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Abstract 
In the City of Cape Town Metropolitan (CoCT), South Africa, GIS analysts currently delineate 

building footprints by digitizing aerial imagery and stereo-aerial images. This approach 

requires a lot of manual work. It takes a long time, is expensive, and inefficient. Recent studies 

have explored automatic and semi-automatic methods for extracting building footprints. 

Automatic extraction of building footprints from remotely sensed data is useful for urban 

planning, service delivery, and humanitarian efforts. However, there is currently no readily 

available method that can automatically extract footprints while considering the unique 

characteristics of the landscape, such as formal residential areas, industrial zones, and informal 

settlements. Therefore, the main goal of this research is to find a suitable and efficient spatial 

analysis method that accurately extracts building footprints of different sizes and shapes within 

the City of Cape Town, South Africa, using high-resolution aerial imagery and LiDAR-derived 

nDSM. To achieve this goal, a literature review is conducted to explore different building 

footprint extraction algorithms. The review identified Mask Regional Convolutional Neural 

Network (R-CNN) as an effective algorithm for instance segmentation and object extraction. 

Thus, an experiment is conducted to implement Mask R-CNN models that extract building 

footprints from aerial imagery and LiDAR-derived normalized Digital Surface Model (nDSM) 

for each of the three areas: formal residential, industrial, and informal settlements. The training 

focused on the Blaauwberg district, which includes formal residential areas, industrial zones, 

and informal settlements. Each trained model is separately tested on testing datasets for formal 

residential, industrial areas, and informal settlements. Evaluation metrics such as precision, 

recall, F1-score, and Average Precision (AP) score are calculated for each model to assess their 

performance in extracting building footprints from aerial imagery and LiDAR-derived nDSM in 

formal residential, industrial areas, and informal settlements. The Mask R-CNN algorithm 

proved to be very effective in extracting building footprints from high-resolution aerial imagery 

and LiDAR-derived nDSM in formal residential areas, achieving satisfactory precision, recall, 

F1-score, and AP score. In industrial areas, the Mask R-CNN algorithm is found to be highly 

effective in extracting footprints from LiDAR-derived nDSM. However, when extracting shacks 

in densely populated settlements, the Mask R-CNN algorithm performed inadequately, with an 

AP score of 0.28 and 0.31 from aerial imagery and LiDAR-derived nDSM, respectively. 

Nevertheless, the fusion of footprints extracted from LiDAR-derived nDSM and high-resolution 

aerial imagery improved the AP score to 0.52. Hence, this study concludes that the Mask R-CNN 

algorithm is highly effective in extracting building footprints in formal residential areas from 

both aerial imagery and LiDAR-derived nDSM, as well as industrial building footprints from 

LiDAR-derived nDSM. For optimal performance in informal settlements, the fusion of footprints 

extracted from aerial imagery and LiDAR-derived nDSM is necessary. Overall, these trained 

Mask R-CNN models demonstrated satisfactory performance. To enhance the existing 2D 

building footprint layer, these models can supplement by extracting building footprints. This 

updated layer will be more comprehensive and current. Various departments within the CoCT 

can utilize this layer for infrastructure planning, service delivery planning, land use planning, 

and change detection. For better performance, it is recommended to add more informal and 

industrial training datasets with sufficient roof variability. Fine-tuning the Mask R-CNN models 
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will ensure accurate extraction of shacks and industrial building footprints by allowing the 

models to learn effectively. 
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1. Introduction 

1.1 Background 

The extraction of building footprints from remotely sensed data is increasingly important for 

various applications in residential and urban areas (Gilani et al., 2015). In South Africa, like in 

many other countries, residents are moving to cities in search of better education, job 

opportunities, and more. As a result, cities become overcrowded, creating a demand for formal 

housing among the working class. This demand, along with the needs of informal settlements, 

requires services from government entities such as Emergency Medical Services, the police, and 

water delivery, to ensure a functional environment (Esri South Africa, 2022). The private sector, 

focusing on utilities and real estate, also requires up-to-date information on dwelling 

frameworks for spatial analysis, planning, product placement, and market awareness 

(Haithcoat et al., 2001). 

 

Census surveys are conducted every ten years in South Africa, but due to the dynamic nature of 

formal housing and informal settlements, the household count becomes outdated by the time 

the results are released (Esri South Africa, 2022). This poses challenges in accessing up-to-date 

information for planning, service delivery, and humanitarian interventions. To overcome this, 

up-to-date building footprint data is needed to accurately estimate the number of households 

in areas experiencing active migration, including the City of Cape Town. This relies on new, 

faster, and more reliable data acquisition and analysis techniques. 

 

Building footprint extraction from remotely sensed data has been studied extensively 

worldwide. Accurate building boundaries are crucial for applications in real estate, urban 

planning, disaster management, 3D city modeling, cartographic mapping, and emergency 

responses (Sohn and Dowman, 2007; Li and Wu, 2013; K. Bittner et al., 2018). Building 

footprints provide visual representations of a building's location, shape, dimensions, 

orientation, and area. They may also include additional geospatial information such as address, 

latitude/longitude, place, and spatial hierarchy. With the development of smart cities, there is 

an increasing need for automatic or at least semi-automatic methods for digital building 

footprint data extraction in urban areas (Partovi et al., 2017). 

 

Currently, in the City of Cape Town, GIS analysts manually delineate building footprints by 

digitizing aerial imagery and stereo-aerial images. This approach is time-consuming, expensive, 

and requires significant manual work (K. Bittner et al., 2018). The automatic extraction of 

building footprints is challenging due to variations in building shape and size, as well as the 

complexity of the surrounding environment (Shoko et al., 2022). High-resolution imagery, 

although rich in spectral information, is susceptible to noise and can be affected by contrast, 

illumination, occlusion, and shadow effects (Gilani et al., 2015). Extraction of building footprints 

becomes particularly challenging in large and densely built-up urban areas. To overcome this, 

researchers have focused on developing automated methods using Light Detection and Ranging 

(LiDAR)-derived Digital Surface Models (DSM), which provide valuable data sources for 

building footprint extraction and height information (Lee et al., 2003; Zhang et al., 2006; 

Tarantino and Figorito, 2011; Wang, 2016). The height variation captured by LiDAR data is 
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more suitable for detecting elevated objects and delineating building footprints than spectral 

and texture changes (Gilani et al., 2015). However, the under-sampling nature of LiDAR data 

acquisition, along with backscattering limitations, makes it difficult to extract building edges 

with height discontinuity, resulting in poor horizontal accuracy and geometric precision of the 

extracted footprints (Sohn and Dowman, 2007). 

 

To compensate for the limitations of individual data sources, the fusion of LiDAR data and aerial 

imagery is used to provide complementary information and improve accuracy and robustness 

in building footprint extraction (K. Bittner et al., 2018). Several studies have attempted to 

integrate airborne LiDAR and high-resolution aerial imagery for building footprint extraction 

(Zhang et al., 2020; Gilani et al., 2015; Bittner et al., 2018). 

 

In this research, a method for effectively extracting building footprints using LiDAR-derived 

normalized Digital Surface Models (nDSM) and high-resolution aerial images within the City of 

Cape Town is investigated and implemented. 

1.2 The Research Problem Statement 

For successful urban planning, service delivery, and humanitarian interventions, having 

accurate and current building footprint data is crucial. Obtaining this data relies heavily on 

advanced techniques for fast, reliable, and capable data acquisition and analysis. In the past, GIS 

analysts manually digitized building footprints from aerial and satellite imagery, which is 

inefficient for citywide efforts, even though it requires minimal user training (K. Bittner et al., 

2018). Modern approaches prefer automated and efficient methods for extracting building 

footprints, aligning well with the rapidly evolving nature of big data, machine learning, deep 

learning, and digital extraction algorithms. 

 

Recent studies have applied deep learning algorithms to aerial imagery or LiDAR-derived nDSM 

to automatically extract building footprints. However, these studies do not consider the unique 

characteristics of buildings in formal residential and industrial zones, and informal settlements 

(Zhao et al.,2018; Tiede et al., 2021; Mohamed et al.,2022). This predominantly happens in 

developing countries due to rapid urbanization which leads to the proliferation of informal 

settlements in developing countries caused by the failure to provide this rapidly urbanizing 

population with the necessary services and infrastructure, including planned land, for orderly 

development (Kironde, 2006). Thus, South Africa is a developing country and formal and 

informal zones co-exist in its Metropolitan. These areas consist of buildings with different 

characteristics, such as various roofing materials, shapes, sizes, and heights. This negatively 

affects the performance of deep learning algorithms. Providing a solution is necessary as this is 

a challenging problem. Therefore, in this research, these three areas: formal residential, 

industrial, and informal settlement have been separated when training the deep learning 

models. Two Mask R-CNN models have been trained for each of the three areas, with one using 

the LiDAR-derived nDSM and the other utilizing the aerial imagery, both employing the labeled 

2D building footprints as training datasets. 

 

To effectively compare the models' performance, a new test dataset, unseen in both training 

and validation, is fed into the network, and evaluation metrics are calculated. For each of the 
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three areas, a comparison and analysis are conducted on the results obtained from the aerial 

imagery and LiDAR-derived nDSM to find the best-performing model for extracting building 

footprints throughout the CoCT. 

1.3 Research Questions 

The research will seek to answer the following question(s); 

 Which spatial data analysis method is suitable and efficient to extract accurate and well-

regularized building footprints? 

 How can remote sensing data such as aerial imagery and LiDAR data be effectively used 

to extract accurate building footprints? 

 How do building footprint extraction models perform across various urban scenes in the 

City of Cape Town? 

1.4 Aim and Objectives 

1.4.1 Aim 

The main aim of this research was to automatically extract building footprint from remote 

sensing data in the City of Cape Town Metropolitan, South Africa. 

1.4.2 Objectives 

In achieving the aim stated above the following objectives were pursued; 

 To conduct a literature review and identify an effective spatial data analysis method for 

automatic building footprint extraction.  

 To use LiDAR-derived nDSM and aerial imagery to improve the accuracy and robustness 

of building footprint extraction. 

 To discuss building footprint extraction results obtained from aerial imagery and LiDAR-

derived nDSM, and compare the performance of models in formal residential, industrial 

area, and informal settlements. 

1.5 The Research Significance 

Building extraction from remote sensing data has become a crucial and challenging task in 

recent decades due to rapid urban growth. The identification of buildings in remote sensing 

data, such as high-resolution aerial imagery and LiDAR (nDSM), requires significant 

computational resources but holds immense importance across various industries and 

government institutions. Currently, the City of Cape Town manually digitizes building roofs 

from stereo imagery to create a building footprint layer for multiple applications. This study 

addresses the need for a fast and effective method to automatically extract building footprints 

from available remote sensing data in the City of Cape Town, municipality. Various departments 

within CoCT are seeking a more accurate and up-to-date building footprint dataset for a range 

of purposes, including: 

 Electricity, Water and Sanitation, Transport departments’ infrastructure planning 

initiatives include the development of stormwater and sewer networks, the planning of 

electric routes and substations, as well as road and MyCity Bus routes and stops 

planning  
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 Electricity departments use building footprints to monitor informal structures 

constructed beneath their power lines. This enables them to plan for relocating dwellers. 

 The Catchment Stormwater and River Management branch in the Water and Sanitation 

department uses building footprints for flood modeling studies. Access to building 

footprints helps obtain more precise results for flood modeling studies. 

 The Property Valuation department monitors and detects changes in buildings to 

proactively identify and address illegal construction activities throughout the city. 

 Service delivery planning involves estimating future electricity demands, ensuring 

sufficient waste bins and collection services for formal residential areas with backyards, 

and providing bagged cleansing services for households in informal settlements. 

Accurate planning and service delivery depend on knowing the number of dwellings in 

these areas. 

 The Spatial, Urban Planning, and Design departments utilize building footprints for 

several purposes. Firstly, uses them to estimate the floor factor in areas designated as 

single residential 2 for land use planning in development management schemes. 

Secondly, it uses them to examine changes in CoCT’s densities over time. This helps 

determine if the densification targets set by the CoCT align with the actual situation on 

the ground. Lastly, the building footprint data is used to draft the Local Spatial 

Development Framework (LSDF), which guides decisions related to spatial development 

and land use management and reflects the CoCT's future development vision. 

1.6 The Scope of the Research 

This research is limited to the extraction of building footprint within the City of Cape Town 

Metropolitan in the Western Cape Province of South Africa. The City of Cape Town covers an 

area of about 2461 km2, thus for this study, the Blaauwberg area is chosen for the training, 

validation, and testing of the deep learning models. The Blaauwberg area consists of formal 

residential, industrial areas, and informal settlements. As a result separate models for each area 

will be implemented and used to perform instance and semantic segmentation of building 

footprint specifically for that area (formal residential, industrial, or informal settlements) 

within the CoCT. The implemented deep learning models will be used to extract building 

footprints throughout the CoCT to supplement the existing building footprints generated 

through photogrammetric methods. 

 

Considering the significant computational power and time needed to adequately train deep 

learning models, only the Mask R-CNN algorithm using LiDAR-derived nDSM and high-

resolution aerial imagery is evaluated. The results of the models are analyzed for the three 

areas, namely, formal residential, industrial, and informal settlement. 

1.7 Dissertation Overview 

In this section, the structure of the research work is discussed. 

 

Chapter 1: Background and motivation related to this research are presented along with the 

research problem statement, research questions, aim and objectives, research methodology, 

and scope of the research.  
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Chapter 2: This chapter presents the conducted literature review with a motivation behind 

finding a suitable and efficient spatial analysis method to extract accurate and well-regularized 

building footprints. Thus, this assists in achieving the research objective 1. 

 

Chapter 3: This chapter describes the dataset and study area, important concepts about Mask 

R-CNN architecture to understand how it works internally are provided, and performance 

metrics for the experiment and model inferencing are explained. Thus, this assists in achieving 

the research objectives 2. 

 

Chapter 4: This chapter presents the results of the research work and the analysis of the 

presented results and discussions regarding the analyzed results are mentioned. Thus, this 

assists in achieving the research objective 3. 

 

Chapter 5: This chapter provides the conclusion and future work of the research work. Thus, 

this assists in achieving the research objective 3. 
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2. Literature Review 
In Chapter 1, the background and objectives of this study are presented. The current chapter 

provides a review of research conducted on building footprint extraction using different 

methods, as well as the main applications of extracted building footprints from high-resolution 

aerial imagery with spatial resolution ranging from 0.1m to 05m, and LiDAR data. The primary 

purpose of this review is to analyze and identify the most suitable and efficient spatial data 

analysis method for accurately and consistently extracting building footprints. The review aims 

to explore the available algorithms and determine the appropriate spatial analysis algorithm. 

The remaining sections of this chapter are organized as follows: 

 

Section 2.1 reviews the literature on studies conducted on traditional building footprint 

extraction methods.  

 

Section 2.2 reviews the literature on studies conducted using deep learning-based building 

footprint extraction methods. This section starts by discussing the deep learning background 

and then reviews the literature for studies conducted using two deep learning frameworks, 

namely Unet and Mask R-CNN for semantic and instance object segmentation, respectively.  

 

Section 2.3 discusses the literature on studies conducted on the key applications for building 

footprints extracted from high-resolution aerial imagery and LiDAR data 

2.1 Traditional Building Footprint Extraction 

In the past 12 years, there has been a growing trend in extracting building footprints from 

complex environments. This trend involves integrating high-resolution imagery and LiDAR 

data, which brings complementary benefits. By combining spectral and 3D surface information, 

a more complete description of the scene can be achieved (Gilania et al., 2015). The integration 

of these two data sources has been utilized to enhance the classification performance and 

improve the accuracy and robustness of automatic building detection (Gilania et al., 2015).  

2.1.1 Rule-Based Methods 

According to Siddiqui et al. (2016), rule-based building extraction methods are commonly 

preferred due to their simplicity and effectiveness in various environments. Here's how these 

methods usually work: Firstly, LiDAR data and imagery are utilized as primary cues to delineate 

building footprints in the pre-processing and main stages. Aerial imagery is also used to 

calculate features like Normalized Difference Vegetation Index (NDVI), entropy, shadow, and 

illumination to eliminate vegetation. Consequently, they offer better horizontal accuracy for the 

detected buildings (Gilania et al. 2015).   

 

Another research reported by Li et al. (2013) uses the fusion of LiDAR data and high-resolution 

images with a spatial resolution of 0.1m and 0.5m, respectively. Firstly, a high-quality Digital 

Terrain Model (DTM) generated from the LiDAR data and highly accurate coordinates of ground 

control points from LiDAR intensity images are used for orthorectification by an aerial 

triangulation calculation. The LiDAR data is classified to filter ground points and tree points, 

tree points are filtered using the height difference between the first and last pulse of the point 
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cloud. To separate the tree points from edge and wall points, a novel criterion based on the 

density, connectivity, and distribution of point clusters is used. Then, coarse building footprints 

are extracted from the classified point cloud, edges are detected from high-resolution images, 

and then correct boundaries are identified within the buffer of projected coarse building 

footprints extracted from the LiDAR data. Subsequently, precise building footprints are 

generated by matching conjugate boundaries from high-resolution aerial imagery with the help 

of coarse building footprints from LiDAR data. The identified building footprints are further 

regularized using the RANdom SAmple Consensus (RANSAC) algorithm. The results obtained 

demonstrate the significant improvement in building footprint extraction accuracy achieved by 

the proposed method (Li et al., 2013). 

2.1.2 Gradient-Based Methods 

Siddiqui et al. (2016) developed a novel Gradient-based building extraction method that 

leverages both LiDAR data and aerial imagery. The LiDAR data are first divided into ground and 

non-ground points and then straight lines (i.e., principal orientations of buildings) are extracted 

from the aerial imagery using the Canny Edge detector and Gaussian function. The non-ground 

points are used to separate non-ground straight lines from the ground straight lines. The 

principal orientations of buildings are estimated using the non-ground lines. For each principal 

orientation, the non-ground points are employed to generate an intensity image. Then, a binary 

building mask is derived through a gradient analysis of the intensity image. The binary building 

mask enables the removal of trees through a refinement process. In the refinement process, the 

variance and density analysis is employed on the non-ground building points to eliminate trees, 

whereas, the local colour matching and shadow elimination analyses are employed on the 

imagery pixels to eliminate the remaining regions of trees. Remaining trees after the refinement 

process, the variance and density analysis are removed using the morphological filter. Finally, 

building footprints are extracted around each building (Siddiqui et al., 2016).  

 

It is worth noting that these studies focused primarily on traditional methods and dealt with 

extracting buildings in relatively small study regions. However, their performance has not been 

evaluated in areas containing diverse and complex buildings. 

2.2 Deep Learning Building Footprint Extraction 

Building footprints are among the most prominent features of an urban setting. With the 

increasing availability of very high-resolution aerial imagery and LiDAR data, the research 

paradigm of urban feature extraction has shifted from a traditional-based approach to semantic 

and instance segmentation approaches using neural networks such as Convolutional Neural 

Networks (CNNs) (Aryal et al. 2023). This section presents CNN architectures used to extract 

building footprints in this research. 

2.2.1 Convolutional Neural Network (CNN) 

In recent years, deep learning methods have been widely used in various applications involving 

remote sensing images. These methods employ multiple layers in the network to represent 

complex characteristics (Abdollahi et al. 2020; Li et al. 2019; Liu et al. 2020). By doing so, the 

original input is mapped to multiple variable labels, enabling accurate classification. One 

common type of deep learning method is Convolutional Neural Networks (CNN), which serves 
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as the backbone of the networks (Alsabhan et al. 2022).  CNN networks typically consist of four 

layers. The first layer, called the convolution layer, utilizes a filter to traverse the image. The 

filter acts as a sliding window, performing calculations on the pixels it covers. The output of this 

process is known as a feature map (Krizhevsky et al. 2012). Following the convolution layer, 

there is often an activation layer, such as ReLu, which sets negative values in the incoming data 

to zero (Anam, T. 2021). Subsequently, a pooling layer is applied. In this layer, the maximum 

value within a selected window is retained, reducing the data size through a process known as 

downsampling. Lastly, the flattening layer converts the matrix into a single vector (Anam, T. 

2021).  

 

CNNs are now commonly used as feature extractors in encoder-decoder networks. By learning 

from relevant data, CNN networks automatically extract features, such as urban building 

footprints, from the deep structures within the images (Alsabhan et al. 2022). Encoder-decoder 

networks consist of two main parts: an encoder and a decoder (Alsabhan et al. 2022). The 

encoder, implemented as a CNN, extracts features from the input image and creates feature 

maps. The decoder then transfers the low-resolution feature maps from the encoder to high-

resolution feature maps that align with the input image's size for pixel-wise classification. The 

decoder achieves this by employing various operations, including upsampling, concatenation, 

and regular convolutions (Aryal et al. 2023). Upsampling, which can also be referred to as 

transposed convolution, up convolution, or deconvolution, is a key technique used in the 

process (Vincent, et al., 2018). 

2.2.2 Unet 

The Unet is a popular deep-learning convolutional neural network architecture for semantic 

segmentation and has been used in several satellite image segmentation studies (Li et al. 2019). 

Unet was initially developed for biomedical image segmentation by Olaf Ronneberger et al. 

(2015) and requires a relatively small number of training samples. The Unet architecture 

consists of the encoder and decoder with the addition of  “skip connections“.  These connections 

enable low-level information to pass from the encoder to the decoder to concatenate the 

corresponding encoder layer to the output of up-convolution (Ronneberger et al, 2015). The 

encoder-decoder networks utilize both low-resolution and high-resolution features, 

conserving the spatial integrity of objects which is crucial in the semantic segmentation of 

features (Aryal et al. 2023).  

 

Since its introduction in 2014, deep convolutional neural networks have been widely used for 

various remote sensing image analysis tasks, including road extraction, building extraction, and 

land cover mapping (Xu et al. 2018; Audebert et al. 2017). Deep learning has become the 

preferred solution for object detection and classification. For example, Li et al. (2019) applied 

the Unet algorithm to extract building footprints using the SpaceNet semantic labeling dataset 

and WorldView-3 satellite images provided in the 2018 DeepGlobe Challenge. The dataset 

contained 24,586 image scenes, each with a size of 200 pixels by 200 pixels. They trained the 

Unet-based semantic segmentation model using 302,701 fully annotated building footprint 

polygons.  
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Alsabhan et al. (2022) proposed a building extraction method using the Unet algorithm and the 

Massachusetts building dataset from 2013. The dataset included 151 aerial images at a 

resolution of 1m2/pixel covering 340 square kilometers of densely populated areas in the city 

of Boston. Building footprints were obtained from the OpenStreetMap project, and the dataset 

had two classes: Background (class 0) and Building (Class 1). Two separate Unet-based 

semantic segmentation models were trained for 60 epochs each, using Residual Network 

(ResNet50) and ResNet152 as backbones to improve the Unet model's performance. 

RestNet152 was considered to increase the performance of the Unet model when used as a 

backbone because it has deeper neural network architecture than ResNet50 architecture 

(Alsabhan et al., 2022).  

 

Pan et al. (2020) trained a Unet using a Worldview-2 satellite image of 0.5m spatial resolution 

and a building boundary vector file from the Guangzhou Land Resources and Urban Planning 

Bureau. They classified four types of buildings in the Tianhe District of Guangzhou City in 

Southern China: old houses, old factories, iron roof buildings, and new buildings. 

2.2.3 Mask R-CNN 

Mask R-CNN (Regional Convolutional Neural Network) is a state-of-the-art model for instance 

segmentation. It builds upon Faster R-CNN by incorporating an extra branch for predicting 

segmentation masks on each region of interest (RoI). Mask R-CNN utilizes CNN to achieve 

precise object detection (Chitturi, G., 2020) and has proven to be versatile across various fields 

(He et al., 2017). It consists of two main phases: region proposal generation and classification 

(Wu et al., 2021). Mask R-CNN employs a fully convolutional network on CNN feature maps to 

generate a binary mask that determines if a pixel belongs to an object or not (Kaiming et al., 

2020). This method is capable of detecting bounding boxes and segmenting building classes 

from background classes (Chitturi, G., 2020) 

 

Esri collaborated with Nvidia and Miami-Dade Country to propose a method for 3D building 

reconstruction using aerial LiDAR and a Deep Neural Network. Specifically, they employed a 

Mask R-CNN model trained to detect and report instances of roof segments. Mask R-CNN 

integrates object detection, which aims to detect object classes and predict bounding boxes, 

with semantic segmentation, which classifies pixels within each box into predefined categories 

(Esri, 2015). By leveraging Mask R-CNN, objects can be detected in a raster while accurately 

segmenting masks for each instance (Wei et al., 2020). The training dataset was created by 

generating a Digital Surface Model raster from the LiDAR point cloud and manually digitizing 

polygons that describe the roof segments of the building. These roof segments were stored as 

features in a polygon feature class, and the DSM was normalized by subtracting the DTM 

(Dmitry et al., 2018). Using ArcGIS Pro's "Export Training Data for Deep Learning" 

geoprocessing tool, the human-digitized roof segments layer and nDSM with 0.21 square 

meter/pixel resolution were converted into deep learning training datasets, which included 

image chips, labels, and statistics files for instance segmentation problems (Dmitry et al., 2018). 

For the neural networks, Mask R-CNN architecture was employed using the TensorFlow 1.7 

deep learning framework. The model was trained with a ResNet-101 backbone architecture for 

approximately 1,400 epochs. The trained model was then utilized to detect roofs from the 

raster using the "Detect Object Using Deep Learning" tool, and the raw detections were further 
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refined using the "Regularize Building Footprint" tool from ArcGIS Pro's 3D analyst toolbox 

(Dmitry et al., 2018). The results indicate that an increase in the training set can enhance 

prediction accuracy.  

 

Zhao et al. (2018) also proposed Mask R-CNN ResNet-101 backbone-based building footprint 

extraction from high-resolution satellite images, along with a boundary regularization method 

to convert polygons generated by Mask R-CNN into regularized polygons due to irregular and 

noisy outlines.  

 

Mohamed et al. (2022) introduced an ensemble method for efficiently extracting building 

footprints using LiDAR-derived DSM in densely populated rural areas of Maghagha City, Egypt. 

This method combined two Mask R-CNN ResNet backbones (34, 101) and employed a post-

processing phase to enhance the extracted building footprints. The obtained results showed an 

average overall accuracy, precision, recall, and F-score of 0.95, 0.82, 0.98, and 0.88, respectively.  

 

Tiede et al. (2021) conducted a study utilizing Mask R-CNN deep learning implemented in the 

Python API for Esri's ArcGIS environment to extract building footprints in Khartoum, Sudan, 

aiding humanitarian organizations in their response to the Covid-19 pandemic. The study 

achieved a recall of 0.78, precision of 0.77, and F-score of 0.78.  

 

Furthermore, Wei et al. (2020) proposed a method for building footprint extraction from aerial 

images with a spatial resolution of 20cm using fully convolutional networks (FCNs). They 

developed a multiscale aggregation FCN (MA-FCN) with a feature pyramid network (FPN)-

based structure as the backbone architecture to extract building pixels. The method also fused 

separately trained models to enhance segmentation accuracy, labeling each pixel as "building" 

or "non-building" based on consistent voting from the majority of the models. 

2.3  Application of Building Footprints 

In recent years, there has been significant research focused on extracting building footprints 

from high-resolution imagery and LiDAR data. This field of study has numerous applications, 

including population estimates, urban planning, disaster response, service delivery planning, 

and environmental monitoring. This section provides a summary of the research conducted on 

the main applications of extracted building footprints from high-resolution imagery and LiDAR 

data. The following examples highlight some key applications, but this list is not exhaustive. 

2.3.1 Population Estimates 

According to Esri South Africa (2022) and Shoko et al. (2022), data on building footprints can 

be used to accurately estimate the number of households in areas experiencing active 

migration. This is important because census data in South Africa is only updated every 10 years. 

By analyzing factors such as the number of floors, floor area, and other characteristics of the 

buildings, we can estimate the household count. Population estimates have various uses, 

including planning, service delivery, and emergency response (Biljecki et al., 2015a), as well as 

predicting future utility and infrastructure needs in a given area (Rajabifard et al., 2018a).  
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2.3.2 Urban Planning 

Urban planning is one of the key applications of building footprints extracted from satellite 

imagery and LiDAR data. According to Zhang et al. (2022), building footprints derived from 

high-resolution satellite imagery can be used to analyze the spatial distribution of buildings and 

assess the density of urban areas. This can be useful for urban planners to identify areas of high 

population density and assist in transportation planning, cadastral and telecommunication 

network planning, and management. According to Shoko et al. (2022), building footprints 

derived from the LiDAR dataset can be used to separate shacks to non-shacks areas. These 

findings can be incorporated into urban planning frameworks, which can also be adjusted to 

include social and environmental factors. 

2.3.3 Disaster or Emergency Response 

Another important use of building footprints, extracted from satellite imagery and LiDAR data, 

is in disaster response. According to Zhang et al. (2022), these footprints can be utilized to 

assess and respond to various disasters like earthquakes, floods, and fires, particularly in 

informal settlements. The study discovered that satellite-derived building footprints can help 

identify areas where buildings have been destroyed or damaged, enabling effective planning 

for recovery efforts. Tiede et al. (2021) also employed a deep learning convolutional neural 

network to extract building footprints for supporting humanitarian response during the COVID-

19 pandemic in Khartoum, Sudan. 

 

2.3.4 Change Detection 

Building footprints extracted from satellite imagery and LiDAR data are beneficial for 

monitoring the environment and detecting changes (Wei et al., 2020; Wei et al., 2016). They 

provide valuable information on alterations in land use and vegetation cover over time. 

Research has shown that building footprints derived from satellite imagery can effectively track 

changes in land cover in urban areas and assess the impact of urbanization on the environment. 

For example, Wei et al. (2016) utilized high-resolution aerial satellite imagery to extract 

building footprints and estimate the dynamics of impervious surface areas in Guangzhou, China. 

Their study revealed a significant 200% increase in impervious surface areas over 30 years.  

2.3.5 Property Value Calculations 

Building footprints extracted from satellite imagery and LiDAR data are valuable for assessing 

and valuing properties in the real estate industry and government. Property valuation plays a 

crucial role in determining real property tax, which serves as a vital source of government 

revenue (Isikdag et al., 2015). Consequently, as suggested by Li et al. (2013), building footprints 

can be utilized to evaluate the size, shape, and location of buildings, allowing for the estimation 

of their value based on these characteristics and location. A property's value is typically 

influenced by various factors, including floor area and location (Isikdag et al., 2015). In property 

value calculations, the floor area carries significant weight and can be approximated from a 2D 

building footprint. 

 

Overall, building footprint extraction from satellite imagery and LiDAR data has a wide range 

of applications in various fields. With the increasing availability of high-resolution satellite 

imagery and LiDAR data, the use of building footprints is expected to increase in the future. 
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2.4 Chapter Summary 

This chapter discusses relevant literature for the research questions and objectives of this 
study. After reviewing the literature on traditional-based and deep learning-based methods for 
extracting building footprints, it was found that the deep learning-based approach offers 
innovative ways to detect and extract building footprints using semantic and object 
segmentation algorithms. The Mask R-CNN algorithm, in particular, is effective for instance 
segmentation and object extraction. Therefore, it was chosen for this research due to its 
remarkable results in extracting building footprints from very high-resolution images and 
LiDAR, as reported by Zhao et al. (2018), Chitturi, G. (2020), Tiede et al. (2021), and Mahamed 
et al. (2022). Furthermore, Mask R-CNN provides GIS-ready building footprints and 
outperforms other approaches in this regard (Tiede et al. 2021). 
 
Moreover, the reviewed literature in this study does not consider the unique characteristics of 
different landscapes, such as formal residential, industrial areas, and informal settlements. 
Thus, in this research, the uniqueness of these landscapes is taken into account, and formal 
residential, industrial, and informal settlements are separated accordingly. This consideration 
informed the study design and methodologies adopted in the subsequent chapters. 
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3. Methodology 
Having reviewed relevant literature covering major aspects of building footprint extractions, 

this chapter presents the techniques adopted in achieving the aim of this research by answering 

the research objectives.  

Section 3.1 provides an insight into the study area’s location and extent. The study area’s data 

acquisition and preparation is presented, detailing steps followed to prepare aerial imagery 

and generation of LIDAR-derived nDSM. Furthermore, the creation of training and validation 

sets is presented. 

 

Section 3.2 provides an insight into building footprint extraction from high-resolution aerial 

imagery and LIDAR-derived nDSM using instance object segmentation.  Object instance 

segmentation is discussed and mask R-CNN architecture is presented. Furthermore, the steps 

adopted for training the Mask R-CNN model are presented. 

 

Section 3.3 outlines in detail the steps adopted to extract the building footprint using the 

models trained in sections 3.2 and 3.3, from aerial imagery and LiDAR-derived nDSM. 

Furthermore, the adopted steps to regularise building footprints are presented.  

3.1 Data Acquisition and Preparation 

3.1.1 Study Area and Dataset Descriptions 

This research focuses on extracting building footprints within the City of Cape Town 

Metropolitan in the Western Cape Province of South Africa. South Africa is a developing country 

and its metropolitan consists mainly of formal and informal zones. This is due to rapid 

urbanization which leads to the proliferation of informal settlements in developing countries 

caused by the failure to provide this rapidly urbanizing population with the necessary services 

and infrastructure, including planned land, for orderly development (Kironde, 2006). Thus, 

formal and informal zones co-exist in the City of Cape Town Metropolitan which is located at a 

latitude of -33.55°S and a longitude of 18.25°E along the south-western coast of South Africa. It 

covers approximately 2700 km2, with a built-up area of about 1400 km2. 

 

The primary data inputs for this research include high-resolution aerial imagery and LiDAR 

covering the entire metropolitan. The aerial imagery is captured annually, while the LiDAR data 

is captured in two batches over two years. The LiDAR data, captured between 2020 and 2021 

using a Reigl 1560 LiDAR sensor, has an average point density of 10 points per square meter. 

The aerial imagery is ortho-rectified and has three spectral bands: visible red, visible green, and 

visible blue, with a spatial resolution of 8cm. The aerial imagery is captured using Vexcel 

UltraCam large-format metric digital camera. The Vexcel cameras frame dimensions are: UCE 

20,010 by 13,080 pixels. Vexcel cameras use ‘forward motion compensation’ which adjusts for 

the forward speed of the aircraft so that "image movement" on the sensor is reduced to 0 

micrometres. Both the LiDAR data and aerial imagery are subdivided into manageable 5km2 

tiles to facilitate computational processing. 
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Given the extensive study area and the large data size (approximately 68.4GB for compressed 

aerial imagery and 1.2TB for the LiDAR data of the build-up area), substantial computational 

power and time are required to properly train deep learning models. Consequently, the 

Blaauwberg district within the City of Cape Town was selected for training and validation of the 

deep learning models used to detect building footprints. The Blaauwberg district covers an area 

of approximately 550.27 km2 and is located along the northwestern coastal boundary of the 

CoCT. It encompasses formal residential, industrial zones, and informal settlements with 

buildings of various roofing materials, sizes, and shapes. Figure 1 depicts the boundaries of the 

City of Cape Town metropolitan area and the Blaauwberg district. 

 

 
Figure 1: Location of the study area in the City of Cape Town Metropolitan, Western Cape 

Province of South Africa: Blue represents the Blaauwberg district boundary, and black 
represents the City of Cape Town boundary. 

The aerial imagery and LiDAR data for formal residential, industrial, and informal settlements 

are extracted from the City’s dataset. The Blaauwberg district is divided into these areas to train 

separate models for each, as they contain buildings with distinct characteristics 

 

3.1.2 Data Labelling 

The labelled building footprints used to train and validate the models in these areas are derived 

from the CoCT’s 3D building models of 2022. To create 2D building footprints, the roof details 

of the 3D models are converted using the "Multipatch Footprint" geoprocessing tool in ArcGIS. 
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These roof details are obtained from stereo-aerial images captured in 2021 using a digital 

photogrammetric workstation. The roof details are captured using SocetGXP software. Figure 

2 illustrates the workflow of the processes involved. 

 
Figure 2: Workflow process for generating training dataset in SocetGXP and ArcGIS. Yellow 
boxes represent tools/processes and green boxes represent generated outputs from those 

tools/processes. 

The stereo images are imported into the socetGXP software along with the adjusted exterior 

orientation parameters from aerial triangulation and the camera calibration file. A socetGXP 

project is created, and all imported stereo images are converted to .sup format. A GeoTIFF DSM 

of the area, with a spatial resolution of 2m, is imported into the socetGXP project to determine 

depth, which elevates the stereo images to DSM height. Stereo models are created by opening 

overlapping image files (.sup), also known as stereo pairs. The generated stereo models are 

accessed, and 3D building shapes are manually digitized by identifying and capturing building 

structures and roof details from these models. Special tools are used to ensure the roofs 

maintain parallel shapes and consistent height for geometric accuracy. Once captured, the 

shapes are exported to a GIS workstation, where they are transformed into 2D building 

footprints using ArcGIS's "Multipatch Footprint" geoprocessing tool. These footprints are then 

checked against the land parcel boundaries. The resulting 2D building footprints are stored as 

features in a polygon feature class within a local file geodatabase. 

3.1.3 Aerial Imagery, DSM, DTM, and nDSM Generation 

This section discusses the methods used to process aerial imagery and LiDAR data for 

extracting building footprints. ArcGIS Pro 3.0 is utilized for processing LiDAR data, while Global 

Mapper Pro is used for aerial imagery. These software packages are widely adopted in the 

geospatial industry. 

The ortho-rectified aerial imagery of the Blaauwberg district consists of three spectral bands. 

It is extracted from the compressed aerial imagery (.ecw format) of the entire CoCT. The aerial 

imagery has a spatial resolution of 8cm, which is then downsampled to 20cm using Global 

Mapper Pro. The resulting aerial imagery is a three-band (8-bit unsigned) GeoTIFF. This 



16 

 

downsampling helps reduce the computational power and time required for training deep 

learning models (as discussed in sections 3.2.3 and 3.3.3). Initially a formal residential model 

was trained from 8cm aerial imagery and the training time was over a month for only 30 epochs. 

Thus, the model was then tested and compared against a model trained on 20cm aerial imagery. 

The downsampling did not have significant impact on accuracy, but reduced the computational 

power and time significantly. The choice of 20cm spatial resolution is based on the observation 

that similar studies reviewed in chapter 2 used aerial imagery and nDSM with spatial 

resolutions of 20cm or 30cm (Mohamed et al., 2022; Wei et al., 2020) 

 

Furthermore, the workflow processes shown in Figure 3 are followed to generate DSM, DTM, 

and nDSM. 

 
Figure 3: Workflow processes for generating DTM from LiDAR data. Yellow boxes represent 

ArcGIS geoprocessing tools and green boxes represent generated outputs. 

The LiDAR data is in raw format (.las 1.2) and has been preprocessed by the contractor/data 

provider. The preprocessing conducted by the data provider includes the classification and 

removal of noise points as well as the classification of overlaps. This dataset is then used to 

create DSM, DTM, and nDSM. To process the LiDAR data in ArcGIS Pro, the "Create LAS dataset" 

tool is utilized to convert the format from .las to .lasd. Initially, all LiDAR points are reclassified 

and assigned to classification code 1 (Unassigned) using the "Change LAS Class Code" tool. 

Ground points are then classified as such and assigned classification code 2 using the "Classify 

LAS Ground" tool. The ‘Standard Classification’ method is used to detect ground points. This 

method has a tolerance for slope variation that allows it to capture gradual undulations in the 

ground’s topography (Esri, 2023) 

 

From the above-created LAS dataset, two other LAS datasets are generated: DTM and DSM LAS 

datasets. For the DTM LAS dataset, only ground points and all return types are selected to create 

an LASD consisting of ground points only. For the DSM LAS dataset, all class codes, along with 

'First of Many Return' and '1st Return,' are chosen to create an LASD depicting the first object 
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the LiDAR encounters (e.g., tree tops, building tops, and ground). The "Make LAS Dataset Layer" 

tool is employed for this purpose. 

 

Next, the DTM and DSM LAS datasets are converted into a single band (32-bit) raster layer with 

a spatial resolution of 20cm using the "LAS Dataset to Raster" geoprocessing tool. This 

conversion results in separate DTM and DSM raster layers. DSM is a three-dimensional (3D) 

representation of the Earth's surface, including various features like trees and buildings (Zhang 

et al., 2020). In contrast, DTM represents the bare Earth and excludes above-ground features. 

When creating DSM and DTM, the interpolation type is binning, the cell (pixel) assignment 

method is average values, and the void fill method is linear. Furthermore, the DSM is normalized 

by subtracting the DTM from it. The resulting nDSM raster represents above-ground features 

in a 3D format.  

3.1.4 Creating Training and Validation Sets 

The labelled 2D building footprints polygon features, the 20cm aerial imagery, and LiDAR-

derived nDSM discussed in chapters 3.1.1 and 3.1.2 are used to create training and validation 

sets. Training and validation sets are created for each formal residential, industrial area, and, 

informal settlement. This is to ensure that models for these areas are trained separately since 

they constitute buildings of different characteristics. Figure 4 shows the three training and 

validation areas of interest (AOI) chosen to train the Mask R-CNN models.  

 
Figure 4: Training and validation areas. 
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These training areas constitute a total of 21714, 1501, and 14217 labelled building footprints 

for formal residential, industrial areas, and informal settlements respectively.  

 

A workflow process involved in creating training and validation sets for object instance 

segmentation is shown in Figure 5.  

 
Figure 5: Workflow processes for creating Mask-RCNN’s training and validation sets 

The labelled 2D building footprint vector files for formal residential, industrial areas, and 

informal settlements are used in semantic segmentation. These building footprint vector files 

are used together with either aerial imagery or LiDAR-derived nDSM associated with the label 

data (vector files) to create deep-learning training datasets. The ‘” Export Training Data for 

Deep Learning” geoprocessing tool is used to generate Masks R-CNN’s deep learning training 

datasets using the photogrammetrically generated building footprint vector files and the 20cm 

aerial imagery associated with the label data. “RCNN Masks” is chosen as a metadata format 

when running the tool. This step is repeated using the LiDAR-derived nDSM instead of the 20cm 

aerial imagery. The results are aerial imagery and LiDAR-derived nDSM’s deep learning training 

and validation sets for each formal residential, industrial area, and informal settlement. This 

resulted in each of the three areas with two sets of training and validation sets from aerial 

imagery and LiDAR-derived nDSM. As mentioned above, the output from the “Export Training 

Data for Deep Learning” tool is a folder of tiles, masks, and statistics files. The tiles and masks 

are cropped into small patches with a size of 256 x 256 pixels containing image chips of 

rasterized LiDAR or aerial imagery, and masks representing the building footprint in each 

image chip. 

 

It is worth mentioning that the LiDAR, high-resolution aerial imagery and 2D labeled building 

footprints used in this research were acquired from the Geospatial Unit of the Information and 

Knowledge Management department in the City of Cape Town. 
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3.2 Building Footprint Detection 

3.2.1 Architecture of Mask R-CNN: 

Object instance segmentation integrates object detection tasks where the goal is to detect 

objects along with bounding box prediction in an image and semantic segmentation task, which 

classifies each pixel into pre-defined categories (Esri, 2023). As a result, it enables the detection 

of objects in a raster while precisely segmenting a mask for each object instance. 

 

In this research, a Mask R-CNN model trained to detect building footprints is used. ResNet-101 

is used as the backbone of the model. The model training and inferencing are done through the 

integration of ArcGIS Pro 3.0 and ArcGIS API for Python in Jupyter Notebook. Mask R-CNN is a 

state-of-the-art model for instance segmentation, developed on top of Faster R-CNN with an 

additional branch for predicting segmentation masks on each Region of Interest (RoI). Mask R-

CNN uses a fully convolutional network on CNN feature maps to generate a binary mask that 

identifies if a pixel belongs to an object or not (Kaiming et al. 2020). 

 

In Faster R-CNN, the Rol pool is replaced by RoIAlign to ensure spatial information is preserved 

which gets misaligned in the case of the Rol pool. RolAlign uses binary interpolation to create 

fixed-size feature maps. The RolAlign layer’s output is fed to the Mask head which consists of 

two convolution layers. These layers generate masks for each Rol and thus produce a pixel-level 

segmentation.  

 

 
Figure 6: Mask R-CNN (Kaiming et al. 2020) 

3.2.2 Mask R-CNN Model Training 

The image chips and building masks created in Chapter 3.1.4 are used to perform object 

instance segmentation using Mask R-CNN. The models for formal residential, industrial areas, 

and informal settlements are trained using the ArcGIS API for Python in Jupyter Notebook. Pre-

trained ResNet101 is used as the backbone of the models. To preserve as many training samples 

as possible, the original training sets are split into non-overlapping training and validation 

subsets, by default the validation subset is 0.2 or 20% of the full training data and the remaining 
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80% goes into the training subset. Traditionally, validation samples are used to verify the loss 

convergence at the end of each training epoch. Four (4) batch size is used when training all six 

(6) models. The optimum learning rate is calculated using the lr_find() method. The learning 

rate is a very important parameter, while training a deep learning model it sees the training 

data several times and adjusts itself (the weights of the network) (Hafidz, Z., 2018). Too high a 

learning rate leads to the convergence of the model to a suboptimal solution and too low a 

learning rate slows down the convergence of the model (Hafidz, Z., 2018). Table 1 shows the 

optimum learning rates used to train the six (6) individual Mask R-CNN models. 

 

Table 1: Optimum learning rate used to train Mask R-CNN models fast enough 

(a) High-Resolution Aerial Imagery 

Area Type Formal Residential Industrial Informal Settlements 

Learning Rate 3.6308e-05 2.0893e-05 2.5119e-05 
    

        

(b) LiDAR-derived nDSM 

Area Type Formal Residential Industrial Informal Settlements 

Learning Rate 3.6308e-05 2.0893e-05 2.5119e-05 
    

 

The ArcGIS API (arcgis.learn) provides the Mask R-CNN model for instance segmentation tasks. 

The MaskRCNN() function is used to define a Mask R-CNN model in Jupyter Notebook. All six 

(6) models are trained using the “model.fit()” function on a single NVidia Quadro T2000 GPU 

with CUDA 11.7 and 8GB of memory (RAM). 

 

The training and validation loss is calculated from the loss function for each batch processed 

inside an epoch for all six (6) models. The training loss helps to optimize model parameters 

during training while validation loss helps to be aware of how well the model generalizes on 

data that it has never seen and prevents overfitting of the model. The workflow processes 

followed are detailed in Figure 7 below: 
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Figure 7: Workflow processes for training the Mask R-CNN model 

The “save()” method is used to save Mask R-CNN models and by default, the models are saved 

to a folder ‘models’ inside the training data folder.  Models are saved in a deep learning model 

package (.dlpk). The package contains an Esri model definition file (.emd) and a trained model 

file.  The .emd file is a JSON file that describes the trained deep learning model. The file contains 

the required model definition parameters to run the inference tools. These parameters include 

deep learning framework, model configuration, model type, inference function, model 

description, extract bands, labelled training raster classes, projections, labelled training raster, 

and aerial imagery cell sizes. In addition, the folder contains model metrics used to 

quantitatively analyze the accuracy of the model segmentation. 

3.3 Model Evaluation 

In this section, the training and validation loss calculated for each batch of images processed 

during model training and validation is discussed as well as the model metrics used to 

quantitatively analyze the performance and accuracy of the models.  

3.3.1 Training and Validation Loss 

The training and validation loss helps with model optimization and being aware of how the 

model generalizes on data that it has never seen and prevents overfitting of the model. The loss 

quantifies the error the model produces. A high loss value means the model’s predicted output 

of a given input is erroneous, while a low loss indicates that there are fewer erroneous 

predicted outputs by the model. The cross-entropy loss function is used to calculate the training 

and validation loss. Typically, it is defined as the average of the difference between the model 

predictions and ground truth for a set of training examples. The cross-entropy loss function is 

shown in the following equation: 
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𝑳(𝒈, 𝒑) = − 
𝟏

𝒏
∑ 𝒈𝒊

𝒎

𝒊=𝟏

𝐥𝐧 𝒑𝒊 + (𝟏 − 𝒈𝒊) 𝐥𝐧(𝟏 − 𝒑𝒊) 
(1) 

Where 𝑝𝑖 denotes the predicted probability distribution for category 𝑖, 𝑔𝑖 denotes the 

probability distribution of the corresponding ground truth, and 𝑚 is the total number of 

training images. 

i. Training Loss 

Training loss is a metric used to assess how a deep learning model fits training data. In other 

words, it assesses the error of the model prediction in the training set. Training loss is the value 

of the loss function which is the sum of the errors for each example in the training set (Kingma 

et al., 2015). It is used to optimize the model parameters during the training process, the model 

adjusts its parameters to minimize the value of the loss function. It is calculated from the 

training set which normally is 80% of the training data. The training set is passed through the 

neural network in small batches and training loss is measured after each batch has been 

processed. This is usually visualized by plotting a curve of the training loss. 

ii. Validation Loss 

Validation loss is a metric used to measure how well a trained model can generalize on new, 

unseen data that is not used during training. Validation loss is important to ensure that the 

model is not overfitting to the training data. Hence, a separate set of data called the validation 

set, which is normally 20% of the training data is used to calculate the validation loss. Validation 

loss is the value of the loss function on the validation set which is the average loss over all the 

validation examples (Kingma et al., 2015). 

 

3.3.2 Mask R-CNN Evaluation Metrics 

In Mask-RCNN, the Average Precision (AP) Score is taken as a key evaluation indicator to 

quantitatively analyze the performance and accuracy of the model segmentation (Anwar, 

2022). AP is calculated with the help of several other metrics such as Intersection over Union 

(IoU), confusion matrix (true positive (TP), false positive (FP), false negative (FN)), precision, 

and recall. Figure 8 shows the road map to calculate the Average Precision score. 
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Figure 8: A road map to calculate the Average Precision score of the classification (Anwar, 

2022) 

i. Intersection over Union (IoU) 

IoU quantifies the closeness of the prediction to the ground truth. IoU is also referred to as the 

Jaccard index. IoU metric is the area of overlap between the ground truth and the prediction to 

the area of union between the ground truth and the prediction. The formula below shows how 

it is calculated (Anam, 2021). 

𝑰𝒐𝑼 =
𝑨 ∩ 𝑩

𝑨 ∪ 𝑩
 

(2) 

 

Where A denotes the ground truth value, and B denotes the prediction.  

ii. Confusion Matrix (TP, FP, FN) 

The confusion matrix measures the performance of the model after the classification in a matric 

form. It shows how many predictions are correct and incorrect per class. It helps in 

understanding the classes that are being confused by the model as other classes (Tiwari, 2022). 

Figure 9 shows a sample confusion matrix for the binary classification problem. 

 
Figure 9: Confusion Matric example (Tiwari, 2022) 
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True positive is the number of correctly classified and extracted building pixels, false positive 

is the number of erroneously classified and extracted building pixels, false negative is the 

number of missed building pixels i.e. building existed but not classified, and true negative is the 

number of correctly extracted non-building pixels. To calculate true positives, false positives, 

and false negatives, the IoU threshold value is considered. The prediction-ground truth mask 

pair is considered to be true positive if it has an IoU score greater than the threshold. 

Conversely, if it has an IoU score of less than the threshold value, it is considered a false positive. 

A false negative is when the ground truth mask has no respective predicted mask (Anam, 2021).  

iii. Precision and Recall 

Precision, Recall, and F1-score are calculated based on TP, FP, and FN. Precision refers to the 

ratio between correctly classified pixels (true positives) and the total number of pixels that are 

predicted to be true (equivalently the sum of true positives and false positives). It is a measure 

that tells what proportion of the buildings that are detected as buildings, were buildings. Recall 

refers to the ratio between the number of correctly classified pixels (true positives) and the 

total number of actually correct pixels (equivalently the sum of true positives and false 

negatives) (Zhang et al., 2022). It is a measure that tells the total proportion of the buildings 

detected by the model as buildings. In addition, the F1-score is used to balance precision and 

recall parameters. The equations below show how these metrics are calculated. 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

(3) 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

(4) 

 

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

(5) 

 

iv. Average Precision Score 

The AP is calculated from the Precision-Recall (PR) curve, it is the area under the Precision–

Recall curve. For each precision-recall pair, the area under the PR curve can be found by 

approximating the curve using rectangles. The higher the precision and recall, the higher the 

AP (Anwar, 2022). The formula below shows how it is calculated. 

 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 (𝑨𝑷) =  ∫ 𝒑(𝒓)𝒅𝒓
𝟏

𝒓=𝟎

 

Where p denotes precision, r denotes recall and d(r) shows that the equation is being 

integrated with respect to variable r, which is recall. 

(6) 
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3.4 Inferencing and Post-processing  

The high-resolution aerial imagery and LiDAR-derived nDSM with 20cm spatial resolution of 

the formal residential, industrial area, and informal settlement testing areas are passed through 

a neural network to extract footprints in those areas. The testing areas also contain human-

digitized building footprints and they are used as ground truth masks together with the 

prediction results to evaluate and analyze the performance of each Mask R-CNN model. 

3.4.1 Inferencing 

To extract building footprints from high-resolution aerial imagery and LiDAR-derived nDSM 

rasters while segmenting a mask for each building footprint instance precisely ‘Detect Objects 

Using Deep Learning” geoprocessing tool in ArcGIS Pro is used. The result is a polygon feature 

class in a file geodatabase of raw building footprints detected from the input raster using 

trained Mask R-CNN models.  

3.4.2 Boundary Regularization 

The raw detected polygons show irregular and noisy outlines due to the locality of pixel-wise 

labeling conducted by Mask R-CNN. In addition, when a neural network is used for pixel-level 

semantic segmentation, the output-building boundaries are irregular (Xie et al. 2020). To 

convert the initial polygons into regularized ones, an advanced ArcGIS’s “Regularize Building 

Footprints” geoprocessing tool is used. Building footprints were regularized using the right-

angles and diagonals method, and the densification (sampling interval) and tolerance values of 

0.5m were used. Figure 10, shows the workflow process of detecting building footprints using 

the ‘Detect Object Using Deep Learning’ and detected building footprints regularization using 

‘Regularize Building Footprint’.  These processes are combined and executed using an ArcGIS 

model builder. ArcGIS models are workflows that string together sequences of geoprocessing 

tools. They can be thought of as a visual programming language for building workflows. 

 
Figure 10: ArcGIS Model for Detecting Building Footprint using Mask R-CNN, Regularize and 
Refine detected building footprint. Blue colour represents inputs. Yellow colour represents 

ArcGIS geoprocessing tools. The green colour represents generated outputs. 

 

The results from this ArcGIS model are two 2D building footprints polygon feature classes for 

each formal residential, industrial, and informal settlement from LiDAR-derived nDSM and 

high-resolution aerial imagery. These results are thoroughly analyzed and discussed in Chapter 

4.  
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4. Results and Discussion 
In this chapter, research question 2 is addressed: How can remote sensing data be effectively 

used to accurately extract building footprints? In addition, research objective 3 is addressed. 

This is done by discussing and evaluating the performance of Mask R-CNN in extracting building 

footprints from aerial imagery and LiDAR-derived nDSM for different cases, including formal 

residential areas, industrial areas, and informal settlements. The results are analyzed based on 

the performance and evaluation metrics discussed in Section 3.3.  The rest of this chapter is 

structured as follows: 

Section 4.1 outlines the steps followed to preprocess aerial imagery and generation of LiDAR-

derived nDSM and presents the preprocessing results. It further presents the samples of the 2D 

labelled training datasets. 

 

Section 4.2 presents the preprocessed training and validation datasets used in the training and 

validation of the Mask R-CNN models. 

 

Section 4.3 presents and discusses model training results, it starts by presenting and discussing 

the training and validation loss results of each trained Mask R-CNN model. Then, it presents 

and discusses the model evaluation metrics on the training and testing dataset. 

 

Section 4.4 provides an analysis of the experiment. The effectiveness of the Mask R-CNN in 

extracting building footprints in formal residential, industrial areas, and informal settlements 

from high-resolution aerial imagery and LiDAR-derived nDSM is discussed and analyzed.  

4.1 Data Preprocessing  

4.1.1 Aerial Imagery resampling and nDSM generation 

The high-resolution aerial imagery used in this research is in .ecw format. The aerial imagery 

has a spatial resolution of 8cm. As discussed in Section 3.1.2, the aerial imagery is subsampled 

from 8cm to 20cm spatial resolution using Global Mapper Pro v24. This is done by loading the 

.ecw aerial imagery with a spatial resolution of 8cm in Global Mapper Pro and then exporting 

the loaded raster file as GeoTiff. Before exporting the subsampled Geotiff, the following 

parameters are set as followed: 

 For Sampling space or scale, 20cm is used for both X-axis and Y-axis.  

 The Box average resampling method is used when subsampling, this is a default 

resampling method used in Global Mapper when subsampling.  This resampling method 

finds average values of the nearest 9 (for 3x3), 16 (4x4), 25 (5x5), or 49 (7x7) pixels and 

uses that as the value of the sample location. The method produces good results when 

resampling data at a lower resolution (bluemarblegeo, 2023).   

 LZW Compression is used by default, the exported GeoTiff is compressed using the 

lossless LZW algorithm.  

The resulting aerial imagery is a three bands GeoTiff with a spatial resolution of 20cm. Figure 

12 below shows a sample of the downscaled aerial imagery in the GeoTiff format 
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Figure 11: A sample of downsampled GeoTiff aerial imagery used for training, validation, and 

testing of the deep learning models. 

In addition, DTM, DSM, and nDSM of the Blaauwberg district are generated from the LiDAR data 
as per the workflow processes shown in Figure 3 in Section 3.1.2. Figure 12 below shows the 
extracts from the generated DTM (a), DSM (b), and nDSM (c) of the Blaauwberg district. 

  

 

     
(a)                                                       (b)                                                      (c)                                               

Figure 12: A sample of the three digital models with their height ranges, including (a) DTM, 
(b) DSM, and (c) nDSM with a spatial resolution of 20cm. 
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The nDSM is a normalized DSM and it is also used for training, validating, and testing the Mask 
R-CNN models in addition to the subsampled aerial imagery. The normalized DSM is used 
instead of DSM because it allows for more efficient training of the neural network, as it removes 
the dependency on the surface elevation, making the height range much more compact and 
dense. As a result, it improves the Average Precision score with fewer training samples (Esri, 
2020). 

4.1.2 2D Labelled Building Footprints for Model Training and Validation 

For the training and validation of the deep learning, models used to extract building footprint 

in this research, the 3D building shapes created using stereo-images in socetGXP software are 

converted into 2D labelled building footprints using the “Multipatch Footprint” geoprocessing 

tool in ArcGIS Pro, see Section 3.1.1 and Figure 2 for the workflow processes followed to 

generate this. Figure 13 below shows samples of the 2D labelled building footprints used to 

generate the training and validation sets in conjunction with either the aerial imagery or LiDAR-

derived nDSM for both formal residential, industrial area and informal settlements. 

 

    
      (a)                                                                (b)                                                                          (c) 

Figure 13: Labelled 2D Building Footprint for Training and Validation, for (a) Formal 
Residential, (b) Industrial Area, and (c) Informal Settlements 

4.2 Training dataset 

In total,  21,714 labeled building footprints for formal residential areas, 1,501 for industrial 

areas, and 14,217 for informal settlement areas have been prepared. These footprints are used 

for training and validating Mask R-CNN models. This training dataset includes both structured 

and unstructured buildings with varying roofing materials, shapes, and widths. The formal 
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residential areas are characterized by structured building roofs with different shapes, sizes, and 

roofing materials. Similarly, the industrial areas comprised structured building roofs with 

different shapes and roofing materials, but these buildings are larger and usually have brighter 

roofs compared to residential buildings. As a result, the trained Mask R-CNN model is capable 

of distinguishing between these types of buildings when segmenting their footprints. In 

contrast, the informal settlements consisted of unstructured shacks with bright roofs, built in 

close proximity to each other. Therefore, the Mask R-CNN can differentiate shacks from formal 

residential and industrial buildings. 

 

In total, six (6) training datasets are generated for training Mask R-CNN models, three from 

20cm aerial imagery and another three from LiDAR-derived nDSM. The training data is divided 

into training and validation sets. The training set accounted for 80% of the data, while the 

validation set made up the remaining 20%. These sets are used to train and validate the Mask 

R-CNN models, as outlined in Section and Figure 4.  

For each type of area (formal residential, industrial, and informal settlement), the training sets 

from both the 20cm aerial imagery and LiDAR-derived nDSM consisted of 5,097, 2,094, and 452 

image chips of size 256x256 pixels, along with their corresponding masks. Similarly, the 

validation sets included 1,274, 524, and 113 image chips of the same size and their respective 

building masks.  

 

Figure 14 below shows an example of image chips from input 20cm aerial imagery and labels, 

and Figure 15 shows an example of cropped image chips from input LiDAR-derived nDSM and 

masks used for training and validation of the Mask R-CNN models. 
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Figure 14: An example of 256 x 256 pixels image chips of input aerial imagery (background) 

and corresponding labelled building footprint mask (overlay). 
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Figure 15: An example of 256 x 256 pixels image chips of input LiDAR-derived nDSM raster 

(background) and corresponding building footprint mask (overlay). 
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4.3 Building Footprint Detection Results 

4.3.1 Object Instance Segmentation 

In this study, Mask R-CNN is used to detect building footprints from a 20cm aerial imagery and 

LiDAR-derived nDSM. ResNet101 is used as the backbone of the models. Six (6) models are 

trained separately, two for each formal residential, industrial area, and informal settlement 

from aerial imagery and LiDAR-derived nDSM. For each of these models, 30 epochs have been 

run during the training period using the training and validation sets presented in Section 4.2. 

This means for each epoch, the model sees the complete training set once, and so on.  A batch 

size of 4 has been used for training all the Mask R-CNN models. Batch size is the number of 

images a model will train on each step inside an epoch. Table 2 shows the time each model took 

to learn from the training dataset. 

 

Table 2: Number of epochs and duration of training Mask R-CNN using (a) high-resolution 
aerial imagery and (b) LiDAR-derived nDSM. 

(c) High-Resolution Aerial Imagery 

Area Type Formal Residential Industrial Informal Settlements 

Number of epochs 30 30 30 

Training duration 12.5 Days  7 Days  30hrs 

        

(d) LiDAR-derived nDSM 

Area Type Formal Residential Industrial Informal Settlements 

Number of epochs 30 30 30 

Training duration 12.5 Days  7 Days  30hrs 

 

4.3.2 Training and Validation Loss Curve 

The training and validation loss for all six (6) Mask R-CNN models are calculated using the loss 

function discussed in Section 3.3.1 and results are presented in this section. Training and 

validation loss is calculated for each batch of training data passed through neural networks 

inside an epoch. Training loss helps to optimize the model parameters, while validation loss 

helps to monitor the generalization performance of the model on unseen data and prevent 

overfitting. 

i. Training and Validation Loss Curve for Formal Residential 

The training and validation curves for formal residential models trained with ResNet101 as the 

backbone from aerial imagery and LiDAR-derived nDSM are shown in Figure 16 and Figure 17. 
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Figure 16: Training and validation loss curve for a formal residential model trained from 

aerial imagery and ResNet101 as the backbone. 

 
Figure 17: Training and validation loss curve for a formal residential model trained from 

LiDAR-derived nDSM and ResNet101 as the backbone. 

During the 30 epochs, both the formal residential models are trained using LiDAR-derived 

nDSM and aerial imagery. Over 40,000 batches of image chips and masks are processed. The 

training and validation loss is plotted against the number of batches processed. As the model 

encountered more training sets, both the training and validation loss decreased, indicating 

improvement as more training datasets were seen.  

 

After processing 40,000 batches, the validation loss in Figure 16 started to slightly increase, 

while the training loss continued to decrease. This suggests that the model is starting to overfit 

the training data. To prevent overfitting, the model training is stopped. In Figure 17, the training 

and validation loss exhibited a continuous decrease and the curve converged well, indicating a 

good fit. 
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ii. Training and Validation Loss Curve for Industrial 

The train and validation curves for the model trained from aerial imagery and LiDAR-derived 

nDSM are shown in Figure 18 and Figure 19 for the industrial area models trained with 

ResNet101 as the backbone.  

 
Figure 18: Training and validation loss curve for an industrial model trained from aerial 

imagery and ResNet101 as the backbone. 

 
Figure 19: Training and validation loss curve for an industrial model trained from LiDAR-

derived nDSM and ResNet101 as the backbone. 

During 30 epochs, the industrial model is trained using aerial imagery. Over 15,000 batches of 

image chips and masks are processed. It is worth noting that the validation loss is higher than 

the training loss. This suggests that the model may be underfitting, which means it is unable to 

accurately represent the training data. This is typically caused by a lack of sufficient training 

data. 

 

For this study, 1,501 labeled building footprints are used to train the industrial models. 

Interestingly, when the industrial model is trained with LiDAR-derived nDSM using the same 

number of labeled building footprints as the aerial imagery model, both the training and 
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validation losses decreased. The training and validation loss curve indicates that the model 

neither overfits nor underfits (see Figure 18) 

iii. Training and Validation Loss Curve for Informal Settlement 

The training and validation curves for informal settlement models trained with ResNet101 as 

the backbone from aerial imagery and LiDAR-derived nDSM are shown in Figure 20 and Figure 

21. 

 
Figure 20: Training and validation loss curve for informal settlement model trained from 

aerial imagery and ResNet101 as the backbone. 

 
Figure 21: Training and validation loss curve for an informal settlement model trained from 

LiDAR-derived nDSM and ResNet101 as the backbone. 

For the 30 epochs both the informal settlement models trained with LiDAR-derived nDSM and 

aerial imagery, over 3500 batches of image chips and masks are processed. The plotted graphs, 

Figure 20 and Figure 21 demonstrate that as the models are exposed to more training data, 

both the training and validation loss decrease. This implies that the models improve with more 

exposure to the training dataset. Additionally, Figure 20 and Figure 21 illustrate a consistent 
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decrease in both the training and validation loss. After approximately 3500 batches, the loss 

stabilizes, indicating an optimal fit and suggesting that the models neither overfit nor underfit. 

 

4.3.3 Models Evaluation on Training Dataset  

In this section, the results of the evaluation of Mask R-CNN models on the training datasets are 

presented and discussed. The AP, which can consider both incorrect detection (false positive) 

and missed detection (false negative), has become the key evaluation metric for Mask R-CNN 

(Anwar, 2022).  

 

For each Mask R-CNN model trained on aerial imagery and LiDAR-derived nDSM for 30 epochs, 

the Average Precision score is measured. In addition, the ground truth building masks versus 

Mask –RCNN’s predictions on training datasets are presented. 

i. Formal Residential Results 

 
Figure 22: Ground Truth versus Prediction for a model trained on aerial imagery for formal 

residential.  
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Figure 23: Ground Truth versus Prediction for a model trained on LiDAR-derived nDSM for 

formal residential. 

Figure 22 and Figure 23 show that the Mask R-CNN model is detecting formal residential 

buildings well and it can also be seen that the Mask R-CNN works not only on high-resolution 

aerial imagery but also nDSM representing depth information can be used for formal residential 

building footprint extraction. The Average Precision score comparison for formal residential 

models from aerial imagery and LiDAR-derived nDSM is shown in Table 3.  

 

Table 3: Average Precision Score of Aerial Imagery and LiDAR-derived nDSM Mask R-CNN 
models for formal residential. 

Mask R-CNN 

Data Type Average Precision Score 

Aerial Imagery (RGB) 0.74 

LiDAR-derived nDSM 0.73 

 

The Average Precision score of the aerial imagery and LiDAR-derived nDSM models, measured 

from the training datasets in Table 3, is quite similar. Both scores are satisfactory, indicating 

high precision and recall. This suggests that these models can effectively handle false positives 

(incorrect detections) and true positives (correct detections). As a result, these models can 
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accurately identify and categorize formal residential buildings using both aerial imagery and 

LiDAR-derived nDSM. 

ii. Industrial Results 

 
Figure 24: Ground Truth versus Prediction for a model trained on aerial imagery for industrial 

areas. 
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Figure 25: Ground Truth versus Prediction for a model trained on LiDAR-derived nDSM for 

industrial areas. 

Figures 24 and 25 demonstrate the effective use of the Mask R-CNN algorithm in detecting and 

segmenting industrial buildings from aerial imagery and LiDAR-derived nDSM. However, both 

the aerial imagery and LiDAR-derived nDSM models exhibit false positives. The aerial imagery 

model sometimes mistakes tarred roads for buildings, while the LiDAR-derived nDSM model 

occasionally identifies trees as buildings. Table 4 presents a comparison of the Average 

Precision scores for the aerial imagery and LiDAR-derived nDSM industrial models. 
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Table 4: Average Precision Score of Aerial Imagery and LiDAR-derived nDSM Mask R-CNN 
models for industrial areas. 

Mask R-CNN 

Data Type Average Precision Score 

Aerial Imagery (RGB) 0.79 

LiDAR-derived nDSM 0.80 

 

Based on the comparison, both the aerial imagery (RGB) and LiDAR-derived nDSM models have 

similar Average Precision scores obtained from the training datasets. Their AP is higher 

compared to the AP of formal residential models. As previously discussed, a high AP signifies 

high precision and recall. It also suggests that these models can effectively handle false positives 

(incorrect detections) and true positives (correct detections). As a result, these models can 

accurately detect and classify industrial buildings using both aerial imagery and LiDAR-derived 

nDSM data. 

iii. Informal Settlement Results 

 
Figure 26: Ground Truth versus Prediction for a model trained on aerial imagery for informal 

settlements 
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Figure 27: Ground Truth versus Prediction for a model trained on LiDAR-derived nDSM for 

informal settlements 

Figures 26 and 27 demonstrate that the Mask R-CNN algorithm effectively detects and 

segments shacks in informal settlements using both aerial imagery and LiDAR-derived nDSM. 

Table 5 presents the comparison of Average Precision scores for the informal settlement 

models based on aerial imagery and LiDAR-derived nDSM.  

 

Table 5: Average Precision score of Aerial Imagery and LiDAR-derived nDSM Mask R-CNN 
models for informal settlements. 

Mask R-CNN 

Data Type Average Precision Score 

Aerial Imagery (RGB) 0.71 

LiDAR-derived nDSM 0.65 
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From the comparison, the Average Precision score measured from the aerial imagery model is 

slightly higher than the one measured from the LiDAR-derive nDSM model. As discussed before, 

high AP indicates high precision and recall. The AP comparison in Table 5 indicates that the 

aerial imagery model can handle false positives and true positives better than the LiDAR-

derived nDSM model.  

4.3.4 Model Performance Analysis 

In this section, the performance of Mask R-CNN models is thoroughly analyzed. Models' ability 

to accurately extract building footprints from aerial imagery and LiDAR-derived nDSM. 

Additionally, an analysis of the factors influencing models' performance is discussed. The 

evaluation of the Mask R-CNN models' performance is based on metrics obtained from the 

testing dataset. To ensure a fair comparison, a new test dataset, unseen during training or 

validation, is used. The evaluation metrics used for accuracy analysis include precision, recall, 

F1-score, and AP score. These metrics are calculated using an IoU threshold of 0.5. 

 

For reference, Figure 28, Figure 29, and Figure 30 depict the test areas for formal residential, 

industrial, and informal settlements, respectively. These areas have known building footprints 

that serve as ground truth building masks to evaluate the performance of the Mask R-CNN 

models. In addition to using these test areas with known building footprints for performance 

analysis, the trained models are applied across various urban residential areas, industrial areas, 

and informal settlements. This broader application helps provide a better understanding of the 

models' extraction performance in different spatial contexts. 

 

 
                            (a)                                                                                      (b) 

Figure 28: Formal residential test area with ground truth building mask. (a) aerial 
imagery. (b) LIDAR-derived nDSM 
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(a)                                                                                      (b) 

Figure 29: Industrial test area with ground truth building mask. (a) aerial imagery. (b) liDAR-
derived nDSM 

 
(a)                                                                                      (b) 

Figure 30: Informal settlement test area with ground truth building mask. (a) aerial imagery. 
(b) liDAR-derived nDSM 
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i. Aerial Imagery Versus LiDAR-derived nDSM Extraction Results for Formal 

Residential  

In this case, the two trained Mask R-CNN for aerial imagery and LiDAR-derived nDSM have been 

applied to the testing formal residential dataset as shown in Figure 28. The models performed 

well, as demonstrated in Figure 31 and Figure 32. The results indicate that the Mask R-CNN 

algorithm effectively extracts formal residential building footprints of various sizes and shapes. 

 
                                 (a)                                                                               (b) 

Figure 31: Formal Residential Building footprint extraction results from high-resolution aerial 
imagery (a) and LiDAR-derived nDSM (b). 

In addition to the testing sample block, the models have been applied in various formal 

residential areas to gain a broader and improved understanding of their performance in 

different spatial contexts. The additional testing sample blocks lack the ground truth building 

mask, so the extracted results are compared to the background aerial imagery to evaluate 

their performance in those areas. Figure 32 shows results extracted across different formal 

residential areas within the City of Cape Town metropolitan. 

 

    
                              Sunningdale (a)                                                           Sunningdale (b) 
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                          Milnerton (a)                                                                      Milnerton (b) 

    
                              Houtbay (a)                                                                       Houtbay (b) 

Figure 32: Formal Residential Building footprint extraction results from high-resolution aerial 
imagery (a) and LiDAR-derived nDSM(b) across Sunningdale, Milnerton, and Houtbay 

residential areas. 

The footprints extracted across these additional testing sample areas as shown in Figure 32, 

show that the Mask R-CNN models perform effectively in extracting formal residential buildings 

from high-resolution aerial imagery and LiDAR-derived nDSM.  
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Aerial Imagery Versus LiDAR-derived nDSM Extraction Results for Industrial Areas 

For this case, two trained models are used: Mask R-CNN for aerial imagery and LiDAR-derived 

nDSM. They are applied to the industrial dataset for testing, as depicted in Figure 29. The 

LiDAR-derived nDSM model yielded excellent results, as shown in Figure 33(b) when compared 

to the results obtained from aerial imagery in Figure 33(a). These results indicate that the Mask 

R-CNN performs well in accurately extracting industrial buildings of various sizes and shapes 

from LiDAR-derived nDSM. Further details and evaluation metrics for both aerial imagery and 

LiDAR-derived nDSM models using Mask R-CNN can be found in Table 7. 

 

       
                        Epping Industrial (a)                                                  Epping Industrial (b) 

Figure 33: Industrial Building footprint extraction results from high-resolution aerial imagery 
(a) and LiDAR-derived nDSM (b) 

Similarly, like the formal residential areas, in addition to the testing sample block shown in 

Figure 29, the models have been used in different industrial areas to obtain a wider and 

enhanced understanding of how they perform in various spatial contexts. These additional 

testing sample blocks do not have the ground truth building mask, so the extracted results are 

compared to the high-resolution aerial imagery of the background to assess their 
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performance in those areas. Figure 34 shows results extracted across different industrial 

areas within the City of Cape Town metropolitan. 

     
                 Boquinar Industrial  (a)                                                 Boquinar Industrial (b) 

          
                    Parow Industrial (a)                                                      Parow Industrial (b) 

Figure 34: Industrial Building footprint extraction results from high-resolution aerial imagery 
(a) and LiDAR-derived nDSM(b) in Boquinar Industrial and Parow areas. 

 

The footprints extracted from additional testing sample industrial areas, as shown in Figure 34, 

reveal that the Mask R-CNN model is effective in extracting industrial building footprints from 

LiDAR-derived nDSM than from high-resolution aerial imagery. In the Parow and Boquinar 
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industrial areas, the Mask R-CNN sometimes fails to detect bright industrial roofs when 

extracting buildings from high-resolution aerial imagery. In contrast, it performs well in 

extracting these buildings from LiDAR-derived nDSM. 

Aerial Imagery Versus LiDAR-derived nDSM Extraction Results for Informal Settlement  

In this case, the two trained Mask R-CNN models for aerial imagery and LiDAR-derived nDSM 

have been applied to test an informal settlement dataset, as shown in Figure 30. The models for 

informal settlements are capable of detecting and segmenting shacks, but with a high number 

of false negatives.  

 

                                                                                               
Figure 35: Informal Settlement (Shacks) footprint extraction results from high-resolution 

aerial imagery (blue) and LiDAR-derived nDSM (purple) 
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4.4 Analysis of Results 

4.4.1 Effectiveness of the Mask R-CNN  

To answer research question 2. How can remote sensing data such as aerial imagery and LiDAR 

data be effectively used to extract accurate building footprints? In this section, the calculated 

F1-score and Average Precision score results are presented and analyzed. 

 

By utilizing the Mask R-CNN method for building footprint extraction, the Blaauwberg district 

is chosen for training and validation, with divisions made for formal residential, industrial, and 

informal settlements. This division helps to understand the performance of Mask R-CNN in 

these specific areas and accounts for computational time limitations. In Section 4.3.4, trained 

Mask R-CNN is used to extract building footprints from aerial imagery and LiDAR-derived nDSM 

in the testing areas. The Average Precision score and F1-score are calculated for both aerial 

imagery and LiDAR-derived nDSM in each of these areas. The Mask R-CNN performs well, with 

an Average Precision score ranging from 0.28 to 0.82. 

 

In formal residential areas, the performance of building footprint extraction from LiDAR-

derived nDSM is comparable to that from aerial imagery using Mask R-CNN.  

 

Table 6: Evaluation metrics results for high-resolution aerial imagery and LiDAR-derived nDSM 
using Mask R-CNN in the formal residential testing area with ground truth building mask. 

Data type Precision Recall F1-score AP TP FP FN 

Aerial Imagery 0.83 0.69 0.76 0.60 2063 420 915 

LiDAR-Derived nDSM 0.85 0.70 0.77 0.61 2094 383 884 

 

Table 6 displays information about buildings in the formal residential testing dataset. There are 

a total of 2978 buildings. Of these, 2063 buildings are correctly identified, 420 are mistakenly 

identified, and 915 buildings are missed in the aerial imagery. Based on the LiDAR-derived 

nDSM, 2094 buildings are correctly identified, 383 are mistakenly identified, and 884 buildings 

are missed. The evaluation metrics in Table 6 indicate that the Mask R-CNN algorithm performs 

well in accurately identifying formal residential building footprints using both LiDAR-derived 

nDSM and aerial imagery. The Mask R-CNN model achieves an Average Precision score of 0.61 

when extracting formal building footprints from LiDAR-derived nDSM, compared to 0.60 from 

aerial imagery. However, the use of LiDAR-derived nDSM to extract building footprints using 

Mask R-CNN only slightly improves the F1-score and AP score by 1.0% in the formal residential 

category. 

 

The Mask R-CNN method effectively extracts building footprints of various sizes and shapes 

from both aerial imagery and LiDAR-derived nDSM, yielding Average Precision scores of 0.60 

and 0.61 respectively. The calculated F1-score from aerial imagery and LiDAR-derived nDSM is 

0.76 and 0.77, respectively. It is important to note that the AP scores achieved in this research 

cannot be directly compared to the AP scores obtained in a study conducted by Esri (2018) in 

collaboration with Nvidia and Miami-Dade County. Both studies followed a similar workflow, 

but the Esri study achieved an AP score of 0.48. On the other hand, this research shows an 
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enhanced performance in extracting formal buildings by using Mask R-CNN. Additionally, 

another study conducted by Tiede et al. (2021) in Khartoum, Sudan also employed Esri's 

workflow to extract formal dwelling footprints from high-resolution aerial imagery, resulting 

in an F1-score of 0.78. In this research, the extraction of formal building footprints from high-

resolution aerial imagery yielded an F1-score of 0.77. Consequently, these values can be directly 

compared. 

 

In industrial areas, the accuracy of extracting building footprints is significantly better using 

LiDAR-derived nDSM compared to using aerial imagery.  

 

Table 7: Evaluation metric results for aerial imagery and LiDAR-derived nDSM using Mask R-
CNN in the industrial testing area (Epping industrial area). 

Data type Precision Recall F1-score AP TP FP FN 

Aerial Imagery 0.38 0.76 0.51 0.30 434 706 134 

LiDAR-Derived nDSM 0.68 0.83 0.75 0.82 471 219 97 

 

Table 7 indicates that there are 568 buildings in the industrial testing dataset. Out of these 568 

buildings, 434 are correctly identified as buildings, while 706 are erroneously identified as 

buildings. Additionally, there are 134 missed buildings when comparing the aerial imagery to 

the 471 correctly identified buildings and the LiDAR-derived nDSM reveals 219 buildings that 

are mistakenly identified and 97 missed buildings. The evaluation metrics in Table 7 

demonstrate that the Mask R-CNN algorithm performs better in extracting industrial building 

footprints from the LiDAR-derived nDSM compared to aerial imagery. The Mask R-CNN model 

can accurately extract industrial building footprints of different shapes and sizes from the 

LiDAR-derived nDSM and aerial imagery, achieving an Average Precision score of 0.82 and 0.30, 

respectively. The calculated F1-score from aerial imagery and LiDAR-derived nDSM is 0.51 and 

0.75, respectively. The AP score obtained from aerial imagery is significantly influenced by the 

large number of false positives (709), whereas only 219 false positives are derived from LiDAR-

based nDSM. The utilization of LiDAR-derived nDSM greatly enhances the extraction of building 

footprints of various sizes and shapes in industrial areas, resulting in a 52% improvement in 

the Average Precision score and 24% in the F1-score. This improvement is due to the more 

efficient training of the neural network enabled by LiDAR-derived nDSM, requiring fewer 

training samples, as reported by Esri (2020). 

 

Furthermore, high-resolution aerial imagery presents a challenge when distinguishing between 

industrial building roofs and other bright background objects, such as containers, parking lots, 

roads, and reflective surfaces. The similarity in brightness makes it difficult for the Mask R-CNN 

model to accurately extract these building footprints, resulting in a high number of false 

positives (erroneously extracted buildings) and false negatives (missed detection). In this 

research, some parking lots and roads were mistakenly extracted as industrial buildings from 

the aerial imagery, as shown in Figure 36. Similarly, some industrial buildings with bright roofs 

were not detected from the aerial imagery, as illustrated in Figure 37. 
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Figure 36: Visualisation results for false positive (Blue colours indicate detected parking lots 

and roads and Red colours indicate true positives, correctly detected industrial buildings) 

 
Figure 37: Visualisation results for false negatives (Green colours indicate missed buildings 

and Red colours indicate extracted buildings) 

In informal settlements, building footprint extraction performance from both aerial imagery 

and LiDAR-derived nDSM using Mask R-CNN is unsatisfactory.  

 

Table 8: Evaluation metric results for aerial imagery and LiDAR-derived nDSM using Mask R-
CNN in informal settlement testing area. 

Data type Precision Recall F1-score AP TP FP FN 

Aerial Imagery 0.92 0.30 0.45 0.28 504 45 1174 

LiDAR-Derived nDSM 0.90 0.33 0.49 0.31 562 60 1116 
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Table 8 displays the data regarding shack structures in the test dataset for informal settlements. 

Among the total of 1678 shack structures, only 504 are accurately identified as shacks, while 

45 are mistakenly identified as such. Additionally, 1174 shack structures are missed when 

comparing the aerial imagery to the LiDAR-derived nDSM. In contrast, from the LiDAR-derived 

nDSM, 562 shack structures are correctly identified, 60 are mistakenly identified, and 1116 are 

missed.  The evaluation metrics presented in Table 8 reveal that the Mask R-CNN algorithm 

performs better at extracting shacks from the LiDAR-derived nDSM compared to the aerial 

imagery.  

 

The Average Precision score calculated from aerial imagery and LiDAR-derived nDSM is 0.28 

and 0.30, respectively. The calculated F1-score from aerial imagery and LiDAR-derived nDSM 

is 0.45 and 0.49, respectively. As reported by Shoko et al. (2022), dwellers in informal 

settlements tend to use shack roofs as storage for objects such as scrap material, metal pieces, 

and other reflective materials. This introduces noise in high-resolution image processing. 

Moreover, the proximity and dense construction of shack structures create a highly populated 

area with diverse roof types and uneven textures. Consequently, the Mask R-CNN approach 

struggles to accurately extract and detect shacks from both aerial imagery and LiDAR-derived 

nDSM, as indicated by their F1-score and Average Precision being below 0.5.  

 

Earlier in section 4.3.4, it is discussed that when extracting building footprints from aerial 

imagery and LiDAR-derived nDSM, evaluation metrics are calculated using an IoU of 0.5. It is 

found that Mask R-CNN performs better at extracting building footprints from LiDAR-derived 

nDSM compared to aerial imagery. This holds for various scenarios, including formal residential 

areas, industrial areas, and informal settlements. LiDAR-derived nDSM consistently yields 

higher Average Precision scores.  

 

Specifically, Mask R-CNN demonstrates satisfactory performance in extracting building 

footprints from both aerial imagery and LiDAR-derived nDSM in formal residential areas, 

achieving Average Precision scores of 0.60 and 0.61, respectively. However, for industrial 

buildings, Mask R-CNN performs satisfactorily only with LiDAR-derived nDSM, scoring an 

Average Precision of 0.82. In Figure 35 of section 4.3.4, it can be seen that the Mask R-CNN's 

unsatisfactory performance in detecting shacks in informal settlements using both aerial 

imagery and LiDAR-derived nDSM. Nevertheless, by combining footprints extracted from 

LiDAR-derived nDSM and high-resolution aerial imagery, the Average Precision Score improves 

to 0.52. However, this AP score is not comparable to the values achieved in a study conducted 

by Mohamed et al. (2020) in a populated rural area of Maghagha City, Egypt. The study extended 

the workflow employed in this research by combining two Mask R-CNN ResNet backbones (34, 

101) and implemented a post-processing phase to enhance the extracted building footprints. 

The study achieved a combined F1-score of 0.88 and an AP score of 0.95. These values cannot 

be directly compared to this research’s values since Mask R-CNN models were trained using 

ResNet34 and ResNet101 specifically to efficiently extract informal building footprints. In this 

research, ResNet101 is solely used as the backbone. 

 

This research shows that larger, more standardized, and well-separated features result in 

higher Average Precision scores. Therefore, Mask R-CNN achieves higher scores in formal 
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residential and industrial areas compared to informal settlements since the structures of shacks 

in informal settlements are closely built together. 

 

Research question 2 explores the effective use of remote sensing data, such as aerial imagery 

and LiDAR data, for accurate extraction of building footprints. The analysis in section 4.3.4 

shows that aerial imagery and LiDAR are highly effective for extracting building footprints in 

formal residential areas using the Mask R-CNN method. In industrial areas, LiDAR-derived 

nDSM also performs well in accurately extracting industrial building footprints. For informal 

settlements, combining footprints extracted from aerial imagery with LiDAR-derived nDSM 

produces satisfactory results. 
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4.4.2 Boundary Regularization 

The extracted building footprints from either aerial imagery or LiDAR-derived nDSM show 

irregular and noisy outlines due to the locality of pixel-wise labelling conducted by Mask R-CNN 

as stated in section 3.4.1. To improve the extracted building polygons and make them regular, 

an advanced "Regularize Building Footprints" geoprocessing tool in ArcGIS is utilized as per the 

detailed workflow processes shown in section 3.4.1, Figure 10. The resulting regularized 

building footprints are shown in Figure 39 below. 

                   

                         
 

                                    
                                                       (a)                                                    (b) 

Figure 38: Visualisation results for a) irregular buildings (raw detected building footprints) 
and b) regularized building footprints 
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5. Conclusions and Remarks 
Chapter 4, presented, discussed, and analyzed the results of the research that aimed to answer 

the research question 2: How can remote sensing data, such as aerial imagery and LiDAR data, 

be effectively used to accurately extract building footprints?  

 

The Mask R-CNN algorithm showed excellent performance in extracting formal residential 

building footprints from both high-resolution aerial images and LiDAR-derived nDSM. In 

industrial areas, the algorithm performed well in extracting footprints from LiDAR-derived 

nDSM. However, extracting footprints in dense informal settlements presented challenges due 

to the proximity and varying roof textures. 

 

Based on the results and analysis presented in Chapter 4, this chapter presents the research 

conclusion and provides recommendations for future work. 

5.1 Conclusion 

Building footprints are one of the noticeable characteristics of urban areas. As advanced aerial 

imagery and LiDAR data become more accessible, the approach to extracting urban features 

has evolved. Instead of traditional methods, researchers now utilize neural networks like 

Convolutional Neural Networks (CNNs) for semantic and instance segmentation. In this study, 

the goal was to automatically extract building footprints from remote sensing data in the City 

of Cape Town, South Africa. To achieve this, a literature review was conducted to find a suitable 

spatial analysis method that could accurately and consistently extract building footprints from 

aerial imagery and LiDAR data. The review revealed that Mask R-CNN, an algorithm known for 

its effectiveness in instance segmentation and object extraction, was the most suitable choice. 

Its remarkable performance in extracting building footprints from high-resolution images and 

LiDAR-derived nDSM (normalized Digital Surface Model) made it the preferred option over 

Unet. This answered research question 1 and addressed research objective 1. 

 

For the training of the Mask R-CNN algorithm, the study focused on the Blaauwberg district 

within the City of Cape Town, which includes formal residential areas, industrial zones, and 

informal settlements. To evaluate and analyze the effectiveness of the model separately for each 

area, two Mask R-CNN models were trained: one using aerial imagery and the other using 

LiDAR-derived nDSM. This addressed research objective 2.  

 

To compare the performance of these models effectively, a new test dataset was used, which 

had not been seen during training or validation. Evaluation metrics such as precision, recall, F1-

score, and Average Precision were calculated to assess accuracy. The Mask R-CNN algorithm 

exhibited excellent performance in extracting formal residential building footprints from both 

high-resolution aerial images and LiDAR-derived nDSM, with satisfactory precision, recall, F1-

score, and Average Precision. However, when it came to industrial areas, the algorithm 

performed well in extracting building footprints from LiDAR-derived nDSM but showed 

unsatisfactory results with high-resolution aerial imagery. Extraction of shacks in dense 

settlements proved challenging due to the proximity and varying roof textures, resulting in a 
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highly populated area. Consequently, the calculated F1-score and Average Precision values 

were less than 0.5. However, the fusion of footprints extracted from aerial imagery and LiDAR-

derived nDSM improved the Average Precision Score to above 0.5. Therefore, for informal 

settlements, the fusion footprints generated from both aerial imagery and LiDAR-derived nDSM 

can be utilized to produce footprints for all informal settlements in the City of Cape Town. 

Additionally, the trained Mask R-CNN models for extracting formal residential building 

footprints from high-resolution aerial images and LiDAR-derived nDSM, along with the model 

for extracting industrial building footprints from LiDAR-derived nDSM, can be used to extract 

building footprints across the entire City of Cape Town. Thus, this answered both research 

questions 2 and 3 and addressed research objectives 2 and 3. 

 

Conclusively, the Mask R-CNN models used in this research have great potential to solve the 

problem of extracting building footprints from remote sensing data on a large scale. The 

resulting footprints can be combined with the existing 2D building footprints layer to fill in any 

gap. It is important to note that the trained Mask R-CNN models are scalable to extract building 

footprints across different South African’ Metropolitans, as formal and informal zones co-exist 

in these areas and they have similar environmental settings.  The building footprints results 

from the formal residential and industrial models are of great quality for use within the City of 

Cape Town. This data plays a vital role in various infrastructure planning initiatives in the City 

of Cape Town, including stormwater and sewer networks, electrification, substation planning, 

road and MyCity Bus route and stops planning. Moreover, building footprint data is essential 

for applications such as change detection, service delivery planning, household counting 

(census estimates), cadastral policy formulation, humanitarian interventions, and land use 

planning.  

5.2 Future Works 

The work presented in this research can still be developed further, considering the limited 

training datasets for industrial areas and informal settlements as well as the computational 

limitation to efficiently train the Mask R-CNN models on more training datasets. 

 Adding more informal settlement and industrial training datasets with sufficient roof 

variability and fine-tuning the Mask R-CNN models to ensure that the developed method 

can sufficiently learn and accurately extract shacks and industrial building footprints. 

 Additional preprocessing steps to enhance the contrast of roofs and reduce background 

complexity in informal settlements and industrial areas and fine-tune the Mask R-CNN 

models to improve the detection of bright shacks and industrial buildings. 

 Experiments with pre-processed training datasets with sufficient roof variability and 

enough model training duration should be done on a machine with high computational 

power and RAM storage. 

 Only ResNet101 as the Mask R-CNN backbone has been considered in this research but 

the developed method can be extended further to compare the building footprint results 

obtained from ResNet50 and ResNet152. 

 Training a single model with both aerial imagery and LiDAR-derived nDSM integrated. 
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