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Abstract
This study evaluated the susceptibility to groundwater pollution using a modified DRASTIC model. A novel hybrid multi-
criteria decision-making (MCDM) model integrating Interval Rough Numbers (IRN), Decision Making Trial and Evaluation 
Laboratory (DEMATEL), and Analytical Network Process (ANP) was used to investigate the interrelationships between 
critical hydrogeologic factors (and determine their relative weights) via a novel vulnerability index based on the DRASTIC 
model. The flexibility of GIS in handling spatial data was employed to delineate thematic map layers of the hydrogeologic 
factors and to improve the DRASTIC model. The hybrid MCDM model results show that net recharge (a key hydrogeologic 
factor) had the highest priority with a weight of 0.1986. In contrast, the topography factor had the least priority, with a 
weight of 0.0497. A case study validated the hybrid model using Anambra State, Nigeria. The resultant vulnerability map 
shows that 12.98% of the study area falls into a very high vulnerability class, 31.90% falls into a high vulnerability, 23.52% 
falls into the average vulnerability, 21.75% falls into a low vulnerability, and 9.85% falls into very low vulnerability classes, 
respectively. In addition, nitrate concentration was used to evaluate the degree of groundwater pollution. Based on observed 
nitrate concentration, the modified DRASTIC model was validated and compared to the traditional DRASTIC model; inter-
estingly, the spatial model of the modified DRASTIC model performed better. This study is thus critical for environmental 
monitoring and implementing appropriate management interventions to protect groundwater resources against indiscriminate 
sources of pollution.
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Introduction

The importance of groundwater resources to all life forms 
cannot be over-emphasized, particularly as valuable water 
resources for irrigation and livestock maintenance (Skevas 
2020). Globally, an estimated 1.5 billion people depend on 
groundwater for various purposes, primarily for drinking 
(Narsimha and Wu 2019). This dependency on groundwa-
ter has led to its overexploitation, which, combined with 
minimal recharge (due in part to climate change and other 
factors), has dramatically degraded and depleted groundwa-
ter resources (El Alfy et al. 2017). Comparatively, ground-
water quality is preferred to surface water due to its natural 
purification process during water recharge. The depletion 
and degradation of groundwater resources resulting in 
mild-to-severe pollution incidents have gained the atten-
tion of several researchers (Arya et al. 2020; Aydi 2018). 
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The pollution of groundwater resources has been attributed 
mainly to anthropogenic activities such as discharging of 
untreated effluents and chemicals from industries; over-
utilization and contamination of fertilizers and pesticides 
through agricultural activities (Akhtar et al. 2020); and leak-
ages from underground storage tanks, landfills, and septic 
systems (Ayvaz 2016).

Several studies have shown that groundwater pollution 
is a significant cause of environmental and health concerns 
in most developing countries due to poor regulation of 
anthropogenic activities from industries, agriculture, mining, 
and waste disposal (Adeyemi and Ojekunle 2021; Ojekunle 
et al. 2020). Groundwater pollution has dire consequences 
as it can negatively impact human health, the quality of 
the environment, and socio-economic development (Li 
et al. 2021). The prevention and control of groundwater 
degradation are crucial for effective management due to 
the complicated nature of the degradation process and the 
expensive nature of its treatment (Salahu Mohammed 
Hamza et al. 2014; Sudharshan et al. 2022). Also, assessing 
groundwater quality and potential is critical for sustainable 
development (Mahmud et al. 2022; Das and Saha 2022; 
Azizpour et  al. 2021; Sudharshan et  al. 2022). Hence, 
assessing areas vulnerable to groundwater pollution has 
become an indispensable and effective management tool 
for groundwater preservation. Geospatial groundwater 
vulnerability assessment presents a less expensive alternative 
to conventional groundwater monitoring and management 
plans. It can also determine risk changes over time due to 
land-use changes or contaminants migration. This assessment 
can be easily visualized through maps, utilizing the capability 
of GIS support. It is, therefore, essential that geospatial map(s) 
that provides adequate information on the vulnerability of 
groundwater resource at the national, regional, or local levels 
be provided periodically to ascertain the state of susceptibility 
of a given area to pollution. This is indispensable for a region 
that lacks previous or has scarce records on the vulnerability 
of groundwater resources, hence the essence of this study.

Vulnerability maps can be used to ensure the implemen-
tation of efficient preventive measures to mitigate the pol-
lution of groundwater resources. Vulnerable areas can be 
mapped using different approaches such as process-based, 
statistical, overlay, and index methods (Brindha and Elango 
2015). Each approach has its advantages and disadvantages. 
As such, their modification in the form of a hybrid inte-
grated approach, addressing the shortcomings of individual 
approaches, is inevitable to produce better results. Among 
the various overlay and index procedures recommended 
for assessing groundwater vulnerability to pollution, the 
DRASTIC model has emerged globally as one of the most 
recognized methods despite some drawbacks to its applica-
tion (Liang et al. 2016). To provide a reliable assessment of 
the groundwater vulnerability index or map, the DRASTIC 

model considers the seven factors of vadose zone impact, 
topography, soil media, groundwater depth, hydraulic con-
ductivity, aquifer media, and net recharge (Abunada et al. 
2020). The model’s simplicity in formulation, flexibility 
with other factors, and ease of integration with GIS have 
favored its application over several other models (Abunada 
et al. 2020). The model also requires less data than other 
models to describe groundwater vulnerability (Neshat and 
Pradhan 2017). The DRASTIC model has been extensively 
applied for the assessment of groundwater vulnerability in 
various parts of the world, including the USA (Jang et al. 
2017), India (Bera et al. 2021; Lathamani et al. 2015), Iran 
(Moghaddam et  al. 2018), Jordan (Khrisat & Al-Bakri 
2019), and Algeria (Saida et al. 2017). In Nigeria, it has 
been applied in groundwater vulnerability assessment in 
places such as Lagos State (Oladeji 2020), Ondo State 
(Adewumi et al. 2018), Imo State (Eke et al. 2015; Nnadozie 
et al. 2019), Abia State (Eke et al. 2015), and Kaduna State 
(Ahmed et al. 2017).

Despite the wide application of the DRASTIC model, 
the model has its drawbacks. A major one is the sensitivity 
of the factors considered by the model, which could vary 
from region to region (Ouedraogo et al. 2016). Furthermore, 
uncertainties arise in the process of assigning weights 
and ratings to the factors of the DRASTIC model by 
decision-makers (Ouedraogo et al. 2020). To overcome 
this limitation, multi-criteria decision-making (MCDM) 
models can be used to obtain weights and ratings of the 
factors of the DRASTIC model. The MCDM models 
present a methodological approach to solving a highly 
complicated decision-making problem (Aydi 2018). These 
models include methods such as the analytic hierarchy 
process (AHP) (Costache et al. 2020; Gudiyangada et al. 
2020), the analytic network process (ANP) (Gudiyangada 
et al. 2020), and the Decision-Making Trial and Evaluation 
and Laboratory (DEMATEL) (Kadoic et  al. 2019). To 
improve the accuracy in the assessment of vulnerability 
indices, modified MCDM models have been used over the 
years by combining two models and integrating them with 
algorithms like interval rough numbers (Wang et al. 2019; 
Pamucar et al. 2017; Hatefi and Tamošaitienė, 2019), fuzzy 
sets (Kanani-Sadat et al. 2019), interval-valued fuzzy rough 
numbers (IVFRN) (Roy et al. 2019), and neutrosophic sets 
(Nabeeh 2020). Several studies have integrated the MCDM 
models and the DRASTIC model to enable a more reliable 
assessment of groundwater vulnerability (Paul and Das 
2021; Saida et al. 2017; Torkashvand et al. 2021).

Over the years, researchers have hybridized the MCDM 
models with other methods to improve the decision-making 
process’s reliability. To the best of the authors’ knowledge, 
despite recent applications of hybrid models, the IRN-
DEMATEL-ANP model has not been utilized to assess 
groundwater vulnerability to pollution. Furthermore, there 
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are limited studies on groundwater vulnerability assessment 
in developing countries, including Nigeria (Omotola et al. 
2019; Eugene-Okorie et al. 2020). This study is further criti-
cal considering weak water resource management in most 
developing countries and the necessity for constant envi-
ronmental monitoring for efficient groundwater manage-
ment and sustainability. While the MCDM models, such as 
the analytic hierarchy process (AHP), have been employed 
in groundwater vulnerability assessment (Goswami and  
Ghosal 2022; Sahu et al. 2022), a significant limitation 
relates to inadequacies in capturing uncertainties that 
might occur in the decision-making process (Hatefi and 
Tamošaitienė 2019). This limitation constitutes a critical 
knowledge gap addressed by the novel integration of hybrid 
models utilized in this study.

Furthermore, the limitation of vulnerability mapping 
using standard tools such as DRASTIC and EPIK as stan-
dalone models has been established. Though these methods 
account for the spatial variability of groundwater vulnerabil-
ity, evaluating the essential parameters in their vulnerability 
assessment (considering their weighting factors) is subjec-
tive, requiring expert opinion or engagement using MCDM 
models (Kassem et al. 2022). This study addresses this 
shortcoming by integrating expert opinions in the hybrid-
ized model. In addition to the contribution of this work, 
regional-specific criteria and peculiarities were integrated 
through consultations with local experts while formulating 
the model. This study aims to provide an improved geospa-
tial model of current knowledge on groundwater vulnerabil-
ity to environmental pollution by integrating a novel deci-
sion model (IRN-DEMATEL-ANP model). Anambra state 
in Nigeria was used as a case study to validate the model. 
While studies have been carried out in the state to assess 
groundwater vulnerability (Emmanuel et al. 2015; Eugene-
Okorie et al. 2020), however, to the best of our knowledge, 
no study in the state has considered the integration of the 
proposed hybrid MCDM model and the DRASTIC model 
for a more efficient groundwater vulnerability assessment. 
The proposed hybrid MCDM model involves the ensem-
ble of the three methods of IRN, DEMATEL, and ANP 
to provide an accurate and efficient tool for assessing the 
interactions between several variables and their associated 
uncertainties. The DEMATEL-ANP ensemble provides an 
efficient approach for determining the relative importance of 
variables from a complex multi-criteria decision structure by 
using matrixes to transform the interdependency of the vari-
ables into a causal relationship (Ali et al. 2020). The IRN 
method further improves the ensemble as the method deals 
with uncertainty and imprecisions encountered during col-
lective decision-making (Wang et al. 2019). This study seeks 
to complement and address the limitations of the DRAS-
TIC model as a standalone tool through the integration and 
hybridization of the MCDM models. This study, therefore, 

is critical for groundwater management and sustainability. 
This study provides the scientific basis for water resource 
management and protection.

Methodology

This study employed a modified DRASTIC model to assess 
groundwater pollution using Anambra State as a case study. 
Seven thematic maps of the DRASTIC model of hydro-
geological factors of groundwater depth (D), net recharge 
(R), aquifer media (A), soil media (S), topography (T), 
vadose zone impact (I), and hydraulic conductivity (C) were 
developed. Primary and secondary data were obtained for 
this study. A geophysical survey using a VES system was 
employed for primary data collection to determine the resis-
tivity of various soil layers. The data from the geo-electric 
survey was used to delineate the impact of the vadose zone, 
the depth-to-water table, hydraulic conductivity, and aqui-
fer media thematic map layers in ArcGIS. Secondary data 
obtained for this study include rainfall data from the World-
bank’s Climate Database used to delineate net recharge 
factor, soil data from the Harmonized World Soil Database 
used to delineate soil media factor, and the Digital Elevation 
Model (DEM) from the United States Geological Survey 
used to delineate the topography factor. The weights and 
ratings of the factors of the DRASTIC model were obtained 
using a hybrid MCDM model (IRN-DEMATEL-ANP). The 
model was also used to assess the degree of impact of the 
factors. Expert opinion obtained in the form of a matrix was 
used as data input for the model. The IRN was first employed 
to treat uncertainty and imprecision contained in the expert 
opinion. The DEMATEL method was then employed to 
evaluate the significance of the factors and create a relation-
ship network between them. Finally, the ANP method was 
employed to determine the relative weights of the factors. 
Based on the determined weights and thematic maps of the 
factors, the DRASTIC model was employed to present a 
spatial distribution of the susceptibility to groundwater pol-
lution in the area.

Study area

The study area (Anambra State) is located in the eastern part 
of Nigeria and lies between latitudes 5° 40ʹ and 6° 48ʹ north 
and longitudes 6° 35ʹ and 7° 50ʹ east. The state is located 
in the tropical rain-forest zone of West Africa (Fig. 1) with 
an average humidity of 80%, a mean daily temperature of 
20 °C (Umeh et al. 2020), and a mean annual precipitation 
of about 2000 mm (Ekenta et al. 2015; Umeh et al. 2020). 
The state has two main climatic variations: the rainy sea-
son, which usually starts in April and ends in September, 
and the dry season, which begins in October and ends in 
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March (Enekwechi 2017). During the rainy season, the state 
experiences violent showers, and due to poor water manage-
ment, surface runoff leads to environmental hazards such as 
flooding, erosion, and landslides (Enekwechi 2017). Geo-
logically, the state has five predominant formations, includ-
ing the Imo Formation (Imo shale and Ebenebe sandstone) 
(Paleocene), the Nsukka Formation (Maastrichtian–Danian), 
the Ogwashi-Asaba Formation (Oligocene–Miocene), the 
Ameki Formation (Nanka sandstone and Nsugbe sand-
stone) (Eocene), and the Benin Formation (Pliocene-Recent) 
(Anizoba et al. 2020). Hydrologically, the state has surface 
water sources from springs, streams, lakes, and other major 
rivers, such as the Anambra River, which serves as a tribu-
tary to the Niger River, and the Niger River that connects to 
the Atlantic Ocean (Egboka and Okoyeh 2019).

Data collection and analysis

A geophysical survey was conducted to determine the 
resistivity of various soil layers in the study area. The sur-
vey was aimed at determining the variations in resistivity 
with soil depth. A geo-electrical method that utilizes a 
vertical electrical sounding (VES) system was employed 
for the survey. The VES was conducted by deploying an 

ABEM Terrameter Self-Averaging System (SAS) 1000C 
device. The instrument can display apparent resistivity val-
ues calculated from Ohm’s law digitally. It also automati-
cally records the voltage and current, piles up the results, 
and determines the resistance in real-time with an instant 
digital read-out (Chukwuma et al. 2020). A GPS device 
was used to determine the spatial location and elevation of 
the various VES points. From the data obtained in the field 
survey, the apparent resistivity of various soil layers was 
computed and interpreted with the aid of computer soft-
ware (one-dimensional Interpex Version 3). The data from 
the geo-electric survey was used to compute the depth-to-
water table. The depth-to-water table and the resistivity 
of the various soil layers obtained were imputed into an 
Excel spreadsheet and subsequently exported into the GIS 
environment. The impact of the vadose zone, a parameter 
that describes the effect of the unsaturated zone above the 
groundwater table, was modeled as the apparent resistiv-
ity of the last soil layer before the groundwater table. The 
aquifer media, a parameter that describes the influence of 
water-bearing rocks or soil, was modeled as the appar-
ent resistivity of the saturated soil layer. Furthermore, the 
resistivity of the saturated layer was used to calculate the 
hydraulic conductivity of the study area via Eq. (1):

Fig. 1  Map of the study area
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where KC represents hydraulic conductivity calculated, and 
� represents the resistivity of the saturated soil layer.

Based on the predetermined spatial locations (longitude 
and latitude), the aforementioned depth-to-water table val-
ues, resistivity values, and the calculated hydraulic conduc-
tivity values were imported into the GIS software. The IDW 
was subsequently applied for interpolation to delineate the 
impact of the vadose zone, the depth-to-water table, hydrau-
lic conductivity, and aquifer media thematic map layers.

The soil data were derived from the Food Agricul-
ture Organization (FAO) database, precisely the Har-
monized World Soil Database (HWSD). After geo-ref-
erencing and digitization, the soil data was converted to 
a raster format to delineate the thematic map layer for 
soil media. The soil media factor describes the influ-
ence of the uppermost part of the soil layer, the topsoil. 
The satellite imagery of the Shuttle Radar Topography 
Mission (SRTM) was sourced from the United States 
Geological Survey (USGS) website, and the data was 
used to define the slope using the surface tool in Arc-
GIS software. The slope represents the topography as a 
factor in the DRASTIC model. The mean monthly pre-
cipitation data were obtained from World Bank’s climate 
database for 26 years (1991–2016). The net recharge, a 
factor that describes the amount of water per unit area 
that penetrates the ground surface and percolates down 
to the water table, was calculated as 12% of the average 
annual precipitation (Eke et al. 2015). The computed net 
recharge was imported into the GIS environment. IDW 
tool was used for interpolation to produce net recharge 
spatial distribution.

Reclassification and standardization

The map layers of all hydrogeologic factors were standard-
ized using the fuzzy membership system. For conformity 
among the factors, the standardization of the maps was done 
to provide a platform for their incorporation. The fuzzy large 
function was applied when it is considered that a high input 
value of a given factor is more likely to produce an environ-
mental hazard. For the fuzzy MS small function, this was 
applied when it is considered that a small input value of 
a given factor is more likely to produce an environmental 
hazard (Okonufua et al. 2019).

Groundwater vulnerability assessment model

The proposed model in this study involves the integration 
of a hybrid MCDM model and the DRASTIC model in the 
GIS environment. This study aims to take advantage of the 

(1)K
C
=

1
/

�
unique capacity of GIS applications in managing geospatial 
data and the ability of the MCDM model to handle complex 
decision-making problems (Haroon and Muhammad 2022). 
A hybrid MCDM model that consists of IRN, DEMATEL, 
and ANP was used to compute the weight and model the 
hydrogeologic impact. In the first stage of the proposed 
assessment model, the IRN-DEMATEL method is used to 
produce a relationship network between the hydrogeologic 
factors and determine their influence on groundwater vulner-
ability. The second step involves using the DEMATEL out-
put to calculate the final weight of the hydrogeologic factors 
based on the ANP method. In the last step, the DRASTIC 
model integrates the hydrogeologic factors based on their 
weights. Further description of the integration of the models, 
their order of integration, and the DRASTIC model’s output 
are stated below.

This study’s proposed hybrid MCDM model integrates 
the IRN, DEMATEL, and ANP methods for decision-
making analysis. The IRN method is helpful in the theory 
of rough sets, handling uncertainty and imprecision 
in collective decision-making (Wang et  al. 2019). It 
eliminates subjectivity in decision-making problems 
(Pamucar et  al. 2018) by defining uncertain number 
intervals; its application helps to eliminate the need for 
additional information in decision-making (Wang et al. 
2019). The DEMATEL method is a practical approach 
for modeling causal dependencies among factors and 
visualizing their complex cause-and-effect relationships 
comprehensibly (Pamucar et al. 2017). By using matrices 
or graphs, the DEMATEL method depicts the relations 
between various factors of a system in such a way that 
numbers can be used to describe the intensity of the 
relationships (Kanani-Sadat et al. 2019). As a result, this 
method presents a sum of all direct and indirect effects 
of the various factors transferred to and received by other 
factors (Wang et al. 2019). The ANP method, proposed by 
Saaty in 1996 (Mirhosseini et al. 2020), is a generalized 
form of the AHP method that models decision-making 
problems as networks instead of hierarchies (Kadoic 
et  al. 2019). It substitutes single-direct relationships 
with feedback and dependency; the ANP method not only 
considers linear relationships between factors but also 
validates their interactions (Matin et al. 2020).

Application of the IRN method

The first phase of the hybrid MCDM model is applying the 
IRN method to treat uncertainty and subjectivity contained 
in the expert’s decision. The required input data for this 
phase is the initial pairwise comparison matrix which 
experts provide. Here, experts provide a bundle of pairwise 
comparisons between every two distinct factors. A pair of 
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real numbers 
(

lk
ij
,mk

ij

)

 is used for evaluation, where k 
denotes the number of corresponding experts in which 
k = 1, …, N. The judgment of the k-th expert about the influ-
ence of the i-th criterion on the j-th one is 

(

lk
ij
,mk

ij

)

 . A pre-
defined scale of real numbers ranging from 0 to 5 was used 
for evaluation, as shown in Table 1. If a K expert is uncer-
tain about the influence between a pair of factors, then 
lk
ij
≠ mk

ij
 is established. On the other hand, if the K expert is 

certain about the decision, then lk
ij
= mk

ij
 is established. For 

this study, questionnaires were distributed to four (4) 
experts with extended years of experience in groundwater 
study.

The obtained pair of real numbers 
(

lk
ij
,mk

ij

)

 contained in the 
initial pairwise comparison matrix was then transformed into 
r o u g h  s e q u e n c e s  RN(lk

ij
),RN(mk

ij
)  ,  w h e r e 

RN
(

lk
ij

)

=
[

Lim(lk
ij
),Lim(lk

ij
)
]

 ,  a n d 

RN(mk

ij
) =

[

Lim(mk
ij
),Lim(mk

ij
)
]

 . Lim(lk
ij
) and Lim(mk

ij
) repre-

sent the lower limits, and Lim(lk
ij
) and Lim(mk

ij
) represent the 

upper limit of the rough sequences RN
(

lk
ij

)

 and RN(mk

ij
) . For 

more information about the IRN, see Pamucar et al. (2018), 
Sepehri et al. (2020), and Stevic et al. (2019).

The next step in the IRN method is aggregating the rough 
sequence of all the decision-makers, which is done by applying 
Eqs. (2) and (3).

where k represents the kth expert (k = 1, 2,…, N), RN
(

lij

)

 
and RN

(

mij

)

 represent the rough sequences that together 
make up IRN dij = [(l

L

ij
 , l

U

ij
 ), ( mL

ij
 , mU

ij
)]. Hence, we obtain the 

IRN decision matrix as D

(2)RN
�

lij

�

= RN
�

l1
ij
, l2
ij
,… , lk

ij

�

⎧

⎪

⎨

⎪

⎩

l
L

ij
= 1

M

∑M

k=1
lkL
ij

l
U

ij
= 1

M
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k=1
lkU
ij

(3)RN
�

mij

�

= RN
�

m1

ij
,m2

ij
,… ,mk

ij

�

�

m
L

ij
= 1

M

∑M

k=1
mkL

ij

m
U

ij
= 1

M

∑M

k=1
mkU

ij

where c denotes the number of criteria (hydrogeologic 
factors).

The last step of this method is the transformation of interval 
rough numbers into crisp numbers to obtain our initial deci-
sion matrix. Hence, the matrix D is transformed using Eqs. (5) 
and (6) to obtain the elements of our initial decision matrix D 
(Eq. (7)).

Application of the DEMATEL method

The second phase of the hybrid MCDM model involves the 
application of the DEMATEL method to analyze the struc-
ture and the strength of the relationships between the fac-
tors. The initial decision matrix D obtained using the IRN 
method is used as the input data for the DEMATEL method. 
The first step of this method involves the normalization of 
the elements of the initial decision matrix D to obtain the 
normalized matrix Z , as shown in Eq. (8).

The elements zij of the normalized matrix Z are obtained 
using Eqs. (9) and (10).

(4)D =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

d
11

d
12

⋯ d
1c

d
21

d
22

… d
2c

⋮ ⋮ ⋱ ⋮

dc1 dc2 ⋯ dcc

⎤

⎥

⎥

⎥

⎥

⎥

⎦c×c

(5)
� =

⎡

⎢
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⎢

⎣
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�
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�

RB
�
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�
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�
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�

⎤

⎥

⎥

⎥

⎦
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�
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�

=
�

m
U
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− m

L
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�

;RB
�

lij

�

=

�

l
U
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− l

L
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�

(6)Dij =
[

� .l
L

ij

]

+
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(1 − �).m
U
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]
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⎡
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D
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⎤

⎥

⎥

⎥

⎦
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⎡
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⎢

⎣
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⋯ z
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⎤

⎥

⎥

⎥

⎥

⎦
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(9)

Table 1  Linguistic values and their corresponding real numbers

Linguistic values Real 
numbers

Very high influence (VH) 5
High influence (H) 4
Medium influence (M) 3
Low influence (L) 2
Very low influence (VL) 1
No influence (NO) 0
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The second step in this phase involved evaluating the total 
relationship between the hydrogeologic factors as illustrated 
by the matrix T  . The matrix T illustrates the direct/indirect 
relationships of the hydrogeologic factors and is defined 
using Eqs. (11) and (12), where I is an identity matrix.

After determining the total relationship between the con-
ditioning factors, values of R and S were calculated. The 
value R elucidates the direct/indirect impacts that condition 
i has on other conditions; this is obtained by calculating the 
sum of the i-th row of the matrix T  (see Eq. (13)). S dem-
onstrates the general influences of all the criteria on the j 
criterion, and this is obtained by calculating the sum of the 
j-th column of the matrix T  (see Eq. (14)).

The values R + S and R − S represent the significance of 
the criteria and understand the causal relationship between 
criteria. R + S specifies the measure of influence i criterion 
that has on the remaining criteria and designates its position 
in the problem. R − S indicates the influence of the crite-
ria in the system, with a positive value demonstrating that 
the i-th criterion is effective and falls into the category of 
“causes.” Also, a negative value of R − S shows that the 
i-th criterion will be under the influence of others and fall 
into the category of “effects.” Criteria with a high value of 
R − S have higher priority, while those with low values have 
a lower priority.

Application of the ANP method

The third and final phase of the hybrid MCDM model 
involves applying the ANP method to determine the relative 
weights of the hydrogeologic factors. The total relationship 
matrix T obtained in the model’s previous phase is used as 
the input data for this phase. The first step in this phase is 

(10)

(11)T =

⎡
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t
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1c
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(12)tij = zij ×
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)−1
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[
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]

c×1
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the creation of an unweighted supermatrix from the total 
relationship matrix T . Furthermore, to obtain the unweighted 
supermatrix, experts define an α-cut threshold to filter out 
the minor influences from the matrix T . A general schema of 
α-cut total-relation matrix T∝ is shown in Eq. (15). If tij <∝ , 
then t∝ij = 0; otherwise, t∝ij = tij , where tij is the element of 
the total-relation matrix T .

The matrix T∝ gives us our unweighted supermatrix. 
The second step in this method involves the definition of a 
weighted supermatrix by normalizing the unweighted super-
matrix T∝ . To achieve normalization, the sum of elements of 
the matrix T∝ by columns is determined. The normalization 
of the matrix T∝ yields the elements of the weighted super-
matrix W̃  , and the equation is shown as follows:

where W̃ij = t∝ij∕d̃i , and the value of d̃i is obtained from 
d̃i =

∑c

i=1
t∝ij.

The final step of this method involves the determination 
of the weight of the hydrogeologic factors. Here, a limit 
supermatrix is obtained by multiplying the weighted super-
matrix by itself multiple times. The weighted supermatrix 
can be raised to the limiting powers until the supermatrix 
has converged and become a long-term stable supermatrix 
to obtain global priority vectors, called IRN-DEMATEL-
ANP influence weights, such as lim

k→∞
= W̃k , where W denotes 

the limit supermatrix and k denotes any number. After deter-
mining the individual weights of the hydrogeologic factors, 
the DRASTIC model was applied to aggregate them and 
produce a groundwater vulnerability map of the study area.

Application of the DRASTIC model

The DRASTIC model is an empirical model which relies on 
hydrogeologic data to assess the vulnerability of the ground-
water systems (Shah et al. 2021). The model is based on four 
significant assumptions viz:

• introduction of contaminant to the ground surface region,
• precipitation is responsible for the transportation of pol-

lutants to groundwater,
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• the contaminants have enough water mobility to reach 
the water table, and

• the area under study is 100 acres or more (Bera et al. 
2021; Mondal et al. 2019).

The model can be employed using GIS and hydrogeo-
logic data to delineate thematic map layers representing the 
DRASTIC model’s factors. The model’s product is an index 
map of groundwater vulnerability obtained by assigning rat-
ings and weights to the hydrogeologic factors (Jang et al. 
2017). A general equation of the DRASTIC model is shown 
in Eq. (17):

where DI represents the DRASTIC index, and D, R, A, S, 
T, I, and C represents the seven hydrogeologic factors of 
groundwater depth, net recharge, aquifer media, soil media, 
topography, the impact of the vadose zone, and the hydrau-
lic conductivity respectively. The subscript “r” represents 
the rating of the factors, which was conducted in this study 
using the fuzzy membership function. The subscript “w” 
represents the relative weight of the factors obtained in this 
study using the IRN-DEMATEL-ANP model. The raster cal-
culator function was used to run the DRASTIC model and 
realize the groundwater vulnerability map of the study area.

Results and discussions

This study modified the DRASTIC model for a more effi-
cient and reliable assessment of groundwater vulnerability. 
The conventional method of assigning weight and ratings in 
the DRASTIC model creates subjectivity and uncertainty in 
the decision-making. Hence, the method of assigning weight 
employed in this study considers the subjectivity and uncer-
tainty of the decision-making process to produce a more 
efficient vulnerability map. The seven hydrogeologic factors 
of the DRASTIC model were delineated with the aid of GIS 
and standardized using the fuzzy membership system.

Delineation of hydrogeologic factors

The depth-to-water table captures the total distance cov-
ered by pollutants from the soil surface point of entry to the 
point of dissolution in the water table. As pollutants travel 
through soil media, attenuation significantly filters the pol-
lutants through seepage (Bera et al. 2021). Hence, a greater 
depth-to-water table reduces groundwater pollution risks, 
as greater depth indicates higher pollutant travel time from 
the surface to the water table. The depth-to-water table in 
the study area ranged from 37.26 to 251.76 m, classified 
into 37.26–88.57 m, 88.58–110.44 m, 110.45–136.52 m, 

(17)
DI = DrDw + RrRw + ArAw + SrSw + TrTw + IrIw + CrCw

136.53–172.69 m, and 172.70–251.76 m. Greater water 
depths were observed in Anambra West, Aguata, and Nnewi 
South LGAs, while lesser water depths were observed in 
Dunukofia, Oyi, and Idemili North and South LGAs. The 
fuzzy MS small membership function was used to standard-
ize this factor as a lesser depth-to-water table poses more 
significant pollution risks. The result of the fuzzification is 
shown in Fig. 2a.

Net recharge, i.e., the total amount of water percolating 
soil media to recharge the water table (Moghaddam et al. 
2018), is an essential factor in assessing groundwater vul-
nerability, as surface pollutants can easily dissolve and be 
transported in recharge water. In addition, more net recharge 
increases the propensity of pollutant dissolution, transport, 
and contamination of receiving water table (Lathamani et al. 
2015; Bera et al. 2021). The net recharge obtained in the 
study area varied from 1 to 7 mm/year and was classified 
into 1–2.20 mm/year, 2.21–3.40 mm/year, 3.41–4.60 mm/
year, 4.61–5.80 mm/year, and 5.81–7 mm/year. Based on 
this fact, the fuzzy large membership function was used to 
standardize this factor; see Fig. 2b.

An aquifer’s nature and flow rate are determined by its 
media, which also determines the route and path length of 
the pollutant (Bhuvaneswaran and Ganesh 2019). Further-
more, the aquifer media factor is crucial to salinity’s move-
ment in groundwater as they provide interconnected pore 
spaces facilitating solute movement (Shakoor et al. 2020). 
Moreover, the pollution of an aquifer depends on the quan-
tity and sorting of fine grains which make up the media. The 
finer the grains, the less the risk of the aquifer to pollution. 
The aquifer media in this study was modeled as the aqui-
fer media resistivity values and ranged from 138.1 Ωm at a 
thickness of 42.13 m and a depth of 38.73 m to 8176.89 Ωm 
at a thickness of 24.86 m and a depth of 64.29 m. The resis-
tivity values were further classified into five: 138.1–1209.94 
Ωm, 1209.95–1966.53 Ωm, 1966.54–2817.70 Ωm, 
2817.71–3700.39 Ωm, and 3700.4–8176.89 Ωm. The aquifer 
media factor was standardized using the fuzzy large mem-
bership function. Lower resistivity values were associated 
with more clayey and less permeable materials being restric-
tive to pollutant transport. The result of the fuzzification is 
shown in Fig. 2c.

The soil media (the topmost weathered layer above the 
vadose zone) significantly affects water table net recharge 
(Shah et al. 2021). It also impacts the pollutants’ mobiliza-
tion and transport as a higher holding capacity of the soil 
media prolongs pollutants’ travel time (Hamza et al. 2014). 
There are five soil classes in the study area, dominated 
mainly by fluvisol, alluvial, and gleysol, with plinthosol 
and nitrosol occupying tiny parts of the study area. The 
soil classes were reclassified into numeric values ranging 
from 1–5, with 1 representing low risk and 5 represent-
ing high risk. Due to its high-water holding capacity and 
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ability to delay pollutant migration, alluvial was assigned 
the numeric value of 1. In contrast, fluvisol was assigned 
the numeric value of 5 due to its weak topsoil formation. 
After reclassification, the soil media was standardized 
using the fuzzy large membership function, as shown in 
Fig. 2d.

In the DRASTIC model, the topography factor (which 
captures the impact of land surface slope) determines 
the propensity of pollutants to surface runoff or retention 
toward the water table (Tiwari et al. 2016). The slope of 
the study area ranged from 0° to 43.46°, with flat slopes 
dominating the northern part of the state. The slope was 

Fig. 2  Delineated maps of hydrogeologic factors: (a) depth-to-water table; (b) net recharge; (c) aquifer media; (d) soil media; (e) topography; (f) 
vadose zone; and (g) hydraulic conductivity
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further classified into five: 0–1.36°, 1.37–3.58°, 3.59–6.48°, 
6.49–11.25°, and 11.26–43.46°. The fuzzy MS small mem-
bership function was used to standardize this factor, as 
shown in Fig. 2e. This was conducted because flat slopes 
tend to retain water and its associated pollutants for more 
prolonged periods, whereas steep slopes encourage more 

runoff and less pollutant retention. Hence, there is a higher 
risk of pollutant infiltration and migration to the water table 
on flat slopes than on steep slopes.

The vadose zone (the unsaturated area between the 
ground surface and the water table) impacts the speed of 
pollutant migration into an aquifer (Saida et al. 2017). The 

Fig. 2  (continued)
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type of material that constitutes the vadose zone influences 
groundwater pollution mechanisms, including biodegra-
dation, mechanical filtration, sorption, volatilization, and 
dispersion (Bhuvaneswaran & Ganesh 2019). In addition, 
the vadose zone’s influence on groundwater’s vulnerabil-
ity is a combination of topography and the aquifer media 
(Shakoor et  al. 2020). In this study, the impact of the 
vadose zone factor was modeled as the resistivity values 
obtained from the vadose zone in the study area, ranging 
from 311.33 to 34,630.26 Ωm, which were further clas-
sified into 311.33–3675.93 Ωm, 3675.94–7309.70 Ωm, 
7309.71–11,616.39 Ωm, 11,616.40–16,999.75 Ωm, and 
16,999.76–34,630.26 Ωm. Previous studies considered vari-
ous materials such as sand, gravel, sand-gravel, clay, and 
clay-sand (Ahada and Suthar 2018). Others excluded the 
impact of the vadose zone entirely due to the non-availa-
bility of data in the assessment of the zone (Adnan et al. 
2018); since these materials have various resistivity values, 
the values of the resistivity of the zone were used in the 
classification of the zone (Bhatnagar et al. 2022). Higher 
resistivity values were observed in the southern part of the 
state, including Ihiala, Ekwusigo, Aguata, Idemili North, 
and South LGAs. The impact of the vadose zone factor 
was standardized using the fuzzy large membership func-
tion based on the same reason highlighted previously for 
the aquifer media factor. The result of the fuzzification is 
shown in Fig. 2f.

Hydraulic conductivity, an aquifer’s ability to transmit 
water, depends on a specific hydraulic gradient (Mondal 
et al. 2019; Vosoogh et al. 2017). This factor further indi-
cates how fast pollutants travel, their residence time, and 
subsequent dilution ability (Yankey et al. 2021). Hydrau-
lic conductivities in the study area ranged from 0.0124 to 
0.7832 cm/s and were classified into 0.0124–0.1666 cm/s, 
0 . 1 6 6 7 – 0 . 3 2 0 7   c m / s ,  0 . 3 2 0 8 – 0 . 4 7 4 9   c m / s , 
0.4750–0.6291 cm/s, and 0.6292–0.7832 cm/s. Most parts 
of Anambra state had low hydraulic conductivity, but high 
hydraulic conductivity was also observed in some parts of 
Awka North and South LGAs. The hydraulic conductivity 
factor was standardized using the fuzzy large membership 
function, and the result is shown in Fig. 2g. The choice of 

fuzzification was based on the correlation of higher conduc-
tivities with higher pollution risk (Arya et al. 2020).

Determination of the relationship 
between hydrogeologic factors

A hybrid MCDM model of IRN, DEMATEL, and ANP 
methods was used to evaluate the interrelationship between 
the hydrogeologic factors of groundwater pollution and sub-
sequently determine their individual weights. Through the 
expert survey, a pairwise comparison matrix was acquired 
and processed using the IRN method to eliminate uncer-
tainty and vagueness in the experts’ decisions. The matrix 
obtained contained a pair of real numbers, and these values 
were transformed to interval rough numbers using Eqs. (2) 
to (12). Equations (2) and (12) were further employed to 
aggregate the decision of the experts and obtain our IRN 
decision matrix. The interval rough numbers contained in 
the IRN decision matrix were then transformed to crisp 
numbers using Eqs. (2) and (12) to aid data interpretation. 
This transformation gives us our initial decision matrix D , 
as shown in Table 2.

The elements of the matrix D were normalized using 
Eqs. (19) to (21), thereby obtaining the matrix Z . The total 
relationship matrix T , which illustrates the interrelationships 
between the hydrogeologic factors, was derived from the 
matrix Z using Eqs. (22) and (23). The resultant matrix T  is 
shown in Table 3.

Each row of the matrix T  was summed up as indicated 
by Eq. (24) to obtain our R factor, and each column was 
also summed up as indicated by Eq. (25) to obtain the S 
factor. Determining R and S factors is necessary to examine 
each hydrogeologic factor’s significance and its effect on 
groundwater vulnerability. The values of R and S describe 
each hydrogeologic factor’s indirect and direct effects from 
and transferred to other hydrogeologic factors. The result 
for R , S , R + S , and R − S factors are shown in Table 4. The 
R + S and R − S factors were then used to construct the 
CER diagram and visualize the complicated interrelation-
ship between the hydrogeologic factors, where the x-axis 

Table 2  Initial decision matrix j D R A S T I C
i

D 0.00 4.00 3.00 3.00 2.52 2.92 2.52
R 4.32 0.00 3.54 3.00 3.50 3.78 3.54
A 3.00 3.50 0.00 3.56 1.84 2.83 4.56
S 3.00 3.00 3.56 0.00 3.00 3.36 4.23
T 2.80 3.50 2.00 3.00 0.00 1.80 3.00
I 2.92 3.78 2.83 3.36 1.80 0.00 3.20
C 2.52 3.54 4.56 4.23 3.00 3.36 0.00
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contains values of the R + S factor and the y-axis contains 
values of the R − S factor (see Fig. 3).

The interpretation of the result obtained for the R − D 
factor shows that net recharge, soil media, topography, and 
hydraulic conductivity are influential hydrogeologic factors 
and thus categorized as “causes.” The result also indicates 
that depth-to-water table, aquifer media, and impact of the 
vadose zone factors are influenced by other factors and thus 
categorized as “effects.” Furthermore, the topography factor 
was given the highest priority with the highest positive value 
of 0.1721, and the depth-to-water table factor was given the 

lowest priority with the highest negative value of − 0.2165. 
The priority given to topography can be attributed to its role 
in the penetration of water recharge and subsequent migra-
tion of associated pollutants. By influencing the penetration 
of water recharge, topography affects the amount of water 
passing through the water table to the aquifer media.

Determination of individual weights 
of hydrogeologic factors

The individual weights of hydrogeologic factors were 
determined using the ANP method, and the total relation-
ship matrix was employed as input data. Expert opinion 
was relied upon to arrive at an optimum α threshold value 
of 1.08. This was used to filter out minor influences from 
the matrix T  to obtain an unweighted supermatrix, i.e., the 
elements of the matrix T  with values less than the α value 
of 1.08 were equated to 0 to obtain the unweighted super-
matrix T∝ as illustrated by Eq. (26). The matrix T∝ was 
then normalized using Eq. (27), and the resultant matrix, 
which is our weighted supermatrix W̃  is shown in Table 5. 
The final step in this phase involved the determination of 
the weight of the hydrogeologic factors from the weighted 
supermatrix W̃  . To achieve this, the matrix W̃  was lim-
ited by raising it to the power of 13. This produced con-
vergent values representing the individual weights of the 
hydrogeologic factors; the result is shown in Table 6. The 
resultant individual weights of the hydrogeologic factors, 
as determined by the ANP method, indicate that the net 
recharge factor has the highest weight of 0.1986, followed 
closely by the hydraulic conductivity factor with a weight 
of 0.1969. In descending order, the soil media, aquifer 
media, impact of the vadose zone, depth-to-water table, 
and topography factors weighted 0.1644, 0.1609, 0.1248, 
0.1047, and 0.0497, respectively. This result shows that 
hydrogeologic factors, net recharge, and hydraulic con-
ductivity constitute the two most significant factors to 
consider when evaluating groundwater vulnerability in 
the study area.

Table 3  Total relationship 
matrix

j D R A S T I C
i

D 0.9686 1.2396 1.1409 1.1585 0.9391 1.0714 1.1853
R 1.2963 1.2663 1.3300 1.3337 1.1123 1.2595 1.4005
A 1.1605 1.3033 1.1012 1.2595 0.9780 1.1418 1.3392
S 1.1874 1.3177 1.2687 1.1478 1.0420 1.1852 1.3582
T 0.9946 1.1238 1.0139 1.0650 0.7615 0.9445 1.1033
I 1.0897 1.2353 1.1408 1.1759 0.9161 0.9574 1.2134
C 1.2228 1.3923 1.3564 1.3661 1.0855 1.2350 1.2539

Table 4  Values of importance and prominence

R S R + S R − S

D 7.7034 7.9199 15.6233  − 0.2165
R 8.9986 8.8783 17.8769 0.1203
A 8.2835 8.3519 16.6354  − 0.0684
S 8.5070 8.5065 17.0135 0.0005
T 7.0066 6.8345 13.8411 0.1721
I 7.7286 7.7948 15.5234  − 0.0662
C 8.9120 8.8538 17.7658 0.0582

Fig. 3  Cause-and-effect relationship (CER) diagram of hydrogeologic 
factors
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Production of groundwater vulnerability map

The DRASTIC method generated a spatial distribution of 
groundwater vulnerability in the study area. The fuzzified 
map layers of the hydrogeologic factors represent the mod-
el’s rating factor, and the IRN-DEMATEL-ANP weight of 
the hydrogeologic factors represents the weighting factor of 
the model. The raster calculator function was used to run 
the DRASTIC model, and the obtained result is shown in 
Fig. 4. The resultant groundwater vulnerability map was 
classified into five distinct categories: “very high,” “high,” 
“average,” “low,” and “very low.” The resultant groundwater 
vulnerability maps are presented at the local government 
areas (LGA) levels of the state to elucidate variations in 
geographical locations. The study area has an estimated land 
mass of about 4563  km2, with the resultant groundwater 
vulnerability map showing that 12.98% (592.21  km2) of that 
land mass falls into the very low vulnerability class, 31.90% 
(1455.78  km2) falls into low vulnerability class, 23.52% 
(1073.20  km2) falls into average vulnerability class, 21.75% 
(992.42  km2) falls into high vulnerability class, and 9.85% 
(449.40  km2) falls into very high vulnerability class. Anam-
bra West and East LGA were classified as highly vulnerable 
areas; this agrees with previous studies on flooding, indicat-
ing that the study area’s western region is prone to flooding 
(Chukwuma et al. 2021). The critical vulnerability observed 
in some parts of the study area can be attributed to heavy 
rainfall recorded in those areas and the associated large vol-
umes of net recharge, which tends to carry pollutants and 
leach them into groundwater sources; this is usually linked 

to flooding. Another reason for the critical vulnerability is 
high hydraulic conductivity which leads to an intensified 
rate of groundwater movement and associated pollutants to 
the aquifer.

This study is critical for groundwater resource sustaina-
bility; several researchers with various reports have strongly 
recommended integrating a hybrid decision model with a 
geospatial-based tool. A recent study integrated hydro-
geological, geospatial, and multi-criteria decision tools in 
groundwater management; the study attempted to classify 
groundwater recharge potential zones in northern Maharash-
tra, India (Sahu et al. 2022). The study applied an analytical 
hierarchy process model and successfully categorized the 
groundwater recharge zones. The study classified the zones 
into high, moderate, and low recharge zones. In contrast, 
this study classified the area into five zones, similar to previ-
ous studies that also applied a modified DRASTIC model. 
Several studies have emphasized on spatial variability of 
groundwater to pollution using the DRASTIC model; a study 
on groundwater vulnerability in the Pesshar District of Paki-
stan reported that the southern and western parts of the study 
areas indicated low vulnerability, whereas the south-east-
ern and north-eastern parts indicate moderate vulnerability 
(Adnan et al. 2018). For this study, very high, high, and aver-
age vulnerability classes dominated LGAs such as Orumba 
North, Orumba South, Ihiala, Ayamelum, and Awka South 
and Awka North. In Orumba North and South LGAs, the 
total area was classified as less susceptible (very low, low, 
and average) to pollution. A similar result was observed in 
Awka North and South, where the state’s capital is located, 
with 96.7% and 100% of the respective total areas of Awka 
North and Awka South classified under low vulnerability.

Studies on the integration of decision models with the 
geospatial application have several advantages owing to the 
unique capacity of GIS applications in managing geospatial 
data and the ability of the MCDM model to handle complex 
decision-making problems (Haroon and Muhammad 2022). 
This study is valuable for groundwater resource manage-
ment; areas of higher vulnerability from this study should 
receive greater interventions, resource allocation, and risk 
management to prevent groundwater pollution. Generally, 
higher resource allocation and priority to risk should be 

Table 5  Weighted supermatrix D R A S T I C

D 0.0000 0.1396 0.1555 0.1557 0.0000 0.0000 0.1339
R 0.2176 0.1426 0.1812 0.1792 0.5061 0.2612 0.1582
A 0.1948 0.1468 0.1501 0.1693 0.0000 0.2368 0.1513
S 0.1993 0.1484 0.1729 0.1542 0.0000 0.2458 0.1534
T 0.0000 0.1266 0.0000 0.0000 0.0000 0.0000 0.1246
I 0.1829 0.1391 0.1555 0.1580 0.0000 0.0000 0.1370
C 0.2053 0.1568 0.1848 0.1836 0.4939 0.2561 0.1416

Table 6  Individual weights of hydrogeologic factors

Hydrogeologic factor Final weight

Depth-to-water table (D) 0.1047
Net recharge (R) 0.1986
Aquifer media (A) 0.1609
Soil media (S) 0.1644
Topography (T) 0.0497
Impact of vadose zone (I) 0.1248
Hydraulic conductivity (C) 0.1969
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given to higher-risk zones such as Anambra West and East 
LGA, considering the region’s high vulnerability to ground-
water pollution.

Identification of factors and ranking of these factors is criti-
cal in the management of groundwater quality. This study fur-
ther suggests that net recharge is the major hydrological factor 
affecting groundwater vulnerability determination. Owing to 
the factor’s significance, special attention should be given to 
regions that experience high surface pollution due to agricul-
tural and industrial activities in the study area. This is impor-
tant, as such activities would increase surface pollution and net 
recharge, which may increase the chances of these pollutants 
reaching the water table (Lathamani et al. 2015). Therefore, 
factor rating is a critical evaluation strategy in groundwater 
quality assessment. The fuzzified map layers of the hydrogeo-
logic factors represent the rating factor for this study; this is 
similar to several research works that successfully attempted to 

rate factors that contribute to groundwater quality. For exam-
ple, Bouselsal and Saibi (2022) assessed geochemical char-
acteristics and groundwater quality using standardized factor 
scores to represent the impact of processes on water quality. 
Similarly, a study by Balaji et al. (2021) improved both the 
rates and weights in the original DRASTIC model by applying 
a modified DRASTIC model using a metaheuristic algorithm 
approach. However, in this study, the IRN-DEMATEL-ANP 
weight of the hydrogeologic factors, representing the weight-
ing factor of the model, was optimized, resulting in a signifi-
cant improvement.

Validation of the groundwater vulnerability 
assessment model

In this study, nitrate concentration was considered a signifi-
cant source of groundwater pollution and used to validate 

Fig. 4  Groundwater vulnerabil-
ity distribution of the study area
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our assessment model compared to the traditional DRAS-
TIC model. This is per previous research work (Moghaddam 
et  al. 2022; Bouselsal and Saibi 2022; Haroon and  
Muhammad 2022). The decision to use nitrate concentra-
tion was based on data availability and the high rate of 
agricultural and industrial activities in the study area. As 
shown in Fig. 5a, the obtained nitrate concentrations from 
22 boreholes in the study area were overlaid with our result-
ant vulnerability map to determine the accuracy of the map. 
Most of the nitrate concentrations obtained agreed with the 
different zones of vulnerability classified using our hybrid 
MCDM assessment model.

Out of 10 boreholes with a higher concentration of nitrate 
(> 4 mg.  L−1), the vulnerability map based on our hybrid 
MCDM model classified six under the high vulnerability 
class and four under the average vulnerability class. Out of 
12 boreholes with a lower concentration of nitrate (> 4 mg. 
 L−1), ten were classified under low vulnerability, and the 
remaining two were under average vulnerability class. In 
comparison, the traditional DRASTIC model ranked 4 out 
of 10 higher concentrations under high vulnerability, four 
under average vulnerability and two under low vulnerability 
classification. For the lower concentrations, the traditional 
DRASTIC model classified 6 out of 12 under low vulner-
ability, two under average vulnerability and four under high 
vulnerability. See Supplementary information 1 for the data 
for the nitrate concentrations and the geographical coordi-
nate. For instance, the borehole located at 6.106379 and 
6.797428 latitude and longitude, respectively, with a nitrate 
concentration of 15.6 mg.  L−1 was under the average clas-
sification of the hybrid model. At the same time, it was clas-
sified in the traditional model within the low vulnerability 
zone. Generally, the hybrid model shows better agreement 
with the nitrate concentration, an indication of improvement 

in vulnerability assessment, which is critical in groundwater 
resource management.

Based on these results, the hybrid MCDM model per-
formed better than the traditional MCDM model. Though 
not a robust method of validating groundwater vulnerability 
results, nitrate concentrations help define sources of surface 
pollution and the manner of the permeable media’s response 
to the contamination process (Aydi 2018). A recent study 
asserted that the original DRASTIC model weights and rates 
indicate a poor correlation between groundwater vulnerabil-
ity index and nitrate concentration. This can be attributed 
to the tendency to consider each factor’s relative signifi-
cance and subsequent weight, as also established by several 
researchers (Saida et al. 2017; Balaji et al. 2021). However, 
this study’s improved DRASTIC model performance due 
to a novel combination of hybrid models indicates that the 
approach used here is veritable in groundwater pollution 
assessment.

Conclusion

The vulnerability of groundwater resources to pollution has 
been assessed in this study. A modified DRASTIC method 
was employed for the assessment. To modify and improve the 
DRASTIC method, this study employed hybrid MCDM mod-
els of IRN, DEMATEL, and ANP methods to determine the 
weights and ratings of the hydrogeologic factors of the DRAS-
TIC method. The application of GIS was utilized to delineate 
the thematic maps of the hydrogeologic factors and run the 
model. The hybrid MCDM model proved effective and efficient 
in evaluating the factors’ interrelationships and assigning rela-
tive weights based on expert surveys. The DEMATEL method 
found the topography to be the most influential. The ANP 

Fig. 5  (a) Validation map of the 
hybrid DRASTIC model; (b) 
validation map of the traditional 
DRASTIC model
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method found the net recharge factor to be the most significant 
factor in the study area and the topography factor to be the least 
significant. The obtained vulnerability map indicates that the 
study area is quite vulnerable to groundwater pollution, with 
about 68% of the total study area falling between very high and 
average vulnerability classes. Based on obtained nitrate con-
centrations, the assessment model adopted in this study was 
validated compared to the traditional DRASTIC method, and 
the hybrid model showed better predictive performance than 
the traditional DRASTIC method. However, it is recommended 
that the adopted method in this study should be investigated 
further by considering anthropogenic factors in addition to the 
hydrogeologic factors of the DRASTIC method. The role of 
the hybrid integration of MCDM models of IVFRN, DEMA-
TEL, and ANP methods in modifying the DRASTIC model for 
improved assessment of groundwater pollution is demonstrated 
in this study. While the obtained nitrate concentrations in the 
study area are well within the permissible limits of the WHO, 
there is still a need to put appropriate groundwater resource 
management practices in place, especially in those areas with 
high vulnerability. Most of these highly vulnerable areas are 
predominantly agricultural areas, and agricultural activities are 
a major source of surface pollution and the subsequent migra-
tion of pollutants to groundwater. Agricultural activities such 
as fertilizer application in these areas with high vulnerability 
should be properly monitored and regulated.
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