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A B S T R A C T   

This study investigates the impact of a metric of extreme weather shocks on 32 state-level inflation rates of the 
United States (US) over the quarterly period of 1989:01 to 2017:04. In this regard, we first utilize a dynamic 
factor model with stochastic volatility (DFM-SV) to filter out the national factor from the local components of 
overall, non-tradable and tradable inflation rates, to ensure that the effect of regional climate risks is not 
underestimated, given the derived sizeable common component. Second, using impulse responses derived from 
linear and nonlinear local projections models, we find statistically significant increases in the state (and national) 
factor of overall inflation rates, with the aggregate effect being driven by the tradable sector relative to the non- 
tradable one, particularly across the agricultural states in comparison to the non (less)-agricultural ones. Our 
findings have important policy implications.   

1. Introduction 

Theoretically speaking, extreme weather conditions, resulting from 
global warming and climate change, can impact inflation of a country 
through changes in both aggregate demand and aggregate supply con
ditions (Kabundi et al., 2022; Cevik and Jalles, 2023). On one hand, 
negative supply shocks, which operate through lower agricultural pro
duction and increases in food prices, dampened economic activity and 
reduced labor productivity, and destruction of transportation infra
structure and increase in associated distribution costs, are likely to cause 
an inflationary impact. On the other hand, adverse demand shocks, 
which tend to raise the risk aversion of economic agents and reduce 
consumption and investment even after fiscal support and reconstruc
tion, are expected to translate into a reduction in inflation. Under
standably, the final effect on inflation is contingent on the strength of 
these two shocks and firmly remains an empirical issue. 

Against this backdrop, the objective of our paper is to analyze the 
effect of extreme weather shocks on a panel of (32) state-level aggregate, 
non-tradable, and tradable inflation rates of the United States (US) over 

the quarterly period of 1989:01 to 2017:04. To achieve our objective 
econometrically, we undertake a two-step approach. In the first stage, 
realizing the possibility of the importance of a common (national) factor 
in explaining a large proportion of the total variability in state-level 
inflation rates, we first estimate a time series-based Dynamic Factor 
Model with Stochastic Volatility (DFM-SV), as in Bhatt et al. (2017), one 
each separately for the state-level aggregate, non-tradable, and tradable 
inflation rates. The DFM-SV allows us to separate out the influence of the 
national factor before determining the effect of extreme local weather 
shocks on the local or state factors, which, in turn, prevents us from 
underestimating the predictive effect of regional climate risks on 
state-level inflation rates. In the second step, we utilize the linear local 
projections (LP) method of Jordà (2005), in the context of a panel 
data-setting, to obtain Impulse Response Functions (IRFs) for the local 
factors of the aggregate, non-tradable and tradable inflation rates 
following climate risk shocks, after controlling for standard drivers of 
inflation rates (i.e., unemployment rate, monetary policy and oil price). 
As an additional analysis, we also utilize the nonlinear LP approach of 
Ahmed and Cassou (2016) to derive regime-specific IRFs associated with 
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weather shocks on the local factors of the aggregate inflation rate, with 
the states now categorized as agricultural and non-agricultural. The 
decision to use the LPs method, instead of a Vector Autoregressive (VAR) 
model, is motivated by the fact that the former is simple, provides 
appropriate inference, and is robust to misspecification as it does not 
require the specification and estimation of the unknown data generating 
process as required while generating IRFs from a VAR, aptly handles 
persistence in data series because of lag augmentation, and easily ac
commodates nonlinear specifications (Jordà, 2005). 

At this stage, it is important to highlight two pertinent issues: First, 
the choice of the US as our case study was an obvious one due to the free 
availability of reliable and detailed disaggregated state-level inflation 
rates constructed recently by the work of Hazell et al. (2022). Second, 
we need to look at regional inflation rates rather than an aggregate one 
at the country level, which is in fact derived from a weighted average of 
prices from urban areas, emanates from the recent line of work by 
Colacito et al. (2019), Sheng et al. (2022a, 2022b), and Cepni et al. 
(2023a). These authors stress the need to look at state-level data to 
derive reliable inferences while studying the impact of climate-related 
risks on economic activity and uncertainty profile of the US, especially 
in light of the dissimilarity in terms of the underlying time series 
properties of the regional metrics of risks involving climate change, as 
highlighted by Gil-Alana et al. (2022). 

To the best of our knowledge, this is the first paper to provide an in- 
depth state-level analysis of the impact of regional weather shocks on 
local factors of aggregate, non-tradable and tradable inflation rates, 
derived from DFM-SV, using linear and nonlinear panel LP methods. 
Since we are also able to extract corresponding national factors for the 
three inflation rates under study, we also implement a time series-based 
LP approach to study the impact of the extreme weather shocks of the 
overall US economy on the common factors of aggregate, non-tradable 
and tradable inflation rates. As we separate out the influence of the 
national and local factors in the state-level inflation rates, we, in the 
process, are able to provide an accurate picture of the impact of climate 
risks on price-level dynamics, and possibly resolve the mixed results 
obtained in this context for the aggregate inflation rate of the US.1 For 
instance, while Cashin et al. (2017) and Sheng et al. (forthcoming) note 
an increase in inflation following climate shocks, Natoli (2023) suggests 
a decline, with Laosuthi and Selover (2007) earlier, and Kim et al. 
(2022), even reporting no impact in terms of statistical significance, 
especially when one considers core inflation (i.e., excluding energy and 
food prices).2 

Damages due to the physical risks of climate change have become 
more apparent in terms of magnitude, more severe, and more frequent in 
the US and globally (Stott, 2016), and such trends are expected to 
continue (Fifth National Climate Assessment (NCA5)3). Understandably, 
our analysis involving the effects of extreme weather shock on inflation, 
has monetary policy implications for the Federal Reserve to achieve its 
objective of maintaining low inflation rates, especially if we do detect a 
positive impact of climate-related risks on the national factor of 
inflation. 

The remainder of the paper is organized as follows: Section 2 dis
cusses the data, while Section 3 presents the basics of the DFM-SV, and 
linear and nonlinear LPs methods. These approaches are then used to 
obtain national and local factors of the state-level inflation rates, as well 

as the standard and regime-specific IRFs for the relevant inflation- 
related variables following climate risk shocks in the empirical results 
segment contained in Section 4. Finally, Section 5 concludes the paper. 

2. Data 

Data for inflation are derived from the new state-level consumer 
price indexes for the US constructed by Hazell et al. (2022), which are 
categorized into overall, non-tradable, and tradable inflation rates.4 

Based on data availability to construct a balanced panel, required for the 
implementation of the DFM-SV, over the quarterly period of 1989:01 to 
2017:04, we consider 32 states (the names of which have been explicitly 
mentioned in Table 1 discussed in the next segment). 

For capturing climate risks,5 we rely on a recently developed mete
orological time series, i.e., the (seasonally-adjusted) Actuaries Climate 
Index (ACI) for severe weather.6 The ACI, as developed by actuary as
sociations of Canada and the US, is an aggregate indicator of the fre
quency of severe weather (high and low temperatures, heavy rainfall, 
drought (consecutive dry days), and high wind, with all based on grid
ded data at the resolution of 2.5 by 2.5◦ latitude and longitude), and the 
extent of sea level rise (using tidal gauge station data). ACI data is not 
available at the state level, but for seven regions of the US: Alaska, 
Central East Atlantic, Central West Pacific, Midwest, Southeast Atlantic, 
Southern Plains, and Southwest Pacific. We categorize the 32 states as 
per the relevant region,7 and hence, the ACI for that region is repeated 
for those specific states while deriving our linear and nonlinear IRFs. 

In line with Sheng et al. (2023), outlining the role of oil shocks in the 
specification of a state-level Phillips-curve, the additional controls used 
are state-level unemployment rates, available from the Local Area Un
employment (LAU) Databases on the website of the US Bureau of Labor 
Statistics,8 as well as log-returns of the West Texas Intermediate (WTI) 
oil price, and the Federal Funds Effective Rate, with the latter two 
variables obtained from the FRED database of the Federal Reserve Bank 
of St. Louis. 

3. Methodologies 

Our DFM-SV framework follows Del Negro and Otrok (2008) and 
Bhatt et al. (2017) and decomposes overall, non-tradable and tradable 
inflation rates for each state into a common national factor and an 
idiosyncratic (local) factor as follows: 

We construct the following DFM-SV to extract the national factor for 
the inflation rates. 

πi,t = λift + ei,t (1)  

where πi,t is the overall, non-tradable, and tradable inflation rate for the 
i-th state at time period t; ft is the national inflation factor at time period 
t, which captures the co-movement of different states; λi is the 

1 The reader is referred to Faccia et al. (2021), Kabundi et al. (2022), and 
Cevik and Jalles (2023) for reviews of the international literature on the effect 
of climate risks on inflation rates based on cross-country data, which in turn, 
also tend to highlight the importance of country-specific characteristics in 
explaining the range of possible effects.  

2 Kim et al. (2022) also highlighted the likelihood of overall inflation going 
up or down depending on whether one considers higher or lower 
regime-specific extreme weather shocks.  

3 See: https://nca2023.globalchange.gov/. 

4 The data is available for download from the research-segment of the website 
of Professor Emi Nakamura at: https://eml.berkeley.edu/~enakamura/papers. 
html.  

5 The risks associated with climate change can be typically categorised into 
two groups. The first group comprises physical risks arising due to, for example, 
rising temperatures, higher sea levels, more destructive storms, and floods or 
wildfires. The second group comprises the so-called transition risks. Transition 
risks result from the gradual switchover to a low-carbon economy and include 
risks due to climate-policy changes, the emergence of competitive green tech
nologies, and shifts in consumer preferences. Understandably, we consider only 
the physical component of climate change in this paper.  

6 The data is downloadable from: https://actuariesclimateindex.org/data/.  
7 The reader is referred to: https://actuariesclimateindex.org/data/ 

region-definitions/ for getting a map-based understanding of the 
categorization.  

8 See: https://www.bls.gov/lau/data.htm. 
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corresponding factor loading, and ei,t is the idiosyncratic state factor. We 
assume that both the national inflation factor and the idiosyncratic 
factors follow AR(2) process with stochastic volatilities as follows: 

ft = α1ft− 1 + α2ft− 2 +

̅̅̅̅̅̅̅̅̅̅̅

exphft
√

εt, εt ∼ i.i.d.N
(
0,Qf

)
(2)  

ei,t = βi1ei,t− 1 + βi2ei,t− 2 +

̅̅̅̅̅̅̅̅̅̅̅

exphit
√

ηit, ηit ∼ i.i.d.N(0,Qi) (3) 

To deal with the stochastic volatilities, we assume random walk 
processes given by: 

hft = hft− 1 + σfhvft , vft ∼ i.i.d.N(0, 1) (4)  

hit = hit− 1 + σi
hv

i
t, v

i
t ∼ i.i.d.N(0, 1) (5) 

Following Del Negro and Otrok (2008), we assume the initial value of 
the stochastic volatilities to be equal to 0. 

Once we have the national and state-level factors for the three 
inflation rates under consideration for each state, we first utilize the LPs 
method of Jordà (2005). The linear panel data-based model for 
computing the IRFs of the local factors of the overall, non-tradable, and 
tradable inflation rates for a unit shock to ACI is specified as follows: 

πi,t+s = αi,s + βi,sACIt +
∑j=1

j=0
γi,sZt− j + ϵi, t+s, for s = 0, 1, 2, …H (6)  

where s is the forecast horizons,9 αi,s measures the fixed effect for the 
panel dataset, and βs captures the responses of the state-level factor at 
time t + s to a shock to ACI at time t. The IRFs are calculated as a series of 
βs which are estimated separately at each horizon (s).10 ∑j=1

j=0γi,sZt− j 

control for the contemporaneous and lagged effects of the three control 
variables, i.e., the state-level unemployment rate, the oil price returns, 
and the monetary policy interest rate. 

For the regime-specific IRFs, based on whether a state is agricultural 
or non (less)-agricultural, we rely on the approach of Ahmed and Cassou 
(2016). In this case, we utilize the threshold model to investigate the 
nonlinear effects of a unit ACI shock on the state-level factors of the 
overall, non-tradable, and tradable inflation rates of agricultural and 
non-agricultural US states. The formal specification is given as follows:  

where DM is a threshold dummy variable that indicates whether US state 
i is heavily dependent on agriculture, with the variable taking a value of 
1 if US state i is an agricultural state and 0 otherwise (non (less)-a
gricultural), whereby, more specifically, we assign the dummy value of 1 
to the top 16 agricultural states in our sample, as per the information 
provided by the US Department of Agriculture (USDA) on the state 
ranking of cash receipts from all agricultural commodities for the year 
2022.11 

4. Empirical findings 

We start off by reporting in Table 1 the variances in percentages of 
the state-level inflation rates as explained by the national factor 
extracted from the DFM-SV for the non-tradable, tradable and overall 
inflation rates. On average, the common factor explains 76.60 % of the 
state-level tradable inflation rates, while this number drops down to 

37.63 % for the non-tradable sector inflation rate, with the corre
sponding number for the overall inflation rate being 59.91 %. In sum, 
the role of the national factor, especially for the variabilities of the 
tradable sector and general inflation rates is indeed sizeable, and surely 
not negligible for the non-tradable inflation rate either. These findings 
provide us with the motivation to decompose the inflation rates into 
common and idiosyncratic (local) factors to obtain an accurate inference 
of the effects of the ACI shock, which we turn to next. 

In Fig. 1, we provide the panel data-based IRF from the linear model 
for the state-level local factors of the overall inflation rate due to a one- 
unit shock to the ACI. Over the horizon of 20 quarters considered, the 
effect is in general positive and significant, barring the interval of 
quarters 11 to 16, with the strongest effect of slightly over one unit 
(1.08) at around the 5th-quarter-ahead horizon following the extreme 
weather shock. In other words, we find evidence of a virtually one-to- 
one maximum increase in the local factors of the overall inflation 

Table 1 
Variance of state-level inflation rates explained by the common factor.  

States Non-Tradable Tradable Overall 

Alabama 35.98 % 73.07 % 65.46 % 
Alaska 3.64 % 61.42 % 33.00 % 
Arkansas 20.73 % 59.41 % 48.72 % 
California 49.39 % 76.46 % 61.93 % 
Colorado 33.84 % 74.19 % 60.76 % 
Connecticut 38.56 % 61.77 % 61.97 % 
Florida 68.09 % 87.68 % 81.57 % 
Georgia 44.48 % 79.47 % 66.47 % 
Illinois 31.76 % 92.46 % 62.04 % 
Indiana 39.98 % 77.28 % 66.26 % 
Kansas 59.30 % 74.28 % 75.41 % 
Louisiana 12.78 % 69.31 % 36.14 % 
Maryland 37.38 % 81.62 % 69.94 % 
Massachusetts 75.35 % 89.38 % 82.41 % 
Michigan 15.61 % 80.50 % 44.48 % 
Minnesota 36.90 % 61.31 % 56.91 % 
Mississippi 22.20 % 55.24 % 40.97 % 
Missouri 43.13 % 83.77 % 59.01 % 
New Jersey 23.60 % 80.05 % 48.09 % 
New York 66.03 % 92.44 % 81.63 % 
North Carolina 40.86 % 70.38 % 57.83 % 
Ohio 57.13 % 93.21 % 81.87 % 
Oklahoma 12.91 % 72.91 % 36.70 % 
Oregon 31.74 % 69.48 % 53.20 % 
Pennsylvania 66.29 % 92.98 % 79.98 % 
South Carolina 47.67 % 73.37 % 63.82 % 
Tennessee 21.83 % 74.52 % 45.68 % 
Texas 66.34 % 92.97 % 83.22 % 
Utah 3.06 % 61.78 % 19.28 % 
Virginia 25.37 % 82.61 % 64.86 % 
Washington 40.58 % 77.30 % 61.14 % 
Wisconsin 31.75 % 78.62 % 66.41 % 
Average 37.63 % 76.60 % 59.91 %  

πi,t+s = (1 − DM)

[

αNon (less)− Agricultural
i,s + βNon (less)− Agricultural

i,s ACIt +
∑j=1

j=0
γNon (less)− Agricultural
j,s Zt− j

]

+ DM

[

αAgricultural
i,s + βAgriculturali,s ACIt +

∑j=1

j=0
γAgriculturalj,s Zt− j

]

+ ϵi, t+s, for s

= 0, 1, 2, …H (7)   

9 The maximum length of the forecast horizons, H, is set to 20 quarters in this 
study.  
10 The technically minded reader is referred to Jordà (2005) for detailed 

discussions about the LPs method.  
11 See: https://data.ers.usda.gov/reports.aspx?ID=17844. 
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rates in the wake of a climate risks shock, suggesting the dominance of 
the supply-side channel.12 

When we repeat the above analysis in Fig. 2 for non-tradable and 

tradable inflation rates-based local factors, we observe a similar pattern 
in the respective IRFs as for the case of the overall inflation rate, but 
unsurprisingly, the positive effect is relatively dominant, both in terms 
of magnitude (maximum impact being 1.79 units versus 0.69 unit) and 
time-length of significance, for the tradable sector than the non-tradable 
one, keeping in mind that the former includes food commodities. Un
derstandably then, the nonlinear IRFs reported in Fig. 3, align with 
observations made in Fig. 2, in terms of the stronger strength of the 
initial effects (1.08 units versus 0.38 units) and the time length of sig
nificance of the agricultural states compared to the non (less)-agricul
tural ones, though the maximum impacts (1.36 units against 1.18) are 
only slightly higher in magnitude. Interestingly, the non (less)- 

Fig. 1. Linear IRF of the local-factors of overall inflation rate to a one unit ACI shock. 
Note: The grey area represents a one standard deviation error band. 

Fig. 2. Linear IRF of the local-factors of non-tradable and tradable inflation rates to a one unit ACI shock. 
Note: The grey area represents a one standard deviation error band. 

12 Based on the suggestion of any anonymous referee, we present in Fig A1, 
the IRF using a panel LPs model of monthly year-on-year inflation based on 
regional (North East, North Central, South and West) CPI data available at: 
https://download.bls.gov/pub/time.series/cu/, following a shock to the cor
responding regional ACIs. As can be seen, as in Fig 1, the effect is positive, and 
stays significant till the 11th month following the shock, thus confirming the 
dominance of aggregate supply over aggregate demand when shaping the effect 
of climate risks on inflation. 
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agricultural states tend to have a positive and significant long-term ef
fect, unlike the agricultural states. In addition, as expected, the positive 
effects of extreme weather shocks within the categories of non-tradables 
and tradables across agricultural and non (less)-agricultural states tend 
to paint a similar picture to the case of the aggregate inflation rate, when 
we look at the nonlinear IRFs in Fig. 4. In other words, the maximum 
effects across the regimes are quite similar in magnitudes, i.e., 1.94 units 
versus 1.85 units for tradables and 0.87 units against 0.75 units for non- 
tradables. But, at the same time, looking at it from the perspective of 
within the nature of the states and across the sectors, the maximum 
effects more than double, for the tradable compared to the non-tradable 
inflation rates factors. In other words, the results from the linear IRFs 
involving overall, non-tradable and tradable state-level inflation factors, 
are robust to the distinction of the states into agricultural or not in a 

nonlinear set-up. 
Finally, in Fig. 5, we present the IRFs of the national factors of 

overall, non-tradable and tradable inflation rates following a one unit 
aggregate US ACI shock, derived from the modification of the panel- 
based LPs model in Eq. (6) to suit the set-up for our time series data in 
these cases.13 The initial positive impacts are the highest for the com
mon inflation factor of tradable inflation, followed by that of the overall 
inflation, and then comes the non-tradable sector, with maximum effects 
to the order of over 6.00 units (i.e., 6.11), over 4.30 units (i.e., 4.39), and 
nearly 3.50 units (specifically, 3.47), respectively. Interestingly, 

Fig. 3. Nonlinear IRFs of the local-factors of overall inflation rate to a one unit ACI shock in agricultural and non-agricultural US states. 
Note: The grey area represents a one standard deviation error band. 

Fig. 4. Nonlinear IRFs of the local-factors of non-tradable and tradable inflation rates agricultural and non-agricultural US states. 
Note: The grey area represents a one standard deviation error band. 

13 Essentially, the formal representation in the context of a time series is 
exactly the same, barring the suffix i in equation (6). 
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negative and significant effects are also observed around the medium- 
term (12 to 16-quarter-ahead) horizons, especially for the overall and 
tradable sector national inflation factors, suggesting a dominant adverse 
aggregate demand-side effect, before returning to the positive influence 
in the long run, driven by a relatively stronger negative aggregate 
supply-side influence. 

While it is not possible to draw a one-to-one correspondence of our 
findings with the existing literature involving aggregate US inflation 
rates, given the regional and disaggregated approach we undertake, we 
can confirm with certainty that extreme weather shocks are indeed in
flationary for the US economy in line with the observations of Cashin 
et al. (2017), Sheng et al. (forthcoming), and to some extent with that of 
Kim et al. (2022). 

5. Concluding remarks 

This paper examines the role of regional extreme weather shocks in 
driving overall, non-tradable, and tradable inflation rates for a panel of 
32 US states over the quarterly period of 1989:01to 2017:04. To prevent 
an underestimation of the predictive impact in line with the importance 
of a national factor in driving local inflation, we utilize a DFM-SV model 
to decompose the three inflation rates into their respective common 
factors and idiosyncratic state-factors, with the former and latter groups 
used to evaluate the national and local effects of climate risks. Our re
sults, based on impulse responses from linear panel and time series- 
based frameworks, reveal statistically significant increases in the state 
and national factors of overall inflation rates, with the aggregate effect 
driven by the tradable sector relative to the non-tradable one. In addi
tion, when a nonlinear model was used to capture regime-specific im
pacts, with the states categorized as agricultural and non (less)- 
agricultural, the comparatively important role of the tradable inflation 
rates over the non-tradable sector continued to hold, with corresponding 
effects for both these sectors being relatively dominant for the agricul
tural states. 

The main implication of our findings is that the Federal Reserve, in 
its effort to maintain low inflation rates, would require to increase the 
Federal Funds Effective Rate following extreme weather shocks. But 
since the effect inflationary is stronger in agricultural than non (less)- 
agricultural regions, the role of state-specific contractionary fiscal policy 

cannot be ignored either. But, the trade-offs for such policy decisions are 
likely to amplify the recessionary effects of climate change (Cepni et al., 
2023b; Gupta et al., 2023), and hence would require a general effort by 
the government to undertake environment-friendly policies that are 
aimed directly at reducing the risks associated with global warming. 
Academically, our results imply the need to distinguish and publish data 
on non-tradable and tradable inflation rates (Johnson, 2017) regularly, 
when studying the impact of climate risks on overall inflation rates of 
the US, given the dominant role of the latter over the former. This, in 
turn, would also assist from the policy perspective. 

Our current work can be extended in at least two directions. In this 
paper, we only consider the physical risk component of climate change, 
and completely ignore the transition risk aspect. Note that the transition 
to a net zero carbon emission world may imply sharp increases in the 
price of carbon, in turn affecting consumer prices directly through 
higher electricity, gas and petrol prices, and indirectly through 
increased costs of production for firms across a broad range of sectors 
(Faccia et al., 2021). Hence, a similar analysis to the current one 
involving transition risk is indeed a question we need to delve into in the 
future, especially in terms of its importance in causing inflation relative 
to physical risk. While structural analysis of the impact of climate risk on 
inflation is important, the Federal Reserve would ideally require 
real-time forecasts of inflation rates for the appropriate design of mon
etary policy. In this regard, the role of physical and transition risks in 
forecasting regional and aggregate inflation, along the lines of Yeganegi 
et al. (2023), over and above the traditional predictors, particularly 

Fig. 5. Linear IRFs of the national factors of overall, nontradable and tradable inflation rates to a one unit ACI shock. 
Note: The grey area represents a one standard deviation error band. 
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based on time-varying models,14 forms an interesting area of future 
research. 

Data availability 

Data will be made available on request.  

Appendix

Fig. A1. Linear IRF of monthly regional (North East, North Central, South and West) inflation rates to a one unit ACI shock.  

Fig. A2. Time-varying response of the aggregate US inflation rate to ACI.  

14 This claim, as depicted in Fig A2 in the Appendix, is motivated by the horizon-specific (s = 1, 4, 8, 12, and 20) time-varying responses of the aggregate US CPI 
inflation to (changes) in the ACI, required to ensure stationarity, over the quarterly period of 1961:02 to 2023:01, as obtained from the fast and flexible Bayesian 
Time-Varying Parameter (TVP) regression model of Hauzenberger et al. (2022). Note that, the results are produced from the Time-Varying-Parameter-Random 
Walk-Forward-Filtering Backward-Sampling-Factors (TVP-RW-FFBS-FAC), as it (based on 50 predictors: 49 associated with a generalized Phillips curve plus 
first-difference of US-level ACI) could be estimated with the shortest computational time of 1.37 minutes, compared to 6.27, 5.94, and 10.04 under the alternative 
models of Time-Varying-Parameter-White Noise-Singular Value Decomposition (TVP-WN-SVD), Time-Varying-Parameter-Random Walk-Singular Value Decompo
sition (TVP-RW-SVD), Time-Varying-Parameter-Random Walk-Forward-Filtering Backward-Sampling (TVP-RW-FFBS), respectively. Further details are available 
upon request from the authors. 

W. Liao et al.                                                                                                                                                                                                                                    



Economics Letters 238 (2024) 111714

8

References 

Ahmed, M.I., Cassou, S.P., 2016. Does consumer confidence affect durable goods 
spending during bad and good economic times equally? J. Macroeconomics 50 (C), 
86–97. 

Bhatt, V., Kishor, N.K., Ma, J, 2017. The impact of EMU on bond yield convergence: 
evidence from a time-varying dynamic factor model. J. Econ. Dyn. Control 82 (C), 
206–222. 

Cashin, P., Mohaddes, K., Raissi, M., 2017. Fair weather or foul? The macroeconomic 
effects of El Niño. J. Int. Econ. 106 (C), 37–54. 

Cepni, O., Christou, C., Gupta, R., 2023b. Forecasting national recessions of the United 
States with state-level climate risks: evidence from model averaging in Markov- 
switching models. Econ. Lett. 227, 111121. 

Cepni, C., Gupta, R., Liao, W., Ma, J., 2023a. Climate risks and forecastability of the 
weekly state-level economic conditions of the United States. Int. Rev. Finance. 
https://doi.org/10.1111/irfi.12431. 

Cevik, S., Jalles, J.T., 2023. Working Paper No. WP/23/87. International Monetary Fund 
(IMF). 

Colacito, R., Hoffmann, B., Phan, T., 2019. Temperature and growth: a panel analysis of 
the United States. J. Money Credit Bank. 51 (2–3), 313–368. 

Del Negro, M., Otrok, C., 2008. Federal Reserve Bank of New York, Staff Reports No. 326. 
Faccia, D., Parker, M., Stracca, L., 2021. Working Paper Series No. 2626. European 

Central Bank (ECB). 
Gil-Alana, L.A., Gupta, R., Sauci, L., Carmona-González, N., 2022. Temperature and 
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