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A B S T R A C T

Vaccine boosters have been recommended to mitigate the spread of the coronavirus disease 2019 (COVID-19)
pandemic. A mathematical model with three vaccine doses and susceptibility is formulated. The model is
calibrated using the cumulative number of hospitalized cases from Alberta, Canada. Estimated values from
the fitting are used to explore the potential impact of the booster doses to mitigate the spread of COVID-19.
Sensitivity analysis on initial disease transmission shows that the most sensitive parameters are the contact rate,
the vaccine efficacy, the proportion of exposed individuals moving into the symptomatic and asymptomatic
classes, and the recovery rate from asymptomatic infection. Simulation results support the positive population-
level impact of the second and third COVID-19 vaccine boosters to reduce the number of infections and
hospitalizations. Public health policy and decision-makers should continue advocating and encouraging people
to get booster doses. As the end of the pandemic is in sight, there should be no complacency before it resolves.
. Introduction

Coronavirus disease 2019 (known as COVID-19) is an infectious
isease caused by the severe acute respiratory syndrome coronavirus
(SARS-CoV-2) virus, first reported in the Hubei Province of China

n December 2019. From this epicenter, COVID-19 spread all over the
orld. According to the World Health Organization (WHO), so far,

here have been more than 771 million confirmed cases and close to
million deaths, with over 1.1 million deaths reported in the United

tates of America alone [1]. COVID-19 is transmitted by direct con-
act or by contact with infected surfaces. Several non-pharmaceutical
easures have been implemented to curb the spread of the disease
rior to the development of effective COVID-19 vaccines. These include
ocial/physical distancing (staying at least 1 m apart from others),
roperly wearing a face mask, especially when in poorly ventilated
ettings, regular hand-washing with soap and water or use of alcohol-
ased hand sanitizer, covering the mouth and nose when coughing or
neezing, and isolation when unwell until recovery. Other stringent
easures to suppress the spread of the virus were schools, shops, bor-
ers and workplace closure, and restriction of social gatherings [2,3].
hese stringent measures have had negative economic repercussions for
ountries and people worldwide [4]. COVID-19 vaccination, however,
as substantially altered the course of the pandemic [5].
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E-mail address: sytchoumi83@gmail.com (S.Y. Tchoumi).
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Development of highly effective vaccines eventually proved impor-
tant to curtail the spread of COVID-19 [6,7]. Within a short time period
of one year, several pharmaceutical companies successfully developed
various prototype vaccines against COVID-19. As of November 2022,
the COVID-19 vaccine tracker showed that among 238 vaccine candi-
dates, 49 have been approved for use in 201 countries, and 11 were
granted emergency use by the WHO [8]. The majority of approved vac-
cines were messenger ribonucleic acid (mRNA) vaccines, which require
two doses. The first dose introduces the targeted antigen into the body,
while the second reinforces its action and prolongs the duration of the
immune response, boosting the components of the immune system that
provide broad antiviral protection [4,9].

By the end of August 2021, a booster with an mRNA vaccine
against COVID-19 (3rd dose) was recommended for people over 65,
those at high risk of severe diseases, and health care professionals,
at least 6 months after the second dose. On September 17, 2021, the
United States Food and Drug Administration’s Advisory Committee
on Vaccines and Related Biologicals issued a similar opinion on a
marketing authorization extension application for the Pfizer-BioNTech
vaccine (sold under the brand name Comirnaty) [10]. Administration of
a third dose at least 6 months after the complete primary series strongly
increases the neutralizing capacity of the serum, including against some
of the most recent variants [10].
https://doi.org/10.1016/j.dajour.2023.100374
Received 20 July 2023; Received in revised form 10 November 2023; Accepted 28
Available online 2 December 2023
2772-6622/© 2023 The Author(s). Published by Elsevier Inc. This is an open acces
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
November 2023

s article under the CC BY-NC-ND license

https://doi.org/10.1016/j.dajour.2023.100374
https://www.elsevier.com/locate/dajour
https://www.elsevier.com/locate/dajour
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dajour.2023.100374&domain=pdf
mailto:sytchoumi83@gmail.com
https://doi.org/10.1016/j.dajour.2023.100374
http://creativecommons.org/licenses/by-nc-nd/4.0/


S.Y. Tchoumi, E.J. Schwartz and J.M. Tchuenche Decision Analytics Journal 10 (2024) 100374

i
v

p

Since the introduction of COVID-19 vaccination, several mathemat-
cal modeling studies have investigated the impact of a single dose
accine on the dynamics of COVID-19 [4,11–17]. Anip et al., [18]

proposed a COVID-19 model with a double-dose vaccination strategy
to control the outbreak in Bangladesh. They noted that a full dose
vaccination program significantly reduces the mild and critical cases
and has the potential to eradicate the virus from the community.
However, they assumed that the effectiveness of the vaccine is 100%,
that is to say a vaccinated person cannot become infected, which
given what we know about the epidemiology of COVID-19, is not very
realistic. Also, they neither included waning of the vaccine after the
second dose, nor the waning natural immunity. A model predictive
control approach to optimally devise a two-dose vaccination roll out
was investigated in [19]. Dosing interval strategies and optimizing
COVID-19 vaccination programs during vaccine shortages have been re-
spectively studied in [4,20]. While the common strategies typically rely
on the prioritization of the different classes of individuals, Scarabaggio
et al., [21] proposed a model predictive approach to optimally control
multi-dose vaccine administration when the available number of doses
is not sufficient for the entire population. Focusing on the minimiza-
tion of the expected number of deaths, their approach discriminates
between the number of first and second doses, thus considering also the
possibility that some individuals may receive only one vaccine dose if
the resulting expected fatalities are low. Reyes et al., [22] highlighted
the importance of attaining full (two-dose) vaccination status, that
is, completing vaccination schedules to reduce the adverse outcomes
during the pandemic. Wang et al. [23] investigated a deterministic
model with two vaccine doses (partially vaccinated with 1 dose and
individuals who received their second dose), but no booster.

We formulate a model taking into account three doses of vaccina-
tion, as well as differential susceptibility, and investigate the impact
of the booster dose of vaccination on mitigating the spread of COVID-
19. Thus, our proposed model aims to address the impact of three
doses (two doses plus one booster) of the vaccine on the transmission
dynamics of the disease, where each subsequent dose makes a person
incrementally less likely to move from the uninfected class to the
exposed class. Each subsequent dose also affects vaccine waning and
the waning of natural immunity (that is, movement from the recovered
class back to the susceptible class), and in addition, the model incor-
porates infections from asymptomatic individuals. We also investigate
the additional benefits, in terms of preventing hospitalizations, deaths,
and symptomatic infections, with each subsequent booster dose of the
COVID-19 vaccine.

This paper is organized as follows. The proposed mathematical
model is formulated in Section 2. Standard analyses of the model such
as well-posedness, positivity and boundedness of solutions, derivation
of the basic reproduction number, stability of the model equilibria, and
the existence of possible positive solutions are carried out in Section 3.
Numerical simulations are provided in Section 4, where the model
is fitted using data from Alberta, Canada. The paper ends with a
discussion of the implications of model results in Section 5.

2. Model formulation

Based on the epidemiological status of individuals and the clin-
ical progression of COVID-19, the total population 𝑁(𝑡) is stratified
into twelve compartments according to individuals’ COVID-19 status:
susceptible individuals (𝑆), individuals vaccinated with one dose of
vaccine (𝑉1), individuals vaccinated with two doses of vaccine (𝑉2),
individuals vaccinated with three doses of vaccine (𝑉3), exposed indi-
viduals (𝐸1) and (𝐸2), asymptomatic (𝐼𝑎1 ) and (𝐼𝑎2 ), symptomatic (𝐼𝑠1 )
and (𝐼𝑠2 ), hospitalized (𝐻), and recovered individuals (𝑅). For all 𝑡 ≥ 0,

𝑁(𝑡) = 𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝑉3(𝑡) + 𝐸1(𝑡) + 𝐸2(𝑡) + 𝐼𝑎1 (𝑡) + 𝐼𝑠1 (𝑡)

+ 𝐼𝑎2 (𝑡) + 𝐼𝑠2 (𝑡) +𝐻(𝑡) + 𝑅(𝑡).
2

Fig. 1. Flow diagram of the model where for simplicity, 𝑝̄ = 1−𝑝, 𝑞 = 1−𝑞, 𝜇̄𝑠
1 = 𝜇+𝜇𝑠

1,
𝜇̄𝑠
2 = 𝜇 + 𝜇𝑠

2 and 𝜇̄ℎ = 𝜇 + 𝜇ℎ.

The population is recruited at a constant rate 𝛬, and dies naturally
at rate 𝜇. In addition to this natural death, symptomatic infectious
𝐼𝑠1 , 𝐼𝑠2 and hospitalized 𝐻 die due to the disease at the respective
COVID-19-induced death rates 𝜇𝑠

1, 𝜇
𝑠
2, and 𝜇ℎ.

Susceptible individuals are vaccinated with the first vaccine dose
at the rate 𝑣1. Following a second dose, they move into the class of
vaccinated with two doses 𝑉2 at the rate 𝑣2, and at the rate 𝑣3 they
become vaccinated with the third dose 𝑉3. Due to vaccine waning, the
individuals of classes 𝑉1, 𝑉2 and 𝑉3 lose their immunity at the respective
rates 𝑢1, 𝑢2 and 𝑢3 to become susceptible.

Because the vaccine is imperfect, vaccinated individuals may still
be differentially susceptible to the infection [24–28], which may lead
to the emergence of variants [29]. Such leaky vaccine also provide im-
perfect but widespread protection to the masses [30–32], but infection-
blocking efficacy is always beneficial in reducing disease spread within
the community [33]. Thus, a susceptible individual or vaccinated in-
dividuals with one, two or three doses who comes in contact with an
infected individual can become infected, with a force of infection

𝜆𝑖 = 𝛽(1 − 𝜀𝑖)
𝐼𝑠1 + 𝐼𝑠2 +𝐻 + 𝜉1𝐼𝑎1 + 𝜉2𝐼𝑎2

𝑁
, 𝑖 = 0,… , 3.

After the latency period, exposed individuals with zero or one dose
of vaccine in 𝐸1 become infectious at the rate 𝜎1, with the probability
𝑝 of being asymptomatic 𝐼𝑎1 , and 1 − 𝑝 of being symptomatic 𝐼𝑠1 , while
those in 𝐸2 become infectious at the rate 𝜎2, with probability 𝑞 of being
asymptomatic 𝐼𝑎2 , and 1 − 𝑞 of being symptomatic 𝐼𝑠2 . Symptomatic
infectious individuals 𝐼𝑠1 and 𝐼𝑠2 become hospitalized at the respective
rates 𝜔1 and 𝜔2.

All infectious individuals in 𝐼𝑎1 , 𝐼𝑎2 , 𝐼𝑠1 , 𝐼𝑠2 and 𝐻 recover at the
respective rates 𝜃𝑎1 , 𝜃𝑎2 , 𝜃𝑠1, 𝜃

𝑠
2 and 𝜃ℎ and move to the recovered class

𝑅. The loss of natural immunity occurs at the rate 𝛾, and recovered
individuals move back to the susceptible class 𝑆.

The description of all the states variables and model parameters are
summarized respectively in Tables 1 and 2. We note that 𝜀0 = 0 and
assume that for 𝑖 = 1, ..., 3, 0, the model parameters satisfy the following
0 ≤ 𝜀𝑖 < 1, 0 < 𝑝, 𝑞 < 1, 𝜉1 > 𝜉2, 𝜀1 < 𝜀2 < 𝜀3, 𝑣1 > 𝑣2 > 𝑣3, 𝜎1 > 𝜎2,
𝜔1 > 𝜔2, 𝜇 < 𝜇𝑠

2 < 𝜇𝑠
1 < 𝜇ℎ, and 𝜃𝑎2 > 𝜃𝑎1 > 𝜃𝑠2 > 𝜃𝑠1 > 𝜃ℎ.

From the model flowchart of COVID-19 transmission dynamics de-
icted in Fig. 1, we derive the following non-linear system of ordinary
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Table 1
State variables and their descriptions.
Variables Description

𝑆 Susceptible individuals
𝑉1 Individuals vaccinated with one dose of vaccine
𝑉2 Individuals vaccinated with two doses of vaccine
𝑉3 Individuals vaccinated with three doses of vaccine
𝐸1 Exposed individuals after zero or one dose of vaccine
𝐸2 Exposed individuals after two or three doses of vaccine
𝐼𝑎
1 Asymptomatic infected individuals with zero or one dose of vaccine
𝐼𝑎
2 Asymptomatic infected individuals with two or three doses of vaccine
𝐼𝑠
1 Symptomatic infected individuals with zero or one dose of vaccine
𝐼𝑠
2 Symptomatic infected individuals with two or three doses of vaccine
𝐻 Hospitalized individuals
𝑅 Recovered individuals
Table 2
Model parameters.

Parameters Description Value Reference

𝛬 Recruitment rate 1000
𝑣𝑖 Rate of 𝑖th vaccination Fitted
𝑢𝑖 Vaccine waning after the 𝑖th dose Fitted
𝛽 Transmission rate Fitted
𝜎1 Progression rate from 𝐸1 to 𝐼𝑎

1 with probability 𝑝 and to 𝐼𝑠
1 with probability 1 − 𝑝 0.12

𝜎2 Progression rate from 𝐸2 to 𝐼𝑎
2 with probability 𝑞 and to 𝐼𝑠

2 with probability 1 − 𝑞 0.12
𝜃𝑎1 Recovery rate of 𝐼𝑎

1
1
19

Assumed
𝜃𝑠1 Recovery rate of 𝐼𝑠

1
1
20

Assumed
𝜃𝑎2 Recovery rate of 𝐼𝑎

2
1
18

Assumed
𝜃𝑠2 Recovery rate of 𝐼𝑠

2
1
21

[18]
𝜃ℎ Recovery rate of 𝐻 Fitted
𝛾 Waning immunity rate 0.11
𝜔1 Hospitalization rate of 𝐼𝑠

1 0.87 [18]
𝜔2 Hospitalization rate of 𝐼𝑠

2 0.57 Assumed
𝜀𝑖 Vaccine efficacy after the 𝑖𝑡ℎ vaccination Fitted
𝜉1 Fraction of infectiousness due to asymptomatic infection in unvaccinated or single-vaccinated individuals 0.05
𝜉2 Fraction of infectiousness due to asymptomatic infection in double or triple-vaccinated individuals 0.01
𝜇 Natural death rate 1

70 × 365
[34]

𝜇ℎ Death rate due to symptomatic infection in hospitalized individuals 0.009
𝜇𝑠
1 Death rate due to symptomatic infection in unvaccinated or single-vaccinated individuals 0.009

𝜇𝑠
2 Death rate due to symptomatic infection in double or triple-vaccinated individuals 0.009
𝛺

i
l
𝑡

3

𝑔

differential equations:

𝑆̇ = 𝛬 + 𝛾𝑅 + 𝑢1𝑉1 + 𝑢2𝑉2 + 𝑢3𝑉3 − (𝜆0 + 𝑣1 + 𝜇)𝑆,

𝑉̇1 = 𝑣1𝑆 − (𝜆1 + 𝑢1 + 𝑣2 + 𝜇)𝑉1,

𝑉̇2 = 𝑣2𝑉1 − (𝜆2 + 𝑢2 + 𝑣3 + 𝜇)𝑉2,

𝑉̇3 = 𝑣3𝑉2 − (𝜆3 + 𝑢3 + 𝜇)𝑉3,

𝐸̇1 = 𝜆0𝑆 + 𝜆1𝑉1 − (𝜎1 + 𝜇)𝐸1,

𝐸̇2 = 𝜆2𝑉2 + 𝜆3𝑉3 − (𝜎2 + 𝜇)𝐸2,

𝐼̇𝑎1 = 𝑝𝜎1𝐸1 − (𝜃𝑎1 + 𝜇)𝐼𝑎1 ,

𝐼̇𝑠1 = (1 − 𝑝)𝜎1𝐸1 − (𝜃𝑠1 + 𝜔1 + 𝜇 + 𝜇𝑠
1)𝐼

𝑠
1 ,

𝐼̇𝑎2 = 𝑞𝜎2𝐸2 − (𝜃𝑎2 + 𝜇)𝐼𝑎2 ,

𝐼̇𝑠2 = (1 − 𝑞)𝜎2𝐸2 − (𝜃𝑠2 + 𝜔2 + 𝜇 + 𝜇𝑠
2)𝐼

𝑠
2 ,

𝐻̇ = 𝜔1𝐼
𝑠
1 + 𝜔2𝐼

𝑠
2 − (𝜃ℎ + 𝜇 + 𝜇ℎ)𝐻,

𝑅̇ = 𝜃𝑎1𝐼
𝑎
1 + 𝜃𝑠1𝐼

𝑠
1 + 𝜃𝑎2𝐼

𝑎
2 + 𝜃𝑠2𝐼

𝑠
2 + 𝜃ℎ𝐻 − (𝛾 + 𝜇)𝑅,

(1)

with initial conditions

𝑆(0) > 0, 𝑉1(0) ≥ 0, 𝑉2(0) ≥ 0, 𝑉3(0) ≥ 0,

𝐸1(0) ≥ 0, 𝐸2(0) ≥ 0, 𝐼𝑎1 (0) ≥ 0, 𝐼𝑠1 (0) ≥ 0,

𝐼𝑎2 (0) ≥ 0, 𝐼𝑠2 (0) ≥ 0, 𝐻(0) ≥ 0, 𝑅(0) ≥ 0.

(2)

The force of infection if given by

𝜆 = 𝛽
(

1 − 𝜀
)
𝐼𝑠1 + 𝐼𝑠2 +𝐻 + 𝜉1𝐼𝑎1 + 𝜉2𝐼𝑎2 , with 𝑖 = 0,… , 3.
𝑖 𝑖 𝑁 𝐺

3

The parameters, their description, values and sources are provided
in Table 2.

3. Model analysis

Since the model system (1) with initial conditions (2) monitors
human populations, all associated state variables and parameters are
non-negative for all time 𝑡 ≥ 0. By adding all the equations in the model
system (1), and solving the resulting differential inequality (by applying
Gronwall’s Lemma) yields 𝑁(𝑡) ≤ 𝛬

𝜇
, ∀𝑡 > 0. The region

=
{

(

𝑆, 𝑉1, 𝑉2, 𝑉3, 𝐸1, 𝐸2, 𝐼
𝑎
1 , 𝐼

𝑠
1 , 𝐼

𝑎
2 , 𝐼

𝑠
2 ,𝐻,𝑅

)

∈ R12
+ ∶ 𝑁 ≤ 𝛬

𝜇

}

s positively-invariant and attracting as it can be shown that all so-
utions of the model system (1) starting in 𝛺 remain in 𝛺 for all
≥ 0.

.1. Disease-free equilibrium and basic reproduction number

Let

1 = 𝜎1 + 𝜇, 𝑔2 = 𝜎2 + 𝜇, 𝑔3 = 𝜃𝑎1 + 𝜇, 𝑔4 = 𝜃𝑠1 + 𝜔1 + 𝜇 + 𝜇𝑠
1,

𝑔5 = 𝜃𝑎2 + 𝜇, 𝑔6 = 𝜃𝑠2 + 𝜔2 + 𝜇 + 𝜇𝑠
2, 𝑔7 = 𝜃ℎ + 𝜇 + 𝜇ℎ,

= 𝑣 + 𝜇, 𝐺 = 𝑢 + 𝑣 + 𝜇, 𝐺 = 𝑢 + 𝑣 + 𝜇, 𝐺 = 𝑢 + 𝜇.
1 1 2 1 2 3 2 3 4 3
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The model system (1) has a disease-free equilibrium (DFE) given by

E0 = (𝑋0
𝑆 , 𝑋

0
𝐼 ) = (𝑋0

𝑆 , 0) =
(

𝑆0, 𝑉 0
1 , 𝑉

0
2 , 𝑉

0
3 , 0, 0, 0, 0, 0, 0, 0, 0

)

,

where

𝑆0 =
𝛬𝐺2𝐺3𝐺4

(

𝑣1𝑣2𝑣3 +
((

𝜇 + 𝑢1 + 𝑣1 + 𝑣2
) (

𝜇 + 𝑢2 + 𝑣3
)

+ 𝑣1𝑣2
) (

𝜇 + 𝑢3
))

𝜇
,

𝑉 0
1 =

𝑣1
𝐺2

𝑆0,

𝑉 0
2 =

𝑣1𝑣2
𝐺2𝐺3

𝑆0,

𝑉 0
3 =

𝑣1𝑣2𝑣3
𝐺2𝐺3𝐺4

𝑆0.

(3)

Using the next-generation method [35,36], the effective reproduc-
ion number R𝑐 (𝑣1, 𝑣2, 𝑣3) and the basic reproduction number R0 are
iven respectively by

𝑐 (𝑣1, 𝑣2, 𝑣3) = R1 + R2, (4)

here

1 =
𝜇𝑔2𝑔5𝑔6𝜎1

(

𝛽𝑆0 + 𝛽1𝑉 0
1
) [

𝑔4𝑔7𝑝𝜉1 + 𝑔3(1 − 𝑝)(𝑔7 + 𝜔1)
]

𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7𝛬
,

2 =
𝜇𝑔1𝑔3𝑔4𝜎2

(

𝛽2𝑉 0
2 + 𝛽3𝑉 0

3
) [

𝑔6𝑔7𝑞𝜉2 + 𝑔5(1 − 𝑞)(𝑔7 + 𝜔2)
]

𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7𝛬
,

and

R0 = R𝑐 (0, 0, 0) =
𝜎1𝛽

[

𝑔4𝑔7𝑝𝜉1 + 𝑔3(1 − 𝑝)(𝑔7 + 𝜔1)
]

𝑔1𝑔3𝑔4𝑔7
. (5)

Proof. The proof is provided in Appendix A. ■

Remark 1. The effective reproduction number R𝑐 (𝑣1, 𝑣2, 𝑣3) is defined
as the average number of secondary infections generated by a single
infectious individual during the entire duration of infectiousness in a
totally susceptible population when vaccination is implemented. [25].

3.2. Global stability of the DFE

To prove the global asymptotic stability (GAS) of the DFE, we use
the approach in [37]. We first re-write the COVID-19 model (1) as
follows:
⎧

⎪

⎨

⎪

⎩

𝑑𝑋
𝑑𝑡

= 𝐹
(

𝑋, 𝐼
)

,

𝑑𝐼
𝑑𝑡

= G
(

𝑋, 𝐼
)

, G
(

𝑋, 0
)

= 0,
(6)

in which 𝑋 =
(

𝑆, 𝑉1, 𝑉2, 𝑉3, 𝑅
)

∈ R5 and 𝐼 =
(

𝐸1, 𝐸2, 𝐼𝑎1 , 𝐼
𝑠
1 , 𝐼

𝑎
2 , 𝐼

𝑠
2 ,𝐻

)

∈
R7. We note here that 𝑋 and 𝐼 represents the classes of the uninfectious
and infectious individuals respectively. For our model to be GAS at E0,
it needs to satisfy the following conditions as adopted from [37], which
are

(C1) Local stability is guaranteed at E0 whenever R𝑐 (𝑣1, 𝑣2, 𝑣3) < 1.
(C1) At 𝑑𝑋

𝑑𝑡
= 𝐹 (𝑋0, 0), the DFE is globally asymptotically stable.

(C3) G(𝑋, 𝐼) = A𝐼 − Ĝ(𝑋, 𝐼), Ĝ(𝑋, 𝐼) ≥ 0 for (𝑋, 𝐼) ∈ 𝛺, where A =
D𝐼G(E0) is a Metzler matrix and 𝛺 is the biologically feasible
region defined earlier.

Theorem 2. If the disease-induced death rates are zero, that is (𝜇1
𝑠 = 𝜇2

𝑠 =
𝜇ℎ = 0) and 𝑁(0) ∈ 𝛺, then, the disease-free equilibrium E0 is globally
asymptotically stable (GAS) when R𝑐 (𝑣1, 𝑣2, 𝑣3) < 1.

Proof. A detailed proof is provided in Appendix B. ■
4

3.3. Endemic equilibrium

For mathematical tractability and convenience, assume that there
is no waning immunity, that is, 𝑢2 = 𝑢3 = 0, and 𝛾 = 0. The endemic
equilibrium E1 = (𝑆⋆, 𝑉 ⋆

1 , 𝑉 ⋆
2 , 𝑉 ⋆

3 , 𝐸⋆
1 , 𝐸

⋆
2 , 𝐼

𝑎⋆
1 , 𝐼𝑠⋆1 , 𝐼𝑎⋆2 , 𝐼𝑠⋆2 ,𝐻⋆, 𝑅⋆) is

given by the solution of the following system:

𝛬 + 𝑢1𝑉 ⋆
1 − (𝜆0 + 𝐺1)𝑆⋆ = 0,

𝑣1𝑆⋆ − (𝜆1 + 𝐺2)𝑉 ⋆
1 = 0,

𝑣2𝑉 ⋆
1 − (𝜆2 + 𝐺3)𝑉 ⋆

2 = 0,

𝑣3𝑉 ⋆
2 − (𝜆3 + 𝐺4)𝑉 ⋆

3 = 0,

𝜆0𝑆⋆ + 𝜆1𝑉 ⋆
1 − 𝑔1𝐸⋆

1 = 0,

𝜆2𝑉 ⋆
2 + 𝜆3𝑉 ⋆

3 − 𝑔2𝐸⋆
2 = 0,

𝑝𝜎1𝐸⋆
1 − 𝑔3𝐼𝑎⋆1 = 0,

(1 − 𝑝)𝜎1𝐸⋆
1 − 𝑔4𝐼𝑠⋆1 = 0,

𝑞𝜎2𝐸⋆
2 − 𝑔5𝐼𝑎⋆2 = 0,

(1 − 𝑞)𝜎2𝐸⋆
2 − 𝑔6𝐼𝑠⋆2 = 0,

𝜔1𝐼𝑠⋆1 + 𝜔2𝐼𝑠⋆2 − 𝑔7𝐻⋆ = 0,

𝜃𝑎1𝐼
𝑎⋆
1 + 𝜃𝑠1𝐼

𝑠⋆
1 + 𝜃ℎ1𝐻

⋆ + 𝜃𝑎2𝐼
𝑎⋆
2 + 𝜃𝑠2𝐼

𝑠⋆
2 − 𝐺5𝑅⋆ = 0.

(7)

The number of positive solutions of the system (7) depends on the value
of R𝑐 . The following result summarizes the different possible cases.

Theorem 3. The model (1) admits

• 0, 2 or 4 endemic equilibria if R𝑐 < 1,
• 0, 1, 2 or 3 endemic equilibria if R𝑐 = 1,
• 1 or 3 endemic equilibria if R𝑐 > 1.

Proof. See Appendix C for the proof. ■

4. Numerical simulations

Numerical simulations of the model system (1) are carried out,
using the parameter values given in Table 2. Since the model takes
into account a lot of the actual variability reported among individuals
affected with COVID-19, it offers an opportunity to evaluate these
differences. First, using data on the cumulative number of COVID-
19 hospitalized individuals from Alberta, Canada [38], we fitted the
model to estimate COVID-19 parameter values for vaccine efficacy,
vaccination rate, vaccine waning, the recovery rate from hospitalized
infected individuals, and the transmission rate. Next, we used our
parameterized model to numerically investigate the effect of different
probabilities of developing asymptomatic or symptomatic infection on
the following outcomes: hospitalization; the numbers of symptomatic
infections among those with zero or one vaccine dose, or those with
two or three vaccine doses; and the numbers of asymptomatic infec-
tions among those with zero or one vaccine dose, or those with two
or three vaccine doses. We also simulated the impact of a booster
dose (i.e., the third dose) of COVID-19 vaccination on reducing hos-
pitalizations, symptomatic infections, and asymptomatic infections in
Alberta, and evaluated the effect of waning of the booster dose on
symptomatic and asymptomatic infections. Finally, we conducted a
sensitivity analysis using Latin Hypercube Sampling and Partial Rank
Correlation Coefficients on initial disease transmission.

4.1. Parameter estimation

The model was fitted to data on the cumulative hospitalized cases
in Alberta, Canada [38], for a period of 100 days starting March 6,
2020. The fitting was performed in Python using the minimize function.
The fitted parameters are 𝛽 = 0.7983, 𝜃ℎ = 0.001, 𝑣1 = 0.6163, 𝑣2 =
0.5327, 𝑣 = 0.1988, 𝑢 = 0.8896, 𝑢 = 0.5620, 𝑢 = 3.2485 × 10−8, 𝜀 =
3 1 2 3 1
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Fig. 2. Fitting of the cumulative number of hospitalized COVID-19 cases in Alberta.

Fig. 3. Evolution of numbers of hospitalized in Alberta.

.2816, 𝜀2 = 0.0294, 𝜀3 = 0.89. With these estimated parameters, the
ata for Alberta fits the model very well, as shown in Fig. 2.

.2. Effects of the probabilities 𝑝 of progression from 𝐸1 to 𝐼𝑎1 , and 𝑞 of
oving from 𝐸2 to 𝐼𝑎2

We next investigated the effect on epidemic dynamics of the proba-
ility of asymptomatic or symptomatic infection, by simulating model
rajectories over 500 days. Variation in the probability of an infection
eing symptomatic or asymptomatic played an interesting role in our
odel dynamics. In terms of hospitalizations, the model predicted that

he greatest number of hospitalized cases occurred when the probability
f asymptomatic infection was smallest (𝑝, 𝑞 low), and hospitalization
as lowest when the probability of asymptomatic infection was highest
𝑝, 𝑞 high), as seen in Fig. 3. In fact, when 𝑝 = 𝑞 = 0.8, hospitalization
as near zero in Alberta. Hospitalizations were minimal (in terms of
agnitude of the peak) when 𝑝 = 𝑞 = 0.5 (i.e., an equal chance

f an infected individual becoming symptomatic or asymptomatic).
quivalent trends were seen in symptomatic infections (either among
hose with zero or one vaccination, or among those with two or three
accinations), as seen in Figs. 4 and 5, except that the numbers declined
ore rapidly after peak infection as compared to hospitalizations.

imilar trends were found with asymptomatic cases (again, either
mong those with zero or one vaccination, or among those with two or
hree vaccinations) as shown in Figs. 6 and 7, in that infections were
reater with small probabilities (𝑝, 𝑞 low), except that the number of
symptomatic infections when 𝑝 = 0.8 or 𝑞 = 0.8 was not negligible,
5

Fig. 4. Evolution of numbers of symptomatic 𝐼𝑠
1 in Alberta.

Fig. 5. Evolution of numbers of symptomatic 𝐼𝑠
2 in Alberta.

Fig. 6. Evolution of numbers of asymptomatic 𝐼𝑎
1 in Alberta.

and asymptomatic cases were predicted to be intermediate when 𝑝 =
𝑞 = 0.5.

4.3. Effects of booster vaccination rate

Model simulations showed that a hundredfold increase in the booster
dose vaccination rate gave a substantial reduction in the hospitalization
rate (Fig. 8). Interestingly, a tenfold increase in boosters only minimally
reduced the peak in hospitalized infections. Similar results were found
with the number of symptomatic infections, as well as asymptomatic
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Fig. 7. Evolution of numbers of asymptomatic 𝐼𝑎
2 in Alberta.

Fig. 8. Evolution of numbers of hospitalized in Alberta.

Fig. 9. Evolution of numbers of symptomatic in Alberta.

infections. Specifically, a tenfold increase in the rate of booster vac-
cinations decreased the symptomatic infections only marginally, but
a hundredfold increase in boosters greatly reduced symptomatic in-
fections (Fig. 9). Likewise, increasing the rate of vaccination with the
booster one hundredfold substantially reduced asymptomatic infections
(Fig. 10), while modest reductions were seen in symptomatic infections
with a tenfold reduction in booster vaccination.

4.4. Effects of waning of booster

When the waning of the booster vaccination is varied, shortening
the waning rate (i.e., lengthening the duration of the booster vaccine’s
6

Fig. 10. Evolution of numbers of asymptomatic in Alberta.

Fig. 11. Evolution of numbers of symptomatic in Alberta.

Fig. 12. Evolution of numbers of asymptomatic in Alberta.

effectiveness) resulted in a lower number of symptomatic infections
(Fig. 11), as well as asymptomatic infections (Fig. 12). Our simulations
also showed that a booster vaccine that wanes more slowly delays the
peak of infection (Figs. 11 and 12).

4.5. Sensitivity analysis and PRCCs on initial disease transmission

Mathematical models, being symbolic representations of real life
systems, by construction they inherit the loss of information which
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Fig. 13. PRCCs showing the effect of varying the model input parameters on R𝑐 .

could make the prediction of model outcomes imprecise [39]. Sensi-
tivity analyses could help determine key model parameters that have
the highest effect on the disease to guide policy and health deci-
sion makers on which parameter to prioritize and consequently which
intervention(s) to implement [40] . Using Partial Rank Correlation
Coefficients and Latin Hypercube Sampling, sensitivity analysis is car-
ried out to determine the relative importance of model parameters to
initial disease transmission. Fig. 13 depicts the sensitivity indices of the
effective reproduction number R𝑐 . Parameters with a sensitivity index
greater than 0.5 in absolute value are the most sensitive, and modifying
them can influence the value of the effective reproduction number
R𝑐 , and thereby the behavior of the disease transmission dynamics.
The most sensitive parameters are the transmission/contact rate 𝛽 and
the recovery rates from asymptomatic infections 𝜃𝑎1 and 𝜃𝑎2 . Negative
indices mean that the increase in the relevant parameters leads to
the decrease in the disease reproductive number. Thus, intervention
measures should target increasing the parameters with negative indices
and decreasing those with positive indices.

5. Conclusion

The COVID-19 pandemic has been a global public health challenge
as the disease caused substantial morbidity and mortality worldwide
from its emergence in 2020. We formulated and analyzed a determin-
istic model of COVID-19 taking into account three doses of vaccination
to investigate the potential impact of the highly recommended COVID-
19 booster vaccine dose to mitigating the spread of the disease. The
model is then calibrated using the cumulative number of hospitalized
cases from Alberta, Canada.

Results showed that mathematical modeling of booster vaccination
and differential infectivity uncovered insights that were not previously
obvious. For our data set, hospitalizations and symptomatic infections
could be nearly brought to zero if 80% of infections are without
symptoms (i.e., 𝑝 = 𝑞 = 0.8). Alternatively, if the chance of asymp-
tomatic infection is low, then both asymptomatic and symptomatic
infections are high. An increase in the rate of booster vaccination
(e.g., by a hundredfold) reduces hospitalizations, symptomatic cases,
and asymptomatic cases; however, a marginal increase (e.g., tenfold)
in the booster vaccination rate does not necessarily show a noticeable
difference. Interestingly, the model simulations showed that variation
in vaccine waning rates affect not only the magnitude of the infection
peak but also the timing of the peak. In boosters with longer lasting
duration (i.e., boosters with lower waning rates), the peak of infection
is reduced as well as delayed.
7

The sensitivity analysis identified the key parameters behind ini-
tial disease transmission. These include the contact/transmission rate
(which is positively correlated), recovery from asymptomatic infection
among those with two or three vaccine doses (which is negatively cor-
related), and recovery from asymptomatic infection among those with
zero or one vaccine dose (which is negatively correlated). A more minor
role is played by the fraction of infectiousness due to asymptomatic
infection in those with two or three vaccine doses (which is positively
correlated). The impacts can be clearly understood due to the obser-
vation that 𝛽 and 𝜉 are in the numerator of the force of infection, so
increasing them will increase the disease reproduction number; in other
words, it can be seen that increasing contact or virus transmission, and
increasing the contribution to transmission of asymptomatic infection
even in double or triply vaccinated individuals, will increase infec-
tion. In the opposite direction, the recovery of asymptomatic infected
individuals with two or three vaccine doses reduces the number of
infected individuals by moving them into the immune class, so increas-
ing this rate will decrease the disease reproductive number, thereby
decreasing infection. The implications of these results are that inter-
ventions to control infection include reducing contact/transmission,
increasing recovery (specifically among doubly and triply vaccinated
individuals with asymptomatic infection) and decreasing the fraction
of infectiousness among asymptomatic (particularly among doubly and
triply vaccinated individuals). In summary,

• If 80% of infected individuals are asymptomatic, hospitalizations
and symptomatic infections could greatly be minimized.

• Booster vaccination rate increase reduces hospitalizations, symp-
tomatic cases, and asymptomatic cases.

• Variation in vaccine waning rates affect not only the magnitude
of the infection peak but also the timing of the peak.

• Transmission of asymptomatic infections even in doubly or triply
vaccinated individuals could increase COVID-19 infections.

• Key COVID-19 intervention measures should target reducing con-
tact/transmission, increasing treatment and vaccine booster rate.

• Health policy and decision-makers should continue advocating
and encouraging people to get booster doses.

The proposed model is not exhaustive and can be extended in
several ways. A fourth COVID-19 vaccine dose has been recommended
to fight against the most recent Omicron variant and one could extend
the model to include a fourth vaccination class. Also, we assumed that
vaccines wear off to the 𝑆 class only. Waning to the most recent class
could provide some additional insights into the disease dynamics. While
mathematical tractability could preclude standard analysis from a more
complex model, numerical simulations could provide a pathway around
a daunting theoretical analysis. Finally, a bifurcation analysis (that is
the investigation of the co-existence of both a stable disease-free and
endemic equilibria) could offer valuable additional insights into the
model’s dynamics.
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A

𝑉

o
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F

V

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 𝜉1
𝛽𝑆0 + 𝛽1𝑉 0

1

𝑁0

𝛽𝑆0 + 𝛽1𝑉 0
1

𝑁0
𝜉2

𝛽𝑆0 + 𝛽1𝑉 0
1

𝑁0

𝛽𝑆0 + 𝛽1𝑉 0
1

𝑁0

𝛽𝑆0 + 𝛽1𝑉 0
1

𝑁0

0 0 𝜉1
𝛽2𝑉 0

2 + 𝛽3𝑉 0
3

𝑁0

𝛽2𝑉 0
2 + 𝛽3𝑉 0

3

𝑁0
𝜉2

𝛽2𝑉 0
2 + 𝛽3𝑉 0

3

𝑁0

𝛽2𝑉 0
2 + 𝛽3𝑉 0

3

𝑁0

𝛽2𝑉 0
2 + 𝛽3𝑉 0

3

𝑁0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (12)

Box I.
𝑁

A

v

s

a

ppendix A. Derivation of the reproduction number

The disease free equilibrium is the solution E0 = (𝑆0, 𝑉 0
1 , 𝑉

0
2 ,

0
3 , 0, 0, 0, 0, 0, 0, 0, 0) of the following system

𝛬 + 𝑢1𝑉 0
1 + 𝑢2𝑉 0

2 + 𝑢3𝑉 0
3 − (𝑣1 + 𝜇)𝑆0 = 0,

𝑣1𝑆0 − (𝑢1 + 𝑣2 + 𝜇)𝑉 0
1 = 0,

𝑣2𝑉 0
1 − (𝑢2 + 𝑣3 + 𝜇)𝑉 0

2 = 0,

𝑣3𝑉 0
2 − (𝑢3 + 𝜇)𝑉 0

3 = 0.

(8)

Let 𝐺1 = 𝑣1 + 𝜇, 𝐺2 = 𝑢1 + 𝑣2 + 𝜇, 𝐺3 = 𝑢2 + 𝑣3 + 𝜇, 𝐺4 = 𝑢3 + 𝜇.
After some algebraic computations, we obtain

𝑆0 =
𝛬𝐺2𝐺3𝐺4

(

𝑣1𝑣2𝑣3 +
((

𝜇 + 𝑢1 + 𝑣1 + 𝑣2
) (

𝜇 + 𝑢2 + 𝑣3
)

+ 𝑣1𝑣2
) (

𝜇 + 𝑢3
))

𝜇
,

𝑉 0
1 =

𝑣1
𝐺2

𝑆0,

𝑉 0
2 =

𝑣1𝑣2
𝐺2𝐺3

𝑆0,

𝑉 0
3 =

𝑣1𝑣2𝑣3
𝐺2𝐺3𝐺4

𝑆0.

(9)

Using the next-generation method [35,36], the rate of appearance
f new infections F and the rate of transfer of individuals by all
ther means V are given by the following at least twice continuously
ifferentiable functions

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜆0𝑆 + 𝜆1𝑉1
𝜆2𝑉2 + 𝜆3𝑉3

0
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (10)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(𝜎1 + 𝜇)𝐸1

−(𝜎2 + 𝜇)𝐸2

𝑝𝜎1𝐸1 − (𝜃𝑎1 + 𝜇)𝐼𝑎1
(1 − 𝑝)𝜎1𝐸1 − (𝜃𝑠1 + 𝜔1 + 𝜇 + 𝛿𝑠1)𝐼

𝑠
1

𝑞𝜎2𝐸2 − (𝜃𝑎2 + 𝜇)𝐼𝑎2 ,

(1 − 𝑞)𝜎2𝐸2 − (𝜃𝑠2 + 𝜔2 + 𝜇 + 𝜇𝑠
2)𝐼

𝑠
2

𝜔1𝐼𝑠1 + 𝜔2𝐼𝑠2 − (𝜃ℎ1 + 𝜇 + 𝜇ℎ)𝐻

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (11)

The non-negative matrix 𝐹 and the non-singular 𝑀-matrix 𝑉 for
the new infection terms and the remaining transfer terms are given by
8

Eq. (12) in Box I and Eq. (13).

𝑉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝑔1 0 0 0 0 0 0

0 −𝑔2 0 0 0 0 0

𝑝𝜎1 0 −𝑔3 0 0 0 0

(1 − 𝑝)𝜎1 0 0 −𝑔4 0 0 0

0 𝑞𝜎2 0 0 −𝑔5 0 0

0 (1 − 𝑞)𝜎2 0 0 0 −𝑔6 0

0 0 0 𝜔1 0 𝜔2 −𝑔7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (13)

Thus, the effective reproduction number is given as in Box II, where

0 = 𝛬
𝜇
, 𝑔1 = 𝜎1 + 𝜇, 𝑔2 = 𝜎2 + 𝜇, 𝑔3 = 𝜃𝑎1 + 𝜇, 𝑔4 = 𝜃𝑠1 + 𝜔1 + 𝜇 + 𝜇𝑠

1,

𝑔5 = 𝜃𝑎2 + 𝜇, 𝑔6 = 𝜃𝑠2 + 𝜔2 + 𝜇 + 𝜇𝑠
2, 𝑔7 = 𝜃ℎ + 𝜇 + 𝜇ℎ.

ppendix B. Proof of Theorem 2

To prove that the DFE is GAS when R𝑐 (𝑣1, 𝑣2, 𝑣3) < 1, we have to
erify the conditions C1 to C3.

Using [35], we obtain that the DFE E0 is LAS when R𝑐 (𝑣1, 𝑣2, 𝑣3) < 1,
o the condition C1 is verified.

Next, we re-write system (1) in the form given in (6):

𝑑𝑋
𝑑𝑡

= 𝐹 (𝑋, 𝐼) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛬 + 𝛾𝑅 + 𝑢1𝑉1 + 𝑢2𝑉2 + 𝑢3𝑉3 − (𝜆0 + 𝑣1 + 𝜇)𝑆

𝑣1𝑆 − (𝜆1 + 𝑢1 + 𝑣2 + 𝜇)𝑉1
𝑣2𝑉1 − (𝜆2 + 𝑢2 + 𝑣3 + 𝜇)𝑉2

𝑣3𝑉2 − (𝜆3 + 𝑢3 + 𝜇)𝑉3
𝜃𝑎1𝐼

𝑎
1 + 𝜃𝑠1𝐼

𝑠
1 + 𝜃𝑎2𝐼

𝑎
2 + 𝜃𝑠2𝐼

𝑠
2 + 𝜃ℎ𝐻 − (𝛾 + 𝜇)𝑅

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (15)

nd

𝑑𝐼
𝑑𝑡

= 𝐺(𝑋, 𝐼) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜆0𝑆 + 𝜆1𝑉1 − (𝜎1 + 𝜇)𝐸1

𝜆2𝑉2 + 𝜆3𝑉3 − (𝜎2 + 𝜇)𝐸2

𝑝𝜎1𝐸1 − (𝜃𝑎1 + 𝜇)𝐼𝑎1
(1 − 𝑝)𝜎1𝐸1 − (𝜃𝑠1 + 𝜔1 + 𝜇 + 𝜇𝑠

1)𝐼
𝑠
1

𝑞𝜎2𝐸2 − (𝜃𝑎2 + 𝜇)𝐼𝑎2
(1 − 𝑞)𝜎2𝐸2 − (𝜃𝑠2 + 𝜔2 + 𝜇 + 𝜇𝑠

2)𝐼
𝑠
2

𝜔1𝐼
𝑠
1 + 𝜔2𝐼

𝑠
2 − (𝜃ℎ + 𝜇 + 𝜇ℎ)𝐻

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (16)

We have

𝑑𝑋
𝑑𝑡

= 𝐹 (𝑋0, 0) ⇔

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑆̇ = 𝛬 + 𝛾𝑅 + 𝑢1𝑉1 + 𝑢2𝑉2 + 𝑢3𝑉3 − (𝑣1 + 𝜇)𝑆,

𝑉̇1 = 𝑣1𝑆 − (𝑢1 + 𝑣2 + 𝜇)𝑉1,

𝑉̇2 = 𝑣2𝑉1 − (𝑢2 + 𝑣3 + 𝜇)𝑉2,

𝑉̇2 = 𝑣3𝑉2 − (𝑢3 + 𝜇)𝑉3,

𝑅̇ = −(𝛾 + 𝜇)𝑅

.

(17)
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(
t

C

G

𝜇

R𝑐 (𝑣1, 𝑣2, 𝑣3) =
𝑔2𝑔5𝑔6𝜎1(𝛽𝑆0 + 𝛽1𝑉 0

1 )
[

𝑔4𝑔7𝑝𝜉1 + 𝑔3(1 − 𝑝)(𝑔7 + 𝜔1)
]

+ 𝑔1𝑔3𝑔4𝜎2(𝛽2𝑉 0
2 + 𝛽3𝑉 0

3 )
[

𝑔6𝑔7𝑞𝜉2 + 𝑔5(1 − 𝑞)(𝑔7 + 𝜔2)
]

𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7𝑁0
, (14)

Box II.
A = D𝑍G(E0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝑔1 0 𝜉1
𝛽𝑆0 + 𝛽1𝑉 0

1

𝑁0

𝛽𝑆0 + 𝛽1𝑉 0
1

𝑁0
𝜉2

𝛽𝑆0 + 𝛽1𝑉 0
1

𝑁0

𝛽𝑆0 + 𝛽1𝑉 0
1

𝑁0

𝛽𝑆0 + 𝛽1𝑉 0
1

𝑁0

0 −𝑔2 𝜉1
𝛽2𝑉 0

2 + 𝛽3𝑉 0
3

𝑁0

𝛽2𝑉 0
2 + 𝛽3𝑉 0

3

𝑁0
𝜉2

𝛽2𝑉 0
2 + 𝛽3𝑉 0

3

𝑁0

𝛽2𝑉 0
2 + 𝛽3𝑉 0

3

𝑁0

𝛽2𝑉 0
2 + 𝛽3𝑉 0

3

𝑁0

𝑝𝜎1 0 −𝑔3 0 0 0 0

(1 − 𝑝)𝜎1 0 0 −𝑔4 0 0 0

0 𝑞𝜎2 0 0 −𝑔5 0 0

0 (1 − 𝑞)𝜎2 0 0 0 −𝑔6 0

0 0 0 𝜔1 0 𝜔2 −𝑔7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Box III.
p

This equation has a unique equilibrium point
(

𝑆0, 𝑉 0
1 , 𝑉

0
2 , 𝑉

0
3 , 0

)

where 𝑆0, 𝑉 0
1 , 𝑉 0

2 and 𝑉 0
3 are given in (9)) which is globally asymp-

otically stable. Therefore, the condition C2 is satisfied.

Linearizing the matrix in Eq. (16) gives the Metzler Matrix in Box III.
omputing Ĝ(𝑋,𝑍) with some algebraic simplification we obtain

̂ (𝑋, 𝐼) = A𝐼 −G(𝑋, 𝐼)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝜉1𝐼𝑎
1 + 𝐼𝑠

1 + 𝜉2𝐼
𝑎
2 + 𝐼𝑠

2 +𝐻)

[

𝛽

(

𝑆0

𝑁0
ℎ

− 𝑆
𝑁ℎ

)

+ 𝛽1

(

𝑉 0
1

𝑁0
ℎ

−
𝑉1

𝑁ℎ

)]

(𝜉1𝐼𝑎
1 + 𝐼𝑠

1 + 𝜉2𝐼
𝑎
2 + 𝐼𝑠

2 +𝐻)

[

𝛽2

(

𝑉 0
2

𝑁0
ℎ

−
𝑉2

𝑁ℎ

)

+ 𝛽3

(

𝑉 0
3

𝑁0
ℎ

−
𝑉3

𝑁ℎ

)]

0

0

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We have

Ĝ(𝑋, 𝐼) ≥

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝜉1𝐼𝑎
1 + 𝐼𝑠

1 + 𝜉2𝐼
𝑎
2 + 𝐼𝑠

2 +𝐻)

[

𝛽𝑆0

(

1
𝑁0

ℎ

− 1
𝑁ℎ

)

+ 𝛽1𝑉
0
1

(

1
𝑁0

ℎ

− 1
𝑁ℎ

)]

(𝜉1𝐼𝑎
1 + 𝐼𝑠

1 + 𝜉2𝐼
𝑎
2 + 𝐼𝑠

2 +𝐻)

[

𝛽2𝑉
0
2

(

1
𝑁0

ℎ

− 1
𝑁ℎ

)

+ 𝛽3𝑉
0
3

(

1
𝑁0

ℎ

− 1
𝑁ℎ

)]

0

0

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Knowing that
(

1
𝑁0

ℎ

− 1
𝑁ℎ

)

=
𝑁ℎ −𝑁0

ℎ

𝑁ℎ𝑁0
ℎ

and that when 𝜇𝑠
1 = 𝜇𝑠

2 =

ℎ = 0, 𝑁ℎ(𝑡) − 𝑁0
ℎ =

(

𝛬
𝜇ℎ

− 𝑁ℎ(0)
)

(1 − exp (−𝜇ℎ𝑡)) is positive, we

obtain Ĝ(𝑋, 𝐼) ≥ 0. The condition C3 is satisfied. We can conclude that
if 𝜇ℎ = 𝜇ℎ = 𝜇ℎ = 0 then the DFE is GAS when R (𝑣 , 𝑣 , 𝑣 ) < 1.
1 2 𝑐 1 2 3 𝜆

9

Appendix C. Proof of Theorem 3

Let ℎ𝑖 = 1 − 𝜀𝑖, 1 ≤ 𝑖 ≤ 3, so 𝜆𝑖 = ℎ𝑖𝜆0.
After a few computations, we obtain the following expressions of

each component of the endemic equilibrium depending on 𝜆0:

𝑉 ⋆
1 =

𝑣1𝛬
𝐺1𝐺2 + 𝐺2𝜆⋆0 + (𝐺1𝜆⋆0 + 𝜆2⋆0 )ℎ1 − 𝑢1𝑣1

,

𝑆⋆ =
ℎ1𝜆⋆0 + 𝐺2

𝑣1
𝑉 ⋆
1 ,

𝑉 ⋆
2 =

ℎ2𝜆⋆0 + 𝐺3

𝑣2
𝑉 ⋆
1 ,

𝑉 ⋆
3 =

ℎ3𝜆⋆0 + 𝐺4

𝑣3
𝑉 ⋆
2 ,

𝐸⋆
1 =

𝜆⋆0 (𝑆
⋆ + ℎ1𝑉 ⋆

1 )
𝑔1

,

𝐸⋆
2 =

𝜆⋆0 (ℎ2𝑉
⋆
2 + ℎ3𝑉 ⋆

3 )
𝑔2

,

𝐼𝑎⋆1 =
𝑝𝜎1
𝑔3

𝐸⋆
1 ,

𝐼𝑠⋆1 =
(1 − 𝑝)𝜎1

𝑔4
𝐸⋆
1 ,

𝐼𝑎⋆2 =
𝑞𝜎2
𝑔5

𝐸⋆
2 ,

𝐼𝑠⋆2 =
(1 − 𝑞)𝜎2

𝑔6
𝐸⋆
2 ,

𝐻⋆ =
𝜔1𝐼𝑠⋆1 + 𝜔2𝐼𝑠⋆2

𝑔7
,

𝑅⋆ =
𝜃𝑎1𝐼

𝑎⋆
1 + 𝜃𝑠1𝐼

𝑠⋆
1 + 𝜃ℎ1𝐻

⋆ + 𝜃𝑎2𝐼
𝑎⋆
2 + 𝜃𝑠2𝐼

𝑠⋆
2

𝐺5
,

𝑁⋆ =
𝛬 − 𝜇𝑠

1𝐼
𝑠⋆
1 − 𝜇𝑠

2𝐼
𝑠⋆
2 − 𝜇ℎ𝐻⋆

𝜇
.

(18)

By definition of the force of infection, we have

𝜆⋆0 = 𝛽
𝐼𝑠⋆1 + 𝐼𝑠⋆2 +𝐻⋆ + 𝜉1𝐼𝑎⋆1 + 𝜉2𝐼𝑎⋆2

𝑁⋆ .
When we replace 𝐼𝑠⋆1 , 𝐼𝑠⋆2 , 𝐻⋆ and 𝑁⋆ by their respective ex-

ressions, we obtain that 𝜆⋆0 is the solution of the following equation:

⋆ (

𝐴 𝜆⋆4 + 𝐴 𝜆⋆3 + 𝐴 𝜆⋆2 + 𝐴 𝜆⋆ + 𝐴
)

= 0, (19)
0 4 0 3 0 2 0 1 0 0
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Table C.3
Number of possible positive roots of Eq. (19) using Descartes’s rule of signs.
Case 𝐴4 𝐴3 𝐴2 𝐴1 𝐴0 Possible positive roots R𝑐 condition

(i) − + + + − 0 or 2 R𝑐 < 1
(ii) − + + + + 1 R𝑐 > 1
(iii) − + + − − 0 or 2 R𝑐 < 1
(iv) − + + − + 1 or 3 R𝑐 > 1
(v) − + − + − 0, 2 or 4 R𝑐 < 1
(vi) − + − + + 1 or 3 R𝑐 > 1
(vii) − + − − − 0 or 2 R𝑐 < 1
(viii) − + − − + 1 or 3 R𝑐 > 1
(ix) − − + + − 0 or 2 R𝑐 < 1
(x) − − + + + 1 R𝑐 > 1
(xi) − − + − − 0 or 2 R𝑐 < 1
(xii) − − + − + 1 or 3 R𝑐 > 1
(xiii) − − − + − 0 or 2 R𝑐 < 1
(xiv) − − − + + 1 R𝑐 > 1
(xv) − − − − − 0 R𝑐 < 1
(xvi) − − − − + 1 R𝑐 > 1
where the coefficients

𝐴0 = (𝜇(𝜇 + 𝑢1 + 𝑣1 + 𝑣2) + 𝑣1𝑣2)(𝜇 + 𝑣3)𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7(R𝑐 − 1), (20)

𝐴1 = 𝐺4𝛽𝑔2𝑔4𝑔5𝑔6𝑔7ℎ1ℎ2𝜇𝑝𝜎1𝑣1𝜉1 + 𝐺3𝛽𝑔2𝑔4𝑔5𝑔6𝑔7ℎ1ℎ3𝜇𝑝𝜎1𝑣1𝜉1
+ 𝛽𝑔1𝑔3𝑔4𝑔6𝑔7ℎ2ℎ3𝜇𝑞𝜎2𝑣1𝑣2𝜉2
+ 𝐺4𝛽𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ2𝜇𝑝1𝜎1𝑣1 + 𝐺3𝛽𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ3𝜇𝑝1𝜎1𝑣1
+ 𝐺4𝛽𝑔2𝑔3𝑔5𝑔6ℎ1ℎ2𝜇𝜔1𝑝1𝜎1𝑣1
+ 𝐺3𝛽𝑔2𝑔3𝑔5𝑔6ℎ1ℎ3𝜇𝜔1𝑝1𝜎1𝑣1 + 𝛽𝑔1𝑔3𝑔4𝑔5𝑔7ℎ2ℎ3𝜇𝑞1𝜎2𝑣1𝑣2
+ 𝛽𝑔1𝑔3𝑔4𝑔5ℎ2ℎ3𝜇𝜔2𝑞1𝜎2𝑣1𝑣2
+ 𝐺3𝐺4𝛽𝑔2𝑔4𝑔5𝑔6𝑔7ℎ1𝜇𝑝𝜎1𝜉1 + 𝐺2𝐺4𝛽𝑔2𝑔4𝑔5𝑔6𝑔7ℎ2𝜇𝑝𝜎1𝜉1
+ 𝐺2𝐺3𝛽𝑔2𝑔4𝑔5𝑔6𝑔7ℎ3𝜇𝑝𝜎1𝜉1
+ 𝐺3𝐺4𝛽𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1𝜇𝑝1𝜎1 + 𝐺2𝐺4𝛽𝑔2𝑔3𝑔5𝑔6𝑔7ℎ2𝜇𝑝1𝜎1
+ 𝐺2𝐺3𝛽𝑔2𝑔3𝑔5𝑔6𝑔7ℎ3𝜇𝑝1𝜎1
+ 𝐺3𝐺4𝛽𝑔2𝑔3𝑔5𝑔6ℎ1𝜇𝜔1𝑝1𝜎1 + 𝐺2𝐺4𝛽𝑔2𝑔3𝑔5𝑔6ℎ2𝜇𝜔1𝑝1𝜎1
+ 𝐺2𝐺3𝛽𝑔2𝑔3𝑔5𝑔6ℎ3𝜇𝜔1𝑝1𝜎1
+ 𝐺3𝐺4𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1𝜇1𝑝1𝜎1𝑣1 + 𝐺3𝐺4𝑔2𝑔3𝑔5𝑔6ℎ1𝜇3𝜔1𝑝1𝜎1𝑣1
+ 𝐺4𝑔1𝑔3𝑔4𝑔5𝑔7ℎ2𝜇2𝑞1𝜎2𝑣1𝑣2
+ 𝐺4𝑔1𝑔3𝑔4𝑔5ℎ2𝜇3𝜔2𝑞1𝜎2𝑣1𝑣2 + 𝑔1𝑔3𝑔4𝑔5𝑔7ℎ3𝜇2𝑞1𝜎2𝑣1𝑣2𝑣3
+ 𝑔1𝑔3𝑔4𝑔5ℎ3𝜇3𝜔2𝑞1𝜎2𝑣1𝑣2𝑣3
− 𝐺1𝐺3𝐺4𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ1 − 𝐺1𝐺2𝐺4𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ2
− 𝐺1𝐺2𝐺3𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ3
+ 𝐺2𝐺3𝐺4𝑔2𝑔3𝑔5𝑔6𝑔7𝜇1𝑝1𝜎1 + 𝐺2𝐺3𝐺4𝑔2𝑔3𝑔5𝑔6𝜇3𝜔1𝑝1𝜎1
+ 𝐺4𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ2𝑢1𝑣1
+ 𝐺3𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ3𝑢1𝑣1 − 𝐺2𝐺3𝐺4𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7,

(21)

𝐴2 = 𝛽𝑔2𝑔4𝑔5𝑔6𝑔7ℎ1ℎ2ℎ3𝜇𝑝𝜎1𝑣1𝜉1 + 𝛽𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ2ℎ3𝜇𝑝1𝜎1𝑣1
+ 𝛽𝑔2𝑔3𝑔5𝑔6ℎ1ℎ2ℎ3𝜇𝜔1𝑝1𝜎1𝑣1
+ 𝐺4𝛽𝑔2𝑔4𝑔5𝑔6𝑔7ℎ1ℎ2𝜇𝑝𝜎1𝜉1 + 𝐺3𝛽𝑔2𝑔4𝑔5𝑔6𝑔7ℎ1ℎ3𝜇𝑝𝜎1𝜉1
+ 𝐺2𝛽𝑔2𝑔4𝑔5𝑔6𝑔7ℎ2ℎ3𝜇𝑝𝜎1𝜉1
+ 𝐺4𝛽𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ2𝜇𝑝1𝜎1 + 𝐺3𝛽𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ3𝜇𝑝1𝜎1
+ 𝐺2𝛽𝑔2𝑔3𝑔5𝑔6𝑔7ℎ2ℎ3𝜇𝑝1𝜎1
+ 𝐺4𝛽𝑔2𝑔3𝑔5𝑔6ℎ1ℎ2𝜇𝜔1𝑝1𝜎1 + 𝐺3𝛽𝑔2𝑔3𝑔5𝑔6ℎ1ℎ3𝜇𝜔1𝑝1𝜎1
+ 𝐺2𝛽𝑔2𝑔3𝑔5𝑔6ℎ2ℎ3𝜇𝜔1𝑝1𝜎1
+ 𝐺4𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ2𝜇1𝑝1𝜎1𝑣1 + 𝐺3𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ3𝜇1𝑝1𝜎1𝑣1
+ 𝐺4𝑔2𝑔3𝑔5𝑔6ℎ1ℎ2𝜇3𝜔1𝑝1𝜎1𝑣1

+ 𝐺3𝑔2𝑔3𝑔5𝑔6ℎ1ℎ3𝜇3𝜔1𝑝1𝜎1𝑣1 + 𝑔1𝑔3𝑔4𝑔5𝑔7ℎ2ℎ3𝜇2𝑞1𝜎2𝑣1𝑣2 (22)
+ 𝑔1𝑔3𝑔4𝑔5ℎ2ℎ3𝜇3𝜔2𝑞1𝜎2𝑣1𝑣2
− 𝐺1𝐺4𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ1ℎ2 − 𝐺1𝐺3𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ1ℎ3

− 𝐺1𝐺2𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ2ℎ3

10
+ 𝐺3𝐺4𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1𝜇1𝑝1𝜎1 + 𝐺2𝐺4𝑔2𝑔3𝑔5𝑔6𝑔7ℎ2𝜇1𝑝1𝜎1
+ 𝐺2𝐺3𝑔2𝑔3𝑔5𝑔6𝑔7ℎ3𝜇1𝑝1𝜎1
+ 𝐺3𝐺4𝑔2𝑔3𝑔5𝑔6ℎ1𝜇3𝜔1𝑝1𝜎1 + 𝐺2𝐺4𝑔2𝑔3𝑔5𝑔6ℎ2𝜇3𝜔1𝑝1𝜎1
+ 𝐺2𝐺3𝑔2𝑔3𝑔5𝑔6ℎ3𝜇3𝜔1𝑝1𝜎1
+ 𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ2ℎ3𝑢1𝑣1 − 𝐺3𝐺4𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ1
− 𝐺2𝐺4𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ2 − 𝐺2𝐺3𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ3,

𝐴3 = 𝛽𝑔2𝑔4𝑔5𝑔6𝑔7ℎ1ℎ2ℎ3𝜇𝑝𝜎1𝜉1 + 𝛽𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ2ℎ3𝜇𝑝1𝜎1
+ 𝛽𝑔2𝑔3𝑔5𝑔6ℎ1ℎ2ℎ3𝜇𝜔1𝑝1𝜎1 + 𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ2ℎ3𝜇1𝑝1𝜎1𝑣1
+ 𝑔2𝑔3𝑔5𝑔6ℎ1ℎ2ℎ3𝜇3𝜔1𝑝1𝜎1𝑣1 − 𝐺1𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ1ℎ2ℎ3
+ 𝐺4𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ2𝜇1𝑝1𝜎1 + 𝐺3𝑔2𝑔3𝑔5𝑔6𝑔7ℎ1ℎ3𝜇1𝑝1𝜎1
+ 𝐺2𝑔2𝑔3𝑔5𝑔6𝑔7ℎ2ℎ3𝜇1𝑝1𝜎1 + 𝐺4𝑔2𝑔3𝑔5𝑔6ℎ1ℎ2𝜇3𝜔1𝑝1𝜎1
+ 𝐺3𝑔2𝑔3𝑔5𝑔6ℎ1ℎ3𝜇3𝜔1𝑝1𝜎1 + 𝐺2𝑔2𝑔3𝑔5𝑔6ℎ2ℎ3𝜇3𝜔1𝑝1𝜎1
− 𝐺4𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ1ℎ2 − 𝐺3𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ1ℎ3
− 𝐺2𝑔1𝑔2𝑔3𝑔4𝑔5𝑔6𝑔7ℎ2ℎ3,

(23)

𝐴4 = −𝜇(𝜇 + 𝜇𝑠
1 + 𝜔1)(𝜇 + 𝜇ℎ + 𝜃ℎ) − 𝜇(𝜇 + 𝜇ℎ + 𝜔1) − 𝜎1𝜃

ℎ(𝜇 + 𝜔1 + 𝑝𝜇𝑠
1)

− 𝜃𝑠1(𝜇 + 𝜎1)(𝜇 + 𝜇ℎ + 𝜃ℎ) − 𝑝𝜎1(𝜇𝑠
1(𝜇 + 𝜇ℎ) + 𝜇ℎ𝜔1). (24)

We then use Descartes’s rule of signs to determine the existence
of possible positive roots of Eq. (19). The results are summarized in
Table C.3.
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