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1  Introduction
The rapid advancement of communication technologies has resulted in an increased 
demand for spectral resources. With wider bandwidths and higher transceiver passband 
frequencies, radio signals are increasingly subjected to scattering in the propagation 
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environment. This scattering results in multipath propagation and the formation of 
clusters of multipath propagation components (MPCs) [1]. Given the increased usage 
of spectral resources and increased scattering, it is crucial that channel models accu-
rately account for the clustering of scatterers. Some examples of such models include 
the COST259 direction channel model (DCM) [2], designed for third and fourth-gen-
eration systems, the Saleh–Valenzuela (SV) channel model [3], which models the arrival 
of MPCs in clusters for indoor wideband (WB) wireless transmission systems, and the 
geometry-based stochastic model (GBSM) [4], which is a cluster-based channel model 
adopted for fifth-generation systems.

In channel modelling, a cluster refers to a group of MPCs which share similar param-
eters such as delay ( τ ), azimuth angle of arrival (AOA), azimuth angle of departure 
(AOD), elevation angle of departure (EOD) and elevation angle of arrival (EOA) [5, 6]. 
However, there is no universal definition of a cluster, which means the cluster definition 
and clustering results depend on the clustering method used. In earlier works of MPC 
clustering, clusters were manually identified from extracted multipath parameters, such 
as delay and magnitude, by using visual observation methods [7–9]. Manual cluster-
ing performs well if inter-cluster and intra-cluster parameters are clearly distinct; how-
ever, when clusters overlap, manual methods result in erroneous cluster identification. 
Conventionally, automatic clustering is performed using distance-based methods such 
as k-means, kPowerMeans (kPM) [10] and fuzzy-c means [11]. k-means identifies clus-
ters by finding the distances between MPCs, and kPM offers an improvement of clus-
tering results by considering the power of the multipath components. Fuzzy-c means is 
a soft-decision alternative to k-means where a fuzzifier parameter is considered when 
computing the distances between the MPCs. Fuzzy-c means typically outperforms both 
k-means and kPM when cluster centroids are randomly initialised. However, the deter-
ministic initialisation of centroids leads to similar clustering results as the kPM with a 
slight improvement over k-means. Once a cluster is identified, a cluster validity index 
(CVI) is used to select the best partition of clusters for the dataset. CVIs such as those 
of Dunn [12], Davies–Bouldin [13] and Calinski–Harabasz [14] select the best partition 
by computing the separation and compactness of clusters. There is no single universally 
superior CVI, rather, different CVIs can select different best cluster partitions for a par-
ticular dataset. Arbelaitz et al. [15] conducted an extensive study of 30 cluster validity 
indexes to investigate cluster partition selection through the separation and compact-
ness of clusters. Their study highlights that optimal cluster validation does not exist. The 
selection of best the cluster partition depends on the dataset configuration. Ultimately, 
CVIs offer insight into the effectiveness of the clustering method over the considered 
range cluster partitions.1

Model-based clustering assumes that the dataset distribution can be described by a 
multimodal probability density function (PDF). This is a linear combination of K finite 
unimodal PDFs, which are component densities. Assuming a mixture model with a finite 

1  Ultimately cluster validation would give insight as to which clustering method gives favourable and reliable cluster-
ing results, for example, over the considered range of cluster partitions the max of the Calinski–Harabasz index value 
indicate the best cluster partition. When comparing two clustering methods using the Calinski–Harabasz index, if one 
method consistently results in high index values over the considered of cluster partitions, that would mean such method 
would give more favourable and reliable best cluster partition.
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number of component densities, the clustering problem becomes one of estimating the 
parameters of the component densities, whereby each component density represents a 
cluster, and the posterior probabilities of each MPC determine its cluster membership to 
one of the K component densities [16]. The authors conducted a measurement campaign 
of an indoor low-voltage (LV) powerline network, and used the space-alternating gener-
alised expectation–maximisation (SAGE) [17] algorithm to extract the delay-magnitude 
MPC parameters. From the extracted parameters, the expectation–maximisation (EM) 
method was used to estimate the parameters of the component densities.

Powerline communication (PLC) channels are known to exhibit multipath propaga-
tion, specifically in indoor LV PLC channels, in which a propagating signal experiences 
multipath propagation due to discontinuities and an impedance mismatch of loads 
[18–20]. The authors considered an indoor LV power network in which electrical out-
lets and loads were not randomly distributed, but concentrated at regular intervals. This, 
is typical of most indoor LV networks in residential and commercial buildings. There-
fore, a signal propagating in such a medium would experience multiple reflections due 
to the concentrated group of discontinuities and loads. This, would result in a cluster 
of MPCs.2 A signal propagation path in PLC channels typically requires a direct con-
nection between discontinuities and loads, such that a direct signal path exists between 
the transmitter and the receiver.3 A cluster resulting from such a channel would have a 
dominant component and additional components with time-decaying magnitudes. It is 
therefore expected to exhibit a positively skewed distribution of MPCs.

The first use of model-based multipath clustering appears in [21, 22], where a Gauss-
ian mixture model (GMM) was used to identify clusters in a wireless propagation chan-
nel. The authors postulate that Gaussian finite-mixture models (FMMs) are well-suited 
for MPC clustering since the scattering property of the wireless channel obeys a Gauss-
ian distribution. However, this assumes that the signal only experiences diffuse scatter-
ing in the channel. In real-world channels, it is often reported in the literature that a 
cluster typically has a dominant component and additional MPCs with time-decaying 
magnitudes. This is also an inherent property of cluster-based models such as the SV 
model. Therefore, it can be assumed that, in general, the power delay profile (PDP) of 
the channel will exhibit a positively skewed distribution. The clusters within the PDP 
will also exhibit a positively skewed distribution. A positively skewed distribution is 
best described by long-tail models such as gamma, Nakagami and log-normal. To the 
best of the authors’ knowledge, the work in this paper presents the first investigation 
of MPC cluster identification in PLC channels. Moreover, this work introduces the first 
application of the gamma mixture model (GγMM), the inverse gamma mixture model 
(IGγMM), the Nakagami mixture model (NMM), the inverse Nakagami mixture model 
(INMM) and the inverse Gaussian mixture model (IGMM) to MPC clustering in PLC 
applications. The candidate models adopted are well-suited for describing positively 
skewed distributions.

2  This is synonymous with a propagating wireless signal that encounters a group of scatterers on its path, resulting in a 
cluster of multipath components.
3  This is synonymous with a line-of-sight path in a wireless channel.
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The rest of the paper is organised as follows: Section 2 presents the problem formula-
tion for MPC clustering for an indoor LV PLC channel with branch-connection clusters, 
and discusses considerations and assumptions imposed on such a channel. Section 3 dis-
cusses the distance-based and model-based clustering solutions. With the exception of 
the GMM, an in-depth description of the EM procedure for each FMM clustering solu-
tion is provided. The model selection and cluster validation procedures are described in 
Sect. 3. Section 4 presents the results of the channel measurements, the estimation of 
delay and magnitude parameters of the MPCs using the SAGE algorithm, model selec-
tion and cluster validation procedures. The paper is concluded in Sect. 5.

2 � Multipath cluster problem in powerline channels
Several models in the literature describe the channel transfer characteristics of the PLC 
channel. These models are commonly categorised as parametric [18, 23] and determin-
istic [24, 25]. Parametric models are derived using a data-fitting approach to estimate 
the model parameters, while deterministic models are derived from transmission-line 
theory, which requires detailed information about the physical medium. Both modelling 
approaches consider the multipath propagation behaviour of the PLC channel. Figure 1 
shows a simple T-network PLC channel, which consists of a single branch between point 
D and point B, and a direct path from A to B to C. The line segments have lengths l1 , l2 
and l3 with characteristic impedances Zl1 , Zl2 and Zl3 , respectively. When a signal propa-
gates in the network, it does not only propagate along the direct path from A to B to C. 
Reflections of the transmitted signal are also present. Terminals A and C are assumed 
to be matched. Therefore, the only points for reflections to occur are B and D, with the 
reflection factors denoted by r1B , r3B and r3D , and the transmission factors denoted by t1B 
and t3B.

The signal’s direct path is given as A → B → C. The second path is given as A → B → D 
→ B → C. The Nth path is given as A → B(→ D → B)N−1 → C.

Figure 2 shows an indoor LV network where ( � ) is a branch, ( © ) is an open connection, 
and ( • ) is a load connected in the network. When a signal propagates from A to E, it will 
experience transmission and reflection at each branch and connection. The r2B signal com-
ponent will propagate into branch-connection cluster 1 (BCC1 ), in which it will experience 
multipath propagation similar to Fig. 1 at each branch and connection. At some point, a 

Fig. 1  Multipath behaviour in a simple T-network PLC channel
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finite number of signal components with time-decaying magnitudes will be reflected back 
from BCC1 , as shown by tBCC1 in the figure, which is a cluster of MPCs. The same principle 
would apply for BCC2 and BCC3 which results in MPC clusters tBCC2 and tBCC3 , respectively. 
For an input sounding signal g(t) , the measured PLC channel response y(t) is given by the 
convolution

where h(t) denotes the PLC channel impulse response given as

where l = 1, 2, . . . , L denotes the cluster number, m = 1, 2, . . . ,Ml denotes the MPC in 
the lth cluster, and αm,l and τm,l denote the magnitude and delay of the mth MPC in the 

(1)y(t) = g(t) ∗ h(t)+ n(t),

(2)h(t) =

L

l=1

Ml

m=1

αm,le
−j2π fcτm,l δ t − τm,l ,

Fig. 2  LV network with branch-connection clusters
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lth cluster. Connected loads may change over long periods of time, which means the 
channel transfer characteristics can change over the same time periods. However, even 
in that case, the branching would remain the same, which means the MPC clustering 
behaviour would still hold. Therefore h(t) in (2) is considered to be a wide-sense station-
ary process. The sounding signal g(t) is described in more detail in Sect. 4.1.

Background noise and impulsive noise interferences in PLC channels are the result of the 
corona effect, switching of loads and the electric arc or crosstalk between powerline cables. 
Background noise can be modelled as additive white Gaussian noise (AWGN), since it is 
wideband and has low power spectral density (PSD), while impulsive noise occurs in bursts 
and exhibits high PSD. In general, the noise term n(t) in (1) can be considered a sum of 
background noise and impulsive noise. However, impulsive noise is typically observed in 
the tens of megahertz range [26]. In this study, measurements are conducted in the hun-
dreds of megahertz carrier frequency. As such, the effects of impulsive noise can be safely 
avoided, and n(t) in (1) can be considered as AWGN.

3 � Multipath clustering solutions for powerline channels
3.1 � Distance‑based clustering solution

Multipath component estimation from channel measurements will usually result in L 
clusters, where each cluster consists of finite Ml MPCs such that ml = 1, 2, . . . ,Ml . Each 
cluster will have a centre ci such that ci = 1, 2, . . . ,CL . The k-means clustering method is a 
hard-partitioning method that uses a distance metric to minimise the distance sum of the 
respective ml over all CL and assigns ml to the lth cluster with the minimised ci . The cen-
troids are then re-estimated by averaging the cluster assigned MPCs. This process iterates 
until some predefined accuracy stop criterion is reached. The distance metrics commonly 
used include the squared Euclidean distance (SED), the joint squared Euclidean distance 
(JSED) and the multipath component distance (MCD). The JSED and MCD allow for clus-
tering MPCs jointly through time and angle parameters, and the SED can cluster MPCs 
only one dimension at a time. In [5], the authors compare SED, JSED and MCD using the 
spatial channel model for multiple-input multiple-output (SCM-MIMO) under different 
angular spreads. The results show that MCD obtain the best performance as the number 
of incorrectly clustered MPCs decreases only slightly for larger angular spreads. This was 
mainly attributed to the robust scaling and joint clustering of MPC parameters, which are 
attributes lacking in the other metrics. The MCD distance metric between the ith and jth 
MPCs is given as

where

(3)MCDij =

√

∥
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∥
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+
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�τmax denotes the maximum difference of the delay spread, τstd denotes the standard 
deviation of the delay spread, θj and ϕj denote the azimuth and elevation, respectively. 
The MCD, as in (3), is computed as a Euclidean norm vector, which can be interpreted 
as a hyper-sphere in the normalised distances in the delay and angle domains. MPCs of 
powerline channels are clustered in the delay domain. Therefore, due to the lack of azi-
muth and elevation parameters, a distance metric is considered given as

which is a reduced version of (3) from a multi-dimensional parameter space to only the 
delay domain. This is comprehensible since the parameter estimator in the delay domain 
is more stable and robust than in the angular domain due to its non-periodicity. There-
fore, (6) computes the normalised absolute distance between the delays of the corre-
sponding MPCs scaled by the normalised delay spread.

3.2 � Model‑based clustering solution

Unlike distance-based clustering solutions, model-based clustering allows an MPC to 
belong to different clusters at the same time, but with different probabilities, where 
the highest probability indicates the cluster it belongs to. This method provides more 
flexibility, but at the cost of computation complexity. In model-based clustering using 
FMMs, the MPCs are described by a vector X = {xi}

N
i=1 , where xi ∈ Cd denotes the 

parameters of the ith MPC, d denotes the dimension of xi and N denotes the number 
of samples. The mixture model is a weighted sum of a finite K component distribu-
tions, which is expressed as

Each xi is assumed to be generated by one of the K component distribution p(xi|θk) , 
with a parameter set θk , and ζk denotes the priors of the component distributions, which 
satisfies the constraint 

∑K
k=1 ζk = 1 . For a set of N multipath components constituting 

dataset X, the goal is to find the set of parameters � , which maximises the likelihood of 
the FMM given X. Assuming the N samples are identically and independently distrib-
uted (i.i.d), the FMM likelihood L(�|X) = p(X |�) is expressed as

However, direct optimisation of (8) is impossible because the expression is a nonlinear 
function of the parameter set � . Therefore, maximum likelihood (ML) estimates of the 
parameters are obtained using the EM algorithm, which iterates through parameter esti-
mates and attempts to find the set of parameters that maximises the log of the likelihood 
function, which is expressed as

(6)MCDij =
√

MCD2
τ ,ij ,

(7)p(x|�) =

K
∑

k=1

ζkp(xi|θk).

(8)p(X|�) =

M
∏

i=1

p(xi|�) =

M
∏

i=1

K
∑

k=1

ζkp(xi|θk).
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The EM algorithm obtains the ML estimates by finding the expectation of the complete-
dataset log-likelihood with respect to the unobserved dataset Y , given X and � , which is 
the Q function, expressed as

In order to solve (9), X is considered to be an incomplete, but observed dataset. Then, 
assuming Y =

{

yi
}N

i=1
 to be the unobserved dataset, the complete-dataset exists as 

Z = (X,Y) [16]. The Y dataset informs which component density generated xi , simply 
put, assuming yi ∈ {1, . . . ,K } for each i, then yi = k if the ith sample was generated by 
the kth component density. A new likelihood function, L(�|Z) = L(�|X,Y) , is defined 
as the complete-dataset likelihood. Then, (9) simplifies to the complete-dataset log-like-
lihood given as

The distribution of the unobserved data is obtained from (11) using Bayes rule, which is 
expressed as

where the superscript t denotes the currently estimated parameters. The expression in 
(12) is the probability that xi was generated by the kth component density. This is the 
E-step of the EM algorithm, which will be computed in the same way for all the consid-
ered FMMs. More specifically, it is computed using (13).

Then, the Q function in (10) simplifies to

which needs to be maximised to obtain the ML estimates. The right-hand terms contain-
ing ζk and θk can be maximised independently. This is the M-step of the EM algorithm. 
ζk is obtained as

(9)logL(�|X) =

M
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K
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(
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(
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taking the sum of both sides over k gives � = −N  , then

The M-step of the EM computation of ζk follows the same expression for all the FMMs 
considered. The computation of the parameters θk , which is equivalent to maximising 
the term with θk on the right-hand side of (14), will be different for each FMM.

3.2.1 � GMM

For the GMM, each xi is assumed to be generated by one of the K Gaussian densities with 
mean µk and covariance �k , which is expressed as

Finding the ML estimates µ̂k and �̂k is equivalent to taking partial derivative of the term 
with θk on the right-hand side of (14) with respect to µk and �k , and setting them to 
zero. This results in the closed-form expressions (19) and (20) for the mean and covari-
ance, respectively. GMM is a well-known mixture model in the literature, of which the 
detailed derivation of (19) and (20) can be found in [16, 27] and the references within.

The EM algorithm iterates between the E-step, i.e. (13), and the M-step, i.e. (17), (19), 
and (20), until it converges to some predefined accuracy. It should be noted that MPC 
clustering for PLC channels is done in the delay domain only. Therefore, the dimension-
ality d = 1 and the full covariance matrix � structure is considered for each component 
density.

3.2.2 � IGMM

For the IGMM, each xi is assumed to be generated by one of the K inverse Gaussian densi-
ties with mean µk and shape �k expressed as

(16)
N
∑

i=1

1

ζk
wk + � = 0,

(17)ζk =
1

M

M
∑

i=1

wk
(i).

(18)p(xi|µk ,�k) =
1

(2π)
d
2 |�k |

1
2

exp

(

(xi − µk)
T�k

−1(xi − µk)

−2

)

.
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i=1 xiw

(i)
k
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i=1 w

(i)
k

,

(20)�k =

∑M
i=1 w

(i)
k (xi − µk)
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k

.
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2πxi2
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exp

(

−�k(xi − µk)
2
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2xi

)

, xi > 0, µk > 0, �k > 0.
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Finding the ML estimates �̂k and µ̂k is equivalent to taking partial derivatives of the term 
with θk on the right-hand side of (14) with respect to �k and µk , and setting them to zero. 
Substituting (21) for log (p(xi|θk)) in (14), the expression is given as

therefore taking ∂
∂�

 and ∂
∂µ

 of (22) and setting them to zero gives (23) and (24), 
respectively.

Solving (23) for µk gives the closed-form expression

Then, substituting for µk , i.e. x̄i , in (24) and solving for �k gives the closed-form 
expression

The EM algorithm iterates between the E-step given by (13) and the M-step given by 
(17), (25) and (26), until it converges.

3.2.3 � RMM

For the RMM, each xi is assumed to be generated by one of the K Rayleigh densities with 
mean σ , which is expressed as

Finding the ML estimate σ̂k is equivalent to taking a partial derivative of the term with θk 
on the right-hand side of (14) with respect to σk and setting it to zero. Substituting (27) 
for log (p(xi|θk)) in (14) gives the expression

therefore taking ∂
∂σ

 of (28) and setting it to zero gives (29).

(22)
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M
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3

)

w
(i)
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M
∑

i=1

1

2
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1
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2
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2

)

w
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(i)
k
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(i)
k

= x̄i.

(26)�k =

∑M
i=1
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(x̄i)
2xi

(xi−x̄i)
2

)

w
(i)
k

∑M
i=1 w

(i)
k

.

(27)p(xi|σk) =
xi

σk
2
exp

(

−
xi

2

2σk2

)

, xi > 0, σk > 0.

(28)
K
∑

k=1

M
∑

i=1

[

log xi − log σk
2 −

xi
2

2σk2

]

w
(i)
k ,
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Solving (29) for σk gives the closed-form expression

The EM algorithm iterates between the E-step given by (13) and the M-step given by (17) 
and (30) until it converges to some predefined accuracy.

3.2.4 � GγMM

For the G γMM, each xi is assumed to be generated by one of the K gamma densities with 
shape αk and scale βk , which is expressed as

Obtaining the ML estimates α̂k and β̂k is equivalent to taking partial derivatives of the 
term with θk on the right-hand side of (14) with respect to αk and βk , and setting them to 
zero. Substituting (31) for log (p(xi|θk)) in (14) gives

therefore taking ∂
∂α

 and ∂
∂β

 of (32) and setting to them zero gives (34) and (33), 
respectively.

Solving (33) for βk gives the closed-form expression

Substituting for βk in (34), and simplifying, it results in an update expression for αk as

Therefore, (36) can be rewritten as ψ(αk)− log αk = ϒ , where ϒ is simply a con-
stant. The expression ψ(αk)− log αk is a decreasing function on (0,∞) since 

(29)
M
∑

i=1

(

xi
2

σk
3
−

2

σk

)

w
(i)
k = 0.

(30)σk =

√

√

√

√

∑M
i=1 xi

2w
(i)
k

2
∑M

i=1 w
(i)
k

.

(31)p(xi|αk ,βk) =
xi

(αk−1)

βk
αkŴ(αk)

exp

(

−
xi

βk

)

, xi > 0, αk > 0, βk > 0.

(32)
K
∑

k=1

M
∑

i=1

[

(αk − 1) log xi − αk log βk − log Ŵ(αk)−
xi

βk

]

w
(i)
k ,

(33)
M
∑

i=1

(

xi

βk
2
−

αk

βk

)

w
(i)
k = 0,

(34)
M
∑

i=1

(

log xi − log βk − ψ(αk)
)

w
(i)
k = 0.

(35)βk =

∑M
i=1 xiw

(i)
k

αk
∑M

i=1 w
(i)
k

=
x̄i

αk
.

(36)ψ(αk)− log αk = log

(

∑M
i=1 xiw

(i)
k

∑M
i=1 w

(i)
k

)

−

∑M
i=1 log (xi)w

(i)
k

∑M
i=1 w

(i)
k

.
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limαk→∞ ψ(αk)− log αk = 0 and limαk→0 ψ(αk)− log αk = −∞ . Since log is a concave 
function, it follows from Jensen’s inequality that

the equality in (37) holds if and only if (i.i.f ) the samples are mutually equal, which is a 

case that does not occur in practice. Therefore, log
(

∑M
i=1 xiw

(i)
k

∑M
i=1 w

(i)
k

)

−
∑M

i=1 log (xi)w
(i)
k

∑M
i=1 w

(i)
k

> 0 , 

and ψ(αk)− log αk +ϒ = 0 , which means that αk can be found using a bisection root-
finding method to find the axis intercept where ψ(αk)− log αk changes sign. To demon-
strate this, gamma random variables are simulated using (31) with αk = 2 and βk = 5 . A 
plot of ψ(αk)− log αk +ϒ is shown in Fig. 3, and the ML estimate of αk is shown as the 
point where ψ(αk)− log αk +ϒ = 0 holds.

3.2.5 � IGγMM

For the IGγMM, each xi is assumed to be generated by one the K inverse gamma densities 
with shape αk and scale βk , which is expressed as

Substituting (38) for log (p(xi|θk)) in (14) gives

taking ∂
∂β

 and ∂
∂α

 of (39) and setting them to zero gives (40) and (41), respectively.

(37)log

(

∑M
i=1 xiw

(i)
k

∑M
i=1 w

(i)
k

)

≥

∑M
i=1 log (xi)w

(i)
k

∑M
i=1 w

(i)
k

,

(38)p(xi|αk ,βk) =
xi

−(αk+1)

βk
αkŴ(αk)

exp

(

−
1

xiβk

)

, xi > 0, αk > 0, βk > 0.

(39)
K
∑

k=1

M
∑

i=1

[

−(αk − 1) log xi − αk log βk − log Ŵ(αk)−
1

xiβk

]

w
(i)
k ,

Fig. 3  Gγ MM αk MML estimation
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Let 1xi = εi , then solving (40) for βk gives the closed-form expression

Substituting for βk in (41), and simplifying, it gives an update expression for αk as

Similar to the G γMM, for the IGγMM, (43) can be rewritten as ψ(αk)− log αk = ϒ , 
where ϒ is simply a constant. ψ(αk)− log αk is a decreasing function on (0,∞) since 
limαk→∞ ψ(αk)− log αk = 0 and limαk→0 ψ(αk)− log αk = −∞ . Since log is a concave 
function, it follows from Jensen’s inequality that

where the equality in (44) holds i.i.f the samples are mutually equal, which is a case that 

does not occur in practice. Therefore, log

(

∑M
i=1 εiw

(i)
k

∑M
i=1 w

(i)
k

)

−
∑M

i=1 log (εi)w
(i)
k

∑M
i=1 w

(i)
k

> 0 , and 

ψ(αk)− log αk +ϒ = 0 , which means that αk can be found using a bisection root-find-
ing method to find the axis intercept where ψ(αk)− log αk changes sign. To demonstrate 
this, inverse gamma random variables are simulated using (38) with αk = 4 and βk = 5 . 
A plot of ψ(αk)− log αk +ϒ is shown in Fig. 4, and the ML estimate of αk is shown as 
the point where ψ(αk)− log αk +ϒ = 0 holds.

3.2.6 � NMM

For the NMM, each xi is assumed to be generated by one of the K Nakagami densities with 
shape µk and scale �k , which is expressed as

Substituting (45) for log (p(xi|θk)) in (14) gives

(40)
M
∑

i=1

(

1

xiβk
2
−

αk

βk

)

w
(i)
k = 0,

(41)
M
∑

i=1

(

− log xi − log βk − ψ(αk)
)

w
(i)
k = 0.

(42)βk =

∑M
i=1 εiw

(i)
k

αk
∑M

i=1 w
(i)
k

=
ε̄i

αk
.

(43)ψ(αk)− log αk = − log

(

∑M
i=1 εiw

(i)
k

∑M
i=1 w

(i)
k

)

+

∑M
i=1 log (εi)w

(i)
k

∑M
i=1 w

(i)
k

.

(44)log

(

∑M
i=1 εiw

(i)
k

∑M
i=1 w

(i)
k

)

≥

∑M
i=1 log (εi)w

(i)
k

∑M
i=1 w

(i)
k

,

(45)p(xi|µk ,�k) =
2µk

µk xi
(2µk−1)

Ŵ(µk)�k
µk

exp

(

−
xi

2µk

�k

)

, xi > 0, �k > 0, µk ≥
1

2
.

(46)

K
∑

k=1

M
∑

i=1

[log 2+ µk logµk + (2µk − 1) log xi − log Ŵ(µk)

−µk log�k −
xi

2µk

�k

]

w
(i)
k ,
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taking ∂
∂µ

 and ∂
∂�

 of (46) and setting them to zero gives (48) and (47), respectively.

Let xi2 = υi , then solving (47) for �k gives the closed-form expression

Substituting for �k in (48), and simplifying, it results in an update expression for µk as

ψ(µk)− logµk is a decreasing function on (0,∞) since limµk→∞ ψ(µk)− logµk = 0 
and limµk→0 ψ(µk)− logµk = −∞ . Since xi is positive, log is a concave function and it 
follows from Jensen’s inequality that

The equality in (51) holds i.i.f the samples are mutually equal. Therefore, 

log

(

∑M
i=1 υiw

(i)
k

∑M
i=1 w

(i)
k

)

−
∑M

i=1 log (υi)w
(i)
k

∑M
i=1 w

(i)
k

> 0 and ψ(µk)− logµk + ϒ = 0 , where ϒ is a con-

(47)
M
∑

i=1

(

xi
2µk

�k
2

−
µk

�k

)

w
(i)
k = 0,

(48)
M
∑

i=1

(

logµk + 2 log xi − ψ(µk)− log�k −
xi

2

�k

)

w
(i)
k = 0.

(49)�k =

∑M
i=1 υiw

(i)
k

∑M
i=1 w

(i)
k

= ῡi

(50)ψ(µk)− logµk =

∑M
i=1 log (υi)w

(i)
k

∑M
i=1 w

(i)
k

− log

(

∑M
i=1 υiw

(i)
k

∑M
i=1 w

(i)
k

)

.

(51)log

(

∑M
i=1 υiw

(i)
k

∑M
i=1 w

(i)
k

)

≥

∑M
i=1 log (υi)w

(i)
k

∑M
i=1 w

(i)
k

.

Fig. 4  IGγ MM αk ML estimation
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stant equivalent to the right-hand side of (50). This means µk can be found using a bisec-
tion root-finding method to find the axis intercept where ψ(µk)− logµk changes sign. 
To demonstrate this, Nakagami random variables are simulated using (45) with µk = 2 
and βk = 1.5 . A plot of ψ(µk)− logµk + ϒ for µk ∈ [0.5, 8] is shown in Fig. 5, and the 
the ML estimate of µk is shown as the point where ψ(µk)− logµk + ϒ = 0 holds.

3.2.7 � INMM

For the INMM, each xi is assumed to be generated by one of the K inverse Nakagami densi-
ties with shape µk and scale �k , which is expressed as

Substituting (52) for log (p(xi|θk)) in (14) gives

taking ∂
∂µ

 and ∂
∂�

 of (53) and setting them to zero gives (55) and (54), respectively.

(52)p(xi|µk ,�k) =
2µk

µk xi
−(2µk−1)

Ŵ(µk)�k
µk

exp

(

−
µk

�kxi2

)

, xi > 0, �k > 0, µk > 0.

(53)

K
∑

k=1

M
∑

i=1

[log 2+ µk logµk − (2µk − 1) log xi − log Ŵ(µk)

−µk log�k −
µk

�kxi2

]

w
(i)
k ,

(54)
M
∑

i=1

(

µk

�k
2xi2

−
µk

�k

)

w
(i)
k = 0,

Fig. 5  NMM µk ML estimation
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Let 1
xi2

= ηi , then solving (54) for �k gives the closed-form expression

Substituting for �k in (55), and simplifying, it results in an update expression for µk as

Similarly to the NMM, for the INMM, ψ(µk)− logµk is a decreasing function on (0,∞) 
since limµk→∞ ψ(µk)− logµk = 0 and limµk→0 ψ(µk)− logµk = −∞ . Since xi is pos-
itive, log is a concave function, and it follows from Jensen’s inequality that

The equality in (58) holds i.i.f the samples are mutually equal. Therefore, 

log

(

∑M
i=1 υiw

(i)
k

∑M
i=1 w

(i)
k

)

−
∑M

i=1 log (υi)w
(i)
k

∑M
i=1 w

(i)
k

> 0 and ψ(µk)− logµk + ϒ = 0 , where ϒ is a con-

stant equivalent to the right-hand side of (57). This means µk can be found using a bisec-
tion root-finding method to find the axis intercept where ψ(µk)− logµk changes sign. 
Inverse Nakagami random variables are simulated using (52) with µk = 4 and βk = 1.5 . 
A plot of ψ(µk)− logµk + ϒ for µk ∈ [0.5, 8] is shown in Fig. 6, and the ML estimate of 
µk is shown as the point where ψ(µk)− logµk + ϒ = 0 holds.

(55)
M
∑

i=1

(

logµk − 2 log xi − ψ(µk)− log�k −
xi

2

�k

)

w
(i)
k . = 0.

(56)�k =

∑M
i=1 ηiw

(i)
k

∑M
i=1 w

(i)
k

= η̄i.

(57)ψ(µk)− logµk =

∑M
i=1 log (ηi)w

(i)
k

∑M
i=1 w

(i)
k

− log

(

∑M
i=1 ηiw

(i)
k

∑M
i=1 w

(i)
k

)

.

(58)log

(

∑M
i=1 ηiw

(i)
k

∑M
i=1 w

(i)
k

)

≥

∑M
i=1 log (ηi)w

(i)
k

∑M
i=1 w

(i)
k

.

Fig. 6  INMM µk ML estimation
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3.3 � Feasible range of clusters

Both distance-based and model-based clustering solutions require a predefined range of 
clusters such that k ∈ {1, . . . ,K } . A method is introduced for estimating the cluster range 
from the MPC dataset in a manner that guarantees that the optimal number of clusters, 
Kopt , is within the specific range. The feasible range R = {K1, . . . ,KN } ∈ [Kmin,Kmax] is 
obtained by algorithm  1. The algorithm takes as input the magnitude-delay dataset of 
the MPCs, which is estimated from the channel response. Kmax is obtained by compar-
ing the magnitudes xi−1 with xi , if xi−1 > xi , this means the magnitudes are decreasing 
with τ . However, if xi−1 < xi , this could be the start of another cluster, and Kmax is incre-
mented by 1. Kmin is obtained by first sorting the indexed MPC magnitudes in decreas-
ing order, then initialising dIx to the first element of the sorted indexes Ix, which is the 
largest magnitude. Then, if dIx < Ixi , dIx = Ixi and Kmin is incremented by 1.

3.4 � Corrected Akaike information criterion (AICc)

Once the feasible range of clusters has been obtained, it is necessary to find the best 
cluster partition solution Kopt for model-based clustering. For all candidate models and 
for each k ∈ {1, . . . ,K } , AICc is calculated as

where L
(

θ̂ML|x
)

 is the value of the maximised log-likelihood, which correspond to the 

computed log-likelihood function using the ML estimates, d is the number of parame-
ters in the model and M is the number of samples. The first term of (59) indicates the 
overall fit of the model to the dataset and tends to decrease with d. The second term of 
(59) penalises the model for increased d to ensure the best model has the least number 
of parameters. The third term of (59) is a bias term to correct the AIC when M is small. 

(59)AICc = −2 log
(

L

(

θ̂ML|x
))

+ 2d +
2d(d + 1)

M − d − 1
,
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However, when M is large enough, the bias term becomes negligible. Therefore, Kopt is 
the cluster partition with the smallest AIc value.

3.5 � Cluster validation

The effectiveness of the model-based clustering solution over the distance-based solu-
tion is demonstrated through CH and DB CVIs. These CVIs are well-suited for evaluat-
ing the separation between clusters and compactness within a cluster. Considering M 
MPCs in cluster K, the CH index is given as

where Mk is the number of MPCs in the Kth cluster and c̄ is the global centroid com-
puted as the average of all the MPCs. The summation in the numerator of (60) evaluates 
the separation between clusters, and the summation in the denominator evaluates the 
compactness within the kth cluster. After computing CHk for K ∈ [Kmin,Kmax] , Kopt is 
obtained as

Considering M MPCs in cluster K, the DB index is given as

where RK  is given as

where Sk = (1/Mk )
∑

i∈ck
MCD(xi, ck) denotes the cluster compactness and 

dij = MCD
(

ci, cj
)

 denotes the cluster separation. After computing DBk for 
K ∈ [Kmin,Kmax] , Kopt is obtained as

4 � Measurements and results
4.1 � Channel measurements and parameter extraction

A PLC channel was constructed using an H05RR-F 3-Core (0.75  mm2 ) cable-type, 
which is typically found in an indoor LV power network. Figure  7 shows how the 
experimental LV PLC channel was constructed within a residential apartment with 
a total area of 95  m2 . The channel was unknown since some electrical outlets were 
left open, and other outlets had common household appliances connected to them. 
The absolute distances between the outlets were unknown. Capacitive coupling cir-
cuits were interfaced to each outlet on the channel. A coupling circuit was used at 

(60)CHk =
(M − K )

∑K
k=1Mk ·MCD(ck , c̄)

2

(K − 1)
∑K

k=1

∑

i∈ck
MCD(xi, ck)

2
,

(61)Kopt = arg max
K

{CHK }

(62)DBK =
1

K

K
∑

k=1

Rk ,

(63)
RK = max

j = 1, . . . ,K
j �= i

{

Si + Sj

gij

}

,

(64)Kopt = arg min
K

{DBK }.
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branch C, and this is where the channel was fed with the 230V 50Hz power signal. 
The authors highlight the following about the constructed channel: (1) each terminal 
point only has a single node, whether open or with load connected; (2) there are no 
connections between termination points; and (3) the channel has a radial topology 
with no loops. At point A, a BladeRF x40 software-defined radio (SDR) is used as a 
transmitter. Another BladeRF x40 SDR is used as a receiver at point B. GNU Radio 
platform was used to control the SDRs and capture the channel response. Off-line 
processing was done in MATLAB.

On the transmitter side, a sounding signal in the form g(t) =
∑Nq

q=1 gqw(t − qTw) was 
continuously transmitted to excite the channel. gt is a maximum length sequence (MLS) 
of length Nq = 2L − 1 . L was chosen as 10, therefore Nq = 1024 . Initially, 

{

gq , . . . , gNq

}

 
is generated such that gq ∈ {1,−1} ; however, for transmitting, it is transformed such that 
gq ∈ {1, 0} . w(�) is a rectangular pulse shape, and Tw is the pulse duration. The sampling 
frequency of the BladeRF SDR was set to fs = 30 MHz. Therefore, Tw = 33.33 ns and 
the sequence duration Tq = 34.13µ s. Sounding sequence g(t) was transmitted into the 
channel, and y(t) in (1) represents the I/Q samples that are captured and stored for off-
line processing. The rest of the channel sounder parameters are summarised in Table 1.

The SAGE estimation algorithm was used to obtain the αm,l and τm,l parameters of the 
MPCs from y(t) . The SAGE algorithm requires the number of MPCs Ml as input, since 
the channel was unknown, Ml was unknown and was estimated from y(t) . An AIC esti-
mator was used to obtain Ml from y(t) by computing the covariance matrix of y(t) to 
obtain the eigenvalues that were used to estimate Ml . Eigenvalue-based estimators such 
as AIC [28], MDL [29] and random matrix theory (RMT) [30] are typically used to esti-
mate the number of signal components in a received noisy channel response and source 
enumeration in array processing.

Fig. 7  Experimental LV PLC channel setup
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A single snapshot of y(t) is given in Fig.  8. This is the input to the eigenvalue AIC 
estimator that outputs Ml = 56 . Then, Ml , y(t) and parameters of Table 1 are inputs of 
the SAGE algorithm, which extracts magnitudes and delays. The channel delay profile 
is shown in Fig. 9. The largest component in the delay profile of Fig. 9 is taken as the 
0th, τ (0) , component. This component represents the direct path from transmitter to 
receiver, and is the first component of the first cluster. In this way, one is not interested 
in the absolute delays, but rather, in the relative delays of the MPCs for clustering.

4.2 � AICc model selection

Once the MPC parameters are extracted from the measurements, the feasible range 
of clusters, R , is estimated using algorithm  1. This gives Kmin = 3 and Kmax = 21 , 
which means K ∈ [3, 21] . For K ∈ [3, 21] , the extracted MPC magnitude-delay data-
set is fitted to each FMM using the procedures described in Sect. 3.2. Each FMM fit 
procedure computes 100 iterations between the E-step and the M-step in the EM 
algorithm. Convergence is reached when 

∥

∥�t+1 −�t
∥

∥ < 10−5 . Parameter estimates 
of each component PDF for each FMM are initialised using a method of moments 
(MoM) estimator, and the priors are estimated uniformly. The initial indexing of each 

Table 1  Channel sounder parameters

Parameter Value

Carrier frequency (MHz) 415

Bandwidth (MHz) 18

Transmit power (dBm) 19.5

Sampling rate (MSps) 30

MLS sequence length 1024

MLS sequence duration ( µs) 34.13

Fig. 8  y(t) channel response to g(t)
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MPC, for the Kth cluster, is done using the k-means method. Once components have 
been indexed, MPC clustering is refined with FMMs.

Table  2 lists AICc values computed for each FMM for K ∈ [3, 21] , and Fig.  10 
shows a plot of the AICc values. Overall, the INMM can be observed to obtain the 

Fig. 9  Channel delay profile

Table 2  AIC values estimated for K ∈ [3, 21]

The best-fit model for each Kth cluster index was shown in bold

Mixture 
model

GγMM IGγMM NMM INMM GMM RMM IGMM

K = 3 − 334.1857 − 350.9654 − 347.9581 − 351.5738 − 313.9865 − 295.5700 − 350.3486

K = 4 − 333.2412 − 355.4684 − 354.3063 − 355.5885 − 330.8767 − 290.2671 − 355.3550

K = 5 − 329.9266 − 353.0241 − 363.4997 − 364.2100 − 358.1729 − 284.4337 − 363.5221

K = 6 − 331.4286 − 361.1313 − 368.5970 − 365.8892 − 367.5014 − 277.9864 − 368.2715

K = 7 − 319.8902 − 354.8533 − 365.4429 − 372.7487 − 361.9111 − 270.8226 − 361.1077

Kopt = 8 − 317.4058 − 349.3820 − 357.3971 − 383.5133 − 336.5550 − 262.8161 − 357.4874

K = 9 − 309.3846 − 349.6467 − 362.3849 − 370.5133 − 343.3241 − 253.8087 − 356.7042

K = 10 − 301.5775 − 369.4797 − 371.7292 − 367.5000 − 345.0854 − 243.6004 − 372.9758
K = 11 − 290.2804 − 330.1499 − 339.8575 − 367.3161 − 321.4491 − 231.9338 − 334.8292

K = 12 − 286.1923 − 348.3962 − 328.3997 − 350.1985 − 314.5583 − 218.4722 − 361.4057
K = 13 − 267.6066 − 304.1411 − 303.4176 − 331.8072 − 289.5755 − 202.7671 − 337.1425

K = 14 − 253.4266 − 305.3975 − 286.5254 − 345.9448 − 285.6640 − 184.2065 − 327.0185

K = 15 − 230.5696 − 294.2617 − 275.4093 − 325.6961 − 268.6821 − 161.9338 − 305.9090

K = 16 − 203.3850 − 271.8704 − 234.0650 − 300.8839 − 282.6890 − 134.7116 − 277.5505

K = 17 − 169.3280 − 233.0117 − 206.4532 − 257.7724 − 277.4756 − 100.6838 − 243.4957

K = 18 − 125.5837 − 177.7226 − 200.9584 − 195.1257 − 158.4187 − 56.9338 − 206.1883

K = 19 − 69.7917 − 129.6232 − 118.0975 − 162.6962 − 121.3401 1.3995 − 143.2777

K = 20 13.4495 − 55.7850 − 18.7447 − 74.0224 − 100.1851 83.0662 − 66.1916

K = 21 103.0252 − 1.1628 61.8242 − 15.5922 − 53.8652 182.5822 − 11.0423
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best clustering solution because it consistently obtains the minimum AICc value. As 
described in Sect.  3.4, the lowest AICc value indicates the best clustering solution 
for K clusters. The absolute value of AICc is not very important because AICc is used 
to find the smallest value from all candidate models. This value can be positive or 
negative. The lowest AICc value for each K is listed in bold in Table 2. For K = 5 and 
K = 19 , NMM outperforms the INMM, and for K = 10 and K = 12 , the IGMM out-
performs the INMM. The RMM is observed to have the worst performance since it 
consistently obtains the highest AICc value for all K ∈ [3, 21] . This can be attributed 
to the Rayleigh model having only a shape parameter. The rest of the FMMs are two-
parameter models that capture the shape and scale of the distribution. Such mod-
els are therefore more effective in modelling the positively skewed distribution of the 
channel delay profile.

Optimal clustering is obtained with the INMM for Kopt = 8 , which has 
AICc = −383.5133 . This means that the channel delay profile in Fig. 9 is best described 
as having eight clusters of MPCs. Figure 11 shows the optimal cluster partitions for the 
MPCs of channel delay profile that are obtained using the INMM. The first four clus-
ters overlap with only a few MPCs. This can be attributed to the propagation paths of 
the MPCs of the overlapping clusters having similar propagation delays. The last four 
cluster are distinct without any overlap. This can be attributed to the propagation paths 
of the MPCs in these clusters having distinct and long propagation delays. The AICc val-
ues of the NMM and INMM show that the two FMMs obtain comparable clustering 
performance because they are related by a simple inverse of the random variable. If X 
is a random variable generated by a Nakagami distribution, then Y = 1/X is a random 
variable generated by an inverse Nakagami distribution. In a similar manner, the inverse 
gamma distribution is also related to the gamma distribution by an inverse of the ran-
dom variable.

Fig. 10  AICc results for K ∈ [3, 21]
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4.3 � Cluster validation

Cluster index validation was done by computing the CH index and DB index for 
K ∈ [3, 21] . In simulation or when a channel is known, the CH index will give a maxi-
mum value, and the DB index will give a minimum value for the correct number of 
clusters. However, in this case, the channel is unknown. Therefore, CVIs are used to 
show that the model-based clustering solution produces more favourable results than 
distance-based methods.

As described in Sect.  3.5, the CH and DB indexes evaluate within-cluster compact-
ness and between-cluster separation. Performing clustering for K ∈ [3, 21] means 
that for some low values of K, all clusters would be indexed, i.e. if K = 4 , each MPC 
would be indexed with i such that i ∈ [1, 4] . In this case, the within-cluster compact-
ness improves, while the between-cluster separation deteriorates. For higher values 
of K, there would be some empty clusters, i.e. if K = 14 , MPCs would be indexed 
with i such that i = 2, 4, 5, 8, 9, 10, 11, 12, 13 . This means some clusters would have no 
components allocated. In such a case, the within-cluster compactness deteriorates, 
while the between-cluster separation improves. Model-based clustering solutions can 
effectively optimise cluster compactness and separation by allowing a component to 
belong to multiple clusters at the same time, but with different probabilities.

To illustrate the effectiveness of model-based clustering, Fig. 12 shows a plot of CH 
index values computed for each FMM clustering solution and clustering by k-means. 
A high CH value corresponds to the most favourable clustering solution. It is clear 
that k-means obtains the lowest CH values for K ∈ [5, 21] , and even for K = 3 and 
K = 4 , k-means is outperformed by five FMMs with higher CH index values. The 
highest CH index is obtained by the INMM for K = 8 . Figure 13 shows a plot of DB 
index values computed for each FMM clustering solution and clustering by k-means. 
Using the DB index, a low value corresponds to the most favourable clustering 

Fig. 11  Optimal cluster partitions of MPCs using the INMM



Page 24 of 27Mokise and Myburgh ﻿EURASIP Journal on Advances in Signal Processing         (2023) 2023:99 

solution. It is clear that k-means obtains the highest DB values for K ∈ [3, 21] , with 
the lowest DB index obtained for the INMM for K = 7.

These results show that even though the PLC channel is unknown, CH and DB indexes 
are comparable in terms of Kopt . Therefore, Kopt ∈ [7, 8] corresponds to the most within-
cluster compactness of MPCs and the most between-cluster separation in the delay 
domain. Cluster compactness and separation characteristics are thus best captured using 
a model-based clustering solution. A keen observation made is that the optimal number 

Fig. 12  CH index results for K ∈ [3, 21]

Fig. 13  DB index results for K ∈ [3, 21]
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of clusters Kopt does not necessarily equal the number of branch-connection clusters. 
Typically, MPCs reflected from a branch-connection cluster would be finite, weak and 
exponentially decaying. Moreover, channel impairments such as cable skin-effect, cable 
branching and connected loads would attenuate the already weak signal components if 
they were to propagate into another branch-connection cluster. However, this observa-
tion suggests that some strong signal components reflected from one branch-connection 
cluster would propagate into another branch-connection cluster, resulting in a second-
ary MPC cluster. Further investigation of indoor LV PLC channels is needed to study 
the effect and contribution of secondary MPC clusters to the overall channel impulse 
response. Current prevailing cluster-based impulse response models such as the SV 
model require that the distribution of MPC time instances and cluster arrival times to be 
conditioned on previous time instances. As demonstrated in this study, an MPC cluster 
can be treated as an independent component distribution of the mixture distribution, 
and is not conditioned on any previous MPC time instances. Therefore, reconstruction 
of the channel impulse response using the optimal FMM for an optimal number of clus-
ters warrants further investigation of the model-based clustering methodology.

5 � Conclusions
This paper addressed the multipath clustering problem in PLC channels using both dis-
tance-based and model-based methods. The problem formulation considers an indoor 
LV power network with branch-connection clusters, resulting in clusters of MPCs for a 
propagating signal. A measurement campaign of a constructed but unknown PLC chan-
nel with branch-connection clusters was conducted using an MLS channel sounding 
method. An eigenvalue AIC estimator was used to find the number of MPCs from the 
channel response. The SAGE algorithm was then used to extract the MPC magnitude-
delay parameters from the channel response. A novel method of estimating the feasi-
ble range of clusters from the extracted MPCs was introduced. The feasible range was 
used in both distance-based and model-based clustering solutions. An ML approach was 
used for fitting the FMMs to the extracted MPCs. This proved to be efficient in estimat-
ing parameters for both closed-form and update expression solutions. The AICc results 
show that the optimal number of clusters was obtained using the finite INMM. CH 
and DB CVIs’ results also show that the finite INMM obtained the best performance in 
terms of within-cluster compactness and between-cluster separation. Moreover, CH and 
DB CVIs’ results show that even though the channel was unknown, the distance-based 
clustering solution obtained the worst performance over the feasible range of clusters. 
Optimal cluster partitions are obtained using the model-based clustering solution. For 
each CVI, the optimal cluster partitions are comparable in terms of within-cluster com-
pactness and between-cluster separation in the delay domain. However, reconstruction 
of the channel impulse response using the optimal FMM for an optimal number of clus-
ters warrants further investigation of the model-based clustering methodology.
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