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A B S T R A C T

In recent years, low-power wide area networks (LPWANs), particularly Long-Range Wide Area Network
(LoRaWAN) technology, are increasingly being adopted into large-scale Internet of Things (IoT) applications
thanks to having the ability to offer cost-effective long-range wireless communication at low-power. The need
to provide location-stamped communications to IoT applications for meaningful interpretation of physical
measurements from IoT devices has increased demand to incorporate location estimation capabilities into
LoRaWAN networks. Fingerprint-based localization methods are increasingly becoming popular in LoRaWAN
networks because of their relatively high accuracy compared to range-based localization methods. This work
proposes hybrid convolutional neural networks (CNNs)-transformer fingerprinting method to localize a node
in a LoRaWAN network. CNNs are adopted to complement the strengths of the Transformer by adding the
ability to capture local features from input data and consequently allow the Transformer, through the attention
mechanism, to effectively learn global dependencies from the input data. Specifically, the proposed method
works by first learning the local location features from the input data using the CNNs and passing the
resulting information to the transformer encoder to learn global features from the input data. The output
of the transformer encoder is then concatenated with information learned at the local level and then passed
through the regressor for the final location estimation. With a localization performance of 290.71 m mean
error achieved, the proposed method outperformed similar state-of-the-art works in the literature evaluated
on the same publicly available LoRaWAN dataset.
1. Introduction

Localization in wireless networks refers to the process undertaken
to estimate the location of a target node/object deployed in indoor or
outdoor environments. This process usually involves the exchange of
positional signal parameters between the anchor node (nodes whose
physical location is known) and other nodes to establish the location
of a desired node (Kumari et al., 2019; Bhatti, 2018; Alomari et al.,
2018).

In the context of outdoor environments, Global Positioning Sys-
tem (GPS) has been the most widely adopted technology for location
estimation purposes for many years (Obeidat et al., 2021). For this
technology to provide highly accurate localization performance, an
object whose location is to be estimated must establish a clear line-
of-sight (LOS) with GPS satellites. However, the high implementation
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cost and power-hungry nature of GPS-based localization systems make
them less attractive in large-scale IoT applications where the emphasis
is on energy efficiency and cost-effectiveness (C.E. et al., 2018; Singh
and Sharma, 2018). Another key reason for the increased interest in
adopting emerging wireless technologies other than GPS in developing
localization systems is the poor performance of GPS-based localization
systems in urban canyons or environments with many obstructions,
such as tall trees.

Short-range wireless communications technologies such as Blue-
tooth, WiFi and ZigBee are common in IoT applications; however,
applying them in large-scale IoT applications is not economically fea-
sible due to their short-range nature. To meet the requirements for
low-cost, low-power and long-range communications in large-scale IoT
applications, researchers have shifted their focus to long-range LPWAN
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technologies (Anjum et al., 2020; Miles et al., 2020; Lalle et al.,
2019). LoRaWAN, along with Sigfox, are the two most adopted LPWAN
technologies in large-scale IoT applications thanks to their ability to
offer cost-effective long-range communications using batteries that can
last for many years (Queralta et al., 2019; Mkkhaylov et al., 2020;
Ikpehai et al., 2019).

In recent years, IoT-related technologies have proven to be key
enabling technologies to provide smart solutions to nearly all spheres
of human life, such as in industries, healthcare facilities, agricultural-
related projects, and logistic applications, to name a few. Remote
control and telemetry, asset tracking, machine control, safety moni-
toring, and implementation of smart projects in homes and cities are
notable examples of use cases of IoT-related technologies (Lalle et al.,
2019; Cho et al., 2019; Akhmedov et al., 2021; Perez et al., 2022;
Durand et al., 2019). Incorporating location estimation capabilities
into these large-scale IoT applications will enable the provision of
location-stamped communication, which is crucial in extracting useful
information from physical measurements obtained from IoT devices.

In LPWAN networks, particularly LoRaWAN networks, localization
of a target node is achieved through either fingerprinting or range-
based approaches (Janssen et al., 2020a; Marquez and Calle, 2023;
Janssen et al., 2020b; Islam et al., 2023; Anagnostopoulos and Kalousis,
2021). Range-based approaches involve the application of a path loss
model to provide distance estimation of a device to a nearby gateway
from received signal strength indicator measurements (RSSI), which
are then used to pinpoint its probable location (Janssen et al., 2020b).
Fingerprinting-based methods, on the other hand, estimate the location
of a target node by using a database of earlier collected signal fea-
tures (fingerprints) through feature matching (Janssen et al., 2020b;
Islam et al., 2023). Compared to range-based localization approaches,
fingerprinting-based approaches are increasingly being applied to IoT
applications because of their better localization performance relative to
their range-based counterparts (Janssen et al., 2020a; Aernouts et al.,
2018a). The effectiveness of fingerprinting-based methods is attributed
to the utilization of machine learning models, which are able to learn
useful positional information even from noisy data collected in non-LOS
(NLOS) environmental settings (Purohit et al., 2020).

In the literature, the majority of fingerprint-based localization meth-
ods in LoRaWAN networks are implemented using standalone or a
hybrid of classical ‘shallow’ machine learning algorithms, notably k-
nearest neighbours (kNN), Random Forests (RFs), Decision Trees (DTs)
and Support Vector Machines (SVMs). When the training data is rela-
tively large, these classical machine learning algorithms become com-
putationally expensive to train, and their performances tend to degrade.
Therefore, these algorithms are not ideal for fingerprinting-based local-
ization using large outdoor fingerprint databases, which are necessary
if a large outdoor environment is to be covered (Janssen et al., 2020a).

In the recent past, convolutional neural networks (CNNs) have
performed extremely well in computer vision tasks due to their effec-
tiveness in learning local dependencies from the input data (Chollet,
2018). However, CNNs are poor in establishing global dependencies
between the input data because of the locality of the convolution
operation (Li et al., 2022b). On the other hand, transformers are
becoming popular in computer vision and natural language processing
tasks thanks largely to the ability to capture global dependencies from
the input data; however, they are less equipped to capture local depen-
dencies from the input data (Yang et al., 2022; Li et al., 2022b; Shao
et al., 2022).

The novel contribution of this work is the development of a hy-
brid CNN-transformer fingerprinting-based localization method in Lo-
RaWAN networks by leveraging the strengths of both CNNs and trans-
formers. CNNs capture features from the input data at the local level,
while the attention mechanism of the transformer captures features
from the input data at the global level. The optimal preprocessing
techniques for the LoRaWAN dataset for improved localization per-
2

formance are presented. With a localization performance of 290.71 m
mean error obtained when evaluated on a publicly available LoRaWAN
dataset (Aernouts et al., 2018b), the proposed method outperformed
similar state-of-the-art methods in the literature evaluated on the same
dataset.

The rest of the paper is structured as follows: Sections 2 and 3
provide an overview of related works and preliminary concepts, respec-
tively. The proposed method is detailed in Section 4, while Section 5 is
devoted to the description of experimental settings and procedures. In
Section 6, the experimental results are presented and discussed. Finally,
conclusions are drawn and future works discussed in Section 7.

2. Related works

In LoRaWAN networks, by analysing RSSI, AoA, ToA or TDoA or
a combination of these parameters received by LoRaWAN gateways,
the location of a target node can be estimated by using fingerprinting-
based or range-based localization approaches (Janssen et al., 2020a).
The range-based localization approaches are implemented by adopt-
ing geometrical techniques (such as triangulation and multilateration)
or statistical techniques (such as maximum likelihood and Bayesian
filtering). In Vazquez-Rodas et al. (2020), the authors proposed a
localization scheme in LoRaWAN networks using RSSI measurements.
In this localization scheme, the path loss model is first established from
the communication links of the target node and the anchor nodes,
followed by the location estimation of a target node using a trilateration
algorithm. In Muppala et al. (2021), a localization method is proposed
whereby the location of a target node in the LoRaWAN network is
computed using TDoA values measured from the signal transmitted
by the target node and received by several gateways. In this scheme,
the issue of asynchronization between different gateways, which may
affect the overall localization accuracy, is addressed using an addi-
tional stationary node. The authors in Guo et al. (2022) proposed a
localization approach that utilizes TDoA measurements estimated from
differential phase sampling applied in a LoRaWAN uplink signal for
node localization in LoRaWAN networks. In this scheme, a least square
algorithm is applied to compute the location of the target node in the
back-end server by integrating the anchor’s reference positions and the
TDoA values.

In Chen et al. (2023), an approach to using TDoA measurements to
localize a node in LoRaWAN networks is proposed and implemented
in NS-3. In order to increase the accuracy of the proposed localization
scheme, a Kalman filter is used to remove clock synchronization errors
before adopting the Chan algorithm to infer the location of the target
node in two scenarios: one involving three gateways and another
involving more than three gateways. In Liu et al. (2022), a super-
resolution localization scheme based on AoA is proposed to localize a
node in LoRaWAN networks. In order to improve the localization per-
formance of the proposed scheme, bandwidth is first increased through
the synchronization of multiple communication channels before adopt-
ing an ESPRIT algorithm to compute the location of a LoRaWAN
transmitter. The authors in Aernouts et al. (2020) proposed a localiza-
tion scheme in LoRaWAN networks based on the combination of TDoA
and AoA parameters. In this scheme, two probability density maps, one
for TDoA measurements and another one for AoA measurements, are
first built and then combined into a new map whereby the final location
of the target node is computed from the intersection of the merged AoA
and hyperbola resulting from TDoA measurements from two gateways.

However, the adoption of range-based localization approaches in
LoRaWAN networks is less attractive to researchers for several rea-
sons. The first reason is the requirements of dedicated hardware in
their implementation. For instance, AoA-based approaches require the
installation of an array of antennas for angle measurements, which
can be very expensive, while ToA and TDoA-based localization ap-
proaches require accurate clock synchronization among anchor nodes.
The second reason is the poor performance of range-based localiza-

tion approaches due to fluctuations in localization parameters such as
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RSSI caused by shadowing and fading phenomena due to multipath
propagation (Goldoni et al., 2019). Researchers are increasingly being
attracted to adopting fingerprinting-based localization approaches due
to their robustness in challenging environments with multipath and
NLOS phenomena (Zhang et al., 2022), and being relatively more
accurate. This is attributed to their ability to learn useful positional
information even from noisy data (Purohit et al., 2020). The authors
in Aernouts et al. (2018b) took part in a large-scale outdoor measure-
ment campaign to create fingerprint databases for Sigfox and LoRaWAN
networks to equip researchers with a tool to verify the performance
of their localization algorithms. In addition to these datasets, the au-
thors implemented a kNN fingerprinting-based localization method and
evaluated it using their LoRaWAN dataset (version 1.1 of their urban
LoRaWAN dataset), achieving a localization accuracy of 398.4 m mean
error. The follow-up research, which adopted the same dataset version
of the LoRaWAN dataset to evaluate their fingerprinting-based localiza-
tion methods, is presented in Anagnostopoulos and Kalousis (2019b)
and Purohit et al. (2020). In Anagnostopoulos and Kalousis (2019b),
the authors implemented kNN, Extra Trees and Multilayer Perceptron
(MLP) fingerprinting methods, reporting localization accuracy of 357 m
mean errors with the best-performing MLP fingerprinting model. The
researchers in Purohit et al. (2020) implemented three fingerprinting
localization methods, reporting localization performance of 191.53 m
with the long short-term memory method, which outperformed the
other two methods based on the artificial neural network and CNN.
In this work, the architectural structure of the CNN-based localization
method comprises two CNN layers and two dense layers. In contrast,
the proposed method is a hybrid CNN-Transformer-based fingerprinting
approach, incorporating CNNs to enhance the transformer’s capacity to
effectively capture local features from the input data.

Fingerprinting-based localization methods reported in (Janssen et al.
2020a; Pandangan and Talampas, 2020; Ferreras and Talampas, 2021;
Li et al., 2022a) were evaluated using version 1.2 of the urban Lo-
RaWAN dataset presented in Aernouts et al. (2018b). Authors in Janssen
et al. (2020a) implemented ten different types of regression algorithms
along with the Extended Min-Max algorithm and reported the best
localization performance of 340 m mean errors achieved with the
RF algorithm. In Pandangan and Talampas (2020), a kNN-RF method
was implemented utilizing hybrid data and achieved a localization
accuracy of 332.63 m mean errors. The researchers in Ferreras and
Talampas (2021) implemented and trained RF and MLP fingerprinting-
based localization methods using a RSSI-TDoA differential database,
achieving better performance with the MLP method, reporting a mean
error of 310 m on the test set. In Li et al. (2022a), a hierarchical
clustering-based technique is proposed for fingerprinting localization
in the LoRaWAN network. With the weighted kernel regressor, the
proposed localization approach was able to achieve 346.03 m mean
error.

The authors in Marquez and Calle (2022) present a case study
using data augmentation techniques to improve the localization per-
formance of Support Vector Regression (SVR), kNN, Extra Trees, and
MLP fingerprinting algorithms trained on small datasets. The best
localization accuracy of 12 m mean error was recorded using the kNN
algorithm at an outdoor urban area covering 8 km2. The researchers
in Pimpinella et al. (2020) performed a comprehensive evaluation of
different strategies that can be used to improve the spatial resolution
of small radio maps by using large radio maps through the adoption
of inter-technology knowledge transfer. The evaluated methods were
interpolation methods using Radius-Inverse Distance Weighting (IDW),
Gaussian Radial Basis Function (RBF), and regression methods using RF
and neural networks.

Research work in Aqeel et al. (2023) implemented and evalu-
ated SVR and Gaussian process regression fingerprinting localization
methods to localize a node in a sandstorm environment. From the
experimental results, the SVR method was reported to have better
3

localization performance than the Gaussian process regression method.
In Svertokat et al. (2022), through the implementation of the kNN
fingerprinting localization algorithm, the authors analysed factors that
could influence the accuracy of fingerprinting-based localization ap-
proaches in an outdoor setting. This work analysed accuracy dependen-
cies based on the number of deployed gateways, coverage area and the
distance from one measurement point to another. The authors in Anjum
et al. (2022) collected outdoor RSSI fingerprints and deployed path-
loss and different machine-learning models to improve RSSI-to-distance
representation. The optimal model was able to achieve localization
performance of between 6 and 15 m mean errors in the deployment
area. Table 1 presents a summary of key features of the reported
localization approaches in the related works.

The motivation to undertake this study is driven by the strong
demand to incorporate location estimation capabilities into LoRaWAN
networks, which are increasingly being adopted into large-scale IoT
applications thanks to having the ability to offer cost-effective long-
range wireless communication at low power. Factors such as high
power consumption, high implementation costs, and poor localization
performance in urban canyons or environments with many obstructions
make outdoor localization solutions based on standalone GPS tech-
nology unfit for deployment in large-scale IoT applications where the
emphasis is on energy efficiency and cost-effectiveness. The limitation
of another category of localization solutions based on range-based ap-
proaches, such as the need to install dedicated hardware like expensive
antenna arrays and the requirement for accurate clock synchronization
among anchor nodes, is another reason to opt for a fingerprinting-based
localization method. In contrast to the prevailing fingerprinting-based
localization methods for LoRaWAN networks, which predominantly
rely on conventional ‘shallow’ machine learning models, this study
proposes a hybrid fingerprinting-based localization method designed
to accurately localize nodes within LoRaWAN networks with a CNN-
transformer architecture. This deep-learning approach is introduced
to overcome the limitations of shallow-learning models. While such
models may yield satisfactory results under specific conditions, their
complexity tends to increase as the size of training datasets increases,
ultimately resulting in a decline in localization performance (Purohit
et al., 2020).

3. Preliminaries

3.1. LoRaWAN technology

LoRaWAN technology, which operates on top of the LoRa physical
layer (PHY), is a medium access control protocol (MAC) proposed
by Semtech and maintained by the LoRa Alliance. A Chirp Spread
Spectrum (CSS) modulation scheme is used by LoRa PHY on which
LoRaWAN resides. This proprietary modulation technique enables long-
range communications between 2 to 5 km and up to 15 km in urban
and rural areas, respectively (Chen et al., 2022). The CSS technique
modulates signals through frequency-varying chirp pulses with the
ability to counter the effects of interference, multipath, and Doppler
shifts (Perez et al., 2022; Zafari et al., 2019). In LoRaWAN, channel
bandwidth along with the spreading factor (SF) parameter, with values
ranging from 7 to 12, are used to adjust the modulated data rate
of the transmitted signal. The data rate varies from 300 bps to 50
kbps (Sassi and Fourati, 2022). In North America, LoRaWAN is specified
to operate at 915 MHz; in Europe, it operates at 868 MHz, while in
Asia, it operates at 433 MHz sub-GHz unlicensed industrial, scientific,
and medical (ISM) bands (Perez et al., 2022; Chen et al., 2022; Stusek
et al., 2020).

The network topology adopted in LoRaWAN is a star topology where
end devices establish single-hop connections with gateways (Chen
et al., 2022). A fully LoRaWAN architecture consists of one or more
gateways, LoRaWAN servers, application servers and end devices, as
illustrated in Fig. 1. The long-range, low-energy and low-cost com-
munications features of LoRaWAN make it an ideal technology for
large-scale IoT applications where the emphasis is on energy efficiency

and cost-effectiveness.
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Table 1
A Summary of the key features of the reported localization approaches in the related works.

Research
work

Localization
approach

Localization
parameter

Nature of the
dataset

Localization
environment

Adopted algorithm(s)

Vazquez-Rodas et al.
(2020)

Range-based RSSI Real Outdoor Trilateration

Muppala et al. (2021) Range-based TDoA Simulated Outdoor Multilateration
Guo et al. (2022) Range-based TDoA Real Indoor Least Square
Chen et al. (2023) Range-based TDoA Simulated Indoor/outdoor Chan
Liu et al. (2022) Range-based AoA Real Indoor/outdoor ESPRIT
Aernouts et al. (2020) Range-based TDoA and AoA Real Outdoor Triangulation/Trilateration
Aernouts et al. (2018b) Fingerprinting RSSI Real Outdoor kNN
Anagnostopoulos and
Kalousis (2019b)

Fingerprinting RSSI Real Outdoor kNN, MLP, Extra Trees

Purohit et al. (2020) Fingerprinting RSSI Real Indoor/outdoor LSTM, ANN, CNN
Janssen et al. (2020a) Fingerprinting/

Range-based
RSSI Real Outdoor Ten different regression

algorithms plus extended
Min-Max algorithm

Pandangan and Talampas
(2020)

Fingerprinting Fused RSSI-TDoA Real Outdoor kNN-RF

Ferreras and Talampas
(2021)

Fingerprinting Fusion of differential
RSSI-TDoA

Real Outdoor MLP, RF

Li et al. (2022a) Fingerprinting RSSI Real Outdoor k-means + weighted kernel
regression

Marquez and Calle (2022) Fingerprinting RSSI Real Outdoor Support Vector Regression,
Extra Trees, kNN, MLP

Pimpinella et al. (2020) Fingerprinting RSSI Real Outdoor Its implementation is based
on inter-technology
knowledge transfer using
classical machine learning
algorithms

Aqeel et al. (2023) Fingerprinting RSSI Real Outdoor Support Vector Regression
and Gaussian Process
Regression

Svertokat et al. (2022) Fingerprinting RSSI Real Outdoor kNN
Anjum et al. (2022) Fingerprinting/

Range-based
RSSI Real Outdoor Trilateration, DTs, kNN,

SVM
Fig. 1. LoRaWAN network architecture.
Source: Redrawn from Chen et al. (2022).
3.2. The transformer model

Transformer is a prominent natural language processing (NLP)
model first proposed in Vaswani et al. (2017) to perform sequence-to-
sequence modelling for machine translation tasks. Since their inception,
along with other NLP tasks such as classification and language mod-
elling, transformers have also achieved great success in computer vision
and audio processing tasks (Lin et al., 2022). Due to their versatility to
4

fit into different machine learning tasks as long as the input data is for-
matted accordingly, researchers are increasingly adopting transformers
to build high-performing machine learning models.

The original transformer architecture, famously known as the Vanilla
transformer, as illustrated in Fig. 2, is made up of the encoder and
decoder blocks. Each encoder block is built using multi-head self-
attention and feed-forward network (FFN) modules. Implementing a
residual connection just before layer normalization at the output of
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Fig. 2. Model architecture of the Vanilla Transformer.
Source: Redrawn from Vaswani et al. (2017).

the attention and FFN modules helps prevent vanishing gradient phe-
nomena when building very deep model architectures. The transformer
decoder, on the other hand, in addition to all the modules contained in
the transformer encoder, has a cross-attention module to allow encoder
and decoder features to influence each other.

Key to the performance of transformers is the attention mechanism,
which is a graph-like inductive bias which employs a pooling operation
to relevantly connect each word in a sequence (Tay et al., 2022). The
self-attention mechanism allows word tokens in the same sequence
to modify each other’s representations. On the other hand, the cross-
attention mechanism allows word tokens in the encoder and decoder
to influence each other’s representations.

As reported in Vaswani et al. (2017) and Lin et al. (2022), the scaled
dot-product attention mechanism, which is given by

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝐾𝑇
√

𝐷𝑘

)

𝑉 , (1)

where matrices 𝑄 ∈ R𝑁×𝐷𝑘 , 𝐾 ∈ R𝑀×𝐷𝑘 , and 𝑉 ∈ R𝑀×𝐷𝑣 , is
implemented using a function which maps three vector matrices to the
output, namely query (Q), key (K), and value (V) vector matrices. 𝑁
is the length of queries, 𝑀 is the length of keys and values, 𝐷𝑣 is the
dimension of values and 𝐷𝑘 is the dimension of queries and keys.

√

𝐷𝑘
plays the role of tackling the gradient vanishing problem.

Depending on the machine learning task to be attended, trans-
former models usually apply a multi-head attention mechanism with
m-dimensional 𝑄, 𝐾 and 𝑉 , given by

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛(𝐻𝑒𝑎𝑑1,… ,𝐻𝑒𝑎𝑑𝐻 )𝑊 0,

(2)

where, 𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾 , 𝑉 𝑊𝑖
𝑉 ). 𝑊𝑖

𝑄 ∈ R𝑚×𝐷𝑘 , 𝑊𝑖
𝐾 ∈

R𝑚×𝐷𝑘 , 𝑊𝑖
𝑉 ∈ R𝑚×𝐷𝑣 , and 𝑊 0 ∈ R𝐻𝐷𝑣×𝑚 with 𝐻 being the number

of projections. Eq. (1) is used to compute the output of each of the
projected Q, K, and V, followed by concatenation of all of the outputs
into the original m-dimensional representation.
5

4. Proposed method

Inspired by Ziemann and Metzler (2022) and Vindas et al. (2022),
this work proposes a hybrid model using CNNs and transformer mod-
ules for fingerprinting-based localization in LoRaWAN networks. CNNs
are adopted to complement the strengths of the transformer by adding
the ability to capture local features from input data and consequently
allowing the transformer, through the attention mechanism, to effec-
tively learn global dependencies from the input data. The original
transformer architecture, commonly referred to as the Vanilla trans-
former (Vaswani et al., 2017), features encoder and decoder structures
in order to process sequences from two different types of data (two
language types, to be precise) to achieve a sequence-to-sequence ma-
chine translation (Lin et al., 2022). Instead of using the complete
structure of the Vanilla transformer, this work adopts only the encoder
part since only one type of data is processed. The features of the
transformer encoder are enough to learn global dependencies from
the input sequences and output representations, which can be further
processed by a classifier or regressor for performing classification and
regression tasks, respectively. A slight modification is made to the
transformer encoder by opting to process the input data using a stack
of three one-dimensional convolutional (1D-CNN) layers instead of
positional encoding. The transformer encoder’s positional-wise feed-
forward neural network block is replaced by a stack of three 1D-CNN
layers to capture local context within the encoder module (Wu et al.,
2020). For all the 1D-CNN layers, the number of filters used is eight,
with a kernel size of one. The embedding and dense dimensions of the
transformer encoder are both set to eight. Fig. 3 illustrates the proposed
model architecture. The input data is processed first by the 1D-CNN
layers to learn local dependencies before being fed into the transformer
encoder for the purpose of learning the global dependencies from the
input data. Information learned at the local level is then concatenated
with the information learned at the global level to form the output of
the first part of the proposed method. The second part of the proposed
method comprises a stack of four fully connected (FC) layers, with
512, 256, 128 and 2 hidden units, all activated by the ReLu activation
function except for the last 2-units FC layer, which is activated by a
linear activation function for regression purposes. The output of the
first part of the localization model is then flattened and fed into the
second part for the final location estimation. To improve the learning
capabilities of the method, a small dropout ratio of 0.1 is introduced
for the 512 and 256 units FC layers. At the compilation stage of the
localization model, the Adam optimizer was used with a learning rate
initially set at 0.001 and reduced by a factor of 0.1 after ten successive
epochs of unimproved validation loss. The mean absolute error (MAE)
is adopted as the loss function to train the model. The mean location
estimation error is adopted as the metric to evaluate the performance of
the proposed method. Model checkpoints and early stopping callbacks
are also introduced to better optimize the training duration of the
localization model.

5. Experimental settings and procedures

The LoRaWAN dataset used to validate the performance of the
proposed fingerprinting-based localization method is version 1.2 of
the publicly available urban LoRaWAN dataset reported in Aernouts
et al. (2018b), which was collected in Antwerp, Belgium, in 2019.
This dataset contains a total of 130 430 messages (number of samples),
each with six unique attributes (RSSI values in dBm from 72 gateways,
spreading factor (SF), receiving time, horizontal dilution of precision
(HDOP), latitude and longitude). Initially in this work, four attributes
were extracted from each message, including the RSSI values from 72
gateways, SF values, latitudes and longitudes. The other two attributes
were not included because they require more preprocessing procedures
for them to effectively be processed by the proposed method, which
could significantly increase model complexity. During the construction
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of this database, an out-of-reach RSSI value of −200 dBm was given to a
gateway that failed to receive the transmitted message. Upon scanning
the LoRaWAN database to find out which gateways failed to receive at
least a single transmitted message, 28 gateways were found to have
never received a single transmitted message, so they were removed
from the dataset. So, together with the SF column, the remaining
dataset used in this work has 47 features. The first 45 features (gateway
columns and SF column) were used as training data, while the last two
features (latitudes and longitudes columns) were used as target labels.
Therefore, the resulting dataset has 130 430 samples (total number of
transmitted messages), each with 45 features. For this dataset to be
successfully fed into CNNs, it is re-shaped to tensors of shape (1,45,1)
corresponding to processing a single message (sample) at a time. The
ground truth references, on the other hand, consist of 130 430 samples
with two features (latitudes and longitudes).

Before feeding a machine learning model with RSSI-based training
data, a preprocessing procedure has to be performed on the training
data to ease the learning process of the model. The first step is to
search for the smallest received RSSI value from the dataset (𝑅𝑆𝑆𝐼𝑚𝑖𝑛),
followed by replacing the out-of-reach RSSI values with ‘𝜏 = 𝑅𝑆𝑆𝐼𝑚𝑖𝑛−
1’ (Anagnostopoulos and Kalousis, 2019b). The last preprocessing step
involves transforming the resulting training dataset into optimal repre-
sentations using any of the four commonly adopted data representation
techniques, namely Positive, Normalized, Powed and Exponential data
representations (Janssen et al., 2018; Anagnostopoulos and Kalousis,
2019a; Torres-Sospedra et al., 2015), given by

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖(𝑥) = 𝑅𝑆𝑆𝐼𝑖 − 𝜏, (3)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑖(𝑥) =
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖(𝑥)

−𝜏
, (4)

𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝑖(𝑥) =
𝑒
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖 (𝑥)

𝛼

𝑒
−𝜏
𝛼

, (5)

𝑜𝑤𝑒𝑑𝑖(𝑥) =
(

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖(𝑥)
−𝜏

)𝛽
, (6)

here 𝑖 and 𝑅𝑆𝑆𝐼𝑖 stand for the gateway identifier and RSSI value
t gateway 𝑖, respectively. The 𝛼 and 𝛽 in the Exponential and Powed
ata representation schemes are the parameters defined according to
ow RSSI values are distributed in a dataset. In Torres-Sospedra et al.
2015), they were originally set at 24 and 𝑒, respectively, with 𝑒 being

a mathematical constant for RSSI values collected indoors using WiFi
signals. The 𝛼 and 𝛽 parameters adopted in this work are 60 and 1.1,
espectively, re-adjusted in Anagnostopoulos and Kalousis (2019b) for
he outdoor RSSI values in the LoRaWAN network.
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This work adopted the Powed data representation scheme to trans-
form the training data to an optimal form. This data representation
scheme is adopted because of its non-linearity nature that has proved
to be effective in improving the performance of fingerprinting lo-
calization methods trained on the datasets similar to the one used
in this work (Janssen et al., 2020a; Anagnostopoulos and Kalousis,
2019b; Ferreras and Talampas, 2021). Since the training labels are
in latitudes and longitudes coordinates, the Haversine formula is used
for the computation of the equivalent distance between two points on
the earth’s surface at the location prediction stage of the model. The
Haversine formula (Monawar et al., 2017) is defined as

𝐻𝑎𝑣
( 𝑦
𝑥

)

= 𝐻𝑎𝑣(𝛾2 − 𝛾1) + 𝑐𝑜𝑠(𝛾1)𝑐𝑜𝑠(𝛾2)𝐻𝑎𝑣(𝜗2 − 𝜗1), (7)

here ‘𝐻𝑎𝑣’ represents the Haversine function, given by

𝑎𝑣(𝐶) = 𝑠𝑖𝑛2
(𝐶
2

)

=
1 − 𝑐𝑜𝑠(𝐶)

2
, (8)

𝑦 and 𝑥 stand for the distance between two coordinates and the sphere’s
radius, respectively, 𝛾1 and 𝛾2 stand for the latitudes of coordinates
1 and 2, respectively, and 𝜗1 and 𝜗2 stand for the longitudes of
coordinates 1 and 2, respectively, all in radians.

This work used Keras and Scikit-Learn Python libraries and Ten-
sorFlow backend to implement the machine learning models. Addi-
tionally, Google Colaboratory Jupyter Notebooks were used to run the
experiments on a 32 GB RAM Core i7 LG computer workstation.

Since the features in training data are in different scales, Sklearn’s
StandardScaler is used to re-scale them to values with zero mean
and unit standard deviation. The labels are re-scaled to the range
of [0,1] using Sklearn’s MinMaxScaler. Rescaling the training data is
recommended to prevent biases towards the features with large values
during model training (Chollet, 2018).

6. Experimental results and discussion

The following experiments were carried out to evaluate the per-
formance of the proposed fingerprinting-based localization method.
Before carrying out the experiments, the dataset was shuffled with a
random seed of 42 and then split into training, validation and test sets
containing 70, 15, and 15 percent of the training samples, respectively.
The dataset was randomly shuffled to make the proposed localization
model robust by preventing it from learning the order in which the
individual samples appear in the training dataset, which may lead
to performance biases. Each experiment is run for 120 epochs using

512-sized mini-batches of training samples.
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Table 2
Performance of the proposed method with multiple attention heads.

Number of attention heads Mean localization errors (m)

Training set Validation set Test set

1 257.43 287.89 290.71
2 260.63 288.66 292.66
3 261.69 290.21 292.93
4 258.24 289.27 292.21

Table 3
Performance of the proposed method with multiple transformer encoders.

Number of Transformer
encoders

Mean localization errors (m)

Training set Validation set Test set

1 257.43 287.89 290.71
2 262.85 289.04 291.66
3 256.97 288.53 292.99
4 257.45 288.10 292.13

6.1. Performance of the proposed method with multiple attention heads/
transformer encoders

In this section, experiments were carried out to determine the
optimal structure of the transformer encoder, which yields the best
localization performance when trained on the LoRaWAN dataset (in-
troduced in Section 5). Two structural changes were made to the
transformer encoder, namely the number of attention heads and the
number of stacked encoders in the localization model. The number of
attention heads was varied between one and four heads. In each in-
stance, the localization model was trained using the LoRaWAN dataset,
yielding localization results as shown in Table 2. The proposed method
achieved performance of 290.71 m, 292.66 m, 292.93 m, and 292.21 m
mean localization errors, respectively, on the test set. Based on the
results, increasing the number of attention heads does not result in a
significant performance improvement in the localization accuracy.

To determine the impact of stacking more than one encoder on the
proposed localization method, the number of encoders (each with a
single attention head) was set to one, two, three, and four, and conse-
quently trained on the LoRaWAN dataset yielding localization results
as indicated in Table 3. The mean localization errors of 290.71 m,
291.66 m, 292.99 m, and 292.13 m achieved on the test set indicate
that stacking more than one encoder will not improve localization per-
formance and only lead to additional computational complexity. The
observed slight variations in localization performance of the proposed
method when the number of attention heads and encoders was varied
are due to the structural changes made to the model configuration,
which introduced different representations of features for the model
to learn and deduce distance estimation from them at the inference
stage. With regard to the CNN structure, multiple experiments were run
to determine the optimal number of layers, whereby a CNN structure
with three layers was enough to give satisfactory localization accuracy.
Therefore, unless otherwise stated, a hybrid structure made of a three-
layered CNN structure, a single transformer encoder with one attention
head and a regressor with four fully connected layers is adopted for the
rest of the experiments.

6.2. Performance of the proposed method on different subsets of training,
validation and test data

In order to explore how the proposed method performs when
trained on a reduced sample size, smaller subsets of the data were first
extracted from the dataset and split into training, validation, and test
sets. This also leads to unique subsets of data in each scenario, which
reduces the impact of spurious artefacts in the dataset on the resulting
performance. The proposed method was then trained on the new
7

Table 4
Performance of the proposed method on different
subsets of training, validation and test data.

Used fraction of
dataset (%)

Mean localization
error (m)

20 633.59
40 345.14
60 304.12
80 294.14
100 290.71

sample sizes, yielding localization results in terms of mean localization
errors (m) as indicated in Table 4. Fig. 4 shows the full and enlarged
cumulative distribution function (CDF) curves of localization errors
for all the sample sizes. As observed from these results, the proposed
method achieved the lowest localization accuracy of 633.59 m mean
localization error when 20 percent of the original dataset was used.
The low accuracy in this instance stems from the limited number of
training samples, which hindered the model from capturing sufficient
patterns in the training data. This limitation prevented the efficient
learning of meaningful representations of features in individual samples
and introduced dependencies with other samples in the training set.
The localization performance improved to 345.14 m and then to
304.12 m mean localization errors when the sample size was increased
to 40 percent and 60 percent of the original dataset, respectively. This
improvement in the localization accuracy is attributed to exposing the
model to more training samples, which increased the generalization
ability of the proposed method. The localization accuracy improved
further to 294.14 m and 290.71 m mean localization errors when 80
percent and 100 percent of the original dataset were used, respectively,
which further supports the findings that larger dataset sizes boost the
performance of deep learning-based localization models in the context
of LoRaWAN networks. The variations in the localization accuracies
observed in each of the data split strategies adopted stems from vari-
ations in the size of training data, which either limits the model from
learning all useful features when the size of the data is relatively small
leading to low localization accuracies or enables the model to capture
more sufficient patterns when the size of the training data increases
which eventually improves the localization performance. Despite using
different sets of training, validation, and test data to train, validate
and test the accuracy of the proposed method, satisfactory localization
results were obtained even with a 40 percent reduction in the sample
size, further proving its effectiveness and robustness in localizing a
node in LoRaWAN networks.

6.3. Performance of the proposed method on fixed test set

In this section, unlike in Section 6.2, a fixed 15 percent of the
original LoRaWAN dataset was extracted and set aside to test the
performance of the proposed localization method. Using a fixed test set
ensures consistency in the evaluation process across the different vari-
ations of training/validation sets allowing for a fair and reliable per-
formance comparison. For the remaining 85 percent of the LoRaWAN
dataset, fractions of 40, 60, 80, and 100 percent were extracted, and
each was split into a training set containing 80 percent of the remaining
samples and a validation set containing 20 percent of the remaining
samples. The proposed method was then trained on the new training
and validation sets and tested on the fixed test set, yielding localization
results in mean localization errors (m), as indicated in Table 5. Fig. 5
shows the full and enlarged cumulative distribution function curves
of localization errors for all the extracted fractions of the LoRaWAN
dataset. The lowest localization accuracy of 310.31 m mean localization
error observed when 40 percent of the remaining dataset was used is
a result of exposing the proposed method to a relatively small training
sample size, which limited the ability of the method to capture more

useful information from the training data to increase its generalization
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Fig. 4. CDFs of localization errors (m) for different sample sizes.
Fig. 5. CDFs of localization errors (m) for different sample sizes with fixed test set.
ability on the unseen data. The localization accuracy improved to
304.08 m and then to 294.07 m mean localization errors when 60
and 80 percent of the remaining dataset was used, respectively, due
to the increase in training samples. When the whole remaining dataset
was used, the performance of the proposed method improved slightly
to 294.04 m mean localization error. This slight improvement in the
localization performance is due to the fact that the model has learned
nearly all of the useful information from the training dataset to infer
the node’s location from the fixed test set. Similar to what was observed
in the previous section, the observed variations in the localization
accuracies in this section are mainly due to variations in the size of the
training data, which either limit or improve the learning capabilities of
the proposed localization model. These results show that the proposed
method can yield satisfactory localization performance when using at
least 60 percent of the remaining LoRaWAN dataset, further indicating
the importance of training deep learning models using relatively large
datasets for improved performances. Overall, these results have proved
the effectiveness, robustness and hence the potential of the proposed
method to localize a node in LoRaWAN networks.

6.4. Performance comparison of the proposed method with methods pro-
posed in the literature trained using the same dataset

In this section, the localization performance of the proposed method
is compared with the localization performances of the fingerprinting
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Table 5
Performance of the proposed method on fixed test set
using different subsets of training and validation sets
of the remained dataset.

Used fraction of
remained dataset
(%)

Mean localization
error (m)

40 310.31
60 304.08
80 294.07
100 294.04

localization methods reported in Janssen et al. (2020a), Pandangan and
Talampas (2020), Ferreras and Talampas (2021), and Li et al. (2022a),
which adopted the same LoRaWAN dataset. In Janssen et al. (2020a),
the authors proposed several fingerprinting-based localization methods;
among them, RF achieved the best results of 340 m mean localiza-
tion error and 0.91 𝑅2 score. In Pandangan and Talampas (2020), a
kNN-RF ensemble method is proposed for fingerprinting localization,
achieving localization accuracy of 332.63 m mean localization error.
The authors in Ferreras and Talampas (2021) proposed a fingerprinting
localization method based on MLP, achieving localization accuracy of
57 m and 310 m median and mean localization errors, respectively.
In Li et al. (2022a), on the other hand, a fingerprinting localization
method based on K-means and Weighted Kernel Regression is proposed,
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Table 6
A Summary of the key experimental settings and parameters associated with the related works whose performances are compared with the
proposed method.

Research
work

Python libraries
used

Experimental
environment

Localization
parameters

Ground truth
references

Performance metrics

Janssen
et al.
(2020a)

Only Scikit-Learn
is mentioned

Virtual machine
with 32 GB RAM
memory and 10
CPU cores

RSSI Latitudes and
Longitudes

Mean localization
error, 𝑅2 score and
execution time

Pandan-
gan and
Talampas
(2020)

Only Scikit-Learn
is mentioned

Not mentioned RSSI and TDoA Latitudes and
Longitudes

Mean localization
error

Ferreras
and
Talampas
(2021)

Only Scikit-Learn
is mentioned

Not mentioned Differential RSSI
and TDoA

Latitudes and
Longitudes

Median and Mean
localization errors

Li et al.
(2022a)

Not mentioned Not mentioned RSSI Latitudes and
Longitudes

Median and Mean
localization errors
achieving localization accuracy of 158.48 m and 346 m median and
mean localization errors, respectively. In all these works, the same data
split ratio of 0.7/0.15/0.15 for training, validation, and test sets was
adopted. Additionally, in all these works, GPS coordinates in latitudes
and longitudes were used as ground truth references.

For a fair comparison, in addition to using the same dataset, the
experimental environments and procedures should be the same for all
the compared methods. Fulfilling this condition is challenging due to
various reasons, including the general unavailability of source code,
missing key information about experimental settings and procedures,
and variations in the choice of metadata used for training in related
works. The comparison conducted in this section is limited to the final
localization performance reported in the related works, which is justi-
fiable given that the ground truth references (latitudes and longitudes)
were used in all of the proposed methods. Table 6 summarizes the
key experimental settings and parameters associated with the compared
related works.

The localization results of the proposed method, which were com-
pared with the localization results reported in the related works, were
obtained by training the proposed method for 120 iterations using
the full LoRaWAN dataset split into training, validation, and test sets
according to a 0.7/0.15/0.15 ratio. With this setup, the proposed
method resulted in 536,171 trainable parameters, taking 374.76 s to
train, yielding mean and median localization errors of 290.71 m and
147.34 m, respectively. Fig. 6 shows the spatial distribution of the
data points of the true latitude and longitude coordinate pairs of the
test set and the estimated latitude and longitude coordinate pairs.
Table 7 presents the performance comparison between the proposed
method and the related works in terms of mean and median localization
errors. The variations in the localization results reported between
the proposed method and the related works are mainly due to the
structural differences in the way the localization models were built
and trained, the machine learning technique adopted as well as pre-
processing techniques adopted, which brings different model learning
capabilities which determine the final localization accuracies.

As indicated in Table 7, the proposed method outperforms all the
related works in terms of mean localization error. The 147.34 m median
localization error obtained using the proposed method is better than
158.48 m reported in Li et al. (2022a); however, it is inferior to 57 m
reported in Ferreras and Talampas (2021). This difference in median
errors obtained by the proposed method and the method proposed
in Ferreras and Talampas (2021) could be due to variations in the
number of outliers present in the localization errors computed by both
methods. However, the closeness of the mean and median localization
errors obtained by the proposed method shows that the degree of
skewness in the distribution of localization errors in the proposed
method is small in comparison to Ferreras and Talampas (2021).

Based on this performance comparison, the proposed method has
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achieved a 6.22% increase in localization accuracy in terms of mean
localization error compared to the currently available best-performing
method in the literature evaluated using the same LoRaWAN dataset.
Additionally, the proposed method’s computational efficiency is under-
scored by a relatively small number of trainable parameters, 536,171,
and a training duration of 374.76 s. Thereby affirming its suitability for
deployment in real world localization applications.

7. Conclusion

This work proposed a hybrid CNN-transformer model to localize
a node in LoRaWAN networks. Upon analysing the optimal structure
of the proposed fingerprinting-based localization model, increasing the
number of transformer encoders and attention heads did not signifi-
cantly improve the localization accuracy of the proposed method for
the adopted training dataset due to having a relatively small num-
ber of features. The performance of the proposed method was also
analysed by subjecting it to different sample sizes of the training
dataset with fixed and different test sets. The results showed much
improvement in the localization accuracy as the dataset size increased.
The proposed method with a single transformer encoder having one
attention head and trained on the fully LoRaWAN dataset, achieved
a performance of 290.71 m mean localization error on the test set,
which is a 6.22% increase compared to the currently available state-
of-the-art fingerprinting-based localization method in the literature.
The performance of the proposed method proves its effectiveness in
localizing a node in LoRaWAN networks with acceptable levels of
localization accuracy. In the future, this study can be extended in
several ways. Firstly, an analysis could be conducted to assess how
the overall performance of the proposed fingerprinting localization
method is influenced by including alternative localization parameters
derived from the same publicly available LoRaWAN dataset, such as
the fusion of differential RSSI-TDoA fingerprints. Secondly, given the
data-driven nature of the proposed method, one could explore the use
of interpolation techniques enhanced with autoencoders. This could
effectively expand the size of the training dataset, thereby enhancing
the localization performance of the proposed method. Lastly, concern-
ing the practical implementation of the proposed method in real-world
IoT use cases, there is an opportunity to capitalize on the evolving
capabilities of modern computing technologies like cloud, fog, and
edge computing as reported in Gill et al. (2024). Leveraging these
technologies for processing location-related data can help meet the
quality-of-service requirements in real-time applications.
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Fig. 6. Spatial distribution of the data points of the true latitude and longitude coordinate pairs of the test set and the estimated latitude and longitude coordinate pairs.
Table 7
Performance comparison of the proposed method with methods proposed in the literature trained on the
same LoRaWAN dataset.

Research work Scheme Mean localization
errors (m)

Median localization
error (m)

Janssen et al. (2020a) RF 340 Not reported
Pandangan and
Talampas (2020)

kNN-RF 332.63 Not reported

Ferreras and Talampas
(2021)

MLP 310 57

Li et al. (2022a) K-means and Weighted
Kernel Regression

346 158.48

Proposed Method CNN + Transformer 290.71 147.34
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