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Abstract –This research work presents the tri-level optimization framework for the optimal scheduling of 
grid-connected and autonomous microgrids to diminish power losses and maximize loadability. Since the 
network's voltage profile depends on the loading level, the flexible load shaping-based demand-side 
management strategy is incorporated to investigate its impact on microgrid loadability. With the 
consideration of uncertain parameters related to renewable power generation, load demand, and power loss, 
voltage limit constraints, the resultant problem is formulated as a stochastic mixed-integer non-linear 
problem to enhance microgrid loadability and optimize daily operating costs. The interdependency of 
demand side management program and microgrid loadability is investigated. The seasonal load profiles 
covering the weekend and weekday loads in winter, summer, and spring/fall seasons are examined in this 
research work. The enhanced versions of the distribution networks IEEE-33 and IEEE-69 based microgrid 
test systems are chosen to evaluate the proposed framework in both off-grid and autonomous modes of 
operation. Simultaneously, the overall customer satisfaction index is evaluated and improved according to 
the seasonal load profiles winter weekday, winter-weekend, summer-weekday, summer-weekend, spring-
weekday, and spring-weekend by 8.68%, 7.97%, 16.7%, 19.62%, 17.14%, 20.50% respectively. The 
recently reported Whale Optimization Algorithm is adopted to solve the proposed optimization problem, 
and the obtained simulation results are validated by comparing them with popular metaheuristic algorithms. 
The computational burden on the utility is reduced for optimal scheduling of grid-integrated microgrid to 
extract maximum power by maintaining network voltage profile. 
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1. Introduction 

The evolution from fossil fuel-based conventional centralized power generation to prosumer-based 
distributed generation (DG) enables efficient, reliable, and more economical operation of power systems. 
Integrating such prosumer-based DG sources with information and communication infrastructure plays a 
crucial role in the smart grid paradigm [1]. However, this transition brings various operational challenges, 
such as energy management, control strategies for seamless integration of DG sources, and managing 
intermittent renewable energy resources. The concept of microgrids (MG) has emerged as one of the 
building blocks for smart grid architecture to cope with the above challenges and maximize the resiliency 
and reliability of the power grid in the face of contingencies [2]. The principal characteristic differentiating 
MG from DG sources is controllability, having control strategies defined for grid-connected and isolated 
operation modes. The voltage and frequency control for balancing loads and generation within the MG 
system is typically managed by centralized, decentralized, and distributed architectures [3]. The typical 
centralized MG architecture with power and communication flow among DG sources and loads is shown 
in Figure 1. 

The optimization strategies of the MG network operation have been highly influenced over a decade to 
yield energy security and economic benefits. In this regard, optimal power flow (OPF) has been considered 
a powerful economic and technical tool to support the operator during microgrids' planning, operation, and 
control. The detailed taxonomy of OPF with single and multi-objective and corresponding methodologies 
are listed in [4]. As per the comprehensive literature survey conducted by the authors in [5], the power 
losses at the distribution level account for 70% of total power network losses. In light of this, alleviating 
power dissipation in the microgrid network at the smart distribution network level is paramount. Although 
several literature indices related to power loss and voltage profile enhancement are considered, the 
loadability index is least considered at the distribution level [6]. The recently reported state-of-the-art covers 
the detailed research analysis on enhancing loadability in balanced [7] and unbalanced [8] distribution 
networks as well as microgrid networks in on grid and isolated modes of operation [9]. 
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Figure 1. Typical centralized microgrid architecture  
 

The most straightforward approach to enhance the loadability of a distribution system is to determine the 
voltage gradient at the weakest bus and placing the DG source at the appropriate node, such as in [7], where 
an analytical approach based on saddle-node is implemented to find the weakest bus. In [8], the future load 
scenario is evaluated and considered in the optimization problem to enhance the loadability of an 
unbalanced radial distribution network. The critical loading point of the system is evaluated, and the look-
ahead approach is designed to develop a new voltage stability index. However, the proposed stability index 
only detects the most stressed feeder, thus only leading to a marginal improvement in the lodabilty by 
rescheduling the control variables. Similarly, a two-level microgrid control hierarchy is proposed in [9], 
where local controllers control the DG sources installed in the MG network to optimize energy and power 
in a synchronous mode of operation. But this approach leads to an active power loss over a fifteen-minute 
schedule during a one-day optimization period. The authors in [10] have modified the DC continuation 
power flow approach to determine the loadability limit of a distribution network. The impedance matrix of 
the above approach is modified by adding mathematical models of DC-DC converters to investigate their 
impact on loading capability. Their simulation results report that the approach only helps identify the 
weakest node in a network to formulate a stability index for a DC distribution system with only two DRs 
like PV and fuel cells. In [11], the authors proposed an analytical approach for mitigating voltage 
unbalances and enhancing the loadability of the distribution network. Here, only battery energy storage is 
used to leverage benefits like robust capacity support and voltage regulation and the loadability point is 
treated as a voltage stability loading margin. The computational burden for their approach is enormous, and 
their system validation is only done for a local distribution network utilizing only one optimization 
technique without providing any fair comparison with other metaheuristic techniques. 

From the viewpoint of intermittent power output from renewable energy sources (RES), the day-ahead 
optimized load management of reconfigurable MG networks is linked with operational risk. A TOU DR 
scheme is implemented in [12] to enhance loadability on transmission lines under contingencies and 
dynamic stability for a local distribution network (Columbia). The obtained outcomes show that their DR 
strategy works only when the penetration level is =>30 % and enhances the distribution system's frequency 
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and rotor angle fluctuations. The results are based only on PowerFactory DIgSILENT software, and the 
strategy is applied directly without any changes to the DR program or variables. Similarly, a risk-based 
hourly configuration is determined in [13] in the presence of a reward/penalty scheme. But their method is 
only suitable for 10 and 32-bus small systems for short-term scheduling and has limitations in applicability 
to large network systems with multiple DR units. In [14], the demand response concept is integrated with 
the volt/var optimization problem to investigate the influence of load level due to the application of DR 
against voltage profile to mitigate voltage instability. The devices influencing the volt/var optimization, 
such as circuit breakers, tap-changing transformers, inverters, and solar PV, were considered. Reactive 
power loads affecting these devices were rescheduled to minimize loss and unbalance with cost 
optimization. The maximum load that can be supplied within the isolated MG network without violating 
frequency and voltage limits is one of the major concerns for its optimal operation to maintain the MG 
network's reliability, which has not been investigated in the above work. Also, the loadability maximization 
problem of an islanded MG in the presence of multiple storage systems and RES is not explored.   

Although a few works, such as [15], reported a multi-objective approach to optimize emission and 
operational costs using a multi-objective Ant Lion optimizer, the effect of variable renewable generation 
sources on the loadability limit of microgrids is not investigated. The independent and correlated variables 
in the non-linear optimization problem are identified by employing the global sensitivity analysis method 
in [16] for determining the loadability limit of islanded microgrids for only a 33-bus system. Similarly, in [17], 
the droop control, distributed line capacity limits, and tie-line limits were considered to achieve the 
optimum loadability of islanded MG. In [18], the effect of DSM on loading margin and network losses with 
higher penetration of electric vehicles and pumps are presented. The shifting and reconnection of constant 
impedance loads on network performance are investigated before and after applying for DSM programs 
with prioritization of impedance and induction motor loads. The authors in [19] formulated a supervisory 
control system for AC-DC hybrid MG to enhance the overall loadability of the system. The active and 
reactive power mismatches in the three-phase loading are balanced with the help of a power routing 
mechanism. Although their simulated results prove that the loadability index is maximized, voltage 
fluctuations and MG energy losses are reported.  

Further, an operation management scheme was developed to solve the day-ahead scheduling of a distributed 
islanded microgrid test system [20]. The proposed problem is formulated as multi-period mixed integer 
non-linear programming. This study only considers an isolated MG system and is not evaluated for large-
scale active network systems. In [21], the authors utilized FACTS devices, i.e., enhanced dynamic voltage 
restorer (EDVR), to compensate for the voltage levels and stabilize the grid-connected microgrid. The 
control strategy consists of two sub-control units with an enhanced synchronous reference frame control 
unit and fuzzy control unit for the performance of EDVR. The controller's response is dynamic and fast at 
every iteration process, but the unavoidable time delay in the control process makes the microgrid unstable 
because of numerous heterogeneous inefficiencies.  

To handle the time delays issue for improving the stability condition of the microgrid [22] proposes a 
general cyber-physical model of a synchronously controlled, distributed microgrid based on inverters, 
considering numerous time delays. The method in this study only assumes the partially distributed MG 
control. The model predictive control strategy technique is adopted for hybrid poly-generation power 
system plants by incorporating two variables method for the optimal microgrid operation and maintaining 
the system stability [23]. The study shows an overall capacity loss of around 3%, and battery ageing is not 
considered exclusively. The control strategies discussed in the above-discussed works were adopted to 
control the decision variables with different methodologies for obtaining microgrid stability with the 
dynamic response of the controllers. But the distributed generator units associated with any microgrid 
should be provided adequate power during the scheduled time for the optimal operation of the microgrid. 
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In this case, if the associated DGs, RES, and BES should not dispatch the required power to the respective 
loads and extract power from the utility, the system burden would increase with the power outages that may 
cause system instability.  

 A 2-stage novel stochastic optimization approach is implemented to handle a rural microgrid's energy 
management problem as a case study in [24]. The stochastic approach is compared with the deterministic 
approach. It proves that the proposed methodology outperforms in terms of the quality of the solution. Still, 
the convergence speed is slow compared to other stochastic algorithms, and fewer case scenarios were 
considered to evaluate the algorithm. In [25], green energy is generated by employing electrolyzes with 
high participation levels of RES sources of a medium voltage distributed network microgrid, and the 
problem is formulated as a bi-level mathematical model. The incentive-based demand response program is 
implemented to enhance consumer consumption flexibility, but congestion concerns on the utility side were 
not considered while calculating the overall system performance. A physical-model-free voltage control 
method utilizes a deep supervised learning methodology facilitated by surrogate models to investigate the 
connection between the power injections and voltage variations of individual nodes [26]. The surrogate 
model, which was discussed in a controlled way, utilizes a limited quantity of collected historical 
information. Furthermore, the deep learning method is employed to develop an ideal control method based 
on continuous interactions with the surrogate model. Still, it does not support the topology change in the 
active distribution network. 

The interdependency of loadability and the voltage enhancement of distributed microgrid networks is 
described in [27]. It has been observed that there is a convergence issue between undervoltage load-
shedding and maximum loadability limit when load growth is considered. Several operational scenarios 
where the maximum loadability can be reached before triggering any load-shedding scheme are discussed, 
such as the loadability assessment by replacing synchronous generators with wind power plants [28]. 
Similarly, the overall power loss indices were proposed to characterize the distribution network losses 
considering wind power integration in [29]. Wind power farms' sizing and siting and effect on voltage 
stability margin are analyzed. However, with 34% wind power penetration, the loadability margin reaches 
a voltage instability point. Authors in [30] provided a solution for optimal placement of DG sources in 
reducing network losses and improving voltage profile. Likewise, other works in the literature have focused 
either on optimal microgrid scheduling, including stochastic-based energy management approaches [31], 
load dynamics [32], [33], but their optimal scheduling of DG sources in a microgrid network considering 
the loadability margin is not fully covered. 

Further, utility-oriented DSM programs [34] and customer-oriented price-driven [35], and incentive-driven 
[36] DR programs can enhance the operational costs to a certain extent of on-grid MGs, the changes in load 
profile due to DSM influence voltage profile and network loadability is yet to be investigated. For instance, 
the maximization of loadability in droop-controlled islanded MGs is studied, and the influence of random 
input variables on islanded MG loadability is investigated in [39]. In the case of research works studied on 
grid-connected networks, the impact of BS on the loadability of MG is investigated in [38]. The effect of 
annual load growth on distribution system loading capacity with penetration of multiple DG units is studied 
in [41]. In a similar work [46], the optimal placement of capacitors and DG units is considered to improve 
the voltage profile. The two essential functions of microgrid energy management are demand-side 
management and efficient power scheduling. Although prior research has studied numerous indices related 
to power loss and voltage profile enhancement, the influence of demand-side management strategies on the 
loadability index and customer satisfaction index is least considered at the microgrid network level. 

To summarize, the majority of the studies in the literature on MG loadability are confined to either on-grid 
or islanded systems. As outlined in the above-discussed research works, none have considered both 



6 
 

operating modes simultaneously to maximize the system loadability with provisions of network power flow 
and voltage stability constraints. A brief comprehensive comparison of existing research works with the 
proposed work associated with different optimization techniques and the corresponding technical indices 
considering different objectives for grid-connected and islanded microgrid systems applicable to large 
networks is iterated in Table 1.  

Table 1. A comprehensive comparison of existing research outcomes with proposed work 

Ref 
 

Test System Grid-
Connected 

Islanded Optimization 
approach 

Objective Outcome 

[37] IEEE 33-bus - ✔  Droop control Enhancing the system's maximum 
loadability and minimizing the system 
generation cost 

[38] IEEE 69-bus ✔  - PSO Power loss minimization, system 
loadability and voltage enhancement.  

[39] IEEE 38-bus - ✔  Density-based 
GSA Method 

Evaluation of uncertainties on 
performance in Islanded MGs.  

[40] UFSC 16 
node test 

feeder 

✔  - Sequential Monte 
Carlo approach 

Assessment of voltage signal quality 
and loadability enhancement 

[41] IEEE 33-bus ✔  - PSO Optimum siting/ sizing of DGs to 
cater to several feeders' loads. 

[42] IEEE 33, 
IEEE 69-

buses 

✔  - Butterfly 
Optimization 

Minimize the losses and Maximizing 
the loadability margin factor 

[43] IEEE 33, 
IEEE 69-

buses 

✔  - DIgSILENT 
Power Factory 

To detect maximum loadability at 
connected buses and improve the 
voltage profile 

[44] 
 

IEEE 6, 
IEEE 33- 

buses 

✔  - Differential 
approach 

Enhancement of maximum loadability 
index 

[45] IEEE 33, 
IEEE 69-

buses 

- ✔  Multi-objective 
harmony search 

approach 

Estimate the voltage stability margin 
and loadability index for islanded MG 

[46] IEEE 33, 
IEEE 85-

buses 

✔  - WIPSO-GSA Loss minimization and loadability 
enhancement of radial distributed 

[47] IEEE 12, 
IEEE 34, 

IEEE 108-
buses 

✔  - PSO Optimal placement/sizing of 
capacitors based on Shannon's entropy 
and min. of power losses. 

 
 

[48] 

 
 

IEEE 14-bus 

✔  -  
PSO 

Minimization of power losses and 
voltage deviation at corresponding 
buses are evaluated on the 14-bus 
Kumamoto system in japan.

[49] 12kV,33kV 
feeders 

✔  - CYME software Optimal sizing of BESS and mitigate 
the voltage losses 

[50] - - - Decomposition 
method 

Wind speed forecasting using Neural 
Networks, and the Grey Wolf 
Optimization approach 
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[51] IEEE-33 bus   - Stochastic 
programming 

Minimizing the overall operating 
costs of the microgrid with the 
integration of demand response 
programs 

[52] IEEE-69 bus    - Benders 
Decomposition 

approach 

To ensure fair trade-off for local 
energy markets without raising the 
energy cost. 

[53] IEEE-33 bus 
(7-Node) 

    Mixed integer 
second-order cone 

programming 

a multi-stage resilient enhancement 
technique and multi-level 
decentralized storage for the 
electricity-gas incorporated energy 
infrastructure for optimal scheduling 
and fault restoration schedule 
framework. 

[54] IEEE-24 bus -   Binary Particle 
swarm 

Optimization 

Optimal location of wind and storage 
unit of 24-bus distributed network 
feeder. 

[55] IEEE 12, 
IEEE 34, 

IEEE 141-
buses 

  - Sine-cosine 
optimization 

approach 

Optimal sizing and placement of 
DERs to reduce the annual costs of 
DERs and power losses for improving 
the system's reliability. 

[56] IEEE-33 bus   - Machine learning 
technique 

To improve the resiliency of multi-
microgrids in extreme operating 
conditions  

[57] IEEE-33 
and 118 
buses 

  - Reinforcement 
learning strategy 

Optimal placement of DG units, 
RESs, and Energy storage units to 
reduce the power losses and improve 
the voltage profile. 

[58] IEEE test 
systems 

  - Neural Networks To enhance the scalability and 
computational efficiency of the 
distributed test systems. 

Proposed 
Work 

IEEE 33-
bus, IEEE 

69-bus 

    WOA 
Optimization 

Voltage enhancement and maximizing 
the loadability of grid-connected and 
islanded systems using DSM strategy 
incorporating customer satisfaction 
index. 

 
Moreover, enhancing the loadability of MGs in light of applying utility-induced DSM strategies is an area 
left unexplored in the literature. The relationship between loadability and voltage is not studied extensively 
for grid-connected and islanded systems in the literature. The customer satisfaction index is also not 
considered when evaluating the test systems to enhance microgrid reliability. Thus, a new optimal 
scheduling problem of an MG is formulated for effective day-ahead planning and operation in both on-grid 
and islanded modes, respectively. The proposed problem considers the stochastic parameters involved with 
Solar PV, Wind power, and utility market prices and has been solved using the recently reported Whale 
Optimization Algorithm. A new tri-level optimization framework is proposed and verified on enhanced 
versions of IEEE-33 & 69 bus networks. The customer satisfaction index is also evaluated on different real-
time seasonal load profiles for enhancing the microgrid reliability and operation. The superiority of the 
obtained simulation results proves the proposed approach's efficacy and significance in distinguishing from 
available metaheuristic methods of system operation. The brief contribution of this research paper is listed 
below. 

1. A new optimum scheduling problem of an MG in on-grid and islanded systems is formulated by 
considering various network-flow constraints. 

2. In the first stage of the proposed three-tiered framework, uncertainty parameters in the MG network 
are addressed. Second, by strategically placing DG units and a capacitor simultaneously, we may 
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reduce network flow losses and boost the quality of the voltage distribution. Third, we look into 
the interdependence of the DSM program's implementation and its effect on loadability while 
incorporating the customer satisfaction index.  

3. The framework is implemented using upgraded IEEE-33 and 69 distributed networks, and the 
influence of the variable load-shaping DSM method on power losses, loadability, operational cost, 
and customer satisfaction index is evaluated. The Whale Optimization Algorithm (WOA) increases 
MG operating expenditures and determines the best day-ahead plan for on-grid and islanded system 
operation. The suggested approach is compared to state-of-the-art algorithms to demonstrate its 
efficacy in solution quality, convergence rate, and computational time. 

 
The organization of the research paper is as follows. Section 2 covers the details regarding problem 
formulation, and a brief description of the mathematical modelling of the microgrid is discussed in Section 
3. In Section 4, the tri-level implemented framework is elaborated with details on the proposed algorithm 
to solve the proposed problem. Finally, the simulation results with technical discussions on outcomes are 
provided in Section 5. 
 
2. Problem Formulation 
 
The proposed MG scheduling problem consists of continuous and discrete variables as decision variables 
during optimization. Hence, it is articulated as an MINLP to minimize MG's daily operating and utility 
power exchange expenses. The network flow constraints and voltage stability index are considered for 
evaluation. 
 
2.1 Objective function 
 
𝐹ሺ𝑥ሻ is the objective function for the proposed MG daily operating cost-minimization problem is 
represented in (1), which consists of DG procurement costs 𝐷𝐺௖, battery storage costs 𝐵𝑆௖ and utility power 
exchange prices. The final objective cost function value, which is determined by decision variables, are 
arranged in a 𝑥 vector as represented by (2). Since the overall operation cost of the DG sources and battery 
storage devices involves startup/shutdown costs and bidding costs, the expanded version of DG operating 
costs 𝐷𝐺௖ and battery storage operating costs 𝐵𝑆௖ are given in (3) and (4). 

 
 

2.2 Operational constraints 
 

The performance of MG networks depends on effective planning and operation to mitigate total power loss 
and improve system voltage and loadability. The objective function 𝐹ሺ𝑥ሻ is subjected to the power balance 
equation shown in (5) where 𝑃௟௢௦௦

௧  is the power loss in the microgrid. The feasible operation of DG units 
and battery storage units is assured when the evaluated power is obtained within the minimum and 
maximum boundary values, as shown in (6). The proposed problem considered active and reactive network 
flow constraints are represented in (7) and (8). In (7), the active power flow calculation of the distributed 
network subjected to network constraints is represented in (7), and the reactive power flow calculation of 
the distributed network subjected to network flow constraints is represented in (8), respectively. With the 
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application of the BFS power flow algorithm [59], the power losses at each bus of the proposed test system 
are obtained. As mentioned earlier, the network's voltage profile enhancement depends on the loading 
factor. The maximum loadability index [60] between two consecutive buses can be evaluated from (9). The 
typical power-voltage characteristics for determining the maximum loading point with and without the DG 
unit's consideration are shown in Figure 2.  
 

 

                                                             𝑆௠ ൌ 𝑃௠ ൅ 𝑗ሺ𝑄௠ െ 𝑄௖,௠ሻ     (11) 

 
                           𝐹௟௢௦௦ ൌ 𝑀𝑖𝑛 ∑ 𝑔௠,௡ሾ𝑉௠

ଶ ൅ 𝑉௡
ଶ െ 2𝑉௠𝑉௡𝑐𝑜𝑠 ሺ𝜃௠ െ 𝜃௡ሻ ሿଶ்

௧   (12) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                           
Figure 2. Power-Voltage characteristic curve 

 
The voltage profile at each node must be sustained within the prescribed operational limits to ensure stable 
and reliable operation of the microgrid network. The highest value of the voltage deviation index [6] in (10) 
implies enriched voltage levels of the corresponding bus. The parameters 𝑣௩ and 𝑣௥௘௙ depicts the actual 
node voltage and the reference voltage. To enhance the system's voltage profile, installing capacitors at the 
optimal locations is done to evaluate the total power loss. With this viewpoint, the BFS-based load flow 
algorithm is chosen to determine the power loss matrix and to inject the reactive power 𝑄௖,௠ into the bus, 
as shown in (11). The current in the respective branch, say 𝑚 to 𝑛 is evaluated in the backward sweep based 
on injected current and again, in the forward-sweep, the current from the branch 𝑚 to 𝑛 is evaluated based 
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on a voltage of the bus 𝑚 [61]. Finally, the overall active power loss taken in the optimal placing of 
capacitors is evaluated as per (12). 
 
2.2.1 Customer satisfaction for Power Export/Import of Microgrid: 
 
The Distributed energy resources are integrated with the microgrid to provide an adequate amount of energy 
to critical and non-critical loads at optimal scheduling configuration to satisfy load demand during the day 
ahead scheduling. Therefore, customer satisfaction for a microgrid is to extract the maximum amount of 
energy from the distributed energy resources instead of power import from the utility to minimize the 
microgrid's overall operating cost and provides better optimal scheduling of interconnected DG units in the 
microgrid. From the power scheduling perspective, the Customer Satisfaction Index (CSI) is satisfied when 
the DG sources extract the maximum energy instead of importing power from the utility [62]. Suppose 
more power is imported from the utility to the microgrid; in that case, the overall operating cost is increased 
due to the dynamic nature of the market bid prices, and the increased market price results in the user 
dissatisfaction index of the microgrid. If the customer satisfaction is more than one indicates, surplus power 
can be extracted through the DG units and supplied to BS unit such that the MG can export power to the 
utility to optimize the overall operating cost of the MG and enhance customer satisfaction needs. The CSI 
is expressed as follows. 
 

             𝐶𝑆𝐼 ൌ ሼ 
௉೅೚೟ೌ೗

ா೅೚೟ೌ೗
     𝑃்௢௧௔௟ ൑  𝐸்௢௧௔௟ 

(13) 
     ሼ1          𝑃்௢௧௔௟ ൐  𝐸்௢௧௔௟ 

𝑃்௢௧௔௟ , 𝐸்௢௧௔௟ represents the actual and expected output power extracted from the distributed energy 
resources to meet the load demand for the day-ahead scheduling problem of grid-connected microgrid. 

2.3 Demand Side Management 
 
The demand-side management is categorized into utility-oriented and customer-oriented strategies, and it 
has been given greater attention in microgrid research owing to several techno-economic benefits [63]. The 
flexible load-shaping based DSM approach [64] is implemented in the proposed research work to modify 
the existing load demand profiles with 10% load participation. Implementing such a strategy can fully 
leverage the time independence of flexible loads, especially in the residential feeder. In general, the central 
DSM controller at the utility will receive the load forecast data, produce the desired load profile, and modify 
the customer load accordingly. The consumers keen to contribute to the DSM program will receive these 
signals via two-way communication architecture in the smart microgrid paradigm. The objective is to 
minimize the gap between the targeted load and desired load profile. The targeted load is formulated by 
taking forecasted, connected, and disconnected loads at a given scheduling period. The detailed 
mathematical analysis for the DSM strategy can be found in the research works [34] and [65]. 
 
3. Numerical Modelling 
 
The considered problem is assessed on the enhanced version of the IEEE 33-bus and IEEE 69-bus 
distribution feeder-based microgrid network, as shown in Figure 3 and Figure 4, respectively. The prime 
difference between the standard and enhanced versions lies in incorporating multiple DG units subjected to 
minimizing the network losses through optimal placement strategy. The enhanced IEEE 33-bus system 
consists of several DG units, such as one PV unit, two WT units, two FC units, two MT units, and one 
battery storage unit, to sustain the power demand equilibrium in-between utility and customers. Similarly, 
the enhanced IEEE-69 bus test network consists of two units of WT, PV, FC, and MT, each with one BS 
unit supporting renewable sources and maintaining the energy balance. The Backward-Forward Sweep 
(BFS) based optimal DG placement strategy [59] is implemented to evaluate the power loss matrix and 
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optimally allocate the DG sources in both test systems. Moreover, the power scheduling configuration for 
each DG source is obtained from the MGCC. With an assumption of receiving switch-over command from 
the MGCC during appropriate times, a unified conversion over on-grid and islanded system operation 
modes is done with the help of an intelligent switch placed near the point-of-coupling. The stable operation 
of the network is subjected to deviations in estimating power from RES. The numerical modelling of 
individual DG units is represented in the following section. 

3.1 Solar Photovoltaic (PV) 

The PV output power is dependent on the rated efficiency 𝜂௣௩, area 𝐴௣௩, and solar irradiance 𝐼௥. Out of 
these parameters, the output power of the solar PV is solely dependent on solar irradiance. Solar power 
prediction is truly challenging to network operators in practical conditions due to its intermittent nature. 
The nominal output power generated by the PV Solar panel is represented in (14). 

𝑃௢ ൌ 𝜂௣௩ ൈ 𝐴௣௩ ൈ 𝐼௥       (14) 

3.2 Wind Turbine (WT) 

The WT output power relies on wind velocity (m/s) and its direction. As a result of wind speed's uncertain 
nature, the relationship between power output and wind speed is considered non-linear. The WT's output 
power is zero when the range is below cut-in (𝑣௖௜) and above cut-out ( 𝑣௖௢) speed. The rated wind output 
power 𝑃௥௔௧௘ௗ is mathematically represented in (15). 

 𝑃௢ሺ௪்ሻ ൌ ሼ0      0 ൑ 𝑣 ൑ 𝑣௖௜  𝑜𝑟  𝑣 ൒ 𝑣௖௢   
𝑣ଶ െ 𝑣௖௜

ଶ

𝑣௥
ଶ െ 𝑣௖௜

ଶ ൈ 𝑃௥௔௧௘ௗ        𝑣௖௜ ൑ 𝑣 ൑ 𝑣௖௢ 

             ൌ ሼ𝑣௥௔௧௘ௗ 𝑃௥௔௧௘ௗ                                                                              𝑣௥௔௧௘ௗ ൑ 𝑣 ൑ 𝑣௖௢    (15) 

3.3 Microturbine (MT), Fuel cell (FC) and Battery Storage (BS) modelling 

MT and FC advantages are analogous to diesel generator in perspective of backup generation, reliable and 
efficient power supply units installed at consumer premises. The cost function of MT and FC are typically 
considered as quadratic cost functions given in (16) and (17), where ɑ, ɓ, 𝑐 are cost coefficients and 𝑃ெ், 
𝑃ி஼  are MT, and FC power outputs, respectively. Due to the dynamic response nature of the MT and FC, 
the microgrid system attains good stability and is able to supply the required demand to the consumer end. 
The relative bid price coefficients 𝐵஽ீ  are represented in terms of production cost 𝑃௖, depreciation cost 𝐷௖, 
investment costs 𝐴௖ are expressed in (18). 

𝐹ெ் ൌ ɑ𝑃ெ்
ଶ ൅ ɓ𝑃ெ் ൅ 𝑐     (16) 

𝐹ி஼ ൌ ɑ𝑃ி஼
ଶ ൅ ɓ𝑃ி஼ ൅ 𝑐     (17) 

                                             ሼ𝐵஽ீ ൌ 𝐶௙௨௘௟
௉ವಸ

ఎವಸ
൅ 𝐴௖ 𝐴௖ ൌ 𝐷௖

௉ವಸ,೙

௉೎
             (18) 

The following expressions (19) and (20) characterizes the charge level and the rate limit set for the BS 
charge and discharge.  

𝑄஻ௌ,௧ ൌ 𝑄஻ௌ,௧ିଵ ൅ 𝜂௖𝑃௖𝛿𝑡 െ
ଵ

ఎ೏
𝑃ௗ𝛿𝑡                                    (19)  

൜
𝑄ாௌ,௠௡ ൑ 𝑄ாௌ,௧ ൑ 𝑄ாௌ,௠௫

   𝑃௖௛,௧ ൑ 𝑃௖௛,௠௫; 𝑃ௗ௖௛,௧ ൑  𝑃ௗ௖௛,௠௫
              (20) 
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where 𝑄஻ௌ,௧ and 𝑄஻ௌ,௧ିଵ represents the net energy stored during the period 𝑡 and 𝑡 െ 1. 𝑃௖(𝑃ௗሻ and 𝜂௖ሺ𝜂ௗሻ 
are rate of charge/discharge allowed and BS efficiency during charging/discharging, for a set period of time 
𝛿𝑡. 𝑄ாௌ,௠௡ሺ𝑄ாௌ,௠௫ሻ and 𝑃௖,௠௫ (𝑃ௗ,௠௫) represents the min./max. limitations and upper bound on the 
charge/discharge rate of the BS. The hourly utility market price and feasible generation-limits of DG-units 
with its hourly bid prices are taken from the reference [34] and also provided in the supplementary martial 
attached.   

 
Figure 3. Enhanced IEEE 33-bus distribution network 

 
 
 

 
Figure 4. Enhanced IEEE 69-bus distribution network 
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3.4 Scenario generation and reduction process 

The intermittent energy sources exhibit stochastic behavior due to their uncertain nature. The stochastic 
input variables such as solar irradiance, wind velocity, and market prices are addressed in this research 
work. Since solar irradiance and wind velocity are random parameters, they cannot be modelled using a 
normal distribution function. Hence, Beta PDF and Weibull PDF are commonly used in literature. The 
related mathematical modelling of uncertain parameters is taken from the work [15]. With the consideration 
of 9 levels of probability density evaluation, as represented in Figure 5 for each uncertain parameter, a total 
of ሺ9ሻଷ ൌ 729 scenarios will be generated to address the random input variables. To reduce the 
computational burden, the scenarios for solar irradiance, wind velocity and utility market prices are reduced 
to 9 scenarios and their respective output power are evaluated each as illustrated in Figure 6, Figure 7 and 
Figure 8. 

 
Figure 5. Discretization of probability densities  

 

 
 

Figure 6. Scenarios for Solar power generation 
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Figure 7. Scenarios for Wind power generation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Scenarios for utility market prices 
 

4. Methodology 
4.1 Tri-level stochastic optimization framework 

The tri-level stochastic optimization framework is presented in Figure 9, which is utilized to work out the 
considered MG optimum scheduling problem in on-grid and islanded systems operation subjected to 
maximizing the loadability and minimizing the operating costs and voltage deviation. The challenges in 
solving the proposed problem are i) Intermittency of RES, ii) Voltage deviations, iii) Loadability 
Enhancement in on-grid and islanded systems operation iv) Optimal scheduling configuration based on the 
DSM application. Since the problem involves diversified objectives, the proposed tri-level stochastic 
optimization framework is envisioned to meet the above-mentioned challenges. The detailed description at 
each level is as follows. 
a) Level-1: Stochastic Optimization  

Since random input variables such as solar irradiance, wind speed, and utility market prices were 
considered, the stochastic scenario generation and reduction method is implemented to handle the 
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uncertainties. Level 1 in the framework determines the final reduced scenarios based on the probability 
distribution function for the optimization process.  

Scenario generation for uncertainties 
associated solar PV,Wind speed and Market 

Prices

Read the input data of DG units and 
system parameters

PDF Beta PDF

Scenario Reduction method

Solar irradiance, Wind speed, Market 
prices, Loads

Optimal placement of DG Units and 
Capacitance

Enhancement of Voltage profile

Application of Flexible load 
shaping strategy based 

DSM

1st Stage

2nd Stage

3rd Stage

Voltage Profile 
Enhancement 

Weibull PDF

Enhancement of MG 
loadability 

Minimization of Total 
Operating Cost 

Stochastic 
Optimization 

Customer 
Satisfaction Index

 
Figure 9. Proposed three-level stochastic optimization framework 

 

b) Level-2: Voltage profile enhancement 

In Level 2, the enhanced IEEE 33-bus and IEEE 69-bus distribution networks are considered to evaluate 
voltage profile and mitigation of power losses by incorporating DG sources and capacitors in optimal 
locations. Both grid-connected and islanded modes of operation are considered for evaluating voltage 
profiles. The overall power losses were evaluated based on Backward-Forward Sweep (BFS) based load 
flow algorithm [67].   
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c) Level-3: Loadability enhancement, optimal scheduling of DG Units and customer satisfaction index 

The maximum loadability is evaluated based on the loading factor at different DG bus locations. Later, the 
DSM strategy is applied in Level 3 of the proposed framework to determine the day-ahead hourly optimum 
scheduling of on-grid and islanded MG networks. The impact of DSM on microgrid loadability 
enhancement and MG operational costs considering real-time seasonal load profile is investigated. Further, 
the Customer satisfaction index is evaluated based on the optimum scheduling of DG units for enhancing 
the microgrid reliability and operation. With the evaluation of CSI, The WOA is chosen to obtain optimal 
scheduling configuration. The details regarding the proposed Whale Optimization Algorithm are as follows. 

 
4.2 Whale Optimization Algorithm (WOA) 
 
The complex engineering optimization problems which involve continuous and discrete variables as 
optimization parameters needs powerful metaheuristic algorithms to solve without getting stuck at the local 
optimum point [68]. According to the theories behind the inspiration of metaheuristic algorithms, they are 
categorized into several distinct groups of algorithms: nature-inspired, swarm intelligence, evolutionary, 
and human-based algorithms. In view of this one of the applications WOA is bio-printing-3D for artificial 
tissues and organs in the field of plastic surgery to avoid errors during bio-printing process [69]. The 
recently reported WOA [70] comes under nature-inspired technique is that the whales are remarkable 
creatures consisting of spindle cells in their brain, enabling whales to think, judge, learn, and communicate. 
The unique preying behavior used by humpback whales is called the 'bubble-net feeding' strategy, and it is 
the inspiration behind the mathematical modelling of this algorithm. The mathematical modelling of WOA 
consists of three stages. When the location of prey is identified, the humpback whale encircles the prey, 
and this concept is utilized to update the search agents in the solution space.  

 
Figure 10. Helix-shaped encircling behaviour of whales 
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𝐷ሬሬ⃗ ൌ ห𝐶.ሬሬሬ⃗ 𝑋∗ሬሬሬሬ⃗ ሺ𝑡ሻ െ 𝑋⃗ሺ𝑡ሻห      (21) 

𝑋⃗ሺ𝑡 ൅ 1ሻ ൌ 𝑋∗ሬሬሬሬ⃗ ሺ𝑡ሻ െ 𝐴. 𝐷ሬሬ⃗         (22) 
𝑋⃗ሺ𝑡 ൅ 1ሻ ൌ 𝐷ᇱሬሬሬሬ⃗ . 𝑒௕௟.𝑐𝑜𝑠 ሺ2𝜋𝑙ሻ ൅ 𝑋∗ሬሬሬሬ⃗ ሺ𝑡ሻ     (23) 

𝑋⃗ሺ𝑡 ൅ 1ሻ ൌ ሼ𝑋∗ሬሬሬሬ⃗ ሺ𝑡ሻ െ 𝐴. 𝐷ሬሬ⃗    𝑖𝑓 𝑝 ൏ 0.5    𝐷ᇱሬሬሬሬ⃗ . 𝑒௕௟. 𝑐𝑜𝑠 ሺ2𝜋𝑙ሻ ൅ 𝑋∗ሬሬሬሬ⃗ ሺ𝑡ሻ   𝑖𝑓 𝑝 ൒ 0.5         (24) 
𝐷ሬሬ⃗ ൌ ห𝐶.ሬሬሬ⃗ 𝑋௥௔௡ௗሬሬሬሬሬሬሬሬሬሬሬ⃗ െ 𝑋⃗ห      (25) 

𝑋⃗ሺ𝑡 ൅ 1ሻ ൌ 𝑋௥௔௡ௗሬሬሬሬሬሬሬሬሬሬሬ⃗ െ 𝐴. 𝐷ሬሬ⃗         (26) 
 

Read the input data 
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Initialize the search agent (population), decision 
variables and maximum iteration count

Calculate individual search agent and update among 
the total search agents and choose the best search agent

P<0.5

P≥0.5

Apply Shrinking 
Encircling 
Mechanism

Apply Spiral 
Model

Update Search agent 
position as per 
equation (23)

Is search agents met the 
required criteria

Is maximum 
iteration count 

reached

Display the best fitness solution and best 
position

Yes

No

Yes

Yes

No

No

Yes

 
 

Figure 11. Flowchart of WOA 

At first, the current best solution 𝑋⃗ሺ𝑡ሻ is assumed to be at the optimum point, and its position gets updated 
after the best agent 𝑋∗ሬሬሬሬ⃗ ሺ𝑡ሻ is defined in the iterative process according to (21) and (22). The parameters 𝐴 
and 𝐶 are the coefficient vectors. In the exploitation phase, the bubble net strategy of humpback whales is 
mathematically modelled with the help of a spiral equation as represented in (23). This equation models 
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their helix-shaped movement shown in Figure 10, where 𝐷ᇱሬሬሬሬ⃗  denotes the distance between the current 
position and the best position in the solution space. The logarithmic spiral's form is determined by the 
constant values indicated by the parameter b, whereas l is a random integer. Humpback whales' encircling 
habit is specified by a random parameter p that ranges evenly from 0 to 1. During this phase of exploitation, 
humpback whales use two distinct methods to pursue their prey. The former tactic relies on a contracting 
encircling mechanism, whereas the later employs a spiral model mechanism. However, the odds of using 
any of these tactics are even, thus a uniformly random value is used to describe the arbitrary parameter p. 
A contracting encircling mechanism is selected if p < 0.5, whereas a spiral model is selected if p > 0.5 (21). 
In the exploration phase, the random searching behaviour is modelled with the determination of coefficient 
vector 𝐴 as either greater than 1 or less than -1 to enhance the global search capability. The position of 
whales is mathematically updated as per (25) and (26). The overall procedure for applying WOA to solve 
the proposed problem is shown in Figure 11. 
 
5. Simulation results and discussion 
 
5.1 Performance of WOA 
 
The enhanced IEEE 33-bus and IEEE 69-bus distribution network-based MG test system is chosen to 
evaluate the proposed optimal scheduling problem in both grid-connected and islanding modes. The WOA 
is determined to solve the proposed problem in the MATLAB R2022b M-file programming having a system 
configuration of 64-bits, core i9, 3.20 GHz processor, 16 GB RAM with dedicated GPU of 8 GB. The MG 
test system consists of DG sources, including dispatchable and non-dispatchable energy sources. To 
validate the efficacy of the proposed approach, a baseload shown in Figure 12 is considered, and the optimal 
operating cost subjected to operational constraints is obtained by solving with WOA. The simulation results 
are compared with eight state-of-the-art algorithms, namely RCGA, PSO, TLBO, QTLBO, QPSO, FFA, 
GWO, and SSA. The initial population of one-hundred fifty and iteration count of two hundred is selected, 
and each algorithm is run for 30 successful trial runs for a reasonable comparison. The details regarding 
algorithm-specific parameters are shown in Table 2. In the later part of this section, the detailed analysis of 
applying DSM strategy to weekend and weekday seasonal load profiles shown in Figure 12 is discussed.  
 
With the consideration of above-mentioned state-of-the-art algorithms, a brief comparative study is 
conducted to validate the efficiency of proposed algorithm. Table 3 and Table 4 shows the obtained optimal 
operation costs of on-grid and islanded system of IEEE 33-bus distribution network by solving the proposed 
optimization problem with WOA. Similarly, the simulation results for on-grid and islanded system of IEEE 
69-bus distribution network are shown in Table 5 and Table 6.  
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Figure 12. Seasonal load profiles 
The obtained simulation results in both test networks prove the superiority of WOA in comparison to 
solution efficacy and computational time required. From the obtained results in both test systems, it is 
observed that the bid prices considered for the power exchange with the utility in on-grid mode incurs less 
operating cost. The islanded mode of operation where the DG units alone incurs high operating cost based 
on their bid prices. The proof of convergence for IEEE 33-bus distribution network is shown in Figure 13, 
where WOA is observed to converge to the optimum solution in less than 40 iterations. 
 

Table 2. Specific control parameters for algorithms  
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Figure 13. Convergence characteristics of WOA 
 

Table 3. Simulation results of grid-connected enhanced IEEE 33-bus distribution network 

Algorithm 
Best 
Cost 

($/day) 

Mean 
Cost 

($/day) 

Worst 
Cost 

($/day) 

Standard 
Deviation 

Computational 
time (s) 

RCGA 210.41 212.5925 214.775 0.154326 56.866 
PSO 207.44 209.2525 211.065 0.128163 45.242 

TLBO 202.64 204.1525 205.665 0.10695 41.034 
QTLBO 199.23 200.7125 202.195 0.104829 35.502 
QPSO 197.19 198.45 199.71 0.089095 30.568 
FFA 194.66 195.685 196.71 0.072478 28.273 

GWO 191.96 192.485 193.01 0.037123 21.063 
SSA 188.15 188.482 188.814 0.023476 16.688 

WOA 184.47 184.486 184.502 0.001131 12.337 
 

Table 4. Simulation results of islanded enhanced IEEE 33-bus distribution network 

Algorith
m 

Best 
Cost 

($/day) 

Mean 
Cost 

($/day) 

Worst 
Cost 

($/day) 

Standard 
Deviatio

n 

Computationa
l time (s) 

PSO 400.38 402.915 405.45 0.2070 46.06146 
RCGA 394.51 396.08 397.65 0.1282 36.64602 
TLBO 390.59 391.865 393.14 0.1041 33.23754 
QPSO 384.16 385.2 386.24 0.0849 28.75662 

QTLBO 376.68 377.58 378.48 0.0735 24.76008 
FFA 373.5 373.805 374.11 0.0249 22.90113 

GWO 368.59 369.105 369.62 0.0420 17.06103 
SSA 360.26 360.94 361.62 0.0555 13.51728 

WOA 348.68 348.82 348.96 0.0114 9.99297 

 
Table 5. Simulation results of grid-connected enhanced IEEE 69-bus distribution network 

Algorithm 
Best 
Cost 

($/day) 

Mean 
Cost 

($/day) 

Worst 
Cost 

($/day) 

Standard 
Deviation 

Computational 
time (s) 

RCGA 157.02 160.32 163.62 0.07260 0.269444 
PSO 155.23 157.39 159.55 0.03110 0.176363 
FFA 154.95 156.29 157.63 0.01197 0.109411 

TLBO 150.17 151.89 153.61 0.01972 0.140437 
QPSO 149.92 151.27 152.62 0.01215 0.110227 

QTLBO 147.16 148.42 149.67 0.01050 0.102470 
SSA 146.41 147.28 148.14 0.00499 0.070627 

GWO 145.92 146.40 146.88 0.00154 0.039192 
WOA 144.63 144.71 144.79 0.00043 0.006532 
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Table 6. Simulation results of grid-connected enhanced IEEE 69-bus distribution network 

Algorithm 
Best 
Cost 

($/day) 

Mean 
Cost 

($/day) 

Worst 
Cost 

($/day) 

Standard 
Deviation 

Computational 
time (s) 

PSO 206.53 208.26 209.98 0.01984 0.140846 
RCGA 203.24 205.55 207.86 0.03557 0.188611 
TLBO 202.85 204.25 205.65 0.01307 0.11431 

QTLBO 202.5 203.68 204.86 0.00928 0.096347 
QPSO 201.06 202.36 203.66 0.01127 0.106145 
GWO 199.15 200.95 202.74 0.02148 0.146561 
FFA 197.88 198.89 199.89 0.00673 0.082058 
SSA 193.97 194.30 194.62 0.0007 0.026536 

WOA 192.44 192.75 193.06 0.00064 0.025311 

 
Figure 14. Voltage profile (p.u.) evaluated at each bus 

 
5.2 Evaluation of loadability and voltage deviation 
 
The improved IEEE 33-bus radial distribution network's voltage profiles are assessed at each bus after the 
optimum location of DG-units, as shown in Figure 14. With the simultaneous incorporation of DG units 
and capacitors at optimal locations [45] in the network, the voltage profile is enhanced in contrast with the 
case without any DG sources and capacitors are considered. For instance, the improvement of voltage at 
bus 19 is increased by 2.836 % with the incorporation of DG units.  
 
Despite the fact that the voltage stability is subjected to change with loading factor, the initial load demand 
profile is modified by applying flexible load shaping DSM strategy. An increase of voltage of 4.272% is 
again observed at bus 19 in the enhanced IEEE 33-bus distribution test system as shown in Figure 14. The 
loadability factor presented in (9) is evaluated with WOA at the buses where DG units are located. To show 
the effectiveness of both enhanced test systems, the comparison of parameters being assessed with and 
without consideration of DG units, and DSM strategy is provided in Table 7 and Table 8. The obtained 
simulation results show that the interdependency of loadability factor and incorporation of flexible load 
shaping DSM strategy. The overall voltage deviations and power losses are evaluated by solving the 
proposed algorithm and a comparative analysis with existing state-of-the-art algorithms is presented. Table 
9 shows the simulated results without consideration of DG units, and Table 10 shows the simulated results 
with consideration of DG units. And it is evident that a significant extent of overall voltage deviation and 
power losses are mitigated as shown in Table 10. From the obtained simulation results, it is observed that 
the voltage profile and loadability factor are enhanced and the overall voltage stability gets improved to 
accommodate peak loads effectively. 
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Table 7. Evaluation of Loadability factor with optimal placement of DG sources and implementation of DSM 
program for enhanced IEEE 33-bus network 

 

Bus no 
Without 
DG units 

With DG 
units 

With 
DSM 

6 1.5191 1.792512 2.1151
8 1.9601 2.312875 2.6366

12 2.062 2.432775 2.8950
18 1.1455 1.351647 1.6084
25 1.0793 1.273598 1.5155
28 0.7930 0.935793 1.1697
33 0.4824 0.569225 0.7229

Table 8. Evaluation of Loadability factor with optimal placement of DG sources and implementation of DSM 
program for enhanced IEEE 69-bus network 

 

Bus no 
Without 
DG units 

With DG 
units 

With 
DSM 

1 0.269 0.429 0.622
5 0.412 0.657 0.953
7 0.513 0.818 1.186
9 0.568 0.906 1.314

13 0.696 1.110 1.610
16 0.716 1.142 1.656
57 0.826 1.317 1.910
58 0.939 1.498 2.172
59 1.099 1.753 2.542
60 1.193 2.903 2.759
64 1.293 2.062 2.990
65 1.314 2.096 3.039

 
Table 9. Evaluation of voltage deviation and power losses without consideration of DG sources 

 

Algorithm 
Voltage 

Deviation 
(p.u.) 

Active 
Power 
losses 
(kW) 

Reactive 
Power 
losses 

(kVAR) 
RCGA 0.0793 210.47 140.632
PSO 0.0747 210.065 140.112

TLBO 0.0742 209.976 139.965
QTLBO 0.0722 209.62 139.915
QPSO 0.0719 208.889 139.67
FFA 0.0718 208.665 139.12

GWO 0.0711 208.11 138.96
SSA 0.0704 206.932 138.64

WOA 0.0686 206.732 137.9 
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Table 10. Evaluation of voltage deviation and power losses with consideration of DG sources 
 

Algorithm 
Voltage 

Deviation 
(p.u.) 

Active 
Power 
losses 
(kW) 

Reactive 
Power 
losses 

(kVAR) 
RCGA 0.0721 203.96 133.84
PSO 0.0706 203.58 133.78

TLBO 0.0689 203.11 133.56
QTLBO 0.0681 202.97 133.08
QPSO 0.0678 202.77 132.95
FFA 0.0671 202.12 132.88

GWO 0.0668 201.91 132.65
SSA 0.0665 201.63 132.11

WOA 0.0663 200.91 131.93 
 
5.3 Simulation results for optimal scheduling of microgrid 
The impact of flexible load-shaping strategy improved the overall loadability of the system and thus, the 
concerned microgrid optimal scheduling is determined. The enhanced IEEE 33-bus system is evaluated 
with both weekend and weekday loads of distinct seasonal load profiles [43], as shown in Figure 12. The 
flexible load-shaping DSM approach with 10% load contribution is applied to modify the loads before 
optimal scheduling configuration is determined. It should be noted that the enhanced test system consists 
of flexible loads that are utilized as target loads, and the concerned data is sent through the DSM central 
controller. It is assumed that both renewable sources, i.e., PV and WT, are operated at maximum power 
point condition. The detailed analysis on hourly scheduling of DG sources in grid-connected MG 
considering seasonal load profiles is discussed below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Optimal schedule of microgrid network considering winter weekday load profile 

 
The simulated results obtained for solving the proposed problem on grid-connected enhanced IEEE 33-bus 
under the winter weekend and weekday load profiles is illustrated in Figure 15 and 16, respectively. In 
contrast with the winter weekend load profile, the contribution from DG units has increased by a substantial 
amount. With the application of the DSM strategy, the battery charging profile is enriched by 21.35%. The 
load factor is improved by 0.34% and 1.01% in weekday and weekend cases, respectively, and the peak 
demand is reduced to 10%. Concerning bid prices, the optimal configuration is obtained through maximum 
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contribution from MT and FC units. It is observed that the consumption of battery is 14.72% more during 
weekdays in comparison with weekend loads.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16. Optimal schedule of microgrid network considering winter weekend load profile  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Optimal schedule of microgrid network considering summer weekday load profile  
 

Considering IEEE 33-bus active distribution network case of summer load profiles for weekdays and 
weekends shown in Figure 17 and Figure 18, the contribution from MT is increased by 6.6% with the 
employment of the DSM strategy. Similarly, the load profile is boosted by 1.90% and 3.33% for weekday 
and weekend loads. The peak demand for summer load profile has been reduced by 12.7% with 
implementing the proposed strategy. From hour 12 to hour 21, the load demand in all seasonal profiles is 
usually high, especially at the spring load profile.  
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Figure 18. Optimal schedule of microgrid network considering summer weekend load profile  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19. Optimal schedule of microgrid network considering spring weekday load profile 
 

Figure 19 and 20 shows that the contribution from both MT units is high and FC units are low before 
implementation of DSM strategy, and this scenario changes entirely with the application of DSM. The load 
factor is improved by 1.58% and 4.53% in weekday and weekend load profiles, respectively. As mentioned 
earlier, the two WT and solar PV units deliver maximum power to the connected loads over the scheduling 
horizon. The voltage profiles are enhanced with the proposed WOA optimization technique and compared 
with different state-of-the-art is represented in Figure 22, respectively. 
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Figure 20. Optimal schedule of microgrid network considering spring weekend load profile  
 

 
 
 

Table 11. Impact of DSM strategy on operating costs ($/day)  
 

Test System DSM 
Winter 

Weekday 
Winter 

Weekend 
Summer 
Weekday 

Summer 
Weekend 

Spring 
Weekday 

Spring 
Weekend 

Grid-connected 
IEEE 33-bus 

network 

Without 
DSM 273.5 262.7 281.3 260.5 266.1 271
With 
DSM 182.7 176 174.4 170.8 197.2 169.3 

    
Islanded IEEE 
33-bus network 

Without 
DSM 495.98 511.06 487.48 498.83 454.31 499.18
With 
DSM 389.16 437.6 421.27 425.14 413.05 420.08 

    
Grid-connected 

IEEE 69-bus 
network 

Without 
DSM 232.06 237.72 218.82 225.35 226.81 232.94
With 
DSM 177.11 180.01 184.36 189.94 187.09 196.36 

    
Islanded IEEE 
69-bus network 

Without 
DSM 384.56 386.03 370.76 376.71 396.70 387.54
With 
DSM 268.02 269.35 260.28 255.11 270.95 259.45 
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Figure 21. Impact of DSM strategy on battery charging profile  

 
Table 12: Evaluation of Customer satisfaction Index IEEE-69 Bus Grid-Connected Network 

 
 Winter 

weekday 
Winter 

Weekend 
Summer 
Weekday 

Summer 
Weekend 

Spring 
Weekday 

Spring 
Weekend 

CSI (With 
Out DSM) 

0.6034 0.615 0.590 0.598 0.5717 0.601 

CSI (With 
DSM) 

0.6608 0.6683 0.7083 0.744 0.69 0.756 

 

 
Figure 22: Enhancement of Voltage profile with WOA and compared with other algorithms 

 
6. Discussion 

The overall operating cost comparison with the implementation of DSM strategy is shown in Table 11. As 
discussed earlier, with the load participation of 10%, the flexible load-shaping approach is able to reduce 
the operating cost of on-grid and islanded system operation to a significant level. For instance, the operating 
costs for grid-connected IEEE 33-bus system got reduced by 38% for summer weekday profile and in 
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islanded mode, the operating cost on winter weekday got reduced by 21%. Similar comparative study is 
done on enhanced IEEE 69-bus system and the scalability of the proposed framework is verified effectively. 
From the observation, it is concluded that the proposed DSM strategy can be applied to obtain cost savings 
throughout the year and in long run, the DNO can yield potential economic benefits annually. The impact 
of flexible load shaping DSM strategy on battery state of charge (SOC) for enhanced IEEE-33 bus active 
distribution network is shown in Figure 21. As the state of charge of the BS unit is improved with the 
implementation of DSM strategy, their charging and discharging cycle will be improved in long run and 
provides necessary support to maintain power balance. With the incorporation of demand side management 
programs on different seasonal load profiles the customer satisfaction index is enhanced for extracting the 
maximum amount of energy from the distributed energy sources instead of importing power from the utility 
for reducing the overall operating cost of MG and also provide sufficient amount of power to the respective 
loads without any interruption to the end users and the evaluated values are tabulated in Table 12, 
respectively. It should also be noted that it can be computationally challenging to discover the ideal solution 
to energy management problems because of their complexity and the size of the search space involved. For 
real-world energy management issues where an optimal solution cannot be found or would be too complex 
to implement, metaheuristics offer a workable alternative. In this study, we evaluate the proposed algorithm 
against state-of-the-art algorithms and argue that it provides significant improvements in terms of 
performance, accuracy, and convergence speed, making it a near-ideal solution for solving difficult issues 
in energy management. 
 
7. Conclusion 
In this study, we explore a new optimum scheduling problem for microgrids coupled with the restrictions 
of the network's flow, an ideal solution is created and found. In order to measure how well the improved 
IEEE 33-bus and IEEE 69-bus radial distribution networks function, the maximum loadability index and 
the voltage deviation index along with customer satisfaction index are considered as evaluation metrics. 
This research endeavor examines how the loadability of a microgrid is affected by the interplay between a 
variable load shaping DSM technique and the best placement of DG units. A stochastic scenario-based 
approach handles the uncertain parameters of solar power and wind power outputs and utility market prices. 
The three-level framework is designed and implemented to determine optimal power scheduling of 
microgrids subjected to network flow constraints. The voltage deviation is mitigated by 16.39% with the 
incorporation of distributed generation units and capacitors at the optimal location and implementation of 
flexible load shaping based demand-side management strategy. The overall operating cost savings obtained 
for implementing the proposed DSM strategy for winter-weekday, winter-weekend, summer-weekday, 
summer-weekend, spring-weekday, and spring-weekend load profiles are 33.19%, 33%, 38%, 34.43%, 
25.89% and 37.52%, respectively. The overall system performance in terms of voltage stability is improved, 
and the power losses are reduced by 4.73 % per day. The loadability of enhanced IEEE 33-bus test system 
and IEEE 69-bus test system is improved by 33.26% and 37.30%, respectively. The Customer satisfaction 
index is also evaluated based on the power exchange between utility and the microgrid. With the customer 
satisfaction index point the maximum power is extracted from the distributed energy resources instead of 
power importing from the utility to reduce the overall operating costs to satisfy the required load demand 
at the end users. The overall customer satisfaction index is evaluated and improved according to the 
seasonal load profiles winter weekday, winter-weekend, summer-weekday, summer-weekend, spring-
weekday, and spring-weekend by 8.68%, 7.97%, 16.7%, 19.62%, 17.14%,20.50% respectively. The 
obtained results using WOA decrease the overall computational burden on the system when compared with 
other well-established metaheuristic algorithms which has been exclusively discussed with tabular and 
graphical representation in section 5. The attained results also convey that the annual cost and power losses 
will be reduced significantly from the perspective of microgrid operators, and the customer satisfaction 
index is also improved. Further to add, the interdependency of the microgrid is decreased towards utility 
simultaneously and the overall microgrid stability is enhanced by the associated DGs RESs and storage 
units with less emissions. An expansion of the proposed approach is now in development as an extension 
in future work to include thorough modelling with multiple generating and storage systems for a multi-



29 
 

microgrid environment considering uncertainty utilizing machine learning, reinforce learning, distributed 
learning models and derivative based optimization models or tools such as “General algebraic modeling 
system (GAMS)”. 
 
Appendix:        Indices: 
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