-generated reports were predominantly used to 

report on operational and financial performance and to strategically improve operational 

activities. These responses align with Wamba et al. (2017), Belhadi et al. (2019), and 
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Dubey et al. (2019a), assertions that large volumes of data are generated from operational 

activities and used to improve internal operational efficiencies. 

 

6.3 Hypothesis 1 discussion 

 

Hypothesis 1 in this research aimed to verify if the theoretical assertion that big data does 

improve FPer from manufacturing perspective. This research question was expressed as: 

 

Does BDAC have positive influence on the on manufacturing FPer? 

 

For some time, BDAC has been considered a tool through which an organisation can 

attain a superior level of performance (Garmaki et al., 2016; Müller et al., 2018; 

Ghasemaghaei, 2021). In manufacturing organisations, the strategic relevance of BDA is 

widely communicated because it can be applied across a spectrum of processes and 

applications that can holistically improve not only current performance but mitigate future 

challenges (Mikalef et al., 2017; Belhadi et al., 2019; Arinez et al., 2020; Chien et al., 2020; 

Choi et al., 2022). Organisations in very competitive sectors, such as manufacturing, have 

been shown to derive value from BDA (Müller et al., 2018). 

 

To understand this relationship, there needs to be an understanding of the organisational 

IT capabilities (infrastructure, management and personal expertise) that directly influence 

organisational performance (Garmaki et al., 2016; Mikalef & Pateli, 2017). The view 

emanates from the theoretical proposition in the RBV and DCT, which state that in order 

for organisations to maintain a competitive position, resources and capabilities need to be 

deployed using the VRIN principle (Barney, 1991). In the case of this research, this 

principle needs to be integrated with an organisational IT capability to ensure that IT 

resources can impact and influence the performance of an organisation (Kim et al., 2011; 

Akter et al., 2016; Garmaki et al., 2016). 

 

Organisational IT capabilities have been emphasised as the main influencing factor of 

BDAC (Belhadi et al., 2019; Garmaki et al., 2016; Wamba et al., 2017). BDAC is regarded 

as the transmission mechanism through which to improve FPer; however, it brings with it 

many complexities, as highlighted by Schroeck et al. (2012) four V’s (volume, velocity, 

veracity, and variety). This complexity around BDAC necessitated that higher-order 
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capabilities be designed to evaluate BDAC incorporating tangible and intangible IT 

capabilities which operate in unison within the dynamic organisational system (Akter et 

al., 2016; Garmaki et al., 2016; Wamba et al., 2017). Like IT capabilities, BDAC also 

requires the application of DCT to consolidate, disseminate and facilitate data tools and 

applications to improve organisation performance and competitiveness (Wamba et 

al.,2017; Dubey et al., 2019a). 

 

Assessing the link between BDAC and the performance of manufacturing organisations 

in hypothesis 1 was determined from the results of the structural PLS-SEM tests. The path 

coefficient reported in Table 5.13 was 0.220 (t=2.37; P<0.02) These results align with the 

findings from the research undertaken by Wamba et al. (2017) and Akter et al. (2016). The 

findings from the two studies mentioned above are congruent with those of Fainshmidt et 

al. (2016), who state that higher-order dynamic capabilities positively influence the 

performance of organisations. The path weighting result for this construct is smaller than 

the 0.71 path coefficient value in Akter et al. (2016) as well as the 0.56 path weighting in 

Wamba et al. (2017) for the BDAC and organisational performance relationship. 

 

The researcher postulates that the differences between the path coefficients are attributed 

to the differing sample populations between the two research sets. Akter et al. (2016) and 

Wamba et al. (2017) identified their respective units of analysis focused on BDA managers 

and IT managers primarily focused on maintaining IT infrastructure. The unit of analysis 

in this survey is differentiated by its concentration on the manufacturing sector and 

positioning at the practitioner level. The respondents in this survey reported that they have 

a cross spectrum of specialisations ranging from engineering, finance, supply chain, 

operations and marketing. In addition, 50% of the sample survey population reported that 

they were in management positions, which infers that the primary use of BDA would be 

improving the functional area they directly manage. Therefore, they would have a partial 

view of how BDAC improves the manufacturing organisation's overall performance. 

 

Accessing the influence of BDAC through higher-order capabilities is essential, lower-

order dynamic capabilities can also provide much insight into the factors that can improve 

and organisations competitive position. This research model comprised of the following 

three higher-order constructs, namely BDA infrastructure flexibility, BDA management 

capabilities and BDA expertise capabilities. Table 6.1 identifies that all second-order path 
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coefficients in this model have been shown to have a positive and significant relationship 

with the third-order construct BDAC. BDA management capabilities were reported to have 

the most robust path coefficient, 0.919, followed by BDA expertise capabilities, which 

realised a path coefficient value of 0.885 and then BDA infrastructure flexibility with a path 

coefficient of 0.634. 

 

Table 6.2 compares the differing path coefficient weighting between related research on 

BDAC and FPer. Having already established that the path coefficient weightings differ from 

Wamba et al. (2017) and Akter et al. (2016) because of differing units of analysis and the 

fact that Gupta and George (2016) used a formative PLS-SEM as opposed to reflective-

formative some interesting observation can be derived from the results of the current and 

past research. 

 

Table 6.1: H1-Path coefficients - 2nd order constructs 

Path coefficients - 2nd order 

constructs 

Path 

coefficient 

T Value P values 

BDAC -> BDA Expertise Capabilities 0.885 47.484 0.000 

BDAC -> BDA Infrastructure Flexibility 0.634 10.121 0.000 

BDAC -> BDA Management Capabilities 0.919 60.076 0.000 

 

Table 6.2: H1 -Path coefficient comparison between similar research 

Comparable 2nd order construct 

Current 

Researc

h 

Gupta & 

George 

(2016) 

Akter et 

al. 

(2016) 

Wamba 

et al. 

(2017) 

Path (β) Path (β) Path (β) Path (β) 

BDA Expertise Capabilities 0.885 0.37 0.96 0.96 

BDA Infrastructure Flexibility 0.634 0.42 0.91 0.96 

BDA Management Capabilities 0.919 0.31 0.94 0.93 

 

From Table 6.2 it is evident that BDA management capabilities are important drivers in 

ensuring that manufacturing organisations can achieve sustainable and competitive 

performance through BDA supporting the underlying thought process of decision makers 
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(Akter et al., 2016; Gupta & George, 2016). Ghasemaghaei (2021) characterised BDA as 

the future enabler for competitive organisational performance, which needs to be 

managed by managing the organisation's big data resources and capabilities. This view 

aligns with Barney's (1991) perspective on managing organisational resources to improve 

organisational FPer. BDA expertise capabilities have a lower path weighting when 

compared to Akter et al. (2016) and Wamba et al. (2017), which is attributed to the 

differences in the sample populations between the studies. The respondents in this 

research have high levels of technical expertise related to manufacturing and support 

functions. 

 

As such, they may not have BDA skills directly comparable to Akter et al. (2016) and 

Wamba et al. (2017), resulting in a moderately lower path influence. The BDA 

infrastructure flexibility path coefficient positively influences BDAC, but the influence is 

smaller in magnitude than that of Akter et al. (2016) and Wamba et al. (2017). In Chapter 

2, it was established that the manufacturing industry is a first-line adopter of new 

technologies, and as such, the infrastructure has long been in place (Cheng et al., 2018a; 

Choi et al., 2022). In summary, BDAC can improve the performance of manufacturing 

organisations; however, to be competitive, manufacturing organisations need to be 

proactive in managing big data resources and improve expert capabilities in BDA. 

 

6.4 Hypothesis 2 discussion 

 

The intention of hypothesis 2 was to identify the nature of the relationship between PODC 

and manufacturing organisational performance. This research question was expressed 

as: 

 

Do process-orientated dynamic capabilities (PODC) and manufacturing FPer have 

a positive relationship? 

 

The role of dynamic capabilities play in developing competitive advantages contributing to 

improved organisational performance has been extensively researched (Protogerou et al., 

2012; Lin & Wu, 2014; Drnevich & Kriauciunas, 2011). The second research question 

pertains to a sub-section of dynamic capabilities. PODCs are defined as a firms ability to 

transform and adapt to the continuously evolving dynamism of the business environment 
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and reconfigure resources to ensure that dynamic capabilities (direct and indirect) can 

make the necessary adjustments ahead of competitors (Eisenhardt & Martin, 2000; 

Wamba et al., 2017; Belhadi et al., 2019). 

 

A key theme that emerged from the evolution of manufacturing and the future of 

manufacturing sections in Chapter 2 was the ability of the manufacturing sector to 

recognise changing market conditions and reconfigure resources and capabilities. Kim et 

al. (2011) share that organisational IT resources are not parallel independent streams of 

resources and capabilities working towards a singularly defined outcome but rather an 

entangled composition of resources and capabilities all working simultaneously to improve 

distinct organisational processes. Expanding this viewpoint, Kim et al. (2017) posits that 

organisations that are focused on singular capabilities are not competitive over the long 

term. 

 

Transposing this perspective to the manufacturing sector creates a challenging paradox 

to overcome to ensure that manufacturing organisations maintain long-term 

competitiveness. Wamba et al. (2017) reaffirm this view that BDAC consists of many 

entangled elements that must work in harmony to ensure FPer is maintained and 

incrementally improved. Visualising this concept within the manufacturing ecosystem may 

appear challenging had it not been for Figure 2.4 from Belhadi et al. (2019), in which 

manufacturing process challenges were identified (quality, operations, environmental, 

asset maintenance and occupational health) and recorded in big data analytics faculties 

which cleaned unstructured data and organised the data so that it could be warehoused 

and mined to generate transparent insight that support decision making, improve 

performance and enhance knowledge. 

 

This context demonstrates the entanglement effect on IT resources and capabilities 

mentioned by (Wamba et al. 2017; Akter et al., 2016; Kim et al., 2011). Manufacturing 

organisations undertake many direct (operational) and indirect (value chain) activities. In 

terms of direct activities, sensors submit real-time data on a variety of aspects relating to 

organisational performance. In most instances, the data generated from these processes 

is unstructured and needs some form of transformation to be data mined and generate 

meaningful results that can improve operational processes (Belhadi et al., 2019). 
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BDA generated from the manufacturing process applies to current processes and can 

assist in mitigating future challenges. In the Future of Manufacturing section in Chapter 2, 

three key challenges were identified as significant disruptors to the manufacturing industry. 

Advances in technology are expected to significantly influence processes along with the 

competitive position of the manufacturing industry in future (Dubey et al., 2019; Chien et 

al., 2020; Choi et al., 2022). Digital twining, 3D printing, Blockchain, AI and IIoT are 

expected to influence manufacturing processes in the future significantly (Chien et al., 

2020; Choi et al., 2022; Tao et al., 2018a; Helu,2020). The global adoption of an 

environmentally conscious approach to manufacturing is also expected to influence 

manufacturing activities as manufacturers are expected to shift to cyber-physical systems 

as a way to utilise big data to generate opportunities and new level of insights and reduce 

costs of prototyping, test new sustainable material and manage waste emitted from 

existing processes (Dubey et al., 2016; Ren et al., 2019). For manufacturing organisations 

to be competitive and improve performance, BDAC must be infused into PODC to maintain 

organisational performance and competitiveness. 

 

Wamba et al. (2017) concedes that the understanding of linkages and influence of BDAC 

and PODC is not well developed, and the researcher has also realised this. However, in 

the manufacturing context, PODCs are deemed a significant construct because, 

universally, manufacturing organisations are characterised by the goal of optimising 

processes (Yelles-Chaouche et al., 2021). Wamba et al. (2017) regard this construct as a 

mediating effect; however, this research will view PODC as a direct influence of FPer 

because of the focus on manufacturing and how improving a single process can improve 

organisational competitiveness. 

 

Half of the respondents in this survey are in management positions with an operational 

concentration. As such, they are accountable for the performance of the process they 

directly manage. From Table 6.3, it is evident that this PODC does have a confirmed 

impact on the performance of manufacturing firms, aligning to the findings in Wamba et 

al. (2017). The magnitude of influence would be more significant in this research, which 

focuses exclusively on manufacturing and places high importance on process 

optimisation. However, the researcher expected that this impact would be more significant 

given the challenges facing manufacturing companies on the horizon. 
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Table 6.3: H2 – Path coefficient comparison between related research 

Path -coefficient 

Current 

Research 

Wamba 

et al. 

(2017) 

Path (β) Path (β) 

BDAPODC -> BDADPER 
0.320 

(t=3.073) 

0.28 

(t=3.30) 

 

6.5 Hypothesis 3 discussion 

 

The final hypothesis in this research is important because it seeks to understand if BDAC 

does have an influencing role PODC of manufacturing organisations. This research 

question was expressed as: 

 

Is there a positive association between BDAC and PODC in manufacturing 

organisations? 

 

The linkages between organisational resources and dynamics capabilities have been 

extensively researched (Chen et al., 2014; Lin & Wu, 2014; Wamba et al., 2017; Akter et 

al., 2016). PODC, while acknowledged, has been given limited attention than the 

concentration research on the influence of dynamic IT capabilities on organisational 

performance (Wamba et al., 2017). Kim et al. (2011) describe PODC as the organisation's 

capability to adapt resources and capabilities to the current processes to retain a 

competitive footing in the dynamic business environment. Research into the influence of 

BDAC on FPer has been around for a while, but the influence of PODC on FPer has largely 

been unexplored. PODC should not be viewed as similar to the explorative and 

exploitative capabilities concept in which organisations search for new opportunities and 

find existing resource capabilities to exploit (Birkinshaw et al., 2016). PODC represents 

an organisation's continuous effort to reconfigure resources and capabilities to maintain 

and grow its competitive performance in line with its strategic goals (Kim et al., 2011). The 

manufacturing sector is continuously evolving and, therefore, needs to improve the 

dynamic capabilities of existing processes to remain competitive (Wamba et al.,2017; 

Dubey et al., 2019a). 
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Manufacturing is considered fast-paced, and organisations must continuously adapt to 

remain competitive (Belhadi et al., 2019; Dubey et al., 2019a). Organisational IT 

capabilities through BDA have been positioned to effectively support institutions in 

identifying, managing and redeploying capabilities to empower faster and astute DDDM 

(Ghasemaghaei et al., 2017). BDAC is much needed in manufacturing to empower 

process managers to change and adapt processes so that FPer is not compromised 

before competitors can seize the advantage. 

 

Most of the survey respondents are process managers and have indicated using a cross-

section of BDA reports in the decision-making. Over 80% of respondents in the survey 

have expressed that the use of a BDAC application increased in their respective 

organisations. Based on these generalised observations of survey respondents and 

guided by Belhadi et al. (2019) and Wamba et al. (2017), it is plausible to infer that BDAC 

would significantly influence PODC in manufacturing organisations. 

 

In Table 6.4, the hypothesis is that BDAC does positively influence PODC in manufacturing 

firms. It has been established that this research construct is under-researched, as 

confirmed by Wamba et al. (2017). The estimated path coefficient values are in line with 

Wamba et al. (2017), which is the only comparable study on this construct. The results 

from this research has a lower magnitude of influence than the comparable study. The 

underlying reasons behind this can be attributed to the focus of the sample population 

being at a practitioner level compared to IT managers which related studies had preferred 

to be the sample population. 

 

This differentiation in the sample has an influence on the results for this research construct 

because, at a practitioner level, the influence of BDAC on PODC is not in the same light 

as the technicians who re-calibrate equipment to perform optimally. The fact that the 

sample population is management-driven and uses a variety of reports indicates that 

BDAC does play a contributing role in ensuring that processes are continuously adapting 

resulting in an inclusive improvement in organisational performance and competitiveness. 

This view is reaffirmed by the findings in Table 6.2, which shows that BDA Management 

Capabilities are the most significant second-order construct influencing BDAC in 

manufacturing organisations. From this sample, it can be deduced that the respondents 

are focused on managing processes across disciplines and are not specialists in the field 
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of IT and, therefore, need to comprehend the magnitude and significance of BDAC fully 

has had on PODC and ultimately improving firm performance. 

 

Table 6.4: H3 – Path coefficient comparison between related research 

Path -coefficient 

Current 

Research 

Wamba 

et al. 

(2017) 

Path (β) Path (β) 

BDAC -> BDAPODC 
0.615 

(t=13.563) 

0.84 

(t=34.70) 

 

6.6 Conclusion 

 

The research aims to understand BDAC's influence on manufacturing organisations' 

performance. This research confirms that BDAC positively influences performance in 

manufacturing organisations directly via strategic management of dynamic capabilities 

and identified PODC. The findings disclosed in Chapter 4 and the subsequent discussion 

of the findings in Chapter 5 confirmed the study objectives. They were guided by the 

underlying theoretical constructs of RBV, DCT and PODC, which were applied through an 

IT capabilities lens in a manufacturing ecosystem and formed the basis through which the 

research hypothesis could be statistically tested using a PLS-SEM model that was 

reflective and formative.  

 

This allowed for the complexity and specificity of that sample population to be empirically 

tested. The results for all three of the hypothesised constructs were deemed statistically 

significant, with the only differentiation being the characteristics of the sample population, 

which was manufacturing, and practitioner focused. Related research on similar 

constructs and statistical methods was focused on insights from IT and prominent data 

professionals. The research results provide insightful perspectives on the nature of big 

data capabilities in manufacturing organisations that can practically contribute to 

managers and academics. This will be discussed in the last chapter of this research. 
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7 Chapter 7: Conclusion  

 

7.1 Introduction 

 

The underlying objective of this study was to establish a baseline from which to understand 

how BDAC influences manufacturing organisations' performance directly and indirectly 

through its influence on the multiple concurrent process streams occurring in an evolving 

dynamic ecosystem. Academic research examining the influence of BDAC on 

organisational performance positioning big data as a tool or application that supports 

manufacturing organisations in navigating the complex dynamism of the business 

environment (Dubey et al., 2019a; Belhadi et al., 2019; Akter et al., 2016; Wamba et al., 

2017; Lee et al., 2011; Mourtzis er al.,2016).  

 

Current and seminal research on this phenomenon grounds the research construct from 

the organisational dynamic capabilities theoretical perspective, with the resource base 

view providing the overarching theoretical base (Dubey et al., 2019a; Belhadi et al., 2019; 

Akter et al., 2016; Wamba et al., 2017; Birkinshaw et al., 2016). This research represents 

a combination of theory and contextualisation of the evolution of the manufacturing 

industry, and the impact technology has had on performance and competitiveness 

historically and in the future. These views aided in developing the research model in Figure 

3.1, through which the research objectives were explored. 

 

This chapter will consolidate the results of Chapters 5 and 6 from an academic and 

management viewpoint. The chapter will propose avenues of future research by 

expanding the dimensions of the existing research constructs. The chapter will conclude 

by discussing the limitations experienced during this research. 

 

7.2 Contribution to existing theory 

 

Chapter 2 established that the RBV view was the overarching theoretical construct 

through which the influence and direct and indirect IT dynamic capabilities of FPer were 

explored. This research contributes to existing academic research relating to strategic 

management and informational systems, expanding the existing knowledge on the nature 

of the relationship between BDAC and PODC on FPer from the perspective of 
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manufacturing organisations. Guided by emerging literature on the influence of BBDAC 

and PODC on FPer by Wamba et al. (2017), Akter et al. (2016), Kim et al. (2011) and 

Gupta and George (2016), this research expanded on the views from the studies 

mentioned above. A key focus of the research was to understand how manufacturing 

organisations who are regarded as the first-in-line pioneers of technological innovation 

harnessed the big data made available from IIoT to improve competitiveness and overall 

performance (Dubey et al., 2019a; Belhadi et al., 2019; Cheng et al., 2018a; Choi et al., 

2022). The intention of this research is to expand on the limited research on PODC on 

FPer and BDAC on PODC as mentioned by Wamba et al. (2017) and Belhadi et al. (2019) 

 

There has been a comprehensive review of the influence of IT capabilities on FPer in 

academia (Kim et al.,2011; Mikalef & Pateli, 2017). The underlying realm of influence of 

BDAC as a construct is still continuously debated. Belhadi et al. (2019) and Wamba et al. 

(2017) share the view that BDAC is a composition of interactive resources in the form of 

commercial, personal and technology. At the same time, Jagadish et al. (2014) and Lee 

(2017) believe that for BDAC to successfully influence FPer, the technical and system-

related challenges need to be corrected. 

 

The research expands the outcomes from the research undertaken by Wamba et al. 

(2017), Akter et al. (2016) and Kim et al. (2011), who all postulate that in order for BDAC 

strategies to be successful, it requires the successful integration of expert knowledge of 

IT system, be flexible in amending the IT infrastructure, and most importantly management 

needs to have the skills to manage resources and capabilities to achieve improved FPer. 

 

Expanding on the existing theoretical interpretation of the identified constructs, this 

research employed a reflective-formative third-order hierarchical PLS-SEM model. The 

results from this research were statistically significant for all three research questions and 

aligned to the results of Wamba et al. (2017) and Akter al. (2016). BDAC does have a 

positive relationship on the performance of manufacturing organisations, much like the 

related seminal research, but the magnitude of the influence in the second-order construct 

differed. The differing unit of analysis between the sets of research influenced the path 

weightings of the second-order constructs. The research was focused on the 

manufacturing sector, while the seminal research studies were flexible on the industry but 

focused on IT managers with technical knowledge. This research was broader regarding 
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respondents and concentrated on practitioners who use BDA. The underlying rationale 

was that manufacturing sector employees were the early pioneers of BDA, which was 

established in the second chapter. The literature on big data in manufacturing recognised 

that BDA infrastructure was already well-established in manufacturing organisations 

(Singh & Sharma, 2020; Dubey et al., 2019a). In addition, the sample respondents in the 

survey were from a technical discipline, and more than half the sample were in 

management positions. 

 

Wamba et al. (2017) share that PODC is an under-researched area. Kim et al. (2011) and 

Wamba et al. (2017) have attempted to understand this research construct, but the 

insights generated additional questions. This research is well-positioned to expand the 

existing body of knowledge regarding the BDAC, PODC and FPer. Manufacturing 

organisations consist of many concurrent processes that are all integrated and contribute 

to the overall level of organisational performance. The second research question 

established that PODC positively influences manufacturing organisations' performance. 

This aligns with the results from Wamba et al. (2017). The magnitude of influence in this 

research is more significant than the seminal work because of the focus on manufacturing 

and the core characteristic of performance being process optimisation (Yelles-Chaouche 

et al., 2021). 

 

The final hypothesis question of this research is focused on the establishing the link and 

influence of BDAC and PODC. As mentioned already, research on PODC is limited; this 

research supplements the existing academic understanding by identifying that from a 

manufacturing vantage point, BDAC positively influences PODC aligning to Wamba et al. 

(2017). The empirical results reveal that BDA management capabilities are the most 

influential construct to BDAC influencing PODC. Ferraris et al. (2019) state that firm 

performance improves with structured and appropriate management of BDAC. This is 

evident from the results from the model, which demonstrate that the magnitude of 

influence of BDAC on PODC is significant when compared to Wamba et al. (2017). 

 

7.3 Contribution to existing management practices  

 

The rapid technological advances have added a new complexity that organisations must 

navigate to ensure they achieve the performance levels required to remain competitive 

(Dubey et al., 2019a; Belhadi et al., 2019). The findings in this research conform with the 
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literature on BDA and its influence of organisational growth (Comuzzi & Patel, 2016; 

Birkinshaw et al., 2016; Coleman et al., 2016). This research highlights the significant role 

of BDAC in directly influencing FPer and PODC from a manufacturing perspective. The 

empirical analysis outcomes align with related research on the impact of dynamic IT 

capabilities influencing organisational strategy formulation and performance (Kim et al., 

2011; Dubey et al., 2019a; Chen et al., 2014). The findings of this research are a snapshot 

reflection from a defined point in time. Because big data systems continuously evolve, any 

insights extracted by management may only herald gains over the short term. The results 

of this research highlight the influential role of BDA management capabilities of BDAC 

and, subsequently, FPer and PODC, inferring that there needs to be a comprehensive 

strategy to manage big data resources and associated dynamic capabilities. 

 

BDAC can be effective and provide real value for manufacturing organisations. A 

comprehensive big data strategy must be formulated and interwoven as essential enabling 

pillars supporting the strategic organisational objectives (Comuzzi & Patel, 2016). This 

research highlighted BDA planning, investment decisions and control as critical drivers for 

managing extensive data capabilities. The key drivers make intuitive sense within the 

context of manufacturing organisations, especially considering that most manufacturing 

companies face a delicate balancing act between maintaining performance, capital 

expenditure, and return on investment. Big data has to be a phased-in strategy with 

defined time intervals and measurable key performance metrics. In this way, organisations 

can maintain performance and competitiveness while incrementally improving concurrent 

manufacturing processes (Kim et al., 2011). 

 

7.4 New research suggestions  

 

This research presented a challenge in that the hypothesis construct was adapted from a 

generalised perspective to align with a manufacturing perspective. In addition, this 

research expanded on the boundaries of the type of respondent permitted to participate 

in the research. The underlying reason for this change was that the research occurred a 

few years after the initial seminal studies, and workers have become more adept at using 

big data when making decisions. Therefore, this study concentrated on the influence of 

big data capabilities in manufacturing from the practitioners' perspective. The research 

findings have proved to be aligned with Wamba et al. (2017). However, the results 

indicated that related areas of research construct could be explored. 
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This research was entirely focused on respondents from the South African manufacturing 

industry. While the seminal works of Wamba et al. (2017) and Akter et al. (2016) reported 

that respondents originated from China and the United States of America respectively. 

Each research population is undoubtedly at different stages of development and 

complexity in the BDAC life cycle. It would be advantageous to undertake a similar 

research project and incorporate manufacturing respondents from different geographical 

locations. This would broaden the scale and scope of insights from an academic and real-

world perspective. 

 

This research focused on front-facing perceptive constructs such as big data capabilities, 

process capabilities and firm performance. Dubey et al. (2019a) posit that organisational 

culture is influential in determining if BDA is successfully implemented in organisations. 

An extension of this research would be to assess if manufacturing organisations adopt a 

positive culture towards adopting big data. This would be interesting from the standpoint 

of a manufacturing firm where the cultural inclination is to ensure that targets are achieved. 

Big data offers a potential platform to ensure that targets are realised but also poses a risk 

to job security, which could negatively impede the implementation of BDA. 

 

The seminal research was conducted in advanced geographical manufacturing centres, 

so their management of big data strategies would be more progressive. In South Africa, 

the socioeconomic climate may need to be more accepting of big data applications. 

Sutherland (2020) further adds that South Africa needs more big data professionals. This 

implies that organisational management would question the integrity of big data-related 

product offerings. This can create situations when management does not believe in the 

results obtained via big data (Mikalef et al., 2018). Managing large data strategies from a 

manufacturing point of view requires further research. 

 

The demographic survey questions revealed some rather interesting observations 

regarding the attributes of the manufacturing industry in South Africa. The survey revealed 

that that manufacturing employees are technically orientated, highly educated and in 

some form of leadership or management. Based on these characteristics it would be 

advisable to expand the boundaries of research to include the mediating effect of big data 

expert capabilities amongst practitioners in the manufacturing sector. 
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This research's primary objective was to understand BDAC's boundary condition drivers 

on manufacturing FPer. Emerging literature has put forth the view that AI can dramatically 

change how manufacturing organisations operate, as AI can analyse and process data in 

a way that established methods cannot and, therefore, yield a deeper level of insights to 

empower strategic decision-making (Arinez et al., 2020; Tao et al., 2018b). Dubey et al. 

(2020) and Akter et al. (2016) introduce the concept of higher-order distinct expert 

capabilities as mediators that effectuate BDAC and enhance FPer. This type of research 

is limited to a manufacturing context and would be a positive perspective to the existing 

research views and real-world business applications. Chapter 2 highlighted the expectant 

challenges of sustainability and GVC; AI could greatly support manufacturing 

organisations in overcoming these challenges, but to do so, manufacturing organisations 

need to establish if there are distinct expert capabilities with existing dynamic capabilities 

to develop, execute and maintain complex AI project to garner a competitive advantage. 

 

7.5 Restrictions of this research 

 

This research was limited because 96 or 36% of all respondents did not complete the 

survey. This limitation could have influenced model results because these sample 

respondents embodied a different set of demographic characteristics, which may have 

changed the dimension of insights if the path weighting were balanced equally between 

BDA management capabilities, expert capabilities and infrastructure capabilities. 

 

The respondents needed clarification regarding how the survey questions which IT 

capability focused related to BDAC. This concept is relatively unknown, and the link to IT 

capabilities may have needed to be clarified to influence how the respondents answered 

the survey and potentially influence the model results. This research was cross-sectional 

and only collected data which formulated insights for a specific period in time. 

 

7.6 Conclusion  

 

The objective of this study was to understand the nature of the between BDAC and the 

performance of manufacturing organisations. This explorative study embraced a positivist 

philosophy to establish the causal linkages between BDAC, PODC and FPer. Using the 

PLS-SEM method of analysis, the empirical findings support the hypothesis that BDAC 

influences manufacturing firms' performance. 
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Appendix A 

Demographic questions  

Q1. Are you employed in any of the following South African manufacturing sub-

sectors: 

Agro processing  

Automotive 

Chemicals  

ICT and electronics 

Metals 

Textiles, clothing and footwear 

Other (please specify) 

 

Q2. Gender 

Male  

Female  

Other  

 

Q3. Age group 

18-25 years  

26-33 years  

34-41 years  

42-55 years  

Greater than 55 years  

 

Q4. Education Level 

Primary school  

Secondary school  

Diploma  

Undergraduate degree  

Post graduate diploma  

Masters/PHD   

 

Q5. Field of specialisation 
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Financial   

Engineering  

Supply Chain   

Marketing and Sale 

Operations  

Other (Specify) 

 

Q6. Level in organisation 

Graduate  

General Work   

Professional   

Management  

Executive Leadership  

Other Specify  

 

Q7. Years employed in current organisation  

Less than 2 years  

More than 2 years less than 5 years.  

More than 5 years less than 10 years. 

More than 10 years less than 20 years.  

More than 20 years.  

 

Q8. Has your organisation increased its dependence on big data (large volumes of 

information) over the last five years. 

Yes   

No   

Other  

 

Q9 Basis for using big data. 

Operational reporting  

Financial reporting   

Strategic operational improvement  

Strategic commercial improvement   
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Executive review   

Other (specify)   

 

Survey question  

 

 

 1. IT Planning  

 1.1 We continuously examine the 

innovative opportunities for the 

strategic use of IT (Using 

computers, software, and digital 

networks to send, receive and 

process data). 

Likert Scale 1-7 

 1.2 We enforce adequate plans for the 

introduction and utilisation of IT 

(Using computers, software, and 

digital networks to send, receive 

and process data). 

 1.3  We perform IT planning (Aligning IT 

strategies to support business 

goals) processes in systematic and 

formalised ways. 

 1.4 We frequently adjust IT plans 

(Refers to an organisations 

management of infrastructure, 

projects and resources) to better 

adapt to changing conditions.. 

2. IT Investment Decision making  

2.1 When we make IT investment 

decisions, we think about and 

estimate the effect they will have 

on the quality and productivity of 

the employees’ work. 

Likert Scale 1-7 

2.2 When we make IT investment 

decisions, we consider and project 

about how much these options will 

help end users make quicker 

decisions. 
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2.3  When we make IT investment 

decisions, we consider and estimate 

whether they will consolidate or 

eliminate jobs. 

2.4 When we make IT investment 

decisions, we think about and 

estimate the amount and cost of 

training that end users will need. 

2.5  When we make IT investment 

decisions, we consider and estimate 

the time managers will need to 

spend overseeing the change. 

3. IT Control  

3.1 In our organisation, the 

responsibility and authority for IT 

direction and development are 

clear. 

Likert Scale 1-7 

 

 

 

  

3.2 We are confident that IT project 

proposals are properly appraised. 

3.3  We constantly monitor the 

performance of IT function. 

3.4 Our IT department (Team 

responsible for managing IT 

infrastructure, systems and 

services) is clear about its 

performance criteria. 

4. Connectivity  

4.1 Compared to rivals within our 

industry, our organisation has the 

foremost available IT systems and 

connections. 

 Likert Scale 1-7 

 

4.2 All remote, branch, and mobile 

offices are connected to the central 

office. 

4.3  Our organisation utilises open 

systems network mechanisms 

(Allows for open sharing of 

information across different 

hardware, software, internal and 
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external vendors) to boost 

connectivity. 

4.4 There are very few identifiable 

communications bottlenecks within 

our organisation. 

5. Compatibility  

5.1 Software applications (Programs) 

can be easily transported and used 

across multiple platforms. 

 Likert Scale 1-7 

5.2 Our user interfaces provide 

transparent access to all platforms 

and applications. 

5.3  Information is shared seamlessly 

across our organisation, regardless 

of the location. 

5.4 Our organisation provides multiple 

interfaces or entry points for 

external end users. 

6. Modularity  

6.1 Reusable software modules (Code) 

are widely used in new system 

development. 

Likert Scale 1-7 

6.2 End users utilise object-oriented 

tools to create their own 

applications. 

6.3  IT personnel utilise object-oriented 

technologies to minimise the 

development time for new 

applications. 

6.4 The legacy system within our 

organisation restricts the 

development of new applications. 

7. Technical Knowledge  

7.1 Our IT personnel are very capable in 

terms of programming skills. 

Likert Scale 1-7 

7.2 Our IT personnel are very capable in 

terms of managing project life 

cycles. 
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7.3  Our IT personnel are very capable in 

the areas of data and network 

management and maintenance. 

7.4 Our IT personnel are very capable in 

the areas of distributed processing 

or distributed computing. 

7.5 Our IT personnel create very 

capable decision support systems 

(Expert systems, artificial 

intelligence, data warehousing and 

mining). 

8. Technology Management Knowledge  

8.1 Our IT personnel show a superior 

understanding of technological 

trends. 

Likert Scale 1-7 

8.2 Our IT personnel show superior 

ability to learn new technologies. 

8.3  Our IT personnel are very 

knowledgeable about the critical 

factors for the success of our 

organisation. 

8.4 Our IT personnel are very 

knowledgeable about the role of IT 

as a means, not an end. 

9. Business Knowledge  

9.1 Our IT personnel understand our 

organisation’s policies and plans at a 

very high level. 

Likert Scale 1-7 

9.2 Our IT personnel are very capable in 

interpreting business problems and 

developing appropriate technical 

solutions. 

9.3  Our IT personnel are very 

knowledgeable about business 

functions. 

9.4 Our IT personnel are very 

knowledgeable about the business 

environment. 

10. Relational Knowledge  
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10.1 Our IT personnel are very capable 

in terms of planning, organising, 

and leading projects. 

Likert Scale 1-7 

10.2 Our IT personnel are very capable 

in terms of planning and executing 

work in a collective environment. 

10.3  Our IT personnel are very capable in 

terms of teaching others. 

10.4 Our IT personnel work closely with 

customers and maintain 

productive user/client 

relationships. 

11. Process-oriented Dynamic Capabilities 

11.1 Our company is better than 

competitors in connecting (e.g., 

communication and information 

sharing) parties within a business 

process. 

Likert Scale 1-7 

11.2 Our company is better than 

competitors in reducing cost and 

human labor within a business 

process. 

11.3  Our company is better than 

competitors in bringing complex 

analytical methods to bear on a 

business process. 

11.4 Our company is better than 

competitors in bringing detailed 

information into a business 

process. 

12. Firm Performance 

12.1 Over the past 3 years, our financial 

performance has been 

outstanding. 

Likert Scale 1-7Strongly Agree  

12.2 Over the past 3 years, our financial 

performance has exceeded our 

competitors'. 

12.3  Over the past 3 years, our sales 

growth has been outstanding. 
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12.4 Over the past 3 years, we have 

been more profitable than our 

competitors. 
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Appendix B 

 

Table 7.1: Descriptive statistics for survey questions 

 

Population Descriptive Statistics 

 N Mean 

Std. 

Deviation Variance 

BDAPLAN1            

165 

5,782 1,353 1,831 

BDAPLAN2            

165 

5,564 1,411 1,991 

BDAPLAN3            

165 

5,558 1,385 1,919 

BDAPLAN4            

165 

5,345 1,351 1,826 

BDAIDM1            

165 

5,527 1,328 1,764 

BDAIDM2            

165 

5,618 1,248 1,557 

BDAIDM3            

165 

4,976 1,572 2,472 

BDAIDM4            

165 

5,376 1,295 1,677 

BDAIDM5            

165 

4,764 1,629 2,653 

BDACON1            

165 

5,018 1,593 2,539 

BDACON2            

165 

4,994 1,446 2,091 

BDACON3            

165 

5,036 1,456 2,120 

BDACON4            

165 

5,297 1,358 1,845 

BDACOEC1            

165 

4,533 1,628 2,649 

BDACOEC2            

165 

5,788 1,278 1,634 

BDACOEC3            

165 

4,533 1,905 3,631 
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BDACOEC4            

165 

4,267 1,772 3,141 

BDACOMP1            

165 

4,509 1,646 2,711 

BDACOMP2            

165 

4,521 1,697 2,880 

BDACOMP3            

165 

4,927 1,732 3,001 

BDACOMP4            

165 

4,327 1,659 2,753 

BDAMOD1            

165 

4,497 1,404 1,971 

BDAMOD2            

165 

3,788 1,654 2,737 

BDAMOD3            

165 

4,521 1,412 1,995 

BDAMOD4            

165 

4,618 1,609 2,588 

BDATK1            

165 

4,824 1,772 3,139 

BDATK2            

165 

4,903 1,699 2,888 

BDATK3            

165 

5,327 1,445 2,087 

BDATK4            

165 

4,982 1,539 2,369 

BDATK5            

165 

4,618 1,753 3,072 

BDAMK1            

165 

4,885 1,612 2,599 

BDAMK2            

165 

5,103 1,540 2,371 

BDAMK3            

165 

5,012 1,572 2,473 

BDAMK4            

165 

5,133 1,524 2,322 

BDABK1            

165 

5,279 1,412 1,995 

BDABK2            

165 

4,873 1,573 2,475 

BDABK3            

165 

5,030 1,446 2,090 
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BDABK4            

165 

4,921 1,518 2,303 

BDARELKN1            

165 

5,018 1,495 2,236 

BDARELKN2            

165 

5,133 1,342 1,800 

BDARELKN3            

165 

4,891 1,393 1,940 

BDARELKN4            

165 

4,776 1,499 2,247 

BDAPODC1            

165 

4,479 1,528 2,334 

BDAPODC2            

165 

4,339 1,605 2,576 

BDAPODC3            

165 

4,503 1,613 2,602 

BDAPODC4            

165 

4,533 1,520 2,309 

BDADPER1            

165 

4,552 1,763 3,108 

BDADPER2            

165 

4,412 1,677 2,812 

BDADPER3            

165 

4,618 1,697 2,878 

BDADPER4            

165 

4,412 1,576 2,485 

Valid N (listwise)            

165 

   

Std. Deviation and Variance use N rather than N-1 in 

denominators. 
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Table 7.2: Revised constructs  

  Original model  Revised 

model  

1 BDAPLAN1 BDAPLAN1 

2 BDAPLAN2 BDAPLAN2 

3 BDAPLAN3 BDAPLAN3 

4 BDAPLAN4 BDAPLAN4 

5 BDAIDM1 BDAIDM1 

6 BDAIDM2 BDAIDM2 

7 BDAIDM3 BDAIDM3 

(removed) 

8 BDAIDM4 BDAIDM4 

9 BDAIDM5 BDAIDM5 

10 BDACON1 BDACON1 

11 BDACON2 BDACON2 

12 BDACON3 BDACON3 

13 BDACON4 BDACON4 

14 BDACOEC1 BDACOEC1 

(removed) 

15 BDACOEC2 BDACOEC2 

(removed) 

16 BDACOEC3 BDACOEC3 

(removed) 

17 BDACOEC4 BDACOEC4 

(removed) 

18 BDACOMP1 BDACOMP1 

19 BDACOMP2 BDACOMP2 

20 BDACOMP3 BDACOMP3 

21 BDACOMP4 BDACOMP4 

(removed) 
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22 BDAMOD1 BDAMOD1 

(removed) 

23 BDAMOD2 BDAMOD2 

(removed) 

24 BDAMOD3 BDAMOD3 

25 BDAMOD4 BDAMOD4 

(removed) 

26 BDATK1 BDATK1 

27 BDATK2 BDATK2 

28 BDATK3 BDATK3 

29 BDATK4 BDATK4 

30 BDATK5 BDATK5 

31 BDAMK1 BDAMK1 

(removed) 

32 BDAMK2 BDAMK2 

(removed) 

33 BDAMK3 BDAMK3 

(removed) 

34 BDAMK4 BDAMK4 

(removed) 

35 BDABK1 BDABK1 

(removed) 

36 BDABK2 BDABK2 

(removed) 

37 BDABK3 BDABK3 

(removed) 

38 BDABK4 BDABK4 

(removed) 

39 BDARELKN1 BDARELKN1 

(removed) 

40 BDARELKN2 BDARELKN2 
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(removed) 

41 BDARELKN3 BDARELKN3 

(removed) 

42 BDARELKN4 BDARELKN4 

(removed) 
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Table 7.3: Outer Model factor loading values  

 

Outer 
loadings 

BDABK1 <- BDAC 0,660 

BDABK2 <- BDAC 0,758 

BDABK3 <- BDAC 0,825 

BDABK4 <- BDAC 0,781 

BDACOMP1 <- BDA Infrastructure 
flexibility 0,856 

BDACOMP1 <- BDACOMP 0,857 

BDACOMP1 <- BDAC 0,528 

BDACOMP2 <- BDACOMP 0,903 

BDACOMP2 <- BDA Infrastructure 
flexibility 0,903 

BDACOMP2 <- BDAC 0,576 

BDACOMP3 <- BDACOMP 0,775 

BDACOMP3 <- BDA Infrastructure 
flexibility 0,777 

BDACOMP3 <- BDAC 0,504 

BDACON1 <- BDAC 0,643 

BDACON1 <- BDACON 0,796 

BDACON1 <- BDA Management 
Capabilities 0,682 

BDACON2 <- BDACON 0,871 

BDACON2 <- BDA Management 
Capabilities 0,758 

BDACON2 <- BDAC 0,726 

BDACON3 <- BDA Management 
Capabilities 0,689 

BDACON3 <- BDACON 0,826 

BDACON3 <- BDAC 0,672 

BDACON4 <- BDACON 0,827 

BDACON4 <- BDA Management 
Capabilities 0,734 

BDACON4 <- BDAC 0,741 

BDADPER1 <- BDADPER 0,915 

BDADPER2 <- BDADPER 0,923 

BDADPER3 <- BDADPER 0,836 

BDADPER4 <- BDADPER 0,896 

BDAIDM1 <- BDAC 0,737 

BDAIDM1 <- BDAIDM 0,884 

BDAIDM1 <- BDA Management 
Capabilities 0,823 

BDAIDM2 <- BDA Management 
Capabilities 0,746 

BDAIDM2 <- BDAIDM 0,795 

BDAIDM2 <- BDAC 0,630 
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BDAIDM4 <- BDA Management 
Capabilities 0,680 

BDAIDM4 <- BDAIDM 0,801 

BDAIDM4 <- BDAC 0,624 

BDAIDM5 <- BDAIDM 0,783 

BDAIDM5 <- BDAC 0,614 

BDAIDM5 <- BDA Management 
Capabilities 0,650 

BDAPLAN1 <- BDAPLAN 0,879 

BDAPLAN1 <- BDA Management 
Capabilities 0,741 

BDAPLAN1 <- BDAC 0,620 

BDAPLAN2 <- BDA Management 
Capabilities 0,730 

BDAPLAN2 <- BDAPLAN 0,888 

BDAPLAN2 <- BDAC 0,634 

BDAPLAN3 <- BDA Management 
Capabilities 0,805 

BDAPLAN3 <- BDAPLAN 0,888 

BDAPLAN3 <- BDAC 0,734 

BDAPLAN4 <- BDAPLAN 0,774 

BDAPLAN4 <- BDAC 0,674 

BDAPLAN4 <- BDA Management 
Capabilities 0,721 

BDAPODC1 <- BDAPODC 0,845 

BDAPODC2 <- BDAPODC 0,848 

BDAPODC3 <- BDAPODC 0,913 

BDAPODC4 <- BDAPODC 0,899 

BDATK1 <- BDA Expertise Capabilities 0,852 

BDATK1 <- BDAC 0,711 

BDATK1 <- BDATK 0,854 

BDATK2 <- BDA Expertise Capabilities 0,915 

BDATK2 <- BDAC 0,827 

BDATK2 <- BDATK 0,914 

BDATK3 <- BDATK 0,848 

BDATK3 <- BDAC 0,786 

BDATK3 <- BDA Expertise Capabilities 0,849 

BDATK4 <- BDAC 0,780 

BDATK4 <- BDA Expertise Capabilities 0,891 

BDATK4 <- BDATK 0,891 

BDATK5 <- BDATK 0,838 

BDATK5 <- BDAC 0,737 

BDATK5 <- BDA Expertise Capabilities 0,837 
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Table 7.4: Construct reliability and validity test  

Constructs Cronbach's alpha Composite 

reliability (rho_a) 

Composite 

reliability (rho_c) 

Average variance 

extracted (AVE) 

BDA Expertise Capabilities 0,919 0,921 0,939 0,756 

BDA Infrastructure flexibility 0,800 0,808 0,883 0,717 

BDA Management Capabilities 0,920 0,922 0,932 0,535 

BDAC 0,952 0,955 0,956 0,481 

BDACOMP 0,800 0,808 0,883 0,717 

BDACON 0,850 0,852 0,899 0,690 

BDADPER 0,915 0,932 0,940 0,798 

BDAIDM 0,833 0,842 0,889 0,667 

BDAPLAN 0,880 0,882 0,918 0,737 

BDAPODC 0,899 0,902 0,930 0,768 

BDATK 0,919 0,920 0,939 0,756 
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Appendix C 

Table 7.5: VIF outer model limits  

 

Outer model - List VIF 

BDABK1 2,797 

BDABK2 4,429 

BDABK3 5,327 

BDABK4 4,778 

BDACOMP1 2,009 

BDACOMP1 2,009 

BDACOMP1 2,446 

BDACOMP2 2,330 

BDACOMP2 2,330 

BDACOMP2 2,943 

BDACOMP3 1,469 

BDACOMP3 1,469 

BDACOMP3 1,776 

BDACON1 2,717 

BDACON1 1,936 

BDACON1 2,065 

BDACON2 2,413 

BDACON2 2,816 

BDACON2 3,250 

BDACON3 2,200 

BDACON3 2,025 

BDACON3 2,568 

BDACON4 2,032 

BDACON4 2,514 

BDACON4 2,966 

BDADPER1 3,639 
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BDADPER2 5,302 

BDADPER3 2,543 

BDADPER4 4,394 

BDAIDM1 3,303 

BDAIDM1 2,389 

BDAIDM1 3,087 

BDAIDM2 2,210 

BDAIDM2 1,809 

BDAIDM2 2,506 

BDAIDM4 2,067 

BDAIDM4 1,824 

BDAIDM4 2,361 

BDAIDM5 1,781 

BDAIDM5 2,200 

BDAIDM5 1,868 

BDAPLAN1 3,351 

BDAPLAN1 3,609 

BDAPLAN1 4,028 

BDAPLAN2 3,591 

BDAPLAN2 3,428 

BDAPLAN2 3,877 

BDAPLAN3 3,303 

BDAPLAN3 2,578 

BDAPLAN3 3,538 

BDAPLAN4 1,712 

BDAPLAN4 2,502 

BDAPLAN4 2,144 

BDAPODC1 2,169 

BDAPODC2 2,255 

BDAPODC3 3,795 

BDAPODC4 3,452 
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BDATK1 2,472 

BDATK1 2,791 

BDATK1 2,472 

BDATK2 3,773 

BDATK2 4,960 

BDATK2 3,773 

BDATK3 2,507 

BDATK3 3,413 

BDATK3 2,507 

BDATK4 3,853 

BDATK4 3,129 

BDATK4 3,129 

BDATK5 2,407 

BDATK5 2,969 

BDATK5 2,407 

 

 

Table 7.6: VIF inner model 

Inner Model – List  VIF 

BDA Expertise Capabilities -> BDATK 1,000 

BDA Infrastructure flexibility -> BDACOMP 1,000 

BDA Management Capabilities -> BDACON 1,000 

BDA Management Capabilities -> BDAIDM 1,000 

BDA Management Capabilities -> BDAPLAN 1,000 

BDAC -> BDA Expertise Capabilities 1,000 

BDAC -> BDA Infrastructure flexibility 1,000 

BDAC -> BDA Management Capabilities 1,000 

BDAC -> BDADPER 1,609 

BDAC -> BDAPODC 1,000 

BDAPODC -> BDADPER 1,609 
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Appendix D 

Table 7.7:  Path coefficient – structural model 

Path coefficients Original 

sample 

(O) 

Sample 

mean (M) 

Standar

d 

deviatio

n 

(STDEV

) 

T 

statistic

s 

(|O/ST

DEV|) 

P 

values 

BDA Expertise Capabilities -> 

BDATK 

1,000 1,000 0,000 89630,

887 

0,000 

BDA Infrastructure Flexibility -> 

BDACOMP 

1,000 1,000 0,000 26116,

776 

0,000 

BDA Management Capabilities -> 

BDACON 

0,863 0,864 0,022 39,721 0,000 

BDA Management Capabilities -> 

BDAIDM 

0,892 0,892 0,020 45,636 0,000 

BDA Management Capabilities -> 

BDAPLAN 

0,875 0,875 0,026 34,204 0,000 

BDAC -> BDA Expertise 

Capabilities 

0,885 0,885 0,019 47,484 0,000 

BDAC -> BDA Infrastructure 

Flexibility 

0,634 0,631 0,063 10,121 0,000 

BDAC -> BDA Management 

Capabilities 

0,919 0,918 0,015 60,076 0,000 

BDAC -> BDADPER 0,220 0,219 0,095 2,327 0,020 

BDAC -> BDAPODC 0,615 0,618 0,045 13,563 0,000 

BDAPODC -> BDADPER 0,321 0,323 0,104 3,073 0,002 
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Table 7.8: R2 coefficients  from the bootstrapping model  

R-square Original 

sample 

(O) 

Sample 

mean (M) 

Standar

d 

deviatio

n 

(STDEV

) 

T 

statistic

s 

(|O/ST

DEV|) 

P 

values 

BDA Expertise Capabilities 0,783 0,784 0,033 23,852 0,000 

BDA Infrastructure Flexibility 0,402 0,402 0,078 5,170 0,000 

BDA Management Capabilities 0,844 0,843 0,028 30,193 0,000 

BDACOMP 1,000 1,000 0,000 13059,

440 

0,000 

BDACON 0,744 0,747 0,037 19,944 0,000 

BDADPER 0,238 0,251 0,064 3,716 0,000 

BDAIDM 0,796 0,797 0,035 22,994 0,000 

BDAPLAN 0,765 0,766 0,044 17,243 0,000 

BDAPODC 0,379 0,384 0,056 6,802 0,000 

BDATK 1,000 1,000 0,000 44816,

210 

0,000 

 

 

 

 

 


