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Abstract: Studying the question of whether macroeconomic predictors play a role in forecasting
stock-market volatility has a long and significant tradition in the empirical finance literature. We
went beyond the earlier literature in that we studied whether the presidential approval rating can be
used as a single-variable substitute in place of standard macroeconomic predictors when forecasting
stock-market volatility in the United States (US). Political-economy considerations imply that the
presidential approval rating should reflect fluctuations in macroeconomic predictors and, hence, may
absorb or even improve on the predictive value for stock-market volatility of the latter. We studied
whether the presidential approval rating has predictive value out-of-sample for realized stock-market
volatility and, if so, which types of investors benefit from using it.
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1. Introduction

In recent research, Gupta et al. [1] inter alia point out the importance of the presidential
approval rating in predicting the stock-market volatility of the United States (US) in an
in-sample context. Because US stock-market volatility is widely accepted to be driven by
macroeconomic predictors (see, for example, [2–7]), this result is not surprising, especially
in light of the fact that the results of much significant empirical research have shown the
presidential approval rating to contain information on the state of the economy [8–12].

The theoretical channels through which the presidential approval rating is linked
to stock-market volatility can be elaborated as follows. First, the classic present-value
model of asset prices [13,14] implies that stock-market volatility depends on the volatility
of cash flows and the discount factor. Given that macroeconomic developments affect the
volatility of variables that reflect future cash flows by generating economic uncertainty [15]
and the discount factor [16], one can hypothesize a (negative) relationship between the
information about the state of the economy reflected in the presidential approval rating
and stock-market volatility. Second, Fauvelle-Aymar and Stegmaier [17] show for the US
that the presidential approval rating is positively associated with stock-market returns.
Such a positive association may reflect a wealth effect, with consumers feeling richer and
more confident when stock prices are increasing. At the same time, stock-market returns
are closely linked to the so-called “leverage effect” [18]. According to the leverage effect,
when stock prices decline, firms become more leveraged because their debt-to-equity ratio
rises, which causes the leverage of their capital structures to rise (and the financial state of
companies to deteriorate) and, as a result, the systematic risk of common stocks, i.e., the
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volatility, increases. In other words, again as with the present-value model, the leverage
effect predicts a negative association between presidential popularity and stock-market
volatility.

Against the backdrop of these theoretical channels, and realizing that in-sample pre-
dictability does not necessarily translate into out-of-sample forecasting gains, we compared
the forecasting prowess of the presidential approval rating with that of a wide array of
macroeconomic predictors used in the literature involving US stock-market volatility (sev-
eral researchers have argued that an ultimate test of a predictive model with regard to the
econometric methodologies and the predictor variables used is its forecasting performance;
see [19–21]). This is indeed an important exercise not only from a statistical perspective but
also from the point of view of academic research because it yields a hint as to whether the
presidential approval rating can provide academics and investors with a single-variable
substitute for a large number of macroeconomic predictors as state variables, in case the
former performs equally well or even outperforms the latter. In addition, as pointed out by
Poon and Granger [22] and Rapach et al. [23], stock-market volatility is a key component
of asset valuation, hedging, and portfolio-optimization models. As a result, inaccurate
forecasts of stock-market volatility may lead to pricing errors in financial markets, over-
or under-hedged investments, and incorrect capital-budgeting decisions, with substantial
implications for earnings and cash flows. Moreover, forecasting stock-market volatility is
crucial not only for investors and corporate decision-makers but also for policymakers in
their assessment of financial fundamentals and investor confidence, while designing appro-
priate policy responses to minimize the adverse repercussions of financial vulnerability on
the macroeconomy. In this regard, it should be noted that the volatility of financial markets
and, hence, the uncertainty surrounding it have been a major concern for policymakers
since the Global Financial Crisis of 2007–2009, which has been followed by a row of crises,
including the European sovereign debt crisis, the “Brexit”, the US–China trade war, the
COVID-19 pandemic, and the recent Russia–Ukraine war. Naturally, accurate forecasting of
stock-market volatility is likely to act as an input into policy decisions that ensures adverse
macroeconomic impacts to large negative financial shocks.

Specifically speaking, we forecast the monthly realized volatility (RV), which is cap-
tured by the sum of squared returns of the S&P 500 over a month (following Andersen and
Bollerslev [24]), which provided us with an observable and unconditional metric of volatil-
ity (unlike in the case of the popular generalized autoregressive conditional heteroscedastic
and stochastic volatility models), which is otherwise a latent process. We conducted our
empirical analysis using a predictive regression framework over the monthly period of
1960:07 to 2022:12, whereby we compared the performance of the presidential approval
rating with eight latent factors summarizing the information contained in a large dataset
of macroeconomic and financial variables and six metrics of associated uncertainties of
these variables. Importantly, we used an asymmetric loss function to evaluate the potential
forecasting gains from using the presidential approval rating as a predictor of stock-market
volatility. An asymmetric loss function captures the possibility that the loss investors incur
in the case of an overprediction of stock-market volatility differs from the loss they incur
in the case of an underprediction of the same (absolute) magnitude. An asymmetric loss
function, which nests as special cases the popular symmetric quadratic and absolute loss
functions commonly studied in the literature studying the drivers of US stock-market
volatility, is a natural candidate to evaluate forecasts when one seeks to emulate a utility-
function-based approach while evaluating forecasts, when risk-averse policymakers seek to
gauge the potential impact of stock-price movements on the overall economy, and in a risk-
management context when forecasters or their customers use predictions of stock-market
volatility, for example, to implement option-trading strategies [25].

To the best of our knowledge, we are the first to forecast the RV of the US stock market
based on the presidential approval rating and compare its performance with a large array
of macroeconomic predictors by relying on an asymmetric loss function based on data
that span six decades involving 12 presidents, with six each from the Democratic and
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Republican parties, which, in turn, renders it possible to capture alternative positions of
these two parties towards the stock market [26,27]. In the process, we add to the large
literature on forecasting stock-market volatility of the US based on macroeconomic and
financial predictors (for detailed reviews, see, for example, [28–30]), but now considering
the role of presidential politics.

Our research can be considered to add to the literature on the nexus between stock-
market movements and the presidential approval rating from the perspective of the second
moment of stock-market returns (that is, the realized volatility, RV). In this regard, a related
paper is that of Chen et al. [31], who construct a monthly presidential economic approval
rating (PEAR) index for the sample period from 1981 to 2019 by averaging ratings on the
president’s handling of the economy across various national polls. Chen et al. [31] find
that the PEAR index affects stock returns in a cross-section of the US. More specifically, the
empirical results show that, in the cross-section and on a risk-adjusted basis, stocks with
high betas to changes in the PEAR index underperform significantly those with low betas by
1.00% per month in the future. Chen et al. [31] find the resulting low PEAR beta premium
to persist for up to one year, being present in various sub-samples and even in other G7
countries. Staying with stock returns, Gupta et al. [1] analyze whether presidential approval
ratings can predict the S&P 500 returns over the monthly period of 1941:07 to 2018:04 using
a dynamic conditional correlation multivariate generalized autoregressive conditional
heteroscedasticity (DCC-MGARCH) model. The authors show that the standard linear
Granger causality test fails to detect evidence of predictability because the underlying
linear model is misspecified due to structural breaks and nonlinearity. However, when they
apply the DCC-MGARCH model, which is robust to such misspecifications, in 69 percent of
the sample period, presidential approval ratings strongly predict the S&P 500 stock returns.

To sum up, researchers in the earlier literature have used the presidential approval
rating as a predictor of the first moment of stock-market returns, but not stock-market
volatility, and given the importance of the latter from the perspective of portfolio decisions
of investors, we forecast RV. We organize the remainder of our paper as follows. In
Section 2, we describe the data we use in our empirical analysis. In Section 3, we describe
our methods. In Section 4, we report our empirical results. In Section 5, we conclude.

2. Data

As stated in the introductory section, we considered the sum of squared daily log-
returns of the S&P 500 index to compute the realized stock-market volatility estimates
(RV) for each month in our sample, with the data derived from the historical data segment
of Yahoo! Finance. The address of the corresponding internet page is as follows: https:
//finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC (accessed on 1 April 2023).

For the sake of clarity, it should be noted that we used RV to measure the realized vari-
ance of stock-market returns, while some researchers use the term stock-market volatility
as a synonym for the standard deviation of stock-market returns.

The data on the presidential approval rating are based on surveys conducted by Gallup,
which in turn are compiled by Professor Gerhard Peters and Professor John T. Woolley
as part of the American Presidency Project. An approval rating, commonly expressed in
percentage terms, informs about the proportion of respondents to an opinion poll who
approve of, for example, a politician or a party program, in our case the US president
in office when the poll was conducted. While several national polls inform about public
approval of the president, the Gallup poll has the advantage that it has been based over
the years on the same approval question: “Do you approve or disapprove of the way
[enter president name] is handling his job as president?” (the data were publicly available
for download from the following internet page: http://www.presidency.ucsb.edu/data/
popularity.php (accessed on 1 April 2023). The data start in 1941:07 (President Franklin
D. Roosevelt) and, at the time of writing of this paper, end in 2023:02 (President Joseph
Robinette Biden Jr.). The data are available monthly in general, but also weekly at times,
and have missing observations intermittently. When available weekly, we took the average

https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
http://www.presidency.ucsb.edu/data/popularity.php
http://www.presidency.ucsb.edu/data/popularity.php
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over the weeks of the month to convert the presidential approval rating into monthly data,
and we interpolated the missing data linearly, like Fauvelle-Aymar and Stegmaier [17].

We now turn our attention to a detailed discussion of our macroeconomic predictors.
In this regard, it is important to realize that several macroeconomic variables have been used
in the empirical finance literature as predictors of stock-market returns and stock-market
volatility. In order to capture a broad base of macroeconomic variables, we, therefore,
used 8 factors derived from the 134 macroeconomic variables of Ludvigson and Ng [32,33].
The factors were available for download from the following internet page: https://www.
sydneyludvigson.com/data-and-appendixes (accessed on 1 April 2023). Including these
factors gave us the advantage of capturing broad categories of aggregate and regional
macroeconomic time series (namely, real output and income, employment and hours, real
retail, manufacturing and sales data, international trade, consumer spending, housing
starts, housing building permits, inventories and inventory sales ratios, orders and unfilled
orders, compensation and labor costs, capacity utilization measures, price indexes, interest
rates and interest rate spreads, stock-market indicators, and foreign-exchange measures).
In addition, we used the macroeconomic uncertainty (MU) and financial uncertainty (FU)
measures developed by Jurado et al. [34] and Ludvigson et al. [35], which, in turn, are
the average time-varying variance in the unpredictable component of 134 macroeconomic
and 148 financial time-series, respectively. In other words, the MU and FU predictors are
constructed to capture the average volatility in the shocks to the factors that summarize the
real and financial conditions. The MU and FU indexes were available for download from
the following internet page: https://www.sydneyludvigson.com/macro-and-financial-
uncertainty-indexes (accessed on 1 April 2023) (note that the same 134 variables are used
in computing the factors used as predictors and the metric of macroeconomic uncertainty).
The metrics that we used are the broadest measures of macroeconomic and financial
uncertainties currently available for the US. The uncertainty indexes were available for
three forecasting horizons of 1, 3, and 12 months ahead. In sum, we considered 14 variables
(8 factors and 3 MUs and FUs each) as our macroeconomic predictors.

Based on the data availability of the macro factors at the time of writing this paper,
our data sample covered the period of 1960:07 to 2022:12. We plot in Figure 1 the natural
logarithm of realized volatility, the corresponding autocorrelation function, and the natural
logarithm of the presidential approval rating. In Table 1, we report summary statistics of
the data.
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Figure 1. Cont.
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Figure 1. RV, its autocorrelation function, and PAR. RV = realized volatility. ACF = autocorrelation
function. PAR = presidential approval rating.

Table 1. Summary statistics.

Variable Minimum Mean Median Maximum Std. Dev.

RV −0.3342 2.5312 2.4277 6.7017 0.9616
F1 −1.2677 −0.0025 −0.0439 2.2000 0.3939
F2 −1.3317 0.0002 0.0039 1.4519 0.2682
F3 −1.4702 0.0004 0.0089 1.2412 0.2612
F4 −1.0588 0.0005 −0.0044 0.9315 0.2294
F5 −0.8510 −0.0001 −0.0196 1.2255 0.2100
F6 −0.7028 −0.0003 0.0031 0.6766 0.1990
F7 −1.2655 0.0001 0.0105 0.4835 0.1737
F8 −0.7008 0.0013 −0.0047 0.4821 0.1538
MU1 0.5270 0.6536 0.6252 1.2166 0.1060
MU3 0.6527 0.7911 0.7611 1.2797 0.1079
MU12 0.7996 0.9171 0.9012 1.1773 0.0713
FU1 0.5948 0.9071 0.8833 1.5499 0.1679
FU3 0.6871 0.9469 0.9307 1.4237 0.1332
FU12 0.8831 0.9870 0.9843 1.1343 0.0485
PAR 3.2321 3.9157 3.9120 4.4773 0.2305

RV = realized volatility (natural logarithm). PAR = presidential approval rating (natural logarithm). Fj, j =
1, . . . , 8 = macroeconomic factors. MUj, FUj, j = 1, 3, 12 = macroeconomic and financial uncertainties.

3. Methods

Our baseline forecasting model for stock-market volatility, RVt+h, at forecast horizon
h was given by the following equation:

RVt+h = β0 + β1RVt + β2MACROt + β3PARt + ηt+h, (1)
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where β j, j = 1, 2, 3, 4 are coefficients (and in the case of the macroeconomic variables,
a vector of coefficients) to be estimated, ηt+h is the usual disturbance term, MACROt
is a vector of macroeconomic variables (8 factors and 6 uncertainties), and PARt is the
presidential approval rating. As for the forecast horizon, we set h = 1, 3, 6, 12 months
ahead. As our dependent variable, we used the average realized volatility over the relevant
forecast horizon when we studied a forecast horizon with h > 1.

The model given in Equation (1) is a standard long-horizon prediction model used
in our empirical analysis to generate out-of-sample forecasts, which has a deep-rooted
historical background in forecasting asset-market movements (see, for example, the detailed
discussions in Campbell and Shiller [36,37], and more recently, Welch and Goyal [38] and
Rapach et al. [39]). The model can be estimated using the ordinary least-squares technique,
which is robust even under non-Gaussian errors. Moreover, the model features RV as a
predictor on the right-hand side and, thereby, contains a catch-all predictor variable that
accounts for effects on the realized volatility not already captured by the macroeconomic
variables. Such a catch-all variable, which also accounts for the persistence of realized
volatility, helps to trace out the incremental predictive value of the PAR predictor. In a
way, the three groups of predictor variables on the right-hand side of Equation (1) can be
thought of as representing a parsimonious forecasting model that accounts for the influence
on the realized volatility of (i) macroeconomic factors (MACRO), (ii) the political “climate”
(PAR), and (iii) other factors that can be interpreted to represent volatility clustering and
other financial-market dynamics. Other advantages of the model are that similar models
have been widely studied in various contexts in empirical finance and that its simple
linear structure implies that the empirical results that we report in our research do not
hinge on the specific assumed functional forms or the numerical values assigned to the
(hyper-)parameters of a more complicated statistical model. At the same time, however,
the model given in Equation (1) can be extended easily to a quantile-regression model.
The quantile-regression model retains the simple linear structure of the model given in
Equation (1) for any given quantile of realized volatility and, at the same time, renders it
possible to add an element of non-linearity to our empirical research strategy in that the
coefficients, β j, of the forecasting model are allowed to vary across the different quantiles
of the conditional distribution of realized volatility. Looking at just the conditional mean of
RV may “hide” interesting characteristics as it can lead us to conclude that a predictor(s)
has poor predictive performance, while it is actually valuable for predicting certain parts of
the distribution of volatility, especially since business-cycle fluctuations are likely to induce
the slope coefficient(s) associated with the predictor(s) to vary across quantiles [40].

It is important to note that, on the one hand, unlike in the case of the Markov-switching
and the smooth-threshold models, we did not need to specify the number of regimes of RV
in an ad hoc fashion with the quantile model. On the other hand, the quantile approach
has the added advantage over non- or semi-parametric models and neural networks that
we could study each point of the conditional distribution characterizing the existing nature
of the volatility in the stock market. At the same time, because the quantile-regression
approach sheds light on the entire conditional distribution, which captures various states
of the stock market, it adds an inherent time-varying facet to the estimation process.

For our forecasting experiment, we used 50–75% of the data for estimation of the
forecasting model and the remaining proportion for testing the forecasting performance of
the models. In order to mitigate peaks in the realized volatility and to bring the data closer
to a normal distribution, we studied the natural logarithm of the realized volatility as our
dependent variable, but to evaluate forecasts we converted it back to anti-logs, where we
added the usual Jensen-Ito term. We also used the natural logarithm of the presidential
approval rating in our baseline setting, so that the coefficient β3 can be interpreted as
an elasticity.

We also studied forecasting models featuring (i) the natural logarithm of the square
root of RV and (ii) the anti-log of the presidential approval rating, with qualitatively
similar results. In addition, we studied an extension where we used a recursive estimation
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window to estimate the forecasting models, where we used a training period to initialize
the estimations and then extended the estimation window step-by-step until we reached
the end of the sample period. The results of these various extensions can be found at the
end of the paper (Appendix A).

The general model given in Equation (1) nests several special forecasting models of
interest. Setting β2 = β3 = 0 gives a pure autoregressive model (AR model). Setting
β2 = 0 excludes the macroeconomic variables and gives an autoregressive model extended
to include the presidential (economic) approval rating (AR-PAR model). Finally, setting
β3 = 0 gives an autoregressive model extended to include the macroeconomic variables
(AR-MAC model).

In order to evaluate the performance of the forecasting models, we considered the
possibility that an investor may have an asymmetric loss function, that is, that an under-
estimation of RV does not cause exactly the same loss as an overestimation of the same
absolute size. In this regard, we considered an asymmetric loss function proposed by
Elliott et al. [41,42]. The loss function is given by L(k, α) = [α + (1− 2α)1( f e < 0)]| f e|k,
where f e denotes the forecast error and 1 denotes the indicator function. The parameter
k = 1, 2 governs whether the loss function is a quasi-linear or a squared function of the
forecast error, while the parameter α ∈ (0, 1) governs the asymmetry of the loss function.
A symmetric quadratic loss function is obtained as a special case for k = 2, α = 0.5, while
k = 1, α = 0.5 gives a symmetric loss function that is increasing in the absolute forecast
error. In the general case, setting α > 0.5 (α < 0.5) implies that the loss from underesti-
mating (overestimating) the realized volatility exceeds the loss from an overestimation
(underestimation) of the same absolute magnitude.

A comparison of forecasts from a benchmark and a rival model then can be undertaken
in terms of the following out-of-sample statistic, Rk(α) = 1−∑L(k, α)R/ ∑L(k, α)B, where
B = the benchmark model, and R = a rival model. When one observes Rk(α) > 0, the
rival model outperforms the benchmark model, and vice versa. For k = 2, α = 0.5, this
statistic is the familiar out-of-sample R2 statistic, R2 = 1−∑ f e2

R/ ∑ f e2
B, which evaluates

the forecasting performance by comparing the sum of squared forecast errors implied by
two models. For k = 1, α = 0.5, in turn, one obtains R1 = 1−∑ | f eR|/ ∑ | f eB|, a statistic
that compares the forecasting performance of a rival and a benchmark model in terms of
the sum of their absolute forecast errors.

Finally, it should be noted that L(1, α) simply is the conventional check function used
to estimate a quantile-regression model, where α denotes the quantile being studied. As an
extension, we, therefore, also estimated the forecasting model given in Equation (1) as a
quantile-regression model and then used the R1(α) statistic to compare a benchmark with
a rival forecasting model.

We used the R language and environment for statistical computing [43] for our empiri-
cal analysis.

4. Empirical Results
4.1. Baseline Results

We summarize our results in Figure 2 (for R1(α)) and Figure 3 (for R1(α)). The vertical
axis of these two figures displays the number of in-sample estimation data. As this number
increases, the proportion of estimation data increases from 50% to 75%. The horizontal axis
displays the asymmetry parameter, α.

We studied the results for the Rk(α) criterion for three different combinations of rival
and benchmark models. First, we compared a pure autoregressive benchmark model
with an autoregressive rival model extended to include the macroeconomic variables
(AR/AR-MAC). Second, we compared a pure autoregressive benchmark model with an
autoregressive rival model extended to include the presidential approving rating (AR/AR-
PAR). Third, we compared an autoregressive benchmark model extended to include the
macroeconomic variables with an autoregressive rival model extended to include the
presidential approving rating (AR-MAC/AR-PAR).
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Figure 2. Results for R1(α). h = forecast horizon. Estimation period = training period (in months)
used for the estimation of the forecasting models (ranges from 50% to 75% of the data). The white
region indicates combinations of the asymmetry parameter and the estimation window for which the
benchmark model outperforms the rival model.



Mathematics 2023, 11, 2964 9 of 27

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR/AR-MAC - h=1

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR/AR-PAR - h=1

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR-MAC/AR-PAR - h=1

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR/AR-MAC - h=3

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR/AR-PAR - h=3

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR-MAC/AR-PAR - h=3

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR/AR-MAC - h=6

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR/AR-PAR - h=6

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR-MAC/AR-PAR - h=6

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR/AR-MAC - h=12

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR/AR-PAR - h=12

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

400

450

500

AR-MAC/AR-PAR - h=12

α

E
st

im
at

io
n 

w
in

do
w

Figure 3. Results for R2(α). h = forecast horizon. Estimation period = training period (in months)
used for the estimation of the forecasting models (ranges from 50% to 75% of the data). The white
region indicates combinations of the asymmetry parameter and the estimation window for which the
benchmark model outperforms the rival model.

The results showed that the AR-MAC model tends to outperform the AR model when
an investor faces a larger loss in the case of an overestimation of RV than in the case of
an underestimation of the same absolute size. The performance of the AR-PAR model
relative to the AR model, in turn, depended on the loss function being studied. When
we used the R1(α) criterion, the AR-PAR outperformed the AR model for several model
configurations when the loss from an underestimation exceeded that of a corresponding
overestimation of RV, but for h = 1 and some of the shorter estimation windows also in
the opposite case. When we studied the R2(α) criterion, the AR-PAR model performed
better than the AR model for all admissible α parameters when the proportion of in-sample
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data was not too large. As a consequence, when we combined the results for the AR-MAC
and the AR-PAR model, the latter turned out to be the better forecasting model for an
investor who suffers from a larger loss from an underestimation of RV rather than from
an overestimation of the same size (for both the R1(α) and the R2(α) criteria). When we
focused on the loss function with k = 2, even an investor whose loss function exhibits a
shape parameter α < 0.5 benefited from using the presidential approval rating rather than
the macroeconomic variables to predict RV.

We used the modified Diebold and Mariano [44] test as suggested by Harvey et al. [45]
to study whether the differences in accuracy across the AR-MAC and AR-PAR forecasts are
statistically significant. We found several significant test results (not reported for reasons of
space) for combinations of the asymmetry parameter and the estimation window, where an
underestimation of RV is costlier than an overestimation of the same absolute size. For the
R1(α) criterion, the regions of significant test results (asymmetry parameter−estimation)
became smaller when we moved from the short to the intermediate and long forecast
horizons, whereas the test results for the R2(α) criterion were significant only in the case of
the short forecast horizon.

In Figures A1 and A2, we plot the results we obtained when we not only considered
PAR as a predictor but also included in the AR-PAR model an extra predictor that we
computed as the product of PAR with the number of months a president was in office
(where we let the data start with the beginning of the presidency of John F. Kennedy).
In doing so, we accounted in a stylized way for a potential presidential-cycle effect. The
results show that accounting for such an interaction effect somewhat widens (mainly for
the R1(α) criterion) the range of combinations of the window lengths and the asymmetry
parameter for which the AR-PAR model performs somewhat better than the AR model,
but on balance leaves the results of a comparison of the AR-MAC model with the AR-PAR
model qualitatively unaffected.

4.2. An Extension Based on Historical Data

Next, we extended our analysis by using long-range historical data, which date
back to 1941:07, i.e., the starting point of the presidential approval rating. However, the
macroeconomic variables, based on data availability, and in line with the literature, are a
smaller set, and included three variables, namely the seasonally-adjusted Consumer Price
Index (CPI)-based month-on-month inflation rate, the month-on-month growth rate of the
seasonally-adjusted industrial production, and the three-month Treasury bill rate. The raw
data for these three variables were sourced from the FRED database of the Federal Reserve
Bank of St. Louis.

We summarize our results for the long-range historical data in Figures 4 and 5. When
we considered the R1(α) criterion, we observed that the AR-MAC model performed better
than the AR model when an overestimation of RV outweighed an underestimation of
the same absolute size. The AR-PAR model, in turn, unfolded its strength relative to the
pure AR model mainly when the loss from an underestimation outweighed the loss from
a corresponding overestimation and, as in Figure 2, also in the opposite case when we
studied some of the shorter estimation windows in the case of h = 1. As a result, the
AR-PAR model performed relatively better than the AR-MAC model (or, in some cases,
relatively less poorly than the pure AR model) when α took on a value in the upper half
of its admissible range. For the R2(α) criterion, in turn, the AR-MAC model performed
worse than the pure AR model for most combinations of the shape parameter, α, and the
estimation window. The AR-PAR model, in contrast, outperformed the pure AR model for
most combinations of the shape parameter, α, and the estimation window and, hence, the
AR-PAR model also performed better than the AR-MAC model when the numerical value
of the shape parameter, α, was not too small.
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Figure 4. Results for R1(α) (historical data). h = forecast horizon. Estimation period = training
period (in months) used for the estimation of the forecasting models (ranges from 50% to 75% of
the data). The white region indicates combinations of the asymmetry parameter and the estimation
window for which the benchmark model outperforms the rival model.
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Figure 5. Results for R2(α) (historical data). h = forecast horizon. Estimation period = training
period (in months) used for the estimation of the forecasting models (ranges from 50% to 75% of
the data). The white region indicates combinations of the asymmetry parameter and the estimation
window for which the benchmark model outperforms the rival model.

4.3. A Comparison of PAR and PEAR

As pointed out earlier, recently, in order to measure public opinion on the president’s
handling of the economy and to relate it to stock-market returns, Chen et al. [31] constructed
a PEAR (i.e., presidential economic approval rating) index by using various national polls.
The underlying data were obtained from Roper iPoll at the Roper Center for Public Opinion.
Data on the PEAR index were available for download from the following internet page:
https://www3.nd.edu/~zda/ (accessed on 1 April 2023). Over the common sample period
of 1981:04 to 2022:12, PAR and PEAR were significantly positively correlated (with a

https://www3.nd.edu/~zda/
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coefficient of 0.66). Notwithstanding, it is interesting to compare the PAR with the PEAR
index in some more detail.

We summarize the results of a direct comparison of the AR-PAR (the rival) and AR-
PEAR (the benchmark) forecasting models in Figure 6. Given the significantly positive
correlation between PAR and PEAR, both forecasting models did not differ much in terms
of the R1(α) and the R2(α) criteria for a broad array of combinations of the estimation
window and the asymmetry parameter. For the R1(α) criterion, we found that the AR-PAR
model performed better than the AR-PEAR model for virtually all estimation windows
when α < 0.70̃.8. The AR-PEAR model gained ground relative to the AR-PAR model when
the forecast horizon increased. For the R2(α) criterion, in turn, we found that the AR-PAR
model performed better than the AR-PEAR model for h = 1 when α settled in the lower
part of its admissible range (with the boundaries of this range depending on the length of
the estimation window). For the longer forecast horizons, the AR-PAR model performed
better for the short and intermediate estimation windows, while the AR-PEAR model was
the forecasting model of choice for the long estimation windows.

In any event, our focus on PAR allowed us to study volatility forecasting over a longer
sample period (in fact, in the case of the historical data that we studied in Section 4.2, a
much longer sample period) and more economic cycles and presidencies.

4.4. Extensions Based on Quantile Regressions

Figure 7 plots the forecasting results that we obtained when we estimated Equation (1)
as a quantile-regression model (on data for the sample period 1960:07 to 2022:12). In
line with the check function underlying the quantile-regression model, we used the R1(α)
criterion to shed light on the forecasting performance of the models. The AR-MAC model
tended to perform better than the AR model mainly in the region where α < 0.5 when
the forecasting horizon increased. For the AR-PAR model, in turn, we observed that the
regions where it outperformed the AR model were scattered throughout the figures, where
the array of combinations of the estimation window and the asymmetry parameter for
which the AR-PAR model was the preferred forecasting model showed a tendency to
increase in the forecast horizon. Finally, when we directly compared the AR-MAC with the
AR-PAR model, we observed that the latter clearly dominated the former as the asymmetry
parameter, α, increased. This result is not surprising given that this is the parameter region
where the AR-MAC model clearly was inferior to the AR model and the AR-PAR model,
while it did not unambiguously dominate the AR model (as indicated by the white areas in
the figures), outperformed the AR model for some combinations of the estimation window
and the asymmetry parameter.

In order to investigate the question of quantile-based predictability in some more detail,
we utilized, as part of a preliminary investigation, the bivariate k-th order nonparametric
causality-in-quantiles test of Balcilar et al. [46], which allowed us to uncover in-sample
predictability from PAR or PEAR for both returns and squared returns (i.e., volatility) over
the quantiles of the distributions. When we applied this test to the US, the rest of the G7
(Canada, France, Germany, Italy, Japan, and the United Kingdom (UK)) countries, and
Switzerland, as well as the BRICS (Brazil, Russia, India, China, and South Africa) bloc, we
found evidence of quantile-based predictability for both returns and volatility, though the
effect was stronger for the latter, as can be observed from Tables A1 and A2 (Appendix A).
This evidence provided us with an alternative motivation to focus on volatility rather than
returns for the US. Note that, just like the US, stock log-returns data, derived from Global
Financial Data, were available for all countries from 1941:07, barring Brazil, China, and
Russia, for which the data started from 1954:02, 1993:01, and 1995:01, respectively.
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Panel B: R2(α)
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Figure 6. A comparison of PAR and PEAR. h = forecast horizon. Estimation period = training period
(in months) used for the estimation of the forecasting models (ranges from 50% to 75% of the data).
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Figure 7. Quantile-regression results (R1(α)). h = forecast horizon. Estimation period = training
period (in months) used for the estimation of the forecasting models (ranges from 50% to 75% of
the data). The white region indicates combinations of the asymmetry parameter and the estimation
window for which the benchmark model outperforms the rival model. Results are based on the
natural logarithms of the realizations/forecasts of RV.

4.5. Relation to the Existing Literature

It is interesting to put some perspective into our findings in relation to the earlier
literature, keeping in mind that, while many researchers (see the studies cited in Section 1)
have related the predictability and/or forecastability of the (realized) volatility of the US
stock market with macroeconomic and financial factors, the same cannot be said about
PAR and/or PEAR, and that is specifically where we come in. Our idea was to check
whether presidential approval can act as a single replacement for multiple macroeconomic
and financial predictors in forecasting the US realized stock-market volatility, RV. In this
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regard, we showed that, consistent with the literature (see for example, [4–6,28] among
others), macroeconomic variables do indeed carry important predictive information for
RV compared to a benchmark model. At the same time, in line with the only available
in-sample evidence reported by Gupta et al. [1], we found that PAR outperformed the
autoregressive baseline model in forecasting RV, where we showed that it is important
to account for the potential asymmetry of an investor’s loss function. More importantly,
however, we documented that PAR, again depending on the shape of an investor’s loss
function, can indeed act as the sole predictor that can replace information carried by many
macroeconomic predictors in forecasting the US RV due to its better performance. In other
words, we could confirm the hypothesis that, since PAR reflects the macroeconomic and
financial market conditions, PAR can serve for some groups of investors as a catch-all
predictor for RV.

5. Concluding Remarks

Our empirical findings show that, depending on the loss function an investor uses to
evaluate under- and overestimations of the realized stock-market volatility, the presidential
approval rating is a useful catch-all variable for more standard macroeconomic variables
considered in the extant literature as predictors of stock-market volatility. Such a single-
variable substitute for a large array of macroeconomic variables results in a parsimonious
and easy-to-interpret forecasting model that, in addition, can be readily justified economi-
cally by resorting to political-economy considerations (and the results of significant earlier
empirical research).

Because stock-market volatility is a reflection of the vulnerability of the financial
system, policy authorities can rely on the predictive content of the presidential approval
rating to design appropriate fiscal and monetary policy responses in a timely manner
to prevent possible negative spillovers on the real economy, which are associated with
financial uncertainty [47,48]. At the same time, Chong et al. [8] have highlighted the
role of uncertainty in negatively impacting presidential approval ratings, thus implying a
feedback effect. In other words, while the presidential approval rating is shown to drive
the realized volatility of the US stock market, the latter can also drive the former, giving
rise to bi-directional causations and requiring stronger policy interventions to reduce the
depth of a recession. Having said this, the US presidential office can also utilize the future
path of volatility, which may even be obtained daily based on intraday data, to obtain a
better understanding of what can be expected in terms of presidential ratings. Naturally,
this can provide ahead-of-time information to undertake policies to reduce forthcoming
economic slowdowns by curtailing volatility, and, hence, simultaneously, when viewed
from a political-economy perspective, improving the public image and standing of the
current president. Better management of the economy, of course, has potential positive
implications for the reflection of the incumbent president if it is the first term.

Finally, under the current emphasis on open-source research, the fact that we can
obtain favorable results using publicly available data (of presidential approval ratings)
in a parsimonious set-up (based on free software) should be of tremendous appeal to
academics, as researchers will not have to secure proprietary data on a large number of
macroeconomic and financial indicators at exorbitant costs to conduct research on factors
driving the equity-market volatility of the US.

Given the importance of US politics for the global financial system [49], as part of
future research, it will be interesting to analyze whether the presidential approval rating
can be utilized to forecast stock-market return volatility in other advanced and emerging
economies, especially in light of the preliminary in-sample predictive evidence reported by
us above. In this regard, an associated research question is whether the US presidential
approval rating helps to explain the evolution of global stock-market linkages and perhaps
even contagion effects. Finally, it is interesting to study other asset markets, whereby the
predictive value of the US presidential approval rating for (international) bond risk premia
and exchange rates could be investigated as well.
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Appendix A

Table A1. Predictability of international stock returns.

Panel A: PAR

Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Canada 1.402 2.108 ** 2.994 *** 2.507 ** 2.531 ** 2.193 ** 2.232 ** 2.108 ** 1.707 *
France 1.152 1.811 * 2.017 ** 2.154 ** 2.006 ** 2.089 ** 1.82 * 2.357 ** 1.849 *
Japan 1.817 * 2.199 ** 2.78 *** 2.819 *** 2.927 *** 3.028 *** 3.064 *** 2.525 ** 2.042 **
Germany 2.644 *** 4.368 *** 5.163 *** 5.249 *** 5.853 *** 6.063 *** 5.573 *** 4.779 *** 3.225 ***
Italy 1.648 * 2.407 ** 3.082 *** 3.203 *** 3.097 *** 2.759 *** 2.992 *** 3.545 *** 2.24 **
US 1.316 2.181 ** 2.46 ** 2.318 ** 2.566 ** 2.441 ** 2.188 ** 2.353 ** 1.884 *
UK 1.696 * 2.557 ** 2.558 ** 2.9 *** 3.486 *** 3.514 *** 2.976 *** 2.818 *** 1.402
Switzerland 1.771 * 1.762 * 2.088 ** 2.571 ** 2.755 *** 3.218 *** 3.542 *** 2.963 *** 1.803 *

Panel B: PEAR

Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Canada 1.292 1.319 1.847 * 2.39 ** 2.393 ** 1.977 ** 1.719 * 1.226 1.866 *
France 1.513 1.787 * 2.116 ** 1.862 * 2.498 ** 2.246 ** 2.834 *** 2.711 *** 1.492
Japan 1.343 2.093 ** 2.094 ** 2.031 ** 1.858 * 1.893 * 1.663 * 1.451 1.199
Germany 1.247 1.433 1.306 1.818 * 1.684 * 1.962 ** 2.39 ** 1.973 ** 1.934 *
Italy 1.009 1.01 1.141 1.242 1.508 1.449 2.624 *** 2.811 *** 1.658 *
US 1.076 1.676 * 1.991 ** 1.684 * 2.145 ** 2.264 ** 2.007 ** 1.516 1.398
UK 1.203 2.258 ** 1.919 * 1.768 * 2.548 ** 2.712 *** 2.924 *** 2.972 *** 1.233
Switzerland 1.377 1.424 2.185 ** 2.892 *** 2.401 ** 2.945 *** 2.137 ** 2.005 ** 1.411

Note: ***, **, and * indicate rejection of the null hypothesis of non-Granger causality at the 1%, 5%, and 10%
levels of significance, respectively, i.e., critical values of 2.575, 1.96, and 1.645 for the standard normal test statistic,
from presidential approval rating (PAR) or presidential economic approval rating (PEAR) to stock returns for a
particular quantile.

Table A2. Predictability of international stock return volatility (squared returns).

Panel A: PAR

Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Canada 5.177 *** 6.789 *** 7.959 *** 8.647 *** 8.871 *** 8.709 *** 8.213 *** 6.860 *** 5.247 ***
France 5.483 *** 7.812 *** 8.300 *** 8.667 *** 8.234 *** 8.069 *** 7.794 *** 6.547 *** 4.848 ***
Japan 5.485 *** 7.351 *** 8.820 *** 9.851 *** 9.671 *** 9.033 *** 8.752 *** 7.779 *** 5.446 ***
Germany 6.541 *** 8.528 *** 9.589 *** 10.21 *** 10.67 *** 10.44 *** 9.787 *** 8.435 *** 6.268 ***
Italy 5.222 *** 7.163 *** 8.332 *** 9.020 *** 9.381 *** 8.751 *** 8.231 *** 7.261 *** 5.484 ***
US 5.359 *** 6.668 *** 7.806 *** 8.251 *** 8.874 *** 8.685 *** 8.507 *** 7.187 *** 4.969 ***
UK 5.423 *** 7.762 *** 8.704 *** 9.134 *** 9.256 *** 9.114 *** 8.516 *** 7.580 *** 5.664 ***
Switzerland 5.077 *** 6.799 *** 7.961 *** 8.752 *** 9.011 *** 8.949 *** 8.244 *** 7.246 *** 5.307 ***

Panel B: PEAR

Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Canada 3.679 *** 4.859 *** 5.784 *** 6.134 *** 5.943 *** 5.806 *** 5.617 *** 4.950 *** 3.819 ***
France 3.750 *** 5.024 *** 6.260 *** 6.285 *** 6.556 *** 6.128 *** 5.516 *** 5.094 *** 3.701 ***
Japan 3.497 *** 4.854 *** 5.503 *** 5.735 *** 5.866 *** 5.910 *** 5.570 *** 5.143 *** 3.584 ***
Germany 3.983 *** 5.217 *** 6.128 *** 6.914 *** 6.893 *** 6.843 *** 6.267 *** 5.277 *** 3.716 ***
Italy 3.861 *** 4.894 *** 5.365 *** 5.744 *** 5.947 *** 5.887 *** 5.876 *** 5.227 *** 3.968 ***
US 3.874 *** 5.287 *** 5.744 *** 6.228 *** 6.091 *** 5.865 *** 5.543 *** 5.184 *** 3.579 ***
UK 4.203 *** 5.858 *** 6.194 *** 6.692 *** 6.543 *** 6.338 *** 6.021 *** 5.288 *** 3.676 ***
Switzerland 3.454 *** 5.167 *** 6.309 *** 6.345 *** 6.871 *** 6.594 *** 6.078 *** 5.042 *** 3.496 ***

Note: *** indicates rejection of the null hypothesis of non-Granger causality at the 1% level of significance, i.e.,
critical value of 2.575 for the standard normal test statistic, from presidential approval rating (PAR) or presidential
economic approval rating (PEAR) to squared stock returns (volatility) for a particular quantile.
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Figure A1. Results for R1(α) (PAR interacting with months in office). h = forecast horizon. Estimation
period = training period (in months) used for the estimation of the forecasting models (ranges from
50% to 75% of the data). The white region indicates combinations of the asymmetry parameter and
the estimation window for which the benchmark model outperforms the rival model.
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Figure A2. Results for R2(α) (PAR interacting with months in office). h = forecast horizon. Estimation
period = training period (in months) used for the estimation of the forecasting models (ranges from
50% to 75% of the data). The white region indicates combinations of the asymmetry parameter and
the estimation window for which the benchmark model outperforms the rival model.
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Figure A3. Results for R1(α) (natural logarithm of the square root of RV). h = forecast horizon.
Estimation period = training period (in months) used for the estimation of the forecasting models
(ranges from 50% to 75% of the data). The white region indicates combinations of the asymmetry
parameter and the estimation window for which the benchmark model outperforms the rival model.
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Figure A4. Results for R2(α) (natural logarithm of the square root of RV). h = forecast horizon.
Estimation period = training period (in months) used for the estimation of the forecasting models
(ranges from 50% to 75% of the data). The white region indicates combinations of the asymmetry
parameter and the estimation window for which the benchmark model outperforms the rival model.
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Figure A5. Results for R1(α) (anti-log of PAR). h = forecast horizon. Estimation period = training
period (in months) used for the estimation of the forecasting models (ranges from 50% to 75% of
the data). The white region indicates combinations of the asymmetry parameter and the estimation
window for which the benchmark model outperforms the rival model.
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Figure A6. Results for R2(α) (anti-log of PAR). h = forecast horizon. Estimation period = training
period (in months) used for the estimation of the forecasting models (ranges from 50% to 75% of
the data). The white region indicates combinations of the asymmetry parameter and the estimation
window for which the benchmark model outperforms the rival model.
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Figure A7. Results for R1(α) (recursive-estimation window). h = forecast horizon. Estimation period
= training period (in months) used for the estimation of the forecasting models (expands step-by-
step in a recursive way until the end of the sample period is reached). The white region indicates
combinations of the asymmetry parameter and the estimation window for which the benchmark
model outperforms the rival model.



Mathematics 2023, 11, 2964 25 of 27

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR/AR-MAC - h=1

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR/AR-PAR - h=1

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR-MAC/AR-PAR - h=1

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR/AR-MAC - h=3

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR/AR-PAR - h=3

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR-MAC/AR-PAR - h=3

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR/AR-MAC - h=6

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR/AR-PAR - h=6

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR-MAC/AR-PAR - h=6

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR/AR-MAC - h=12

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR/AR-PAR - h=12

α

E
st

im
at

io
n 

w
in

do
w

0.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

120

140

160

180

200

220

240
AR-MAC/AR-PAR - h=12

α

E
st

im
at

io
n 

w
in

do
w

Figure A8. Results for R2(α)(recursive-estimation window). h = forecast horizon. Estimation period
= training period (in months) used for the estimation of the forecasting models (expands step-by-
step in a recursive way until the end of the sample period is reached). The white region indicates
combinations of the asymmetry parameter and the estimation window for which the benchmark
model outperforms the rival model.
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