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Abstract
To investigate the acquisition and relatedness of New Delhi Metallo-beta-lactamase among multiple separate species from 
one patient. Five isolates from three species (Pseudomonas aeruginosa; Pa, Acinetobacter baumannii; Ab and Proteus 
mirabilis; Pm) suspected of harbouring a carbapenemase were investigated by phenotype (antimicrobial susceptibilities) 
and whole genome sequencing. Epidemiological data was collected on this patient. Three different carbapenemase genes 
were detected; blaVIM-1 (Pa; ST773), blaOXA-23 (Ab, ST499) and blaNDM-1 identified in all isolates. NDM regions were found 
chromosomally integrated in all isolates. Data showed no evidence of NDM-1 transfer within this patient suggesting the 
enzyme was acquired in three separate events.
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Brief report

Gram-negative bacteria, most notably Escherichia coli, 
Klebsiella pneumoniae, Pseudomonas aeruginosa, and 
Acinetobacter baumannii were among the six most com-
mon antimicrobial-resistant (AMR) pathogens identified 
in a global 2019 report [1]. Carbapenem resistance due to 
carbapenemases is of concern as transfer between differ-
ent bacterial species through mobile genetic elements, such 
as transposons and transmissible/conjugative plasmids are 
common [2].

Out-of-country hospitalization is an important risk factor 
for colonization or infection with carbapenemase-producing 

organisms (CPOs) [3, 4]. In Canada, patients with interna-
tional travel one year prior were significantly more likely to 
have extensively drug-resistant carbapenemase-producing 
Enterobacteriales (XDR-CPE) than a non-XDR-CPE [5]. It 
is essential to rapidly identify patients colonized or infected 
by CPOs and place them on appropriate infection control 
precautions.

In June 2022, an elderly female with a lower urinary 
tract infection, hydronephrosis, and hyperglycemic crisis 
was admitted to the hospital. She was medevacked from a 
medical centre in Egypt where she was admitted in May 
2022, with urosepsis secondary to a retained renal stone. 
She received ampicillin/sulbactam, ceftriaxone, meropenem, 
and moxifloxacin during her stay in Egypt. The patient was 
immediately placed on contact precautions. She did not 
receive antibiotics and no secondary spread was documented 
during her hospital stay in Canada.

Routine admission screening for antimicrobial-resistant 
organisms (hospitalization >24 hours outside of Canada 
within 6 months) was performed using rectal swabs which 
were sent to the clinical laboratory. Growth of three differ-
ent Gram-negative bacteria was obtained on CHROMID® 
CARBA SMART Agar (bioMérieux Canada, Saint-Laurent, 
Quebec) and identified as A. baumannii, P. aeruginosa, 
and Proteus mirabilis respectively. These isolates were 
referred to the National Microbiology Laboratory (NML) 
in Winnipeg for carbapenemase testing. Subsequently, 
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carbapenem-resistant P. aeruginosa (from urine) and P. 
mirabilis (from peritoneal fluid) were obtained within 7 days.

A total of five isolates from the three species harbour-
ing a carbapenemase were sent for whole genome sequenc-
ing (WGS). Antimicrobial susceptibilities were determined 
(Sensititre, panel CANMSF1), which showed extensive drug 
resistance (XDR) in all isolates by Canadian recommenda-
tions [6] using CLSI M100,  32nd edition interpretive criteria 
(Table 1). DNA was extracted using Qiagen DNeasy kits 
(Qiagen, Toronto, Canada) and sequenced on an Illumina 
NextSeq™ platform. MinION (Nanopore Technologies, 
Oxford, UK) sequencing was conducted using the rapid kit 
(SQK-RBK 004) on R9.4 flowcells and run on Guppy 6.3.7 
using the super accurate base-calling model. De novo hybrid 
assemblies were done using Unicycler 0.4.7 [7]. Assembled 
sequence data was analyzed for Multi Locus Sequence Typ-
ing (MLST), antimicrobial resistance genes, and plasmid 
typing using the StarAMR tool (https:// github. com/ phac- 
nml/ stara mr).

Overall, three carbapenemases were detected; blaVIM-1 
(in one of two P. aeruginosa), blaOXA-23 (A. baumannii, 
two copies), and blaNDM-1 (P. aeruginosa, A. baumannii, P. 
mirabilis). Interestingly, blaGES-35 was identified from the 
A. baumannii isolate. The blaGES-35 sequence was available 
on NCBI and identified from a K. pneumoniae and an A. 
baumannii isolate (accession WP_111273848, AWN81339). 
A report from Egypt also mentions the identification of this 
variant [8]. There were no mutations in the Omega Loop 
(guanine was present at amino acid position 170) known 
to be characteristic of carbapenemase activity in blaGES-
variants [9]. It most closely resembles blaGES-22 a known 
β-lactamase [10] and differs by one amino acid within a 
region not shown to contribute to carbapenemase activity. 
The A. baumannii belonged to  ST499Pas, which has recently 
been described as the emerging dominant non-clonal com-
plex 2 carbapenem-resistant A. baumannii lineage in US 
hospitals [11]. The isolate in this study harboured two copies 
of blaOXA-23, one on a plasmid and one on the chromosome. 
Though not an uncommon occurrence, one study showed 
blaOXA-23 co-occurrence on chromosomes and plasmids 
altered bacterial phenotypes that are important for bacte-
rial fitness such as better competitive growth, serum toler-
ance, and biofilm formation capacity [12]. Additionally, this 
isolate harboured both blaOXA-23 and blaGES-35 on an 80Kb 
plasmid (pN22-01347_B) belonging to rep group RP-T1 
[13]. Using PLASDB (https:// ccb- micro be. cs. uni- saarl and. 
de/ plsdb/) it was found that plasmids from USA [14] and 
Germany contained genetic content highly similar to pN22-
01347_B, with the exception of a 2.8Kb region harbouring 
blaOXA-23 (accession numbers CP008707, CP087311; Fig-
ure S1a). This 2.8Kb region was associated with a partial 
Tn2007 composite transposon previously shown to be asso-
ciated with blaOXA-23 dissemination [15, 16]. Like previous 

reports [11, 14] pN22-01347_B contained a resistance island 
characterized by flanking 5-bp direct repeats of a 439-bp 
miniature inverted-repeat transposable element (MITE)-
like sequence. This 6 Kb island was inserted between an 
integrase and the transposition protein TniB and included 
the resistance genes aac(6’)-lb3, blaGES-35, aph(3’)-Vla, 
drfA7, qacE-delta, and sul1. The presence of these resist-
ance genes in a putatively mobile genetic element could 
greatly enhance resistance spread to other bacteria.

Both P. aeruginosa isolates belonged to ST773, sero-
group O11. Core single nucleotide variant (SNV) analysis 
was conducted using the SNVPhly workflow [17], where 5 
SNV differences (representing 99% of the genome) were 
observed between the core genome of the two isolates. Inter-
estingly, blaVIM-1 was only found in one isolate (N22-01752) 
on a 450Kb circular plasmid (pN22-01752_A). When query-
ing pN22-01752_A against the PLASDB similar plasmids 
were found belonging to IncP-2-type megaplasmids (rang-
ing ~350–550Kb) isolated from China (NZ_CP073083) 
and Poland (NZ_MT732183, NZ_MT732197) among other 
countries (Fig. S1b). These are known to be associated 
with metallo-beta-lactamase-producing P. aeruginosa and 
have been identified in clinical and environmental isolates 
worldwide [18, 19]. Previous work on these IncP-2-type 
plasmids has shown its contribution in driving the dissemi-
nation of multi-drug resistance in P. aeruginosa [18, 19] 
Indeed, pN22-01752_A harboured the AMR genes; aac(6’)-
ll, aadA11 and A2b, ant(2”)-la, aph(3’)-VI, blaVIM-1, 
blaOXA-392-like, qacE, qnrVC1 and sul1. This plasmid was 
not present in the second P. aeruginosa isolate.

When investigating P. mirabilis, no plasmids were 
observed and only 2 SNVs were observed in the core 
genome (representing 99% of the genome) between the two 
isolates. Additionally, one isolate (N22-02120) contained 
two separate regions (6.2Kb and 6.4Kb) each flanked by 
IS26 and containing additional resistance genes (qacE-delta, 
sul1, mph(A), aph(3’)-la) not present in the other P.mirablis. 
Important to the pathogenesis of P. mirabilis is the presence 
of several virulence factors that aid in adhesion and con-
tribute to biofilm formation (MR/P, PMF, and UCA) which 
results in severe urinary tract infection [20]. Additional viru-
lence factors such as phosphate transport (Pst), proteobac-
tin (Pbt), and nonribosomal synthetase (NRPS) have been 
described in P. mirabilis [21]. Using the Virulence factors 
database (VFDB) (http:// www. mgc. ac. cn/ cgi- bin/ VFs/ v5/ 
main. cgi) we identified previously described virulence genes 
[20, 21] including mrpA-J, UCA, hpmA/B, zapA, pmfA,C-E, 
pbtA,B,D-I, nrpA,B,G,R-T.

NDM regions were found chromosomally integrated in all 
isolates and were compared as shown in Fig. 1. Data showed 
the presence of a partial Tn125 in the A. baumannii isolate, 
which contained flanking copies of ISAba125 in addition to 
cutA, dsbC, trpF, and ble. Tn125 has been well described in A. 

https://github.com/phac-nml/staramr
https://github.com/phac-nml/staramr
https://ccb-microbe.cs.uni-saarland.de/plsdb/
https://ccb-microbe.cs.uni-saarland.de/plsdb/
http://www.mgc.ac.cn/cgi-bin/VFs/v5/main.cgi
http://www.mgc.ac.cn/cgi-bin/VFs/v5/main.cgi
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baumannii and linked to the dissemination of blaNDM-1 in this 
species [22]. The P. mirabilis blaNDM-1 region differed by the 
insertion of IS630 between ISAba125 and blaNDM-1 as well as 
the presence of IS26 adjacent to cutA (Fig. 1). This region and 
the surrounding 25 Kb in the P. mirabilis isolates were similar 
to several K. pneumoniae NDM plasmids described in NCBI 
(accession numbers CP050380, ON081621, MW911671), 
possibly suggesting a partial plasmid integration event into 
the P. mirabilis genome. Unfortunately, we could not iden-
tify specific genetic artifacts of where in the chromosome 
this occurred. The P. aeruginosa isolates had no similarity in 
surrounding NDM regions to either the P. mirabilis or the A. 
baumannii. Here blaNDM-1 was found inserted between two 
copies of a truncated IS91-like sequence. Similar to reports of 
NDM-1 harbouring P. aeruginosa ST773 [23] and ST234 [24] 
here, we observed blaNDM-1 on a putative integrative conjuga-
tive element (ICE) with a type four secretion system. The ICE 
was 116997bp flanked by attL and attR 23bp direct repeats 
inserted into tRNA. Overall, the NDM analysis in the vari-
ous species suggested the patient acquired bacteria harbouring 
blaNDM-1 in three separate events.

Although the occurrence of multiple carbapenemases 
within a single patient has been commonly reported [25–27], 
it is important to highlight this case for several reasons. First, 
the A. baumannii isolate was shown to be an emerging clonal 
lineage (ST499) and contained duplicated copies of blaOXA-23, 

which has been previously shown to provide advantages to the 
fitness of the isolate [11]. Second, this patient also harboured 
a P. aeruginosa isolate that contained a previously described 
multi-resistant plasmid known to contribute to the dissemi-
nation of resistance genes in this species. Though the goal 
of this study was to investigate the relationship of blaNDM-1 
across these isolates we revealed a complex collection of XDR 
pathogenic bacterial species that have the potential to rapidly 
spread multi-drug resistance within a hospital site.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10096- 023- 04651-4.
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