
Expert Systems With Applications 252 (2024) 124119

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

End-to-end automated speech recognition using a character based small scale
transformer architecture
Alexander Loubser ∗, Pieter De Villiers, Allan De Freitas
Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa

A R T I C L E I N F O

Keywords:
Speech recognition
Transformer
End-to-end
Character based
Connectionist temporal classification

A B S T R A C T

This study explores the feasibility of constructing a small-scale speech recognition system capable of competing
with larger, modern automated speech recognition (ASR) systems in both performance and word error rate
(WER). Our central hypothesis posits that a compact transformer-based ASR model can yield comparable
results, specifically in terms of WER, to traditional ASR models while challenging contemporary ASR systems
that boast significantly larger computational sizes. The aim is to extend ASR capabilities to under-resourced
languages with limited corpora, catering to scenarios where practitioners face constraints in both data
availability and computational resources. The model, comprising a compact convolutional neural network
(CNN) and transformer architecture with 2.214 million parameters, challenges the conventional wisdom
that large-scale transformer-based ASR systems are essential for achieving high accuracy. In comparison,
contemporary ASR systems often deploy over 300 million parameters. Trained on a modest dataset of
approximately 3000 h – significantly less than the 50,000 h used in larger systems – the proposed model
leverages the Common Voice and LibriSpeech datasets. Evaluation on the LibriSpeech test-clean and test-
other datasets produced character error rates (CERs) of 6.40% and 16.73% and WERs of 16.03% and 35.51%
respectively. Comparisons with existing architectures showcase the efficiency of our model. A gated recurrent
unit (GRU) architecture, albeit achieving lower error rates, incurred a computational cost 24 times larger
than our proposed model. Large-scale transformer architectures, while achieving marginally lower WERs
(2%–4% on LibriSpeech test-clean), require 200 times more parameters and 53,000 additional hours of
training data. Modern large language models are used to improve the WERs, but require large computational
resources. To further enhance performance, a small 4-g language model was integrated into our end-to-end
ASR model, resulting in improved WERs. The overarching goal of this work is to provide a practical solution
for practitioners dealing with limited datasets and computational resources, particularly in the context of
under-resourced languages.
1. Introduction

Automated speech recognition (ASR) is the process of converting
spoken language or a command into text using computer processing
techniques (Maas, Xie, Jurafsky, & Ng, 2015). End-to-end automated
speech recognition utilizes modern architectures, such as transform-
ers, to directly translate the audio data into text without the need
of phoneme or lexicon data. Traditional ASR models employed large
acoustic models, such as those discussed in Liao, McDermott, and
Senior (2013) and Li, Akita, and Kawahara (2016), integrating deep
neural networks (DNNs) with hidden Markov models (HMMs) and feed-
forward neural layers. These models, reliant on extensive dictionaries
and language models, demanded large-scale architectures with billions
of parameters for satisfactory performance. The advent of recurrent
neural network (RNN) models and long short-term memory (LSTM)

∗ Corresponding author.
E-mail addresses: a.loubser@tuks.co.za (A. Loubser), pieter.devilliers@up.ac.za (P. De Villiers), allan.defreitas@up.ac.za (A. De Freitas).

models marked a pivotal moment in ASR, enabling contextual aware-
ness through sequential speech data (Li et al., 2014; Long, Li, Wei,
Zhang, & Yang, 2019; Wu et al., 2017).

A language model compares the joint probabilities of sequences
of the predicted words in a sentence. The model uses the collection
of words in the sentence to predict the most probable form of each
word in the sentence. Language models, crucial for predicting word
sequences in a sentence, underwent significant improvements with
the introduction of RNNs and LSTMs (Chen, Liu, Wang, Gales, &
Woodland, 2016; Lippi, Montemurro, Degli Esposti, & Cristadoro, 2019;
Sundermeyer, Ney, & Schluter, 2015; Williams, Prasad, Mrva, Ash, &
Robinson, 2015). Modern large language models (LLMs) such as GPT-
3/4 and BERT improved contextual understanding above and beyond
RNNs and LSTMs and the increased contextual awareness offered by
these models led to enhanced performance, particularly with larger
vailable online 1 May 2024
957-4174/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.eswa.2024.124119
Received 18 December 2023; Accepted 25 April 2024
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
mailto:a.loubser@tuks.co.za
mailto:pieter.devilliers@up.ac.za
mailto:allan.defreitas@up.ac.za
https://doi.org/10.1016/j.eswa.2024.124119
https://doi.org/10.1016/j.eswa.2024.124119
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 252 (2024) 124119A. Loubser et al.
datasets. However, computational demands and training times also
escalated drastically and the LLMs also changed words to match better
contextually instead of producing the correct words from the speech
audio received. This caused a reduction in WER in some cases (Kubo,
Karita, & Bacchiani, 2022; Min & Wang, 2023).

The introduction of attention based models such as transformers
from Vaswani et al. (2017), allowed ASR models to be more efficient
and deliver the same results with less computational power required.
The transformer architecture was first developed for machine transla-
tion and text based tasks where it improved the results compared to any
previous RNN and CNN networks (Luong, Pham, & Manning, 2015).
Transformer based models use encoders and decoders linked with a
self attention system and improve on RNN and CNN models due to
the recurrence and convolution steps falling away. This allows more
sequential data to be used with less memory and fewer parameters
required. In this paper, a novel approach is presented where a small
character based ASR model is implemented, using a transformer ar-
chitecture. Contrary to the trend of larger transformer-based models,
our approach challenges the notion that high accuracy requires a vast
number of parameters. The model from this work is compared to larger
transformer based models and RNN models. The model consists of a
compact convolutional neural network and a transformer network that
amounts to 2.214 million parameters, a fraction of the size of con-
temporary ASR system, to predict characters based on the input audio
features. The input audio features and text is aligned by leveraging
connectionist temporal classification (CTC) from Graves, Fernández,
Gomez, and Schmidhuber (2006).

ASR requires large datasets and different machine learning algo-
rithms to successfully translate audio into text. Feature extraction takes
place by separating the audio data, based on audio properties such as
pitch and frequency. Standard audio features are extracted from the
raw audio data such as the Mel frequency cepstral coefficient (MFCC)
and the delta coefficients the MFCC values (Vergin, O’Shaughnessy, &
Farhat, 1999). The use of Mel Frequency Cepstral Coefficients (MFCC)
as input features not only enriches the feature representation but also
reduces dimensionality, contributing to the efficiency of the model.
Two publicly available datasets used for the training and testing of the
ASR model are known as the Mozilla common voice dataset (Mozilla,
2021) and the LibriSpeech dataset (Panayotov, Chen, Povey, & Khudan-
pur, 2015). The data is divided into training, development and testing
data. The total data consists of about 3000 h of English speech with
different dialects, which is limited as larger ASR models are trained
with over 52000 h of data. The model is trained using CTC loss and
the validation data CTC loss is used to tune hyperparameters during
training and to prevent overtraining.

Multiple performance metrics are considered for evaluating the ASR
model to ensure the model evaluation is accurate. The word error
rate (WER) and character error rate (CER) are performance matrices
to determine the percentage of words and characters that were pre-
dicted correctly. The model aims to minimize the footprint of ASR
models, making it suitable for scenarios with limited access to extensive
datasets and computational resources. The architecture comprises a
2-layered convolutional neural network followed by a 2-headed, triple-
layer transformer for contextual training. Notably, the output provides
character-based predictions, subsequently refined by a small 4-gram
language model for improved word error rates. Despite its reduced
scale, our architecture demonstrates comparable results to larger ASR
models, such as GRU, Wav2Vec2 and other existing transformer mod-
els (Baevski, Zhou, Mohamed, & Auli, 2020; Drexler & Glass, 2019;
Gulati et al., 2020).

2. Related work

In recent research, there has been notable exploration in enhanc-
ing Automatic Speech Recognition (ASR) systems leveraging LLMs
and knowledge transfer techniques. In Min and Wang (2023), the
2

integration of LLMs into ASR systems was investigated to improve tran-
scription accuracy. The study, utilizing the Aishell-1 and LibriSpeech
datasets, evaluated the potential of employing LLMs’ in-context learn-
ing capabilities. Despite initial experiments resulting in higher WER,
the study shed light on the challenges of effectively leveraging LLMs
for ASR applications. Another approach presented in Kubo et al. (2022)
addresses the data hunger challenge in training end-to-end ASR sys-
tems by transferring knowledge from pretrained language models. The
paper proposes a method to transfer semantic knowledge from em-
bedding vectors of large-scale language models to improve ASR de-
coders’ performance without added computational costs during decod-
ing. The research in Kubo et al. (2022) is attempting to improve speech
recognition by improving the language context with the use of LLMs.

In Gulati et al. (2020), a Conformer is introduced, an architec-
ture that combines CNNs and Transformers for ASR tasks. This model
achieves state-of-the-art accuracies on the LibriSpeech benchmark, out-
performing previous Transformer and CNN-based models by effectively
modelling both local and global dependencies in audio sequences. Our
approach is similar but uses a CNN architecture before the transformer
architecture, while Gulati et al. (2020) builds the CNN inside of the
transformer and the architecture is noticeably bigger in parameter size.
Our approach uses MFCC audio features while the approach in Gulati
et al. (2020) uses raw audio. In Winata, Cahyawijaya, Lin, Liu, and
Fung (2020), a low rank transformer was used for an end-to-end speech
recognition system with reduced parameters and increased training
speed and inference. The model was based on mandarin speech and
produced a CER of 13.6% for an 8.7 million parameter model without
an added language model on the mandarin AiShell-1 dataset. Maas
et al. (2015) and Pham et al. (2019) produce character based ASR
models with an added language model. The models vary and have up
to 48 layer transformers. All the ASR models consist of CTC based
transformer architectures.

Synnaeve et al. (2019) compares multiple end-to-end transformer
models with the LibriSpeech (Panayotov et al., 2015) dataset. The
paper shows that transformer models are superior with little speech
data, but as the data is increased all models converge to the same
results and rely less on language models for accurate results. The
transformer model with 322 million parameters and using CTC training,
achieved a WER of 2.99% and 7.31% on the dev-clean and dev-other
data respectively. The transformer also achieved a WER of 3.09% and
7.40% on the test-clean and test-other data respectively. Adding a 4-
gram language model increased the model accuracy slightly to a WER
of 2.86% and 6.72% on the test-clean and test-other data respectively.

The model in Drexler and Glass (2019) uses CTC based training for
end-to-end ASR and is tested on the LibriSpeech dataset. The model
consists of 2 convolutional layers and 5 GRU layers. The model pro-
duces a WER of 11.9 and 31.1 on the test-clean and test-other dataset
respectively. An added language model produces a WER of 8.3 and 24.4
on the test-clean and test-other dataset respectively. Hwang and Sung
(2016) also uses an older LSTM based architecture to create a character
based ASR model.

Modern very large ASR systems such as Baevski, Hsu, Conneau, and
Auli (2021), produce lower word error rates, but are very large and
take a lot of computational power to train and run. A WER of 3.8%
and 6.5% on the LibriSpeech test-clean and test-other data is achieved
by Baevski et al. (2021), that uses a very large transformer based ASR
model of over 300 million parameters called the Wav2Vec architecture
and a 4 gram language model. Baevski et al. (2020) achieves a WER of
1.8% and 3.3% on the LibriSpeech clean and other test set. The model
is trained using 53.2k hours of audio. The model contains 24 trans-
former blocks of dimension 1024 and inner dimensions of 4096 and
16 attention heads. The model is accompanied by a transformer based
language model. The large model has 317 million parameters without
the language model. Including the language model, it consists of over
a billion parameters. In Conneau, Baevski, Collobert, Mohamed, and

Auli (2020), a cross-lingual speech representation model called XLSR

Expert Systems With Applications 252 (2024) 124119A. Loubser et al.

w
e
M
n
c
d
u
s
1
t
i
a
t

s
s
t
f
f
r
m
f
m
o
o

Fig. 1. A flow diagram describing the basic layout of the architecture used to train the small scale ASR system. The model consists of a 1 dimensional CNN layer and a dense
layer to restructure and normalize the audio data. A transformer layer is used to train the model according to the sequential correlation of the data. The normalization and linear
layers after the transformer are used to convert the data into 30 classes of the output characters of the model.
3

a
a
t
w
t
n
a
n
c
E

4

C
l
l
f
c
n
t
T
w
T
i

h
f
l
o
l
3

4

v
i
a
u
e
c

4

t
a
c
b

R

is created from the wav2vec2.0 model from Baevski et al. (2020). The
existing model is fine-tuned with common voice data (Mozilla, 2021)
consisting of 53 languages and other multilingual datasets. The larger
amount of training data reduces the WER drastically when compared to
other models. The model produces an average WER of English common
voice testing data of 7.6% over 53 languages with a 4 gram language
model. Using the Common Voice en 7.0 dataset in Grosman (2021)
the Wav2Vec2 XLSR model trained on 53k hours of data produced
a WER of 27.72 and a CER of 11.65 for the testing dataset. Adding
a language model produced a WER of 20.85 and a CER of 11.01. A
new transformer model named XLS-R, Babu et al. (2021), produces a
2 billion parameters, transformer based, ASR system that is trained on
436k hours of data from over 128 languages. The model outperforms
all previous single language models for languages that have a small
amount of training data available. For English the Wav2Vec2 model
outperforms the new XLS-R model when using the LibriSpeech data for
comparison by a WER of 5.6% compared to 5.9% using the test-clean
dataset.

3. Data PreProcessing

3.1. Audio data

The audio input to the model is preprocessed in order to get
sufficient information from the audio to predict text. Generally the
audio data is transformed into a spectrogram to extract as much fre-
quency and time based data from the audio files as possible. The Mel
spectrogram is converted from the spectrogram based on the perceived
frequency or pitch from human hearing. The equation,

𝑀(𝑓) = 2595𝑙𝑜𝑔 (1 + 𝑓∕700) , (1)

here 𝑓 is the frequency and 𝑀(𝑓) is the Mel frequency from Vergin
t al. (1999), explains the transition from the spectrogram to the
el spectrogram. To reduce the input features, while containing the

ecessary data, and create a smaller model, the Mel frequency cepstral
oefficients (MFCC) are used. The Mel spectrogram is log-scaled and the
iscrete cosine transform (DCT) is computed to get the given MFCC val-
es (Vergin et al., 1999). A total of 81 Mel spectrogram features were
elected for each time segment. The 81 Mel features were decreased to
6 MFCCs. The deltas of the MFCC values were also calculated to add to
he features of the audio and take into account change in frequency to
mprove the model for multiple different speakers. The MFCC features
re more decorrelated than the Mel spectrogram which is beneficial to
he linear parts of the model.

Different preprocessing methods such as ‘‘SpecAugment’’ and time
tretching was implemented to change random selected audio data
lightly during training. This virtually increased training data and made
he ASR model more generalized for all different speech types. The
irst preprocessing method was completed by augmenting the audio
eatures during training using the ‘‘SpecAugment’’ method. This method
emoves a small percentage of randomly selected data features. The
ethod removes some frequency and time components of the audio

eatures to create a larger variety of training data and a more robust
odel. The second method was completed by applying time stretching

f 10% randomly to the data during training, to ensure that the speed
f the audio is taken into account.
3

.2. Text data

The correlating text data was preprocessed into lower-case, English
lphabetic letters only. A few added classes were also included such
s a space and an apostrophe. These characters could change the way
he audio is perceived and were therefore added. The text or label data
as tokenized into numerical values for class vector creation to train

he model. An extra class was added for unknown characters or letters
ot previously seen by the model. The label data and the preprocessed
udio data are not the same size and therefore each input value does
ot have a given class. To fix this for training, connectionist temporal
lassification (CTC) is used to align the audio data to the label data.
ach input 𝑋 is given an output distribution over all possible labels 𝑌 .

. Model

The ASR model architecture, as in Fig. 1, consists of a sequential
NN and a transformer network that are connected with normalization

ayers. The CNN is used to expand the input audio features into multi-
ayered neurons or data points. The audio features are abstracted into a
eature map that can be used by the transformer architecture. The CNN
onsists of a one dimensional convolution layer, a dropout layer and a
ormalization layer as seen in Fig. 2. The dense architecture changes
he dimensions of the data and normalizes the data for the transformer.
he dense architecture consists of a linear and normalization layer as
ell as a Gaussian error linear unit (GELU) layer and a dropout layer.
he 4 layers are repeated twice, and each layer has a size of 128 feature

nputs and outputs.
The transformer architecture has a two-headed layout, where each

ead contains three encoder layers and three decoder layers with a final
eedforward layer that has a hidden layer size of 1024 nodes. A basic
ayout of one head of the transformer can be seen in Fig. 4. The output
f the transformer architecture is transferred to a final normalization
ayer and dropout layer. The output of the dropout layer is reduced to
0 output classes using a final linear feedforward layer.

.1. Convolutional neural network architecture

The convolutional neural network (CNN) architecture utilizes a con-
olutional operation to capture spatial context for input data features
n multiple dimensions. The MFCC and delta coefficients, representing
udio feature data in the frequency and sequential time domains,
ndergo normalization during pre-processing. The convolutional layer
mploys a grid of n-dimensional filters to convolve with the input data,
apturing local features in time.

.1.1. Filter design and convolution
The CNN convolutional layer utilizes a filter grid for cross-correla-

ion with sections of the input matrix, shifting horizontally based on
stride parameter 𝑙𝑠𝑡𝑟𝑖𝑑𝑒. This process generates an output matrix,

apturing spatial features in the input. Cross-correlation is described
y:

≜ E[𝐗𝐘], (2)
XY

Expert Systems With Applications 252 (2024) 124119A. Loubser et al.

w
r
d

w

4

b
p

(

d
o
d

𝑧

t
a
i
E
p
t
d

a
t
a
t
f
t
t
d
o
f

4

i
R
c

Fig. 2. A diagram describing the basic layout of the CNN architecture used in the small-
scale ASR system. The CNN model consists of the main 1 dimensional convolutional
layer and additional normalization, GELU and dropout layers.

measuring similarity or displacement between vectors.
The stride distance 𝑙𝑠𝑡𝑟𝑖𝑑𝑒 affects dimensionality reduction (sub-

sampling) in the output matrix. Padding can be added to maintain
dimensionality, but reduction aligns with the model’s goal of parameter
reduction. Output dimensions are given by:

𝑙𝑜𝑢𝑡 =
(

𝑙𝑖𝑛 − 𝑓𝑐𝑜𝑛𝑣 + 𝑙𝑠𝑡𝑟𝑖𝑑𝑒
𝑙𝑠𝑡𝑟𝑖𝑑𝑒

)

(3)

and

𝑤𝑜𝑢𝑡 =
(

𝑤𝑖𝑛 − 𝑓𝑐𝑜𝑛𝑣 + 𝑙𝑠𝑡𝑟𝑖𝑑𝑒
𝑙𝑠𝑡𝑟𝑖𝑑𝑒

)

, (4)

here 𝑙𝑜𝑢𝑡 × 𝑤𝑜𝑢𝑡 represents the output dimension size and 𝑙𝑖𝑛 × 𝑤𝑖𝑛
epresent the input dimension size. In our case 𝑙 represents the time
imension 𝑤 represents the Mel frequency dimension. The 𝑙 × 𝑤

image represents the entire spectrogram. The filter size is represented
by 𝑓𝑐𝑜𝑛𝑣 × 𝑓𝑐𝑜𝑛𝑣 and 𝑙𝑠𝑡𝑟𝑖𝑑𝑒 is the stride length. In the case of audio
processing, the 32 audio features are 32 different channels and cross-
correlation occurs for the sequential time units over all the channels.
This requires only Eq. (3) as the filter and the inputs would both
have 32 channels. Adding slight padding does retain some time-based
information and ensures that data is not lost between the changes for
data over time. Adding padding changes Eq. (3) to:

𝑙𝑜𝑢𝑡 =
(𝑙𝑖𝑛 + 2 × 𝑙𝑝𝑎𝑑 − 𝑓𝑐𝑜𝑛𝑣 − 2

𝑙𝑠𝑡𝑟𝑖𝑑𝑒
+ 1

)

, (5)

here 𝑙𝑝𝑎𝑑 is the padding size.

.1.2. Model implementation
The chosen CNN applies one-dimensional convolution over the time-

ased dimension for all 32 audio feature channels. The convolution
rocess, denoted by ⋆, is described by:

𝑁bat, 𝐶out
)

= 𝑏(𝐶out) +
𝐶in−1
∑

𝑘=0
𝑤(𝐶out, 𝑘) ⋆ in(𝑁bat, 𝑘), (6)

where 𝑁bat is the batch size, 𝐶in is the number of input channels, and
𝐿 is the sequential length of the input audio signal.

The CNN layer involves bias values 𝑏 and weight values 𝑤, ad-
justed during training using backpropagation. These weights and bi-
ases are randomly initialized with a Gaussian distribution. The model
takes multiple sequential time-based inputs, each having 32 channels,
represented as 𝑙in ×𝑤in.

The output, denoted by 𝑙out, maintains 32 channels but has half the
time-based outputs. The selected filter size is 𝑓 = 10, with a stride
length of 𝑙stride = 2. A zero padding value 𝑝 = 5 is applied to add 5
zeros on each side. The output size is determined by:

𝑙out =
(

𝑙in + 2 × 5 − 10 − 2
2

+ 1
)

=
(

𝑙in
2

)

. (7)

4.1.3. Model additions
Normalization, GELU Activation, and Dropout Layers: A normal-

ization layer is applied to the CNN’s batch output data, producing a
4

l

normalized output 𝑦 based on the mean 𝐸[𝑥], variance Var[𝑥], and
learnable parameters 𝛾 and 𝛽. The normalization equation is given by:

𝑦 = 𝑥 − 𝐸[𝑥]
√

Var[𝑥] + 𝜖
⋅ 𝛾 + 𝛽, (8)

where 𝜖 is a small value (1 × 10−5) added to the variance to avoid
division by zero. Following normalization, a Gaussian Error Linear Unit
(GELU) activation function is applied:

𝑥 = 𝑥 ⋅𝛷(𝑥), (9)

where 𝛷(𝑥) is the cumulative distribution function for a Gaussian
istribution. The final layer is a dropout layer, randomly masking
r zeroing selected channel features during training. A probability 𝑝
etermines the chance of zeroing each feature:

𝑖 ∼ Bernoulli(𝑝), 𝑧𝑖 ∈ 𝑧,

where 𝑧𝑖 follows a Bernoulli distribution, and 𝑧 has the same size
as the input data. During evaluation, the probability is set to 0, and
the module computes an identity matrix during prediction. This se-
quence of normalization, GELU activation, and dropout layers en-
sures data transformation, non-linearity, and regularization in the CNN
architecture.

4.2. Dense architecture

A dense architecture subsystem is appended to the output of the
CNN subsystem, serving to normalize and reshape data for the trans-
former architecture. This subsystem includes linear layers, normaliza-
tion layers, activation functions, and dropout layers as illustrated in
3.

4.2.1. Model implementation
The first layer, a linear layer or dense layer, transforms the output

from the CNN architecture for compatibility with the main transformer.
This layer employs matrix multiplication with a weight matrix and bias
parameters, converting the 32 input features from the CNN dropout
layer into 128 features for each unit in time:

𝐲 = 𝐖𝐱 + 𝐛, (10)

where 𝐲 represents output features, 𝐱 represents input features, 𝐖 is
he weight matrix, and 𝐛 is the bias vector. Following the linear layer,

normalization layer (similar to that used in the CNN architecture)
s applied, ensuring discrimination and stabilizing training. A Gaussian
rror Linear Unit (GELU) activation function as defined in Eq. (9), is ap-
lied to introduce non-linearity to the data. A dropout layer is included
o randomly mask elements during training, preventing overfitting. A
ropout probability of 0.1 is used for the Bernoulli distribution.

The above four layers (linear, normalization, activation, dropout)
re repeated to maintain model stability during training. This repeti-
ion ensures gradual parameter adjustments and enhances prediction
ccuracy, particularly for voice data with varying accents and input fea-
ures. The second linear layer has the same number of input and output
eatures (128). The repeated normalization layer, GELU activation func-
ion layer, and dropout layer mirror the first set of dense layers, with
he weight and bias parameter values adjusting during training. This
ense architecture establishes a linear relationship between the CNN
utput features and the transformer input features, facilitating data
eature normalization before reaching the transformer architecture.

.3. Transformer architecture

The transformer architecture, a modern improvement on RNNs,
ncorporates attention mechanisms for enhanced performance. Unlike
NNs, transformers leverage parallel processing, eliminating sequential
onstraints (Luong et al., 2015). Comprising encoder and decoder

ayers, transformers use self-attention units and positional encodings.

Expert Systems With Applications 252 (2024) 124119A. Loubser et al.

k

𝑣
o
(

𝐴

h
h
i
d
a
F

Fig. 3. A diagram describing the dense architecture. The dense architecture consists of two sets of linear layers as the main layers. The architecture also has additional normalizations,
GELU and dropout layers.
Fig. 4. The flow diagram describes the 2-headed transformer architecture. The diagram is a representation of one of the heads. Each head contains three encoder layers and three
decoder layers with normalization layers after the encoder layers and decoder layers.
e
i
o
r
n
p
F
l
f
F
n
l
l
l
a
i

f
m
c
a
f
c

4

c
h

The encoder iteratively processes input data, producing output values
for subsequent layers. Similarly, decoder layers include self-attention
units and an additional mechanism drawing information from encoder
outputs. Each layer incorporates a feedforward neural network (FFNN)
for residual connections and layer normalization. The last decoder
layer employs a linear transformation and softmax layer for output
probabilities (Vaswani et al., 2017).

Transformer networks use scaled dot product attention units in the
encoders and decoders. The attention weights are calculated between
every token simultaneously to produce embeddings for every token
in context. This context contains information about the token and a
weighted combination from other relevant tokens, weighted by atten-
uation weights. Each attention unit consists of a query weight 𝑊𝑞 , a
ey weight 𝑊𝑘 and a value weight 𝑊𝑣 matrix. Each token 𝑖 consists of

the input word embedding 𝑥𝑖, multiplied with each of the three weight
matrices. This produces a query vector 𝑞𝑖 = 𝑥𝑖𝑊𝑞 , a key vector 𝑘𝑖 =
𝑥𝑖𝑊𝑘 and a value vector 𝑣𝑖 = 𝑥𝑖𝑊𝑣. The attention weights are calculated
from the query and key vectors where 𝑎𝑖𝑗 is the dot product of 𝑞𝑖 and
𝑘𝑗 from 𝑖 to 𝑗. The attention weights are also divided by

√

𝑑𝑘, where
𝑑𝑘 is the dimension of the key vector, to stabilize the gradient during
training. Lastly the attention weights are passed through a softmax to
normalize the data to a sum of 1. The output of an attention unit for a
token 𝑖 is the weighted sum of the value vectors for all tokens weighted
by 𝑎𝑖𝑗 . The attention calculation for all tokens is therefore a large matrix
calculation for matrices 𝑄,𝐾 and 𝑉 representing all the tokens 𝑞𝑖, 𝑘𝑖 and
𝑖, such that 𝑄 = {𝑞0, 𝑞1,… , 𝑞𝑛}, where 𝑛 represents the total number
f tokens. This produces the attention equation from Vaswani et al.
2017),

𝑡𝑡(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 . (11)

One set of attention units (𝑊𝑞 ,𝑊𝑘 and 𝑊𝑣) is known as an attention
ead. Each layer in a transformer model consists of multiple attention
eads. One attention head attends to tokens that are relevant to each
ndividual token. Multiple attention heads help the model to create
ifferent definitions of relevance between tokens. Multi-head attentions
re processed in parallel and concatenated to be passed through a final
5

FNN layer for further processing. l
4.3.1. Model implementation
The main transformer architecture for this model includes two

heads, each composed of three encoder layers and three decoder layers.
The encoder processes a (𝑡 × 𝑏 × 𝑥) dimensional input, where 𝑡 is the
number of time-based inputs, 𝑏 is the batch size, and 𝑥 represents
the input features from the dense layer. The positional encodings are
utilized in the attention function to generate an output of dimension
(𝑡×𝑏×𝑥). The encoder output is sequentially passed through subsequent
ncoder layers to form the encoder system. The decoder, receiving
nputs from both the dense layer and the encoder system, produces
utputs of the same dimension. The decoder uses masking to prevent
everse flow information and repeats this process for the specified
umber of decoder layers, resulting in the decoder system. An exam-
le of a three-encoder, three-decoder layer transformer is depicted in
ig. 4. The encoder layer comprises an attention layer, normalization
ayers, and linear layers. The decoder layer involves attention layers
or both inputs, normalization layers, and additional linear layers.
ollowing the transformer architecture, the model incorporates a final
ormalization layer, dropout layer, and linear layer. The normalization
ayer, as defined in Eq. (8), produces a normalized output by applying
earnable parameters 𝛾 and 𝛽 to the batch output data. The dropout
ayer randomly masks or zeros selected elements during training using
Bernoulli distribution, with a chosen probability 𝑝 of 0.1 for zeroing

tems.
A final linear layer is introduced to reshape the data dimensions

rom (𝑡 × 𝑏 × 128) to (𝑡 × 𝑏 × 30), where 𝑡 represents the time-based di-
ension size, and 𝑏 represents the batch size. The resulting 30 features

orrespond to the possible character classes of the model. Subsequently,
softmax function is applied in the final layer to enable a cost function,

acilitating the comparison of predicted output classes to actual target
lasses during training.

.4. Language models

Language models play a crucial role in augmenting end-to-end
haracter-based Automatic Speech Recognition (ASR) systems by en-
ancing word understanding from predicted characters. The n-gram
anguage model is a statistical approach that estimates the probability

Expert Systems With Applications 252 (2024) 124119A. Loubser et al.

w
t
r
a
w

4

t
s
f
f
T
c
A
m
p
o

5

5

m

5

d
f
a
d
T
d
t
w
m
a
t

l
T
l
w
T
p
t
t
o
T

a
E
l
w
b
w
a
a
p

i
w
s
o
W
d
l
n
t
i
m
1
i
T

5

t
m
l
B
a
m
v
D
t
a
c

e
e
w
w
w
b
p
m

s
p
t

of word sequences based on the occurrence of previous words. Specif-
ically, for a sequence of words 𝑊 = (𝑤1, 𝑤2,… , 𝑤𝑛), the probability
𝑃 (𝑊) is calculated as:

𝑃 (𝑊) =
𝑛
∏

𝑖=1
𝑃
(

𝑤𝑘|𝜙(𝑊𝑘−1)
)

, (12)

where 𝜙(𝑊𝑘−1) represents the context of the preceding words. To mea-
sure the performance of the n-gram language model, quality measures
such as perplexity and Word Error Rate (WER) are employed. Perplexity
(𝑃𝑃 (𝑊)) is defined as:

𝑃𝑃 (𝑊) = − 1
𝑚

𝑚
∑

𝑘=1
log𝑛

[

𝑃 (𝑊𝑖|𝑊𝑖−1)
]

, (13)

hile WER provides a more practical evaluation for the ASR model. In
he context of ASR, the n-gram language model is applied to correct and
efine the output sequences generated by the ASR model. By utilizing
4-gram model, the language model leverages relationships between
ords in a dataset to enhance the accuracy of predictions.

.4.1. Rationale for using N-gram model
The decision to employ an n-gram language model in tandem with

he ASR model stems from its practicality and effectiveness for a small-
cale ASR system. While larger transformer-based models like BERT of-
er extensive contextual understanding, the n-gram model proves more
easible, striking a balance between size, efficiency, and performance.
his choice ensures effective speech correction without overwhelming
omputational requirements, aligning with the specific needs of the
SR system under consideration. In summary, the n-gram language
odel, with its simplicity and adaptability, serves as a valuable com-
onent in refining ASR predictions, contributing to the overall efficacy
f the end-to-end system.

. Experiment

.1. Environment and tools

The proposed end-to-end character-based ASR model is imple-
ented and trained using the following environment and tools:

• Hardware: The experiments were conducted on a machine equi-
pped with an AMD RYZEN 5 3600 CPU, 16 GB DDR4 RAM and a
Nvidia GeForce RTX3060 GPU with 12Gb of VRAM.

• Software: The model is implemented using the PyTorch deep
learning framework in Python, and the training process is facili-
tated by the CUDA parallel computing platform.

• Dataset: Two primary datasets are employed for training and
evaluation. The Mozilla Common Voice English 7.0 dataset
(Mozilla, 2021), consisting of 2000 h of English spoken voice
data, and the LibriSpeech English dataset (Panayotov et al.,
2015), comprising approximately 1000 h of English read speech
from audiobooks.

.2. Pre-processing comparison

The first model was trained using only the common voice training
ataset. The validation dataset was used for parameter tuning and
inal testing for different sampling frequencies and preprocessing of the
udio data. In Table 1, the different CERs and WERs are displayed for
ifferent preprocessing techniques and different model output methods.
he testing data used was a small segment of the common voice test
ataset consisting of 500 audio segments that was not used for either
raining or validation to avoid data contamination. Each original model
as tested using three different output methods. The greedy decoding
ethod utilized the highest probability output character for each input

udio segment and combined the characters using the CTC compression
6

o produce output characters. The beam search method used the most p
ikely sequence of characters based on the top 500 output sequences.
he final output method was a beam search with an added 4-gram

anguage model for word recognition. The 4-gram language model
as selected as it contains a large dictionary of connected words.
he model uses a statistical probability of words occurring based on
revious and following words. Statistical language modelling estimates
he prior probability 𝑃 (𝑊) for a sequence or string of words 𝑊 in a
otal vocabulary 𝑉 . The vocabulary 𝑉 can be thousands to hundreds
f thousands of words depending on the selected language model.
he sequence of words 𝑊 is usually broken into small sequences or

sentences that are conditionally independent so that Eq. (12) can be
implemented.

The surrounding words 𝑊𝑘−1 =
(

𝑤1, 𝑤2,… , 𝑤𝑖−1
)

are used in
function 𝜙(𝑊𝑘−1) to determine the predicted word 𝑤𝑘. Therefore,

q. (12) can be rewritten as: 𝑃 (𝑊) ≃
∏𝑛

𝑖=1 𝑃
(

𝑤𝑘|𝜙(𝑊𝑘−1)
)

. The 4-gram
anguage model uses 𝜙(𝑊𝑘−1) = 𝑤𝑘−4+1, 𝑤𝑘−4+2, 𝑤𝑘−4+3, so that the 3
ords before the selected word is taken as 𝜙(𝑊𝑘−1). Larger transformer
ased language models could be used, but they consist of a model
ith billions of parameters and would defeat the purpose of building
small scale ASR model. In Table 1, the beam search method with

n added 4-gram language model produces the best results for all data
re-processing types.

The first model was created by augmenting the audio features dur-
ng training using the ‘‘SpecAugment’’ method. This model was trained
ith a sampling rate of 8 kHz and 16 kHz respectively. The results

how that the audio data features sampled at 16 kHz produced a CER
f 36.59% and a WER of 67.4% compared to a CER of 41.82% and a
ER of 74.27% using the 8 kHz sampled audio features. Removing the

ata augmentation improved the CER and WER slightly. This is most
ikely due to the audio features being MFCC values and their deltas and
ot a full spectrogram. Therefore, the ‘‘SpecAugment’’ method removes
oo much necessary data from the audio features. Time stretching was
ntroduced instead of the ‘‘SpecAugment’’ method. The time stretching
ethod randomly stretched or shrank the length of audio segments by
0% while keeping all the audio data constant. The time stretching
mproved the CER to 29.98% and the WER to 59.83% as seen in
able 1.

.3. Language model comparison on initial data

To enhance the understanding of words from predicted characters,
wo types of language models are incorporated: the n-gram language
odel and the BERT transformer-based language model. The n-gram

anguage model is chosen for its practicality in small-scale ASR systems.
y estimating the probability of word occurrences based on previous
nd following words, the n-gram model provides a balance between
odel size and correlation between words. The implementation in-

olves creating a 4-gram language model using the kenLM toolkit.
ifferent 4-gram models are tested, with the selected model based on

he LibriSpeech dataset. Beam search and weighted probabilities ensure
ccurate predictions, and the model output is converted from tokens to
haracters.

In contrast to the limited contextual understanding of n-gram mod-
ls, the BERT (Bidirectional Encoder Representations from Transform-
rs) language model utilizes the entire sequence to predict or correct
ords. The BERT model is fine-tuned for sentence correction, aligning
ith the goals of speech recognition. The BERT model is implemented
ith output data from the beam search method, enhancing predictions
ased on contextual information. By iteratively masking words and
redicting the 50 most probable words for each masked word, the BERT
odel contributes to refining the ASR model’s output.

The CERs and WERs in Table 2 are from a small testing sample
elected to compare the different language models and select the best
erforming language model. The CERs and WERs are not reflective of
he final model as it was trained on a very small sample for testing

urposes only. The BERT language model in Table 2 produces worse

Expert Systems With Applications 252 (2024) 124119A. Loubser et al.

t
s
c
a

Table 1
Character error rates (CERs) and word error rates (WERs) for different sampling frequencies and preprocessing methods of the Common Voice 7.0
validation data.

Pre-processing performance Greedy decoding Beam search 500 Beam search 500 and 4-gram lm

Performance metrics CER % WER % CER % WER % CER % WER
%

Normal MFCC 8 kHz 43.00 90.43 41.99 91.04 41.82 74.27
MFCC with Spec augment

16 kHz
41.31 86.79 39.62 86.91 36.59 67.40

Normal MFCC 16 kHz 40.63 86.66 38.45 85.50 35.15 65.22
MFCC with time stretching

16 kHz
35.84 82.01 34.17 80.08 29.98 59.83
Fig. 5. Average Training and Validation CTC loss per Epoch for the transformer model, using the common voice 7.0 English training and validation dataset. The graph indicates
hat the average CTC loss value decreased from 1.9268 to 0.7174 for the training dataset and decreased from 1.7829 to 0.9818 for the validation dataset. The audio data was
ampled at 16 kHz and converted to 16 MFCC values and 16 delta values. Time stretching of 10% was applied to the training data to simulate more data. 30 possible character
lasses were selected as possible outputs of the model. The validation data was used to optimize the model by changing the learning rate of the model based on the output of the
verage validation CTC loss per epoch.
.

w
o
t
s
d
𝑞

e
w
i
t

L
a
I
C
t
r

i
d
a
t
r
v
t

Table 2
CERs and WERs for different output methods of the Common Voice 7.0 validation data

Output method Performance metrics

Performance metrics CER % WER %

Greedy decoding 43.00 90.43
Beam search 500 41.99 91.04
4-gram lm (LibriSpeech) 41.91 86.43
4-gram lm (CV + LibriSpeech) 41.82 74.27
BERT 42.84 89.56
Textblob spell checker 42.92 87.64

results than the smaller n-gram language model, and therefore it was
decided that the 4-gram language model would be used with the ASR
model. The 4-gram language model is also smaller than the BERT
language model and therefore reduces the system complexity with
respect to the number of parameters.

5.4. Model training

The ASR model is trained using the training subset of the common
voice English dataset and the three training subsets of the LibriSpeech
dataset. The CTC algorithm is employed to determine the maximum
likelihood label for each input value. A blank token is introduced to the
character classes to ensure proper handling of repeating characters.

The model is trained to minimize the CTC loss, which is calculated
as the mean difference between the predicted and actual labels. The la-
bel error rate (LER) is defined as the normalized edit distance between
the output classifications of the model and the target classifications. In
CTC loss, the label error rate (LER) can be defined as the normalized
edit distance between the output classifications of a classifier model ℎ
7

d

and the classification targets such that:

𝐿𝐸𝑅(ℎ, 𝑆′) = 1
𝑌

∑

(𝑥,𝑦)∈𝑆′
𝐸𝐷 (ℎ(𝑥)) , (14)

here 𝑆′ is a dataset with dimensions (𝑥×𝑦) and 𝑌 is the total number
f target labels. The edit distance, 𝐸𝐷 (𝑝, 𝑞) is the edit distance between
wo sequences 𝑝 and 𝑞 which would be the predicted and target
equences. The edit distance is the minimum number of insertions,
eletions or substitutions required to change sequence 𝑝 into sequence
(Graves et al., 2006).

The audio data is processed in batch sizes of 64, allowing for
fficient training with the available hardware. The model is initialized
ith random weights and biases, and a standard learning rate of 1e−3

s chosen. A dropout value of 0.1 is applied to the dropout layers during
raining.

The evaluation subset of the common voice English dataset and
ibriSpeech dataset is used to evaluate the model after every epoch and
djust the learning rate if necessary, using the ‘‘AdamW’’ optimizer.
f the model parameters become trapped in a local minimum of the
TC loss function, within a few iterations, the optimizer increases
he learning rate to change the weight and bias training values more
apidly and to improve training efficiency.

In Fig. 5, the average CTC loss of the common voice training data
s provided per epoch. The model was trained using the MFCC and
elta audio features, sampled at 16 kHz, and time stretching random
udio segments during training. The results indicate that the ASR model
rained to minimize the CTC loss value until a minimum value was
eached. Fig. 5 also provides the average CTC loss for the common
oice validation data per epoch. The validation data is used to optimize
he training of the model. When the validation CTC loss value did not

rop for 5 epochs, the ‘‘AdamW’’ optimizer changed the learning rate of

Expert Systems With Applications 252 (2024) 124119A. Loubser et al.
Table 3
Comparison of the small scale transformer from this paper, to other large transformer based ASR models using the Common Voice validation dataset
and testing dataset.

CommonVoice testing Validation data Testing data

Parameters Hours Trained CER % WER % CER % WER
%

End-to-end small scale
transformer

2 214 141 2000 CV 22.54 48.17 27.89 54.50

Wav2Vec2 XLS-R 300
(Babu et al., 2021)

300 million 436000 Pre-Train
+ 2000 CV

7.36 30.71 N/A N/A

Wav2Vec2 XLSR53
(Conneau et al., 2020;
Grosman, 2021)

317 million 56000 Pre-Train
+ 2000 CV

7.69 19.06 11.65 27.72

Wav2Vec2 XLSR53 With
LM (Conneau et al.,
2020; Grosman, 2021)

317 million 56000 Pre-Train
+ 2000 CV

6.84 14.81 11.01 20.85
the model to allow a larger jump in weight values. In Fig. 5, there are
sudden drops in CTC loss at selected epochs, this is due to the optimizer
changing the learning rate of the model.

6. Results and discussion

6.1. Common voice results

Table 3 compares the final trained small scale transformer model
results to existing large transformer based models on the common voice
validation dataset and testing dataset. In the table, it is noticeable that
the small scale transformer ASR model does not perform as well as the
larger Wav2Vec2 models from Babu et al. (2021) and Conneau et al.
(2020). The ASR models from previous work consist of architectures
that have over 300 million parameters, while the model in this paper
only consists of 2.21 million parameters. That is a parameter reduction
by a factor of about 150. The other models are also pre-trained with
over 50 000 h of speech data, before being fine-tuned with the Common
Voice dataset. The small scale transformer is only trained on the 2000 h
of Common Voice data.

The end-to-end small scale transformer, with an added 4-gram
language model produced a CER of 24.87% and a WER of 52.51% on
the validation dataset and a CER of 29.98% and a WER of 58.57%
on the testing dataset. The random chance of a single character being
guessed correctly by the model is 3.33% and a sequence of characters
reduces that probability exponentially. Therefore, a CER of 29.98% is
a positive result for a small scaled speech recognition model, but is
still far off from the large speech recognition model CER results in
Table 3. There were multiple reasons for the poor performance and it
was decided to add the LibriSpeech data as an additional 1000 h of
training data to test the models performance.

6.2. LibriSpeech results

Table 4 compares the results of the small scale transformer model
trained on only 2000 h of Common Voice data and the same model
trained on an additional 1000 h of LibriSpeech data. The models
are tested on the LibriSpeech dev and test datasets. The fine-tuned
model, with the additional training data from LibriSpeech, outperforms
the original Common Voice trained model drastically. The test-clean
dataset CER is reduced from 13.89% to 6.40% and the WER is reduced
from 30.93% to 16.03%. The overall results for the model on the
LibriSpeech data significantly improved compared to the Common
Voice data, as the LibriSpeech data consists of more clear speech and
only in an American accent. The model also performs better with the
added LibriSpeech training data due to an additional 1000 h of audio
data used to train the model. The LibriSpeech training data is also more
similar to the LibriSpeech dev and test data.

Table 5 compares the final small scale transformer model, trained
8

on common voice and LibriSpeech training data, to existing large
transformer based models using the LibriSpeech dev dataset and test
dataset. In the table, it is noticeable that the small scale transformer
ASR model does not perform as well as the larger Wav2Vec2 and large
transformer models, but is comparable to older GRU based models.

The transformer based ASR models from previous work consist of
architectures that have over 300 million parameters, while the model in
this paper only consists of 2.21 million parameters. That is a parameter
reduction by a factor of over 150. The other models are also pre-trained
with over 53000 h of speech data, before being fine-tuned with the
LibriSpeech dataset. The small scale transformer is only trained on the
3000 h of common voice and LibriSpeech data.

6.3. Discussion

The end-to-end small scale transformer, with an added 4-gram lan-
guage model produced a WER of 16.03% and 35.51% on the test-clean
and test-other data respectively on the LibriSpeech dataset. The model
also produced a WER of 15.45% and 33.47% on the dev-clean and dev-
other data respectively. The small scaled end-to-end ASR model with an
added 4-gram language model produced the given CER and WER using
a model that was trained and tested using less than 12Gb of video RAM,
which was the limitation for this model. The other large transformer
models require large clusters of graphics cards to train models that
require over 120Gb of video RAM. The result from an older GRU based
model in Drexler and Glass (2019), produced a WER of 31.1% for the
test other dataset, which is relatively close to the WER achieved by the
small scale transformer, but at a significantly larger computational cost,
as the architecture had 52.5 million parameters, which is a factor of 24
times larger than the architecture in this paper.

The small scale transformer trains a lot faster computationally, as it
optimizes parallel processing with the use of transformer architecture
layers. The larger modern transformer based ASR models outperformed
with WERs of under 5% for the test clean dataset and WERs of under
10% for the test other datasets. This is due to the models being trained
with about 50000 h more speech data. The models also have over
300 million parameters with multiple deep layers to create different
mathematical paths, with different weights, between the input data and
the output classes.

The final end-to-end transformer based ASR model designed in the
research consisted of a CNN layer and a 2-headed transformer with
3 encoder layers and 3 decoder layers. The data used to train the
model was the 2000 h of Mozilla common voice 7.0 training data
and the 1000 h of LibriSpeech training data. The audio data was
transformed to 32 MFCC and delta features as the input to the model.
The output of the model was 30 character based classes. The output
of the model was processed by a small 4-gram language model to
improve word understanding as it is a character based ASR model. The
model produced a CER and WER of 27.89% and 54.5% respectively
for the very noisy common voice testing dataset. The model also

produced a CER and WER of 6.40% and 16.03% respectively for the

Expert Systems With Applications 252 (2024) 124119A. Loubser et al.
Table 4
LibriSpeech Dev and Test results based on a small scale transformer based ASR model, with 3 encoder layers and 3 decoder layers, trained on the Common Voice dataset and the
same model being fine-tuned with the LibriSpeech training dataset.

LibriSpeech testing Dev clean Dev other Test clean Test other

End-to-end small scale
transformer (2 head: 3 enc,
3 dec)

CER % WER % CER % WER % CER % WER % CER % WER
%

Trained on Common Voice 13.57 30.61 26.29 51.39 13.89 30.93 27.49 53.58
Trained on LibriSpeech 12.08 28.91 25.54 51.85 12.55 30.14 26.56 53.75
Trained on Common

Voice and LibriSpeech
6.04 15.45 15.90 33.47 6.40 16.03 16.73 35.51
Table 5
LibriSpeech dataset WER results for the small scale transformer models compared to very large ASR models using mainly transformer based architectures. The small scaled
transformer model has 2.21 million parameters, with an added 4-gram language model. All the other large scale transformer models contain over 52.5 million parameters without
their added language models.

LibriSpeech testing Parameters Hours trained Dev clean Dev other Test clean Test other
WER % WER % WER % WER %

End-to-end small
scale transformer (2
head: 3 enc, 3 dec)

2 214 141
+ lang model

1000 LibriSpeech 28.91 51.85 30.14 53.75

End-to-end small
scale transformer (2
head: 3 enc, 3 dec)

2 214 141
+ lang model

2000 Pre-Train
+ 1000 LibriSpeech

15.45 33.47 16.03 35.51

CTC based GRU
model (Drexler &
Glass, 2019)

52.5 million Pre-Train
+ 1000 LibriSpeech

N/A N/A 11.9 31.1

CTC based GRU
model with 4gram
LM (Drexler & Glass,
2019)

52.5 million
+ lang mod

Pre-Train
+ 1000 LibriSpeech

N/A N/A 8.3 24.4

CTC based
transformer (Synnaeve
et al., 2019)

322 million 53800 Pre-Train
+ 1000 LibriSpeech

2.99 7.31 3.09 7.40

CTC based
transformer with
transformer LM
(Synnaeve et al.,
2019)

322 million
+ lang mod

53800 Pre-Train
+ 1000 LibriSpeech

2.63 6.20 2.86 6.72

Conformer model
(Gulati et al., 2020)

118.8 million
+ lang mod

800M words
+ 1000 LibriSpeech

N/A N/A 1.9 3.9

Wav2Vec2
transformer (Baevski
et al., 2021)

300 million
+ lang mod

53200 Pre-Train
+ 1000 LibriSpeech

3.4 6.0 3.8 6.5

Wav2Vec2.0
transformer (Baevski
et al., 2020)

317 million
+ transformer lang
mod

53200 Pre-Train
+ 1000 LibriSpeech

1.6 3.0 1.8 3.3

Crowd-sourced human
level performance
(Amodei et al., 2015)

N/A N/A N/A N/A 5.83 12.69
LibriSpeech test clean dataset. The exceptional CERs of 6.04% and 6.4%
achieved on the Dev and Test Clean datasets, respectively, underscore
the robustness of the speech recognition component within our model.
These impressively low CER values indicate the effectiveness of the
speech recognition mechanism. Notably, leveraging a larger language
model could substantially enhance the Word Error Rate (WER) given
the strong foundation of accurate character recognition.

Furthermore, the advent of sophisticated, modern large language
models, such as GPT-4, presents an opportunity to significantly boost
the accuracy of this small-scale character-based speech recognition
model. The integration of such advanced language models holds the po-
tential to markedly reduce WER, capitalizing on the already exemplary
performance of the speech recognition aspect. This model represents a
viable approach for under-resourced languages and scenarios with lim-
ited computational power. Our research provides compelling evidence
that small-scale speech recognition models can effectively establish
speech-to-text systems for under resourced languages with limited ac-
cess to large corpora, without the need for extensive computational
resources or expensive cloud environments. Our approach is designed
to be open-source, providing an accessible and straightforward method
9

that does not rely on proprietary models unavailable as open-source
resources. By showcasing the feasibility of this approach, we aim to
encourage the development of speech recognition systems for a wider
array of languages and contexts, thereby contributing to democratizing
access to speech recognition technology.

7. Conclusion

A character based small scale transformer architecture introduced
an end-to-end automated speech recognition model showcasing per-
formance comparable to large scale character based ASR models. The
reduction in performance is not nearly commensurate with the re-
duction in complexity that has been achieved when compared to the
results of large modern character based ASR models. The developed
model in the paper has over 150 times fewer parameters and was
trained with up to 53000 h less voice data than the larger modern ASR
systems. The model produced, was trained on the common voice and
LibriSpeech training datasets, and produced a CER and WER of 27.89%
and 54.5% respectively on the common voice testing data as well as a
CER and WER of 6.40% and 16.03% respectively on the LibriSpeech
test-clean dataset. The best current large ASR model produced a WER

of 1.8% on the LibriSpeech test-clean dataset, but with a 317 million

Expert Systems With Applications 252 (2024) 124119A. Loubser et al.

G

G

G

H

K

L

L

L

L

L

L

M

M

M
P

P

parameter model and a transformer based language model consisting
of over 400 million parameters. The model in this paper has 2.214
million parameters and a small 4-gram language model. The model
was comparable to an older GRU based model that produced a WER
of 11.9% and 31.1% respectively on the same LibriSpeech dataset, but
at a significantly larger computational cost, as the architecture had
52.5 million parameters, which is a factor of 24 times larger than the
architecture in this paper.

The performance of the small-scale transformer architecture is note-
worthy, particularly evident in the CER results for the LibriSpeech
dataset. Notably, future work should entail finding the break-even
point where only adding a modest number of parameters may result
in performance comparable with the larger models considered in the
paper. The observed low CER values for the LibriSpeech dataset, such
as the 6.40% on test-clean, underscore the remarkable efficacy of
the speech recognition component within the model. This points to
the possibility of achieving significantly improved WER figures with
the incorporation of a more robust language model. A small 4-gram
language model decreased the WER by over 20% in the common voice
English 7.0 testing data. Adding more training data should increase the
performance of the small scale model significantly as well. Notably,
all character-based end-to-end ASR models require a small language
model to translate predicted characters into coherent words. Our study
primarily aimed to forge an ASR model viable for under-resourced
languages devoid of expansive datasets and computing resources. Ad-
ditionally, it is designed to function as a portable standalone ASR
device, ideal for scenarios lacking internet connectivity, where larger
recognition tools are inaccessible. This work signifies a step towards
democratizing speech recognition technology for resource-constrained
languages and environments. It underscores the potential for compact,
accessible ASR solutions, eliminating reliance on proprietary models or
extensive computational infrastructures.

Code

The Python code for the end-to-end small scale ASR model is
available on github at: SmallScale-SpeechRecog.git.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

We thank the MultiChoice Chair of Machine Learning for sponsoring
the funding for the research of this paper. The University of Pretoria
EECE department provided the facilities and resources to complete the
paper. A thanks also to Mozilla for the publicly available Common
Voice dataset and to OpenSLR and Vassil Panayotov for the publicly
available LibriSpeech dataset.

References

Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B., et al.
(2015). Deep speech 2: End-to-end speech recognition in english and mandarin.
vol. 1, In 33rd international conference on machine learning, ICML 2016 (December),
(pp. 312–321). URL http://arxiv.org/abs/1512.02595, arXiv:1512.02595.

Babu, A., Wang, C., Tjandra, A., Lakhotia, K., Xu, Q., Goyal, N., et al. (2021). XLS-R:
Self-supervised cross-lingual speech representation learning at scale. (pp. 1–23).
URL http://arxiv.org/abs/2111.09296, arXiv preprint arXiv:2111.09296.
10
Baevski, A., Hsu, W.-N., Conneau, A., & Auli, M. (2021). Unsupervised speech recog-
nition. Advances in Neural Information Processing Systems, 34, 27826–27839. http://
dx.doi.org/10.48550/arXiv.2105.11084, https://github.com/pytorch/fairseq/tree/,
http://arxiv.org/abs/2105.11084, arXiv:2105.11084.

Baevski, A., Zhou, H., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for
self-supervised learning of speech representations. Advances in Neural Information
Processing Systems, 33, 12449—-12460, arXiv:2006.11477, URL http://arxiv.org/
abs/2006.11477.

Chen, X., Liu, X., Wang, Y., Gales, M. J., & Woodland, P. C. (2016). Efficient
training and evaluation of recurrent neural network language models for automatic
speech recognition. IEEE/ACM Transactions on Audio Speech and Language Processing,
24(11), 2146–2157. http://dx.doi.org/10.1109/TASLP.2016.2598304.

Conneau, A., Baevski, A., Collobert, R., Mohamed, A., & Auli, M. (2020). Unsupervised
cross-lingual representation learning for speech recognition. arXiv preprint arXiv:
2006.13979, URL http://arxiv.org/abs/2006.13979.

Drexler, J., & Glass, J. (2019). Subword regularization and beam search decoding for
end-to-end automatic speech recognition. In ICASSP 2019 - 2019 IEEE interna-
tional conference on acoustics, speech and signal processing (pp. 6266–6270). IEEE,
http://dx.doi.org/10.1109/ICASSP.2019.8683531, URL https://ieeexplore.ieee.org/
document/8683531/.

raves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist temporal
classification. vol. 148, In Proceedings of the 23rd international conference on machine
learning - ICML ’06 (pp. 369–376). New York, New York, USA: ACM Press, http:
//dx.doi.org/10.1145/1143844.1143891, URL http://portal.acm.org/citation.cfm?
doid=1143844.1143891.

rosman, J. (2021). XLSR Wav2Vec2 English by Jonatas Grosman. In Hugging
face unpublished results. Unpublished, URL https://huggingface.co/jonatasgrosman/
wav2vec2-large-xlsr-53-english.

ulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu, J., et al. (2020). Conformer:
Convolution-augmented transformer for speech recognition. In INTERSpEECH, ISCA
(pp. 5036–5040). http://dx.doi.org/10.48550/arXiv.2005.08100.

wang, K., & Sung, W. (2016). Character-level incremental speech recognition with
recurrent neural networks. 2016-May, In 2016 IEEE international conference on
acoustics, speech and signal processing (pp. 5335–5339). IEEE, http://dx.doi.org/10.
1109/ICASSP.2016.7472696, arXiv:1601.06581m URL http://ieeexplore.ieee.org/
document/7472696/.

ubo, Y., Karita, S., & Bacchiani, M. (2022). Knowledge transfer from large-scale
pretrained language models to end-to-end speech recognizers. In ICASSP 2022 -
2022 IEEE international conference on acoustics, speech and signal processing (pp.
8512–8516). http://dx.doi.org/10.1109/ICASSP43922.2022.9746801.

i, S., Akita, Y., & Kawahara, T. (2016). Semi-supervised acoustic model training by
discriminative data selection from multiple ASR systems’ hypotheses. IEEE/ACM
Transactions on Audio Speech and Language Processing, 24(9), 1520–1530. http:
//dx.doi.org/10.1109/TASLP.2016.2562505.

i, B., Zhou, E., Huang, B., Duan, J., Wang, Y., Xu, N., et al. (2014). Large scale
recurrent neural network on GPU. In Proceedings of the international joint conference
on neural networks (pp. 4062–4069). IEEE, http://dx.doi.org/10.1109/IJCNN.2014.
6889433.

iao, H., McDermott, E., & Senior, A. (2013). Large scale deep neural network acoustic
modeling with semi-supervised training data for YouTube video transcription. In
2013 IEEE workshop on automatic speech recognition and understanding, ASRU 2013
- proceedings (pp. 368–373). IEEE, http://dx.doi.org/10.1109/ASRU.2013.6707758.

ippi, M., Montemurro, M. A., Degli Esposti, M., & Cristadoro, G. (2019). Natural
language statistical features of LSTM-generated texts. IEEE Transactions on Neural
Networks and Learning Systems, 30(11), 3326–3337. http://dx.doi.org/10.1109/
TNNLS.2019.2890970, arXiv:1804.04087.

ong, Y., Li, Y., Wei, S., Zhang, Q., & Yang, C. (2019). Large-scale semi-supervised
training in deep learning acoustic model for ASR. IEEE Access, 7, 133615–133627.
http://dx.doi.org/10.1109/ACCESS.2019.2940961.

uong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-
based neural machine translation. In Conference proceedings - EMNLP 2015:
conference on empirical methods in natural language processing (pp. 1412–1421). http:
//dx.doi.org/10.18653/v1/d15-1166, arXiv:1508.04025, https://re-work.co/blog/
deep-learning-ilya-sutskever-google-openai-, http://arxiv.org/abs/1508.04025.

aas, A. L., Xie, Z., Jurafsky, D., & Ng, A. Y. (2015). Lexicon-free conversational speech
recognition with neural networks. In NAACL HLT 2015 - 2015 conference of the
North American chapter of the association for computational linguistics: human language
technologies, proceedings of the conference (pp. 345–354). Stroudsburg, PA, USA:
Association for Computational Linguistics, http://dx.doi.org/10.3115/v1/n15-1038,
URL http://aclweb.org/anthology/N15-1038.

in, Z., & Wang, J. (2023). Exploring the integration of large language models
into automatic speech recognition systems: An empirical study. arXiv preprint
arXiv:2307.06530.

ozilla (2021). Common voice corpus 7.0, https://commonvoice.mozilla.org/en/datasets.
anayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: An ASR corpus

based on public domain audio books. 2015-Augus, In ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings (pp. 5206–5210).
http://dx.doi.org/10.1109/ICASSP.2015.7178964.

ham, N.-Q., Nguyen, T.-S., Niehues, J., Müller, M., Stüker, S., & Waibel, A. (2019).
Very deep self-attention networks for end-to-end speech recognition. arXiv preprint
arXiv:1904.13377, URL http://arxiv.org/abs/1904.13377.

https://github.com/AlexLoubser/SmallScaleSpeechRecog.git
http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/2111.09296
http://arxiv.org/abs/2111.09296
http://dx.doi.org/10.48550/arXiv.2105.11084
http://dx.doi.org/10.48550/arXiv.2105.11084
http://dx.doi.org/10.48550/arXiv.2105.11084
https://github.com/pytorch/fairseq/tree/
http://arxiv.org/abs/2105.11084
http://arxiv.org/abs/2105.11084
http://arxiv.org/abs/2006.11477
http://arxiv.org/abs/2006.11477
http://arxiv.org/abs/2006.11477
http://arxiv.org/abs/2006.11477
http://dx.doi.org/10.1109/TASLP.2016.2598304
http://arxiv.org/abs/2006.13979
http://arxiv.org/abs/2006.13979
http://arxiv.org/abs/2006.13979
http://arxiv.org/abs/2006.13979
http://dx.doi.org/10.1109/ICASSP.2019.8683531
https://ieeexplore.ieee.org/document/8683531/
https://ieeexplore.ieee.org/document/8683531/
https://ieeexplore.ieee.org/document/8683531/
http://dx.doi.org/10.1145/1143844.1143891
http://dx.doi.org/10.1145/1143844.1143891
http://dx.doi.org/10.1145/1143844.1143891
http://portal.acm.org/citation.cfm?doid=1143844.1143891
http://portal.acm.org/citation.cfm?doid=1143844.1143891
http://portal.acm.org/citation.cfm?doid=1143844.1143891
https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english
https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english
https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english
http://dx.doi.org/10.48550/arXiv.2005.08100
http://dx.doi.org/10.1109/ICASSP.2016.7472696
http://dx.doi.org/10.1109/ICASSP.2016.7472696
http://dx.doi.org/10.1109/ICASSP.2016.7472696
http://arxiv.org/abs/1601.06581
http://ieeexplore.ieee.org/document/7472696/
http://ieeexplore.ieee.org/document/7472696/
http://ieeexplore.ieee.org/document/7472696/
http://dx.doi.org/10.1109/ICASSP43922.2022.9746801
http://dx.doi.org/10.1109/TASLP.2016.2562505
http://dx.doi.org/10.1109/TASLP.2016.2562505
http://dx.doi.org/10.1109/TASLP.2016.2562505
http://dx.doi.org/10.1109/IJCNN.2014.6889433
http://dx.doi.org/10.1109/IJCNN.2014.6889433
http://dx.doi.org/10.1109/IJCNN.2014.6889433
http://dx.doi.org/10.1109/ASRU.2013.6707758
http://dx.doi.org/10.1109/TNNLS.2019.2890970
http://dx.doi.org/10.1109/TNNLS.2019.2890970
http://dx.doi.org/10.1109/TNNLS.2019.2890970
http://arxiv.org/abs/1804.04087
http://dx.doi.org/10.1109/ACCESS.2019.2940961
http://dx.doi.org/10.18653/v1/d15-1166
http://dx.doi.org/10.18653/v1/d15-1166
http://dx.doi.org/10.18653/v1/d15-1166
http://arxiv.org/abs/1508.04025
https://re-work.co/blog/deep-learning-ilya-sutskever-google-openai-
https://re-work.co/blog/deep-learning-ilya-sutskever-google-openai-
https://re-work.co/blog/deep-learning-ilya-sutskever-google-openai-
http://arxiv.org/abs/1508.04025
http://dx.doi.org/10.3115/v1/n15-1038
http://aclweb.org/anthology/N15-1038
http://arxiv.org/abs/2307.06530
https://commonvoice.mozilla.org/en/datasets
http://dx.doi.org/10.1109/ICASSP.2015.7178964
http://arxiv.org/abs/1904.13377
http://arxiv.org/abs/1904.13377

Expert Systems With Applications 252 (2024) 124119A. Loubser et al.

S

V

V

W

W

Sundermeyer, M., Ney, H., & Schluter, R. (2015). From feedforward to recurrent
LSTM neural networks for language modeling. IEEE Transactions on Audio, Speech
and Language Processing, 23(3), 517–529. http://dx.doi.org/10.1109/TASLP.2015.
2400218.

ynnaeve, G., Xu, Q., Kahn, J., Likhomanenko, T., Grave, E., Pratap, V., et al.
(2019). End-to-end ASR: from supervised to semi-supervised learning with modern
architectures. arXiv preprint arXiv:1911.08460, URL http://arxiv.org/abs/1911.
08460.

aswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. Advances in Neural Information Processing Systems,
30, 5999–6009, arXiv:1706.03762.

ergin, R., O’Shaughnessy, D., & Farhat, A. (1999). Generalized mel frequency
cepstral coefficients for large-vocabulary speaker-independent continuous-speech
recognition. IEEE Transactions on Speech and Audio Processing, 7(5), 525–532.
http://dx.doi.org/10.1109/89.784104.
11
Williams, W., Prasad, N., Mrva, D., Ash, T., & Robinson, T. (2015). Scaling recurrent
neural network language models. 2015-Augus, In ICASSP, IEEE International Con-
ference on Acoustics, Speech and Signal Processing - Proceedings (pp. 5391–5395).
http://dx.doi.org/10.1109/ICASSP.2015.7179001, arXiv:arXiv:1502.00512v1.

inata, G. I., Cahyawijaya, S., Lin, Z., Liu, Z., & Fung, P. (2020). Lightweight and
efficient end-to-end speech recognition using low-rank transformer. In ICASSP 2020
- 2020 IEEE international conference on acoustics, speech and signal processing (pp.
6144–6148). IEEE, http://dx.doi.org/10.1109/ICASSP40776.2020.9053878, URL
https://ieeexplore.ieee.org/document/9053878/.

u, B., Li, K., Ge, F., Huang, Z., Yang, M., Siniscalchi, S. M., et al. (2017). An end-to-
end deep learning approach to simultaneous speech dereverberation and acoustic
modeling for robust speech recognition. IEEE Journal of Selected Topics in Signal
Processing, 11(8), 1289–1300. http://dx.doi.org/10.1109/JSTSP.2017.2756439.

http://dx.doi.org/10.1109/TASLP.2015.2400218
http://dx.doi.org/10.1109/TASLP.2015.2400218
http://dx.doi.org/10.1109/TASLP.2015.2400218
http://arxiv.org/abs/1911.08460
http://arxiv.org/abs/1911.08460
http://arxiv.org/abs/1911.08460
http://arxiv.org/abs/1911.08460
http://arxiv.org/abs/1706.03762
http://dx.doi.org/10.1109/89.784104
http://dx.doi.org/10.1109/ICASSP.2015.7179001
http://arxiv.org/abs/arXiv:1502.00512v1
http://dx.doi.org/10.1109/ICASSP40776.2020.9053878
https://ieeexplore.ieee.org/document/9053878/
http://dx.doi.org/10.1109/JSTSP.2017.2756439

	End-to-end automated speech recognition using a character based small scale transformer architecture
	Introduction
	Related Work
	Data PreProcessing
	Audio Data
	Text Data

	Model
	Convolutional Neural Network Architecture
	Filter Design and Convolution
	Model Implementation
	Model Additions

	Dense Architecture
	Model Implementation

	Transformer Architecture
	Model Implementation

	Language Models
	Rationale for Using N-Gram Model

	Experiment
	Environment and Tools
	Pre-processing Comparison
	Language Model Comparison on Initial Data
	Model Training

	Results and Discussion
	Common voice results
	LibriSpeech results
	Discussion

	Conclusion
	Code
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

