Intelligent Systems with Applications 20 (2023) 200286

Contents lists available at ScienceDirect

Intelligent
Systems

with
Applications

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

Check for

Application of deep reinforcement learning in asset liability management

Takura Asael Wekwete !, Rodwell Kufakunesu®, Gusti van Zyl"

 Department of Computer Science, University of Pretoria, Pretoria, 0002, South Africa
b Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa

ARTICLE INFO ABSTRACT

Keywords:

Reinforcement learning
Deep learning

Deep reinforcement learning
Asset liability management
Duration matching
Redington immunisation
Deep hedging

Asset Liability Management (ALM) is an essential risk management technique in Quantitative Finance and
Actuarial Science. It aims to maximise a risk-taker’s ability to fulfil future liabilities. ALM is especially critical
in environments of elevated interest rate changes, as has been experienced globally between 2021 and 2023.
Traditional ALM implementation is still heavily dependent on the judgement of professionals such as Quants,
Actuaries or Investment Managers. This over-reliance on human input critically limits ALM performance due
to restricted automation, human irrationality and restricted scope for multi-objective optimisation. This paper
addressed these limitations by applying Deep Reinforcement Learning (DRL), which optimises through trial, and
error and continuous feedback from the environment. We defined the Reinforcement Learning (RL) components
for the ALM application: the RL decision-making Agent, Environment, Actions, States and Reward Functions.
The results demonstrated that DRL ALM can achieve duration-matching outcomes within 1% of the theoretical
ALM at a 95% confidence level. Furthermore, compared to a benchmark weekly rebalancing traditional ALM
regime, DRL ALM achieved superior outcomes of net portfolios which are, on average, 3 times less sensitive
to interest rate changes. DRL also allows for increased automation, flexibility, and multi-objective optimisation
in ALM, reducing the negative impact of human limitations and improving risk management outcomes. The
findings and principles presented in this study apply to various institutional risk-takers, including insurers, banks,
pension funds, and asset managers. Overall, DRL ALM provides a promising Artificial Intelligence (AI) avenue
for improving risk management outcomes compared to the traditional approaches.

1. Introduction

A thriving and well-managed insurance, banking and risk manage-
ment sector is vital for a country’s sustainable economic growth. It
encourages individuals and businesses to invest, spend and accumulate
wealth with reduced uncertainty about the future (Ward & Zurbruegg,
2000). Asset Liability Management (ALM), also known as Asset Liability
Modelling, is the Actuarial and Quantitative Finance risk management
technique used by institutional risk-takers such as insurers, pension
funds, banks and asset managers. A key aim of ALM is to derive an op-
timal investment asset allocation strategy for reducing interest rate risk
exposure by taking into account the corresponding current and future li-
abilities. The inability to meet claim liabilities is one of the critical risks
that institutional risk-takers address with ALM (Smink & van der Meer,
1997). Adequate implementation of ALM is especially critical in envi-
ronments of rapidly changing interest rates as has been experienced
globally between 2021 and 2023. Poor ALM was a key factor in the

* Corresponding author.

demise of several high profile banks in 2023 such as Sillicon Valley
Bank (SVB), Credit Suisse and First Republic Bank (Geman, 2023, Daga,
2023, Barr, 2023).

A common ALM approach is Duration Matching, in which the asset
allocation is chosen such that the timing of the future asset proceeds is
aligned as much as possible with that of the expected liability outflows.
The Duration of a set of cash flows is defined as the average timing of
the cash flows weighted by the size of the respective discounted cash
flows. The most common theoretical framework used for deriving Du-
ration Matching is Redington Immunisation. One of the key objectives
of Immunisation is for the optimal asset allocation weights to be chosen
such that the Duration of the asset portfolio is close as possible to the
Duration of liability cash flows (Fooladi & Roberts, 2000). Duration is a
standard measure of the interest rate sensitivity of an asset or liability
portfolio. Another secondary objective is to have the rate of change of
the Duration (known as the Convexity) for the assets to be greater than
that of the Liabilities where possible (Nieto et al., 2022).

E-mail addresses: takurawekwete@gmail.com (T.A. Wekwete), rodwell. kufakunesu@up.ac.za (R. Kufakunesu), gusti.vanzyl@up.ac.za (G. van Zyl).

1 Fellow Actuary - Actuarial Society of South Africa.

https://doi.org/10.1016/j.iswa.2023.200286

Received 23 May 2023; Received in revised form 22 July 2023; Accepted 7 October 2023

Available online 13 October 2023

2667-3053/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

T.A. Wekwete, R. Kufakunesu and G. van Zyl

In traditional ALM, the professional (Actuary, Quantitative Analyst
or Investment Manager) typically initially estimates the Duration of the
claim liabilities based on projected liability cash flows. For insurance
contracts, such analysis and modelling usually incorporate risk factors
such as sum insured, insurance term, policyholder risk factors, types of
risks covered etc. Afterwards, the professionals typically select a port-
folio of assets whose allocation into bonds, property, cash and other
securities has a Duration within an acceptable threshold to that of li-
abilities. Assets which perfectly match the liabilities are not always
available (Garrett, 2013, Kahlig, 2022).

Furthermore, this process must be repeated, for example, monthly
or quarterly. The process usually involves multiple stakeholders, such
as asset managers, treasury department, finance/reporting department,
valuations/reserving department etc., and usually requires extensive
data gathering across various data sources. This often presents a chal-
lenge in the speed of the process and, therefore, the frequency at which
ALM re-balancing can be done. All the while, the composition of the
underlying liability risks is constantly changing on a daily basis (some-
times hourly), especially in insurance, banking or asset management.
Specific theoretical assumptions on the nature of interest rates under-
pin traditional Immunisation (Kahlig, 2022). However, the real-world
conditions in which these models are applied often deviate from these
assumptions, which requires the professionals to monitor these devia-
tions and make appropriate in their application based on judgement.
Deep Reinforcement Learning provides an avenue for the ALM to be
less reliant on theoretical assumptions (Biihler et al., 2018).

ALM often needs to be achieved simultaneously with other objec-
tives, such as maximising risk-adjusted returns or targeting a given dif-
ferential between assets Duration and liability Duration. Consequently,
in the traditional approach, some human judgement is commonly ap-
plied to the final asset allocation at each iteration in the quest to
incorporate the additional objectives as much as possible. The applied
human judgement is usually based on the professional’s past experi-
ences, corrections for model biases and balancing the importance of
various additional objectives.

Unfortunately, this need for human intervention and judgement in
the process introduces several limitations. The first limitation is that the
traditional ALM process becomes difficult to automate. Consequently,
there is a limit on the frequency of the updates and asset allocation
re-balancing that can be done in a given period. In the time between
the Duration Matching re-balancing iterations, there is also a risk of a
rapid change in the interest rate hedge between assets and liabilities
portfolios. Deep Reinforcement Learning introduces the possibility of
minimising the requirement for human intervention (Hariom Tast &
Lookabaugh, 2020).

Second, a significant drawback of the conventional ALM approach,
Redington Immunisation, is its limited capacity for facilitating explo-
ration, experimentation, and error correction of various asset alloca-
tions within a comprehensive feedback loop. This is because the number
of potential allocations within and across various asset classes is nu-
merous. In addition, the investment environment and the composition
of the risk-takers liabilities are continuously changing. Hence, the tra-
ditional ALM Duration Matching approach is often not consistently and
sufficiently exploratory of all the options within a learning cycle. Deep
Reinforcement Learning provides a way for the Asset Liability Manage-
ment to be executed in continuously improving feedback loop (Hariom
Tast & Lookabaugh, 2020, Englisch et al., 2023, Krabichler & Teich-
mann, 2023).

Third, the high reliance on human intervention and judgement ex-
poses the traditional Asset Liability Management investment processes
to human behavioural irrationality and limitations. Humans are subject
to emotions such as fear and greed, which can negatively lead to sub-
optimal asset allocation decisions. Humans are also vulnerable to a lack
of consistency in applying the organisation’s ALM Investment policy.
Humans are also susceptible to other irrationalities such as confirmation
bias, overconfidence, recency bias, availability bias, and many other bi-

Intelligent Systems with Applications 20 (2023) 200286

ases (Syed & Bansal, 2018, Rabbani et al., 2021, Chiu et al., 2022, Bondt
et al., 2013).

Fourth, in addition to the primary ALM, the need to weigh and pri-
oritise current objectives in the ALM process can be challenging to
implement. This is currently being done in the industry either by a
rules-based software approach or human professional judgement. For
example, suppose the ALM is carried out in a software tool such as
spreadsheet software. In that case, it is often time-consuming and chal-
lenging to explicitly express all the other objectives and constraints.
Deep Reinforcement Learning providers for the possibility to carry
out optimisation of multiple objectives simultaneously (Englisch et al.,
2023, Krabichler & Teichmann, 2023).

In this paper, we examined the feasibility, performance and ad-
vantages of using Deep Reinforcement Learning to implement ALM in
relation to issues outline above of traditional ALM. Deep Reinforcement
Learning incorporates Deep Learning into the Reinforcement Learn-
ing framework. A key benefit of this approach is that it creates an
autonomous ALM decision-making agent which directly learns the ob-
jectives of ALM and which actions to take, or not take, with minimal
supervision. Furthermore, this Deep Reinforcement Learning Asset Lia-
bility Modelling (DRL ALM) agent not only learns through a combina-
tion of historical data and outcomes, but also its own trial and error,
and continuous feedback from the environment. DRL ALM presents
the promise of introducing an autonomous decision-making agent that
can be incorporated into company software systems, data pipelines and
ALM processes for automated and faster implementation compared to
traditional approaches. DRL ALM also holds the promise of rational,
consistent and agile ALM implementation which is also able to learn
from its own past actions and outcomes. Due to these strong advan-
tages, there have been recent successes implementations by others to
manage Asset Liability Management problems with Deep Learning and
Reinforcement Learning (Englisch et al., 2023, Krabichler & Teichmann,
2023, Cheridito et al., 2020). Ultimately, the objective is to create a
highly capable Artificial Intelligence (AI) Asset Liability Management
assistant that can complement and increase the productivity of profes-
sionals in the Asset Liability Management field.

Section 2 formally outlines this paper’s problem statement and re-
search questions, that is, whether Reinforcement Learning can be ap-
plied to manage, fulfil and enhance ALM relative to the theoretical
method of Redington Immunisation. Furthermore, set out to compare
the performance of DRL ALM to a practical benchmark traditional ALM
approach.

Section 3 discusses and synthesises existing papers and application
of Reinforcement Learning in general and, more specifically, within the
Insurance and Quantitative Finance domains. We also look at recent
related ALM works and outline the existing gaps, which will be filled
by the output of this paper.

Section 4 outlines and explains the theoretical framework of Red-
ington Immunisation which underpins most traditional ALM.

Section 5 introduces and explains the Monte Carlo simulation pro-
cesses used to generate data which was used to train and evaluate the
Reinforcement Learning ALM Agent.

Section 6 introduces and explains the details Deep Reinforcement
Learning framework and the training process.

In Section 7, we evaluate the performance of the Reinforcement
Learning ALM and contrast it against the theoretical Immunisation and
a practical benchmark traditional ALM approach. We conclude in Sec-
tion 8 by summarising the main findings and future studies.

2. Problem statement and research questions
2.1. Problem statement
Implementing ALM using traditional ALM methods such as Reding-

ton Immunisation exposes an organisation to severe limitations and
business risks such as limited automation of the ALM process, exposure

T.A. Wekwete, R. Kufakunesu and G. van Zyl

to risks of human irrationality and human error and constrained multi-
ple multi-objectives optimisation. The problem statement of this paper
was whether Reinforcement Learning can be used to successfully imple-
ment and automate ALM by Duration Matching to mitigate the problems
and can effectively address the limitations of traditional methods?
Reinforcement Learning has been successfully applied in some other
fields of Quantitative Finance. We explored whether this application can
be extended to ALM primarily in the insurance context. Furthermore,
we will explore whether Reinforcement Learning can sufficiently and
practically improve the critical Risk Management objectives of a typical
institutional risk-taker (such as a life insurer) relative to Immunisation.

2.2. Research questions

This paper presents investigations and findings guided by the fol-
lowing research questions:

(a) Comparison of Deep Reinforcement Learning to theoretical
Redington Immunisation

The first research question was to investigate the following:

At a given point in time, do the Deep Reinforcement Learning
ALM asset allocation results, and by extension, the Duration results,
give similar outcomes to Redington Immunisation theory ALM? If
they differ, to what extent do they differ?

For this research question, we focused on the universe of assets
comprised primarily of Bonds, specifically Zero-Coupon Bonds, for
simplicity. We also investigated the robustness of the Deep Rein-
forcement Learning solution under stress-testing.

(b) Comparison of Deep Reinforcement Learning to a traditional
benchmark ALM strategy

The second research question was to investigate the following:

How do Deep Reinforcement Learning’s asset allocations com-
pare to those of a benchmark practical traditional ALM strategy in
hedging a changing liability portfolio? Does it result in better inter-
est rate hedging and to what extent?

For this research question, we tested and contrasted the daily
asset allocation of Reinforcement Learning within a 30-day month.

2.3. Research limitations and focus

There are many Duration-based Asset Liability Management tech-
niques. This paper focused on benchmarking Reinforcement Learning
performance against the commonly used traditional Asset Liability Man-
agement approach of Duration Matching. We also limited our context
to investments by long position investments within traditional hedging
asset classes such as Bonds, Property and Cash or Cash-equivalents. In
fact, for the experimentation, we focused only on Zero-Coupon Bonds
for simplicity. However, this is not a very restrictive framework because
Coupon-Bearing Bonds can be modelled as a series of Zero-Coupon
Bonds with smaller face values and different maturities (Jarrow, 2004,
Jarrow & Turnbull, 2000). Therefore, this paper’s findings are also ap-
plicable when hedging is carried out with Coupon-Bearing Bonds.

We did not consider complicated investment strategies, such as those
with short positions or derivatives, because the risk-taking institutions
we considered in this paper are usually restricted from taking such risky
investments. Although ALM is applied by many institutional risk takers
such as insurers, banks, pension funds and asset managers, we mostly
limited our scenario to that of an insurance company which sells every-
day insurance products such as life, disability or health insurance.

3. Related work
3.1. Wider applications of deep learning and reinforcement learning
Reinforcement Learning has successfully been applied in a wide

range of domains and applications. Deep Reinforcement Learning is of-
ten applied with the use of Deep Learning Models, such as Artificial

Intelligent Systems with Applications 20 (2023) 200286

image/video resource mgmt dynamic
recognition adaptive performance treatment
localization traffic optimization regimes
detection signal security phenotype
tracking control privacy inference
manufacturing autonomous
Eaa computer computer
activities and Ovis?on ’ ITS syst?ems healthcare teacher
processes educational
management games
Industry education
4.0
deep reinforcement learning
smart business
grid management
adaptive ads
control games obotics NLP finance recommender
customer
management
go localization chatbot pricing
poker mapping translation trading
bridge navigation QA portfolio
Starcraft control sentiment optimization

Fig. 1. Deep Reinforcement Learning Applications.

Neural Networks (ANNs), Convolutional Neural Networks (CNNs), and
Recurrent Neural Networks (RNNs) (Dong et al., 2021). When Deep
Learning is used in Reinforcement Learning, this can be classified as
Deep Reinforcement Learning (DLR) (Mousavi et al., 2018). Deep Learn-
ing models have also, in their own right, been applied successfully in a
wide range of domains, such as Computer Vision, Speech Recognition,
Natural Language Translation, Time Series Analysis, Autonomous Driv-
ing, Medical Diagnosis, among many other applications (Dong et al.,
2021, He & Droppo, 2016, Hsu et al., 2016, Sak et al., 2014, Qu et al.,
2017, Altché & de La Fortelle, 2017).

Fig. 1 illustrates a summary of some of the main application areas
(Li, 2017, 2022). From Fig. 1, we can see the dynamic nature of Rein-
forcement Learning in very diverse fields.

3.2. Strengths and drawbacks of reinforcement learning (RL)

A key feature of model-free Reinforcement Learning (RL) is that one
does not need to assume a model or impose underlying dynamics of
financial relationships beforehand (Sato, 2019). This is incredibly ad-
vantageous in applications where there exist uncertainties on the truth
of underlying dynamics or where the dynamics are consistently evolv-
ing. For example, this is the case for the investments of an insurer, and
this model-free nature of RL gives flexibility and adaptability in such
applications.

There has been extensive exploration of the various questions and
challenges encountered in applying model-free RL in financial portfolio
optimisation (Sato, 2019). In this paper, they explored popular RL ap-
proaches such as Q-Learning. Q-learning is a model-free RL approach
aiming to maximise the total value of the expected reward or gain de-
fined within the environment.

The performance of RL was noted to have several challenges, unfor-
tunately. First, it is highly dependent on the appropriate specification of
the objective value function, which is often challenging to specify while
capturing the critical objectives. Second, the solutions are generally un-
stable if there is noise in the loss function. Third, RL is also susceptible
to other issues such as over-fitting, the curse of high-dimensionality, de-
pendence on many samples, interpretability and credit assignment prob-
lems. The credit assignment problem occurs when the consequences of
a decision only materialise many iterations after the decision, which
makes it difficult to attribute the decision to the outcome (Sato, 2019).

It has also been pointed out that Q-learning RL can sometimes be
slow to converge, and alternative variations have been proposed (Devraj
& Meyn, 2019).

T.A. Wekwete, R. Kufakunesu and G. van Zyl

This research has an advantage in that it prepares one for the
theoretical and implementation challenges in the application. Unfor-
tunately, the studies by Sato, Devraj and Meyn above did not focus on
demonstrating detailed practical applications of RL, particularly in the
insurance context.

3.3. Applications of reinforcement learning in quantitative finance

There has been some recent successful application of RL in other ar-
eas of Quantitative Finance. For example, there have been successful
demonstrations of the application of RL to create an automated trading
bot which made profitable actions on unseen test data (Hariom Tast &
Lookabaugh, 2020). They also developed a Derivatives Option hedging
strategy based on Deep Reinforcement Learning, which performed rea-
sonably well. They also used a Reinforcement Learning-based portfolio
allocation to maximise Risk-adjusted returns on Cryptocurrencies.

RL has also been applied in solving dynamic optimisation prob-
lems in Quantitative Finance, such as portfolio allocation, pricing and
hedging contingent claims in model-free contexts (Kolm & Ritter, 2020,
Dixon & Halperin, 2019). These applications show the flexibility of RL
in various Quantitative Finance contexts. However, these applications
were not applied in the context of ALM, which is where the gap in lit-
erature and application exists.

In Actuarial Science, there has been development of a Markov Deci-
sion Process model for a life insurer which was then successfully applied
to RL algorithms to maximise the Risk-adjusted return on capital for the
company (Abrate et al., 2021). This paper did incorporate the future li-
ability cash flows of the insurer, but the objective was not to implement
ALM based on Duration Matching. An advantage of this research is that
the application was in the context of insurance companies, which is
more aligned with this research. However, the objective was only to
maximise Risk-adjusted returns without much regard for the liability
profile of the insured liabilities. This also represents a gap in applying
ALM to decide the strategy to match the liabilities’ Duration.

Wuthrich and Merz introduced Deep learning as one of the impor-
tant methodologies in the toolkit of actuarial practice and statistical
modelling (Wutrich & Merz, 2023). However, there is no inclusion of
Reinforcement Learning or application to Asset Liability Modelling.

3.4. Recent applications of deep learning and reinforcement learning to
asset liability modelling

Cheridito et al. successfully applied a Deep Learning approach to
estimate the tail risk measures of a portfolio of assets and liabilities
(Cheridito et al., 2020). The tail risk measures used for assessing Asset
Liability risk included Value-at-Risk and Expected Shortfall in order to
ensure regulatory compliance with Solvency II (Cheridito et al., 2020).
Although there was successful implementation of Deep Learning in As-
set Liability modelling, the solution is static compared to a situation
where Reinforcement Learning is used. The solution is not able to
continuously learn over time and adapt to changing market and risk
conditions as is enabled by Reinforcement Learning.

Krabichler and Teichmann recently successfully applied Deep Learn-
ing and Reinforcement Learning to develop a methodology for hedging
interest rate risk of asset and liability portfolios for retail banks (Kra-
bichler & Teichmann, 2023). They applied the method of deep hedging
to a situation of a runoff (no going concern) portfolio of retail bank-
ing liabilities. The deep learning ALM application demonstrated an
out-performance of 2% per annum on a return on equity basis. The
Tensorflow library was applied in the Deep Learning implementation
(Krabichler & Teichmann, 2023). Three main drawbacks of the Deep
Learning approach were noted. The first was the need to overcome a
common misunderstanding that the approach requires a large volume
of historical data. The second was that the agent can be seen as black-
blox which is difficult to decipher. The last was that there may be a

Intelligent Systems with Applications 20 (2023) 200286

need to convince regulators of the advantages, robustness and accuracy
of this novel approach.

Englisch et al. used a similar approach of deep hedging also in a sim-
ilar retail banking context but compare the application to more bench-
mark strategies in a comprehensive manner (Englisch et al., 2023). In
addition, they also explicitly modelled yield curves in their scenario
generation. They also introduced regulatory constraints such as Lig-
uidity Coverage Ratio to the problem. The results showed that Deep
Learning-based ALM outperformed all the benchmarks whilst staying
within regulatory limits in almost all yield curve scenarios. However,
several challenges were noted such as the difficulty of model explain-
ability of the dynamic decision-making agent and the difficulty of
appropriately defining loss functions that are preferences of an ALM
strategy. There was also an extended application to unwinding Swap
portfolios, however, with some mixed results (Englisch et al., 2023).

3.5. Research gaps addressed

From the papers discussed it is evident that Reinforcement Learning
has been applied with some success in Quantitative Finance and Actu-
arial Science (Hariom Tast & Lookabaugh, 2020, Kolm & Ritter, 2020,
Dixon & Halperin, 2019, Abrate et al., 2021). Although the recent appli-
cation of Deep Learning and Reinforcement Learning for Asset Liability
Modelling was successful in banking it was based on approaches cus-
tomised specifically for retail banking (Krabichler & Teichmann, 2023,
Englisch et al., 2023).

There is a gap in that there haven’t been well-documented Deep
Reinforcement Learning applications to Asset Liability Management in
general. That is, an application that can replicate and improve on the
well-established approach of Redington Immunisation theory applicable
in all Actuarial and Quantitative Fiance spheres.

ALM implementation is more complicated compared to other Quan-
titative Finance applications, such as return maximisation, because
the observed data for which optimisation is sought is always multi-
dimensional. Furthermore, ALM requires one to consider patterns in
both assets and liability data for a relatively complicated objective com-
pared to the other problems. Duration matching assets to liabilities is a
slightly more complex objective than maximising return, for example.

4. Traditional asset liability management (ALM)
4.1. Traditional immunisation theoretical framework

The traditional ALM approach is based on attempting to satisfy Red-
ington’s three conditions (Redington, 1952). The first condition is

A=L, (@)

where A= [[* Aje"dtand L= [L,e™"dt, A, and L, are the asset cash
flow and liability cash flow at time t, respectively, and r the constant
continuously compounded discounted rate.

The second condition is
94 _ 9oL @
or or
which means that the asset sensitivity (Asset Duration) to interest rates
must be the same as the Liability Value sensitivity (Liability Duration).
This Duration is also known as the Macaulay Duration.

The third condition is

0’A _ 9*L

—Z>=, 3
or: ~ or?)
and means that the asset convexity should exceed the liability convex-
ity.

Redington immunisation theory assumes that the yield curve is flat
and that when interest rates change, the changes are parallel shifts
down or up of the yield curve (Kahlig, 2022).

T.A. Wekwete, R. Kufakunesu and G. van Zyl

In deriving the solutions which satisfy Redington Immunisation, one
usually solves for the asset allocation that satisfies the first two condi-
tions by solving for the arising simultaneous equations. From the set
of possible solutions, one then verifies or selects (if there is more than
one potential solution) the one which satisfies the third condition by
plugging in the solution in the second derivative (Garrett, 2013).

If the second and third condition are both satisfied, then we would
have a perfect matching, and we know that either the Present Value of
assets (A) will increase by more than that of liabilities (L) if the interest
rate decreases; or the Present Value of assets (A) will decrease by less
than that of liabilities (L) if the interest rate increases. In practice, it is
not always the case that one can always satisfy or prove Condition 3.
This would be an imperfect interest rate hedge. However, even if only
Condition 1 and 2 are met, the resulting asset value movements would
move more or less in line with liabilities - this would still be much
better interest rate protection than a situation where there is none at
all. Therefore, we will focus on explicitly deriving for Conditions 1 and
2 in the next section (Section 4.2).

Due to the underlying assumptions of Redington’s Immunisation
outlined above, there are several challenges and limitations to imple-
menting it in the real world (Kahlig, 2022). These include:

Interest rates are not flat in most real-world cases. Since the un-
derlying model assumes a constant interest rate, one must carefully
choose an appropriate constant interest rate for all calculations.
Immunisation only provides hedging against small changes in the
interest rate. If changes are large, the hedge is imperfect.
Immunisation requires frequent re-balancing of the asset weights
to keep the Duration of the assets to be the same (or close
enough) to that of the liabilities. This is especially challenging if
the market conditions do not easily correspond to the underlying
model assumptions and significant judgement is required in the re-
balancing.

It is not always possible to know the exact timing of asset and lia-
bility cash flows as is assumed by the Immunisation theory. In our
problem, we assume these are known for simplification, but in re-
ality, one may need to apply estimations or probability distribution
assumptions.

Assets of required maturity to achieve Immunisation may not exist
in the market. A solution for this is not provided in the vanilla
approach.

These limitations require that when implemented in practice, the
user of the model should constantly monitor the results and conditions
(e.g. the market yield curve, market volatility, etc.). If the require-
ments differ significantly from the underlying assumptions, then the
user should make judgement adjustments. This is one of the significant
limitations of the traditional approach in that it requires constant hu-
man supervision and application of adjustments to the raw results.

4.2. Implementation of traditional immunisation

The first two of Redington’s conditions can be summarized as the
following system of two equations:

(1) Present Value (PV) of Assets = Present Value of Liabilities;
(2) Duration of Assets = Duration of Liabilities.

In a scenario with two Zero-Coupon Bonds, Z, and Z,, the above
system of equations translates to the following:

(1) o, PV(Z,|)+w,PV(Z,)= PV (Liability)
(2) w;Duration(Z,) + w, Duration(Z,) =
Duration(Liability)

The Duration of the asset portfolio is the weighted Duration of the
respective assets. w; and w, are the respective weights which add to 1.

Intelligent Systems with Applications 20 (2023) 200286

In particular practical circumstances, is possible that the data inputs
may not always meet the requirement that the coefficient matrix of this
system be invertible, which presents challenges to using this traditional
approach to ALM. Other challenges and limitations of the conventional
approach were provided in Section 4.1.

In a Python program, the solution for W* = [0, w,] for the tradi-
tional approach was executed using the numpy library’s Linear Algebra
solvers with the numpy.linalg.solve (M, E) command.

5. Monte Carlo simulation of asset liability management
environment

5.1. Monte Carlo data generation (scenario generation)

To generate some training data for RL, we simulated 10 000 Monte
Carlo scenarios. We used 10 000 simulations because they are sufficient
enough to be associated with acceptable changes in errors of resultant
estimates (1% or less). Furthermore, this number of simulations is the
level at which the RL agent would be sufficiently trained.

In each scenario, we assumed the data to be for five years or 60
months, that is, 60 time points. In each of the 10 000 scenarios, there
were a liability Duration value and Bond term-to-maturity simulation
values at all times. We simulated the data which can arise from the
environment, such as that of an Insurance company or Bank. In these
contexts, there is some randomness in the change of the Liability Dura-
tion from one-time step to the next.

One of the critical advantages of RL is that one can train the Agent in
an environment based on simulated or synthetic data and still achieve
successful real-world applications. This approach means that RL can be
applied in a manner that saves cost and time by not requiring devel-
opment and training on real-world data. Many successful applications
of RL for even tricky tasks, such as in Autonomous Driving, are trained
primarily from a simulated environment (Osiniski et al., 2020).

5.2. Liability duration simulation

For a risk-taker such as an insurance company or pension fund,
the Liability Duration increases when the institution covers a new risk
which is expected to claim later than the current risk pool’s weighted
Liability Duration. The opposite is also true. Alternatively, the Liability
Duration will reduce if shorter Duration insurance policies lapse from
the insurance risk pool.

The movements in Liability Duration from one point to the next
are generally random because there is randomness in the nature of the
trends due to new business, lapses (terminations or expiry) and the
claims that the risk taker experiences between time points. The pro-
cess for generating the ith simulation’s Liability Duration and reflecting
its randomness is given in Equation (4):

D =D;; 1 +T; X6, 4

where:

D,, is the Liability Duration for the ith simulation at time i €
{1,2,..,N}and t € {1,2,..,T}; where the number of simulations (N)
is 10 000 and the number of time steps is (T) is 60 months (5
years).

D;,_, is the Liability Duration for at the previous time point 7 — 1.
I';, is a Binomial distributed variable with two possible values +1
or -1, with probabilities P, and 1 — P,, respectively.

P, is randomly sampled from a Uniform Distribution with a range of
[0,1], that is, P, ~ U(0, 1). Therefore, P, determines the probability
by which the liability Duration increases or decreases.

§;; is the magnitude of the absolute movement in the Liability Dura-
tion, which is randomly sampled from a Uniform Distribution with
arange of [0; Al, that s, §;, ~U(0,A)

T.A. Wekwete, R. Kufakunesu and G. van Zyl

An Asset Liability simulation for training

term/duration

Fig. 2. An example of a set of Monte Carlo Simulations.

+ A is the maximum possible change from one-time step to the next
and is set at 0.5 years in the training data. Therefore, for this
training data simulation, we assumed the Liability Duration could
change by an absolute value of up to 0.5 years from one step to the
next.

5.3. Bond term-to-maturity simulation

We assumed that the liabilities would be matched primarily by Zero-
Coupon Bonds. In the simplified version of our problem, two Bonds are
available in the market - (1) a short-dated Zero-Coupon Bond and; (2)
a long-dated Zero-Coupon Bond. For each simulation i we randomly
sampled the term of the short-dated Bond from a range of Uniform
distributions with a range between 10 and 20 years. For the long-dated
Bond from a range of Uniform distribution with a range between 30 to
40 years. The Bonds’ terms are defined as:

* T(Z,), for first Zero-Coupon Bond term for ith simulation. Sampled
from a uniform distribution of parameters (10 years, 20 years), that
is, T(Z,); ~ U(10,20)

* T(Z,), for second Zero-Coupon Bond term for ith simulation. Sam-
pled from a uniform distribution of parameters (30 years, 40 years),
that is, T(Z,), ~ U(30,40)

For a given simulation, once sampled, the term to maturity of the
short and long Bonds was assumed to remain the same at all time
points. We assume that the risk-taker can find Zero-Coupon Bonds of
simulations’ given maturities in the market at all times throughout that
given simulation. In this research question, we are primarily interested
in checking the solution Bond allocations as liability Duration changes.
We are not mainly interested in the Bonds’ term-to-maturity variability
but in the Liability Duration and its impact on the asset allocation for
Duration Matching.

We assumed two Bonds because a multiple (P) Bond allocation task
can be represented as a two-Bond allocation task by grouping all the
other P - 1 as one notional combined Bond. Hence, this conceptual Bond
would be a weighted term of these P - 1 Bonds. Therefore, to test the
viability of Reinforcement Learning to ALV, it is sufficient to start with
a two-Bond scenario to assess viability.

5.4. Visualisation of Monte Carlo simulations

A visualisation example showing a subset of typical simulation re-
sults from scenario generators in Sections 5.2 and 5.3 are shown in
Fig. 2 above.

The lines in colour represent pathways of the evolution of liability
over time generated from Section 5.2 with each pathway representing
one scenario. There are many scenarios, each with a different pattern.

The horizontal lines in colour represent the Maturity terms of dif-
ferent Zero-Coupon bonds over time generated from Section 5.3 with

Intelligent Systems with Applications 20 (2023) 200286

each line representing one scenario. The grey lines represent the long-
duration bonds and the black lines represent short-duration bonds. For
a given scenario, a pair of lines is generated, one grey and one black.

6. Reinforcement learning (RL) asset liability management
6.1. Deep reinforcement learning framework components

In this section, we discuss the key components of the RL model,
namely, the Environment, States, Actions, Agent and Reward Function.
These components are necessary to define a RL model to be successful
(Hariom Tast & Lookabaugh, 2020).

These components allow for the essence of RL, which is to learn
through interactions (Arulkumaran et al., 2017). Hence, these compo-
nents are interlinked and related.

6.1.1. Reinforcement learning environment

The first component to consider is the Environment. The Environ-
ment represents the operating environment where a risk-taking insti-
tution is exposed to both assets and liabilities, such as an insurance
company, pension fund, bank, or asset manager. For simplicity, one can
regard the standard environment to be that a life insurance company
write contracts that payout a benefit on death.

6.1.2. Reinforcement learning states

The second component to consider are the States (S) of the process,
which are the key metrics which can be observed within the environ-
ment by the Agent (Explained in Section 6.1.4) and used for decision
making. At any given time, the State is the current term to maturities for
the securities and also the Liability Duration. In the two Zero-Coupon
Bond situations we have, this means we can observe the two asset terms
(T'(Z,), and T(Z,),) and the liability Duration (D,). This corresponds
to a 3-Dimensional state problem, which requires additional consid-
erations compared to a 1-Dimensional state problem. The history of
Liability Duration is also observable and is an essential factor for solv-
ing the problem; hence, this is also an additional state.

6.1.3. Reinforcement learning actions

The third component to be considered for RL is the actions which
can be taken. This represents the actions the Agent (Explained in Sec-
tion 6.1.4) can take at time t, generally represented as a,. In this context,
the actions are the weight allocations to respective Zero-coupon Bonds
for Duration matching. Possible actions are the weights of security i’s
allocation in the assets portfolio w;, for i € {1,2,.., P} where there are P
assets. For the two asset problem we have w; and w,, that is, P =2.

We are not considering short-selling; therefore, for a successful so-
lution, we will require the weights to range between zero (0) and one
(1). Therefore, these actions are continuous in nature and not discrete.
We are only considering long positions because regulations generally
bar the institutions such as insurance companies from taking short posi-
tions. Furthermore, for ALM, short positions are usually unsuitable for
that risk-management objective.

6.1.4. Reinforcement learning agent

The Agent is the autonomous entity which performs the Actions and
acts within the defined Environment. In addition, the Agent observes
the outcomes of specific actions through feedback from the Environ-
ment - the input is in the form of a Reward Function (Explained in
Section 6.1.5). The Agent’s objective is to learn the behaviour or actions
a, which leads to desired outcomes for a given state .S. This optimal be-
haviour is known as the policy = (Arulkumaran et al., 2017). The Agent
learns the policy through a combination of trial and error and by ob-
serving the historical correlations and patterns between states, actions
and rewards.

The policy = is a mapping from the states to actions. However, due
to the inherent uncertainty, there is a probability estimation of the best

T.A. Wekwete, R. Kufakunesu and G. van Zyl

actions. Therefore, the policy = maps States (S) to probability distri-
bution over all possible actions (A) (Arulkumaran et al., 2017). This is
expressed in Equation (5):

7:S—p(A=al|S). (5)

The agent will take action with the highest probability at a given
time (Arulkumaran et al., 2017). Often the Agent relies on Machine
Learning, as is the case in this paper, to decipher the correlations and
complex patterns between states, actions and rewards. This is the case
in this paper, where the Agent uses Deep Learning to determine the
policy. Hence, this problem can be called Deep Reinforcement Learning
as we combine Reinforcement Learning and Deep Learning. More on
the Deep Learning techniques used is given in Section 6.2.

6.1.5. Reinforcement learning reward function

A very important component of Reinforcement Learning is the Re-
ward Function. The Reward Function is the feedback sent by the envi-
ronment to evaluate the last action by the Agent. An appropriate reward
might be the inverse of the absolute difference between the Asset Dura-
tion and the Liability Duration.

The objective of Reinforcement Learning optimisation is to deter-
mine the best Agent’s policy to maximise the reward function. This is
equivalent to minimising a penalty function or an error function. The
mismatch error between the asset Duration and Liability Duration for a
given scenario i and at a given time point ¢ for this research question is
given by Equation (6):

i = 01;T(Z)y + 02, T(Z3)ys — Dy - (6)

For a given scenario i, we square and sum the Duration Mismatch
Errors at all time points to get the scenario error as represented by
Equation (7):

T
Simulation Sum Square Errors (SSE;) = eizt . @)
=1

We square the errors because, in the standard Duration Matching
problem, we want to minimise the Duration absolute difference with-
out regard to whether the asset Duration is smaller or not. The (SSE;)
function will be the feedback to the Agent on how well its current learnt
policy, from a combination of past learning and trial and error, per-
formed on the scenario. The Agent will implement more policy elements
that reduce the error and fewer of those that increase the error. Hence,
there is a reinforcement of appropriate policy elements.

In practice, the policy is not updated after every scenario but after a
set of scenarios called a batch. This is because one scenario will not be
sufficient grounds to update a policy because of limited data. If there
are, N simulations and each batch is of size B scenarios, there will be
N/B batches. The Batch SSE will be used to adjust the Agent’s policy
iteratively and this is given by Equation (8):

T
Batch Sum Square Errors (SSE) = 2 Zel.zt. (€3]
i€Batch t=1

The range of scenarios in the first batch will be from 1 to B; for the
second batch, they will be B+1 to 2B; for the third batch will be from
2B+1 to 3B, and so forth. The order in which the batches are shown
to the Agent should not have any interdependence. If each scenario is
independent of the next, as is the case in this data, then this condition
is automatically met.

The expectation is that during the Agent’s learning or training phase,
the Batch SSE will reduce over time, signalling an improvement in the
Agent’s ability to implement the ALM. The Agent learning process is
explained further in Section 6.2.3.

Intelligent Systems with Applications 20 (2023) 200286
6.2. Reinforcement learning asset liability management implementation

This section explains how we practically implemented the Policy
Search Reinforcement Learning.

In our problem, we apply the Policy Search approach to Reinforce-
ment Learning as it is the most appropriate. In our situation, the actions
are continuous as they are asset allocation weights. Furthermore, it is
difficult to pre-determine the values (rewards) of specific actions for
a given state because of the continuous nature of the activities, the
vastness of the state space, and the nature of the problem. In such a
problem, it is best that the autonomous Agent finds its optimal policy
directly by exploring various behaviours and reinforcing those that per-
form well concerning the reward function (Sigaud & Stulp, 2019).

6.2.1. ALM agent specification in object orientated programming (OOP) in
Python programming

As discussed in Section 6.1.4 the Agent represents the entity that
performs the actions within the environment, that is, the entity which
makes the asset allocations for ALM. We set up the Agent using Object-
Oriented-Programming (OOP) or Class-based programming in Python.
First, we define an agent class which is then used to create OOP objects
which have certain attributes and methods.

The agent class has various capabilities arising from its methods.
The agent class has the following methods:

The constructor function which definesan _init_ function, which
in turn defines the Reinforcement Learning model parameters such
as the time steps, batch size (B), number of environment features
and some parameters for the Deep Learning model.The construc-
tor defines a computational graph in TensorFlow, which captures
the logic of the data flow, the reward function (as specified in
Equation (8)) and also the Deep Learning model (as specified in
Section 6.2.2).

The batch trainer module defines a key function which trains the
Agent object. This function goes through one pass of the data (one
epoch) and trains the Deep Learning network based (explained in
Section 6.2.2) on practical experience from trial and error and cur-
rently learnt policy. The training is, however, done in batches of
the data

The training module defines a function which calls the batch
trainer module function over many passes (epochs) of the data in
the training process.

The predict module uses the trained model object to predict a given
set of data or states. This function returns the action (asset alloca-
tion weights) for a given state (asset terms and liability Duration)
The restore module restores the saved trained reinforcement learn-
ing models, which can be used for predictions or even additional
training.

TensorFlow is a powerful Open-Source library developed by Google
which makes the development and deployment of machine learning
models more accessible, faster and scalable (Tensorflow.org, 2022). It
is especially advantageous to use TensorFlow in Deep Learning because
Deep Learning models are computationally intensive. TensorFlow’s ef-
ficiencies derive from its graph database structure which is a network
of interconnected computational nodes (Tensors). Tensors are multi-
dimensional arrays which are used to represent the data, its subsequent
transformations and computational results (Lang, 2022). How the data
is represented differs from the standard relational format of data.

The computational graph structure is more efficient when the data
and computations increase because they inherently store the relation-
ships in the data together with the data itself (Pang et al., 2020). In
using TensorFlow, one needs to not only learn the TensorFlow syn-
tax but also clearly define all the computational relationships in the
process. TensorFlow also requires one to specify the tensor dimensions
accurately, data types and formats in a precise and consistent manner

T.A. Wekwete, R. Kufakunesu and G. van Zyl

Fig. 3. An illustration of a Simple Artificial Neural Network (ANN).

when defining the graph relationships. If this is done correctly, Ten-
sorFlow achieves efficiency from its ability to execute operations in
low-level and efficient C++ code on Central Processing Units (CPUs),
more powerful Graphics Processing Units (GPUs) or Tensor Processing
Units (TPUs). When implemented in a Python programme, TensorFlow
is used in conjunction with the numpy and keras libraries (Geron,
2019).

The hardware we used to run the software was the Apple MacBook
Air 2020 model with 512 Gigabytes of Solid-State Drive (SSD) storage
capacity and running on the macOS Operating System. The process-
ing was implemented by this model’s standard Apple M1 chip with 8
Gigabytes of Random Access Memory (RAM). This processor has an in-
tegrated 8-core Central Processing Unit (CPU) and an 8-core Graphics
Processing Unit Unit (GPU) (Apple, 2023).

6.2.2. Deep learning with recurrent neural networks (RNNs)

In the direct Policy Search approach, the Agent uses an Artificial
Neural Network (ANN) to map the state to action. A Neural Network
provides Agent with a mechanism to pick out complex relationships
within the mapping from state to action which improves the reward
(Arulkumaran et al., 2017). A typical simple vanilla FeedForward Arti-
ficial Neural Network (ANN) is shown in Fig. 3 (Hua et al., 2019).

In the above, information and processing flow in one direction from
inputs, through the layers and to output; hence, they are referred to
as FeedForward. Such a traditional ANN assumes that the next infor-
mation and outputs are independent of the previous. However, in this
problem, the Liability Duration at time t has some correlation to the
level and trend of the Liability Duration at times before t. There are
also correlations in the actions over time because of the correlation in
the states. Moreover, there is path dependence and time-series proper-
ties in the states and actions. Therefore, a traditional ANN is not best
suited for this problem (Hariom Tast & Lookabaugh, 2020). In the ex-
perimentation we carried out in the paper we confirmed that use of a
general Artificial Neural Network yielded poor results, which confirmed
the need for an improved learning method.

A Recurrent Neural Network (RNN) is a special type of Artificial
Neural Network that can capture time-dependent relationships in the
states and actions. Therefore, an RNN can factor in the historical infor-
mation and outputs for the following outputs and is more suited for this
problem. An RNN has a time dimension to it where it uses its previous
output as input in its current calculation. It also has a dynamic inter-
nal state which persists throughout time and uses that to determine the
time-dependent predictions (Staudemeyer & Morris, 2019). A typical
simple Recurrent Neural Network is shown in Fig. 4.

The right-hand side of Fig. 4 shows the RNN in expanded format.
This shows the RNNs calculate the current output ($,) from the existing
data (x,) and the hidden state (output) of the previous iteration (4,_;)
(Hua et al., 2019).

Standard Recurrent Neural Networks (RNNs) have limitations in
that they cannot detect relationships of more than ten time steps
apart (Staudemeyer & Morris, 2019). Long-Short-Term-Memory Recur-
rent Neural Networks (LSTM-RNN) are a special type of Recurrent
Neural Network (RNN) which can learn longer-term time-dependent
relationships (Smagulova & James, 2019). LSTM-RNN can pick up time-

Intelligent Systems with Applications 20 (2023) 200286

OUIPUt y 9!-1 yl yl+1
layer N A
i |
| |
I |
) h,_, h, he.
—~@-@—
layer Unfold
Input
IaSer X1 X Xes1

Fig. 4. An illustration of a Recurrent Neural Network (RNN).

Civ 2 B cell state c,
/l hidden state h,
(@;
f. i zZ, o,
forget input input ~~output
gate '@ gate update 9 gate
ht—1 \
input x;

Fig. 5. An illustration of a Long-Short Term Memory (LSTM-RNN) cell.

dependent relationships of up to 1 000 time steps apart and hence
are much more dynamic (Staudemeyer & Morris, 2019). LSTM-RNNs
have been successful in a wide range of domains which have tempo-
ral or sequential data, such as Natural Language Processing (NLP) (He
& Droppo, 2016, Hsu et al., 2016, Sak et al., 2014, Qu et al., 2017),
Autonomous Driving (Altché & de La Fortelle, 2017) and time-series
analysis techniques (Mallinar & Rosset, 2018). LSTM-RNN networks are
enhanced by the incorporation of memory blocks (cells) with the abil-
ity to better persist relevant information for the process. There have
been many versions of the LSTM-RNN since the first version which was
introduced by Hochreiter and Schmidhuber (Hochreiter & Schmidhu-
ber, 1997). However, a typical memory block (cell) of an LSTM-RNN in
shown in Fig. 5.

The above memory is also recurrent (as it is still an RNN) - the
outputs (¢, and A,) are used in the next iteration at 7+ 1 and so forth. The
memory block achieves its temporal memory capabilities from the three
main modules and gates within it (Hua et al., 2019): (1) The Forget Gate
control how much of the information passed from the previous cell is
irrelevant and discarded in the current cell, (2) The Input Gate controls
how much new information which wasn’t present in the previous cell
is captured in the current cell, and (3) The Output Gate controls which
of the information in the cell is used to determine the block’s output,
which is then passed to the following stages of the RNN.

We also use an LSTM-RNN with multiple cells and layers, and hence,
we categorise this as a Deep Neural Network. In this situation, we used
an LSTM-RNN with three hidden layers. The first hidden layer had 62
neurons. The second and third hidden layers have 46 neurons each.
The combination of Deep Learning with Reinforcement Learning makes
this application a Deep Reinforcement Learning (DRL) application. The
training of the Agent is done in batches of the training data. Within each
batch of simulations, the Agent applies a combination of exploration
and past learnings to output weights and their respective rewards. At
the end of each batch, the relationships between the states and rewards
are persisted and fed through the Recurrent Neural Network, which
finds the relationship between the state profiles and the rewards by
optimising for its own weights and biases. Gradient Descent optimisa-
tion methods are used to train and determine the optimal weights and
biases of the Recurrent Neural Network. In order to find the optimal
weights for any neural network in general, the Gradient Descent Algo-
rithm (or similar) is used to update the weights iteratively. This method
updates the weights in the direction which results in the most signifi-
cant reduction in the value of the error function (or surface) towards

T.A. Wekwete, R. Kufakunesu and G. van Zyl

DNN

reward

update weights

Fig. 6. A simple representation of Recurrent Neural Network and Reinforcement
Learning architecture.

the global minimum (Staudemeyer & Morris, 2019). This involves de-
termining partial derivatives of the weights (parameters) of individual
neurons or cells concerning the respective weights (parameters). The
impact of some of these is indirect in cases where there are multiple lay-
ers, and this requires the chain rule to determine the impact of weights
which are more removed away from the output. This approach is com-
monly known as Back-propagation.

Optimisation of LSTM-RNN follows the same philosophy but tack-
les the time dimension challenge, which is not present in other Neural
Networks. Here the method used is called Back Propagation Through
Time (BPTT) (Sherstinsky, 2020). If R represents the reward function
(or objective function more generally) and © represents all the param-
eters of the LSTM-RNN, then the approaches rely on the calculations of
the partial derivatives g—g. For many parameters, the chain rule will be
repeatedly applied to determine the partial derivatives, as they will not
have a direct link to the objective function. This approach requires that
the Activation Functions (functions which compute outputs) used at
each neuron or cell be differentiable or the derivative be estimable with
numerical methods (Sherstinsky, 2020, Staudemeyer & Morris, 2019).
After each update, the LSTM-RNN is used to predict the output. The dif-
ferences between the predicted output from the actual are the errors
which are used to carry out another round of updates to the parameters
@. This process is repeated many times for a specified number of times
or, alternatively, until an acceptable level of error is achieved. This it-
erative process and Deep Learning architecture is illustrated in a simple
manner in Fig. 6 (Krabichler & Teichmann, 2023).

Within our Deep Reinforcement Learning application, the training
data set is divided into batches of 1 000 simulations in each batch. So
if there are 10 000 simulations in total, there would be ten batches,
with each batch having 1 000 simulations. The reason is that we want
to update the Agent’s learnt policy r after having a sufficient level of
information (the 1 000 simulations per batch). We also want to allow
the Agent to apply the learnt policy to a new set of simulations and
verify and improve its policy. Therefore, the LSTM-RNN weights and
biases are updated, and this represents the updating of the policy = of
the Reinforcement Learning Agent.

6.2.3. The deep reinforcement learning agent training process

The main steps at a high level are outlined in Algorithm 1.

The algorithm summarises many of the granular and intricate steps
that are taken in implementing Deep Reinforcement Learning for ALM.
Epochs refer to the number of times the entire data set of 10 000 simu-
lations is cycled through during training.

We trained the Reinforcement Learning Agent on the training data
simulations. The training process takes about one hour in total on a data
set of 10 000 simulations, with batches of 1 000 and 100 epochs. The
trained Agent object was saved in memory for retrieval in the testing
stages using the restore function of the Agent class.

The training process progress was captured by the evolution of the
Batch Sum Square Error in Fig. 7.

We can see the exponential reduction in the batch mean SSE over
time as the Agent learns the optimal policy for the given data. After each
iteration, the Agent reinforces its behaviour or policy = towards actions
that are more correlated with minimising the Sum Square Error (SSE).

Intelligent Systems with Applications 20 (2023) 200286

Algorithm 1 Main Steps for implementation of Deep Reinforcement
Learning for Asset Liability Management.

1: Create the Agent class (see section 6.2.1), with its methods including the batch trainer
module, training function, prediction function and the restore function
2: Use the Agent class to create an Agent object (which includes the creation of a com-
putational graph for use in TensorFlow)
3: Launch a TensorFlow session using tf .Session
: Specify the parameters such as batch size (100), number of features (3), number of
training epochs (100) also the name of the model for records

N

5: Call the training function which triggers the batch trainer module

6: repeat

7: for all batches in each epoch do

8: Determine the indices of the data that corresponds to that batch

9: Run the TensorFlow computational graph (from Step 2) on the batch data sim-
ulations

10: Let the Agent apply existing policy and exploration on the batch

11: Record the States, Actions (Asset allocations) and Rewards for that batch

12: Update the weights of the LSTM-RNN based on Gradient Descent (as in Sec-
tion 6.2.2)

13: Update the Agent’s policy z in line with LSTM-RNN update

14: Update the policy which will be applied in the next batch

15: Print the time taken for the batch processing and print the Batch SSE

16: end for

17: until All epochs are complete
18: Save the trained Agent object

Reward Function Batch SSE by Training Epoch

2000
1800
1600
1400
1200

1000

Batch Sum Square Error(SSE)

1 2 3 4 5 6 7 8 9 10 20 30 40 60 80 100
Training Epoch

Fig. 7. Reward Function Batch SSE by Training Epoch.

By the 100th epoch, the agent’s asset allocations manage to result in
asset allocations that give an Asset Duration very close to the Liability
Duration in the training data.

For proper testing, however, we will analyse the performance of the
Deep Reinforcement Learning Agent on unseen test data in the next
sections. In the next section, we will also compare the results of the
Reinforcement Learning agent to that of the traditional ALM.

7. Results - evaluation and comparison

7.1. Comparison of deep reinforcement learning ALM to theoretical
Redington immunisation

In this section, we compare the performance results of the Reinforce-
ment Learning ALM and contrast it against theoretical Immunisation.
In Section 7.1.1 and Section 7.1.2 we first evaluate the primary re-
search question, which was: At a given point in time, do the Deep
Reinforcement Learning ALM asset allocation results, and by extension,
the Duration results, give similar outcomes to Redington Immunisation
theory ALM? If they differ, to what extent do they differ?

In Section 7.1.3 we also evaluated the performance of the Rein-
forcement Learning approach under stress conditions with much higher
volatility than trained on. In this section, we discuss some of the in-
teresting key findings from the Stress Testing, which we implemented
on the Reinforcement Learning ALM Agent. The purpose of the Stress

T.A. Wekwete, R. Kufakunesu and G. van Zyl

Test Data 1 Asset Liability Sample Path

30
>
€ 281
3
©
€
& 26
E
£ 24 4
c
=)
©
L 22
a
204
0 10 20 30 40 50 60
time(months)
—— Bond 1 Term —— Bond 2 Term —— Liability Duration

Fig. 8. Monte Carlo Simulation Testing Sample path.

Table 1

Test Sample Path Values at Annual Time-points (months).
Time-points 12 24 36 48 60
Liability Duration 24.97 24.02 22.15 21.65 20.10
Bond 1 Term 19.22 19.22 19.22 19.22 19.22
Bond 2 Term 30.66 30.66 30.66 30.66 30.66

Table 2

Test Sample Path Annual Time-points (months) Redington Immunisation Allo-
cations.

Time-points 12 24 36 48 60
Liability Duration 24.97 24.02 22.15 21.65 20.10
Bond 1 Term 19.22 19.22 19.22 19.22 19.22
Bond 1 Allocation 49.7% 58.0% 74.4% 78.8% 92.3%
Bond 2 Term 30.66 30.66 30.66 30.66 30.66
Bond 2 Allocation 50.3% 42.0% 25.6% 21.2% 7.7%

Testing was to do further experimentation on the flexibility of Rein-
forcement Learning to different operating conditions.

7.1.1. Sample case evaluation

We generated 1 000 test scenarios using the same approach and
parameters used to create the training data, that is, the simulation pro-
cesses outlined in Section 5.1. We used this as our standard testing data
(Test Data 1). An example of a path from the test data is shown in Fig. 8.

In the example above, we will be interested in whether Reinforce-
ment Learning can give appropriate Duration Matching asset allocations
at a given time point. We used five time points, that is, at 12 months, 24
months, 36 months, 48 months and 60 months as test time points. The
Bond Maturities and Liability Duration at these time points are given in
Table 1.

We first applied the Redington Immunisation ALM on the sample
Test 1 Data, and we got the traditional asset allocations in Table 2.

We applied the Redington Immunisation approximation solution de-
rived in Section 4.2. A function which executed this formula was de-
fined in Python.

We then also applied the Deep Reinforcement Learning ALM out-
lined in Section 6.2.3 on the sample Test 1 Data. The saved trained
Agent object was retrieved memory using the restore function of the
Agent class and ran on the test data. We got the Reinforcement Learn-
ing asset allocations shown in Table 3.

One can already observe that the asset allocations are relatively
close to each other for the sample scenario between the Redington Im-
munisation’s allocations and the Reinforcement Learning allocations.

Based on its respective asset allocations to Zero-Coupon Bond 1 and
Zero-Coupon Bond 2, we then calculated the traditional ALM method’s

10

Intelligent Systems with Applications 20 (2023) 200286

Table 3
Test Sample Path Annual Time-points (months) Deep Reinforcement Learning
Allocations.

Timepoints 12 24 36 48 60
Liability Duration 24.97 24.02 22.15 21.65 20.10
Bond 1 Term 19.22 19.22 19.22 19.22 19.22
Bond 1 Allocation 49.2% 58.1% 72.8% 76.7% 93.7%
Bond 2 Term 30.66 30.66 30.66 30.66 30.66
Bond 2 Allocation 50.8% 41.9% 27.2% 23.3% 6.3%

outcomes of the Asset Duration outcomes using the formula shown by
Equation (9):
D(Trad;) = 01, T(Z)y + 03 T(Z3)y; » C)

where:

D(T'rad,;,) is the Redington Immunisation asset Duration at time t
for this ith test scenario.

®y;; is the derived Redington Immunisation asset allocation for
Zero-Coupon Bond 1 time at time t for this ith test scenario.

,;; is the derived Redington Immunisation asset allocation for
Zero-Coupon Bond 2 time at time t for this ith test scenario.
T(Z,); is the observed term-to-maturity for Zero-Coupon Bond 1
time at time ¢ for this ith test scenario.

T(Z,);, is the observed term-to-maturity for Zero-Coupon Bond 2
time at time ¢ for this ith test scenario.

Based on its respective asset allocations to Zero-Coupon Bond 1 and
Zero-Coupon Bond 2, we also calculated the Reinforcement Learning
model’s asset Duration outcomes using the formula shown by Equa-
tion (10):

D(RL;;) = w;T(Z));; + 0 T(Z2)y4 5 (10)

where:

D(RL;) is the Reinforcement Learning asset Duration at time t for
this ith test scenario.

wy;; is the derived Deep Reinforcement Learning asset allocation
for Zero-Coupon Bond 1 time at time ¢ for this ith test scenario.
,;; is the derived Deep Reinforcement Learning asset allocation
for Zero-Coupon Bond 2 time at time ¢ for this ith test scenario.
T(Z,),; is the observed term-to-maturity for Zero-Coupon Bond 1
time at time t for this ith test scenario.

T(Z,);, is the observed term-to-maturity for Zero-Coupon Bond 2
time at time ¢ for this ith test scenario.

The results for the above calculations are in the table below for both
the Redington Immunisation ALM and Deep Reinforcement Learning
ALM methods. We also show the differences between the calculated
asset portfolio Duration of the Redington Immunisation ALM method
and the Deep Reinforcement Learning ALM Asset Durations in Table 4.

We can see that, as expected, the Redington Immunisation ap-
proach’s asset Duration gives shows an exact match to the Liability
Duration. This is as expected as this is theoretical analytical approach,
albeit with certain limiting underlying assumptions discussed in Sec-
tion 4.1.

We can see that overall there is a slight difference. This shows that
Reinforcement Learning ALM performs just as well as the Redington
Immunisation ALM on matching Durations at a given time. The mean
deviation in Asset Duration is 0.07 years, and the mean percentage dif-
ference is 0.28%, which are both negligible. The results above are only
for one sampled test data scenario. In the next section, we aggregated
the differences across all the 1 000 scenarios in Test Data 1 so that we
could assess the Reinforcement Learning ALM performance across vari-
ous scenarios.

T.A. Wekwete, R. Kufakunesu and G. van Zyl

Table 4

Test Sample Path Annual Time-points (months) Duration Differences.
Timepoints 12 24 36 48 60
Liability Duration 24.97 24.02 22.15 21.65 20.10
Immunisation ALM Duration 24.97 24.02 22.15 21.65 20.10
RL ALM Duration 25.04 24.01 22.33 21.89 19.95
Duration Difference (Years) 0.1 -0.0 0.2 0.2 -0.2
Duration Difference (%) 0.3% 0.0% 0.8% 1.1% (0.8%)

Reinforcement Learning vs Traditional ALM after 12 months

250 -

200 4

150 A

Count

100 A

50 4

-0.2

=0
Duration difference(Years)

0.0 0.1 0.2

Fig. 9. Aggregate Duration Differential at 12 months.

Reinforcement Learning vs Traditional ALM after 24 months

350 A

300 A

250 A

200 A

Count

1501

100 1

50 A

04
—0:2 0.0 0.2
Duration difference(Years)

Fig. 10. Aggregate Duration Differential at 24 months.

7.1.2. Aggregate evaluation on test data

For each of the 1 000 test scenarios, we compared the Duration of
the asset allocation from the Reinforcement Learning approach to that
of the Redington Immunisation ALM. We did this at five time points,
that is, after 1, 2, 3, 4 and 5 years. At each time point, we plotted the
histogram of the differences between the RL and Redington Immunisa-
tion approaches’ Duration differences in Figs. 9-13.

The 95% Confidence Interval(CI) of the difference can be estimated
by the expression shown in Equation (11) (Guignard et al., 2021):

95%C I(Lower;Upper)= (i —1.96x6; i+ 1.96X6). (11

From Equation (11), we estimated that the 95% Confidence Interval
of the Duration Difference at time 12 months to be (—0.09; 0.09), at 24
months is (—0.13; 0.13), at 36 months is (—=0.16; 0.17), at 48 months is
(—0.22; 0.21) and at time 60 months is (—0.25; 0.24). All of these val-
ues were mostly within 1% of the theoretical Redington Immunisation
Duration.

We can see that the mean difference between the two approaches
is close to zero (0) at all five (5) test time points. Furthermore, the
distribution is symmetric, which shows that there is no bias in the
performance of Reinforcement Learning compared to the traditional ap-
proach. All the 95% Confidence Intervals at the five (5) test time points

11

Intelligent Systems with Applications 20 (2023) 200286

Reinforcement Learning vs Traditional ALM after 36 months
350

300 A

-0.4 -0.2 0.0 0.2

Duration difference(Years)

0.4

Fig. 11. Aggregate Duration Differential at 36 months.

Reinforcement Learning vs Traditional ALM after 48 months

300 A

250 A

200 A

Count

150 4

100 4

50 A

0

-0.6 -0.4 -0.2 0.0 0.2

Duration difference(Years)

0.4 0.6

Fig. 12. Aggregate Duration Differential at 48 months.

Reinforcement Learning vs Traditional ALM after 60 months

6 -

Count

-06 -04 -0.2 0.0 0.2

Duration difference(Years)

0.4 0.6 0.8

Fig. 13. Aggregate Duration Differential at 60 months.

are narrow around zero, and within 1% of the Redington Immunisation
Duration results. This means that at a 95% Confidence Level, the allo-
cations of the Reinforcement Learning ALM are statistically the same as
those from the theoretical immunisation results.

7.1.3. Aggregate evaluation on stress test data

The Stress Test conditions explored correspond to a situation where
either there are significant shifts in the level or shape of the yield curve
in a short space of time. These periods would cause high volatility in
the Liability Duration.

In this experiment, we repeated exactly the same experiment as in
Section 7.1.2 with the exception of one difference. The only difference
was that the test data used for evaluating the Reinforcement Learning
ALM had a maximum possible Duration change (A) of one year between
time points instead of half a year (0.5) as it was in Section 7.1.2.

T.A. Wekwete, R. Kufakunesu and G. van Zyl

Test Data 2 Reinforcement Learning vs Theoretical ALM after 12 months

Proportion
w S

N

0+
-08 -0.6 -04 -0.2 0.0 0.2

Duration difference(Years)

0.4 0.6 0.8

Fig. 14. Aggregate Duration Differential at 12 months.

Test Data 2 Reinforcement Learning vs Theoretical ALM after 24 months

4.0

Proportion
Hoe NN WwWw
o uw o U o u
! L ! L L

o
15
L

S,
=}
|

-1.0 -0.5 0.0 0.5

Duration difference(Years)

1.0

Fig. 15. Aggregate Duration Differential at 24 months.

Test Data 2 Reinforcement Learning vs Theoretical ALM after 36 months

3.0 A

N N
=} %)
L s

Proportion
1
w
s

1.01

0.5 A

0.0
=15

=0.5
Duration difference(Years)

0.0 0.5 1.0

Fig. 16. Aggregate Duration Differential at 36 months.

We named this second test simulation data Test Data 2. This means
that in this experiment we test how the same Reinforcement Learning
ALM model would be able to perform on unseen data which is, in addi-
tion, much more volatile compared to what the data it had seen before.
The aim was to test the Reinforcement Learning ALM on its adaptability
to new conditions.

In Figs. 14-18 show histograms of the Duration differences at 12
months, 24 months, 36 months, 48 months and 60 months, respectively.

The 95% Confidence Interval of the Duration Difference at 12
months is (—0.71; 0.71), at 24 months is (—0.24; 0.24), at 36 months is
(—0.44; 0.44), at 36 months is (—0.56; 0.56), at 48 months is (—0.62;
0.62) and at 60 months is (-0.71; 0.71).

Although the Confidence Intervals from the Stress Testing above are
wider than what we saw in Section 7.1.2, it is remarkable that they are
still very narrow (relative to the range of possible Duration values of
up to 40 years or more). The mean difference between Reinforcement
Learning Duration and the theoretical level is still close to 0 at all five
test time points. Furthermore, the distribution is still symmetric, which

12

Intelligent Systems with Applications 20 (2023) 200286

Test Data 2 Reinforcement Learning vs Theoretical ALM after 48 months

2.5

2.0 A

1,57

Proportion

1.01

0.5 A

0.0 -

-1.0

-0.5
Duration difference(Years)

0.0 0.5 1.0

Fig. 17. Aggregate Duration Differential at 48 months.

Test Data 2 Reinforcement Learning vs Theoretical ALM after 60 months
2.00 4

175

Proportion
,O -
~ o
w o

o
wn
=)

0.25 1

0.00 -

—2:0 =15

-1.0

-0.5 0.0 0.5
Duration difference(Years)

1.0 1.5 2.0

Fig. 18. Aggregate Duration Differential at 60 months.

shows that there is still no bias in the performance of Reinforcement
Learning.

All the 95% Confidence Intervals at the five test time points are
narrow around zero, and they all include zero within approximately 2-
3% of the theoretical duration results. This is still an exceptional level of
performance despite the test data being much more volatile compared
to the simulations on which it was trained. In practical applications
where the conditions differ from theoretical assumptions, this level of
robustness would outperform the traditional approaches.

7.2. Deep reinforcement learning ALM compared to a benchmark
traditional ALM approach

In this Section, we discuss the evaluation of the second research
question, which was: How does Deep Reinforcement Learning’s asset
allocations compare to those of a benchmark real-world traditional ALM
strategy in hedging a changing liability portfolio? Does it result in better
interest rate hedging and to what extent?

In the first research question, we found that DRL gives similar re-
sults to Redington Immunisation at a given point in time. However, in
order to fully assess the performance benefits of DRL ALM in practice it
was important to compare against a typical ALM implementation that
maybe in force in practice.

We contrasted the benefits of DRL ALM implementable on daily ba-
sis against a traditional ALM approach which is usually feasible on a
monthly or on a weekly level for efficient organisation. In order to be
conservative in our comparison, we assumed a weekly re-balancing for
the traditional approach. We assessed the differences in outcomes at
the end of the month between the daily Reinforcement Learning ALM
approach and the weekly traditional ALM approach.

7.2.1. Benchmark sample case comparison evaluation
For testing purposes, we generated a new set of data not seen by the
Reinforcement Learning Agent during the training phase. We generated

T.A. Wekwete, R. Kufakunesu and G. van Zyl

Test Sample Scenario(1000)

40 ,/
354
w
©
g 30
£
5]
E 25 4
o
S
e
3 20+
15
0 5 10 15 20 25 30
Day in month
—— Bond1Term —— Bond 2 Term —— Liability Duration

Fig. 19. Monthly Monte Carlo Simulation Test Sample Path.

Sample(5) RL vs Traditional allocation in a month(Bond 1)

0.70 A

0.65 A

o o

w o

vl (=)
L L

Bond 1 Allocation

15 30

Day in month

20 25

Reinforcement Learning ~—— Traditional —=~- Theoretical

Fig. 20. Benchmark ALM Asset Allocation Comparisons (Bond 1).

1 000 test scenarios; hence, the data was also 3-Dimensional but with
Dimensions of 30 x 1 000 x 3. In the next section, we selected one of
the scenarios for illustration.

For illustrative purposes, we selected a scenario from the test data,
which is graphically shown in Fig. 19:

In the above scenario, the Liability Duration gradually reduced from
23.4 years on Day 1 to 16.8 years on Day 23. From there onwards,
the Liability Duration gradually increases to 19.1 years on day 30. The
Term for Bond 1 is 10.2 years and that for Bond 2 is 33.1 years.

In the above scenario, we then applied the traditional ALM ap-
proach on weekly re-balancing frequency, followed by the Reinforce-
ment Learning ALM on a daily re-balancing regime. We determined
their respective asset allocations for Bond 1 and Bond 2. We also de-
termined the daily theoretical asset allocations based on applying the
traditional ALM approach on a daily basis. The theoretical asset allo-
cation would represent the benchmark asset allocation if the analytical
asset allocation had been possible daily.

The asset allocations under the theoretical, traditional and reinforce-
ment learning regimes are shown in Fig. 20 and Fig. 21.

From the above, we can see that the Reinforcement Learning asset
allocation is able to allocate in close proximity to the theoretical level
at most time points. As expected, the allocation towards the shorter
Duration Bond (Bond 1) increases until Day 23, which coincides with
the decrease in Duration noted in this period in the sample graph. As
expected, the allocation towards the longer Duration Bond (Bond 2)
increases from day 23 until Day 30, which coincides with the increase
in Liability Duration for this period.

A notable observation is that the traditional ALM allocation pattern
is step-wise. It is constant except on the days on which there is weekly

13

Intelligent Systems with Applications 20 (2023) 200286

Sample(5) RL vs Traditional allocation in a month(Bond 2)

0.60 -

0.55 4

0.50 -

0.45 A

0.40 +

Bond 2 Allocation

0.35 A

0.30 -

10 15
Day in month

Reinforcement Learning —— Traditional === Theoretical

Fig. 21. Benchmark ALM Asset Allocation Comparisons (Bond 2).

Reinforcement Learning vs Theoretical ALM after 30 days

2501

200 A

150 1

Count

100 1

50 4

-1.0

-0.5
Duration difference (Years)

0.0 0.5 1.0 15

Fig. 22. Daily Reinforcement Learning Aggregate Duration Differential at Day
30.

rebalancing. On the rebalance days, the allocation is close to the allo-
cations for both the Reinforcement Learning ALM and the Theoretical
ALM. However, in between the rebalancing time points, there are de-
viations of the traditional allocations from the Reinforcement Learning
and Theoretical allocations.

Although there is weekly rebalancing in the traditional regime, there
is still a risk that there are sudden changes in interest rates at a time
when this traditional weekly allocation deviates significantly from the
Theoretical allocations. If this happens, there could be significant mis-
matches between the movements of the value of liabilities relative to
that of the assets portfolio. This risk will be quantified in the next sec-
tion.

The analysis done above was based on an illustration of one test sce-
nario only. In the next section, we aggregate the relative performance
of Reinforcement Learning against the traditional across all the 1 000
test data scenarios.

7.2.2. Benchmark aggregate comparison evaluation

For each of the 1 000 scenarios in the test data, we determine the
asset allocations at day 30 for the Reinforcement Learning ALM, tradi-
tional ALM with weekly rebalancing and the Theoretical ALM. Based on
these, we determined the respective Asset Duration for each approach
for each of the 1 000 scenarios.

We used the Theoretical Asset Duration as the benchmark, which
is the same as the actual Liability Duration on Day 30. The closer a
result is to this level, the better the outcome of the respective method.
Therefore, to assess the Reinforcement Learning ALM performance, we
calculated the difference of its asset Duration from the Theoretical one
on Day 30. We repeated this for each of the 1 000 scenarios and plotted
a histogram of the Duration differences in Fig. 22.

T.A. Wekwete, R. Kufakunesu and G. van Zyl

Traditional ALM vs Theoretical ALM after 30 days

300 A

250 A

200 A

Count

1501

100 1

50

=2.0 =15 =100 =05 0.0 0.5

Duration difference (Years)

1.0 1.5 2.0

Fig. 23. Weekly traditional Aggregate Duration Differential at Day 30.

From the above, we can see that the Duration Differences are cen-
tred symmetrically and bell-shaped around 0. The mean difference is
0.055 years, which shows that, on average, the outcome of the Rein-
forcement Learning ALM is very close to what one would practically
require for sufficient risk management. The standard deviation of these
differences is 0.28. This means that 95% of the differences are not more
than 0.56 years (approximately two standard deviations) years from the
theoretical level.

Therefore, in order to assess the traditional ALM performance, we
calculated the difference in its asset Duration from the Theoretical at
Day 30. We repeated this for each of the one-thousand (1 000) sce-
narios and plotted a histogram of the Duration Differences in Fig. 23.
From Fig. 23, we can see that the Duration Differences are still centred
around 0 but are no longer bell-shaped. There is a higher proportion
of differences which are significantly different from 0 at the end of the
month.

The mean difference is around 0.03, but the standard deviation is
much higher at 0.92. This means that 95% of the differences are not
more than 1.84 years (approximately two standard deviations) from
the theoretically correct level. This threshold level for the traditional
ALM approach is over three times that of the Reinforcement Learning
ALM (0.56 years). This means that with all else being the same, the
traditional approach can differ from the theoretical Duration by three
times as much as the Reinforcement Learning approach.

The Modified Duration of the Bond gives the impact of a 100-basis
point (1%) on the price of a Bond. This is given by the formula shown
in Equation (12) (Bierwag & Fooladi, 2006, Wu, 2022):

D

1+YTM’

MD= (12)

n

where:

* M D is the Modified Duration. D is the Macaulay Duration, that
is, the usual Duration we have been referring to for the rest of the
paper (as Defined in Equation (2)) in years.

YTM is the Yield-to-Maturity of the Bond, that is, the nominal
annual interest rate.

n is the frequency of interest compounding per year. In our case n
= 1 because the Bonds are Zero-Coupon Bonds. In this case of n =
1, the YT M is also the effective annual interest rate.

From the above formulation, we can deduce that the estimated av-
erage net portfolio (Asset less liabilities) from traditional ALM with a
weekly re-balancing at the end of 30 days has a 1.71% change in value
from a 1% change in interest rates. On the other hand, the estimated
average Net Portfolio (Assets less Liabilities) from Reinforcement Learn-
ing ALM with a daily re-balancing has a 0.53% change in value from a
1% change in interest rates.

14

Intelligent Systems with Applications 20 (2023) 200286

From the above calculations, we can deduce that the Reinforcement
Learning ALM’s Net Portfolio will be much more securely hedged (ap-
proximately three times better) compared to the traditional ALM’s Net
Portfolio, with all else being the same. This particularly important con-
sideration in a situation where interest rates are increasing. If the Asset
Duration is much higher than the Liability Duration, then the asset port-
folio value will fall by a bigger margin compared to the liability value,
representing bigger exposure to interest rate risk.

8. Discussion, conclusion and future works
8.1. Results discussion

From Section 7.1, the first finding was that, in general, Deep Re-
inforcement Learning could successfully replicate the performance of
Redington Immunisation theory. We calculated confidence intervals of
the differences between Immunisation theory results and Deep Rein-
forcement Learning at test time points. The results first demonstrated
that DRL ALM can achieve duration-matching outcomes within 1% of
the theoretical immunisation theory at a 95% confidence level. The
Reinforcement Learning ALM was able to achieve the same level of per-
formance despite not relying on interest rate assumptions compared to
the traditional method.

Due to the novelty of this work, there are no directly comparable
works which applied Deep Reinforcement Learning to replicate Red-
ington immunisation theory. As far we can tell this paper is the first.
However, we can consider work of a similar magnitude where Deep
Reinforcement Learning was applied to replicate the foundational ap-
proach of the Black-Scholes theory of hedging Derivatives (Hariom Tast
& Lookabaugh, 2020). This work found that Deep Reinforcement Learn-
ing could replicate the same level of accuracy as the theoretical ap-
proach in implementing Delta Hedging. This Delta Hedging application
was built on a deep hedging theoretical framework from a few years ear-
lier (Biihler et al., 2018). This work’s results are similar to this paper’s
in the sense that Deep Reinforcement Learning was successfully applied
to replicate and improve upon the results of the foundational theory in
their respective domains. In both cases this was achieved with much
fewer theoretical assumptions. There were also many similarities in the
methodologies such as the Deep Learning architectures, the model-free
Reinforcement Learning approach and the use of Monte Carlo simula-
tions of the underlying processes.

In Section 7.1, we further saw that as interest rate conditions de-
viated from precise theoretical assumptions (which are associated with
more volatile liability Duration), Deep Reinforcement Learning was able
to largely maintain its Duration Matching capabilities. This illustrated
the increased robustness of Reinforcement Learning to market condi-
tions compared to the traditional methods. Furthermore, Reinforcement
Learning did not require external restrictions on many of the optimisa-
tion parameters, such as the range of values for the weights. We noticed
that the Reinforcement Learning Agent was able to automatically learn,
based on the Reward Function, that the appropriate weights needed to
range between zero (0) and one (1) because the context did not allow
short-selling. On the other hand, in immunisation theory, we needed
to explicitly express this restriction or make a manual adjustment af-
terwards. Therefore, Reinforcement Learning demonstrated the ability
to perform as well as Immunisation theory by just expressing to it the
objective and with fewer assumptions and restrictions.

From Section 7.2, the investigations showed that Deep Reinforce-
ment Learning ALM could be implemented more frequently with daily
re-balancing of the asset portfolio allocation for Duration Matching as
the liability continuously changes. This resulted in significantly better
interest rate hedged portfolios than the traditional ALM approach with
weekly re-balancing, which is the most frequent that can be feasibly
achieved with traditional strategies in practice in most cases. In our
case, we estimated that Reinforcement Learning net portfolio values
are approximately three times less sensitive to interest rate movements

T.A. Wekwete, R. Kufakunesu and G. van Zyl

compared to the traditional ALM on a weekly regime. This is a signif-
icant out-performance, especially considering the large financial sums
that large intuitions manage.

This fact that Deep Reinforcement Learning outperformed the
benchmark could be expected. Two related works applied Deep Learn-
ing and Reinforcement Learning to Asset Liability modelling of retail
banking assets and liabilities (Krabichler & Teichmann, 2023, Englisch
et al.,, 2023). Although the applications were in retail banking with
different outcome measurement metrics, their results also strongly
demonstrated significant outperformance relative to several practical
benchmark Asset Liability Management strategies.

This ability to be implemented on a more frequent basis is be-
cause Deep Reinforcement Learning requires less human intervention
compared to the traditional approach (Hariom Tast & Lookabaugh,
2020, Englisch et al., 2023). This is partly because the Reinforcement
Learning approach relies less on theoretical assumptions. In addition,
Reinforcement Learning ALM was performed within scalable computa-
tional frameworks which unlocks faster and more automated processing
by leveraging powerful open-source libraries such as TensorFlow. This
enables one to practically apply Reinforcement Learning regularly at
an enterprise level with high-velocity and voluminous data (Geron,
2019, Tensorflow.org, 2022, Lang, 2022). Reinforcement Learning also
achieves more consistent hedging within the month since its allocations
track better to the theoretical level. This means that with Deep Rein-
forcement Learning there are fewer times when there are significant
mismatches of assets and liabilities.

8.2. Conclusion

In this paper we applied a combination of Reinforcement Learning
and Deep Learning to Asset Liability Management (ALM). This combina-
tion is called Deep Reinforcement Learning (DRL). We termed this ap-
plication Deep Reinforcement Learning Asset Liability Modelling (DRL
ALM).

Before this paper, Reinforcement Learning had been applied in the
Actuarial and Quantitative Finance domains to mostly carry out Trad-
ing, Portfolio Allocation, and Derivatives Hedging (Hariom Tast & Look-
abaugh, 2020, Kolm & Ritter, 2020, Dixon & Halperin, 2019). Although
the recent application of Deep Learning and Reinforcement Learning for
Asset Liability Modelling was successful in banking it was based on ap-
proaches customised specifically for retail banking (Krabichler & Teich-
mann, 2023, Englisch et al., 2023). There had been no well-documented
literature and applications of Reinforcement Learning, which consider
both sides of a risk taker’s balance sheet in all spheres of risk man-
agement theory. This paper fills this gap both in the literature and
application, by providing an avenue for the improvement of Actuarial
and Quantitative Finance practice by providing an avenue that repli-
cates and potentially improves upon Redington Immunisation theory.

For testing purposes, we used Monte Carlo methods to simulate data
similar to that encountered in real-world by risk-taking institutions. For
each simulation, we had stochastic variation in the Liability Duration
and the asset portfolio’s maturity terms. We assumed that the assets
were comprised of two zero-coupon bonds. The approach can, as we
discussed, be validly extended to coupon-bearing bonds (Jarrow, 2004,
Jarrow & Turnbull, 2000). We used 10 000 simulations for training the
Reinforcement Learning Asset Liability Management agent. The data
sets were generated from separate Monte Carlo simulation runs and are
thus unseen by models during training, which provided a robust testing
regime.

For the purpose of comparison, we set up a Redington Immunisation
model, which is the foundation theory for most traditional approaches
to ALM. It is based on solving simultaneous equations to determine
the appropriate asset weights required to achieve matching of the As-
sets Duration and Liability Duration. We noted the restrictive theoret-
ical assumptions as well as several practical problems including the

15

Intelligent Systems with Applications 20 (2023) 200286

resource-intensive requirements for careful monitoring and professional
adjustments.

We then developed the Reinforcement Learning framework for
implementation. The Reinforcement Learning approach required the
development and implementation of Object Orientated Programming
(OOP) or Class-based Programming in Python programming. First, we
defined an autonomous Agent as a class that can create Reinforcement
Learning objects with specific attributes, modules, and functions. We
then defined the critical Reinforcement Learning components, such as
the Agent, the Environment, the States of the environment (simula-
tion data), the Actions of the Agent (Asset allocations), and the Reward
Function (Sum Square Error). In addition, the core functionality of Re-
inforcement Learning in its data processing and computations was im-
plemented using the TensorFlow library in Python. We used TensorFlow
because of its enhanced abilities to manage large datasets and demand-
ing computational jobs due its unique computation graph structure
(Lang, 2022, Pang et al., 2020, Geron, 2019). Within this TensorFlow
framework, we incorporated a Deep Learning model, the Long-Short-
Term Memory Recurrent Neural Network (LSTM-RNN) (Smagulova &
James, 2019, Staudemeyer & Morris, 2019). The LSTM-RNN enabled
in-depth learning of the Reinforcement Learning Agent to be able to
learn and discern time-dependent trends in the data in the formulation
of its policy.

We compared the performance of the DRL ALM to both Redington
Immunisation theory and a weekly traditional ALM as a benchmark
of the current best possible implementation. The results demonstrated
that DRL ALM can achieve duration-matching outcomes within 1% of
the theoretical immunisation theory at a 95% confidence level. Further-
more, compared to a benchmark weekly rebalancing traditional ALM
regime, high-frequency DRL ALM achieved superior outcomes which
are, on average, 3 times less sensitive to interest rate changes. DRL ALM
also demonstrated capacity for increased automation, speed, flexibil-
ity, and multi-objective optimisation in ALM, thereby, further potential
for reducing the negative impact of human limitations and improving
risk management outcomes. The findings and principles presented in
this study apply to various institutional risk-takers, including insurers,
banks, pension funds, and asset managers.

Overall, Deep Reinforcement Learning was not only able to perform
similar tasks as traditional methods in general but was also improved
on many aspects of ALM. Deep Reinforcement Learning demonstrated
the potential to improve ALM by providing an avenue for more frequent
and automated asset re-allocations for better interest rate hedging, less
reliance on theoretical assumptions and restrictions, high-frequency,
increased robustness in varying market conditions, and increased flexi-
bility.

In summary, Deep Reinforcement Learning ALM has several gains
relative to the traditional ALM approaches. These include:

1. The ability of DRL ALM to attain the same level of accuracy
compared to theoretical immunisation expectations but with much
fewer theoretical assumptions about market conditions such as in-
terest rate behaviour. We saw this in Section 7.1.2, where the out-
comes within 1% of the theoretical immunisation theory at a 95%
confidence level.

2. Increased robustness of DRL ALM in hedging outcomes in stressed
and/or volatile market conditions due to the reduced reliance on
theoretical assumptions about the market. We saw this in Sec-
tion 7.1.3 where the DRL ALM results were impressively accurate
despite being applied to a more volatile environment relative to
what it was trained on. This robustness emanates from the fact that
the DRL ALM directly learns the objectives and can adjust its actions
accordingly.

3. Better interest rate hedging results compared to a benchmark
weekly rebalancing traditional ALM approach. In Section 7.2 we
saw that DRL ALM achieved superior ALM outcomes which are 3

T.A. Wekwete, R. Kufakunesu and G. van Zyl

times less sensitive to interest rate changes on average for similar
scenarios at the end of a 30-day period.

4. The better hedging results are partly attributable to the fact that
once the DRL ALM agent is trained, it is relatively fast to get re-
sults from it for a given set of input scenario data. This makes it
much easier to automate the ALM process to a much higher fre-
quency basis such as daily or hourly. This is in contrast to a much
slower traditional ALM process which requires some manual input
such as extensive data gathering and professional judgement in its
application.

5. DRL ALM, if successfully deployed, can reduce various business
costs to institutional risk-takers. The better ALM outcomes seen
from DRL ALM can enable more efficient capital allocation, min-
imise unnecessary asset reserving and increase return on capital
for shareholders. In the long run, DRL ALM can save on costs by
either reducing unnecessary employee headcount in ALM depart-
ments, especially for manual tasks, or improving the productivity
of ALM employees. DRL ALM introduces a highly capable Artificial
Intelligence (AI) Asset Liability Management assistant that can com-
plement and increase the productivity of professionals in the Asset
Liability Management field.

8.3. Future works

In this section we highlight important future work and why it is
important. There are several areas of potential additional research that
can be pursued which build on the research done in this paper.

First, an important future work is to test how the trained Deep
Reinforcement Learning agent would perform on real-world asset and
liability data of an institution. This would involve deploying the trained
Reinforcement Agent in a real-world investment management or asset
management floor with all real-world challenges. Some development
would be needed to integrate the Reinforcement Learning agent object
and its associated Python programme into the enterprise systems of the
institution’s deploying the agent. In this deployment, a feedback loop
which feeds data to the Reinforcement Learning from the institution’s
asset and liability data systems, and simultaneously sends the Agents ac-
tions would need to be established. This would be important to further
refine the DRL ALM approach to take into account practical considera-
tions such data system integration and legacy system issues.

Second, another area of future research would be to test the limits of
the Deep Reinforcement Agent. The first test is including multiple assets
(P) instead of two assets. There would be valuable insights derived from
investigating the feasibility of implementing Reinforcement Learning as
P approaches a very large number, that is, as the Dimensionality of the
problem increases exponentially. For such an assessment, one would
need to do a significant amount of work in making the number of as-
sets a dynamic part of the Reinforcement Learning workflow. This will
requires additional development in the Python programme. This addi-
tional development will require improvement on the formulation of the
Deep Learning model and Reinforcement Learning agent so that they
can generate a dynamic number of actions (weights) in an automated
manner, which would correspond to a large number of assets (P). There
also would be valuable insights in assessing the choices allocation and
whether there would be a significant reduction or improvement in per-
formance.

Third, we would also recommend assessing the feasibility and im-
pact on the performance of including different data types in the states
such as asset returns, asset volatility, detailed risk profiles of liabilities
(such as ages, health status, gender, etc.), and even non-numeric data.
These non-numeric data could include some market sentiment data or
some internal institutional data. Deep Learning Models are well known
for their ability to cope well with non-numerical data, such as in Natural
Language Processing, and it would be interesting to investigate whether
this strength can be leveraged in Deep Reinforcement Learning. Fifth,
in this paper, the asset portfolio was based on Zero-Coupon Bonds. This

16

Intelligent Systems with Applications 20 (2023) 200286

is not a very restrictive assumption, as the findings are applicable when
hedging is carried out with Coupon-Bearing Bonds. However, it would
be valuable to carry out research on the effect of incorporating more
complicated asset types such as Equities, Convertible Bonds, Deriva-
tives, etc. In addition, it would be interesting to investigate the impact
on the choices of the Reinforcement Learning solution.

Fourth, another area of future research would be to incorporate ad-
ditional restrictions or parameters such as regulatory capital regimes
such as Solvency II and Solvency Assessment and Management (SAM),
Liquidity requirements or other risk assessment measures such as Value-
at-Risk. It will be valuable to assess how easily the current solution will
extend to incorporate these additional objectives and how it performs
in balancing the different objectives.

Last, we noticed some practical challenges that one would need
to overcome in applying Deep Reinforcement Learning. The first chal-
lenge is that there are no off-the-shelve consolidated packages/libraries
or pre-defined modelling approaches for implementing Reinforcement
Learning. This means that one typically has to program many of the
steps and details of the autonomous Reinforcement Agent classes and
objects together with their attributes and functions. Furthermore, im-
plementing Deep Learning in TensorFlow also requires a good under-
standing of unique and specific computational graph formulation and
syntax. A good understanding of TensorFlow is also required in man-
aging all the data in high dimensional matrices (Tensors), which are
different from the usual handling of data in most libraries and program-
ming languages. We, therefore, believe that there are also opportunities
for research into simplifying the development of Reinforcement Learn-
ing solutions, especially when used with Tensorflow as is often the case.

There is also a gap in making deploying a Deep Reinforcement
Learning Agent easier and quicker. Some work has been done in ar-
eas such as Stable Baselines (D’Eramo et al., 2020, Baselines, 2022). It
would be valuable to assess how easy it is to apply these approaches to
the Asset Liability Management problems.

CRediT authorship contribution statement

Takura Asael Wekwete: Conceptualization, Data curation, Formal
analysis, Investigation, Methodology, Software, Writing — original draft.
Rodwell Kufakunesu: Supervision, Writing — review & editing. Gusti
van Zyl: Supervision, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
Data will be made available on request.

References

Abrate, C., Angius, A., De Francisci Morales, G., Cozzini, S., Iadanza, F., Puma, L. L., &
Ronchiadin, S. (2021). Continuous-action reinforcement learning for portfolio allo-
cation of a life insurance company. In Y. Dong, N. Kourtellis, B. Hammer, & J. A.
Lozano (Eds.), Machine learning and knowledge discovery in databases. Applied data sci-
ence track. Cham: Springer International Publishing (pp. 237-252).

Altché, F., & de La Fortelle, A. (2017). An LSTM network for highway trajectory pre-
diction. In 2017 IEEE 20th international conference on intelligent transportation systems
(pp. 353-359).

Apple (2023). Macbook air (m1, 2020) - technical specifications (uk). Retrieved from
https://support.apple.com/kb/SP825?locale = en_GB. (Accessed 10 July 2023).

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep re-
inforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26-38.
https://doi.org/10.1109/MSP.2017.2743240.

Barr, C. (2023). What’s going on with first republic bank? - WSJ (Accessed 2 April 2023).

Baselines, S. (2022). Welcome to stable baselines docs! - rl baselines made easy — stable
baselines 2.10.3a0 documentation (Accessed 21 November 2022).

T.A. Wekwete, R. Kufakunesu and G. van Zyl

Bierwag, G., & Fooladi, I. (2006). Duration analysis: An historical perspective. Journal of
Applied Finance, 16.

Bondt, W. D., Mayoral, R. M., & Vallelado, E. (2013). Behavioral decision-making in fi-
nance: An overview and assessment of selected research [La toma de decisién en las
finanzas del comportamiento: Estado de la cuestion a partir de los trabajos selecciona-
dos]. Revista Espafiola de Financiacién Y Contabilidad, 42(157), 99-118. Retrieved
November 22, 2022, from http://www.jstor.org/stable/42782820.

Biihler, H., Gonon, L., Teichmann, J., & Wood, B. (2018). Deep hedging. arXiv:1802.
03042. Retrieved from https://arxiv.org/abs/1802.03042.

Cheridito, P., Ery, J., & Wiithrich, M. V. (2020). Assessing asset-liability risk with neural
networks. Risks, 8(1). https://doi.org/10.3390/risks8010016.

Chiu, C.-J., Ho, A. Y.-F., & Tsai, L.-F. (2022). Effects of financial constraints and man-
agerial overconfidence on investment-cash flow sensitivity. International Review of
Economics & Finance, 82, 135-155. https://doi.org/10.1016/j.iref.2022.06.008.

Daga, A. (2023). What happened at credit suisse and how did it reach crisis point? Reuters
(Accessed 2 April 2023).

D’Eramo, C., Tateo, D., Bonarini, A., Restelli, M., & Peters, J. (2020). Mushroomrl:
Simplifying reinforcement learning research. https://doi.org/10.48550/ARXIV.2001.
01102.

Devraj, A., & Meyn, S. (2019). Zap g-learning. University of Florida. https://proceedings.
neurips.cc/paper/2017/file/4671aeaf49¢792689533b00664a5c3ef-Paper.pdf. Re-
trieved from https://ieeexplore.ieee.org/document/8715554.

Dixon, M. F., & Halperin, I. (2019). The four horsemen of machine learning in finance.
SSRN Electronic Journal, 26, 18-28. Retrieved from https://ssrn.com/abstract=
3453564.

Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications.
Computer Science Review, 40, Article 100379. https://doi.org/10.1016/j.cosrev.2021.
100379.

Englisch, H., Krabichler, T., Miiller, K. J., & Schwarz, M. (2023). Deep treasury man-
agement for banks. Frontiers in Artificial Intelligence, 6. https://doi.org/10.3389/frai.
2023.1120297.

Fooladi, 1., & Roberts, G. (2000). Risk management with duration analysis. Managerial
Finance, 26, 18-28. https://doi.org/10.1108/03074350010766558.

Garrett, S. (2013). Chapter 9 - term structures and immunization. In S. Garrett (Ed.),
Introduction to the mathematics of finance (second edition) (pp. 177-209).

Geman, H. (2023). From Lehman to silicon valley bank and beyond: Why are mistakes repeated
in the us banking system? (Accessed 2 April 2023).

Geron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow (2nd
edition). United States: O’Reilly Media, Inc. Retrieved from https://www.oreilly.
com/library/view/hands-on-machine-learning/9781492032632/.

Guignard, F., Amato, F., & Kanevski, M. (2021). Uncertainty quantification in extreme
learning machine: Analytical developments, variance estimates and confidence in-
tervals. Neurocomputing, 456, 436-449. https://doi.org/10.1016/j.neucom.2021.04.
027.

Hariom Tast, S. P., & Lookabaugh, B. (2020). Machine learning and data science blueprints
for finance. (Chap. 9). O’Reilly Media, Inc. Retrieved from https://www.oreilly.com/
library/view/machine-learning-and/9781492073048/.

He, T., & Droppo, J. (2016). Exploiting LSTM structure in deep neural networks for speech
recognition. In 2016 IEEE international conference on acoustics, speech and signal pro-
cessing (pp. 5445-5449).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Hsu, W.-N., Zhang, Y., Lee, A., & Glass, J. (2016). Exploiting depth and highway connec-
tions in convolutional recurrent deep neural networks for speech recognition. In Proc.
interspeech 2016 (pp. 395-399).

Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z., & Zhang, H. (2019). Deep learning with long
short-term memory for time series prediction. IEEE Communications Magazine, 57(6),
114-119. https://doi.org/10.1109/MCOM.2019.1800155.

Jarrow, R. A. (2004). Risky coupon bonds as a portfolio of zero-coupon bonds. Finance
Research Letters, 1(2), 100-105. https://doi.org/10.1016/].frl.2004.03.003.

Jarrow, R. A., & Turnbull, S. M. (2000). The intersection of market and credit risk. Jour-
nal of Banking & Finance, 24(1), 271-299. https://doi.org/10.1016/S0378-4266(99)
00060-6.

Kahlig, J. (2022). Duration, convexity and immunisation. https://people.tamu.edu/
~kahlig/notes/325/ch11-part-c.pdf. (Accessed 20 November 2022).

Kolm, P. N., & Ritter, G. (2020). Modern perspectives on reinforcement learning in fi-
nance. SSRN Electronic Journal, 1, 18-28. Available at SSRN. Retrieved from https://
ssrn.com/abstract =3449401.

Krabichler, T., & Teichmann, J. (2023). A case study for unlocking the potential of deep
learning in asset-liability-management. Frontiers in Artificial Intelligence, 6. https://
doi.org/10.3389/frai.2023.1177702.

17

Intelligent Systems with Applications 20 (2023) 200286

Lang, N. (2022). An introduction to TensorFlow. Get to know the machine learn-
ing, its architecture and the comparison to PyTorch. Retrieved from https://
towardsdatascience.com/an-introduction-to-tensorflow-fa5b17051f6b. (Accessed 20
November 2023).

Li, Y. (2017). Deep reinforcement learning: An overview. https://doi.org/10.48550/
ARXIV.1701.07274.

Li, Y. (2022). Introducing deep reinforcement learning, by Yuxi Li. Medium. https://
medium.com/@yuxili/deeprl-6¢8c48b6489b. (Accessed 2 November 2022).

Mallinar, N., & Rosset, C. (2018). Deep canonically correlated LSTMs, https://doi.org/10.
48550/ARXIV.1801.05407.

Mousavi, S., Schukat, M., & Howley, E. (2018). Deep reinforcement learning: An overview.
Lecture notes in networks and systems (pp. 426-440).

Nieto, A., Juan, A. A., & Kizys, R. (2022). Asset and liability risk management in financial
markets. In J. Pilz, T. A. Oliveira, K. Moder, & C. P. Kitsos (Eds.), Mindful topics on risk
analysis and design of experiments (pp. 3-17). Cham: Springer International Publishing.

Osiriski, B., Jakubowski, A., Ziecina, P., Mitos, P., Galias, C., Homoceanu, S., &
Michalewski, H. (2020). Simulation-based reinforcement learning for real-world au-
tonomous driving. In 2020 IEEE international conference on robotics and automation
(pp. 6411-6418).

Pang, B., Nijkamp, E., & Wu, Y. N. (2020). Deep learning with tensorflow: A review.
Journal of Educational and Behavioral Statistics, 45(2), 227-248. https://doi.org/10.
3102/1076998619872761.

Qu, Z., Haghani, P., Weinstein, E., & Moreno, P. (2017). Syllable-based acoustic modeling
with CTC-sMBR-LSTM. In 2017 IEEE automatic speech recognition and understanding
workshop (pp. 173-177).

Rabbani, A. G., Grable, J. E., O’Neill, B., Lawrence, F., & Yao, Z. (2021). Fi-
nancial risk tolerance before and after a stock market shock: Testing the re-
cency bias hypothesis. Journal of Financial Counseling and Planning, 32(2). https://
doi.org/10.1891/JFCP-19-00025. https://connect.springerpub.com/content/sgrjfcp/
early/2020/12/22/JFCP-19-00025.full.pdf.

Redington, F. M. (1952). Review of the principles of life-office valuations. Journal of the
Institute of Actuaries (1886-1994), 78(3), 286-340. Retrieved November 13, 2022,
from http://www.jstor.org/stable/41139015.

Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory based recurrent neural
network architectures for large vocabulary speech recognition, https://doi.org/10.
48550/ARXIV.1402.1128.

Sato, Y. (2019). Model-free reinforcement learning for financial portfolios: A brief survey.
arXiv:1904.04973. Retrieved from https://arxiv.org/abs/1904.04973.

Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-
term memory (LSTM) network. Physica D, 404, Article 132306. https://doi.org/10.
1016/j.physd.2019.132306.

Sigaud, O., & Stulp, F. (2019). Policy search in continuous action domains: An overview.
Neural Networks, 113, 28-40. https://doi.org/10.1016/j.neunet.2019.01.011.

Smagulova, K., & James, A. (2019). A survey on LSTM memristive neural network archi-
tectures and applications. The European Physical Journal Special Topics, 228. https://
doi.org/10.1140/epjst/e2019-900046-x.

Smink, M., & van der Meer, R. A. H. (1997). Life insurance asset-liability management:
An international survey. The Geneva Papers on Risk and Insurance. Issues and Practice,
22(82), 128-142. Retrieved from http://www.jstor.org/stable/41952310.

Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM - a tutorial into long
short-term memory recurrent neural networks. https://doi.org/10.48550/ARXIV.
1909.09586.

Syed, Z., & Bansal, R. (2018). Do investors exhibit behavioral biases in investment de-
cision making? A systematic review. Qualitative Research in Financial Markets, 10,
Article 00. https://doi.org/10.1108/QRFM-04-2017-0028.

Tensorflow.org (2022). Why tensorflow. Retrieved from https://www.tensorflow.org/
about. (Accessed 20 November 2022).

Ward, D., & Zurbruegg, R. (2000). Does insurance promote economic growth? Evidence
from OECD countries. Retrieved from https://www.jstor.org/stable/253847?seq =
1#metadata_info_tab_contents. (Accessed 10 March 2023).

Wu, J. (2022). Financial market analysis for duration and modified duration. In Pro-
ceedings of the 2022 7th international conference on financial innovation and economic
development (pp. 2637-2641).

Wautrich, M., & Merz, M. (2023). Statistical foundations of actuarial learning and its appli-
cations | springerlink. Retrieved from https://link.springer.com/book/10.1007/978-
3-031-12409-9. (Accessed 1 July 2023).

