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Summary

This dissertation is a literature study that investigates the validity of dif-
ferent linear models in application. Validity in this context refers to how
well simplified lower-dimensional models, such as the Timoshenko beam and
Reissner-Mindlin plate models, compare to more realistic higher-dimensional
models, including a two-dimensional beam, and three-dimensional beam and
plate models. The models in this dissertation are all special cases of a general
vibration problem.

First, the dissertation examines the existence and uniqueness of the general
vibration problem. An example is used to explain the theory, which is then
subsequently applied to by proving that the assumptions are satisfied.

Following this, the concept of modal analysis is introduced using an example,
before delving into the general case. These results on modal analysis are
crucial to the dissertation, as they explain that the solutions of the models
will compare well if the eigenvalues and eigenfunctions of the models compare
well.

The dissertation then explores two theoretical results for the Finite Element
Method (FEM). The initial result involves an analysis of an article on the
convergence of the Galerkin Approximation. The findings of the article are
reformulated as theorems with simplified notation for clearer presentation

Subsequently, the dissertation reviews results from a textbook regarding the
convergence of eigenvalues and eigenfunctions in a general vibration problem
when utilizing FEM. These results are adapted with updated notation and
expanded upon for a more comprehensive explanation of the theory.

Concerning the Timoshenko beam model, the dissertation investigates an ar-
ticle that presents a method to calculate the exact solutions of the eigenvalue
problem. Two practical examples are provided to illustrate the application of
this method. Additionally, the dissertation looks at an article that compares
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the theoretical results of the eigenvalue problem with an empirical study done
by the authors.

For the remaining models, the dissertation employs FEM to solve the eigen-
value problems. The boundary value problems of each model are rewritten
as systems of ordinary differential equations in matrix form using FEM. The
eigenvalue problems are then derived from this matrix representation. Piece-
wise Hermite cubic basis functions are used, and the solutions of the eigenvalue
problems are approximated using MATLAB scripts.

In investigating the validity of simplified models, the dissertation first consid-
ers an article comparing the Timoshenko beam model to a two-dimensional
beam model. The authors method of comparison is discussed, and their results
are replicated with a higher degree of accuracy. The dissertation then extends
this approach to assess the validity of a two-dimensional beam model and a
Reissner-Mindlin plate model, using the three-dimensional model as reference.
The method to compare the models is the same as in the article. First the
eigenvalues are calculated, sorted and matched by analyzing the corresponding
mode shapes. The mode shapes are also used to identify eigenvalues specific
to beam- and plate-type problems. The error can then be calculated. Dif-
ferent shapes of beams and plate models are considered that are realistic in
application.

The derivation and comparison of the two and three-dimensional models is the
main contribution of this dissertation.
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1 Models for comparison

In this chapter, the different models are presented.

1.1 Model problem for a three-dimensional

elastic solid

In this section we introduce the linear theory for a three-dimensional elastic
solid undergoing vibration. The textbook of Fung [Fun65] is used with some
changes in the notation.

The equation of motion and constitutive equation are given in Subsection 1.1.1.
The dimensionless form of the equation of motion and constitutive equation
are derived in Subsection 1.1.2. Model problems are presented in Subsection
1.1.3. The variational form for the vibration problem is given in Section 1.1.4.
Plane stress is discussed in Section 1.1.5

1.1.1 Equations of motion and constitutive equations

Consider a vector valued function u defined on domain Ω ⊂ R3 where u
describes the displacement of Ω in R3.

Equation of motion

ρ∂2t u = divT +Q. (1.1.1)

In (1.1.1), ρ is the density of the elastic body, T is the stress tensor with
components σij, Q is an external body force acting on Ω and divT is the
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divergence of the tensor T and represented by

divT =

∂1σ11 + ∂2σ12 + ∂3σ13
∂1σ21 + ∂2σ22 + ∂3σ23
∂1σ31 + ∂2σ32 + ∂3σ33

 . (1.1.2)

Only small vibrations are considered. This means that the local displacements
and rotations are small. Hence the stress tensor T is symmetric. Let Tr(T )
denote the trace of the stress tensor T , that is

Tr(T ) = σ11 + σ22 + σ33. (1.1.3)

Remark Some books prefer to use ρQ for the external body force, but Q is
also correct. Q is then a force per unit volume.

Strain

The infinitesimal strain tensor is defined on Ω as E , with components

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.1.4)

In this dissertation, we only consider isotropic materials. As a consequence,
the constitutive equation (Hooke’s law) takes the following form.

Hooke’s law in terms of E and ν

E =

(
1 + ν

E

)
T − ν

E
Tr(T )I, (1.1.5)

where E is Young’s Modulus and ν is Poisson’s ratio.

Hooke’s law in the alternative form

If the principal stresses σi are all non-zero, then Hooke’s law can be written
in the following form

T =

(
E

1 + ν

)
E +

νE

(1 + ν)(1− 2ν)
Tr(E)I. (1.1.6)
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Tr(E) = ε11 + ε12 + ε13 is the trace of the strain operator E .

Hooke’s Law in the alternative form (1.1.6) is the constitutive equation for the
three-dimensional elastic model used in problems. Conditions for the problems
to be well posed, are discussed in Chapter 2.

1.1.2 Dimensionless form

The dimensionless form of the equation of motion and constitutive equation
are derived in this subsection. Suppose ℓ represents some notable dimension
(e.g. the length) of the elastic body and G the shear modulus of elasticity.

Set

τ =
t

t0
, ξi =

xi
ℓ
, u∗(ξ, τ) =

1

ℓt0
u(x, t), Q∗ = ℓGκ2Q,

and σ∗
ij(ξ) =

1

Gκ2
σij(x),

where κ2 is a dimensionless constant and t0 must be specified. A convenient
choice for t0 (see Section 1.3) is

t0 = ℓ

√
ρ

Gκ2
.

Substitution into (1.1.1) yields

∂2τu
∗ = divT ∗ +Q∗,

where T ∗
ij = σ∗

i,j(ξ). The strain E is already dimensionless.

The dimensionless form of (1.1.5) and (1.1.6) are

E =
Gκ2

E
[(1 + ν)T ∗ − νTr(T ∗)I] (1.1.7)

and

T ∗ =
E

Gκ2

[(
1

1 + ν

)
E +

ν

(1 + ν)(1− 2ν)
Tr(E)I

]
. (1.1.8)
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Introduce a dimensionless constant

γ =
Gκ2

E
.

Using this dimensionless constant, (1.1.7) and (1.1.8) becomes

E = γ(1 + ν)T ∗ − γνTr(T ∗)I (1.1.9)

and

T ∗ =
1

γ(1 + ν)
E +

ν

γ(1 + ν)(1− 2ν)
Tr(E)I. (1.1.10)

Remark The constant Gκ2 is introduced to allow for comparisons of the mod-
els in later chapters. The constant comes from the Timoshenko beam theory
and is explained in Section 1.3

In the rest of this section’s the original notation is retained for convenience.

Equations of motion in dimensionless form

∂2t u = divT +Q (1.1.11)

with

divT =

∂1σ11 + ∂2σ12 + ∂3σ13
∂1σ21 + ∂2σ22 + ∂3σ23
∂1σ31 + ∂2σ32 + ∂3σ33

 . (1.1.12)

Constitutive equation in dimensionless form

T =
1

γ(1 + ν)
E +

ν

γ(1 + ν)(1− 2ν)
Tr(E)I (1.1.13)

1.1.3 Model problems

Suppose Ω ⊂ R3 is the reference configuration for a solid executing small
vibrations. The boundary of Ω can be divided into two distinct parts, referred
to as Σ and Γ. The following will be considered a model problem for a three-
dimensional elastic body executing small vibrations.
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The equations of motion (1.1.11) and (1.1.12) are satisfied in Ω;

Hooke’s law (1.1.13) is satisfied in Ω;

The displacement u = uΣ is specified on Σ;

The traction Tn = tΓ is specified on Γ.

The two model problems considered in this dissertation are described below.

Problem 3D-1

Find a vector valued function u, satisfying equations (1.1.11) to (1.1.13) and
the following boundary conditions:

u = 0 on Σ

Tn = 0 on Γ

with n the outward normal vector to Ω.

Problem 3D-2

Find a vector valued function u, satisfying equations (1.1.11) to (1.1.13) and
the following boundary conditions:

Tn = 0 on ∂Ω

with n the outward normal vector to Ω.

1.1.4 Variational form

Let ϕ ∈ C(Ω) be an arbitrary vector valued function. Multiplying ϕ with
equation (1.1.11) and integrating over the domain Ω results in,

∫
Ω

(∂2t u) · ϕ dV =

∫
Ω

(divT ) · ϕ dV +

∫
Ω

Q · ϕ dV.
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Since the stress tensor T is symmetric,

div(Tϕ) = (divT ) · ϕ+ Tr(TΦ),

where

Φ =

∂1ϕ1 ∂2ϕ1 ∂3ϕ1

∂1ϕ2 ∂2ϕ2 ∂3ϕ2

∂1ϕ3 ∂2ϕ3 ∂3ϕ3

 ,
and

Tr(TΦ) = σ11∂1ϕ1 + σ12∂1ϕ2 + σ13∂1ϕ3 + σ21∂2ϕ1 + σ22∂2ϕ2 + σ23∂2ϕ3

+σ31∂3ϕ1 + σ32∂3ϕ2 + σ33∂3ϕ3.

Using the Divergence Theorem and the symmetry of T,∫
Ω

div(Tϕ) dV =

∫
∂Ω

Tϕ · n dS,

=

∫
∂Ω

Tn · ϕ dS.

The divergence formula gives∫
Ω

div(T ) · ϕ dV = −
∫
Ω

Tr(TΦ) dV +

∫
∂Ω

Tn · ϕdS.

Therefore,∫
Ω

(∂2t u) · ϕ dV = −
∫
Ω

Tr(TΦ) dV +

∫
Ω

Q · ϕ dV +

∫
∂Ω

Tn · ϕ dS.

The general variational form of the three-dimensional model is given as∫
Ω

(∂2t u) · ϕ dV =

∫
Ω

c1Tr(EΦ) + c2Tr(E)Tr(Φ) dV +

∫
Ω

Q · ϕ dV +

∫
∂Ω

Tn · ϕ dS,

with c1 =
1

γ(1 + ν)
and c2 =

ν

γ(1 + ν)(1− 2ν)
.
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Bilinear forms and integral

Define the bilinear forms

b(u, ϕ) =

∫
Ω

c1Tr(EΦ) + c2Tr(E)Tr(Φ) dV (1.1.14)

and

c(u, ϕ) =

∫
Ω

(∂2t u) · ϕ dV (1.1.15)

with c1 =
1

γ(1 + ν)
and c2 =

ν

γ(1 + ν)(1− 2ν)
.

Also define the integral

(f, g) =

∫
Ω

f · g dV (1.1.16)

Test functions

Define the following set of test functions T (Ω) for Problem 3D-1 and Problem
3D-2:

Problem 3D-1

T (Ω) =
{
ϕ ∈ C1(Ω̄) | ϕ = 0 on Γ

}

Problem 3D-2

T (Ω) = C1(Ω̄)

The variational problem of Problem 3D-1 is given as Problem 3D-1V.

Problem 3D-1V

Find a function u such that for all t > 0, u ∈ T (Ω) and

c(u, ϕ) = −b(u, ϕ) + (Q, ϕ), (1.1.17)
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for all ϕ ∈ T (Ω).

The well-posedness of the model is treated in Chapter 2, where Korn’s in-
equality is presented. Applications are continued in Chapters 4, 5 and 6. In
Chapter 4, a free-free three-dimensional beam is discussed as part of an empir-
ical study. In Chapter 5, the finite element analysis is applied to a cantilever
beam to solve the eigenvalue problem. In Chapter 6, a cantilever beam is used
in the comparison of the linear models.

1.1.5 Plane stress

When the stresses in an elastic body act parallel to a single plane, it is referred
to as plane stress.

Consider the right-hand orthonormal set {e1, e2, e3}. Without loss of gener-
ality, assume the stresses act parallel to the e1-e2 plane i.e. σ3i = 0 for all i.
From Hooke’s Law (1.1.9) the following equations are obtained:

ε11 = γ(σ11 − νσ22) ε33 =− γν(σ11 + σ22)

ε22 = γ(σ22 − νσ11) ε12 = γ(1 + ν)σ12
(1.1.18)

and a sufficient condition

ε13 = ε23 = 0. (1.1.19)

After some manipulation, we verify the following equations for the stress com-
ponents given in [Fun65].

σ11 =
1

γ(1− ν2)
(ε11 + νε22),

σ22 =
1

γ(1− ν2)
(νε11 + ε22).

σ12 =
1

γ(1 + ν)
ε12, (1.1.20)

Another necessary strain condition for plane stress is found by substituting
σ11 and σ22 from (1.1.20) into ε33 in (1.1.18) to obtain

ε33 = − ν

1− ν
(ε11 + ε22). (1.1.21)
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This is known as general plane stress. In this dissertation only a special case
of general plane stress is considered in Section 1.2.

1.2 Two-dimensional model problem for an

elastic solid

1.2.1 Introduction

The following derivation of the two-dimensional model is based on my own
work, using the textbook [Sad05] as a guide.

Assume that σ3i = 0 for i = 1, 2, 3; ∂3u1 = 0, ∂3u2 = 0 (u1 and u2 are functions
of x1 and x2), and the strain component ε33 = 0. Then using the definition of
strain

∂iu3 = 0 for i = 1, 2, 3 on Ω. (1.2.1)

It follows that u3 is a constant on Ω and u is a vector valued function in
R2 with two-dimensional stress and strain. The out of plane conditions for
strain (1.1.21) falls away and Hooke’s law can be written in a two-dimensional

form using the stress components (1.2.16) as T =
1

γ(1 + ν)
E+ ν

γ(1− ν2)
tr(E)I.

1.2.2 Equations of motion and constitutive equations

The following equations of motion and constitutive equations follow from sub-
sections 1.1.2 and 1.3.2.

Equation of motion

∂2t u = divT +Q, (1.2.2)

where

divT =

[
∂1σ11 + ∂2σ12
∂1σ21 + ∂2σ22

]
. (1.2.3)
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Constitutive equation

T =
1

γ(1 + ν)
E +

ν

γ(1− ν2)
Tr(E)I. (1.2.4)

1.2.3 Model problem

Suppose Ω ⊂ R2 is the reference configuration for a solid executing small
vibrations. The boundary of Ω consists of two parts Σ and Γ. The model
problem is described as:

The equation of motion (1.2.2) and constitutive equation (1.2.4) are sat-
isfied in Ω.

The displacement u is specified on Σ;

Traction Tn is specified on Γ.

Problem 2D-1

Find a vector valued function u, satisfying equations (1.2.2) to (1.2.4) and the
boundary conditions:

u = 0 on Σ,

Tn = 0 on Γ.

with n the outward unit normal to ∂Ω.

1.2.4 Variational form

The steps to derive the variational form is almost identical to the three-
dimensional case. Therefore it is not shown again and only the differences
are discussed.

Instead of volume integrals (dV ) and surface integrals (dS), the two-dimensional
model has area (dA) and line integrals (ds). Rather than the divergence for-
mula, the divergence form of Green’s formula is used to obtain the following
result: ∫

Ω

div(T ) · ϕ dA = −
∫
Ω

Tr(TΦ) dA+

∫
Γ

Tn · ϕds.
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The general variational form of the two-dimensional model is given as∫
Ω

(∂2t u) · ϕ dA =

∫
Ω

c1Tr(EΦ) + c2Tr(E)Tr(Φ) dA+

∫
Ω

Q · ϕ dA+

∫
Γ

Tn · ϕ ds,

with c1 =
1

γ(1 + ν)
and c2 =

ν

γ(1− ν2)
.

Bilinear forms and integral

Define the bilinear forms

b(u, ϕ) =

∫
Ω

c1Tr(EΦ) + c2Tr(E)Tr(Φ) dA (1.2.5)

and

c(u, ϕ) =

∫
Ω

(∂2t u) · ϕ dA (1.2.6)

with c1 =
1

γ(1 + ν)
and c2 =

ν

γ(1− ν2)
.

Also define the integral

(f, g) =

∫
Ω

f · g dA (1.2.7)

Test functions for problem 2D-1

The test function space has the same definition of the test function space for
Problem 3D-1. But since Ω ∈ R2, we have that T (Ω) ⊂ R2.

T (Ω) =
{
ϕ ∈ C1(Ω̄) | ϕ = 0 on Γ

}
.

Problem 2D-1V

Find a function u such that for all t > 0, u ∈ T (Ω) and

c(u, ϕ) = −b(u, ϕ) + (Q, ϕ) (1.2.8)

for all ϕ ∈ T (Ω).

Applications are continued in Chapter 5 and 6. In Chapter 5, the finite element
method is applied to a cantilever beam to solve the eigenvalue problem. In
Chapter 6, a cantilever beam in used in the comparison of our linear models.

19



1.3 Timoshenko beam models

Consider the classical Timoshenko model for the vibration of a beam with no
damping.

1.3.1 Equations of motion and constitutive equations

In this section we introduce the Timoshenko beam theory for the transverse vi-
bration of a uniform beam. For a reference of the model [Tim21], and [Fun65]
were used.

Consider a beam defined on the interval [0, ℓ]. Let w represent the transverse
displacement and ϕ a rotation of the cross-sections of the beam.

Equations of motion

ρA∂2tw = ∂xV +Q, (1.3.1)

ρI∂2t ϕ = V + ∂xM. (1.3.2)

In (1.3.1) and (1.3.2) ρ denotes the density, A is the area of a cross section,
I is the area moment of inertia, M is the moment, V is the shear force and Q
is an external force acting on the beam.

Constitutive equations

M = EI∂xϕ, (1.3.3)

V = AGκ2(∂xw − ϕ), (1.3.4)

E is Young’s modulus, G the shear modulus and κ2 the shear correction factor.

Dimensionless form

As mentioned in Subsection 1.1.2, the same dimensionless scaling is used for
all the models in this dissertation.

Set

τ =
t

t0
, ξ =

x

ℓ
, w∗(ξ, τ) =

w(x, t)

ℓ
and ϕ∗(ξ, τ) = ϕ(x, t).
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The dimensionless forms of the shear force, moment and external force density
are

V ∗(ξ, τ) =
V (x, t)

AGκ2
, M∗(ξ, τ) =

M(x, t)

AGκ2ℓ
and Q∗(ξ, τ) =

Q(x, t)ℓ

AGκ2
.

Choose t0 the same as in Subsection 1.1.2, i.e.

t0 = ℓ

√
ρ

Gκ2
.

As in [VV06] and [LLV09] we use the dimensionless constants

α =
Aℓ2

I
and β =

AGκ2ℓ2

EI
.

Interestingly, it turns out that

β

α
= γ

where γ is the dimensionless parameter defined in Subsection 1.1.2.

Remark Recall that in Subsection 1.1.2 the constant Gκ2 was used for the
scaling of the stresses.

Dimensionless equations of motion

∂2tw = ∂xV +Q, (1.3.5)
1

α
∂2t ϕ = V + ∂xM. (1.3.6)

Dimensionless constitutive equations

M =
1

β
∂xϕ, (1.3.7)

V = ∂xw − ϕ. (1.3.8)

The original notation is retained for convenience.

21



1.3.2 Boundary conditions

The following boundary conditions are considered for the Timoshenko beam
models in this dissertation.

Clamped or built-in endpoint - At the clamped end the boundary condi-
tions are w = 0 and ϕ = 0.

Free endpoint - At the free end the boundary conditions are M = 0 and
V = 0.

Pinned or hinged endpoint - At the pinned endpoint the boundary condi-
tions are w = 0 and M = 0.

Suspended endpoint - At the pinned endpoint the boundary conditions are
V = kw and M = 0. The parameter k is the elastic constant of the linear
spring that suspends the beam.

1.3.3 Boundary value problems

The following model problems are used in this dissertation.

Problem T-1

The beam is pinned at both endpoints.

Boundary Conditions

w(0, ·) = 0, M(0, ·) = 0,

w(1, ·) = 0, M(1, ·) = 0.

Problem T-2

The beam is clamped at the left endpoint where x = 0, and free-hanging where
x = 1. (In this configuration, the beam is called a cantilever beam.)
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Boundary Conditions

w(0, ·) = 0, ϕ(0, ·) = 0,

M(1, ·) = 0, V (1, ·) = 0.

Problem T-3

The beam is suspended at both endpoints.

Boundary Conditions

V (0, ·) = kw(0, ·), M(0, ·) = 0,

V (1, ·) = −kw(1, ·), M(1, ·) = 0.

Remark: These boundary conditions are only valid for w “small enough” for
the motion to remain linear.

Problem T-4

The beam is free at both endpoints. Boundary Conditions

V (0, ·) = 0, M(0, ·) = 0,

V (1, ·) = 0, M(1, ·) = 0.

An example of a free-free beam is given in Chapter 4.

1.3.4 Variational form

Let v, ψ ∈ C1[0, 1] be arbitrary functions. Multiply by these functions in
equations (1.3.5) and (1.3.6) and integrate over the interval [0, 1] to obtain:∫ 1

0

∂2twv =

∫ 1

0

∂xV v +

∫ 1

0

Qv,∫ 1

0

1

α
∂2t ϕψ =

∫ 1

0

V ψ +

∫ 1

0

∂xMψ.

Integration by parts yields∫ 1

0

∂2twv = −
∫ 1

0

V v′ +

∫ 1

0

Qv + V (·, t)v(·)|10,∫ 1

0

1

α
∂2t ϕψ =

∫ 1

0

V ψ −
∫ 1

0

Mψ′ +M(·, t)ψ(·)|10.
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Substitute the constitutive equations (1.3.7) and (1.3.8) to obtain

∫ 1

0

∂2twv = −
∫ 1

0

(∂xw − ϕ)v′ +

∫ 1

0

Qv

+ ∂xw(·, t)v(·)|10 − ϕ(·, t)v(·)|10 , (1.3.9)∫ 1

0

1

α
∂2t ϕψ =

∫ 1

0

(∂xw − ϕ)ψ − 1

β

∫ 1

0

∂xϕψ
′

+
1

β
∂xϕ(·, t)ψ(·)|10. (1.3.10)

Function spaces

It is convenient to define the following function spaces:

F0[0, 1] =
{
f ∈ C1[0, 1] | f(0) = f(1) = 0

}
(1.3.11)

F1[0, 1] =
{
g ∈ C1[0, 1] | g(0) = 0

}
(1.3.12)

Test function spaces for different problems

Problem T-1

T [0, 1] := F0[0, 1]× C1[0, 1]

Problem T-2

T [0, 1] := F1[0, 1]× F1[0, 1]

Problem T-3

T [0, 1] := C1[0, 1]× C1[0, 1]

Problem T-4

T [0, 1] := C1[0, 1]× C1[0, 1]

The variational problem of the pinned-pinned beam
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Using the test function space for Problem T-1, the equations (1.3.9) and
(1.3.10) reduce to∫ 1

0

∂2twv = −
∫ 1

0

(∂xw − ϕ)v′ +

∫ 1

0

Qv, (1.3.13)∫ 1

0

1

α
∂2t ϕψ =

∫ 1

0

(∂xw − ϕ)ψ − 1

β

∫ 1

0

∂xϕψ
′. (1.3.14)

for all v, ψ ∈ T [0, 1].

Bilinear forms

For f, g ∈ T [0, 1], define the bilinear forms

c(f, g) =

∫ 1

0

∂2t f1g1 +
1

α

∫ 1

0

∂2t f2g2, (1.3.15)

b(f, g) =

∫ 1

0

(f ′
1 − f2)(g

′
1 − g2) +

1

β

∫ 1

0

f ′
2g

′
2, (1.3.16)

Define the integral

(f, g) =

∫ 1

0

fg (1.3.17)

for all f, g ∈ L2(0, 1).

Remark
L2(a, b) is the space of all square integrable functions on the interval (a, b).

The inner product is defined by (f, g) =

∫ b

a

fg, and the induced norm ||f || =∫ b

a

f 2. See the appendix for more information.

Problem T-1V

Find a function u = ⟨w, ϕ⟩ such that for all t > 0, u ∈ T [0, 1] satisfying

c(∂2t u, ϕ) = −b(u, ϕ) + (Q, ϕ) (1.3.18)

for each ϕ = ⟨v, ψ⟩ ∈ T [0, 1].
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The variational problem of the cantilever beam.

Using the test function space for Problem T-2, the equations (1.3.9) and
(1.3.10) reduce to∫ 1

0

∂2twv = −
∫ 1

0

(∂xw − ϕ)v′ +

∫ 1

0

Qv, (1.3.19)∫ 1

0

1

α
∂2t ϕψ =

∫ 1

0

(∂xw − ϕ)ψ − 1

β

∫ 1

0

∂xϕψ
′, (1.3.20)

for all v, ψ ∈ T [0, 1].

This variational form is the same as for the case of the pinned-pinned beam,
Problem T-1 as discussed above. Therefore the bilinear forms (1.3.15) and
(1.3.16) can be used.

Problem T-2V

Find a function u = ⟨w, ϕ⟩ such that for all t > 0, u ∈ T [0, 1] satisfying

c(u, ϕ) = −b(u, ϕ) + (Q, ϕ) (1.3.21)

for each ϕ = ⟨v, ψ⟩ ∈ T [0, 1].

Remark The formulation of Problem T-3V and Problem T-4V are the same.
But there are some complications for Problem T-3V, which are discussed in
Chapter 4.

The application for the Timoshenko beam theory are continued in Chapters 2,4
and 6. In Chapter 2, the cantilever beam is used an example to the existence
theory. In Chapter 4, modal analysis is applied to the free-free and cantilever
beam. The free-free and suspended beams are also used to discuss an empirical
study. In Chapter 6, the cantilever beam is used in the comparison of our linear
models.

1.4 Reissner-Mindlin Plate Model

Consider small vibrations of a plate. The model is from the article [LVV09b].
This motion can be described by using spherical coordinates. Assume that the
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plate has a two dimensional domain Ω ⊂ R2. For r ≥ 0, the coordinates x1
and x2 can be rewritten as

x1 = r sinϕ cos θ,

x2 = r sinϕ sin θ.

Let

r =
√
q2 + x23, sinϕ =

q

r
and cos θ =

x3
r
.

and define the unit vectors

ēr = cos θ ē1 + sin θ ē2,

ēn = sinϕ ēr + cosψ ē3,

ēϕ = cosϕ ēr − sinψ ē3.

Any point on the plate can be described by

x̄ = x1ē1 + x2ē2 + x3ē3 = qēr + x3ē3.

Let w represent the displacement of the plate body and ψ the angle between the
material line and a line perpendicular to the plate. In the spherical coordinate
form, the angle can easily be calculated for the directions of ē1 and ē2, i.e.

ψ1 =
q

r
ēr · ē1,

ψ2 =
q

r
ēr · ē2.

Define

ψ = ⟨ψ1, ψ2⟩ = ⟨sinϕ cos θ, sinϕ sin θ⟩.

The plate model in consideration is restricted to a linear model. Therefore
sinϕ can be approximated by ϕ such that

ψ = ⟨ψ1, ψ2⟩ = ⟨ϕ cos θ, ϕ sin θ⟩.

The equations for the Reissner-Mindlin plate model is given in the next section.
The model is restricted to the linear theory.
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1.4.1 Equations of Motion and Constitutive Equations

Consider a Reissner-Mindlin plate with reference configuration Ω ∈ R2. Let
u ∈ Ω define the transverse motion of the plate model and ψ = ⟨ψ1, ψ2⟩ the
angle between the material line and a line perpendicular to the plate.

Equations of Motion

ρh∂2tw = divQ+ q (1.4.1)

ρI∂2t ψ = divM −Q (1.4.2)

In these equations ρ denotes the density of the plate, I =
h3

12
the length

moment of inertia, M the moment density and Q the shear force density. The
parameter q is an external force acting on the plate. Q is defined as part of
the constitutive equations below. The moment density is defined as

M =

[
M11 M12

M21 M22

]
.

Constitutive Equations

For the linear model, the constitutive equations are defined as:

Q = κ2Gh(∇w + ψ) (1.4.3)

M11 =
1

2
D [2(∂1ψ1 + ν∂2ψ2)] (1.4.4)

M12 =M21 =
1

2
D [(1− ν)(∂1ψ2 + ν∂2ψ2)] (1.4.5)

M22 =
1

2
D [2(∂2ψ2 + ν∂1ψ1)] (1.4.6)

where G is the shear modulus, κ2 a shear correction factor and D is a measure
of stiffness for the plate and is defined by

D =
EI

1− ν2

where E is Young’s modulus and ν Poisson’s ratio.

In classical plate theory, ψ = −∇w and the constitutive equation for Q is
excluded.
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1.4.2 Dimensionless Form

Set

τ =
t

t0
, ξ1 =

x1
ℓ
, ξ2 =

x2
ℓ
,

w∗(ξ, τ) =
w(x, t)

ℓ
and ψ∗(ξ, τ) = ψ(x, t).

The dimensionless forms of the force density, moment density and load can be
constructed as

Q∗(ξ, τ) =
Q(x, t)

ℓGκ2
, M∗(ξ, τ) =

M(x, t)

ℓ2Gκ2
and q∗(ξ, τ) =

q(x, t)

Gκ2
.

Choose t0 the same as in Section 1.1.2, i.e.

t0 = ℓ

√
ρ

Gκ2
.

The dimensionless constants are

h =
h

ℓ
, I∗ =

h3

12
and β =

ℓ3Gκ2

EI
.

Remark

Similar to the model in Section 1.1.2, the constant G is introduced to allow
for the comparison of models in later chapters. It will also be required that κ
is the same for the beam and plate models.

For convienience, the original notation is used for the dimensionless form.

Dimensionless Equations of Motion

h∂2tw = divQ+ q (1.4.7)

I∂2t ψ = divM −Q (1.4.8)
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Dimensionless Constitutive Equations

Q = h(∇w + ψ) (1.4.9)

M11 =
1

2β(1− ν2)
[2(∂1ψ1 + ν∂2ψ2] (1.4.10)

M12 =M21 =
1

2β(1− ν2)
[(1− ν)(∂1ψ2 + ∂2ψ1)] (1.4.11)

M11 =
1

2β(1− ν2)
[2(∂2ψ2 + ν∂1ψ1)] (1.4.12)

1.4.3 Boundary Conditions

The boundary conditions are applied along an edge of a plate. Let n be the
outward normal of the edge, and τ be a unit vector tangent to that edge.

Some commonly used boundary (or edge) conditions are:

Free Edge:
Mn · n = 0, Mn · τ = 0 and Q · n = 0

Soft Supported Edge:

Mn · n = 0, w = 0 and Mn · τ = 0

Rigidly Supported Edge:

Mn · n = 0, w = 0 and ψ · τ = 0

Soft Clamped Edge:

w = 0, Mn · τ = 0 and ψ · n = 0

Rigidly Clamped Edge:

w = 0, ψ1 = 0 and ψ2 = 0

In this dissertation, only the free edge and rigidly clamped edge boundary
conditions are considered.
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1.4.4 Model Problems

Let Ω ⊂ R2 denote reference configuration of the plate model. Following
[Wu06], Ω is a rectangle.

The boundary ∂Ω can be divided into 4 distinct parts. Denote any two op-
posing sides by Σ0 and Σ1 and the remaining two opposing sides by Γ0 and
Γ1.

Problem P-1

Consider a cantilever plate model. In this configuration, the plate is clamped
at one edge and free hanging at the rest of the boundary. Without loss of
generality, assume that the plate is clamped on the edge Σ0.

Find functions w and ψ satisfying equations (1.4.7) to (1.4.12) and the bound-
ary conditions:

w = 0, and ψ = 0̄ on Σ0.

Mn · n = 0, Mn · τ = 0, and Q · n = 0 on ∂Ω \ Σ0.

with τ a unit vector perpendicular to n.

Test Functions for Problem P-1

Define the following spaces T1(Ω̄) and T2(Ω̄) determined by the boundary
conditions for w and ϕ

T1(Ω̄) =
{
v ∈ C1(Ω̄) | v = 0 on Σ0

}
,

T2(Ω̄) =
{
ϕ = [ϕ1 ϕ2]

T | ϕ1, ϕ2 ∈ C1(Ω̄), ϕ1 = ϕ2 = 0 on Σ0

}
.

Problem P-2

Consider a plate model that is rigidly clamped on ∂Ω. Find functions w and
ψ satisfying equations (1.4.7) to (1.4.12) and the boundary conditions:

w = 0, and ψ = 0̄ on ∂Ω.
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1.4.5 Variational Form

Let v ∈ C1
2 [0, 1] and ϕ ∈ C1[0, 1] × C1[0, 1] such that ϕ is a vector valued

function. Multiplication these artitrary functions to (1.4.7) and (1.4.8) yields:∫
Ω

h∂2twv dA =

∫
Ω

div(Q)v dA+

∫
Ω

qv dA∫
Ω

I∂2t ψ · ϕ dA =

∫
Ω

div(M) · ϕ dA−
∫
Ω

Q · ϕ dA

Following from Green’s Formulas, similar to Section 1.1.4,∫
Ω

div(Q)v dA = −
∫
Ω

Q · ∇v dA+

∫
∂Ω

(Q · n)vds,∫
Ω

div(M) · ϕ dA = −
∫
Ω

Tr(MΦ) dA+

∫
∂Ω

Mn · ϕds.

Tr(MΦ) is the trace of the matrix MΦ, n is the normal vector to Ω, and

Φ =

[
∂1ϕ1 ∂2ϕ1

∂1ϕ2 ∂2ϕ2

]
.

The variational form is given as∫
Ω

h∂2twv dA = −
∫
Ω

Q · ∇v dA+

∫
Ω

qv dA+

∫
∂Ω

(Q · n)vds, (1.4.13)∫
Ω

I∂2t ψ · ϕ dA = −
∫
Ω

Tr(MΦ) dA−
∫
Ω

Q · ϕ dA+

∫
∂Ω

Mn · ϕds. (1.4.14)

Using the test function space for Problem P-1, the equations (1.4.13) and
(1.4.14) reduce to∫

Ω

h∂2twv dA = −
∫
Ω

Q · ∇v dA+

∫
Ω

qv dA, (1.4.15)∫
Ω

I∂2t ψ · ϕ dA = −b(ϕ, v)−
∫
Ω

Q · ϕ dA, (1.4.16)

for all v ∈ T1(Ω̄) and ϕ ∈ T2(Ω̄)
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Bilinear Forms and integral

Let u = ⟨w,ψ⟩ and ϕ = ⟨v, ϕ⟩. Define the bilinear forms

b(u, ϕ) =

∫
Ω

Q · ∇v dA+

∫
Ω

Tr(MΦ) dA,

and

c(u, ϕ) =

∫
Ω

h(∂2tw)v dA+

∫
Ω

I(∂2t ψ) · ϕ dA (1.4.17)

Also define the integral

(f, g) = −
∫
Ω

f · g dA (1.4.18)

Problem P-1V

Find a function u = ⟨w,ψ⟩, such that for all t > 0, u ∈ T1(Ω̄)× T2(Ω̄) and the
following equations are satisfied

c(u, ϕ) = −b(u, ϕ) + (Q, ϕ), (1.4.19)

with ϕ = ⟨v, ϕ⟩ ∈ T1(Ω̄)× T2(Ω̄) an arbitrary function.

Applications are continued in Chapter 5 and 6. In Chapter 5, the finite element
method is applied to a cantilever plate to solve the eigenvalue problem. In
Chapter 6, a cantilever plate in used in the comparison of the linear models.
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2 Mathematical analysis of
vibration problems

2.1 Introduction

The models in this dissertation concern vibration of elastic bodies. These
type of models have a similar variational form as the wave equation and are
called second order hyperbolic type problems. This chapter discusses theory
for the existence and uniqueness of solutions for these type of problems. The
theoretical basis for modal analysis is also presented.

In this chapter we consider the work done by the authors of [VV02] and [VS18].
In these articles the authors prove the existence and uniqueness of solutions
for general second order hyperbolic type problems. The problems in Chapter
1 are examples. The article [VV02] concerns the case of a symmetric bilinear
form b. The article [VS18] extends this work where b need not be symmetric.
The article [VV02] is sufficient for the models of this dissertation, while [VS18]
is only used where the notation is more convenient and to gain more insight.

Before the general theory is discussed, a model is presented to be used as
an example to show the application of the theory. The model is a cantilever
Timoshenko beam, denoted by Problem T-2 in Section 1.3.3.

In Section 1.3.4, the variational problem for the pinned-pinned beam is derived.
The derivation of the cantilever beam model is similar, with a different test
function space. Recall the variational problem for the cantilever beam Problem
T-2V, with the test function space T [0, 1] = F1[0, 1] × F1[0, 1]. To determine
the solvability of the problem, the weak variational problem is considered first.

To obtain the weak variational form of Problem T-2V some preparation is
required. A natural setting for the problem is the product space L2(0, 1) ×
L2(0, 1), denoted by X. The inner product for L2(0, 1) yields the inner product
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(x1, y1) + (x2, y2) for X. The idea is to replace the pair ⟨w, ϕ⟩ by a function u
“of time only” and values u(t) in the space X.

Define a function u with domain J , an interval of real numbers. The range of
u is contained in X:

u(t)(x) = ⟨w(x, t), ϕ(x, t)⟩. (2.1.1)

A derivative u′ for u may be defined by

||
(
h−1u(t+ h)− u(t)

)
− u′(t)||X → 0.

Then u′′ is defined by u′′ = (u′)′. Sometimes the derivatives are denoted by u̇
and ü.

Using the bilinear forms, b and c from Section 1.3.4, Problem T-2V can be
rewritten in the following form

c(ü(t), v) + b(u(t), v) = (Q(t), v), (2.1.2)

for each v ∈ T [0, 1].

To apply the theory from [VV02], complete function spaces are required. It is
known that L2(0, 1) is a complete function space and hence X is complete.

The Sobolev space H1(0, 1) is all the functions in L2(0, 1) with at least a
first-order weak derivative. H1(0, 1) is complete (see Appendix A).

The test functions T [0, 1] do not form a complete space. Let V (0, 1) be the
closure of F1(0, 1) in H1(0, 1) (see Section 1.3.4). It follows that V (0, 1) is
complete and the product space V (0, 1)× V (0, 1), denoted by V , is complete.
It is called the energy space.

Using these complete product spaces and (2.1.2), the weak variational problem
for the cantilever Timoshenko beam is defined as Problem T-2W.

Problem T-2W

Find a function u such that ∀ t ∈ J , u(t) ∈ V , ü(t) ∈ W and

c(ü(t), v) + b(u(t), v) = (Q(t), v)

for all v ∈ V . The initial conditions u(0) = u0 and u̇(0) = u1 must be specified.
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The space X equipped with the inner-product c is denoted by W . W is called
the inertia space and in Section 2.3 it is shown that c is an inner-product for
W .

In the next section, the theory of the article [VV02] is presented. In Section
2.3 the theory is applied to Problem T-2W.

2.2 Existence and uniqueness of solutions

The general weak variational problem is studied in this section. The following
theory is from the article [VV02]. To start, some notation is given, as well as
the relations between various Hilbert spaces. The necessary assumptions are
also stated.

As mentioned before, ideas and notation from [VS18] are also used.

2.2.1 The variational approach

Let V , W and X be real Hilbert spaces such that W is a linear subspace of
X, and V is a linear subspace of W , i.e. V ⊂ W ⊂ X.

X is the global space with inner product (·, ·)X and the induced norm
|| · ||X .

W is the inertia space with inner product (·, ·)W and the induced norm
|| · ||W .

V is the energy space with inner product (·, ·)V and the induced norm
|| · ||V .

The following notation is important for the theory that follows.

Let J be a interval of real numbers containing zero. It can have one of the
following forms [0, T ), [0, ∞) or an arbitrary open interval. For any function
u on the interval J and range in a Hilbert space Z, derivatives can be defined.
A derivative u′ for u may be defined by

||(h−1u(t+ h)− u(t))− u′(t)||Z → 0.

Then u′′ is defined by u′′ = (u′)′.

Notation
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u ∈ C(J, Z) if u is continuous on J with respect to the norm of Z;

u′(t) ∈ Z if u is differentiable with respect to the norm of Z;

u ∈ Ck(J, Z) if u(k) ∈ C(J, Z) .

Remark For Problem T-2, Z can be X, W or V .

Let a, b and c be bilinear forms where a and b are defined on V and c is
defined on W . For the models in this dissertation, the bilinear forms b and c
are symmetric. Furthermore, b(·, ·) = (·, ·)V and c(·, ·) = (·, ·)W .

Problem GVar

Given a function f : J → X, find a function u ∈ C(J, X) such that u′ is
continuous at 0 with respect to ∥ · ∥W and for each t ∈ J, u(t) ∈ V, u′(t) ∈
V, u′′(t) ∈ W and

c(u′′(t), v) + a(u′(t), v) + b(u(t), v) = (f(t), v)X for each v ∈ V, (2.2.1)

while u(0) = u0, u′(0) = u1.

This general variational form is applicable to all the models in this disserta-
tion. In [VV02], a more general form is given that includes the possibility for
damping terms in the models. Damping is not considered in this dissertation.

Assumptions

The following assumptions are made in [VV02] for the existence results.

A1 - V is dense in W and W is dense in X.

A2 - There exists a positive constant CW such that ∥w∥X ≤ CW∥w∥W
for each w ∈ W .

A3 - There exists a positive constant CV such that ∥v∥W ≤ CV ∥v∥V for
each v ∈ V .

A4 - The bilinear form a is non-negative, symmetric and bounded on V ,
i.e. there exists a positive constant Ka such that for u, v ∈ V ,

|a(u, v)| ≤ Ka∥u∥V ∥v∥V .

In general, the bilinear form a in A4 is defined on V . However it is possible
for a to be defined on the space W and bounded by the norm || · ||W , i.e. there
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exists a k > 0 so that

|a(u, v)| ≤ k||u||W ||v||W for all u, v ∈ W. (2.2.2)

This is called weak damping. Note that (2.2.2) is trivially satisfied if a = 0.

2.2.2 Main results for existence and uniqueness

To start, the main results of [VV02] are presented. There are three existence
theorems but Theorem 2 is important for this dissertation.
Theorem 1 (Main Result). Suppose assumptions A1-A4 hold. If, for u0 ∈ V
and u1 ∈ V , there exists some y ∈ W such that

b(u0, v) + a(u1, v) = c(y, v) for all v ∈ V, (2.2.3)

then for each f ∈ C1(J,X), there exists a unique solution u ∈ C1(J, V ) ∩
C2(J,W ) for Problem GVar.

This theorem allows for a solution of the abstract variational problem Problem
GVar, if the assumptions A1-A4 is satisfied and the initial values u0 and u1
are admissible. It is not always easy to verify that (2.2.3) is satisfied.

In [VV02] the authors consider a special case of weak damping. Define a space
Eb ⊂ V where

Eb = {x ∈ V | there exists a y ∈ W such that c(y, v) = b(x, v) for all v ∈ V } .

It is proved in [VV02] that condition (2.2.3) is satisfied if u1 ∈ V and u0 ∈ Eb

(the pair u0, u1 is admissible).
Theorem 2 (Weak Damping). If a is bounded with respect to the norm in W ,
then there exists a unique solution u ∈ C1(J, V )∩C2(J,W ) for Problem GVar
for each u0 ∈ Eb. each u1 ∈ V and each f ∈ C1(J,X).

Remark In general, the bilinear form a is non-negative. However it is possible
for a to be positive definite on the space V with respect to the norm || · ||V ,
i.e. there exists a ca > 0 so that

a(v, v) ≥ ca||v||2V for all v ∈ V.

This is called strong damping. It is not considered in this dissertation.
Theorem 3 (Strong Damping). If a is positive definite on V , there exists a
unique solution u ∈ C1([0,∞), V ) ∩ C2((0,∞),W ) for Problem GVar for any
u0 ∈ V , u1 ∈ W and any f which is Lipschitz on V . If f = 0, then u ∈
C1([0,∞), V ) ∩ C2([0,∞),W ) ∩ C∞((0,∞), V ).
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As mentioned, in the models of this dissertation, the bilinear form a is identi-
cally zero. This automatically satisfies the weak damping condition and hence
Theorem 2 may be applied.

2.2.3 First order system

To prove the main results in [VV02], the authors introduce an equivalent first
order system.

This variational form is rewritten as a first order system of differential equa-
tions. Let y(t) = u′(t), then

c(y′(t), v) + a(y(t), v) + b(u(t), v) = (f(t), v)X .

To make this precise, a Hilbert space H is defined by H := V ×W . For x ∈ H,
x = ⟨x1, x2⟩ with x1 ∈ V, x2 ∈ W . An inner product on H is defined by

(x, y)H := b(x1, y1) + c(x1, y1) for all x, y ∈ H.

Then the authors define an operator Λ as a mapping on H by Λy = −x when
−x2 = y1 and x1 ∈ V such that

b(x1, v) + a(x2, v) = c(y2, v) for each v ∈ V. (2.2.4)

The operator A is defined in [VV02] as A = Λ−1 with D(A) = R(Λ).

From a result in [VV02], x ∈ D(A) if and only if x1 ∈ V , x2 ∈ V and there
exists a z ∈ W such that b(x1, v)+a(x2, v) = c(z, v) for all v ∈ V . Furthermore
y = Ax if y1 = −x2 and

b(x1, v) + a(x2, v) = c(y2, v) for all v ∈ V.

This operator is used to rewrite the equation (2.2.1) of Problem GVar as a
first order differential equation in the form

x′ = Ax+ f. (2.2.5)

To be more precise, the following problem is introduced.
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Problem IVP

Given a function F : J → H, find a function U ∈ C(J, H) such that for each
t ∈ J , U(t) ∈ D(A), U(t) ∈ H and

U(t)′ = AU(t) + F (t),

U(0) = U0.

To link Problem IVP and Problem GVar, consider the following lemma from
[VV02].
Lemma 1. Suppose F (t) = ⟨0, f(t)⟩ for each t ∈ J .

a) If u is a solution of Problem GVar, then U = ⟨u, u′⟩ is a solution of
Problem IVP, with U0 = ⟨u0, u1⟩.

b) If U is a solution of Problem IVP with U0 = ⟨u0, u1⟩, then the first
component u = U1 of U is a solution for Problem GVar.

Semi-group theory is used in [VV02] to investigate the solvability of Problem
IVP and obtain a solution for Problem IVP. It is also important to mention
that in [VV02], the authors provide the necessary result that shows the func-
tion F is uniquely defined by f .

As mentioned before, if a = 0 then the inequality in (2.2.2) hold trivially.
However, the operator A is defined by the operator Λ and in the definition of
Λ, the form a is used (see (2.2.4)). It is proved in [VV02] that equation (2.2.4)
is uniquely solvable and hence Λ is well defined. The proof remains unchanged
as presented for a identically zero.

To apply Theorem 2, the admissible initial conditions are u0 ∈ Eb and u1 ∈ V .
As mentioned above, this implies ⟨u0, u1⟩ ∈ D(A). From semigroup theory, it
follows that U(t) ∈ D(A) for each t. Therefore u(t) ∈ Eb and u′(t) ∈ V for
each t.

Using the assumptions A1-A4, it is proved in [VV02] that the linear opera-
tor A is an infinitesimal generator of a C0-semigroup of contractions and the
domain of A is dense in H (see Section 2.4).

2.3 Application: Timoshenko beam model

In this section the theory of [VV02] (presented in Section 2.2) is applied to
Problem T-2W. This is an continuation of the example from Section 2.1.
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Recall the spaces defined in Section 2.1:

X = L2(0, 1) × L2(0, 1) with inner product (·, ·)X and induced norm
|| · ||X .

W = X with inner product c and induced norm || · ||W .

V = V (0, 1)× V (0, 1) with inner product b and induced norm || · ||V .

To apply the theory, Problem T-2W must satisfy assumptions A1-A4 and the
initial values must be admissible. We must show that the assumptions are
satisfied.

To prove Assumption A1, observe that W is dense in X. (The set W = X).

Let u ∈ C∞
0 (0, 1). Then u(0) = u(1) = 0 and therefore u ∈ T (0, 1) and

C∞
0 (0, 1) ⊂ T (0, 1). Recall that V (0, 1) is the closure of T (0, 1) in H1(0, 1).

So it follows that C∞
0 (0, 1) ⊂ V (0, 1) ⊂ H1(0, 1). And since C∞

0 (0, 1) is
dense in L2(0, 1), both V (0, 1) and H1(0, 1) are dense in L2(0, 1). Therefore
V (0, 1)× V (0, 1) is dense in X = L2(0, 1)× L2(0, 1).

Consider Assumption A2. From the definition of the bilinear form c,

c(f, f) =

∫ 1

0

(f1)
2 +

1

α

∫ 1

0

(f2)
2 = ||f1||2 +

1

α
||f2||2.

From this and the definition of the X norm, the following inequalities can be
obtained:

min

{
1,

1

α

}
||f ||2X ≤ c(f, f) ≤ max

{
1,

1

α

}
||f ||2X .

Since c is a bilinear form and by the inequality above, c is an inner-product
for W . The norm of W is defined as || · ||W =

√
c(·, ·). Let C1 = min

{
1, 1

α

}
and C2 = max

{
1, 1

α

}
. Then

C1||x||X ≤ ||x||W ≤ C2||x||X (2.3.1)

for all x ∈ X.

To proveAssumption A3, some preparation is required. Consider the follow-
ing proposition for a Poincaré-Type inequality for the one-dimensional case.
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Proposition 1. Suppose that f ∈ C1[a, b], and f(a) = 0. Then
||f || ≤ (b− a)||f ′||.

Proof. Let f ∈ C1(a, b) such that f(a) = 0. By the Fundamental Theorem of
Calculus,

|f(x)| =
∣∣∣∣∫ x

a

f ′(s) ds

∣∣∣∣ ≤ ∫ x

a

|f ′(s)| ds.

Since x is arbitrary,

||f ||sup ≤
∫ b

a

|f ′(s)|ds.

Also for f, g ∈ C1(a, b),∣∣∣∣∫ b

a

fg

∣∣∣∣ ≤ ||f || ||g|| by Cauchy-Swartz Inequality. (2.3.2)

Choose g = 1 then since ||f || ≤ ||f ||sup
√
b− a, the result follows.

Corollary. Suppose that f ∈ H1(a, b), and f(a) = 0. Then ||f || ≤ (b−a)||f ′||.

Proof. There exists a sequence (gn) ⊂ C1[a, b] such that ||gn − f || → 0 and
||g′n − f ′|| → 0.

Therefore
||f ||
||f ′||

= lim
n →∞

||gn||
||g′n||

≤ (b− a).

Theorem 1. There exists a positive constant CV such that ∥v∥W ≤ CV ∥v∥V
for each v ∈ V .

Proof. Let f ∈ V , then f1(0) = f2(0) = 0. Following from the corollary,
||f1|| ≤ ||f ′

1|| and ||f2|| ≤ ||f ′
2||. Therefore,

||f ′
1|| = ||f ′

1 − f2 + f2||,
≤ ||f ′

1 − f2||+ ||f2||,
≤ ||f ′

1 − f2||+ ||f ′
2||.

It follows that ||f ′
1||2 ≤ 2||f ′

1−f2||2+2||f ′
2||2, since (a+b)2 ≤ 2a2+2b2. Hence,

from the definition of the norm || · ||X , and again from the corollary,

||f ||2X = ||f1||2 + ||f2||2,
≤ ||f ′

1||2 + ||f ′
2||2,

≤ 2||f ′
1 − f2||2 + 3||f ′

2||2.
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It follows from the inequality (2.3.1) that

∥f∥2W ≤ 2C2||f ′
1 − f2||2 + 3C2||f ′

2||2. (2.3.3)

But we also have

b(f, f) =

∫ 1

0

(f ′
1 − f2)

2 +
1

β

∫ 1

0

(f ′
2)

2,

= ||f ′
1 − f2||2 +

1

β
||f ′

2||2,

≥ min

{
1,

1

β

}(
||f ′

1 − f2||2 + ||f ′
2||2
)
. (2.3.4)

Now combine the inequalities (2.3.3) and (2.3.4). There exists a positive con-
stant CV such that

||f ||2W ≤ CV b(f, f),

for all f ∈ V . And since b is a bilinear form, and also positive definite in V , b
is an inner product for V .

Consider Assumption A4. In Problem T-2W, it is clear that the bilinear
form a is identically zero. As mentioned before, if a = 0, the weak damping
as well as assumption A4 is satisfied. Also, as explained in Section 2.2 the
constuction of the operator A is not affected.

2.4 Modal analysis

2.4.1 Timoshenko beam

To understand what is meant by modal analysis, it is in the first place necessary
to consider modes of vibration. And to understand how modal analysis is
applied, a Timoshenko beam is used as an example. Specifically, Problem
T-1 as the boundary conditions makes it easy to illustrate the idea of modal
analysis. A detailed approach to modal analysis for the Timoshenko beam
theory is discussed in Chapter 4.

Consider the partial differential equations of a pinned-pinned Timoshenko
beam, obtained by substituting the constitutive equations (1.3.7) and (1.3.8)
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into the equations of motion (1.3.5) and (1.3.6):

∂2xw − ∂xϕ = ∂2tw, (2.4.1)

α∂xw − αϕ+
1

γ
∂2xϕ = ∂2t ϕ, (2.4.2)

with boundary conditions

w(0, t) = 0, w(1, t) = 0,

M(0, t) = 0, M(1, t) = 0.

The boundary conditions of the moments can be written in terms of ϕ using
the constitutive equation (1.3.7):

∂xϕ(0, t) = 0, ∂xϕ(1, t) = 0.

Consider a trial solution w(x, t) = T (t)w̃(x) and ϕ(x, t) = T (t)ϕ̃(x). Substi-
tuting these trial solutions in (2.4.1) and (2.4.2) yields

T (t)w̃′′(x)− T (t)ϕ̃′(x) = T ′′(t)w̃(x),

αT (t)w̃′(x)− αT (t)ϕ̃(x) +
1

γ
T (t)ϕ̃′′(x) = T ′′(t)ϕ̃(x).

Dividing by T (t),

w̃′′(x)− ϕ̃′(x) =
T ′′(t)

T (t)
w̃(x),

αw̃′(x)− αϕ̃(x) +
1

γ
ϕ̃′′(x) =

T ′′(t)

T (t)
ϕ̃(x).

Therefore
T ′′(t)

T (t)
is constant since the left hand side does not depend on t.

Suppose
T ′′(t)

T (t)
= −λ. This can also be written as the following differential

equation,

T̈ + λT = 0. (2.4.3)

To determine if such a number λ exists, consider the following eigenvalue
problem.
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Problem T-1E

Find λ ∈ R and functions w̃ and ϕ̃ such that

−w̃′′ + ϕ̃′ = λw̃,

−αw̃′ + αϕ̃− 1

γ
ϕ̃′′ = λϕ̃,

with boundary conditions w̃(0) = w̃(1) = 0 and ϕ̃′(0) = ϕ̃′(1) = 0.

Solutions to Problem T-1E is a pair of functions ⟨w̃, ϕ̃⟩ called the eigenfunction
with corresponding eigenvalue λ. Substitution of w̃ = sin(kπx) and ϕ̃ =
cos(kπx) show that they are solutions of the differential equations and satisfy
the boundary conditions.

Clearly the eigenvalue problem has infinitely many solutions ⟨w̃n, ϕ̃n⟩ and cor-
responding eigenvalues λn. Another solution is the vector ⟨w̃, ϕ̃⟩ = ⟨0, 1⟩ which
also satisfies the eigenvalue problem with boundary conditions.

A systematic approach to obtain the eigenvalues and eigenfunctions is given
in [VV06]. This is discussed in more detail in Section 4.2. To verify the trial
solutions for Problem T-1E, the following theorem can be derived from [VV06].
Theorem 1. If ⟨u, ϕ⟩ is a non-constant eigenfunction of Problem T-1E, then
⟨u, ϕ⟩ = ⟨sin kπx,Ak cos kπx⟩ which satisfies the boundary conditions. Ak

is a constant depending on the integer k and the eigenvalue λk. If ⟨u, ϕ⟩
is a constant eigenfunction of Problem T1-E, then ⟨u, ϕ⟩ = ⟨0, 1⟩. Also all
eigenvalues less than α are simple eigenvalues.

Proof. See Section 4.2.

Corresponding to this sequence of eigenfunctions, we have a sequence of solu-
tions (Tn(t)):

Tn(t) = An cos(
√
λnt) +Bn sin(

√
λnt), (2.4.4)

(with An and Bn arbitrary constants) for the ordinary differential equation
(2.4.3).

Combining the solutions of the eigenvalue problem with the solution (2.4.4)
yields:

wn(x, t) = Tn(t)w̃n(t),

ϕn(x, t) = Tn(t)ϕ̃n(x).
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Substitution show that these solutions do indeed satisfy the differential equa-
tions (2.4.1) and (2.4.2) with the boundary conditions. These solutions are the
modal solutions and they are clearly periodic with natural angular frequencies√
λn (and consequently the natural frequencies are

√
λn

2π
).

Therefore the formal series solution for Problem T-1 is

⟨u, ϕ⟩ =
∞∑
n=1

Tn(t)⟨un(x), ϕn(x)⟩.

The variational eigenvalue problem for Problem T-1E can be obtained using
similar steps to how Problem T-1V is obtained. This variational eigenvalue
problem is referred to as Problem T-1EV

Problem T-1EV

Find a pair of functions w̃ and ϕ̃ such that for all t > 0, ⟨w̃ ϕ̃⟩ ∈ T [0, 1] and
satisfying the equations

−
∫ 1

0

w̃′v′ +

∫ 1

0

ϕ̃v′ =

∫ 1

0

λw̃v,

−
∫ 1

0

αw̃′ψ +

∫ 1

0

αϕ̃ψ −
∫ 1

0

1

γ
ϕ̃′ψ′ =

∫ 1

0

λϕ̃ψ.

for each ⟨v, ψ⟩ ∈ T [0, 1].

2.4.2 General vibration problem

This section is a discussion of the general vibration problem GVar. The discus-
sion will refer to the article [CVV18]. In this article, the authors take damping
into consideration, which is not covered in this dissertation.

Consider Problem GVar defined in Section 2.2.1. Assume there is no damping
and no forcing.

Problem GVar

Find a function u ∈ C(J, X) such that u′ is continuous at 0 with respect to
∥ · ∥W , and for each t ∈ J , u(t) ∈ V , u′(t) ∈ V , u′′(t) ∈ W , satisfying

c(u′′(t), v) + b(u(t), v) = 0 for each v ∈ V, (2.4.5)
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with initial conditions u(0) = u0 and u′(0) = u1.

To try and find a solution to this problem, consider a trial solution u(t) = T (t)x
with x ∈ V and x ̸= 0. Substituting this trial solution into (2.4.5) results in

b(T (t)x, v) = −c(T ′′(t)x, v).

Due to the linearity of the bilinear form, this equation can be rewritten as

T (t)b(x, v) = −T ′′(t)c(x, v).

Dividing both sides by T (t) gives

b(x, v) = −T
′′(t)

T (t)
c(x, v).

Therefore −T
′′(t)

T (t)
must be constant. Suppose that

T ′′(t)

T (t)
= −λ. The existence

of such a λ is uncertain at this point. So we consider the following eigenvalue
problem.

Find a real number λ and a x ∈ V with x ̸= 0 such that

b(x, y) = λc(x, y) for each y ∈ V.

A solution to the eigenvalue problem consists of an eigenvalue λ with corre-
sponding eigenvector x.

The article [CVV18] is a convenient reference to show that the eigenvalue
problem has a solution if the following assumption, aditional to A1, A2, A3
and A4, is satisfied:

A5 - The embedding of V into W is compact.

(This assumption expands on the assumptionsA1-A4 already made in Section
2.2.)

Using these assumptions, the authors of [CVV18] prove that there exists a
complete orthonormal sequence of eigenvectors for the eigenvalue problem with
a corresponding sequence of eigenvalues. These eigenvalues are positive and
the orthogonality is with respect to the bilinear form c. In fact it is also
orthogonal with respect to the bilinear form b,

b(xi, xj) = λic(xi, xj) = 0, for each i ̸= j.
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Also the sequence of normalized eigenvectors xi forms an orthonormal basis
in W and sequence of eigenvalues λi is an infinite sequence with λn → ∞ as
n→ ∞.

Following these results from [CVV18], for any u ∈ V , u =
∞∑
i=1

aixi. These co-

efficients ai are generalized Fourier coefficients of u with respect to the eigen-
vectors xi. Therefore, for any u ∈ V ,

u =
∞∑
i=1

aixi =
∞∑
i=1

c(u, xi)xi.

Now that the eigenvalue problem has many solutions, the following ordinary
differentiable equation can be considered,

T ′′
n + λTn = 0.

Since this differential equation is a simple second order differential equation,
Tn(t) has the following possible solutions:

Tn(t) = An cos(
√
λnt) +Bn sin(

√
λnt) if λn > 0, (2.4.6)

Then combining the solutions of the eigenvalue problem and the differential
equation, the formal series solution for the boundary value problem is

u(t) =
∞∑
n=1

Tn(t)xn. (2.4.7)

2.4.3 Validity of series solution

Consider the following question: When is the formal series solution valid for
the vibration problem with initial values u(0) = u0 and u

′(0) = u1? To answer
this question, we again refer to the article [CVV18].

In the article, the validity of the series solution is proved using energy norms,
where the energy E of the function u given by

E(t) = 1

2
b(u(t), u(t)) +

1

2
c(u′(t), u′(t)). (2.4.8)

Then,

E ′(t) = b(u(t), u′(t)) + c(u′(t), u′′(t)) = 0 following from (2.4.5).
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Therefore E(t) = E(0) for all t > 0. For the case of weak damping, it can be
proved that E(t) ≤ E(0) for all t > 0 which is the case of [CVV18].

Denote the partial sum uN(t) =
∑N

n=1 Tn(t)wn where wn are is the n’th eigen-
function. Ideally

uN0 =
N∑

n=1

Tn(0)wn and uN1 =
N∑

n=1

T ′
n(0)wn,

but Tn is not uniquely defined by the differential equation.

Substitution shows that these partial sums with initial conditions uN(0) = uN0
and (uN)′(0) = uN1 are solutions for (2.4.5) in Problem GVar.

The authors then define an error function uEN = u − uN . Since both u and
uN satisfies (2.4.5), so does this error function with the following the initial
conditions, uEN(0) = u0 − uN0 and (uEN)

′(0) = u1 − uN1 .

Let E denote the energy of the error function uEN . Since E(t) = E(0) for all
t > 0 it follows that,

||u(t)− uN(t)||2V + ||u′(t)− (uN)′(t)||2W = ||u0 − uN0 ||2V + ||u1 − uN1 ||2W .(2.4.9)

Now, u0 and u1 are given in Problem GVar. Therefore the generalized Fourier
coefficients for u0 and u1 must be used to compute uN0 and uN1 . These Fourier

coefficients are uN0 =
N∑

n=1

b(u0, wn)wn and uN1 =
N∑

n=1

c(u1, wn)wn.

Then ||u0 − uN0 ||2V → 0 and ||u1 − uN1 ||2W → 0 as N → ∞. Therefore E(t) → 0
as N → ∞ by (2.4.9).

It follows that the partial sums of the series solution converges to the solution
u as the initial conditions uN0 and uN1 converges to u0 and u1 respectively.

2.4.4 Comparison of models

In this dissertation, the objective is to compare different linear beam and plate
models for use in applications. The first of the comparisons are in Section 4.6.
This section is a discussion of the article [SP06] comparing a Timoshenko
beam model and a three dimensional beam model to empirical results. The
authors of this article use the natural frequencies (equivalently the eigenvalues)
to compare the different models.
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Sections 4.5 and 6.2 are a discussion and extension of the article [LVV09a].
This article compares a Timoshenko beam model to a two-dimensional beam
model. This is then extended to a comparison of a two-dimensional beam
model to a three-dimensional beam model as well as a comparison of a two-
dimensional plate model to a three-dimensional plate model.

Being able to express the solutions as valid series solutions, enable us to com-
pare the different models by only considering the eigenvalues and eigenfunc-
tions of the different models. This is explained in detail in [CVV18].

In [CVV18], the authors consider a beam model and wave equation model for
a vibrating string. Suppose that for the same initial conditions, ub and uw are
the exact solutions. A comparison of the exact solutions is not possible, but
the partial sums can be compared if the bounds for the errors ub − uNb and
uw − uNw can be guaranteed.
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3 Finite element theory

In this chapter, two important convergence results of the Finite Element
Method (FEM) are discussed. The first result looks at the convergence of the
Galerkin approximation for second order hyperbolic type problems (or general
vibation problems). The papers considered for the first result are [BV13] and
[BSV17]. The second result is from the textbook [SF73] and examines the
convergence of eigenvalues and eigenfunctions for a vibration problem, using
the Finite Element Method.

3.1 Galerkin approximation for second order

hyperbolic type problems

In the article [BV13], the authors investigate the convergence of the Galerkin
approximation for second order hyperbolic type problems. The article [BSV17]
extends the work of [BV13] by including general damping and damping at the
endpoints. For the models in Chapter 1, [BV13] is sufficient while [BSV17]
provides more insight and improved notation.

In Section 2.2 of this dissertation, Problem GVar is presented. It is identical
to the problem in [BV13]. For convenience, the problem is repeated here.

3.1.1 Formulation of the Galerkin approximation

Recall the spaces V , W and X from Section 2.2 where V ⊂ W ⊂ X.

Problem GVar

Given a function f : J → X, find a function u ∈ C(J, X) such that u′ is
continuous at 0 with respect to ∥ · ∥W and for each t ∈ J, u(t) ∈ V, u′(t) ∈

51



V, u′′(t) ∈ W and

c(u′′(t), v) + a(u′(t), v) + b(u(t), v) = (f(t), v)X for each v ∈ V, (3.1.1)

while u(0) = u0, u
′(0) = u1.

Assume that the assumptions A1-A4 from Section 2.2 are satisfied ensuring
that Problem GVar has a unique solution.

Before the theory of [BV13] can be discussed, some preliminary work is nec-
essary. The structure of this section is as follows. First the Galerkin approx-
imation for Problem GVar is derived. Then an equivalent system of ordinary
differential equations is derived using the Finite Element Method. Finally, the
convergence of the Galerkin approximation is discussed using the work of the
article [BV13].

Consider the example of the cantilever Timoshenko beam model from Section
2.1. In this section the variational problem Problem T-2V is given in terms of
bilinear forms.

Problem T-2V

Find a function u ∈ T [0, 1] such that for all t ≥ 0,

c(u′′(t), v) + b(u(t), v) = (Q(t), v),

for each v ∈ T [0, 1].

The interval [0, 1] is divided into n equal subintervals [xi, xi+1], each of length

h =
1

n
, such that xi = ih for i = 0, 1, ..., n.

Consider a set of n+ 1 linear independent, piecewise linear basis functions δi.
The subset of these functions that satisfies the boundary conditions are called
admissible basis functions. For Problem 2-T, the admissible basis functions
are δi for i = 1, 2, ..., n. Define the space Sh as the space spanned by the
admissible basis functions, i.e.

Sh = span{δ1, δ2, ..., δn}.

This space Sh × Sh is a finite dimensional subspace of T [0, 1]. Define the
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following functions wh ∈ Sh and ϕh ∈ Sh as

wh(t) =
n∑

i=1

w(x∗i , t)δi(t),

ϕh(t) =
n∑

i=1

w(x∗i , t)δi(t),

where x∗i ∈ [xi, xi+1]. Then let uh = (wh, ϕh).

Using these functions, the Galerkin approximation for Problem T-2, referred
to as Problem T-2Vh, can be derived.

Problem T-2Vh

Find a function uh ∈ Sh × Sh such that for all t ≥ 0,

c(u′′h(t), v) + b(uh(t), v) = (QI(t), v),

for each v ∈ Sh × Sh. For each t, QI(t) is the interpolant of Q(t) in Sh.

This example serves as an illustration of the derivation of the Galerkin approx-
imation and the convention of symbols before the general case is presented.
Piecewise linear basis functions are used for this example, but other basis func-
tions can be used. In Chapter 5, the basis functions used are piecewise cubic
Hermite polynomials.

For the general case presented below, Sh is a finite dimensional subspace of V .

Problem GVarh

Given a function f : J → X, find a function uh ∈ C2(J, Sh) such that for each
t ∈ J

c(u′′h(t), v) + a(u′h(t), v) + b(uh(t), v) = (f(t), v)X for each v ∈ Sh, (3.1.2)

with the initial values uh(0) = uh0 and u′h(0) = uh1 . The initial conditions uh0
and uh1 are projections of u0 and u1 in the finite dimensional space Sh.
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3.1.2 System of ordinary differential equations

Problem GVarh is equivalent to a system of second order differential equations.
Consider the standard FEM matrices defined by

Kij = b(ϕj, ϕi),

Cij = a(ϕj, ϕi),

Mij = c(ϕj, ϕi),

Fi(t) = c(f(t), ϕi),

where ϕi and ϕj are admissible basis functions.

Using these matrices, Problem GVarh is rewritten as a system of ordinary
differential equations denoted by Problem ODE.

Recall that uh(t) =
∑

k uk(t)ϕk where ūk = (u1(t), u2(t), ..., un(t)) where each
ϕk corresponds to a node number k. More complex cases are treated in Chapter
5.

Problem ODE

Find a function ū ∈ Sh such that

Mū′′ + Cū′ +Kū = F (t) with ū(0) = ū0 and ū(1) = ū1 (3.1.3)

The following propositions related to Problem ODE are given in [BV13].
Proposition 1. If F ∈ C(J), then Problem ODE has a unique solution for each
pair of vectors ū0 and ū1
Proposition 2. Suppose M,K,C, F, ū0 and ū1 are defined as above. Then, the
function uh is a solution of Problem GVarh if and only if the function ū is a
solution of Problem ODE.

Proposition 2 provides a link between the solution of Problem ODE and the
solution of Problem GVarh. Theorem 1 below follows.
Theorem 1. If f ∈ C(J,X), then there exists a unique solution uh ∈ C2(J, Sh)
for Problem GVarh for each uh0 and u

h
1 in S

h. If f = 0 then uh ∈ C2((−∞,∞)).

It is now required to find an approximation for the solution of ū of Problem
ODE.

Consider the time interval J = [0, T ]. Divide J into N steps with length
τ = T

N
. Each interval can be expressed as [tk−1, tk] for k = 1, ..., N . Denote

the approximation of uh on the interval [tk−1, tk] by u
h
k, i.e. uh(tk) corresponds

to uhk for each k. A finite difference method is used to compute uhk for each k.
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3.1.3 Error estimates

In this subsection we consider estimates for the error u(tk) − uhk. To simplify
the process, the error is divided into errors for the semi-discrete problem and
the fully discrete problem.

Under the assumptions A1-A4 of Chapter 2 and continuity of f , there exists a
unique solution for Problem GVarh. The next step is to show that the solution
of Problem GVarh converges to the solution of Problem GVar.

Let u be the solution of Problem GVar and uh be the solution of Problem
GVarh. The authors of [BV13] define the following error,

eh(t) = u(t)− uh(t). (3.1.4)

In [BV13] it is assumed that there exists a subspace H of V and a positive
integer α such that

inf
v∈Sh

∥w − v∥V ≤ Chα|||w|||H ,

for each w ∈ H where |||w|||H is a norm or semi-norm for H.
Theorem 2. If u(t) ∈ H and u′(t) ∈ H for each t, then

||eh(t)||W ≤ Chα (|||u(t)||H + |||u′(t)||H) ,

for each t.

From Theorem 2 for the semi-discrete problem an error estimate for e(t) =
u(t) − uh(t) with respect to the norm of W was obtained. The authors of
[BV13] then proceed to obtain an error estimate for ek = uh(tk)− uhk.

The error can then be expressed as

e(tk) = u(tk)− uhk = [u(tk)− uh(tk)] + [uh(tk)− uhk]. (3.1.5)

In (3.1.5), the the error for the semi-discrete problem is the term u(tk)−uh(tk)
and the term uh(tk)−uhk is the error for the fully disrete appreximation of the
semi-discrete approximation.

Since the dimension of Sh is not fixed, the equivalence of norms cannot be
used, and therefore this error estimate for ek = uh(tk)−uhk should also be with
respect to the norm of W . The local error e1 can be estimated using Taylor
polynomials, but then ek ‘grows’ as k increases.

A stability result is derived in [BV13]. Recall that τ =
T

N
.
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Lemma.

max ∥en∥2W ≤ KTτ

where K depends on u, uh and their derivatives.

Using this lemma, [BV13] prove the error estimate. The error estimate for the
term uh(tk) − uhk with respect to the norm of W as proven by the authors of
[BV13] is presented here as Theorem 3.
Theorem 3. If f ∈ C2([0, T ], X), then

∥uh(tk)− uhk∥W ≤ Kτ 2

for each t ∈ (0, T ).

3.1.4 Main result

Finally, Theorem 2 of the semi-discrete problem and Theorem 3 of the fully
discrete problem gives an error estimate for the error e(t). Consequently, the
error estimate eh(t) = u(t)− uh(t) is obtained.

The main result proving the convergence of the solution of the Galerkin Ap-
proximation is given in [BV13] as follows.
Theorem 4. Main Result
If f ∈ C2([0, T ], X), then

∥u(tk)− uhk∥W ≤ Kτ 2

for each t ∈ (0, T ).

The constant K depend on u, uh and their derivatives.

3.2 FEM computation of eigenvalues and

eigenfunctions

Let W be a Hilbert space with the inner product c(·, ·) and induced norm
|| · ||W . In [SF73], the authors use a Hilbert space H, with inner product (·, ·)
and induced norm || · ||. We remain with the notation that is consistent with
this dissertation. Let V be a linear subspace of W , with inner product defined
by the bilinear form b(·, ·). It is assumed that the bilinear form b is symmetric
and that the assumptions in Section 2.4 holds.

The following eigenvalue problem is considered in [SF73]. The same problem
was treated in Section 2.4, although the notation differs slightly.
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Problem E

Find a vector u ∈ V and number λ ∈ R such that u ̸= 0 and

b(u, v) = λc(u, v) (3.2.1)

for each v ∈ V .

Recall that the eigenvectors can be ordered in such a way that

λ1 ≤ λ2 ≤ λ3 ≤ ...

where λi are the corresponding eigenvalues.

Properties of eigenvalues

Since any multiple of a eigenfunction is still an eigenfunction, the eigenfunc-
tions can be normalized so that ||ui||W = 1 for all i.

Let {ϕk ∈ V | k = 1, 2, ..., Ne} be a set of linear independent admissible basis
functions. Define Sh := span {ϕk ∈ V | k = 1, 2, ..., Ne} so that Sh is a finite
dimensional subspace of V.

Consider the Galerkin approximation for (3.2.1):

Problem Eh

Find uh ∈ Sh such that uh ̸= 0 (with corresponding eigenvalue λh) and

b(uh, v) = λhc(uh, v) for all v ∈ Sh.

For examples, see Chapter 5.

Problem Eh can be written as a matrix eigenvalue problem,

λhMūn = Kūn. (3.2.2)

Since Ne is never small and usually large to very large, a compute algorithm
is required to calculate the eigenvalues (and eigenfunctions) of (3.2.2).

The pair (λh, ūn) correspond to the pair (λhk, u
h
k) which is the solution of Prob-

lem Eh. It is necessary to understand some of the theory to make the connec-
tion.
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In Sh, the ordering of vectors is the same as in the original space. Denote the
normalized eigenvectors in the space Sh as uhk with corresponding eigenvalues
λhk for k = 1, 2, ..., Ne.

In Section 3.3 it is proved that the error |λhk − λk| is large when k is large. It
is for example possible that |λh1 −λ1| is sufficiently small while λhk cannot even

be considered as an approximation for λk when k >
1

2
Ne.

Finally, any subspace of Sh will also be a subspace of V . So the minmax prin-
ciple applies and a lower bound for the approximate eigenvalues hold [SF73]:

λi ≤ λhi . (3.2.3)

3.3 Estimating the eigenvalues.

In this section, the work in the textbook [SF73] is discussed. The results are
the same as given in the textbook, however the proofs are expanded for greater
clarity.

3.3.1 Projection of the eigenfunctions

Some theory is required before the main results can be proven. The theory is
from [SF73].

Rayleigh quotient

R(v) =
b(v, v)

c(v, v)
for v ∈ V. (3.3.1)

Projection

If u ∈ V , then Pu is its projection in the subspace Sh.

b(u− Pu, vh) = 0 for all v ∈ Sh.

Let Ej ∈ V denote the eigenspace spanned by the exact eigenvectors {u1, u2, ..., uj}
for j = 1, 2, ...,m. Clearly m ≤ Ne.

Consider the subspace Sj of S
h where

Sj = PEj for j = 1, 2, ...,m.
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The elements Puj are the projections of the eigenfunctions uj into the space
Sh. These projections Puj are not necessarily equal to uh ∈ Sh. In fact, uhj
can be vastly different from uj. The situation is not simple. It is possible
that Puk = 0 for large k Assume that the dimension of Sh is large enough,
substantially larger than m.

Let Bm = {u ∈ Em | ||u||W = 1} and define µm = inf {(Pu, Pu | u ∈ Bm)}.

The first step to obtain estimates for the eigenvalues, it to show that the ele-
ments of Bm are linearly independent. In the first part we follow the approach
in [Zie00]. The author introduced the quantity µm above.
Proposition 1. µm > 0 if and only if dimSm = m.

Proof. To show that the dimension of Sm = m, suppose that the elements of
Bm are linearly dependent. Then there exists a u ∈ Bm such that Pu = 0 and
consequently µm = 0. The result follows from the contra-positive.

3.3.2 Upper bounds for approximate eigenvalues

Recall the definition of the Rayleigh quotient R in (3.3.1).
Proposition 2. λhm ≤ maxR(Pu) for u ∈ Bm

Proof. Since dimSm = m, following from the minmax principle that

λhm ≤ maxR(v) for v ∈ Sm. (3.3.2)

Take an arbitrary nonzero v ∈ Sm. Then there exists a Py ∈ Em such that
v = Py.

Now we take an arbitrary v ∈ Sm, v ̸= 0. Then there exists a u ∈ Em such
that Pu = v. This Pu is the projection into Sm of some u ∈ Em (which is also

1

||u||W
u ∈ Bm).

Next we show that R(||u||−1
W u) = R(u):

b
(

1
||u||W

u, 1
||u||W

u
)

c
(

1
||u||W

u, 1
||u||W

u
) =

b(u, u)

c(u, u)
= R(u).
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Finally, from (3.3.2)

λhm ≤ maxR(v) for v ∈ Sm,

= maxR(Pu) for u ∈ Em,

= maxR(Pu) for u ∈ Bm.

In the textbook, the authors show that the eigenfunctions are orthogonal. But
they do so using matrix representations of the eigenvalue problem. A different
method can be used to show this.

Pick any i, j ∈ N such that i, j ≤ m. Then

b(ui, ν) = λic(ui, ν),

and b(uj, ν) = λjc(uj, ν).

for each ν ∈ V . Clearly

b(ui, uj) = λic(ui, uj),

and b(uj, ui) = λjc(uj, ui).

Then using the symmetry of b(·, ·) and c(·, ·),

0 = (λi − λj)c(ui, uj).

So if i ̸= j then λi ̸= λj. Therefore ui and uj are orthogonal when λi ̸= λj.

The next steps in the textbook [SF73] contains proofs with multiple results.
In an attempt to better understand the results, the proofs are broken up into
smaller proofs.

Lemma 1. λhm ≤ λm
µh
m

Proof. Consider the linearity of the bilinear form b, and fact that any u ∈ Em

can be expressed as a linear combination u =
∑m

i=1 ciui. Then

b(u, u) = b

(
m∑
i=1

ciui,

m∑
j=1

cjuj

)
,

=
m∑
i=1

ci

m∑
j=1

cjb(ui, uj).
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The summation parameters can be merged into a single parameter. Then

b(u, u) =
m∑
i=1

c2iλiui,

≤ λm

m∑
i=1

c2iui,

= λm||u||2W .

for all u ∈ Bm.

And since Bm ⊂ Em, b(Pu, Pu) ≤ λm for all u ∈ Bm

Using the Rayleigh quotient, and the definition of µh
m,

R(Pu) =
b(Pu, Pu)

c(Pu, Pu)
,

=
b(Pu, Pu)

||Pu||2W
,

≤ λm
µh
m

.

Together with Proposition 2 it follows that

λhm ≤ λm
µh
m

.

3.3.3 The error bound

Following Lemma 1, and since λhi ≥ λi it follows that 0 < µh
m ≤ 1. It is now

possible to define the ‘error bound’ in [SF73]:

σh
m = 1− µh

m. (3.3.3)

Proposition 3. 0 ≤ σh
m < 1 and λhm − λm ≤ λhmσ

h
m

Proof. Starting with the result of Lemma 1, λhmµ
h
m ≤ λm.
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Since −λm ≤ −λhmµh
m, it follows that

λhm − λm ≤ λhm − λhmµ
h
m = λhm(1− µh

m).

This result gives an error estimate for the eigenvalues. To prove the conver-
gence of the eigenvalues, it is necessary to prove that the error estimate σh

m

converges to zero as h→ 0.
Proposition 4. σh

m = max {2c(u, u− Pu)− ||u− Pu||2W | u ∈ Bm}

Proof. Let u ∈ Bm. Then

||u− Pu||2W = c(u− Pu, u− Pu),

= c(u, u)− 2c(u, Pu) + c(Pu, Pu),

= 2c(u, u)− 2c(u, Pu) + c(Pu, Pu)− c(u, u),

= 2c(u, u− Pu) + c(Pu, Pu)− c(u, u).

Consequently,

c(u, u)− c(Pu, Pu) = 2c(u, u− Pu)− ||u− Pu||2W .

Since u ∈ Bm, ||u||2W = 1 and hence

1− ||Pu||2W = 2c(u, u− Pu)− ||u− Pu||2W .

On the right hand side, 1− ||Pu||2W ≤ 1− µh
m = σh

m for all u ∈ Bm. Therefore

σh
m = max

{
2c(u, u− Pu)− ||u− Pu||2W | u ∈ Bm

}
.

Proposition 4 is a result given in [SF73] without explaining how it is derived.

Introduce some new notation for convenience. For any u ∈ Em, let u∗ =∑m
i=1 ciλ

−1
i ui where u =

∑m
i=1 ciui.

Proposition 5. For any u ∈ Em

c(u, u− Pu) = b(u∗ − Pu∗, u− Pu)
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Proof. For any i = 1, 2, ...,m,

λic(ui, u− Pu) = b(ui, u− Pu),

= b(ui, u− Pu)− b(u− Pu, Pui) (Rayleigh-Ritz Projection),

= b(ui, u− Pu)− b(Pui, u− Pu),

= b(ui − Pui, u− Pu).

Multiplying by ciλ
−1
i and summation over i gives:

m∑
i=1

ciλ
−1
i λic(ui, u− Pu) =

m∑
i=1

ciλ
−1
i b(ui − Pui, u− Pu),

= b(
m∑
i=1

ciλ
−1
i ui −

m∑
i=1

ciλ
−1
i Pui, u− Pu),

= b(u∗ − Pu∗, u− Pu).

Therefore c(u, u− Pu) = b(u∗ − Pu∗, u− Pu).

Lemma 2. σh
m ≤ max {2||u∗ − Pu∗||W ||u− Pu||W | u ∈ Bm} .

Proof. From Proposition 4,

σh
m = max

{
2c(u, u− Pu)− ||u− Pu||2W | u ∈ Bm

}
,

≤ max {2c(u, u− Pu) | u ∈ Bm} .

From Proposition 5,

σh
m = max {2b(u∗ − Pu∗, u− Pu) | u ∈ Bm} .

Using the Schwartz inequality,

b(u∗ − Pu∗, u− Pu) ≤ ||u∗ − Pu∗||W ||u− Pu||W .

Finally,

σh
m ≤ max {2||u∗ − Pu∗||W ||u− Pu||W | u ∈ Bm} .
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3.3.4 Convergence of the eigenvalues

Assumption

For any ϵ > 0 there exists a δ > 0 such that if h < δ, then

||u− Pu||W < ϵ for each u ∈ Bm.

Remark: Pu is the closest element in Sh to u. In particular, ||u − Pu||W ≤
||u−Πu||W , where Πu is the interpolant of u in Sh. The operator Π is treated
in Section 3.5.
Lemma 3. For any ϵ > 0 there exists a δ > 0 such that

σh
m < ϵ if h < δ. (3.3.4)

Substitute the assumption into the estimate for σh
m in Lemma 2.

Lemma 4. There exists a δ > 0 such that for h < δ

λhm − λm ≤ 2λmσ
h
m. (3.3.5)

Proof. Using Lemma 3, choose δ such that σh
m < 1

2
. Then (by Lemma 1)

λhm < 2λm and therefore λhm − λm ≤ 2λmσ
h
m.

The convergence of the eigenvalues follows from (3.3.4) and (3.3.5). An esti-
mate of the error depends on an estimate for u− Πu, see Section 3.5

3.4 Convergence of the eigenfunctions

The next step is to show the convergence of the eigenfunctions. The problem
can be formulated using the following result.
Lemma 5.

b(um − uhm, um − uhm) = λmc(um − uhm, um − uhm) + λhm − λm.

Proof.

b(um − uhm, um − uhm) = b(um, um)− 2b(um, u
h
m) + b(uhm, u

h
m),

= λmc(um, um)− 2λmc(um, u
h
m) + λhmc(u

h
m, u

h
m),

= λm − 2λmc(um, u
h
m) + λhm,

= 2λm − 2λmc(um, u
h
m) + λhm − λm,

= λmc(um − uhm, um − uhm) + λhm − λm.

64



It has been shown that the eigenvalues converge to the exact eigenvalues as
h→ 0. So from this result, it only remains to show that c(um−uhm, um−uhm) →
0 as h→ 0.

At this point, another assumption must be made. Assume that there are not
eigenvalues with multiplicity more than 1. In other words, all the eigenvalues
correspond only to one eigenfunction. In [SF73], the authors mention that for
repeated eigenvalues, then the eigenfunctions can be chosen so that the main
convergence results hold. This case is ommited in this dissertation.
Lemma 6. For all m and j

(λhj − λm)c(Pum, u
h
j ) = λmc(um − Pum, u

h
j ).

Proof. Since the term λmc(Pu, u
h
j ) appears on both sides of the equation, it is

only required to show that

λhj c(Pu, u
h
j ) = λmc(u, u

h
j ).

Since both u and uhj are eigenfunctions, then

λhj c(Pu, u
h
j ) = b(Pu, uhj ),

λmc(u, u
h
j ) = b(u, uhj ).

Then equality follows from the definitions of the projection P.

The set
{
uh1 , u

h
2 , ..., u

h
N

}
forms an orthonormal basis for Sh. The projection

Pum can be written as:

Pum =
N∑
j=1

c(Pum, u
h
j )u

h
j . (3.4.1)

From Lemma 6, it follows that c(Pm, u
h
j ) is small if λhm is not close to λj.

Therefore (3.4.1) tells us that Pum is close to uhm. The estimate for Pum−uhm
will follow from this result.

Following the convergence of the eigenvalues, ∃ρ > 0 and ∃δ > 0 such that if
h < δ,

|λm − λhj | > ρ for all j = 1, 2, ..., N. (3.4.2)
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Therefore

λm
|λm − λhj |

≤ ρ for all j = 1, 2, ..., N. (3.4.3)

To simplify the notation, let β = c(Pum, Pu
h
m).

Lemma 7.

||Pu− βPuhm||2W ≤ ρ2||um − Pum||2W .

Lemma 8.

||um − βuhm||W ≤ (1 + ρ) ||um − Pum||W .

The proofs for lemma’s 7 and 8 are given in [SF73].

So again using the Approximation Theorem, it follows that ||um − βuhm||W ≤
Chk||uk||W .
Lemma 9.

||um − uhm||W ≤ 2||um − βuhm||W .

Proof.

||um − uhm||W = ||um − βuhm + βuhm − uhm||W ,
≤ ||um − βuhm||W + ||βuhm − uhm||W ,
= 2||um − βuhm||W .

Therefore ||um−uhm||W ≤ Chk||uk||W . So for any ϵ > 0 , a δ > 0 can be found
such that if h < δ, ||um − uhm||W < ϵ.

3.5 The approximation theorem

Consider a interpolation operator Π. This projection is linear, i.e.

Π(f + g) = Πf +Πg,

Π(αf) = αΠf for a constant α.
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Define the interval Ie = [a, a+ h]. A necessary condition is for the operator Π
is that when Πu is restricted to the interval Ie, this must equal the projection
of u restricted to the interval Ie. This can be written as

[Πu]Ie = Πe[u]Ie .

The following notation is introduced.

Pj(Ie): Is the set of all polynomials on the interval Ie of degree at most
j.

r(Πe): If the range of Πe is contained in Pj(Ie) and k < j is the largest
integer such that Πef = f for each f ∈ Pj(Ie), then r(Πe) = k.

s(Πe): Is a integer and the largest order derivative used in the definition
of Πe.

From the textbook [OR76], the following approximation theorem for finite
elements is given verbatim:
Theorem (The Interpolation Theorem for Finite Elements). Let Ω be an open
bounded domain in Rn satisfying the cone condition. Let k be a fixed integer
and m an integer such that 0 ≤ m ≤ k + 1. Let Π ∈ L(Hk+1(Ω), Hm(Ω)) be
such that

Πu = u for all u ∈ Pk(Ω) (3.5.1)

Then for any u ∈ Hk+1(Ω) and for sufficiently small h, there exists positive a
constant C, independent of u and h, such that

||u− Πu||Hm(Ω) ≤ C
hk+1

pm
|u|k+1

H (Ω) (3.5.2)

where |u|k+1
H (Ω) is the seminorm.

For the requirements of this dissertation, this can be simplified with an as-
sumption. The assumption is that the basis of Sh consists of polynomials.
With these assumptions, the semi-norm |u|H is equal to the norm ||u||W . This
approximation theorem can be rewritten as
Theorem 1. Suppose there exists an integer k such that for each element

s(Πe) + 1 ≤ k ≤ r(Πe) + 1.

Then there exists a constant C such that for any u ∈ Ck
+(I),

||(Πu)(m) − u(m)||W ≤ Chk−m||u(k)||W for m = 0, 1, ..., k.
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4 Timoshenko beam model

4.1 Introduction

An example of modal analysis of a Timoshenko beam is given in Section 2.4.
In this chapter, more general theory for modal analysis of the Timoshenko
beam theory is discussed, as well as more examples of the application of the
theory.

4.2 Eigenvalue problem

This section is a discussion of a systematic method to solve the eigenvalue
problem for the Timoshenko beam theory. The article discussed is [VV06].

Consider a general eigenvalue problem for a Timoshenko beam Problem.

General eigenvalue problem

Find functions u and ϕ and a real number λ satisfying the following equations

−u′′ + ϕ′ = λu, (4.2.1)

−αu′ + αϕ− 1

γ
ϕ′′ = λϕ. (4.2.2)

Recall from Section 1.3, u represents the transverse motion of the beam, ϕ is
the angle of rotation of the cross-section of the beam, α and γ are dimensionless
constants defined in Section 5.4 and λ represents the eigenvalue.

The authors of [VV06] first derive a general solution for the system of ordinary
differential equations (4.2.1) and (4.2.2). In [VV06] the authors show that for
the Timoshenko models in this dissertation that λ is non-negative. Assume
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that the solution is of the form ⟨u, ϕ⟩ = emxw̄ where m ∈ R or m ∈ C.
Substitution into (4.2.1) and (4.2.2) yields:

−m2emxw1 +memxw2 = λemxw1,

−1

γ
m2emxw2 − αmemxw1 + αemxw2 = λemxw2.

From these equations it can be concluded that emxw̄ is a solution of the system
if and only if the pair ⟨m, w̄⟩ is a solution of the linear system:

[
−m2 − λ m
−αm − 1

γ
m2 + (α− λ)

] [
w1

w2

]
=

[
0
0

]
. (4.2.3)

Let A denote the coefficient matrix of (4.2.3). For a nontrivial solution w̄, it
is required that the determinant of matrix A is 0.

det(A) = m4 + λ(1 + γ)m2 + γλ(λ− α) = 0.

This equation is called the characteristic equation. The characteristic equation
is quadratic with respect to m2. The roots of the characteristic equation can
be expressed as

m2 = −1

2
λ(1 + γ)(1±

√
∆), (4.2.4)

where

∆ = 1− 4γ

(1 + γ)2

(
1− α

λ

)
=

4γ

(1 + γ)2
α

λ
+

(1− γ)2

(1 + γ)2
. (4.2.5)

It is clear that ∆ > 0, since λ, α and γ are all positive. Therefore m2 will
always be real, and have distinct roots.

Consider the case where m2 = 0, which occurs when λ = α. Then the matrix
A simplifies to [

α 0
0 0

]
.

In this case it is easy to find two linearly independent solutions:

[u(x) ϕ(x)]T = [0 1]T and [u(x) ϕ(x)]T = [1 αx]T .
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Now if m2 ̸= 0, we consider the system Aw̄ = 0 with w1 = m and w2 = m2+λ.
From [VV06], the parameters ω, µ and θ are uniquely determined by λ.

ω2 =
1

2
λ(1 + γ)(∆

1
2 + 1) for λ > 0 (4.2.6)

µ2 =
1

2
λ(1 + γ)(∆

1
2 − 1) for λ < α (4.2.7)

θ2 =
1

2
λ(1 + γ)(1−∆

1
2 ) for λ > α (4.2.8)

The three cases λ < α, λ = α and λ > α are considered separately by the
authors of [VV06]. The general solution from [VV06] for each case is presented
below.

Case λ < α

Denote the roots of (4.2.4) by ±µ and ±ωi. Thus the general solution is given
by[
u(x)
ϕ(x)

]
= A

[
sinh(µx)

λ+µ2

µ
cosh(µx)

]
+B

[
cosh(µx)

λ+µ2

µ
sinh(µx)

]
+ C

[
sin(ωx)

−λ−ω2

ω
cos(ωx)

]
+D

[
cos(ωx)

λ−ω2

ω
sin(ωx)

]
.

Case λ = α

In this case the roots of (4.2.4) are 0 with multiplicity 2, and ±ωi. The general
solution is[

u(x)
ϕ(x)

]
= A

[
0
1

]
+B

[
1
αx

]
+ C

[
sin(ωx)

−λ−ω2

ω
cos(ωx)

]
+D

[
cos(ωx)

λ−ω2

ω
sin(ωx)

]
.

Case λ > α

All the roots of (4.2.4) are complex. Denote them by ±θi and ±ωi. The
general solution is[

u(x)
ϕ(x)

]
= A

[
sin(θx)

−λ−θ2

θ
cos(θx)

]
+B

[
cos(θx)

λ−θ2

θ
sin(θx)

]
+ C

[
sin(ωx)

−λ−ω2

ω
cos(ωx)

]
+D

[
cos(ωx)

λ−ω2

ω
sin(ωx)

]
.
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Strategy for determining the eigenvalues and eigenvectors

The authors of [VV06] provide a detailed example of the application of the
above strategy for determining the eigenvalues and eigenvectors. The example
used is a pinned-pinned beam, the same model as in Section 2.4.1.

The strategy can be summarized as follows:

From the general solutions for u and ϕ, the eigenvalues and eigenfunctions can
be determined by imposing the boundary conditions at x = 0 to reduce the
solution space of four dimensions to a solution space of dimension at least two.

The boundary condition at x = 1 is then substituted which results in a homo-
geneous system of linear equations of the form

Ab̄ = 0̄.

This system either has the zero solution or infinitely many solutions. To ensure
the zero solution, the determinant of the matrix A is set to zero. This equation
det(A) = 0 is called the frequency equation.

The frequency equation has infinitely many solutions. Each of the solutions
corresponds to a eigenvalue with a unique vector b̄. The eigenfunctions can
then be obtained by substituting the vector b̄ into the general solution for u
and ϕ.

Pinned-pinned beam

Returning back to the example of the pinned-pinned beam, we present some
of the results from [VV06]:

For λ < α the general solution reduces to ⟨u(x), ϕ(x)⟩ = ⟨sin(kπx), Ak cos(kπx)⟩.

For λ = α, the general solution reduces to ⟨u(x), ϕ(x)⟩ = ⟨0, 1⟩.

For λ > α, the general solution also reduces to ⟨u(x), ϕ(x)⟩ = ⟨sin(kπx), Ak cos(kπx)⟩.

A rigourous proof of the above results can be found in [VV06]. These results
also prove the Theorem 1 presented in Section 2.4.1.

4.3 Cantilever beam

Consider a cantilever Timoshenko beam model (Problem T-3 as defined in
Section 1.3.3). The eigenvalue problem of Problem T-3 is denoted by Problem
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T-3E. This section serves as an example of the application of the theory from
[VV06].

Consider the general solutions of the eigenvalue problem for the three cases
λ < α, λ = α and λ > α. Imposing the boundary conditions x = 0 results in
the following constants:

C =
µ(λ− ω2)

ω(λ+ µ2)
A and D = −B if λ < α (4.3.1)

C =
ω

λ− ω2
A and D = −B if λ = α (4.3.2)

C =− ω(λ− θ2)

θ(λ− ω2)
A and D = −B if λ > α (4.3.3)

The boundary conditions at x = 1 reduces the general solution to the following
two-dimensional homogeneous system for each of the three cases.

[
M11(λ) M12(λ)
M21(λ) M22(λ)

] [
A
B

]
=

[
0
0

]
(4.3.4)

To obtain non-zero solutions, the determinant of the coefficient matrix M is
set to zero, ie. det(M) = 0, and is called the frequency equation after simpli-
fication. The frequency equations for all three cases is given in [VV06] and is
presented below.

Case λ < α:

(
λ+ µ2

λ− ω2
+
λ− ω2

λ+ µ2

)
cosh(µ) cos(ω) +

(
ω

µ
− µ

ω

)
sinh(µ) sin(ω)− 2 = 0

(4.3.5)

Case λ = α:

(
α

α− ω2
+
α− ω2

α

)
cos(ω) + ω sin(ω)− 2 = 0 (4.3.6)
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Case λ > α:

(
λ+ θ2

λ− ω2
+
λ− ω2

λ+ θ2

)
cos(θ) cos(ω) +

(
ω

θ
− θ

ω

)
sin(θ) sin(ω)− 2 = 0 (4.3.7)

Inspection of the system of equations (4.3.4), shows that the coefficient ma-
trix is never zero for the case of the cantilever beam. It follows that all the
eigenvalues are simple eigenvalues. This is mentioned in [VV06].

4.3.1 Calculating the eigenvalues

The solutions of the frequency equations (4.3.5) - (4.3.6) can be calculated
using simple numerical methods. Using interval division, the eigenvalues are
calculated accurate to at least 4 significant digits.

Cantilever Beam Eigenvalues
i α = 1200 α = 4800 α = 10800
1 0.04043 0.01025 0.004569
2 1.427 0.3914 0.1772
3 9.657 2.937 1.361
4 31.06 10.62 5.08
5 70.51 27.02 13.4
6 130.8 55.63 28.67
7 213.4 99.54 53.36
8 318.7 161.2 89.85

Table 4.1: First 8 eigenvalues, with γ = 0.25.

Remark: For interval division, the frequency equations are sketched to deter-
mine intervals to isolate the solutions. Another method that requires less user
involvement is the bisection method. The advantage of the interval method
is that the number of solutions within any given interval can be determined
visually before the method is applied.

4.3.2 Example of mode shapes

Substituting a calculated eigenvalue λk back into (4.3.4), the values for Ak and
Bk can be calculated by solving the system. But since det(M) = 0, there are
infinity many solutions of [Ak Bk]

T for each k. So either one of Ak or Bk can
be chosen freely and the other is depended on the choice. The modal shapes
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are sketched below in Figure 4.1 (modal shapes for u) and Figure 4.2 (modal
shapes for ϕ) corresponding to the eigenvalue λk with Ak = 1, α = 1200 and
γ = 0.25.

(a) λ1 = 0.04043, B1 = −1.368 (b) λ2 = 1.427, B2 = −0.9768

(c) λ3 = 9.657, B3 = −1.002 (d) λ4 = 31.06, B4 = −0.9997

Figure 4.1: Sketch of w for the first 4 mode shapes of the cantilever beam.
α = 1200 and γ = 0.25 with Ak = 1.
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(a) λ2 = 1.427, B1 = −0.9768 (b) λ3 = 9.657, B2 = −1.002

Figure 4.2: Sketch of ϕ for mode shapes 2 and 3 of the cantilever beam.
α = 1200 and γ = 0.25 with Ak = 1.

Remark: The sketch of ϕ for the first mode shape is similar to the sketch of
w and is therefore omitted.

The results obtained for the Cantilever beam model are the same as the results
in [VV06]. The motivation for this model is Chapter 6. The work of this section
will be used for comparisons to a two and three-dimensional cantilever beam
model.

4.4 Free-free Timoshenko beam

Consider a free-free Timoshenko beammodel (Problem T-4 in Section 1.3.3).The
eigenvalue problem of Problem T-4 is denoted by Problem T-4E. Similar to
the previous section, this section serves as an example of the application of
the theory from [VV02].

Consider the general solutions of the eigenvalue problem for the three cases
λ < α, λ = α and λ > α. Imposing the boundary conditions x = 0 results in
the following:
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C =
ω

µ
A and D =

µ2 + λ

ω2 − λ
B if λ < α (4.4.1)

C =
ω

λ
A and D =

α

ω2 − λ
B if λ = α (4.4.2)

C =− ω

θ
A and D = − θ2 − λ

ω2 − λ
B if λ > α (4.4.3)

The boundary conditions at x = 1 gives the following homogeneous system of
equations for each of the three cases.[

M11(λ) M12(λ)
M21(λ) M22(λ)

] [
A
B

]
=

[
0
0

]
(4.4.4)

The entries of the coefficient matrix for each separate case is presented below.

If λ < α

M11(λ) = sinh(µ)(λ+ µ2) +
ω(λ− ω2)

µ
sin(ω)

M12(λ) = (λ+ µ2)(cosh(µ)− cos(ω))

M21(λ) =
λ

µ
(cos(ω)− cosh(µ))

M22(λ) =
λ2 + λµ2

ω(λ− ω2)
sin(ω)− λ

µ
sinh(µ)

If λ = α

M11(λ) =
ω (λ− ω2)

λ
sin(ω)

M12(λ) = α− α cos(ω)

M21(λ) =
ω2

λ
cos(ω) + cos(ω)

(λ− ω2)

λ
− 1

M22(λ) = −α +

(
α

ω
+

αω

λ− ω2

)
sin(ω)
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If λ > α

M11(λ) =
(
λ− θ2

)
sin(θ)− ω (λ− ω2)

θ
sin(ω)

M12(λ) =
(
λ− ω2

)
(cos(ω)− cos(θ))

M21(λ) = −λ
θ
(cos(ω)− cos(θ))

M22(λ) =
λ2 − λθ2

ω(λ− ω2)
sin(ω)− λ

θ
sin(θ)

The frequency equations can be determined by simplifying the equation

M11(λ)M22(λ)−M12(λ)M21(λ) = 0

for each case. To retain readability, the frequency equations are not written
out.

4.4.1 Calculating the eigenvalues

Using interval division, the eigenvalues are calculated accurate to at least 4
significant digits.

Free-Free Beam Eigenvalues
i α = 1200 α = 4800 α = 10800
1 1.544 0.4088 0.1837
2 10.26 2.989 1.372
3 33.41 10.88 5.139
4 76.16 27.82 13.59
5 141.3 57.49 29.15
6 229.7 103.2 54.38
7 341.2 167.4 91.75
8 475.0 252.2 143.5

Table 4.2: First 8 eigenvalues, with γ = 0.25.

4.4.2 Example of mode shapes

Figure 4.3 (modal shapes for u) and Figure 4.4 (modal shapes for ϕ) show
examples of the modal shapes corresponding to the eigenvalue λk with Ak = 1,
α = 1200 and γ = 0.25.
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(a) λ1 = 1.544, B1 = −1.022 (b) λ2 = 10.26, B2 = −0.9982

(c) λ3 = 33.41, B3 = −1.000 (d) λ4 = 76.16, B4 = −0.9999

Figure 4.3: Sketch of w of the first 4 mode shapes of the free-free beam.
α = 1200 and γ = 0.25 with Ak = 1.

(a) λ2 = 1.544, B1 = −1.022 (b) λ3 = 10.26, B2 = −0.9982

Figure 4.4: Sketch of ϕ for the first two mode shapes of the free-free beam.
α = 1200 and γ = 0.25 with Ak = 1.
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The motivation for the free-free beam in this dissertation is Section 4.6. In
this section, an article is discussed in which the eigenvalues of a free-free
Timoshenko beam are compared to empirical results from an experiment con-
ducted in [SP06].

4.5 Validity of the model for a cantilever

Timoshenko beam

In this section, the validity of the Timoshenko beam model is investigated.
Specifically, the validity of a cantilever Timoshenko beam model, using a can-
tilever two-dimensional beam model as a reference. This follows what is done
in the article [LVV09a]. This section discusses the results of the article, fo-
cussing on the numerical results. Some of the results are replicated with more
significant digits, others are extended to be used in the rest of this chapter.

The article [LVV09a] is titled ‘Comparison of linear beam theories’. In this
article, the authors compare a cantilever Timoshenko beam to a cantilever
two-dimensional beam. The authors start by presenting the models. These
are the same as Problem T-2 and Problem 2D-1 that are defined in Chapter 1.
The authors also look at the existence and uniqueness of solutions, which is
covered in Chapter 2 of this dissertation. The authors then calculate and
compare the eigenvalues and eigenfunctions, which will be discussed in this
section.

4.5.1 The models

The cantilever Timoshenko beam model is defined in Section 1.3.3, and is
referred to as Problem T-2. The cantilever two-dimensional beam model is
defined in Section 1.2.3, and is referred to as Problem 2D-1.

Figure 4.5.1 shows the two beams side-by-side.

ℓ = 1

(a) Timoshenko Cantilever Beam

h
ℓ = 1

(b) Two-Dimensional Cantilever Beam

Figure 4.5: Side by side comparison of the beams.

79



In the derivation of the Timoshenko beam model in Section 1.3.1, the param-
eter α is introduced. The paramater is given here again for convenience:

α =
Aℓ2

I
.

The model is in a dimensionless form, therefore the length of the beam is ℓ = 1.
Since we assumed a square cross-section, the area of the cross-section can be
calculated as A = hb. The area moment of inertia can also be calculated as

I =
h3b

12
. Substituting these values into the formula for α gives the following

relationship between the height of the beam and the parameter α: α =
12

h2
or

equivalently,

h =

√
12

α
. (4.5.1)

Using this relationship, the height of the beam model can be set by considering
the value of α.

4.5.2 Calculating the eigenvalues and eigenvectors

In Section 4.2 a method for calculating the eigenvalues and eigenvectors of
the Timoshenko beam is provided. And in Section 4.3, the eigenvalues and
eigenvectors of a cantilever Timoshenko beam are calculated as an example.

For the two-dimensional beam, the eigenvalues and eigenvectors are calculated
using the Finite Element Method. In Section 5.2, the Finite Element Method
for a cantilever two-dimensional beam is derived. Specifically, Section 5.2.4
derives the eigenvalue problem for the two-dimensional beam using the Finite
Element Method, called Problem 2D-1E.

Problem 2D-1E

Find a real number λ and a vector ū ∈ Rn such that

Kū = Mλū, (4.5.2)

where M and K are the standard Finite Element Method matrices defined in
Section 5.2.

In this form, the eigenvalue problem is a system of ordinary differential equa-
tions, and can be solved using a numerical method. Computer programs like
MATLAB provide functions that are able to solve this.
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Accuracy of the eigenvalues

Solving Problem 2D-1E with a numerical method, requires a quick investi-
gation into the rate of convergence so that the accuracy of the eigenvalues can
be established. Chapter 3 provides the necessary theory on the existence of
solutions as well as the proof of convergence of the Finite Element Method.

Figure 4.6: Rate of convergence of the first 20 eigenvalues.

Figure 4.6 shows the rate of convergence of the first 20 eigenvalues of the
two-dimensional beam. Each color represents a spesific eigenvalue.

The number of elements are chosen so that at least the first 10 eigenvalues are
accurate to 5 significant digits.

4.5.3 Comparing the mode shapes

Recall from the introduction, that the investigation is focussed on beam-type
problems. The two-dimensional model is for an eigenvalue problem and and
not specific to beam-type applications, like the Timoshenko beam model.
Therefore there are non-beam type modes that can be expected from the
two-dimensional model. This is also be reflected in the eigenvalues of the two-
dimensional model and therefore eigenvalues irrelevant to beam-type problems
exits.
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Therefore a method is required to compare and match the eigenvalues of the
two models. In [LVV09a], the authors compare the mode shapes of the two
models, to match up the eigenvalues. Eigenvalues relating to the mode shapes
similar to the mode shapes of the Timoshenko beam, are called beam-type
eigenvalues. The other eigenvalues are called non-beam type eigenvalues by
the authors.

Shapes relating to beam-type eigenvalues

The following figures are examples of beam-type mode shapes for the displace-
ment w.

(a) 2D Beam Type - λ6 = 21.911 (b) Timoshenko - λ5 = 21.794

(c) 2D Beam Type - λ7 = 45.711 (d) Timoshenko - λ6 = 45.390

Figure 4.7: Modal shapes of the displacement w for the beam-type 2D body
and the Timoshenko beam with α = 4800 (h = 1/20).

Shapes relating to non-beam type eigenvalues

The following figures are examples of non beam-type mode shapes for the dis-
placement w. These mode shapes are not present in the cantilever Timoshenko
beam model and are not beam related.
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(a) Non-Beam Type - λ4 = 7.7077 (b) Non-Beam Type - λ8 = 69.344

Figure 4.8: Modal shapes of the displacement w for the non-beam type 2D
body with h = 1/20.

Shape of the cross-sections

The Timoshenko beam theory improve some one-dimensional beam theories
such as the Euler-Bernoulli beam theory by also including the effect of shear.
For Timoshenko beam theory it is assumed that the cross-sections need not
remain perpendicular to the neutral axis of the beam. The cross-sections
however remain a straight line.

For the two-dimensional beam, the shape of the cross-section can deform into
a S-shape. This is explained in [LVV09a] and a similar figure in [LVV09a] is
given here.

Figure 4.9: S-shape deformation of the cross-section of the two-dimensional
beam.

Note that figure 4.9 shows an exaggerated example of the deformation of a
cross-section. The red line shows how the authors of [LVV09a] calculated the
average rotation of a cross-section of the two-dimensional beam. This average
rotation can be used to compare the rotation of the cross-section of the two-
dimensional beam to the rotation of the cross-section of the Timoshenko beam
given by ϕ.
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Direct comparison of mode shapes

Figure 4.10 directly compares a mode shape of the Timoshenko beam to a
mode shape of the two-dimensional beam. For the two-dimensional model,
the center line of the displacement of the beam is shown. For the Timoshenko
beam, the displacement w is shown.

Figure 4.10: Comparison of the displacement w mode shape corresponding
to λ10 for the 2D beam and λ8 for the Timoshenko beam with α = 4800
(h = 1/20)

Similarly, figure 4.11 directly compares the angle of the cross-section of the
Timoshenko beam and the two-dimensional beam. The average rotation of
the cross-section of the two-dimensional beam’s mode shape is calculated as
shown in figure 4.9.
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Figure 4.11: Comparison of the angle ϕ (best fit for 2D Beam) mode shape
corresponding to λ10 for the 2D beam and λ8 for the Timoshenko beam with
α = 4800 (h = 1/20)

These figures are examples that show how similar the mode shapes of the two
models are. This specific example is for α = 4800, which represents a typical
beam. The authors of [LVV09a] obtained similar results for α = 300, which
represents a short and thick beam.

Remark: Note that the overall shape is important. This is because any mul-
tiple of a eigenvector is still an eigenvector. The mode shapes were specifically
scaled to obtain figures 4.10 and 4.11.

4.5.4 Comparing the eigenvalues

Using this method of comparing the mode shapes, the eigenvalues can now
be matched up and compared. In the tables, Timo refers to the Timoshenko
beam and 2D refers to the two-dimensional beam.

Some results from [LVV09]

The following table contains results from [LVV09a] verbatim to 3 significant
digits, as well as the replicated results to 5 significant digits.

This table shows that the results obtained in this dissertation are very similar
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Results from [LVV09] Dissertation

2D Timo 2D Timo
1 0.0317 0.0316 1 0.031713 0.031639
2 1.14 1.14 2 1.1413 1.1365
3 7.72 - 3 7.7161 -
4 7.92 7.86 4 7.918 7.8617
5 26.2 25.9 5 26.148 25.869
6 60.8 59.9 6 60.816 59.946
7 69.3 - 7 69.344 -
8 115 113 8 115.28 113.23
9 192 188 9 191.57 187.55
10 192 - 10 192.03 -
11 291 284 11 290.76 283.81

Table 4.3: Results from [LVV09] and results obtained in this dissertation. 0∗

indicates a 0 as a result of rounding. α = 1200.

to the results obtained in [LVV09a]. This is for a specific case where α = 1200.

In the following table, the eigenvalues for different values of α are compared.
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Comparison of Eigenvalues

h = 1/5 or α = 300 h = 1/10 or α = 1200 h = 1/20 or α = 4800 h = 1/30 or α = 10800
i 2D j Timo i 2D j Timo i 2D j Timo i 2D j Timo
1 0.12151 1 0.12092 1 0.031713 1 0.031639 1 0.008013 1 0.008004 1 0.003568 1 0.003565
2 3.5460 2 3.5071 2 1.1413 2 1.1365 2 0.30756 2 0.30705 2 0.13869 2 0.13855
3 7.7311 - 3 7.7161 - 3 2.3273 3 2.3213 3 1.0698 3 1.0683
4 20.225 3 19.869 4 7.9180 3 7.8617 4 7.7077 - 4 4.0140 4 4.0058
5 56.109 4 54.766 5 26.148 4 25.869 5 8.5086 4 8.4762 5 7.7047 -
6 69.164 - 6 60.816 5 59.946 6 21.911 5 21.794 6 10.655 5 10.625
7 114.03 5 110.75 7 69.344 - 7 45.711 6 45.390 7 22.975 6 22.890
8 189.17 6 186.50 8 115.28 6 113.23 8 69.344 - 8 43.113 7 42.909
9 192.61 9 191.57 7 187.55 9 82.887 7 82.154 9 69.331 -
10 285.85 7 277.64 10 192.03 - 10 136.03 8 134.58 10 73.230 8 72.803
11 328.40 8 330.29 11 290.76 8 283.81 11 192.48 - 11 115.41 9 114.61
12 357.08 - 12 374.45 - 12 207.29 9 204.69 12 171.61 10 170.20
13 397.33 9 394.02 13 413.20 9 402.27 13 298.38 10 294.10 13 192.52 -
14 442.00 10 439.52 14 558.67 10 542.65 14 376.83 - 14 243.56 11 241.26
15 533.71 - 15 614.11 - 15 410.63 11 404.01 15 332.83 12 329.28
16 538.97 11 541.55 16 726.26 11 704.15 16 545.03 12 535.32 16 377.16 -
17 596.06 - 17 906.28 - 17 621.95 - 17 440.77 13 435.51
18 602.77 12 596.09 18 913.69 12 884.92 18 702.30 13 688.64 18 568.51 14 561.04
19 657.87 - 19 1113.7 13 1080.1 19 882.95 14 864.40 19 623.05 -
20 717.37 13 731.74 20 1218.0 - 20 927.18 - 20 717.04 15 706.74
Max RE: 3.1718% Max RE: 3.1486% Max RE: 2.1018% Max RE: 1.4361%

Table 4.4: Eigenvalues of a Timoshenko cantilever beam vs the eigenvalues of
a cantilever two-dimensional elastic body. *RE is the relative error.

This table shows that the eigenvalues of the Timoshenko model and the two-
dimensional model compare very well. The non-beam type eigenvalues are
highlighted in grey. For a short thick beam (α = 300), the maximum relative
error for the first 20 two-dimensional eigenvalues is just over 3%, while for
a long thin beam (α = 10800), the maximum relative error is just over 1%.
This shows that as the beam becomes longer and thinner, the Timoshenko
beam is a better approximation of the two-dimensional beam. But overall the
Timoshenko beam compares very well.

This table also shows that as the beam gets more narrow, there are less non-
beam type eigenvalues within the first few eigenvalues.This would also indi-
cate that the Timoshenko beam would be a better approximation of the two-
dimensional beam as the beam gets more narrow since the two-dimensional
model behaves ‘more like a beam’.
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4.6 Empirical and numerical examination of

a Timoshenko beam

Consider a study by Stephen and Puchegger in 2006, article [SP06]. This
study investigated the validity of the Timoshenko beam theory by hand of
empirical and numerical data. The approach of the study is to compare the
natural frequencies of a Timoshenko beam, to that of a three-dimensional
elastic beam. The authors conducted comparisons between the models using
theoretical methods as well as results from an empirical study on a physical
beam, conducted by the authors.

The authors decided on a free-free beam configuration. The natural frequencies
of the Timoshenko beam theory was obtained by using frequency equations
from an article by Levison and Cooke [LC81]. In the theoretical approach
of the three-dimensional beam, two methods were considered. A commer-
cial finite elements method (ANSYS), and a resonant ultrasound spectroscopy
(RUS) technique.

This section discusses the results of [SP06].

4.6.1 Mathematical models

Let Ω be the reference configuration of a free-free beam with square cross-
section. The authors of [SP06] do not formulate the models in the article.
Consider Problem T-4 from Section 1.3.3 for the free-free Timoshenko beam
and Problem 3D-2 from Section 1.1.3 for the free-free three-dimensional beam.
The boundary conditions and reference configurations of the model problems
are given below.

Problem T-4

Find a function u, satisfying the equations of motion (1.3.5)- (1.3.6) and con-
stitutive equations (1.3.7)- (1.3.8).

Free-Free Boundary Conditions:

V (0, ·) = 0, M(0, ·) = 0, (4.6.1)

V (1, ·) = 0, M(1, ·) = 0. (4.6.2)
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Problem 3D-2

Find a vector valued function u, satisfying the equation of motion (1.1.11) and
constitutive equation (1.1.13). Let Ω represent the reference configuration of
the beam with a square cross-section.

Ω :=

{
x̄ = ⟨x, y, z⟩ ∈ R | 0 ≤ x ≤ 1, −h

2
≤ y, z ≤ h

2

}

with h the height and width of the beam. ∂Ω denotes the boundary of Ω.

Free-Free Boundary Conditions:

Tn = 0 on ∂Ω.

with n a outward normal vector.

4.6.2 Suspended beam model

In the article [SP06], the beam is suspended at both ends. The beam is then
vibrated and the induced motion causes the beam to transition into a free-free
beam. This subsection is a short description of the suspended beam model.

The suspended Timoshenko beam model is referred to as Problem T-3 in
this 1.3.3. The beam is suspended at both endpoints by linear springs. The
boundary conditions of Problem T-3 as given in Section 1.3.3 can be rewritten
by substituting the constitutive equations (1.3.7) and (1.3.8).

∂xw(0, ·)− ϕ(0, ·) = kw(0, ·) and ∂xϕ(0, ·) = 0

∂xw(1, ·)− ϕ(1, ·) = −kw(0, ·) and ∂xϕ(1, ·) = 0

The linear springs are allowed to take the weight of the beam and the system
settles in a equilibrium state. The elongation of the springs from their natural
length is denoted by h. The displacement from this equilibrium state should
be considered.

Let ⟨w∗, ϕ∗⟩ represent the solution of the model problem, and ⟨we, ϕe⟩ the
solution to the equilibrium problem. Define ⟨w, ϕ⟩ = ⟨(w∗ − we), (ϕ∗ − ϕe)⟩
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such that it represents the deviation of the beam from the equilibrium solu-
tion. Substitution verifies that ⟨w, ϕ⟩ satisfies the partial differential equation
and boundary conditions.

If the beam is suspended by cables, in their loaded state they can be considered
as linear springs. However if w > h then the cables are no longer supporting
the beam. The problem then becomes non-linear. Assume that the motion is
small enough so that the problem remains linear.

Variational problem

Find w, ϕ such that for all t > 0, ⟨w, ϕ⟩ ∈ C[0, 1]× C[0, 1] and∫ 1

0

∂2twv +
1

α

∫ 1

0

∂2t ϕψ =

∫ 1

0

(∂xw − ϕ)(ψ − v′)− 1

β

∫ 1

0

∂xϕψ
′

−kv(1)w(1, t)− kv(0)w(0, t)

for all v, ψ ∈ C[0, 1].

This model is required for explanation in Section 4.6.

4.6.3 Experimental setup

Next the experiment conducted by [SP06] is discussed. A short, aluminium
alloy beam with near square cross-section is suspended at both ends. The
beam is suspended by carbon fibre loops.

Figure 4.12: Sketch of beam suspended at the end-points by carbon fibre loops.
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To vibrate the beam, the authors of [SP06] excited the carbon fibre loops and
the frequencies were measured using two piezoelectric transducers. During the
vibration, the beam will be momentarily free at both endpoints. The natural
frequencies were obtained by sweeping through frequencies until a resonance
was found.

The measured parameters of the beam is given in [SP06]. Since the physical
beam is only nearly square, the plane has two distinct planes. The plane of the
beam with a larger diameter is referred to as the stiff plane and the plane of
the beam with smaller diameter is referred to as the flexible plane, by [SP06].

For the flexible plane α = ±190 and for the stiff plane α = ±189. The
parameter γ = 0.2830. The natural frequencies fk is defined as

fk =

√
λk
2π

with λk the k’th eigenvalue. These natural frequencies fk are dimensionless,
and can be scaled back by multiplying the natural frequency fk by t0 = ℓ

√
ρ

Gκ2 ,
as defined in Chapter 1.

The cut-off frequency given in [SP06] can be expressed as

ωco =

√
κ2AG

ρI
=
α

t0

with the dimensionless cut-off frequency α.

4.6.4 Results from SP06

The following table contains relevant results obtained by [SP06].
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n Measured 3D FEM % Error Timoshenko Beam % Error Side
1 27359.6 27417.6 0,21% 27407.1 0,17% Flexible

27423.8 27515.6 0,33% 27505.3 0,30% Stiff
2 60862 60882.0 0,03% 60851.1 -0,02% Flexible

61098.3 61022.0 -0,12% 60992.1 -0,17% Stiff
3 97609.5 97734.4 0,13% 97796.0 0,19% Flexible

97852.4 97881.5 0,03% 97945.4 0,09% Stiff
4 161494 131658 0,12% 132277 0,60% Flexible

131732 131675 -0,04% 132308 0,44% Stiff
5 161352 161390 0,02% 163547 1,36% Stiff

161538 161517 -0,01% 163611 1,31% Flexible
6 165183 164887 -0,18% 169108 2,38% Stiff

165598 165398 -0,12% 169634 2,44% Flexible
7 194863 194933 0,04% 202352 3,84% Flexible

194973 195032 0,03% 202115 3,66% Stiff
8 195869 195977 0,06% 203319 3,80% Stiff

195908 196097 0,10% 203518 3,88% Flexible
9 213501 241202 12,97% Flexible

213635 241067 12,84% Stiff
10 and 11 220556 247954 12,42% Flexible

220702 281542 27,57% Flexible
221010 247782 12,11% Stiff
221092 281408 27,28% Stiff

Table 4.5: Results from [SP06] (excluding RUS).
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Table 4.3 shows that the Timoshenko model compares well to the measured
results from the experiment. The first 8 natural frequencies for the stiff and
flexible planes are very close to the natural frequencies of the three-dimensional
and physical beam.
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5 Finite element method

5.1 Introduction

In this chapter, the Finite Element Method (FEM) is applied to the models of
this dissertation, presented in Chapter 1. The goal of this chapter is to obtain
an algorithm that can be used to calculate the eigenvalues and eigenvectors
for the models. This is in preparation of Chapter 6, where the eigenvalues and
eigenvectors of the models are compared.

In Chapter 4, a method was discussed to obtain the eigenvalues and eigen-
vectors for the Timoshenko beam model. Therefore it is not necessary to
apply the Finite Element Method on the Timoshenko model to obtain the
eigenvalues and eigenvectors. The Finite Element Method is applied to the
two-dimensional and three-dimensional models.

The outline of the chapter is as follows.

Section 5.2 FEM for a cantilever two-dimensional elastic body. This is
problem 2D-1 in Section 1.2.3.

Section 5.3 FEM for a cantilever three-dimensional elastic body. This is
problem 3D-1 in Section 1.1.3.

Section 5.4 FEM for a cantilever Reissner-Mindlin plate. This is problem
P-1 in Section 1.4.4.

5.2 A cantilever two-dimensional body

Consider a cantilever two-dimensional elastic body, with a rectangular cross-
section.
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Reference configuration for rectangular cross-section

Let {e1, e2} be a right-handed orthonormal basis for R2. Denote the elastic
body by Ω ∈ R2, with (0, 0) as the point of reference. For a rectangular
cross-section, the body Ω can be described as,

Ω =

{
x ∈ E2 | 0 ≤ x1 ≤ 1, −h

2
≤ x2 ≤

h

2

}
,

where ∂Ω denotes the boundary of Ω. The boundary ∂Ω can be divided into
the four distinct lines (or edges) as follows:

Σ : x1 = 0

Γ3 : x1 = 1

Γ1 : x2 = −h/2
Γ2 : x2 = h/2

In this configuration, the body is clamped rigidly to the surface at x1 = 0
denoted as Σ and the body is free-hanging on the other boundaries denoted
by Γ.

Cantilever elastic body

Consider a two-dimensional elastic body clamped rigidly to a surface at x1 = 0.
The body is free-hanging on the other boundaries. This is Problem 2D-1 in
Section 1.2.3.

h

1

e1

e2

(0, 0)Σ

Γ1

Γ2

Γ3

Figure 5.1: A cantilever two-dimensional elastic body.

In Section 1.2.4 the variational problem for the two dimensional cantilever
model is derived and refered to as Problem 2D-1V. Some of the results from
Section 1.2 are repeated here for convenience. Using the reference configura-
tion, these results are rewritten from a general form to a model specific form.
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Problem 2D-1V

Find a function u such that for all t > 0, u ∈ T (Ω) and

c(u, ϕ) = −b(u, ϕ) + (Q, ϕ) (5.2.1)

for all ϕ ∈ T (Ω). With the test function space

T (Ω) =
{
ϕ ∈ C1(Ω̄) | ϕ = 0 on Γ

}
.

The bilinear forms and integral function is defined by

b(u, ϕ) =

∫
Ω

c1Tr(EΦ) + c2Tr(E)Tr(Φ) dA, (5.2.2)

c(∂2t u, ϕ) =

∫
Ω

(∂2t u) · ϕ dA, (5.2.3)

(f, g) =

∫
Ω

f · g dA, (5.2.4)

with c1 =
1

γ(1 + ν)
and c2 =

ν

γ(1− ν2)
.

Using the reference configuration, the constitutive equations and the bilinear
form b can be rewritten into a model specific form.

Constitutive equations:

σ11 =
1

γ(1− ν2)
(∂1u1 + ν∂2u2) (5.2.5)

σ22 =
1

γ(1− ν2)
(∂2u2 + ν∂1u1) (5.2.6)

σ12 =
1

2γ(1 + ν)
(∂1u2 + ∂2u1) (5.2.7)

Bilinear form:

b(u, ϕ) =
1

γ(1− ν2)

∫
Ω

(∂1u1∂1ϕ1 + ∂2u2∂2ϕ2 + ν∂1u1∂2ϕ2 + ν∂2u2∂1ϕ1) dA

+
1

2γ(1 + ν)

∫
Ω

(∂1u2∂1ϕ2 + ∂1u2∂2ϕ1 + ∂2u1∂1ϕ2 + ∂2u1∂2ϕ1) dA.

(5.2.8)
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5.2.1 Weak variational form

Define the inertia space V as the closure of T (Ω) in H := H1(0, 1)×H1(0, 1).
Denote X = L2(0, 1) × L2(0, 1). The inertia space is W = X with norm
|| · ||W =

√
c(·, ·).

Problem 2D-1WV

Find a function u such that ∀ t > 0, u ∈ V with ∂2t u ∈ W and

c(u, v) + b(u, v) = (Q, v)

for all v ∈ V .

See Chapter 2 for the existence theory.

5.2.2 Galerkin approximation

To be able to apply the Finite Element Method to Problem 2D-1V, the body
Ω needs to be discretised. This is done by dividing the body Ω into discrete
shapes, called elements. There are various types of shapes of elements that
can be used. Since the body ω is has a rectangular cross-section, rectangular
elements are the simplest elements to use.

Divide the reference configuration Ω into a grid of rectangular elements, such
that there are n = n1 × n2 nodes.

Define a set of n-dimensional linear independent basis functions. For the two
dimensional model, the basis functions can be defined by the set

B = {⟨ϕ1, 0⟩, ⟨ϕ2, 0⟩, ..., ⟨ϕn, 0⟩, ⟨0, ϕ1⟩, ⟨0, ϕ2⟩, ..., ⟨0, ϕn⟩} .

These functions are chosen as piecewise Hermite bi-cubic functions ϕi. Simpler
bi-linear functions can also be used, however the use of the bi-cubic basis
functions results in faster convergence and also the benefit of obtaining the
derivatives of the solution at the expense of more complexity.

The subset of basis functions B that satisfies all the conditions of the test
function space T (Ω) are called the admissible basis functions. Denote the
admissible basis functions by δj, where each δj is a unique element of B.
The admissible basis functions can be numbered and expressed as the set
A = {δ1, δ2, ..., δk} for some k ≤ 2n.
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Define the space

Sh = span {δi | i = 1, 2, ..., k} .

For each function uh ∈ Sh, uh can be expressed as

uh =
k∑

i=1

ui(t)δi(x).

Substitution of uh into Problem 2D-1V, results in the following Galerkin Ap-
proximation, denoted by Problem 2D-1G.

Problem 2D-1G

Find a function uh such that for all t > 0, uh ∈ Sh and

(uh, ϕi) = −b(uh, ϕi) + (QI , ϕi)

for i = 1, 2, ..., k. QI is scalar vector obtained after interpolating the function
Q over the rectangular grid Ω. i.e. QI

i,j = Q(xi, xj) for i = 1, 2, ..., n1 and
j = 1, 2, ..., n2.

5.2.3 System of differential equations

Consider the following standard Finite Element Method matrices

FEM matrices

Mj,i =

∫
Ω

ϕiϕj dA

K11j,i =

∫
Ω

∂1ϕi∂1ϕj dA

K22j,i =

∫
Ω

∂2ϕi∂2ϕj dA

K12j,i =

∫
Ω

∂2ϕi∂1ϕj dA

K21j,i =

∫
Ω

∂1ϕi∂2ϕj dA

for

i, j = 1, 2, ..., k.

And

MF j,i =

∫
Ω

ϕiϕj dA
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for i = 1, 2, ..., k and for j = 1, 2, ..., 2n.

Define the following matrices:

K1 =
1

γ(1− ν2)
K11 +

1

2γ(1 + ν)
K22

K2 =
ν

γ(1− ν2)
K21 +

1

2γ(1 + ν)
K12

K3 =
ν

γ(1− ν2)
K12 +

1

2γ(1 + ν)
K21

K4 =
1

γ(1− ν2)
K22 +

1

2γ(1 + ν)
K11

Using the standard FEM matrices and matrices K1-K4, the following concate-
nated matrices are defined.

K =

[
K1 K2
K3 K4

]
Mf =

[
MF OF

OF MF

]
(5.2.9)

M =

[
M O
O M

]
(5.2.10)

The matrices O and OF are the zero matrices of the same size as M and Mf

respectively.

Using (5.2.9) and (5.2.10), Problem 2D-1G is rewritten as a system of ordinary
differential equations. This system is referred to as Problem 2D-1ODE.

Problem 2D-1ODE

Find a function ū ∈ Sh such that

M ¨̄u = Kū+MfQ
I . (5.2.11)

With ū in the form ū = ⟨u, ∂1u, ∂2u, ∂12u⟩.

Remark This form of ū is determined by the use of the bi-cubic basis func-
tions.
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5.2.4 Eigenvalue problem

For the eigenvalue problem, assume that there is no external force, MfQ
I = 0,

so that

M ¨̄u = Kū. (5.2.12)

It is known that a system of ordinary differential equations has a general
solution of the form ert. Suppose that w̄ = eλtū is a solution for (5.2.12). In this
solution, λ is an eigenvalue and ū a corresponding eigenfunction. Substitution
into (5.2.12) results in

Mλeλtū = Keλtū.

Since eλt > 0 for all values of λt, we can cancel it from both sides of the
equation and formulate the eigenvalue problem Problem 2D-1E.

Problem 2D-1E

Find a real number λ and a function ū ∈ Sh such that

Mλū = Kū. (5.2.13)

In this section, a similar approach is applied to the three-dimensional elastic
body.

5.3 A cantilever three-dimensional body

Consider a cantilever three-dimensional elastic body, with a rectangular cross-
section.

Reference configuration for rectangular cross-section

Let {e1, e2, e3} be a right-handed orthonormal basis for R3. Denote the elastic
body as Ω ∈ R3 with (0, 0, 0) the point of reference. For a rectangular cross-
section, the body Ω can be described as

Ω =

{
x ∈ R3 | 0 ≤ x1 ≤ 1, −h

2
≤ x2 ≤

h

2
, − b

2
≤ x3 ≤

b

2

}
Let ∂Ω denote the boundary of the body. Divide ∂Ω into the six distinct flat
surfaces as follows:
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Σ : x1 = 0

Γ5 : x1 = 1

Γ1 : x3 = −b/2

Γ2 : x2 = −h/2
Γ3 : x3 = b/2

Γ4 : x2 = h/2

Using this notation, the boundary conditions are similar to the two-dimensional
model in Section 5.2, where the body is clamped rigidly at Σ, and free-hanging
on the other sides denoted by Γ.

Cantilever elastic body

Consider a three-dimensional elastic body with rectangular cross-section, rigidly
clamped to a surface at attached at the side Σ and free-hanging at all the other
sides. This is Problem 3D-1 in Section 1.1.3.

e3

e1

e2

h

1
b

e1

e2

(0, 0)

Figure 5.2: Cantilever Three-Dimensional Elastic Body with Rectangular
Cross-Section.

In Section 1.1.4, the variational problem for the three-dimensional cantilever
model is defined by Problem 3D-1V. This general form can now be rewritten
as in a model specific form using the reference configuration. For convenience,
some of the results from Section 1.1 are repeated here.

Problem 3D-1V

Find a function u such that for all t > 0, u ∈ T (Ω) and

c(u, ϕ) = −b(u, ϕ) + (Q, ϕ) (5.3.1)

for all ϕ ∈ T (Ω).
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With the test function space

T (Ω) = {ϕ ∈ C(Ω) | ϕ = 0 on Γ} .

The bilinear forms and integral function are defined by

b(u, ϕ) =

∫
Ω

c1Tr(EΦ) + c2Tr(E)Tr(Φ) dV, (5.3.2)

c(u, ϕ) =

∫
Ω

(∂2t u) · ϕ dV, (5.3.3)

(f, g) =

∫
Ω

f · g dV, (5.3.4)

(5.3.5)

with c1 =
1

γ(1 + ν)
and c2 =

ν

γ(1 + ν)(1− 2ν)
.

Using the definition of the reference configuration, the constitutive equations
and the bilinear form b can be rewritten in the following model specific forms:

Constitutive equations

σ11 =
1

γ(1 + ν)
∂1u1 +

ν

γ(1 + ν)(1− 2ν)
(∂1u1 + ∂2u2 + ∂3u3)

σ22 =
1

γ(1 + ν)
∂2u2 +

ν

γ(1 + ν)(1− 2ν)
(∂1u1 + ∂2u2 + ∂3u3)

σ33 =
1

γ(1 + ν)
∂3u3 +

ν

γ(1 + ν)(1− 2ν)
(∂1u1 + ∂2u2 + ∂3u3)

σ23 =
1

2γ(1 + ν)
(∂3u2 + ∂2u3)

σ31 =
1

2γ(1 + ν)
(∂3u1 + ∂1u3)

σ12 =
1

2γ(1 + ν)
(∂2u1 + ∂1u2)

Bilinear Form

b(u, ϕ) =

∫
Ω

c1Tr(EΦ) + c2Tr(E)Tr(Φ) dV

=

∫
Ω

σ11∂1ϕ1 + σ12∂1ϕ2 + σ13∂1ϕ3 + σ21∂2ϕ1 + σ22∂2ϕ2 + σ23∂2ϕ3 dV
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5.3.1 Weak variational form

Bilinear form

Define the inertia space V as the closure of T (Ω) in H := H1(0, 1)×H1(0, 1)×
H1(0, 1). DenoteX = L2(0, 1)×L2(0, 1)×L2(0, 1). The inertia space isW = X
with norm || · ||W =

√
c(·, ·).

Problem 3D-1W

Find a function u such that for all t > 0, u(t) ∈ V and u′′(t) ∈ W , satisfying
the following equation

c(u, v) + b(u, v) = (Q, v) for each v ∈ V. (5.3.6)

See Chapter 2 for the existence theory.

5.3.2 Galerkin approximation

As mentioned in the previous section, Section 5.2.2, the body Ω needs to
be descritised. For this three-dimensional body, three-dimensional elements
shapes are required. The elements used in this dissertation are rectangular
prismatic elements. These elements are also known as ‘brick-shaped’ elements
and is described in [Wu06]. This shape of element is a natural choice for a
three-dimensional elastic body with a rectangular cross-section.

Divide the reference configuration Ω into a grid of rectangular prismatic ele-
ments, such that there are n = n1 × n2 × n3 nodes.

Define a set of n-dimensional linear independent basis functions. For the three-
dimensional model, the basis functions can be defined by the set

B = {⟨ϕ1, 0, 0⟩, ⟨ϕ2, 0, 0⟩, ..., ⟨ϕn, 0, 0⟩,
⟨0, ϕ1, 0⟩, ⟨0, ϕ2, 0⟩, ..., ⟨0, ϕn, 0⟩,
⟨0, 0, ϕ1⟩, ⟨0, 0, ϕ2⟩, ..., ⟨0, 0, ϕn⟩}.

For this three-dimensional model, piecewise Hermite tri-cubic basis functions
are used. Although this is more complex than using piecwise tri-linear basis
functions, as mentioned in Section 5.2.2, the tri-cubic basis functions ensure
faster convergence and also the derivatives of the solutions.

Recall that the admissible basis functions, are all the basis functions that sat-
isfies all the conditions of the test function space T (Ω). Denote the admissible
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basis functions by δj, with each δj a unique element of B. The set of admissible
basis functions can then be expressed as A = {δ1, δ2, ..., δk} with k ≤ 3n.

Define the space

Sh = span {δi | i = 1, 2, ..., k}

For each function uh ∈ Sh, uh can be expressed as

uh =
k∑

i=1

ui(t)δi(x)

Substituting uh into Problem 3D-1V, results in the following Galerkin approx-
imation, denoted by Problem 3D-1G.

Problem 3D-1G

Find a function uh such that for all t > 0, uh ∈ Sh and

(uh, ϕi) = −b(uh, ϕi) + (QI · ϕi)

for i = 1, 2, ..., k. QI is a scalar vector obtained after interpolating the function
Q over the rectangular grid Ω, i.e. QI

i,j,h = Q(xi, xj, xh) for i = 1, 2, ..., n1,
j = 1, 2, ..., n2 and h = 1, 2, ..., n3.

5.3.3 System of ordinary differential equations

Consider the following standard Finite Element Method matrices.

FEM matrices

Mij =

∫
Ω

ϕjϕi dV

K11ij =

∫
Ω

∂1ϕj∂1ϕi dV

K12ij =

∫
Ω

∂1ϕj∂2ϕi dV

K13ij =

∫
Ω

∂1ϕj∂3ϕi dV

K22ij =

∫
Ω

∂2ϕj∂2ϕi dV

K23ij =

∫
Ω

∂2ϕj∂3ϕi dV

K33ij =

∫
Ω

∂3ϕj∂3ϕi dV
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for i, j = 1, 2, ..., k.

And

Mf ij =

∫
Ω

ϕjϕi dV

for i = 1, 2, ..., k and for j = 1, 2, ..., 3n.

The remaining matrices can be defined as

K21 = K12
T ,

K31 = K13
T ,

K32 = K23
T .

Define the following matrices:

K11 = (C1 + C2)K11 + C3K22 + C3K33

K12 = C3K12 + C2K21

K13 = C3K13 + C2K31

K21 = C3K21 + C2K12

K22 = (C1 + C2)K22 + C3K11 + C3K33

K23 = C3K23 + C2K32

K31 = C3K31 + C2K13

K32 = C3K32 + C2K23

K33 = (C1 + C3)K33 + C3K11 + C3K22

with C1 =
1

γ(1+ν)
, C2 =

ν
γ(1+ν)(1−2ν)

and C3 =
1

2γ(1−2ν)
.

Using the standard FEM matrices and the matrices K11 to K33, the following
concatenated matrices are defined:

K =

K11 K12 K13
K21 K22 K23
K31 K32 K33

 M =

M O O
O M O
O O M

 (5.3.7)

Mf =

Mf Of Of

Of Mf Of

Of Of Mf

 (5.3.8)
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The matrices O and Of are the zero matrices of the same size as M and Mf

respectively.

Using (5.3.7) and (5.3.8), Problem 3D-1G is rewritten as a system of ordinary
differential equations. This system is referred to as Problem 3D-1ODE

Problem 3D-1ODE

Find a function ū ∈ Sh such that

M ¨̄u = Kū+MfQ
I . (5.3.9)

With ū in the form ū = ⟨∂i1u, ∂
j
2u, ∂

k
3u⟩ for i, j, k = 0, 1, 2, 3.

5.3.4 Eigenvalue problem

The derivation and form of the eigenvalue problem for the three-dimensional
elastic body is similar to the two-dimensional model given in Section 5.2.4.

Problem 3D-1E

Find a real number λ and a function ū ∈ Sh such that

Mλū = Kū. (5.3.10)

5.4 Cantilever plate model

Consider a rectangular cantilever Reissner-Mindlin plate model with a rectan-
gular cross-section.

Reference configuration for a rectangular plate

Let {e1, e2} be a right-handed orthonormal basis for R2. Although this basis
seems identical to the two-dimensional beam in Section 5.2, it is fact different.
It would be more appropriate to use e1 and e3 for this plate model. However
the use of e1 and e2 is kept to reiterate that this is in fact a two-dimensional
model.

Denote the elastic body as Ω ∈ R2 with the reference point (0, 0). For a
rectangular plate,

Ω =
{
x ∈ R2 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ b

}
.
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Let ∂Ω denote the boundary of plate. The boundary ∂Ω can be divided into
four distinct lines.

Σ : x1 = 0

Γ3 : x1 = 1

Γ0 : x2 = 0

Γ1 : x2 = b

Similar to the two and three-dimensional cantilever models, this notation im-
plies that the plate is clamped at Σ and free hanging at Γ.

Cantilever plate model

Consider a rectangular Reissner-Mindlin plate clamped rigidly to a surface at
Σ and free hanging on the remaining edges. This plate model is presented in
Section 1.4.4 as Problem P-1.

b
1

e2

e1

Figure 5.3: Two-dimensional cantilever Reissner-Mindlin plate

In Section 1.4.4 the variational problem for the cantilever Reissner-Mindlin
plate is defined by Problem P-1V. For convenience, the relevant results from
Section 1.4.4 are repeated.

Problem P-1V

Find a function u = ⟨w,ψ⟩, such that for all t > 0, u ∈ T1(Ω̄)× T2(Ω̄) and the
following equations are satisfied

c(u, ϕ) = −b(u, ϕ) + (Q, ϕ), (5.4.1)

with ϕ = ⟨v, ϕ⟩ ∈ T1(Ω̄)× T2(Ω̄) an arbitrary function.
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With the test function spaces

T1(Ω̄) =
{
v ∈ C1(Ω̄) | v = 0 on Σ0

}
,

T2(Ω̄) =
{
ϕ = [ϕ1 ϕ2]

T | ϕ1, ϕ2 ∈ C1(Ω̄), ϕ1 = ϕ2 = 0 on Σ0

}
.

The bilinear forms and integral function defined by

b(u, ϕ) =

∫
Ω

Q · ∇v dA+

∫
Ω

Tr(MΦ) dA,

c(u, ϕ) =

∫
Ω

h(∂2tw)v dA+

∫
Ω

I(∂2t ψ) · ϕ dA

(f, g) = −
∫
Ω

f · g dA

Using the definition of the reference configuration, the constitutive equations
and the bilinear form b can be rewritten as follows.

Constitutive Equations

Q = h(∇w +ψ) (5.4.2)

M11 =
1

2β(1− ν2)
[2(∂1ψ1 + ν∂2ψ2] (5.4.3)

M12 =M21 =
1

2β(1− ν2)
[(1− ν)(∂1ψ2 + ∂2ψ1)] (5.4.4)

M11 =
1

2β(1− ν2)
[2(∂2ψ2 + ν∂1ψ1)] (5.4.5)

Bilinear Form

b(u, ϕ) =

∫
Ω

Q · ∇v dA+

∫
Ω

Tr(MΦ) dA,

+
1

β(1− ν2)

∫
Ω

(∂1ψ1 + ν∂2ψ2)∂1ϕ1 + (∂2ψ2 + ν∂1ψ1)∂2ϕ2 dA,

+
1

2β(1 + ν)

∫
Ω

(∂1ψ2 + ∂2ψ1)(∂1ϕ2 + ∂2ψ1) dA.
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5.4.1 Weak variational form

Similar to Section 2.1, the weak variational form for Problem P-1 can be
derived from Problem P-1V.

Bilinear forms

From the bilinear form, we have

b(f2, g2) =
1

β(1− ν2)

∫∫
Ω

(∂1f2,1 + ν∂2f2,2)∂1g2,1 + (∂2f2,2 + ν∂1f2,1)∂2g2,2 dA,

+
1

2β(1 + ν)

∫∫
Ω

(∂1f2,2 + ∂2f2,1)(∂1g2,2 + ∂2g2,1) dA

For all f, g ∈ T1(Ω)× T2(Ω), define the bilinear forms

c(f, g) = h(f1, g1)Ω + I(f2, g2)R2

b∗(f, g) = b(f2, g2) + h(∇f1 + f2,∇g1 + g2)R2

where the integrals are defined by

(f1, g1)Ω =

∫∫
Ω

f1g1 dA,

(f, g)R2 =

∫∫
Ω

f · g dA.

Define V1(0, 1) as the closure of T1(0, 1) in H
1(0, 1) and V2(0, 1) as the closure

of T2(0, 1) in H
1(0, 1)2.

Denote the space X = L2(0, 1) × L2(0, 1)2 as a setting for Problem P-1V. A
natural inner product for X is (f, g)X = (f1, g1)Ω + (f2, g2)R2 . Define W as
the space X with the inner product c and V = V1(0, 1)× V2(0, 1)

Problem Plate-1W

Find a function u such that for all t > 0, u(t) ∈ V , u′(t) ∈ V and u′′(t) ∈ W ,
satisfying the following equation

c(u′′(t), v) + b∗(u(t), v) = (f(t), v)Ω for each v ∈ V, (5.4.6)

with u(0) = u0 = ⟨w0,ψ0⟩, and u′(0) = u1 = ⟨w1,ψ1⟩.

See Chapter 2 for the existence theory.
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5.4.2 Galerkin approximation

To discretise the body Ω, the same shapes as in Section 5.2.2 are used.

Divide the reference configuration Ω into a rectangular grid of elements, such
that there are n = n1 × n2 nodes.

Define a set of n-dimensional linear independent basis functions. The basis
functions can be defined by the set

B = {⟨ϕ1, 0⟩, ⟨ϕ2, 0⟩, ..., ⟨ϕn, 0⟩, ⟨0, ϕ1⟩, ⟨0, ϕ2⟩, ..., ⟨0, ϕn⟩} .

These basis functions are piecewise Hermite bi-cubic basis functions.

Since there are two test function spaces, T1(Ω) and T2(Ω), two different sets of
admissible basis functions are required. Denote the admissible basis functions
for T1(Ω) by δ

1
j where each δ1j is a unique element of B. The set of admissible

basis functions that satisfies T1(Ω) can be defined as A1 =
{
δ11, δ

1
2, ..., δ

1
k1

}
for

a k1 ≤ 2n. Similarly for T2(Ω), the set of admissible basis functions can be
defined as A2 =

{
δ21, δ

2
2, ..., δ

2
k2

}
for a k2 ≤ 2n.

Define the two spaces

Sh
1 = span

({
δ1i | i = 1, 2, ..., k1

})
,

Sh
2 = span

({
δ2i | i = 1, 2, ..., k2

})
.

For each function uh ∈ Sh
1 and each function ψh ∈ Sh

2 , u
h can be expressed as

wh =
k∑

i=1

wi(t)δ
1
i (x)

and ψh can be expressed as

ψh =
k∑

i=1

ψi(t)δ
2
i (x)

Substitution of uh and ψh into Problem P-1V, results in the following Galerkin
approximation, denoted by Problem P-1G.
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Problem P-1G

Find a function uh = ⟨wh, ψh⟩, such that for all t > 0, uh ∈ Sh
1 × Sh

1 and the
following equations are satisfied

c(uh, ϕi,j) = −b(uh, ϕi,j) + (QI , ϕi,j), (5.4.7)

with ϕi,j = ⟨vi, ϕj⟩ for i = 1, 2, ..., k1 and j = 1, 2, ..., k2

5.4.3 System of ordinary differential equations

The standard FEM matrices K11, K12, K21, K22 and MF where presented in
Section 5.2.3. Even though the definition of R2 is different in Section 5.2, the
definition of the matrices are the same and are not repeated here.

In addition to these matrices, the following standard FEM matrices are also
required.

FEM matrices

L1ij =

∫∫
Ω

ϕj∂1ϕi L2ij =

∫∫
Ω

ϕj∂2ϕi

for i, j = 1, 2, ..., p.

Define the following matrices:

K11 = hK11 − hK22

K12 = hL1

K13 = hL2

K21 = hLT
1

K22 = AK11 +BK22 + hM

K23 = AνK12 +BK21

K31 = hLT
2

K32 = AνK21 +BK12

K33 = AK22 +BK11 + hM

with A = 1
β(1−ν2)

and B = 1
2β(1+ν)

.

Using the standard FEM matrices and the matricesK11 toK33, the following
concatenated matrices are defined.

K =

K11 K12 K13
K21 K22 K23
K31 K32 K33

 M =

hM O O
O IM O
O O IM

 (5.4.8)

111



Mf =

MF OF OF

OF MF OF

OF OF MF

 (5.4.9)

The matrices O and OF are the zero matrices of the same size as M and Mf

respectively.

Using (5.4.8) and (5.4.9), Problem P-1G is rewritten as a system of ordinary
differential equations. This system is referred to as Problem P-1ODE

Problem P-1ODE

Find function ū ∈ Sh
1 × Sh

2 such that

M ¨̄u = Kū+MfQ
I (5.4.10)

With ū in the form ū = ⟨w, ∂1w, ∂2w, ∂12w,ψ1, ∂1ψ1, ∂2ψ1, ∂12ψ1, ψ2, ∂1ψ2, ∂2ψ2, ∂12ψ2⟩.

5.4.4 Eigenvalue problem

The equation (5.4.10) is in the same form as in Section 5.2.4 for the two-
dimensional elastic body. Therefore the derivation of the eigenvalue problem
is identical. Denote the eigenvalue problem for Problem P-1 by Problem P-1E.

Problem P-1E

Find a vector function ū and a number λ such that

Mλū = Kū. (5.4.11)
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6 Validity of cantilever beam
and plate models

6.1 Introduction

Section 4.5 is a discussion of the article [LVV09a]. In this article, the authors
compare a cantilever Timoshenko beam to a cantilever two-dimensional beam.
In this chapter, the work of the article is extended to investigate the validity of
the two-dimensional cantilever beam and a Reisner-Mindlin cantilever plate.

The following is a summary of the work covered in this chapter.

Section 6.2 extends the work of [LVV09a] further to a comparison of a can-
tilever two-dimensional beam to a cantilever three-dimensional beam. It is an
investigation into the validity of the two-dimensional beam model. This exten-
sion is suggested by the authors of [LVV09a]. Although a direct comparison
between the Timoshenko beam and the three-dimensional beam is proffered,
there are complexities involved that makes this comparison difficult. Some of
these complexities are discussed in more detail in the numerical results. The
authors of [LVV09a] therefore suggest that the two-dimensional beam model
is used as an intermediate step to validate the Timoshenko beam.

Section 6.3 extends the work of [LVV09a] further to plate models. This ex-
tension follows the same idea as the previous sections, and originates from
non-beam type behaviour observed in the three-dimensional beam model in
Section 6.2. In this section, a cantilever two-dimensional Reisner-Mindlin plate
model is compared to a cantilever three-dimensional plate model. Same as in
the other sections, it is an investigation into the validity of the Reisner-Mindlin
plate model.
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Global parameters and configuration

All the models in this dissertation are assumed to be made of the same isotropic
material and have a square cross-section. The parameters are as follows:

• Elastic modulus (G): This is calculated using the formula G = E
2(1+ν)

,
where E is the modulus of elasticity and ν is Poisson’s ratio.

• Shear correction factor (κ2): This is set to 5/6, which is common for
rectangular cross-sections.

• Poisson’s ratio (ν): This is set to 0.3, a typical value for materials like
steel used in engineering.

These global parameters are used in all the models, and their consistency
helps to ensure that any differences in the results can be attributed to the
model structures themselves, rather than variations in the material or geomet-
ric properties.

Since our models are all dimensionless, all of the beams and plates have a
length of ℓ = 1. We’ll use h to describe the height of the beams and plates,
and b to describe the width of the beams and plates.

6.2 Validity of a model for a cantilever

two-dimensional beam

In Section 4.5, the article [LVV09a] was discussed. In this article, the authors
investigated the validity of a cantilever Timoshenko beam by comparing it to
a cantilever two-dimensional beam. In this section, the article is extended and
the validity of the cantilever two-dimensional model is investigated.

As mentioned in the introduction of the chapter, a beam is a three-dimensional
body and therefore a three-dimensional model is more realistic. However the
authors of [LVV09a] mention that a direct comparison of the one and three-
dimensional models will have complexities and they suggest using the two-
dimensional model as an intermediate step.

So in this section, the article [LVV09a] is extended and the validity of a can-
tilever two-dimensional beam model is investigated, using a cantilever three-
dimensional model as a reference.
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6.2.1 The models

The two-dimensional model is the same model as used in the previous section,
Problem T-2 defined in Section 1.2.3. From Section 1.1.3, the cantilever three-
dimensional model, referred to as Problem 3D-1.

Figure 6.1 shows the two beams side-by-side.

h

ℓ = 1

(a) Two-Dimensional Elastic Body

b

h

ℓ = 1

(b) Three-Dimensional Elastic Body

Figure 6.1: Side-by-side comparison of the beams.

6.2.2 Calculating the eigenvalues

In Section 5.3, the Finite Element Method for the three-dimensional beam
is derived. Similar to the two-dimensional case in 4.5, the Finite Element
Method is used to calculate the eigenvalues of the three-dimensional beam.
The eigenvalue problem for both models have the same form, but different
matrices.

Problem 2D-1E and 3D-1E

Find a real number λ and a function ū ∈ Sh such that

Kū = Mλū, (6.2.1)

where K and M are the standard Finite Element Method matrices defined in
Section 5.2.3 for the Problem 2D-1E and Section 5.3.3 for Problem 3D-1E.

Accuracy of the eigenvalues of the three-dimensional model

Figure 6.7 show the rate of convergence of the first 20 eigenvalues of Problem
3D-1E.
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Figure 6.2: Rate of convergence of the first 20 eigenvalues.

Similar to the two-dimensional case, the number of elements can be chosen so
that at least the first 20 eigenvalues are accurate to 4 significant digits.

For the three-dimensional model, obtaining this level of accuracy can be diffi-
cult and computationally expensive. For the two-dimensional beam in Section
4.5 and the upcoming two-dimensional plate model in Section 6.3 it is easier
to get 5 significant digits of accuracy.

6.2.3 Comparing the mode shapes

To be able to compare the eigenvalues, the mode shapes of the two models are
compared to match up the eigenvalues of the two models. This is the same
approach as in Section 4.5.

As seen in Section 4.5, the two-dimensional model as eigenvalues and eigen-
vectors that are not related to beam type problems. This is also true for the
three-dimensional model, and it has even more non-beam type eigenvalues.

The focus of the investigation remains on beam type problems. Below are
some examples of the mode shapes for beam type eigenvalues, mode shapes

116



for non-beam type eigenvalues that are shared between the two and three-
dimensional models and also mode shapes for non-beam type eigenvalues that
are only present in the three-dimensional model.

Mode shapes relating to beam type eigenvalues.

Figure 6.3 show some examples of beam type mode shapes for the displacement
u.

(a) 3D Beam Type - λ12 = 2.3293 (b) 2D Beam Type - λ3 = 2.3273

(c) 3D Beam Type - λ24 = 21.929 (d) 2D Beam Type - λ6 = 21.911

Figure 6.3: Mode shapes of the displacement u with h = 1/20.

Mode shapes relating to non-beam type eigenvalues that are
present in the two-dimensional model.

Figure 6.4 show examples of mode shapes relating to non-beam type eigenval-
ues for the displacement u.
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(a) 3D Non-Beam Type - λ33 = 69.374 (b) 2D Non-Beam Type - λ8 = 69.344

Figure 6.4: Mode shapes of the displacement u with h = 1/20.

Mode shapes relating to non-beam type eigenvalues that are not
present in the two-dimensional model.

Figure 6.4 show examples of mode shapes relating to non-beam type eigen-
values for the displacement u which are not present in the two-dimensional
model. These mode shapes only appear in the three-dimensional beam.

(a) Non-2D Type - λ10 (b) Non-2D Type - λ11

Figure 6.5: Mode shapes of the displacement u with h = 1/20.

6.2.4 Comparing the eigenvalues

For a realistic comparison of the models, the parameters need to be chosen
carefully. The parameters are h representing the height of the beam and b
representing the width of the beam. The two-dimensional model does not
have the width parameter.

For h, the values used in Section 4.5 will be used. These values covers a range
of beam shapes from a short thick beam, to a long slender beam. two cases are
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selected that represents realistic cases. For a short and thick beam, consider
h = 1/5 and for a long and slender beam, consider h = 1/20.

For the parameter b, two different cases will be considered. The first case is for
b ≤ h, and the b > h. The distinction of these two cases will become apparent
in the results. It is important to note that the parameter b will be expressed
as a multiple of h.

All of the results will include all the eigenvalues shared between the two-
models, including non-beam type eigenvalues. The non-beam type eigenvalues
will be highlighted in grey. The non-beam type eigenvalues that are not shared
between the two models will be excluded from the results, but the numbering
of the eigenvalues will be kept as if they were included.

Case b ≤ h:

Table 6.1 below compares the eigenvalues of the models for a beam with a
small length to height ratio of h = 1/5 with decreasing values of b.

Eigenvalues

i b = h i b = 1/2 h i b = 1/4 h i b = 1/8 h j 2D
2 0.12307 2 0.12234 2 0.12198 3 0.12178 1 0.12151
3 3.5773 5 3.5630 6 3.5558 8 3.5519 2 3.5460
5 7.7799 6 7.7596 8 7.7471 11 7.7401 3 7.7311
8 20.334 9 20.283 11 20.26 14 20.247 4 20.225
10 56.247 12 56.173 15 56.156 22 56.142 5 56.109
11 69.197 14 69.319 17 69.281 24 69.238 6 69.164
14 114.03 16 114.01 20 114.05 29 114.06 7 114.03
17 187.01 19 189.14 25 189.37 36 189.34 8 189.17
18 192.21 20 192.41 26 192.58 37 192.63 9 192.61
21 284.76 23 285.43 31 285.74 42 285.84 10 285.85
23 327.57 26 328.24 35 328.37 46 328.40 11 328.40
25 347.77 28 356.44 36 357.30 50 357.33 12 357.08
27 393.69 30 396.84 38 397.28 53 397.37 13 397.33
30 434.46 34 441.05 41 441.81 57 441.99 14 442.00
31 523.65 36 534.04 43 534.17 63 534.03 15 533.71
34 550.51 37 537.82 44 538.86 64 539.06 16 538.97
37 590.86 41 587.43 48 594.17 65 595.58 17 596.06
39 590.86 42 600.52 49 602.25 67 602.69 18 602.77
42 646.21 44 657.22 50 658.04 71 658.06 19 657.87
44 711.07 46 714.62 53 717.10 73 717.51 20 717.37

Max RE: 2.6069% Max RE: 1.4469% Max RE: 0.38192% Max RE: 0.22301% -

Table 6.1: Comparsion of Eigenvalues with h = 1/5, with decreasing b and
b < h.
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Maximum Relative Error

b = h b = 1/2h b = 1/4h b = 1/8h
Beam Type 2.1420 % 0.6804 % 0.38192 % 0.22301 %

Non-Beam Type 2.6069 % 1.4469 % 0.31546 % 0.11680 %

Table 6.2: Maximum relative error for beam type and non-beam type eigen-
values for h = 1/5.

Table 6.1 below compares the eigenvalues of the models for a beam with a
larger length to height ratio of h = 1/20 with decreasing values of b.

Eigenvalues

i b = h i b = 1/2 h i b = 1/4 h i b = 1/8 h j 2D
2 0.008043 2 0.008029 2 0.008023 3 0.00802 1 0.008013
3 0.3087 4 0.30816 5 0.30794 7 0.30785 2 0.30757
5 2.3357 8 2.3316 9 2.3300 12 2.3293 3 2.3273
8 7.7217 10 7.7156 13 7.7124 16 7.7111 4 7.7077
10 8.5387 11 8.5238 14 8.5182 18 8.516 5 8.5086
11 21.986 14 21.948 18 21.934 24 21.929 6 21.911
14 45.863 18 45.781 21 45.756 30 45.746 7 45.712
17 69.444 19 69.408 25 69.385 33 69.374 8 69.344
18 83.149 22 82.999 27 82.960 36 82.944 9 82.887
21 136.44 25 136.19 31 136.14 42 136.12 10 136.03
23 192.62 27 192.62 35 192.58 47 192.56 11 192.48
25 207.87 29 207.5 36 207.43 48 207.41 12 207.29
27 299.14 33 298.63 41 298.56 55 298.53 13 298.38
30 376.68 35 377.01 44 377.01 58 376.98 14 376.83
31 411.58 37 410.89 46 410.83 61 410.81 15 410.63
34 546.15 40 545.27 50 545.24 66 545.23 16 545.03
37 620.77 42 622.02 53 622.19 69 622.18 17 621.95
39 703.55 44 702.49 54 702.29 71 702.53 18 702.31
42 884.27 47 883.02 59 883.14 82 883.19 19 882.96
44 923.68 49 926.88 60 927.43 86 927.50 20 927.18

Max RE: 0.37701% Max RE: 0.19893% Max RE: 0.12393% Max RE: 0.092843% -

Table 6.3: Comparsion of Eigenvalues with h = 1/20, with decreasing b and
b < h.
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Maximum Relative Error

b = h b = 1/2h b = 1/4h b = 1/8h
Beam Type 0.37701 % 0.19893 % 0.12393 % 0.092843 %

Non-Beam Type 0.37682 % 0.10218 % 0.061213 % 0.043601 %

Table 6.4: Maximum relative error for beam type and non-beam type eigen-
values for h = 1/20

Tables 6.1 and 6.3 show that the first 20 eigenvalues of the two-dimensional
model compares very well to the matching eigenvalues of the three-dimensional
beam for b ≤ h. As the width b decreases, the two-dimensional model becomes
a better approximation of the three-dimensional model. Also shown is that
the slender beam with h = 1/20 compares better than the thick beam where
h = 1/5, event though the case of h = 1/5 is still a very good comparison.

The tables also shows that the three-dimensional model has more non-beam
type eigenvalues as the width b decreases, as well as when the width h de-
creases.This is different from the two-dimensional model as seen in 4.5.

Tables 6.2 and 6.4 breaks up the maximum relative error for the beam type
and non-beam type eigenvalues. These tables confirm that the the beam type
eigenvalues compare very well.

Case b > h:

First, the case is considered where h = 1/5.

Eigenvalues

i b = 2h i b = 4h i b = 8h j 2D
1 0.12474 1 0.12766 1 0.13036 1 0.12151
4 3.6088 4 3.6297 5 3.7766 2 3.5460
6 7.8091 5 7.8389 9 8.9239 3 7.7311
8 20.466 9 20.959 15 21.031 4 20.255
11 56.309 18 58.149 30 60.862 5 56.109

Max RE: 2.6603% Max RE: 5.0571% Max RE: 15.428% -

Table 6.5: Comparsion of Eigenvalues with h = 1/5, with increasing b and
b > h
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Maximum Relative Error

b = 2h b = 4h b = 8h
Beam Type 2.6603 % 5.0571 % 8.4712 %

Non-Beam Type 1.0096 % 1.3948 % 15.428 %

Table 6.6: Maximum relative error for beam type and non-beam type eigen-
values for h = 1/5

In Table 6.5, the height of the beam is set to h = 1/20, which was the best
case when b < h.

Eigenvalues

i b = 2h i b = 4h i b = 8h j 2D
2 0.008076 1 0.008162 1 0.008324 1 0.008013
3 0.30995 3 0.31298 3 0.31738 2 0.30757
5 2.3462 5 2.3737 6 2.4116 3 2.3273
8 7.7312 8 7.7471 9 7.7711 4 7.7077
10 8.5841 9 8.7082 10 8.7929 5 8.5086
11 22.124 12 22.491 14 23.222 6 21.911
14 46.195 14 47.003 18 47.921 7 45.712
17 69.454 17 69.281 22 72.307 8 69.344
18 83.822 18 85.218 24 80.607 9 82.887
21 137.43 21 138.58 32 140.97 10 136.03

Max RE: 1.1289% Max RE: 2.8261% Max RE: 5.9821% -

Table 6.7: Comparsion of Eigenvalues with h = 1/20, with increasing b and
b > h

Maximum Relative Error

b = 2h b = 4h b = 8h
Beam Type 1.1289 % 2.8261 % 5.9821 %

Non-Beam Type 0.30521 % 0.51096 % 4.2734 %

Table 6.8: Maximum relative error for beam type and non-beam type eigen-
values for h = 1/20

Tables 6.5 and 6.7 show that the two-dimensional model compares not as well
to the three-dimensional model when b is larger than h. Tables 6.6 and 6.8
show that this is also true for the beam type eigenvalues.

For the case of h = 1/5, it was also more difficult to obtain reliable eigenvalues
using a numerical method.
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These results give a detailed overview of the validity of the cantilever two-
dimensional beam compared to the cantilever three-dimensional beam. The
results show that the two-dimensional beam model compares very well to the
three-dimensional beam model for a large range of beam shapes. The results
shown were chosen to represent realistic cases, and the results are similar for
other cases.

The overall conclusion is that the shape of the beam is very important. If the
width b is equal to or less than the height h, the two-dimensional beam model
compares very well to the three-dimensional beam model. More so when the
beam is slender, and less so when the beam is short and thick.

When the width b is larger than the height h, the two-dimensional beam the
comparison degrades very quickly. This is true for both slender and short and
thick beams, although with short and thick beams, it is more difficult to obtain
reliable eigenvalues using a numerical method.

For practical applications, if b > h the use of a beam model must be brought
into question. Other models such as a plate model will be better suited as it is
a more realistic model. In the next section, the validity of the Reissner-Mindlin
plate mode is investigated using the same method of this section.

6.3 Validity of a model for a cantilever

Reissner-Mindlin plate

In the previous section it was shown that for certain applications beam models
might not be the appropriate choice. The specific application is for models
where the body has a larger width than height. A suggestion would be a plate
model.

In this section, the validity of a cantilever Reissner-Mindlin plate model is
investigated. This model is a two-dimensional model. So similar to the
Timoshenko beam in Section 4.5, it is of value to investigate the validity of
the model using a three-dimensional plate model as a reference.

The same method to validate the model will be used as in sections 4.5 and
6.2. A cantilever three-dimensional plate model will be used as a reference,
and the eigenvalues and mode shapes of the two models will be compared.
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6.3.1 The models

Form Section 1.4.4, the cantilever Reissner-Mindlin plate model is given, and
is referred to as Problem P-1. The three-dimensional model is the same as
used in the previous section (Section 6.2), and is referred to as Problem 3D-1
defined in Section 1.1.3.

Figure 6.6 shows the two cantilever plates side by side.

b
ℓ = 1

(a) Reissner-Mindlin cantilever plate

b

h
ℓ = 1

(b) Three-dimensional cantilever plate

Figure 6.6: Side by side visualization of the cantilever plates.

6.3.2 Calculating the eigenvalues

The eigenvalues for both models are calculated using the Finite Element
Method. For the plate model, the Finite Element Method is derived in 5.4
and for the three-dimensional model, the Finite Element Method is derived
in 5.3. The eigenvalue problem for both models have the same form, but the
matrices are different

Problem 3D-1E and P-1E

Find a vector function u and a number λ such that

Ku = Mλu, (6.3.1)

where K and M are the standard Finite Element Method matrices defined in
Section 5.3.3 for Problem 3D-1E and Section 5.4.3 for Problem P-1E.

Accuracy of the eigenvalues

Figure 6.7 show the rate of convergence of the first 20 eigenvalues of Problem
3D-1E.
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Figure 6.7: Rate of convergence of the first 20 eigenvalues.

The number of elements can be chosen so that at least the first 20 eigenvalues
are accurate to 5 significant digits.

6.3.3 Comparing the mode shapes

Similar to the previous sections (Section 4.5 and Section 6.2), the mode shapes
of the two models are compared, to be able to match up the eigenvalues.

Mode shapes relating to plate type eigenvalues

Figure 6.3.3 shows examples of mode shapes relating to plate-type eigenvalues.
The plate models has many different shapes.
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(a) Plate - λ5 = 0.643 (b) 3D Model - λ5 = 0.645

(c) Plate - λ6 = 1.92 (d) 3D Model - λ7 = 1.92

(e) Plate - λ8 = 2.74 (f) 3D Model - λ8 = 2.74

(g) Plate - λ12 = 8.96 (Side view) (h) 3D Model - λ14 = 9.01 (Side view)

Figure 6.8: Comparison of mode shapes relating to plate-type models. b =
1/20, d = 1.
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Mode shapes relating to non-plate type eigenvalues

Figure 6.3.3 shows examples of mode shapes not relating to plate-type eigen-
values.

(a) 3D Model - λ6 = 1.35 (Top view) (b) 3D Model - λ13 = 7.80 (Top view)

Figure 6.9: Comparison of mode shapes not relating to plate-type models.
b = 1/20, d = 1.

6.3.4 Comparing the eigenvalues

For a realistic comparison of the models, the parameters need to be chosen
carefully. Both of the models have a width h and a height b parameter.

Three main cases are considered. These cases are b = 0.25 for a narrow plate,
b = 1 for a plate with equal lenght and width and b = 1.75 for a wide plate.
For each of the cases, the thickness of the plate is varied.

Remark: Note that the aim of the results is only to investigate the validity
of the cantilever Reissner-Mindlin plate model, and not to investigate weather
or not a plate model is more suited over beam model when applied to a body
that has a larger width than height.
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Comparison of Eigenvalues, b = 0.25

h = 1/5 h = 1/10 h = 1/20 h = 1/30
i 3D j Plate i 3D j Plate i 3D j Plate i 3D j Plate
1 0.12348 1 0.12249 1 0.032327 1 0.032184 1 0.008207 1 0.008186 1 0.003663 1 0.003656
2 0.18638 - 2 0.18531 - 2 0.18476 - 2 0.14204 2 0.14173
3 2.4151 2 2.3954 3 1.161 2 1.1537 3 0.31436 2 0.31341 3 0.18456 -
4 3.5856 3 3.5368 4 1.3155 3 1.31 4 0.44696 3 0.44582 4 0.21514 3 0.21454
5 4.785 - 5 4.7697 - 5 2.3862 4 2.3767 5 1.1001 4 1.0971
6 7.7889 - 6 7.7674 4 7.9816 6 4.1984 5 4.1857 6 2.0374 5 2.0313
7 20.37 4 19.969 7 8.056 - 7 4.7615 - 7 4.1509 6 4.1367
8 21.722 5 21.537 8 12.034 5 11.972 8 7.7543 - 8 4.7585 -
9 25.181 - 9 25.147 - 9 8.7609 6 8.7132 9 6.2078 7 6.1864
10 56.321 6 54.887 10 26.608 6 26.266 10 12.598 7 12.548 10 7.7495 -
11 60.267 7 59.71 11 34.438 7 34.197 11 22.619 8 22.456 11 11.064 8 11.015
12 65.513 - 12 61.829 8 60.801 12 25.128 - 12 13.734 9 13.678
13 69.031 - 13 65.518 - 13 27.297 9 27.155 13 23.854 10 23.724
14 114.09 8 110.7 14 69.133 9 69.548 14 47.123 10 46.695 14 25.121 -
15 117.88 9 116.66 15 70.211 - 15 50.515 11 50.174 15 26.054 11 25.927
16 127.05 - 16 116.78 10 114.43 16 65.523 - 16 36.259 12 36.15
17 184.46 10 185.78 17 121.43 11 119.94 17 69.089 - 17 41.973 13 41.807
18 191.91 11 191.47 18 127.23 - 18 71.563 12 71.166 18 44.95 14 44.685
19 193.03 - 19 178.27 12 175.79 19 81.444 13 80.894 19 45.798 15 45.507
20 193.71 - 20 186.06 13 187.28 20 84.785 14 84.064 20 54.838 16 54.573
Max RE: 2.9764% Max RE: 2.7585% Max RE: 0.90845% Max RE: 0.63525%

Table 6.9: Comparison of eigenvalues with b = 0.25, with decreasing values of
h.
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Comparison of Eigenvalues, b = 1

h = 1/5 h = 1/10 h = 1/20 h = 1/30
i 3D j Plate i 3D j Plate i 3D j Plate i 3D j Plate
1 0.12869 1 0.12743 1 0.033784 1 0.033626 1 0.008565 1 0.008543 1 0.003817 1 0.00381
2 0.62189 2 0.61703 2 0.18635 2 0.18562 2 0.049829 2 0.04957 2 0.022511 2 0.022405
3 1.3638 - 3 1.1603 3 1.153 3 0.31428 3 0.31315 3 0.14192 3 0.14156
4 3.5808 3 3.5289 4 1.3579 - 4 0.50842 4 0.50676 4 0.23035 4 0.22969
5 5.8165 4 5.7694 5 1.864 4 1.8577 5 0.64595 5 0.64297 5 0.29502 5 0.29394
6 6.6048 5 6.5216 6 2.2928 5 2.2792 6 1.3555 - 6 0.8928 6 0.88735
7 7.8455 - 7 6.4973 6 6.4546 7 1.9293 6 1.9157 7 1.156 7 1.1527
8 9.8027 - 8 7.8167 - 8 2.5089 7 2.4975 8 1.265 8 1.261
9 17.03 6 16.802 9 8.4533 7 8.3671 9 2.7486 8 2.7369 9 1.3543 -
10 21.225 7 20.743 10 9.3453 8 9.2873 10 3.3087 9 3.2903 10 1.5352 9 1.529
11 23.935 8 23.552 11 9.8009 - 11 5.5365 10 5.4914 11 2.598 10 2.5803
12 24.694 - 12 10.925 9 10.827 12 5.9696 11 5.9246 12 2.8161 11 2.7997
13 27.187 9 26.69 13 17.599 10 17.447 13 7.8024 - 13 4.2654 12 4.2474
14 28.844 - 14 18.596 11 18.407 14 9.0173 12 8.9573 14 4.6674 13 4.6415
15 32.373 - 15 24.729 - 15 9.8006 13 9.838 15 4.9397 14 4.9143
16 41.288 10 40.519 16 27.4 12 27.021 16 9.9172 - 16 5.7243 15 5.6803
17 42.082 11 41.246 17 28.81 - 17 10.365 13 10.286 17 6.6585 16 6.6025
18 51.427 - 18 30.737 13 30.413 18 11.934 14 11.817 18 7.2935 17 7.2474
19 56.963 12 56.1 19 30.83 14 30.413 19 13.915 15 13.767 19 7.7966 -
20 57.741 - 20 32.414 20 15.109 16 14.974 20 9.7996 -
Max RE: 2.2695% Max RE: 1.3816% Max RE: 1.0657% Max RE: 0.84102%

Table 6.10: Comparison of eigenvalues with b = 1, with decreasing values of
h.
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Comparison of Eigenvalues, b = 1.75

h = 1/5 h = 1/10 h = 1/20 h = 1/30
i 3D j Plate i 3D j Plate i 3D j Plate i 3D j Plate
1 0.13062 1 0.12939 1 0.034245 1 0.034079 1 0.0086697 1 0.0086456 1 0.0038626 1 0.0038541
2 0.32016 2 0.31779 2 0.089872 2 0.089508 2 0.023395 2 0.023323 2 0.010507 2 0.010475
3 1.2496 3 1.2422 3 0.36964 3 0.36841 3 0.098072 3 0.097745 3 0.044239 3 0.044074
4 1.9808 - 4 1.2274 4 1.2188 4 0.33233 4 0.33118 4 0.15003 4 0.14964
5 3.7675 4 3.7086 5 1.352 5 1.3465 5 0.36764 5 0.36652 5 0.16657 5 0.16605
6 4.2021 5 4.1631 6 1.6994 6 1.6894 6 0.4647 6 0.4632 6 0.21059 6 0.21002
7 5.2022 6 5.1381 7 1.9763 - 7 0.79935 7 0.79606 7 0.3656 7 0.36423
8 7.6603 7 7.9399 8 2.8259 7 2.8076 8 1.2445 8 1.2411 8 0.56685 8 0.56529
9 8.0445 - 9 4.4507 8 4.4294 9 1.5708 9 1.563 9 0.72384 9 0.72032
10 9.0791 - 10 5.3923 9 5.3539 10 1.9739 - 10 1.1585 10 1.1545
11 10.135 - 11 7.6371 0 11 2.5137 10 2.5015 11 1.2513 11 1.2466
12 12.888 8 12.736 12 8.4707 10 8.3817 12 2.708 11 2.6947 12 1.4005 12 1.3927
13 14.506 9 14.302 13 9.0612 11 8.9704 13 3.0153 12 2.9984 13 1.4449 13 1.4393
14 14.892 - 14 9.0682 - 14 3.137 13 3.1246 14 1.6806 14 1.6738
15 19.395 - 15 10.018 12 9.9347 15 3.6118 14 3.5928 15 1.973 -
16 21.265 10 20.79 16 10.131 - 16 5.1287 15 5.0977 16 2.4081 15 2.3958
17 22.512 11 22.038 17 10.683 13 10.605 17 5.6368 16 5.6009 17 2.6419 16 2.6253
18 25.193 12 24.775 18 11.806 14 11.682 18 6.5069 17 6.4687 18 3.0386 17 3.0189
19 27.783 13 27.322 19 14.893 - 19 7.6243 18 7.6617 19 3.6563 18 3.6342
20 28.461 14 27.851 20 16.275 15 16.1 20 7.7152 - 20 4.3466 19 4.3267
Max RE: 3.6499% Max RE: 1.0878% Max RE: 0.63674% Max RE: 0.64798%

Table 6.11: Comparison of eigenvalues with b = 1.75, with decreasing values
of h.
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Overall Tables 6.9, 6.10 and 6.11 show that the cantilever Reissner-Mindlin
plate model compares very well to the three-dimensional plate. The maximum
relative error is less than 3.65% for all cases considered.

There is less of a dramatic change of the comparison when the width of the
plate is changed as with the beam model in Section 6.2. This could be because
the Reissner-Mindlin plate model does consider both the width and the height
of the plate, while it is only a two-dimensional model. The two-dimensional
beam model only considered the height of the beam, and not the width.

Other cases not shown here have also been considered, and the results are
similar to the ones shown here. They are therefore not included here, and
only worth mentioning.
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7 Conclusion

7.1 Overview

Chapter 1

This dissertation is a literature study to investigate the validity of different lin-
ear models for beams and plates. The term validity in this dissertation means
how well a model compares to a more realistic model for real world applica-
tions. The first chapter of the dissertation introduces the models. The sim-
plest model is the Timoshenko model. The other models are a two-dimensional
elastic beam model, three-dimensional elastic beam and plate models and a
Reissner-Mindlin plate model. The aim in this dissertation is to validate the
use of the Timoshenko beam model and the Reissner-Mindlin plate model
in applications. These models are simplified one-dimensional beam and two-
dimensional plate models. But more realistic models exist, such as a two-
dimensional and three-dimensional beam model and a three-dimensional plate
model. Using modal analysis (see Chapter 2), it is shown that the solutions of
the models can be represented as a linear combination of the modal solutions.
Using this idea, it is only required to compare the eigenvalues and eigenfunc-
tions of the models to be able to compare the difference between the solutions.
In Chapter 1, the models of the dissertation are given (in dimensionless form).
Model problems are then defined by including boundary conditions. These
model problems are the models used in the rest of the dissertation. The vari-
ational forms are also derived which enables us to see the similarity between
the models and the general theory.

Chapter 2

First, a variational form for a model problem of a cantilever Timoshenko beam
is given. This model problem in variational form is then extended to complete

132



function spaces, and a weak variational problem is obtained. This weak varia-
tional problem is used as an example to explain the main theory of this chapter
which is from the article [VV02]. In this article, the authors present a general
weak variational form. The weak variational form of all the model problems
of this dissertation are special cases of this general weak variational problem.
Therefore the assumptions and results can be formulated and applied to all the
applications in this dissertation. The article gives four assumptions. Under
these assumptions it is shown that the general vibration problem has a unique
solution using semi-group theory. The theory is then applied to the example
by proving that the assumptions hold.

Finally the concept of modal analysis is introduced, which is fundamental
to this dissertation. First the idea of modal analysis is explained by hands
of another example, again using a cantilever Timoshenko beam. Then the
general case is discussed that follows the article [CVV18]. Given a general
vibration problem, it is split into two problems by introducing a trial solution.
It can then be verified that these two problems are the eigenvalue problem and
an ordinary differential equation. An additional assumption (additional to the
assumptions of [VV02]) is introduced by [CVV18]. Under this assumption, the
eigenvalue problem has a complete orthonormal sequence of eigen-solutions.
The solution of the general vibration problem is an infinite series of modal
solutions. This formal series solution is then shown to also be valid for a
initial value problem. This general case is also applicable to all the models in
this dissertation.

This theory is crucial for this dissertation. It ensures that the solutions of
the models will compare well if the eigenvalues and eigenfunctions compare
well. Therefore for the comparisons in Chapter 4 and 6, it is only required to
compare the eigenvalues and eigenfunctions. The validity of the formal series
solution is also important as it ensures that the comparisons remain valid, as
long as the models are disturbed in the same way.

Chapter 3

In this chapter, some theory for the Finite Element Method is discussed. This
chapter contains two parts, that covers two different theoretical results. The
first is on the convergence of the Galerkin approximation of a general vibration
problem. This theory is presented in the article [BV13]. The second part
concerns the convergence of the eigenvalues and eigenfunctions of a vibration
problem when applying the Finite Element Method. This theory is presented
in the textbook [SF73].
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In the first part, the authors of [BV13] consider the general vibration problem
that is studied in Chapter 2. The general vibration problem has a solution
as shown in Chapter 2. The Galerkin Approximation is derived from the
general vibration problem and is rewritten into a system of ordinary differential
using the Finite Element Method. This ordinary differential equation can be
proven to have a unique solution. The main results of [BV13] shows that
this solution of the Galerkin Approximation converges to the solution of the
general vibration problem. The approach of the authors is to calculate the
error estimates.

The second part of the chapter considers work done in a textbook [SF73]
on eigenvalue problems for elliptic partial differential equations. The specific
work discussed, covers the convergence of the eigenvalues and eigenfunctions
of a general vibration problem when applying the Finite Element Method.
The authors consider a general eigenvalue problem. Then using the Rayleigh-
quotient, from the Rayleigh-Ritz method, as well as an approximation theorem
from [OR76], the main result is proven. The specific work done in this section
is updating the notation of the textbook, as well as expanding some proofs so
that the results are easier to understand.

Chapter 4

This chapter is a focus on the main theory of this dissertation, the Timoshenko
beam theory. The first section is a discussion of modal analysis applied to the
Timoshenko beam theory, and specifically a discussion of the article [VV06].
In this article, the authors present a method to calculate the exact eigenvalues
and eigenfunctions of a Timoshenko beam. Starting with a general eigenvalue
problem for a Timoshenko beam model, the authors derive a general solution
for the ordinary differential equation. The authors then explain the method
by hands of an example by applying the method to a cantilever beam model.
The next sections of this chapter also then looks at examples of applying the
method, first to a cantilever beam model, and then to a pinned-pinned beam
model.

Section 4.5 is a discussion of the article [LVV09a]. In this article, the authors
investigate the validity of a cantilever Timoshenko beam model, by compar-
ing it to a two-dimensional cantilever Timoshenko beam model. The authors
compare the models by comparing the eigenvalues and eigenfunctions. (See
Chapter 2 on modal analysis). The two-dimensional model is more complex
and there are eigenvalues that are not shared between the models. The authors
use the mode shapes to match up the eigenvalues. The eigenvalues matching

134



the eigenvalues of the Timoshenko beam model are referred to by the authors
as beam-type eigenvalues. The authors also consider different shapes of beams,
from a short thick beam to a long slender beam. The results show that the
models compare very well, even for a short and thick beam.

The next section is a discussion on the article [SP06]. In this article, the au-
thors investigate the validity of the Timoshenko beam theory, by comparing
the eigenvalues (natural frequencies) for a physical beam, to a Timoshenko
beam and a three-dimensional beam using Finite Element Analysis. The au-
thors report on an experiment with forced vibration a free-free beam where the
natural frequencies are measured. These empirical results are then compared
to the theoretical results. This result, together with the results in chapter 6,
give a good picture to the validity of the Timoshenko beam theory.

Chapter 5

In this chapter, the Finite Element Method is applied to cantilever two-
dimensional elastic body, cantilever three-dimensional elastic body and a can-
tilever Reissner-Mindlin plate. The aim of this section is to obtain an algorithm
to calculate the eigenvalues and eigenfunctions of the models. The Finite El-
ement Method is not applied to the Timoshenko beam theory, as chapter 4
provides an alternative method. For all the models, the Finite Element Method
is applied using bi-cubic or tri-cubic basis functions to improve the rate of con-
vergence and reduce the processing required to obtain accurate results. Each
section ends with a eigenvalue problem for the models that can be easily ap-
plied to a computer program to calculate the eigenvalues and eigenvectors for
the models. This is in preparation of Chapter 6 where the eigenvalues and
eigenfunctions are calculated and compared.

Chapter 6

This chapter is an extension of the work of Section 4.5. In Section 4.5,
the validity of the Timoshenko beam theory is investigated by comparing a
Timoshenko beam model to a two-dimensional beam model.

In real-world applications, a beam is a three-dimensional model. Therefore it
should be more realistic to use a three-dimensional model to investigate the
validity of the Timoshenko beam theory. This is mentioned by the authors
of [LVV09a]. Their suggestion is to use the two-dimensional model as an
intermediate step, to avoid complexities. Therefore the validity of the two-
dimensional model is investigated, using a three-dimensional beam model as a
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reference. Again the results show that the comparison relies on the shape of the
beams. The two-dimensional model compares well to the three-dimensional
beam if the beam is not wide.

If the width of the beam is very large, the use of a beam model can be ques-
tioned. A plate model might be more suited. Therefore the last section of this
chapter investigates the validity of the Reissner-Mindlin plate model. The
Reissner-Mindlin plate model is compared to a three-dimensional plate model.
The results show that the Reissner-Mindlin plate model compares well to the
three-dimensional plate model.

The same method is used in this chapter as in Section 4.5. The mode shapes are
sketched and matched. The corresponding eigenvalues can then be matched up
and compared. The eigenvalues relating to the Reissner-Mindlin plate model
are referred to as plate-type eigenvalues.

7.2 Contributions

There are four models used in this dissertation. For each of the models, the di-
mensionless variational form is derived. Also presented are the model problems
that are used in this dissertation.

The first result investigates the existence and uniqueness of solutions for gen-
eral vibration problems. The article that is discussed proves this result for
a general vibration problem, using four assumptions. To explain the theory,
an example is presented using one of the model problems of the dissertation.
The cantilever Timoshenko beam model is chosen for the simple boundary
conditions, as well as it’s recurring importance in this dissertation. The weak
variational form of the model is derived as well as the function spaces defined.
This is presented in the same format as the general vibration problem. In fact
all the models in this dissertation are special cases of this general vibration
problem. The theory is then applied to this example problem, as a demon-
stration. To apply the theory, the four assumptions are proven to be true.

The next result looks at modal analysis. Before the general case is discussed,
again the cantilever Timoshenko beam is used to illustrated the concept of
modal analysis.A trial solution to the boundary value problem is suggested.
This trial solution is substituted into the partial differential equation and two
problems are obtained. The first problem is the eigenvalue problem and the
second is an ordinary differential equation. The eigenvalue problem can be
solved with theory discussed later in the dissertation and the ordinary differ-

136



ential equation can then be solved. Substitution of these two results into the
boundary value problem confirms that the trial solution is correct. The same
idea is then discussed for the general case.

We then look at the convergence of the Galerkin Approximation for our gen-
eral vibration problem. The results of the article discussed are updated with
improved notation using a different article. The general case of the Galerkin
approximation use a lot of symbols that are not immediately obvious, so again
the cantilever Timoshenko beam model problem is used and the Galerkin Ap-
proximation is derived in an attempt to explain some of the conventions. The
results of the article are then discussed and presented. The results are pre-
sented in a concise and practical format to reduce the need to define any
unnecessary symbols or notation. The results are also presented in four the-
orems, summarizing the results of the article that are important but that are
not necessarily presented as a theorem in the article.

The next result is on the convergence of the eigenvalues and eigenfunctions
of a general vibration problem when using the Finite Element Method. The
results are from a textbook. The results are presented with updated notation,
coinciding with the notation used in the dissertation. The results are also
expanded and extra results are added in an attempt to better explain the
theory.

We then look at an important result for the Timoshenko beam theory. This
provides a method to calculate the exact eigenvalues and eigenfunctions for
the Timoshenko beam theory. Two examples are then used, a cantilever beam
and a free-free beam, as an example of the application of the theory. The
eigenvalues are calculated and the corresponding mode shapes are plotted. To
obtain these results, the equation of motion is plotted, the isolation intervals
are determined and the eigenvalues are then calculated using interval division
to a desired level of accuracy. The mode shapes can then also be plotted
with back substitution. These examples are important preparation for the
main comparisons of this dissertation. We also discuss a result comparing the
Timoshenko beam theory to results from an empirical study. We add to this
article by giving the model problems.

For the rest of the models in this dissertation, the two- and three-dimensional
elastic bodies, and the Reissner-Mindlin plate model, a different approach is
required to solve the eigenvalue problems. For these models we use the Finite
Element Method. For each of the models, their reference configurations are
given. All of the models are assumed to have a square cross-section and in a
cantilever configuration. This reference configuration is then discretised into
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a grid of rectangular shaped elements. A set of admissable piecewise Hermite
cubic functions are then used and each model is rewritten into a Galerkin
Approximation. We the define the standard Finite Element Method Matrices
for each case. These are referred to as the mass and stiffness matrices in
engineering. Finally our boundary value problems are written into a system
of ordinary differential equations in a matrix representation. At this point
is it easy to derive the eigenvalue problem for each of the problems in this
matrix form. This is in preparation for the main comparisons made in this
dissertation.

For our main comparisons, we first look at an article comparing a cantilever
Timoshenko beam model to a cantilever two-dimensional model. We discuss
the article and replicate the results. The eigenvalues and eigenfunctions of
the Timoshenko beam model is obtained using the exact method already de-
scribed. The eigenvalues and the eigenfunctions for the two-dimensional model
are approximated using the Finite Element Method matrix representation of
the eigenvalue problem. A MATLAB program is written to approximate the
eigenvalues and plot the mode shapes. The accuracy of this approximation is
also investigated by looking at the rate of convergence for different grid sizes.
Following the article, the eigenvalues are matched up by first comparing the
mode shapes of the two models. The eigenvalues can then be matched up
and also any eigenvalues not relating to beam-type problems can be filtered
out. Based on the results in modal analysis, only a few eigenvalues need to
be considered. The relative error between the eigenvalues are then calculated
for different shapes of beams. The results improve on the article by showing
more significant digits and also including some more results.

We then extend the results of the article to investigate the validity of a can-
tilever two-dimensional beam model as well as a cantilever Reissner-Mindlin
plate model. The same method of the article is followed. To investigate the
validity of a cantilever two-dimensional model, a cantilever three-dimensional
model is considered. Since both of the models are not beam models, careful
consideration needs to be taken to identify the eigenvalues. The same approach
is used by comparing the mode shapes. For interest, the non-beam type eigen-
values shared between the two models are also included and the rest that the
three-dimensional model does not share with the two-dimensional model are
omitted. A clear distinction is made to show the beam type eigenvalues and
the beam type results. The shape of the models are also carefully chosen to
represent a variety of realistic cases that are interesting. The results show
that the shape of the models play an important role in how well the models
compare. An interesting result shows that this comparison is not good when

138



the beam gets too wide. We therefore suggest a different model, like a plate
model. This lead to the introduction of the Reissner-Mindlin plate model into
this dissertation. The validity of a cantilever Reissner-Mindlin plate model is
investigated using the same method. The cantilever three-dimensional plate
model is again used as the reference model with the restriction that the body
is wide.

7.3 Further Research

Future work would include the addition of damping into the models. A lot of
the articles do include results for damping, however the results of the modal
analysis (the crucial theory of this dissertation) might not be so trivial to
prove.

The use of the Hermite cubic basis functions results in the derivatives of the
displacement functions to also be available. This brings into question if the
stresses of the models can also be compared.

Further improvements to the code can be made. Although a lot of effort was
put into optimizing the code, this lead to the code being difficult to under-
stand. Ideally a refactor and simplification of the code, while maintaining its
functionality is desired.
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Appendix

List of symbols

This list of symbols contain some of the most used symbols in this dissertation.
The symbols are grouped into three categories: Vector Spaces and Related
Concepts, Mathematical Measures and Operations, and Physical Quantities
and Parameters. The first appearance of each symbol is also listed.

Other symbols that are section specific or that are contextually evident might
not be in this list.

Vector Spaces and Related Co ncepts

Symbol Description First Appearance (Page)

N set of natural numbers j 57
Rn n-dimensional space of real numbers 9
Ω subset of Rn, usually representing a

body/reference configuration
9

∂Ω the boundary of Ω 13
Ω̄ the boundary of Ω 19
Cn set of n-times continuously differen-

tiable functions
13

C∞ space of smooth functions 39
C∞

0 space of smooth functions with com-
pact support

41

Ln space of n-power Lebesgue integrable
functions

35
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Hn space of functions with weak deriva-
tives up to order n (n’th dimensional
Sobolev space)

35

X global space 36
V inertia space 36
W energy space 36
T (Ω) test function space on Ω 15
Sh finite dimensional subspace 57
Pj set of all polynomials of degree at most

j
67

En space spanned by the orthonormal ba-
sis vectors ei

95

Mathematical Measures and Operations

Symbol Description First Appearance (Page)

a(·, ·), b(·, ·), c(·, ·) bilinear forms 37, 15, 16
(·, ·)X innerproduct of X 36
|| · ||X norm in the space X 36
∂nxf n-th partial derivative of f

with respect to x
9

divX divergence of the matrix X 9
Tr(X) Trace of the matrix X 10
det(M) determinant of M 69
span(·) span of a set 52
dV volume integral measure 18
dS surface integral measure 18
dA area integral measure 18
ds line integral measure 18
E(·) energy function 48
R(·) Rayleigh quotient 58
Π interpolation operator 66
ū another form explicity show-

ing u is a vector
54

RE abbriviation for the relative
error
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Physical Quantities and Parameters

Symbol Description First Appearance (Page)

λ eigenvalue 46
u or w displacement vector 9
ϕ arbitrary vector/rotation of cross-

section of Timoshenko beam
13

Q force per unit volume 9
ρ density 9
T stress tensor 9
σij element of the stress tensor T 9
E infinitesimal strain tensor 10
εij element of the infinitesimal strain ten-

sor E
10

E Young’s modulus 10
ν Poisson’s ratio 10
t time 11
ℓ dimension representing length 11
h dimension representing height 89
b dimension representing width 100
G shear modulus of elasticity 11
A area of a cross-section 20
V shear force 20
I area moment of inertia 20
M moment 20
f ∗ dimensionless form of f 11
τ dimensionless time 11
ξ dimensionless space 11
α/β dimensionless constants 21
κ2 some dimensionless constant/shear

correction factor
11

I identity matrix 11
γ a dimensionless constant 12
n a normal vector 13

Σ/Γ distinct parts of Ω 13
µ eigenvector 59
ei orthonormal basis vector 16
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Sobolev spaces

The Space L2

Consider a measurable space X. The set of square integrable functions is
called the L2 space.

The inner product of L2 is defined as

(f, g) =

∫
X

fg for f, g ∈ L2.

The norm can be defined as ||f || = (f, f)
1
2 for each f ∈ L2(X). For reference,

see [Rud53].

The Space Lp

Consider a measurable space X. For a real number p ≥ 1, the set of p-
integrable functions is called the Lp space. A function f belongs to Lp(X) if
the p-th power of its absolute value is Lebesgue integrable, that is, if∫

X

|f |p <∞.

The Lp norm (or p-norm) is defined as

||f ||p =
(∫

X

|f |p
) 1

p

for each f ∈ Lp(X).

Continuous function spaces

Cm(a, b) is the space of functions with continuous derivatives up to order m
over the open interval (a,b).

Cm[a, b] is the space of functions in Cm(a, b), with existing right derivatives at
a and existing left derivatives at b, up to order m.

Cm
0 (a, b) contains all functions f in Cm[a, b] with the property that there exists

numbers a < α < β < b such that f is zero on [a, α] ∪ [β, b]. This property is
called compact support.
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C∞(a, b) contains all functions in Cm(a, b) for all m.

C∞[a, b] contains all functions in Cm[a, b] for all m.

C∞
0 (a, b) contains all functions in Cm

0 (a, b) for all m.

First order weak derivative

Suppose u ∈ L2(a, b) and there exist a v ∈ L2(a, b) such that

(u, ϕ′) = −(v, ϕ) for each ϕ ∈ C∞
0 (a, b)

then v is called the first order weak derivative of u and is denoted by Du.

Higher order weak derivative

Suppose u ∈ L2(a, b) and there exist a v ∈ L2(a, b) such that

(u, ϕ(m)) = (−1)(m)(v, ϕ) for each ϕ ∈ C∞
0 (a, b)

then v is called the m’th order weak derivative of u and is denoted by D(m)u.

Sobolev spaces

W n is the space of functions with weak derivatives up to order n. There are
also special notation W n,p that indicates that the functions are P-intergrable.

Hn is the space of functions with weak derivatives up to order n and the
functions are square integrable. (i.e. Hn = W n,2)
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MATLAB Code

The following are the main code used in this dissertation to obtain the eigen-
values and eigenvectors of the models. The code and the dissertation is also
available on GitHub at https://github.com/Propagandalf-7/masters.

The code is optimized for performance, and therefore the presentation of the
code is not optimized for readability. The code is also not commented.

Example code for Timoshenko beam model

1 function [u,p,Eig] = TimoshenkoEig(alpha)

2 syms A;

3 syms B;

4 syms C;

5 syms D;

6 syms x;

7 syms m;

8 syms o;

9 syms lam;

10 syms k;

11 syms a;

12 syms t;

13 format long;

14

15 %gamma = 0.25;

16 nu = 0.3;

17 gamma = 1/(2*(1+ nu))*5/6;

18

19 delt = 4* gamma /(1+ gamma)^2* alpha/lam + (1-gamma)^2/(1+ gamma)^2;

20 omega2 = 1/2* lam *(1+ gamma)*(delt ^(1/2) +1);

21 mu2 = 1/2* lam *(1+ gamma)*(delt ^(1/2) -1);

22 theta2 = 1/2* lam *(1+ gamma)*(1-delt ^(1/2));

23

24
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25 u = A*sinh(m*x) + B*cosh(m*x) + C*sin(o*x) + D*cos(o*x);

26 p = A*((lam+m^2)/m*cosh(m*x)) + B*((lam+m^2)/m*sinh(m*x)) + C

*(-(lam -o^2)/o*cos(o*x)) + D*((lam -o^2)/o*sin(o*x));

27

28 %u = B + C*sin(o*x) + D*cos(o*x);

29 %p = A + B*a*x + C*(-(lam -o^2)/o)*cos(o*x) + D*((lam -o^2)/o)*

sin(o*x);

30

31 %u = A*sin(t*x) + B*cos(t*x) + C*sin(o*x) + D*cos(o*x);

32 %p = A*(-(lam -t^2)/t)*cos(t*x) + B*(lam -t^2)/t*sin(t*x) + C*(-(

lam -o^2)/o)*cos(o*x) + D*(lam -o^2)/o*sin(o*x);

33

34

35 subs((u),x,0);

36 subs((p),x,0);

37

38 u = subs(u,[D,C],[-B,A*(lam+m^2)/m*o/(lam -o^2)]);

39 p = subs(p,[D,C],[-B,A*(lam+m^2)/m*o/(lam -o^2)]);

40

41 %u = subs(u,[B,C],[-D*((lam -o^2)/a),o/lam*(A + k*(-D*((lam -o^2)

/a) +D))]);

42 %p = subs(p,[B,C],[-D*((lam -o^2)/a),o/lam*(A + k*(-D*((lam -o^2)

/a) +D))]);

43

44 %u = subs(u,[D,C],[-B,-o/(o^2-lam)*(t^2-lam)/t*A]);

45 %p = subs(p,[D,C],[-B,-o/(o^2-lam)*(t^2-lam)/t*A]);

46

47 M1 = (subs(diff(p),x,1));

48 M2 = (subs(diff(u) - p,x,1));

49 M = [subs(M1 ,[A,B],[1,0]) subs(M1 ,[A,B],[0,1]);subs(M2 ,[A,B

],[1,0]) subs(M2 ,[A,B],[0,1])];

50

51 %latex(simplify(det(M)))

52

53 L = subs(M,k,sqrt (5/6));

54 L = subs(L,o,( omega2)^(1/2));

55 L = subs(L,m,(mu2)^(1/2));

56 L = subs(L,t,( theta2)^(1/2));

57

58 Y = det(L);

59 Y = simplify(subs(Y,lam ,x));

60

61 %ezplot(Y,[0 ,300])

62 %grid on

63

64 R = 0;

65 R = FindRoots(Y,0.001 ,500 ,0.1)

66 %R = FindRoots(Y,100 ,200 ,0.1)
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67 RF = zeros(1,size(R,2));

68 RF2 = zeros(1,size(R,2));

69 RF3 = zeros(1,size(R,2));

70 RF4 = zeros(1,size(R,2));

71 for i = 1:size(R,2)

72 if(R(i) -0.1>0)

73 RF(i) = FindRoots(Y,R(i) -0.1,R(i)+0.1 ,0.0001);

74 else

75 RF(i) = FindRoots(Y,0.0001 ,R(i)+0.1 ,0.0001);

76 end

77 end

78 for i = 1:size(R,2)

79 if(RF(i) -0.0001 >0)

80 RF2(i) = FindRoots(Y,RF(i) -0.0001,RF(i)+0.0001 ,0.00001)

;

81 else

82 RF2(i) = FindRoots(Y,0.0001 ,RF(i)+0.0001 ,0.00001);

83 end

84 end

85 for i = 1:size(R,2)

86 if(RF2(i) -0.00001 >0)

87 RF3(i) = FindRoots(Y,RF2(i) -0.00001 ,RF2(i)

+0.00001 ,0.000001);

88 else

89 RF3(i) = FindRoots(Y,0.00001 , RF2(i)+0.00001 ,0.000001);

90 end

91 end

92 %for i = 1:size(R,2)

93 % if(RF3(i) -0.00001 >0)

94 % RF4(i) = FindRoots(Y,RF3(i) -0.000001 , RF3(i)

+0.000001 ,0.0000001);

95 % else

96 % RF4(i) = FindRoots(Y,0.000001 , RF3(i)

+0.000001 ,0.0000001);

97 % end

98 %end

99

100 Eig = RF3 ’;

101 %ModeNum = 1;

102 Eig

103 %{

104 imageDir = fullfile(cd, ’images ’);

105 if ~exist(imageDir , ’dir’)

106 mkdir(imageDir);

107 end

108

109 for i = 1:size(Eig ,1)

110 % Get values
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111 LS = subs(L,lam ,RF(i));

112 [a,L1] = gauss(LS ,[0;0]);

113 B1 = double(-L1(1,1)/L1(1,2))

114 us = subs(u,[o,m],[( omega2)^(1/2) ,(mu2)^(1/2) ]);

115 ps = subs(p,[o,m],[( omega2)^(1/2) ,(mu2)^(1/2) ]);

116 us = simplify(subs(us ,[lam ,A,B,k],[RF(i),1,B1 ,sqrt (5/6)]));

117 ps = simplify(subs(ps ,[lam ,A,B,k],[RF(i),1,B1 ,sqrt (5/6)]));

118

119 xd = 0:0.01:1;

120 uss = subs(us ,x,xd);

121 max = norm(uss ,Inf);

122 us = us/max;

123

124 pss = subs(ps ,x,xd);

125 maxp = norm(pss ,Inf);

126 ps = ps/maxp;

127

128 % Displacement

129 f1 = figure(’Name’, [’Mode ’ num2str(i) ’ Displacement ’]);

130 clf(f1)

131 ezplot(us ,[0 ,1])

132 title([’Mode ’ num2str(i) ’ Displacement ’])

133 xlabel(’x (Position)’)

134 ylabel(’Displacement (Normalized)’)

135 legend(’Displacement ’, ’Location ’, ’best’)

136

137 % Stress

138 f2 = figure(’Name’, [’Mode ’ num2str(i) ’ Stress ’]);

139 clf(f2)

140 ezplot(ps ,[0 ,1])

141 title([’Mode ’ num2str(i) ’ Stress Distribution ’])

142 xlabel(’x (Position)’)

143 ylabel(’Stress (Normalized)’)

144 legend(’Stress Distribution ’, ’Location ’, ’best’)

145

146 % Both

147 f3 = figure(’Name’, [’Mode ’ num2str(i) ’ Displacement and

Stress ’]);

148 clf(f3)

149 hold on

150 ezplot(us ,[0 ,1])

151 ezplot(ps ,[0 ,1])

152 title([’Mode ’ num2str(i) ’ Displacement and Stress ’])

153 xlabel(’x (Position)’)

154 legend(’Displacement ’, ’Stress Distribution ’, ’Location ’, ’

best’)

155 hold off

156
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157 saveas(f1 , fullfile(imageDir , [’Mode_’ num2str(i) ’

_Displacement.png’]));

158 saveas(f2 , fullfile(imageDir , [’Mode_’ num2str(i) ’_Stress.

png’]));

159 saveas(f3 , fullfile(imageDir , [’Mode_’ num2str(i) ’

_Displacement_and_Stress.png’]));

160 end

161 writeToExcel(Eig , imageDir);

162 %}

163 return;

164

165 function writeToExcel(Eig , imageDir)

166 % Define the name of the Excel file

167 excelFileName = ’TimoshenkoResults.xlsx’;

168

169 % Initialize COM server

170 Excel = actxserver(’Excel.Application ’);

171 Excel.Workbooks.Add;

172

173 % Get active sheet

174 WorkSheets = Excel.ActiveWorkBook.Sheets;

175 sheet1 = WorkSheets.get(’Item’, 1);

176 sheet1.Activate;

177

178 % Start writing data to Excel

179 sheet1.Range(’A1’).Value = ’Mode Number ’;

180 sheet1.Range(’B1’).Value = ’Eigen Value’;

181

182 for i = 1:size(Eig , 1)

183 sheet1.Range([’A’ num2str(i + 1)]).Value = i; % Mode

Number

184 sheet1.Range([’B’ num2str(i + 1)]).Value = Eig(i); %

Eigen Value

185

186 % Insert images

187 pic_path = fullfile(imageDir , [’Mode_ ’ num2str(i) ’

_Displacement.png’]);

188 disp([’Image path: ’, pic_path ]);

189 Excel.ActiveSheet.Shapes.AddPicture(pic_path , 0, 1,

100, i*100, 200, 200);

190 pic_path = fullfile(imageDir , [’Mode_ ’ num2str(i) ’

_Stress.png’]);

191 disp([’Image path: ’, pic_path ]);

192 Excel.ActiveSheet.Shapes.AddPicture(pic_path , 0, 1,

100, i*100, 200, 200);

193 pic_path = fullfile(imageDir , [’Mode_ ’ num2str(i) ’

_Displacement_and_Stress.png’]);

194 disp([’Image path: ’, pic_path ]);
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195 Excel.ActiveSheet.Shapes.AddPicture(pic_path , 0, 1,

100, i*100, 200, 200);

196 end

197

198 % Save and close the Excel file

199 Excel.ActiveWorkBook.SaveAs(excelFileName);

200 pause (1); % waits for 1 second

201

202 Excel.ActiveWorkbook.Close;

203 Excel.Quit;

204 Excel.delete;

205 clear Excel;

206

207 function I = IntervalDivision(a,b,TOL)

208 if abs(b-a)>=TOL

209 m = abs(b-a)/2;

210 I = [IntervalDivision(a,a+m,TOL); IntervalDivision(a+m,b,TOL

)];

211 return;

212 else

213 I = [a b];

214 end

215 return

216

217 function R = FindRoots(Y,a,b,TOL)

218 syms x;

219 I = IntervalDivision(a,b,TOL);

220 n = size(I,1);

221 SubsI = zeros(size(I));

222 for i = 1:n

223 SubsI(i,1) = subs(Y,x,I(i,1));

224 SubsI(i,2) = subs(Y,x,I(i,2));

225 end

226

227 icount = 1;

228 for i = 1:n

229 if SubsI(i,1) == 0

230 R(icount) = I(i,1);

231 icount = icount +1;

232 elseif SubsI(i,1) == 0

233 R(icount) = I(i,1);

234 icount = icount +1;

235 elseif SubsI(i,1)*SubsI(i,2) < 0

236 R(icount) = (I(i,2)+I(i,1))/2;

237 icount = icount +1;

238 end

239 end

240 return
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Example code for two-dimensional elastic

body using bi-cubics

1 function [E, n, m] = TwoDimensionalCantileverCubic(n,alpha ,

graph)

2 format long g

3 %gpuDevice (2)

4 beta = 1;

5 %alpha = 300;

6 gamma = 0.3205;

7 nu = 0.3;

8 iA = 1/(1-nu^2);

9 iB = 1/(2* gamma *(1+nu));

10

11 ex = sqrt (12/ alpha);

12 h=ex

13 %ex = h

14 m = ceil(n*ex);

15

16 if(m <= 1)

17 m = 2;

18 end

19 %if(m >= 15)

20 % m = 15;

21 %end

22 %n

23 %m = 2

24

25 a = 0;

26 b = 1;

27 c = 0;

28

29 %d = sqrt (12/ alpha);

30 d =h

31 deltx = (b-a)/n;

32 delty = (d-c)/m;

33

34 [MM,Kxx ,Kxy ,Kyy ,D0] = CalMatrix(n,m,deltx ,delty);

35 Kyx = Kxy ’;%CHECKED

36 All = (n+1)*(m+1);

37

38 K1 = Kxx + (1-nu)/2* Kyy;

39 K2 = nu*Kyx + (1-nu)/2* Kxy;
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40 K3 = nu*Kxy + (1-nu)/2* Kyx;

41 K4 = Kyy + (1-nu)/2* Kxx;

42 O = sparse(size(MM ,1),size(MM ,2));%CHECKED

43 MMu = [MM O;%CHECKED

44 O MM];%CHECKED

45 Mf = MMu;

46 K = 1/( gamma *(1-nu^2))*[K1 K2; K3 K4];%CHECKED

47 x = [7*All: -1:7*All -(m+1)+1 5*All: -1:5*All -(m+1)+1 3*All: -1:3*

All -(m+1)+1 1*All :-1:1*All -(m+1) +1];

48 K(x,:) = [];

49 K(:,x) = [];

50 MMu(x,:) = [];

51 MMu(:,x) = [];

52 Mf(x,:) = [];

53 %CHECKED

54 %eig(Mu,K)

55 [V,D] = eigs(K,MMu ,20,’sm’);

56 E = diag(D);

57 size(K)

58

59 if (graph == 1)

60 for i = 1:10

61 w = V(:,i);

62

63 f = -1/200;

64 F1 = zeros((n+1)*(m+1) ,1);

65 F1(ceil ((1+(m+1))/2)) = f;

66 F = zeros (8*(n+1)*(m+1) ,1);

67 F(4*(n+1)*(m+1) +1:5*(n+1)*(m+1)) = F1;

68

69

70 %ueq = K\MMu*(-w);

71 tic

72 %Kg = gpuArray(K);

73 %Mfg = gpuArray(Mf);

74 %Fg = gpuArray(F);

75 toc

76

77 %b =Mf*(-F);

78 %tic

79 %ueq = K\Mf*(-F);

80 %toc

81 b = MMu*(-w);

82 tic

83 tol = 0.00001;

84 maxit = 30000;

85 alpha1 = max(sum(abs(K) ,2)./diag(K)) -2;
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86 L = ichol(K,struct(’type’,’ict’,’droptol ’,1e-3,’

diagcomp ’,alpha1));

87 ueq = pcg(K,b,tol ,maxit ,L,L’);

88 toc

89

90 Ep = Positions(m,n,deltx ,delty);

91 %ux = 0;

92 %uy = 0;

93 ux = [ueq (1:(n+1)*(m+1) -(m+1) ,1);zeros(m+1,1)] + Ep

(:,1);

94 dxux = [ueq((n+1)*(m+1) -(m+1) +1:2*(n+1)*(m+1) -(m+1) ,1)

];

95 dyux = [ueq (2*(n+1)*(m+1) -(m+1) +1:3*(n+1)*(m+1) -2*(m+1)

,1);zeros(m+1,1)];

96 dxyux = [ueq (3*(n+1)*(m+1) -2*(m+1) +1:4*(n+1)*(m+1) -2*(m

+1) ,1)];

97 uy = [ueq (4*(n+1)*(m+1) -2*(m+1) +1:5*(n+1)*(m+1) -3*(m+1)

,1);zeros(m+1,1)] + Ep(:,2);

98 dxuy = [ueq (5*(n+1)*(m+1) -3*(m+1) +1:6*(n+1)*(m+1) -3*(m

+1) ,1)];

99 dyuy = [ueq (6*(n+1)*(m+1) -3*(m+1) +1:7*(n+1)*(m+1) -4*(m

+1) ,1);zeros(m+1,1)];

100 dxyuy = [ueq (7*(n+1)*(m+1) -4*(m+1) +1:8*(n+1)*(m+1) -4*(m

+1) ,1)];

101

102 ux = flip(ux);

103 dxux = flip(dxux);

104 dyux = flip(dyux);

105 dxyux = flip(dxyux);

106 uy = flip(uy);

107 dxuy = flip(dxuy);

108 dyuy = flip(dyuy);

109 dxyuy = flip(dxyuy);

110

111 uxB = ux(D0(ceil((m+1)/2) ,:));

112 uyB = uy(D0(ceil((m+1)/2) ,:));

113 dxuxB = dxux(D0(ceil((m+1)/2) ,:));

114 dxuyB = dxuy(D0(ceil((m+1)/2) ,:));

115 dyuxB = dyux(D0(ceil((m+1)/2) ,:));

116 dyuyB = dyuy(D0(ceil((m+1)/2) ,:));

117 dxyuxB = dxyux(D0(ceil((m+1) /2) ,:));

118 dxyuyB = dxyuy(D0(ceil((m+1) /2) ,:));

119

120 maxs = norm(uy,Inf);

121 uy = uy/maxs;

122 stress = ceil((n+1) /2);

123 figure(i);

124
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125 scatter(ux ,uy , ’b’, ’filled ’); % blue filled circles

126 hold on;

127

128 middleIndex = ceil(size(D0 ,1) /2); % Find the middle

row of D0

129 ux1 = ux(D0(middleIndex ,:));

130 uy1 = uy(D0(middleIndex ,:));

131 maxs2 = norm(uy1 ,Inf);

132

133 plot(ux1 ,uy1 , ’r’, ’LineWidth ’, 2); % red line with

thicker width

134

135 % Add titles , labels , and legends

136 title ([’Eigenfunction ’ num2str(i)]);

137 xlabel(’Ux’);

138 ylabel(’Uy’);

139 legend(’Ux vs. Uy’, ’Transformed Ux vs. Uy’, ’Location ’

, ’best’);

140

141 grid on; % Add a grid for better readability

142 sigma11 = 1/( gamma*(1-nu^2))*( dxuxB + nu*dyuyB);

143 sigma22 = 1/( gamma*(1-nu^2))*( dyuyB + nu*dxuxB);

144 sigma12 = 1/(2* gamma *(1+nu))*( dyuxB + dxuyB);

145

146 T = [sigma11(stress) sigma12(stress);sigma12(stress)

sigma22(stress)]

147 end

148 end

149 return;

150

151 function [Mq,Kxxq ,Kxyq ,Kyyq] = matrix(deltx ,delty)%CHECKED

152 syms x;

153 syms y;

154

155 Q = [1 x x^2 x^3 y x*y x^2*y x^3*y y^2 x*y^2 x^2*y^2 x^3*y^2 y

^3 x*y^3 x^2*y^3 x^3*y^3];

156

157 size_num = size(Q,2)/4;

158 T = MATRIX_T(Q);

159

160 Mq = zeros(size(Q,2))*x*y;

161 Kxxq = zeros(size(Q,2))*x*y;

162 Kxyq = zeros(size(Q,2))*x*y;

163 Kyyq = zeros(size(Q,2))*x*y;

164

165 for i = 1:size(Q,2)

166 for j = 1:size(Q,2)

167 Mq(j,i) = Q(j)*Q(i);
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168 Kxxq(j,i) = diff(Q(j),x)*diff(Q(i),x);

169 Kxyq(j,i) = diff(Q(j),y)*diff(Q(i),x);

170 Kyyq(j,i) = diff(Q(j),y)*diff(Q(i),y);

171 end

172 end

173

174 Mq = int(int(Mq ,x,0,1),y,0,1);

175 Kxxq = int(int(Kxxq ,x,0,1),y,0,1);

176 Kxyq = int(int(Kxyq ,x,0,1),y,0,1);

177 Kyyq = int(int(Kyyq ,x,0,1),y,0,1);

178

179 IT = inv(T);

180

181 Mq = (IT)’*Mq*IT;

182 Kxxq = (IT)’*Kxxq*IT;

183 Kxyq = (IT)’*Kxyq*IT;

184 Kyyq = (IT)’*Kyyq*IT;

185

186 Mq = double(Mq*deltx*delty);

187 Kxxq = double(Kxxq*delty/deltx);

188 Kyyq = double(Kyyq*deltx/delty);

189 Kxyq = double(Kxyq);

190 return;

191

192 function [Adj , Type , D] = Domain(n,m)

193 D = zeros(m+1,n+1);

194 icount = 1;

195 for i = n+1: -1:1

196 for j = 1:m+1

197 D(j,i) = icount;

198 icount = icount + 1;

199 end

200 end

201 D0 = [zeros(1,n+3);zeros(m+1,1) D zeros(m+1,1);zeros(1,n+3)];

202 icount = 1;

203 Adj = zeros((n+1)*(m+1) ,9);

204 for i = n+2: -1:2

205 for j = 2:m+2

206 Adj(icount ,1) = D0(j,i); %middel

207 Adj(icount ,2) = D0(j-1,i); %bo

208 Adj(icount ,3) = D0(j-1,i+1); %regsbo

209 Adj(icount ,4) = D0(j,i+1); %regs

210 Adj(icount ,5) = D0(j+1,i+1); %regs onder

211 Adj(icount ,6) = D0(j+1,i); %onder

212 Adj(icount ,7) = D0(j+1,i-1); %links onder

213 Adj(icount ,8) = D0(j,i-1); %links

214 Adj(icount ,9) = D0(j-1,i-1); %linksbo

215 icount = icount +1;
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216 end

217 end

218 Type= zeros((n+1)*(m+1) ,2);

219 T = [1 0 0 0 0 2 5 4 0;

220 2 1 0 0 0 3 6 5 4;

221 3 2 0 0 0 0 0 6 5;

222 4 0 0 1 2 5 8 7 0;

223 5 4 1 2 3 6 9 8 7;

224 6 5 2 3 0 0 0 9 8;

225 7 0 0 4 5 8 0 0 0;

226 8 7 4 5 6 9 0 0 0;

227 9 8 5 6 0 0 0 0 0];

228 nnz(T);

229

230 for i = 1:(n+1)*(m+1)

231 Type(i,1) = Adj(i,1);

232 for j = 1:9

233 bflag = true;

234 for k = 1:9

235 if(any(T(j,k)) ~= any(Adj(i,k)))

236 bflag = false;

237 end

238 end

239 if(bflag == true)

240 Type(i,2) = j;

241 end

242 end

243 end

244 return

245

246 function [M,Kxx ,Kxy ,Kyy ,D0] = CalMatrix(n,m,deltx ,delty)

247 [Adj , Type , D0] = Domain(n,m);

248 [Mq,Kxxq ,Kxyq ,Kyyq] = matrix(deltx ,delty);

249

250 ns = nnz(Adj);

251 Ms = zeros (16*ns ,1);

252 Kxxs = zeros (16*ns ,1);

253 Kxys = zeros (16*ns ,1);

254 Kyys = zeros (16*ns ,1);

255

256 x = [1:(n+1)*(m+1)]’;

257 c = sum(Adj~=0,2);

258

259 ix = repelem(x,c);

260 x = [ix;ix+(n+1)*(m+1);ix+2*(n+1)*(m+1);ix+3*(n+1)*(m+1);

261 ix;ix+(n+1)*(m+1);ix+2*(n+1)*(m+1);ix+3*(n+1)*(m+1);

262 ix;ix+(n+1)*(m+1);ix+2*(n+1)*(m+1);ix+3*(n+1)*(m+1);

263 ix;ix+(n+1)*(m+1);ix+2*(n+1)*(m+1);ix+3*(n+1)*(m+1) ;];

155



264

265 iy = nonzeros(Adj ’);

266 y = [iy;iy;iy;iy;

267 iy+(n+1)*(m+1);iy+(n+1)*(m+1);iy+(n+1)*(m+1);iy+(n+1)*(m+1)

;

268 iy+2*(n+1)*(m+1);iy+2*(n+1)*(m+1);iy+2*(n+1)*(m+1);iy+2*(n

+1)*(m+1);

269 iy+3*(n+1)*(m+1);iy+3*(n+1)*(m+1);iy+3*(n+1)*(m+1);iy+3*(n

+1)*(m+1)];

270 B = BMatrix ();

271

272 Adj(Adj == 0) = nan;

273 NanAdj = ~isnan(Adj);

274 NanAdj = NanAdj ’;

275

276 a = 1:9;

277 b = repelem(a,size(Adj ,1) ,1);

278 b = b’;

279 iz = b(NanAdj);

280

281 for i = 1:ns

282 k = 1;

283 while(B(Type(ix(i) ,2),iz(i),k) ~= 0)

284 Ms(i) = Ms(i) + Mq(B(Type(ix(i) ,2),iz(i),k),B(Type(ix(i)

,2),iz(i),k+1));

285 Kxxs(i) = Kxxs(i) + Kxxq(B(Type(ix(i) ,2),iz(i),k),B(Type(ix

(i) ,2),iz(i),k+1));

286 Kxys(i) = Kxys(i) + Kxyq(B(Type(ix(i) ,2),iz(i),k),B(Type(ix

(i) ,2),iz(i),k+1));

287 Kyys(i) = Kyys(i) + Kyyq(B(Type(ix(i) ,2),iz(i),k),B(Type(ix

(i) ,2),iz(i),k+1));

288

289 Ms(ns+i) = Ms(ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+4,B(

Type(ix(i) ,2),iz(i),k+1));

290 Kxxs(ns+i) = Kxxs(ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)+4,B

(Type(ix(i) ,2),iz(i),k+1));

291 Kxys(ns+i) = Kxys(ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)+4,B

(Type(ix(i) ,2),iz(i),k+1));

292 Kyys(ns+i) = Kyys(ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)+4,B

(Type(ix(i) ,2),iz(i),k+1));

293

294 Ms(2*ns+i) = Ms(2*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+8,B

(Type(ix(i) ,2),iz(i),k+1));

295 Kxxs (2*ns+i) = Kxxs (2*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1));

296 Kxys (2*ns+i) = Kxys (2*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1));
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297 Kyys (2*ns+i) = Kyys (2*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1));

298

299 Ms(3*ns+i) = Ms(3*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+12,

B(Type(ix(i) ,2),iz(i),k+1));

300 Kxxs (3*ns+i) = Kxxs (3*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1));

301 Kxys (3*ns+i) = Kxys (3*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1));

302 Kyys (3*ns+i) = Kyys (3*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1));

303

304 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

305 Ms(4*ns+i) = Ms(4*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k),B(

Type(ix(i) ,2),iz(i),k+1) +4);

306 Kxxs (4*ns+i) = Kxxs (4*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +4);

307 Kxys (4*ns+i) = Kxys (4*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +4);

308 Kyys (4*ns+i) = Kyys (4*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +4);

309

310 Ms(5*ns+i) = Ms(5*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+4,B

(Type(ix(i) ,2),iz(i),k+1)+4);

311 Kxxs (5*ns+i) = Kxxs (5*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +4);

312 Kxys (5*ns+i) = Kxys (5*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +4);

313 Kyys (5*ns+i) = Kyys (5*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +4);

314

315 Ms(6*ns+i) = Ms(6*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+8,B

(Type(ix(i) ,2),iz(i),k+1)+4);

316 Kxxs (6*ns+i) = Kxxs (6*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +4);

317 Kxys (6*ns+i) = Kxys (6*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +4);

318 Kyys (6*ns+i) = Kyys (6*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +4);

319

320 Ms(7*ns+i) = Ms(7*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+12,

B(Type(ix(i) ,2),iz(i),k+1)+4);

321 Kxxs (7*ns+i) = Kxxs (7*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +4);

322 Kxys (7*ns+i) = Kxys (7*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +4);

323 Kyys (7*ns+i) = Kyys (7*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +4);
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324

325 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

326 Ms(8*ns+i) = Ms(8*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k),B(

Type(ix(i) ,2),iz(i),k+1) +8);

327 Kxxs (8*ns+i) = Kxxs (8*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +8);

328 Kxys (8*ns+i) = Kxys (8*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +8);

329 Kyys (8*ns+i) = Kyys (8*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +8);

330

331 Ms(9*ns+i) = Ms(9*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+4,B

(Type(ix(i) ,2),iz(i),k+1)+8);

332 Kxxs (9*ns+i) = Kxxs (9*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +8);

333 Kxys (9*ns+i) = Kxys (9*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +8);

334 Kyys (9*ns+i) = Kyys (9*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +8);

335

336 Ms(10*ns+i) = Ms(10*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +8);

337 Kxxs (10*ns+i) = Kxxs (10*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1)+8);

338 Kxys (10*ns+i) = Kxys (10*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1)+8);

339 Kyys (10*ns+i) = Kyys (10*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1)+8);

340

341 Ms(11*ns+i) = Ms(11*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +8);

342 Kxxs (11*ns+i) = Kxxs (11*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1)+8);

343 Kxys (11*ns+i) = Kxys (11*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1)+8);

344 Kyys (11*ns+i) = Kyys (11*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1)+8);

345 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

346 Ms(12*ns+i) = Ms(12*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k),B

(Type(ix(i) ,2),iz(i),k+1) +12);

347 Kxxs (12*ns+i) = Kxxs (12*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k),B(Type(ix(i) ,2),iz(i),k+1) +12);

348 Kxys (12*ns+i) = Kxys (12*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k),B(Type(ix(i) ,2),iz(i),k+1) +12);

349 Kyys (12*ns+i) = Kyys (12*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k),B(Type(ix(i) ,2),iz(i),k+1) +12);

350
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351 Ms(13*ns+i) = Ms(13*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +12);

352 Kxxs (13*ns+i) = Kxxs (13*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k)+4,B(Type(ix(i) ,2),iz(i),k+1) +12);

353 Kxys (13*ns+i) = Kxys (13*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k)+4,B(Type(ix(i) ,2),iz(i),k+1) +12);

354 Kyys (13*ns+i) = Kyys (13*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k)+4,B(Type(ix(i) ,2),iz(i),k+1) +12);

355

356 Ms(14*ns+i) = Ms(14*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +12);

357 Kxxs (14*ns+i) = Kxxs (14*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1) +12);

358 Kxys (14*ns+i) = Kxys (14*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1) +12);

359 Kyys (14*ns+i) = Kyys (14*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1) +12);

360

361 Ms(15*ns+i) = Ms(15*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +12);

362 Kxxs (15*ns+i) = Kxxs (15*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1) +12);

363 Kxys (15*ns+i) = Kxys (15*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1) +12);

364 Kyys (15*ns+i) = Kyys (15*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1) +12);

365

366 k = k + 2;

367 if(k > 8)

368 break;

369 end

370 end

371 end

372 M = sparse(x,y,Ms ,4*(n+1)*(m+1) ,4*(n+1)*(m+1));

373 Kxx = sparse(x,y,Kxxs ,4*(n+1)*(m+1) ,4*(n+1)*(m+1));

374 Kxy = sparse(x,y,Kxys ,4*(n+1)*(m+1) ,4*(n+1)*(m+1));

375 Kyy = sparse(x,y,Kyys ,4*(n+1)*(m+1) ,4*(n+1)*(m+1));

376 return;

377

378 function B = BMatrix ()

379 B = zeros (9,9,8);

380 B(3,1,:) = [2 2 0 0 0 0 0 0];

381 B(3,2,:) = [2 3 0 0 0 0 0 0];

382 B(3,3,:) = [0 0 0 0 0 0 0 0];

383 B(3,4,:) = [0 0 0 0 0 0 0 0];

384 B(3,5,:) = [0 0 0 0 0 0 0 0];

385 B(3,6,:) = [0 0 0 0 0 0 0 0];

386 B(3,7,:) = [0 0 0 0 0 0 0 0];
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387 B(3,8,:) = [2 1 0 0 0 0 0 0];

388 B(3,9,:) = [2 4 0 0 0 0 0 0];

389

390 B(2,1,:) = [2 2 3 3 0 0 0 0];

391 B(2,2,:) = [2 3 0 0 0 0 0 0];

392 B(2,3,:) = [0 0 0 0 0 0 0 0];

393 B(2,4,:) = [0 0 0 0 0 0 0 0];

394 B(2,5,:) = [0 0 0 0 0 0 0 0];

395 B(2,6,:) = [3 2 0 0 0 0 0 0];

396 B(2,7,:) = [3 1 0 0 0 0 0 0];

397 B(2,8,:) = [2 1 3 4 0 0 0 0];

398 B(2,9,:) = [2 4 0 0 0 0 0 0];

399

400 B(1,1,:) = [3 3 0 0 0 0 0 0];

401 B(1,2,:) = [0 0 0 0 0 0 0 0];

402 B(1,3,:) = [0 0 0 0 0 0 0 0];

403 B(1,4,:) = [0 0 0 0 0 0 0 0];

404 B(1,5,:) = [0 0 0 0 0 0 0 0];

405 B(1,6,:) = [3 2 0 0 0 0 0 0];

406 B(1,7,:) = [3 1 0 0 0 0 0 0];

407 B(1,8,:) = [3 4 0 0 0 0 0 0];

408 B(1,9,:) = [0 0 0 0 0 0 0 0];

409

410 B(6,1,:) = [1 1 2 2 0 0 0 0];

411 B(6,2,:) = [1 4 2 3 0 0 0 0];

412 B(6,3,:) = [1 3 0 0 0 0 0 0];

413 B(6,4,:) = [1 2 0 0 0 0 0 0];

414 B(6,5,:) = [0 0 0 0 0 0 0 0];

415 B(6,6,:) = [0 0 0 0 0 0 0 0];

416 B(6,7,:) = [0 0 0 0 0 0 0 0];

417 B(6,8,:) = [2 1 0 0 0 0 0 0];

418 B(6,9,:) = [2 4 0 0 0 0 0 0];

419

420 B(5,1,:) = [1 1 2 2 3 3 4 4];

421 B(5,2,:) = [1 4 2 3 0 0 0 0];

422 B(5,3,:) = [1 3 0 0 0 0 0 0];

423 B(5,4,:) = [1 2 4 3 0 0 0 0];

424 B(5,5,:) = [4 2 0 0 0 0 0 0];

425 B(5,6,:) = [4 1 3 2 0 0 0 0];

426 B(5,7,:) = [3 1 0 0 0 0 0 0];

427 B(5,8,:) = [3 4 2 1 0 0 0 0];

428 B(5,9,:) = [2 4 0 0 0 0 0 0];

429

430 B(4,1,:) = [3 3 4 4 0 0 0 0];

431 B(4,2,:) = [0 0 0 0 0 0 0 0];

432 B(4,3,:) = [0 0 0 0 0 0 0 0];

433 B(4,4,:) = [4 3 0 0 0 0 0 0];

434 B(4,5,:) = [4 2 0 0 0 0 0 0];
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435 B(4,6,:) = [4 1 3 2 0 0 0 0];

436 B(4,7,:) = [3 1 0 0 0 0 0 0];

437 B(4,8,:) = [3 4 0 0 0 0 0 0];

438 B(4,9,:) = [0 0 0 0 0 0 0 0];

439

440 B(9,1,:) = [1 1 0 0 0 0 0 0];

441 B(9,2,:) = [1 4 0 0 0 0 0 0];

442 B(9,3,:) = [1 3 0 0 0 0 0 0];

443 B(9,4,:) = [1 2 0 0 0 0 0 0];

444 B(9,5,:) = [0 0 0 0 0 0 0 0];

445 B(9,6,:) = [0 0 0 0 0 0 0 0];

446 B(9,7,:) = [0 0 0 0 0 0 0 0];

447 B(9,8,:) = [0 0 0 0 0 0 0 0];

448 B(9,9,:) = [0 0 0 0 0 0 0 0];

449

450 B(8,1,:) = [1 1 4 4 0 0 0 0];

451 B(8,2,:) = [1 4 0 0 0 0 0 0];

452 B(8,3,:) = [1 3 0 0 0 0 0 0];

453 B(8,4,:) = [1 2 4 3 0 0 0 0];

454 B(8,5,:) = [4 2 0 0 0 0 0 0];

455 B(8,6,:) = [4 1 0 0 0 0 0 0];

456 B(8,7,:) = [0 0 0 0 0 0 0 0];

457 B(8,8,:) = [0 0 0 0 0 0 0 0];

458 B(8,9,:) = [0 0 0 0 0 0 0 0];

459

460 B(7,1,:) = [4 4 0 0 0 0 0 0];

461 B(7,2,:) = [0 0 0 0 0 0 0 0];

462 B(7,3,:) = [0 0 0 0 0 0 0 0];

463 B(7,4,:) = [4 3 0 0 0 0 0 0];

464 B(7,5,:) = [4 2 0 0 0 0 0 0];

465 B(7,6,:) = [4 1 0 0 0 0 0 0];

466 B(7,7,:) = [0 0 0 0 0 0 0 0];

467 B(7,8,:) = [0 0 0 0 0 0 0 0];

468 B(7,9,:) = [0 0 0 0 0 0 0 0];

469 return;

470

471 function T = MATRIX_T(Q)

472 syms x;

473 syms y;

474

475 n = size(Q,2);

476

477 T = zeros(n);

478 for j = 1:n

479 T(j,1) = subs(Q(j) ,[x,y],[0,0]);

480 T(j,2) = subs(Q(j) ,[x,y],[1,0]);

481 T(j,3) = subs(Q(j) ,[x,y],[1,1]);

482 T(j,4) = subs(Q(j) ,[x,y],[0,1]);
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483 if(n > 4)

484 T(j,5) = subs(diff(Q(j),x) ,[x,y],[0,0]);

485 T(j,6) = subs(diff(Q(j),x) ,[x,y],[1,0]);

486 T(j,7) = subs(diff(Q(j),x) ,[x,y],[1,1]);

487 T(j,8) = subs(diff(Q(j),x) ,[x,y],[0,1]);

488 end

489 if(n > 8)

490 T(j,9) = subs(diff(Q(j),y) ,[x,y],[0,0]);

491 T(j,10) = subs(diff(Q(j),y) ,[x,y],[1,0]);

492 T(j,11) = subs(diff(Q(j),y) ,[x,y],[1,1]);

493 T(j,12) = subs(diff(Q(j),y) ,[x,y],[0,1]);

494 end

495 if(n > 12)

496 T(j,13) = subs(diff(diff(Q(j),y),x) ,[x,y],[0,0]);

497 T(j,14) = subs(diff(diff(Q(j),y),x) ,[x,y],[1,0]);

498 T(j,15) = subs(diff(diff(Q(j),y),x) ,[x,y],[1,1]);

499 T(j,16) = subs(diff(diff(Q(j),y),x) ,[x,y],[0,1]);

500 end

501 end

502 T = T’;

503 return

504

505 function E = Positions(m,n,dx,dy)

506 E = zeros ((n+1)*(m+1) ,2);

507 ix = n+1;

508 iy = m+1;

509 for i = 1:(n+1)*(m+1)

510 E(i,:) = [dx*(ix -1),dy*(iy -1)];

511

512 iy = iy -1;

513 if(iy == 0)

514 iy = m+1;

515 ix = ix -1;

516 end

517 end

518 %[Cubes ,CubeNumbers] = CreateCubes(E,N);

519 %Plot(E,N,Cubes)

520 return

Example code for Reissner-Mindlin plate

model using bi-cubics

1 %function [E,wP,xP,yP,size_c] = PlateCantileverCubic(d,n,h,inum

,numEig)

2 function [E,n,m] = PlateCantileverCubic(d,n,h,inum ,numEig)
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3 format long g

4 m = ceil(n*d);

5 a = 0;

6 b = 1;

7 c = 0;

8

9 %h = sqrt (12/ alpha);

10 %d = 1;

11 deltx = (b-a)/n;

12 delty = (d-c)/m;

13

14 size_c = (n+1)*(m+1);

15

16 nu = 0.3;

17

18 kappa_b = (5/6);

19 kappa_p = 0.9554;%0.29738* nu + 0.763932;

20

21 I = (h^3) /12;

22 beta = kappa_b /((2*(1+ nu))*I);%*alpha ;%0.3846* kappa_p/I

23 A = 1/( beta*(1-nu^2));

24 B = 1/(2* beta *(1+nu));

25

26 [MM,Kxx ,Kxy ,Kyy ,Lx,Ly,Edge] = CalMatrix(n,m,deltx ,delty);

27 LxT = Lx ’;

28 LyT = Ly ’;

29 Kyx = Kxy ’;%CHECKED

30 O = sparse(size(MM ,1),size(MM ,2));

31 Mu = [MM O O; O I*MM O; O O I*MM];

32 Ku = [Kxx+Kyy LxT LyT; h*Lx A*Kxx+B*Kyy+h*MM A*nu*Kyx+B*Kxy; h*

Ly A*nu*Kxy+B*Kyx A*Kyy+B*Kxx+h*MM];%The correct one!

33 %Ku = [Kxx+Kyy Lx Ly; h*LxT A*Kxx+B*Kyy+h*MM A*nu*Kxy+B*Kyx; h*

LyT A*nu*Kyx+B*Kxy A*Kyy+B*Kxx+h*MM];%The not correct one!

34 %Ku = [h*(Kxx+Kyy) h*Lx h*Ly; h*LxT A*Kxx+B*Kyy+h*MM A*nu*Kxy+B

*Kyx; h*LyT A*nu*Kyx+B*Kxy A*Kyy+B*Kxx+h*MM];

35 Mq = [MM O O; O O O; O O O];

36 F = zeros(size(Mu ,1) ,1);

37 F(1:(m+1) ,1) = 0.01;

38 x = [];

39

40 for i = [0 2 4 6 8 10]

41 x = [x; Edge+(i)*(m+1)*(n+1)];

42 end

43 Mu(x,:) = [];

44 Mu(:,x) = [];

45 Ku(x,:) = [];

46 Ku(:,x) = [];

47 Mq(x,:) = [];

163



48

49 [R,p,s] = chol(Mu,’vector ’);

50 [V,DE,flag] = eigs(Ku,R,numEig ,’smallestabs ’,’IsCholesky ’,true ,

’CholeskyPermutation ’,s,’Tolerance ’,1e-4);

51 E = diag(DE);

52

53 %[V,D] = eigs(Ku,Mu,numEig ,’sm ’);

54 %E = diag(D);

55 %V = V(:,E>=0);

56 %E = E(E>=0);

57

58 %tic

59 %Kug = gpuArray(Ku);

60 %bg = gpuArray(Mq*(F));

61 %u = gmres(Kug ,bg ,30,1e-4 ,30);

62 %ueq = gather(u);

63

64 %toc

65 %wP = [ueq (1:(m+1)*(n+1) -(m+1) ,1); zeros(m+1,1)];

66

67 %inum = 1

68 wP = zeros(inum ,(m+1)*(n+1));

69 %wP(1,:) = [ueq (1:(m+1)*(n+1) -(m+1) ,1); zeros(m+1,1)];

70 for i = inum :-1:1

71 w = V(:,i);

72 tic

73 Kug = gpuArray(Ku);

74 bg = gpuArray(Mu*(w));

75 u = gmres(Kug ,bg ,30,1e-4 ,30);

76 ueq = gather(u);

77

78 %bg = Mu*(w);

79 %ueq = gmres(Ku,bg ,30,1e-4 ,30);

80

81 toc

82 wP(i,:) = [ueq (1:(m+1)*(n+1) -(m+1) ,1); zeros(m+1,1)];

83 end

84

85 icx = b;

86 icy = d;

87 icount = 1;

88 xP = zeros(1,(n+1)*(m+1));

89 yP = zeros(1,(n+1)*(m+1));

90 for i = 1:n+1

91 for j = 1:m+1

92 xP(1,icount) = icx;

93 yP(1,icount) = icy;

94 icy = icy - delty;
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95 icount = icount + 1;

96 end

97 icx = icx - deltx;

98 icy = d;

99 end

100

101 %for i = inum :-1:1

102 %figure ();

103 %scatter3(xP(1,:),yP(1,:),wP(i,:));

104 %end

105

106

107 %}

108 %w = V(:,8);

109

110 %Kyx = Kxy ’;% CHECKED

111 %All = (n+1)*(m+1);

112

113 %K1 = Kxx + (1-nu)/2*Kyy;

114 %K2 = nu*Kyx + (1-nu)/2*Kxy;

115 %K3 = nu*Kxy + (1-nu)/2*Kyx;

116 %K4 = Kyy + (1-nu)/2*Kxx;

117 %O = sparse(size(MM ,1),size(MM ,2));% CHECKED

118 %MMu = [MM O;% CHECKED

119 % O MM];% CHECKED

120 %Mf = MMu;

121 %K = 1/( gamma *(1-nu^2))*[K1 K2; K3 K4];% CHECKED

122 %x = [7*All: -1:7*All -(m+1)+1 5*All: -1:5*All -(m+1)+1 3*All: -1:3*

All -(m+1)+1 1*All :-1:1*All -(m+1) +1];

123 %K(x,:) = [];

124 %K(:,x) = [];

125 %MMu(x,:) = [];

126 %MMu(:,x) = [];

127 %Mf(x,:) = [];

128 %CHECKED

129 %eig(Mu,K)

130 %[V,D] = eigs(K,MMu ,10,’sm ’);

131 %E = diag(D);

132 %w = V(:,8);

133

134

135

136

137 %ueq = Ku\Mu*(-w)

138

139 %b =Mf*(-F);

140 %tic

141 %ueq = K\Mf*(-F);
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142 %toc

143

144 %{

145 tic

146 tol = 0.0001;

147 maxit = 300000;

148 alpha1 = max(sum(abs(K) ,2)./diag(K)) -2;

149 L = ichol(K,struct(’type’,’ict’,’droptol ’,1e-3,’diagcomp ’,

alpha1));

150 %ueq = pcg(K,b,tol ,maxit ,L,L’);

151 toc

152

153 Ep = Positions(m,n,deltx ,delty);

154 %ux = 0;

155 %uy = 0;

156 ux = [ueq (1:(n+1)*(m+1) -(m+1) ,1);zeros(m+1,1)] + Ep(:,1);

157 dxux = [ueq((n+1)*(m+1) -(m+1) +1:2*(n+1)*(m+1) -(m+1) ,1)];

158 dyux = [ueq (2*(n+1)*(m+1) -(m+1) +1:3*(n+1)*(m+1) -2*(m+1) ,1);

zeros(m+1,1)];

159 dxyux = [ueq (3*(n+1)*(m+1) -2*(m+1) +1:4*(n+1)*(m+1) -2*(m+1) ,1)];

160 uy = [ueq (4*(n+1)*(m+1) -2*(m+1) +1:5*(n+1)*(m+1) -3*(m+1) ,1);

zeros(m+1,1)] + Ep(:,2);

161 dxuy = [ueq (5*(n+1)*(m+1) -3*(m+1) +1:6*(n+1)*(m+1) -3*(m+1) ,1)];

162 dyuy = [ueq (6*(n+1)*(m+1) -3*(m+1) +1:7*(n+1)*(m+1) -4*(m+1) ,1);

zeros(m+1,1)];

163 dxyuy = [ueq (7*(n+1)*(m+1) -4*(m+1) +1:8*(n+1)*(m+1) -4*(m+1) ,1)];

164

165 ux = flip(ux);

166 dxux = flip(dxux);

167 dyux = flip(dyux);

168 dxyux = flip(dxyux);

169 uy = flip(uy);

170 dxuy = flip(dxuy);

171 dyuy = flip(dyuy);

172 dxyuy = flip(dxyuy);

173

174 stress = ceil((n+1) /2);

175 figure ();

176 scatter(ux ,uy);

177 sigma11 = 1/( gamma*(1-nu^2))*(dxux + nu*dyuy);

178 sigma22 = 1/( gamma*(1-nu^2))*(dyuy + nu*dxux);

179 sigma12 = 1/(2* gamma *(1+nu))*(dyux + dyux);

180

181 T = [sigma11(stress) sigma12(stress);sigma12(stress) sigma22(

stress)];

182 %}

183 return;

184
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185 function [Mq,Kxxq ,Kxyq ,Kyyq ,Lxq ,Lyq] = matrix(deltx ,delty)%

CHECKED

186 syms x;

187 syms y;

188

189 Q = [1 x x^2 x^3 y x*y x^2*y x^3*y y^2 x*y^2 x^2*y^2 x^3*y^2 y

^3 x*y^3 x^2*y^3 x^3*y^3];

190

191 %size_num = size(Q,2)/4;

192 T = MATRIX_T(Q);

193

194 Mq = zeros(size(Q,2))*x*y;

195 Kxxq = zeros(size(Q,2))*x*y;

196 Kxyq = zeros(size(Q,2))*x*y;

197 Kyyq = zeros(size(Q,2))*x*y;

198 Lxq = zeros(size(Q,2))*x*y;

199 Lyq = zeros(size(Q,2))*x*y;

200

201 for i = 1:size(Q,2)

202 for j = 1:size(Q,2)

203 Mq(j,i) = Q(j)*Q(i);

204 Kxxq(j,i) = diff(Q(j),x)*diff(Q(i),x);

205 Kxyq(j,i) = diff(Q(j),y)*diff(Q(i),x);

206 Kyyq(j,i) = diff(Q(j),y)*diff(Q(i),y);

207 Lxq(j,i) = Q(j)*diff(Q(i),x);

208 Lyq(j,i) = Q(j)*diff(Q(i),y);

209 end

210 end

211 Mq = int(int(Mq ,x,0,1),y,0,1);

212 Kxxq = int(int(Kxxq ,x,0,1),y,0,1);

213 Kxyq = int(int(Kxyq ,x,0,1),y,0,1);

214 Kyyq = int(int(Kyyq ,x,0,1),y,0,1);

215 Lxq = int(int(Lxq ,x,0,1),y,0,1);

216 Lyq = int(int(Lyq ,x,0,1),y,0,1);

217

218 IT = inv(T);

219

220 Mq = (IT)’*Mq*IT;

221 Kxxq = (IT)’*Kxxq*IT;

222 Kxyq = (IT)’*Kxyq*IT;

223 Kyyq = (IT)’*Kyyq*IT;

224 Lxq = (IT)’*Lxq*IT;

225 Lyq = (IT)’*Lyq*IT;

226

227 Mq = double(Mq*deltx*delty);

228 Kxxq = double(Kxxq*delty/deltx);

229 Kyyq = double(Kyyq*deltx/delty);

230 Kxyq = double(Kxyq);
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231 Lxq = double(Lxq*delty);

232 Lyq = double(Lyq*deltx);

233 return;

234

235 function [Adj ,Type ,Edge] = Domain(n,m)

236 D = zeros(m+1,n+1);

237 icount = 1;

238 for i = n+1: -1:1

239 for j = 1:m+1

240 D(j,i) = icount;

241 icount = icount + 1;

242 end

243 end

244 %D

245 Edge1 = [];

246 Edge2 = [];

247 Edge3 = [];

248 Edge4 = [];

249 Edge1 = (D(:,1));

250 %Edge2 = (D(m+1,:) ’);

251 %Edge3 = (D(:,n+1));

252 %Edge4 = (D(1,:) ’);

253

254 Edge = sort(unique ([ Edge1; Edge2; Edge3; Edge4]));

255 %Edge

256

257 D0 = [zeros(1,n+3);zeros(m+1,1) D zeros(m+1,1);zeros(1,n+3)];

258

259 icount = 1;

260 Adj = zeros((n+1)*(m+1) ,9);

261 for i = n+2: -1:2

262 for j = 2:m+2

263 Adj(icount ,1) = D0(j,i); %middel

264 Adj(icount ,2) = D0(j-1,i); %bo

265 Adj(icount ,3) = D0(j-1,i+1); %regsbo

266 Adj(icount ,4) = D0(j,i+1); %regs

267 Adj(icount ,5) = D0(j+1,i+1); %regs onder

268 Adj(icount ,6) = D0(j+1,i); %onder

269 Adj(icount ,7) = D0(j+1,i-1); %links onder

270 Adj(icount ,8) = D0(j,i-1); %links

271 Adj(icount ,9) = D0(j-1,i-1); %linksbo

272 icount = icount +1;

273 end

274 end

275 Type= zeros((n+1)*(m+1) ,2);

276 T = [1 0 0 0 0 2 5 4 0;

277 2 1 0 0 0 3 6 5 4;

278 3 2 0 0 0 0 0 6 5;
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279 4 0 0 1 2 5 8 7 0;

280 5 4 1 2 3 6 9 8 7;

281 6 5 2 3 0 0 0 9 8;

282 7 0 0 4 5 8 0 0 0;

283 8 7 4 5 6 9 0 0 0;

284 9 8 5 6 0 0 0 0 0];

285 nnz(T);

286

287 for i = 1:(n+1)*(m+1)

288 Type(i,1) = Adj(i,1);

289 for j = 1:9

290 bflag = true;

291 for k = 1:9

292 if(any(T(j,k)) ~= any(Adj(i,k)))

293 bflag = false;

294 end

295 end

296 if(bflag == true)

297 Type(i,2) = j;

298 end

299 end

300 end

301 return

302

303 function [M,Kxx ,Kxy ,Kyy ,Lx,Ly,Edge] = CalMatrix(n,m,deltx ,delty

)

304 [Adj , Type , Edge] = Domain(n,m);

305 [Mq,Kxxq ,Kxyq ,Kyyq ,Lxq ,Lyq] = matrix(deltx ,delty);

306

307 ns = nnz(Adj);

308 Ms = zeros (16*ns ,1);

309 Kxxs = zeros (16*ns ,1);

310 Kxys = zeros (16*ns ,1);

311 Kyys = zeros (16*ns ,1);

312 Lxs = zeros (16*ns ,1);

313 Lys = zeros (16*ns ,1);

314

315 x = [1:(n+1)*(m+1)]’;

316 c = sum(Adj~=0,2);

317

318 ix = repelem(x,c);

319 x = [ix;ix+(n+1)*(m+1);ix+2*(n+1)*(m+1);ix+3*(n+1)*(m+1);

320 ix;ix+(n+1)*(m+1);ix+2*(n+1)*(m+1);ix+3*(n+1)*(m+1);

321 ix;ix+(n+1)*(m+1);ix+2*(n+1)*(m+1);ix+3*(n+1)*(m+1);

322 ix;ix+(n+1)*(m+1);ix+2*(n+1)*(m+1);ix+3*(n+1)*(m+1) ;];

323

324 iy = nonzeros(Adj ’);

325 y = [iy;iy;iy;iy;
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326 iy+(n+1)*(m+1);iy+(n+1)*(m+1);iy+(n+1)*(m+1);iy+(n+1)*(m+1)

;

327 iy+2*(n+1)*(m+1);iy+2*(n+1)*(m+1);iy+2*(n+1)*(m+1);iy+2*(n

+1)*(m+1);

328 iy+3*(n+1)*(m+1);iy+3*(n+1)*(m+1);iy+3*(n+1)*(m+1);iy+3*(n

+1)*(m+1)];

329 B = BMatrix ();

330

331 Adj(Adj == 0) = nan;

332 NanAdj = ~isnan(Adj);

333 NanAdj = NanAdj ’;

334

335 a = 1:9;

336 b = repelem(a,size(Adj ,1) ,1);

337 b = b’;

338 iz = b(NanAdj);

339

340 for i = 1:ns

341 k = 1;

342 while(B(Type(ix(i) ,2),iz(i),k) ~= 0)

343 Ms(i) = Ms(i) + Mq(B(Type(ix(i) ,2),iz(i),k),B(Type(ix(i)

,2),iz(i),k+1));

344 Kxxs(i) = Kxxs(i) + Kxxq(B(Type(ix(i) ,2),iz(i),k),B(Type(ix

(i) ,2),iz(i),k+1));

345 Kxys(i) = Kxys(i) + Kxyq(B(Type(ix(i) ,2),iz(i),k),B(Type(ix

(i) ,2),iz(i),k+1));

346 Kyys(i) = Kyys(i) + Kyyq(B(Type(ix(i) ,2),iz(i),k),B(Type(ix

(i) ,2),iz(i),k+1));

347 Lxs(i) = Lxs(i) + Lxq(B(Type(ix(i) ,2),iz(i),k),B(Type(ix(i)

,2),iz(i),k+1));

348 Lys(i) = Lys(i) + Lyq(B(Type(ix(i) ,2),iz(i),k),B(Type(ix(i)

,2),iz(i),k+1));

349

350 Ms(ns+i) = Ms(ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+4,B(

Type(ix(i) ,2),iz(i),k+1));

351 Kxxs(ns+i) = Kxxs(ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)+4,B

(Type(ix(i) ,2),iz(i),k+1));

352 Kxys(ns+i) = Kxys(ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)+4,B

(Type(ix(i) ,2),iz(i),k+1));

353 Kyys(ns+i) = Kyys(ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)+4,B

(Type(ix(i) ,2),iz(i),k+1));

354 Lxs(ns+i) = Lxs(ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)+4,B(

Type(ix(i) ,2),iz(i),k+1));

355 Lys(ns+i) = Lys(ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)+4,B(

Type(ix(i) ,2),iz(i),k+1));

356

357 Ms(2*ns+i) = Ms(2*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+8,B

(Type(ix(i) ,2),iz(i),k+1));
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358 Kxxs (2*ns+i) = Kxxs (2*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1));

359 Kxys (2*ns+i) = Kxys (2*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1));

360 Kyys (2*ns+i) = Kyys (2*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1));

361 Lxs(2*ns+i) = Lxs(2*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)+8,

B(Type(ix(i) ,2),iz(i),k+1));

362 Lys(2*ns+i) = Lys(2*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)+8,

B(Type(ix(i) ,2),iz(i),k+1));

363

364 Ms(3*ns+i) = Ms(3*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+12,

B(Type(ix(i) ,2),iz(i),k+1));

365 Kxxs (3*ns+i) = Kxxs (3*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1));

366 Kxys (3*ns+i) = Kxys (3*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1));

367 Kyys (3*ns+i) = Kyys (3*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1));

368 Lxs(3*ns+i) = Lxs(3*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1));

369 Lys(3*ns+i) = Lys(3*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1));

370

371 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

372 Ms(4*ns+i) = Ms(4*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k),B(

Type(ix(i) ,2),iz(i),k+1) +4);

373 Kxxs (4*ns+i) = Kxxs (4*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +4);

374 Kxys (4*ns+i) = Kxys (4*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +4);

375 Kyys (4*ns+i) = Kyys (4*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +4);

376 Lxs(4*ns+i) = Lxs(4*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k),B(

Type(ix(i) ,2),iz(i),k+1) +4);

377 Lys(4*ns+i) = Lys(4*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k),B(

Type(ix(i) ,2),iz(i),k+1) +4);

378

379 Ms(5*ns+i) = Ms(5*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+4,B

(Type(ix(i) ,2),iz(i),k+1)+4);

380 Kxxs (5*ns+i) = Kxxs (5*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +4);

381 Kxys (5*ns+i) = Kxys (5*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +4);

382 Kyys (5*ns+i) = Kyys (5*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +4);

383 Lxs(5*ns+i) = Lxs(5*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)+4,

B(Type(ix(i) ,2),iz(i),k+1)+4);
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384 Lys(5*ns+i) = Lys(5*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)+4,

B(Type(ix(i) ,2),iz(i),k+1)+4);

385

386 Ms(6*ns+i) = Ms(6*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+8,B

(Type(ix(i) ,2),iz(i),k+1)+4);

387 Kxxs (6*ns+i) = Kxxs (6*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +4);

388 Kxys (6*ns+i) = Kxys (6*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +4);

389 Kyys (6*ns+i) = Kyys (6*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +4);

390 Lxs(6*ns+i) = Lxs(6*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)+8,

B(Type(ix(i) ,2),iz(i),k+1)+4);

391 Lys(6*ns+i) = Lys(6*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)+8,

B(Type(ix(i) ,2),iz(i),k+1)+4);

392

393 Ms(7*ns+i) = Ms(7*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+12,

B(Type(ix(i) ,2),iz(i),k+1)+4);

394 Kxxs (7*ns+i) = Kxxs (7*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +4);

395 Kxys (7*ns+i) = Kxys (7*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +4);

396 Kyys (7*ns+i) = Kyys (7*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +4);

397 Lxs(7*ns+i) = Lxs(7*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +4);

398 Lys(7*ns+i) = Lys(7*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +4);

399

400 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

401 Ms(8*ns+i) = Ms(8*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k),B(

Type(ix(i) ,2),iz(i),k+1) +8);

402 Kxxs (8*ns+i) = Kxxs (8*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +8);

403 Kxys (8*ns+i) = Kxys (8*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +8);

404 Kyys (8*ns+i) = Kyys (8*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

,B(Type(ix(i) ,2),iz(i),k+1) +8);

405 Lxs(8*ns+i) = Lxs(8*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k),B(

Type(ix(i) ,2),iz(i),k+1) +8);

406 Lys(8*ns+i) = Lys(8*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k),B(

Type(ix(i) ,2),iz(i),k+1) +8);

407

408 Ms(9*ns+i) = Ms(9*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)+4,B

(Type(ix(i) ,2),iz(i),k+1)+8);

409 Kxxs (9*ns+i) = Kxxs (9*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +8);
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410 Kxys (9*ns+i) = Kxys (9*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +8);

411 Kyys (9*ns+i) = Kyys (9*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +8);

412 Lxs(9*ns+i) = Lxs(9*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)+4,

B(Type(ix(i) ,2),iz(i),k+1)+8);

413 Lys(9*ns+i) = Lys(9*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)+4,

B(Type(ix(i) ,2),iz(i),k+1)+8);

414

415 Ms(10*ns+i) = Ms(10*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +8);

416 Kxxs (10*ns+i) = Kxxs (10*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1)+8);

417 Kxys (10*ns+i) = Kxys (10*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1)+8);

418 Kyys (10*ns+i) = Kyys (10*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1)+8);

419 Lxs (10*ns+i) = Lxs (10*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +8);

420 Lys (10*ns+i) = Lys (10*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +8);

421

422 Ms(11*ns+i) = Ms(11*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +8);

423 Kxxs (11*ns+i) = Kxxs (11*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1)+8);

424 Kxys (11*ns+i) = Kxys (11*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1)+8);

425 Kyys (11*ns+i) = Kyys (11*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1)+8);

426 Lxs (11*ns+i) = Lxs (11*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +8);

427 Lys (11*ns+i) = Lys (11*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +8);

428 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

429 Ms(12*ns+i) = Ms(12*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k),B

(Type(ix(i) ,2),iz(i),k+1) +12);

430 Kxxs (12*ns+i) = Kxxs (12*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k),B(Type(ix(i) ,2),iz(i),k+1) +12);

431 Kxys (12*ns+i) = Kxys (12*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k),B(Type(ix(i) ,2),iz(i),k+1) +12);

432 Kyys (12*ns+i) = Kyys (12*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k),B(Type(ix(i) ,2),iz(i),k+1) +12);

433 Lxs (12*ns+i) = Lxs (12*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k),

B(Type(ix(i) ,2),iz(i),k+1) +12);

434 Lys (12*ns+i) = Lys (12*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k),

B(Type(ix(i) ,2),iz(i),k+1) +12);

435
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436 Ms(13*ns+i) = Ms(13*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +12);

437 Kxxs (13*ns+i) = Kxxs (13*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k)+4,B(Type(ix(i) ,2),iz(i),k+1) +12);

438 Kxys (13*ns+i) = Kxys (13*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k)+4,B(Type(ix(i) ,2),iz(i),k+1) +12);

439 Kyys (13*ns+i) = Kyys (13*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k)+4,B(Type(ix(i) ,2),iz(i),k+1) +12);

440 Lxs (13*ns+i) = Lxs (13*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +12);

441 Lys (13*ns+i) = Lys (13*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)

+4,B(Type(ix(i) ,2),iz(i),k+1) +12);

442

443 Ms(14*ns+i) = Ms(14*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +12);

444 Kxxs (14*ns+i) = Kxxs (14*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1) +12);

445 Kxys (14*ns+i) = Kxys (14*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1) +12);

446 Kyys (14*ns+i) = Kyys (14*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k)+8,B(Type(ix(i) ,2),iz(i),k+1) +12);

447 Lxs (14*ns+i) = Lxs (14*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +12);

448 Lys (14*ns+i) = Lys (14*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)

+8,B(Type(ix(i) ,2),iz(i),k+1) +12);

449

450 Ms(15*ns+i) = Ms(15*ns+i) + Mq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +12);

451 Kxxs (15*ns+i) = Kxxs (15*ns+i) + Kxxq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1) +12);

452 Kxys (15*ns+i) = Kxys (15*ns+i) + Kxyq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1) +12);

453 Kyys (15*ns+i) = Kyys (15*ns+i) + Kyyq(B(Type(ix(i) ,2),iz(i),

k)+12,B(Type(ix(i) ,2),iz(i),k+1) +12);

454 Lxs (15*ns+i) = Lxs (15*ns+i) + Lxq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +12);

455 Lys (15*ns+i) = Lys (15*ns+i) + Lyq(B(Type(ix(i) ,2),iz(i),k)

+12,B(Type(ix(i) ,2),iz(i),k+1) +12);

456

457 k = k + 2;

458 if(k > 8)

459 break;

460 end

461 end

462 end

463 M = sparse(x,y,Ms ,4*(n+1)*(m+1) ,4*(n+1)*(m+1));

464 Kxx = sparse(x,y,Kxxs ,4*(n+1)*(m+1) ,4*(n+1)*(m+1));

465 Kxy = sparse(x,y,Kxys ,4*(n+1)*(m+1) ,4*(n+1)*(m+1));
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466 Kyy = sparse(x,y,Kyys ,4*(n+1)*(m+1) ,4*(n+1)*(m+1));

467 Lx = sparse(x,y,Lxs ,4*(n+1)*(m+1) ,4*(n+1)*(m+1));

468 Ly = sparse(x,y,Lys ,4*(n+1)*(m+1) ,4*(n+1)*(m+1));

469 return;

470

471 function B = BMatrix ()

472 B = zeros (9,9,8);

473 B(3,1,:) = [2 2 0 0 0 0 0 0];

474 B(3,2,:) = [2 3 0 0 0 0 0 0];

475 B(3,3,:) = [0 0 0 0 0 0 0 0];

476 B(3,4,:) = [0 0 0 0 0 0 0 0];

477 B(3,5,:) = [0 0 0 0 0 0 0 0];

478 B(3,6,:) = [0 0 0 0 0 0 0 0];

479 B(3,7,:) = [0 0 0 0 0 0 0 0];

480 B(3,8,:) = [2 1 0 0 0 0 0 0];

481 B(3,9,:) = [2 4 0 0 0 0 0 0];

482

483 B(2,1,:) = [2 2 3 3 0 0 0 0];

484 B(2,2,:) = [2 3 0 0 0 0 0 0];

485 B(2,3,:) = [0 0 0 0 0 0 0 0];

486 B(2,4,:) = [0 0 0 0 0 0 0 0];

487 B(2,5,:) = [0 0 0 0 0 0 0 0];

488 B(2,6,:) = [3 2 0 0 0 0 0 0];

489 B(2,7,:) = [3 1 0 0 0 0 0 0];

490 B(2,8,:) = [2 1 3 4 0 0 0 0];

491 B(2,9,:) = [2 4 0 0 0 0 0 0];

492

493 B(1,1,:) = [3 3 0 0 0 0 0 0];

494 B(1,2,:) = [0 0 0 0 0 0 0 0];

495 B(1,3,:) = [0 0 0 0 0 0 0 0];

496 B(1,4,:) = [0 0 0 0 0 0 0 0];

497 B(1,5,:) = [0 0 0 0 0 0 0 0];

498 B(1,6,:) = [3 2 0 0 0 0 0 0];

499 B(1,7,:) = [3 1 0 0 0 0 0 0];

500 B(1,8,:) = [3 4 0 0 0 0 0 0];

501 B(1,9,:) = [0 0 0 0 0 0 0 0];

502

503 B(6,1,:) = [1 1 2 2 0 0 0 0];

504 B(6,2,:) = [1 4 2 3 0 0 0 0];

505 B(6,3,:) = [1 3 0 0 0 0 0 0];

506 B(6,4,:) = [1 2 0 0 0 0 0 0];

507 B(6,5,:) = [0 0 0 0 0 0 0 0];

508 B(6,6,:) = [0 0 0 0 0 0 0 0];

509 B(6,7,:) = [0 0 0 0 0 0 0 0];

510 B(6,8,:) = [2 1 0 0 0 0 0 0];

511 B(6,9,:) = [2 4 0 0 0 0 0 0];

512

513 B(5,1,:) = [1 1 2 2 3 3 4 4];
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514 B(5,2,:) = [1 4 2 3 0 0 0 0];

515 B(5,3,:) = [1 3 0 0 0 0 0 0];

516 B(5,4,:) = [1 2 4 3 0 0 0 0];

517 B(5,5,:) = [4 2 0 0 0 0 0 0];

518 B(5,6,:) = [4 1 3 2 0 0 0 0];

519 B(5,7,:) = [3 1 0 0 0 0 0 0];

520 B(5,8,:) = [3 4 2 1 0 0 0 0];

521 B(5,9,:) = [2 4 0 0 0 0 0 0];

522

523 B(4,1,:) = [3 3 4 4 0 0 0 0];

524 B(4,2,:) = [0 0 0 0 0 0 0 0];

525 B(4,3,:) = [0 0 0 0 0 0 0 0];

526 B(4,4,:) = [4 3 0 0 0 0 0 0];

527 B(4,5,:) = [4 2 0 0 0 0 0 0];

528 B(4,6,:) = [4 1 3 2 0 0 0 0];

529 B(4,7,:) = [3 1 0 0 0 0 0 0];

530 B(4,8,:) = [3 4 0 0 0 0 0 0];

531 B(4,9,:) = [0 0 0 0 0 0 0 0];

532

533 B(9,1,:) = [1 1 0 0 0 0 0 0];

534 B(9,2,:) = [1 4 0 0 0 0 0 0];

535 B(9,3,:) = [1 3 0 0 0 0 0 0];

536 B(9,4,:) = [1 2 0 0 0 0 0 0];

537 B(9,5,:) = [0 0 0 0 0 0 0 0];

538 B(9,6,:) = [0 0 0 0 0 0 0 0];

539 B(9,7,:) = [0 0 0 0 0 0 0 0];

540 B(9,8,:) = [0 0 0 0 0 0 0 0];

541 B(9,9,:) = [0 0 0 0 0 0 0 0];

542

543 B(8,1,:) = [1 1 4 4 0 0 0 0];

544 B(8,2,:) = [1 4 0 0 0 0 0 0];

545 B(8,3,:) = [1 3 0 0 0 0 0 0];

546 B(8,4,:) = [1 2 4 3 0 0 0 0];

547 B(8,5,:) = [4 2 0 0 0 0 0 0];

548 B(8,6,:) = [4 1 0 0 0 0 0 0];

549 B(8,7,:) = [0 0 0 0 0 0 0 0];

550 B(8,8,:) = [0 0 0 0 0 0 0 0];

551 B(8,9,:) = [0 0 0 0 0 0 0 0];

552

553 B(7,1,:) = [4 4 0 0 0 0 0 0];

554 B(7,2,:) = [0 0 0 0 0 0 0 0];

555 B(7,3,:) = [0 0 0 0 0 0 0 0];

556 B(7,4,:) = [4 3 0 0 0 0 0 0];

557 B(7,5,:) = [4 2 0 0 0 0 0 0];

558 B(7,6,:) = [4 1 0 0 0 0 0 0];

559 B(7,7,:) = [0 0 0 0 0 0 0 0];

560 B(7,8,:) = [0 0 0 0 0 0 0 0];

561 B(7,9,:) = [0 0 0 0 0 0 0 0];
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562 return;

563

564 function T = MATRIX_T(Q)

565 syms x;

566 syms y;

567

568 n = size(Q,2);

569

570 T = zeros(n);

571 for j = 1:n

572 T(j,1) = subs(Q(j) ,[x,y],[0,0]);

573 T(j,2) = subs(Q(j) ,[x,y],[1,0]);

574 T(j,3) = subs(Q(j) ,[x,y],[1,1]);

575 T(j,4) = subs(Q(j) ,[x,y],[0,1]);

576 if(n > 4)

577 T(j,5) = subs(diff(Q(j),x) ,[x,y],[0,0]);

578 T(j,6) = subs(diff(Q(j),x) ,[x,y],[1,0]);

579 T(j,7) = subs(diff(Q(j),x) ,[x,y],[1,1]);

580 T(j,8) = subs(diff(Q(j),x) ,[x,y],[0,1]);

581 end

582 if(n > 8)

583 T(j,9) = subs(diff(Q(j),y) ,[x,y],[0,0]);

584 T(j,10) = subs(diff(Q(j),y) ,[x,y],[1,0]);

585 T(j,11) = subs(diff(Q(j),y) ,[x,y],[1,1]);

586 T(j,12) = subs(diff(Q(j),y) ,[x,y],[0,1]);

587 end

588 if(n > 12)

589 T(j,13) = subs(diff(diff(Q(j),y),x) ,[x,y],[0,0]);

590 T(j,14) = subs(diff(diff(Q(j),y),x) ,[x,y],[1,0]);

591 T(j,15) = subs(diff(diff(Q(j),y),x) ,[x,y],[1,1]);

592 T(j,16) = subs(diff(diff(Q(j),y),x) ,[x,y],[0,1]);

593 end

594 end

595 T = T’;

596 return

597

598 function E = Positions(m,n,dx,dy)

599 E = zeros ((n+1)*(m+1) ,2);

600 ix = n+1;

601 iy = m+1;

602 for i = 1:(n+1)*(m+1)

603 E(i,:) = [dx*(ix -1),dy*(iy -1)];

604

605 iy = iy -1;

606 if(iy == 0)

607 iy = m+1;

608 ix = ix -1;

609 end
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610 end

611 %[Cubes ,CubeNumbers] = CreateCubes(E,N);

612 %Plot(E,N,Cubes)

613 return

Example code for three-dimensional elastic

body using tri-cubics

1 %function [Eig ,uxB ,uyB ,uzB ,sz] = Copy_of_CubePC(s,n1,h,inum ,

numEig)

2 function [Eig ,n1,n2,n3] = Copy_of_CubePC(s,n1,h,inum ,numEig)

3 format long g

4 warning off;

5 method =2;

6

7

8

9 %mkdir(strcat(’\Plots\’,sprintf (’%.6f’,s)));

10 %gpuDevice (1);

11 %mwb = MultiWaitBar (3, 1, ’3-Dimensional Beam Eigenvalue

Calculator ’, ’g’);

12 %mwb.Update(1, 1, 0, ’Total Progress - Setting parameters ’)

;

13 %mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (0) ’%’]);

14 %mwb.Update(3, 1, 0, ’Plot ’);

15 %alpha = 1200;

16 %d2 = sqrt(s/alpha);

17 %d1 = sqrt ((12*s^2)/(alpha *(1+s^2)));

18 %d1 = sqrt (12/( alpha));

19 d1 = h;

20 d2 = s;

21 %d2 = 1;

22

23 n2 = ceil(n1*h);

24 if(n2 <= 10)

25 n2 = 6;

26 end

27 n3 = ceil(n2*s);

28 %n3 = ceil(n1/s);

29 if(n3 <= 10)

30 n3 = 6;

31 end

32 %n2 = 3;

33

34 sz = n1*n2*n3;
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35

36 S = [0 1 0 d1 0 d2]; %Set size of the beam

37 N = [n1 n2 n3]; %Number of elements

38 Delta = [(S(2)-S(1))/N(1) (S(4)-S(3))/N(2) (S(6)-S(5))/N(3)

]; %space step size

39 nu = 0.3;

40 gamma = 1/(2*(1+ nu))*5/6

41 %A = 1/( gamma *(1+nu)*(1-2*nu));

42 %B = 1/(2* gamma *(1+nu));

43 for i = inum : -1:50

44 h(i) = figure(i);

45 movegui(h(i),’west’)

46 end

47 %A = 1/(1-nu^2);

48 %B = 1/(2* gamma *(1+nu));

49 %mwb.Update(1, 1, 0.1, ’Total Progress - Creating Matrices

’);

50 [K11 ,K12 ,K13 ,K22 ,K23 ,K33 ,M0,Dom ,E] = Matrices(Delta ,N,

method);

51 %mwb.Update(1, 1, 0.3, ’Total Progress - Admissible Basis

functions ’);

52 %Om = Omega(N,Dom);

53 %F = Initial(N,f);

54 Mf = M0;

55

56 %K11 (1:(N(2)+1)*(N(3)+1) ,:) = [];

57 %K11(: ,1:(N(2)+1)*(N(3)+1)) = [];

58 %K12 (1:(N(2)+1)*(N(3)+1) ,:) = [];

59 %K12(: ,1:(N(2)+1)*(N(3)+1)) = [];

60 %K13 (1:(N(2)+1)*(N(3)+1) ,:) = [];

61 %K13(: ,1:(N(2)+1)*(N(3)+1)) = [];

62 %K22 (1:(N(2)+1)*(N(3)+1) ,:) = [];

63 %K22(: ,1:(N(2)+1)*(N(3)+1)) = [];

64 %K23 (1:(N(2)+1)*(N(3)+1) ,:) = [];

65 %K23(: ,1:(N(2)+1)*(N(3)+1)) = [];

66 %K33 (1:(N(2)+1)*(N(3)+1) ,:) = [];

67 %K33(: ,1:(N(2)+1)*(N(3)+1)) = [];

68

69 %M0(1:(N(2)+1)*(N(3)+1) ,:) = [];

70 %M0(: ,1:(N(2)+1)*(N(3)+1)) = [];

71 %Mf(1:(N(2)+1)*(N(3)+1) ,:) = [];

72

73 %mwb.Update(1, 1, 0.4, ’Total Progress - Concatinating

matrices ’);

74 Of = sparse(size(Mf ,1),size(Mf ,2));

75 MF = [Mf Of Of; Of Mf Of; Of Of Mf];

76 O = sparse(size(M0 ,1),size(M0 ,2));

77 %M = sparse (3* size(M0 ,1) ,3*size(M0 ,2));
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78 M = [M0 O O; O M0 O; O O M0];

79 %M([1: size(M0 ,1)],[1: size(M0 ,2)]) = M0;

80 %M(2*[1: size(M0 ,1) ] ,2*[1: size(M0 ,2)]) = M0;

81 %M(3*[1: size(M0 ,1) ] ,3*[1: size(M0 ,2)]) = M0;

82 Mf = M;

83 FS = size(M);

84 %M = [M0 O; O M0];

85 K21 = K12 ’;

86 K31 = K13 ’;

87 K32 = K23 ’;

88

89 a1 = 1/( gamma *(1+nu));

90 a2 = nu/( gamma *(1+nu)*(1 -2*nu));

91 a3 = 1/(2* gamma *(1+nu));

92

93 K1 = a1*K11 + a2*K11 + a3*K22 + a3*K33;

94 K2 = a3*K12 + a2*K21;

95 K3 = a3*K13 + a2*K31;

96 K4 = a2*K12 + a3*K21;

97 K5 = a1*K22 + a2*K22 + a3*K11 + a3*K33;

98 K6 = a3*K23 + a2*K32;

99 K7 = a2*K13 + a3*K31;

100 K8 = a2*K23 + a3*K32;

101 K9 = a1*K33 + a2*K33 + a3*K11 + a3*K22;

102

103 %K = sparse(size(K1 ,1)*3,size(K1 ,2)*3);

104

105 %K([1: size(K1 ,1)],[1: size(K1 ,2)]) = K1;

106 %K([1: size(K1 ,1) ] ,2*[1: size(K1 ,2)]) = K2;

107 %K([1: size(K1 ,1) ] ,3*[1: size(K1 ,2)]) = K3;

108 %K(2*[1: size(K1 ,1)],[1: size(K1 ,2)]) = K4;

109 %K(2*[1: size(K1 ,1) ] ,2*[1: size(K1 ,2)]) = K5;

110 %K(2*[1: size(K1 ,1) ] ,3*[1: size(K1 ,2)]) = K6;

111 %K(3*[1: size(K1 ,1)],[1: size(K1 ,2)]) = K7;

112 %K(3*[1: size(K1 ,1) ] ,2*[1: size(K1 ,2)]) = K8;

113 %K(3*[1: size(K1 ,1) ] ,3*[1: size(K1 ,2)]) = K9;

114

115 K = [K1 K2 K3; K4 K5 K6; K7 K8 K9];

116

117 All = (N(1)+1)*(N(2)+1)*(N(3)+1);

118 x = [22* All+(N(2)+1)*(N(3)+1) : -1:22* All+1

119 19* All+(N(2) +1)*(N(3)+1) : -1:19* All+1

120 18* All+(N(2) +1)*(N(3)+1) : -1:18* All+1

121 16* All+(N(2) +1)*(N(3)+1) : -1:16* All+1

122

123 14* All+(N(2) +1)*(N(3)+1) : -1:14* All+1

124 11* All+(N(2) +1)*(N(3)+1) : -1:11* All+1

125 10* All+(N(2) +1)*(N(3)+1) : -1:10* All+1
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126 8*All+(N(2) +1)*(N(3) +1) :-1:8* All+1

127

128 6*All+(N(2) +1)*(N(3) +1) :-1:6* All+1

129 3*All+(N(2) +1)*(N(3) +1) :-1:3* All+1

130 2*All+(N(2) +1)*(N(3) +1) :-1:2* All+1

131 0*All+(N(2) +1)*(N(3) +1) :-1:0* All +1];

132

133 K(x,:) = [];

134 K(:,x) = [];

135 M(x,:) = [];

136 M(:,x) = [];

137 Mf(x,:) = [];

138

139 % K = [1/( gamma *(1+nu))*K11+nu/(gamma *(1+nu)*(1-2*nu))*(K11+

K22+K33) 1/( gamma *(1+nu))*K12 1/( gamma *(1+nu))*K13;

140 % 1/( gamma *(1+nu))*K12 1/( gamma *(1+nu))*K22+nu/(gamma

*(1+nu)*(1 -2*nu))*(K11+K22+K33) 1/( gamma *(1+nu))*K23;

141 % 1/( gamma *(1+nu))*K13 1/( gamma *(1+nu))*K23 1/( gamma

*(1+nu))*K33+nu/( gamma *(1+nu)*(1 -2*nu))*(K11+K22+K33)];

142

143 % K33 = (-nu/((1 -2*nu)+nu))*(K11+K22);

144 % K = [1/( gamma *(1+nu))*K11+nu/(gamma *(1+nu)*(1-2*nu))*(K11+

K22+K33) 1/( gamma *(1+nu))*K12;

145 % 1/( gamma *(1+nu))*K12 1/( gamma *(1+nu))*K22+nu/(gamma

*(1+nu)*(1 -2*nu))*(K11+K22+K33)];

146

147

148 %K = [2*(1 -nu)*K11+(1-2*nu)*K22+(1-2*nu)*K33 2*nu*K12+(1-2*

nu)*K21 2*nu*K13 +(1 -2*nu)*K31;

149 % 2*nu*K21+(1-2*nu)*K12 (1-2*nu)*K11+2*(1 -nu)*K22+(1-2*

nu)*K33 2*nu*K23 +(1 -2*nu)*K32;

150 % 2*nu*K31+(1-2*nu)*K13 2*nu*K32+(1-2*nu)*K23 (1-2*nu)*

K11 +(1 -2*nu)*K22+2*(1 -nu)*K33];

151 %K = 1/(2* gamma *(1+nu)*(1-2*nu))*K;

152

153 %K = [K11+(1-nu)/2*K22+(1-nu)/2*K33 (1-nu)/2*K12+nu*K21 (1-

nu)/2* K13+nu*K31;

154 % (1-nu)/2*K21+nu*K12 (1-nu)/2*K11+K22+(1-nu)/2*K33 (1-

nu)/2* K23+nu*K32;

155 % (1-nu)/2*K31+nu*K13 (1-nu)/2*K32+nu*K23 (1-nu)/2*K11

+(1-nu)/2* K22+K33];

156 % K = 1/( gamma *(1-nu^2))*K;

157 whos k

158

159 %numEig = 100;

160 %{

161 alpha = max(sum(abs(K) ,2)./diag(K)) -2;

181



162 L = ichol(K,struct(’type’,’ict’,’droptol ’,1e-3,’diagcomp ’,alpha

));

163 n = size(K,1);

164 [V,D] = eigs(@(x)pcg(K,x,1e-3,200,L,L’),n,M,numEig ,’sm’);

165 %}

166 %mwb.Update(1, 1, 0.5, ’Total Progress - Cholsky Decomposition

’);

167 [R,p,s] = chol(M,’vector ’);

168 p;

169 %mwb.Update(1, 1, 0.55, ’Total Progress - Eigs ’);

170

171 %Rand = sprand(K);

172 %[v, lambda] = lobpcg(Rand , K, M, 1e-5, 20,0)

173 [V,DE,flag] = eigs(K,R,numEig ,’smallestabs ’,’IsCholesky ’,true ,’

CholeskyPermutation ’,s,’Tolerance ’,1e-4);

174 flag;

175 %mwb.Update(1, 1, 0.6, ’Total Progress ’);

176 Eig = diag(DE);

177 %%Mg = gpuArray(M);

178 %%Kg = gpuArray(K);

179

180 %{

181 sV = size(Eig ,1);

182 R = zeros(sV,sV);

183 for i = 1:sV

184 for j = 1:sV

185 X = K*V(:,i) - M*V(:,i)*D(j);

186 NORMX = norm(X,Inf);

187 R(j,i) = NORMX;

188 end

189 end

190 R = K*V-M*V*D;

191 xlswrite(’CompareEigenValues.xlsx’,R)

192 %}

193

194 u1p = 0;

195 u2p = 0;

196 u3p = 0;

197 u1s = 0;

198 u2s = 0;

199 u3s = 0;

200 uplx= 0;

201 uply = 0;

202 Psize = 0;

203 T = 0;

204 %%{

205

206 uxB = zeros(inum ,(N(1) +1) ,(N(2)+1) ,(N(3)+1));

182



207 uyB = zeros(inum ,(N(1) +1) ,(N(2)+1) ,(N(3)+1));

208 uzB = zeros(inum ,(N(1) +1) ,(N(2)+1) ,(N(3)+1));

209

210 f = 0.3;

211

212 [D,E] = Domain(N,Delta);

213 %TD = D(:,ceil((N(2)+1)/2),ceil((N(3)+1)/2));

214 %TD = D(:,ceil((N(2)+1)/2) ,:);

215 TD = D(:,:,ceil((N(3) +1) /2));

216 TD = TD(:);

217 TDV = sort(TD(:));

218 OD = D(:,ceil((N(2) +1) /2),ceil((N(3) +1) /2));

219

220 F1 = zeros((N(1) +1)*(N(2) +1)*(N(3) +1) ,1);

221

222 F1(D(N(1)+1,ceil((N(2) +2) /2),ceil((N(3) +2) /2))) = f;

223 %F1(D(N(1)+1,:,:)) = f;

224 F = zeros (24*(N(1)+1)*(N(2)+1)*(N(3)+1) ,1);

225 F(8*(N(1)+1)*(N(2)+1)*(N(3)+1) +1:9*(N(1)+1)*(N(2)+1)*(N(3)+1))

= F1;

226

227

228 %Kug = gpuArray(K);

229 %bg = gpuArray(Mf*(F));

230 %u = gmres(Kug ,bg ,30,1e-4 ,30);

231 %ueq = gather(u);

232

233

234 for i = inum :-1:1

235

236 w = V(:,i);

237

238 %Kug = gpuArray(K);

239 %bg = gpuArray(M*(-w));

240 %u = gmres(Kug ,bg ,30,1e-4 ,30);

241 %ueq = gather(u);

242

243 %ueq = K\(Mf*F);

244

245

246 b = M*(-w);

247 ueq = gmres(K,b,30,1e-4,30);

248

249 ux = [zeros((N(2) +1)*(N(3) +1) ,1); ueq (1:(N(1) +1)*(N(2) +1)*(N(3)

+1) -(N(2)+1)*(N(3)+1) ,1)]+E(:,1);

250 dxux = [ueq((N(1) +1)*(N(2) +1)*(N(3) +1) -(N(2) +1)*(N(3) +1) +1:2*(N

(1) +1)*(N(2)+1)*(N(3)+1) -(N(2)+1)*(N(3)+1) ,1)];
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251 dyux = [zeros((N(2) +1)*(N(3) +1) ,1); ueq (2*(N(1) +1)*(N(2) +1)*(N

(3) +1) -(N(2)+1)*(N(3)+1) +1:3*(N(1)+1)*(N(2)+1)*(N(3)+1) -2*(

N(2)+1)*(N(3)+1) ,1)];

252 dzux = [zeros((N(2) +1)*(N(3) +1) ,1); ueq (3*(N(1) +1)*(N(2) +1)*(N

(3) +1) -2*(N(2)+1)*(N(3)+1) +1:4*(N(1)+1)*(N(2)+1)*(N(3)+1)

-3*(N(2) +1)*(N(3) +1) ,1)];

253 dxyux = [ueq (4*(N(1)+1)*(N(2)+1)*(N(3)+1) -3*(N(2)+1)*(N(3)+1)

+1:5*(N(1) +1)*(N(2) +1)*(N(3) +1) -3*(N(2) +1)*(N(3) +1) ,1)];

254 dxzux = [ueq (5*(N(1)+1)*(N(2)+1)*(N(3)+1) -3*(N(2)+1)*(N(3)+1)

+1:6*(N(1) +1)*(N(2) +1)*(N(3) +1) -3*(N(2) +1)*(N(3) +1) ,1)];

255 dyzux = [zeros ((N(2)+1)*(N(3)+1) ,1); ueq (6*(N(1)+1)*(N(2)+1)*(N

(3) +1) -3*(N(2)+1)*(N(3)+1) +1:7*(N(1)+1)*(N(2)+1)*(N(3)+1)

-4*(N(2) +1)*(N(3) +1) ,1)];

256 dxyzux = [ueq (7*(N(1) +1)*(N(2) +1)*(N(3) +1) -4*(N(2) +1)*(N(3) +1)

+1:8*(N(1) +1)*(N(2) +1)*(N(3) +1) -4*(N(2) +1)*(N(3) +1) ,1)];

257 uy = [zeros((N(2) +1)*(N(3) +1) ,1); ueq (8*(N(1) +1)*(N(2) +1)*(N(3)

+1) -4*(N(2)+1)*(N(3)+1) +1:9*(N(1)+1)*(N(2)+1)*(N(3)+1) -5*(N

(2) +1)*(N(3)+1) ,1)]+E(:,2);

258 dxuy = [ueq (9*(N(1) +1)*(N(2) +1)*(N(3) +1) -5*(N(2) +1)*(N(3) +1)

+1:10*(N(1) +1)*(N(2) +1)*(N(3) +1) -5*(N(2) +1)*(N(3) +1) ,1)];

259 dyuy = [zeros((N(2) +1)*(N(3) +1) ,1); ueq (10*(N(1) +1)*(N(2) +1)*(N

(3) +1) -5*(N(2)+1)*(N(3)+1) +1:11*(N(1)+1)*(N(2)+1)*(N(3)+1)

-6*(N(2) +1)*(N(3) +1) ,1)];

260 dzuy = [zeros((N(2) +1)*(N(3) +1) ,1); ueq (11*(N(1) +1)*(N(2) +1)*(N

(3) +1) -6*(N(2)+1)*(N(3)+1) +1:12*(N(1)+1)*(N(2)+1)*(N(3)+1)

-7*(N(2) +1)*(N(3) +1) ,1)];

261 dxyuy = [ueq (12*(N(1)+1)*(N(2)+1)*(N(3)+1) -7*(N(2)+1)*(N(3)+1)

+1:13*(N(1) +1)*(N(2) +1)*(N(3) +1) -7*(N(2) +1)*(N(3) +1) ,1)];

262 dxzuy = [ueq (13*(N(1)+1)*(N(2)+1)*(N(3)+1) -7*(N(2)+1)*(N(3)+1)

+1:14*(N(1) +1)*(N(2) +1)*(N(3) +1) -7*(N(2) +1)*(N(3) +1) ,1)];

263 dyzuy = [zeros ((N(2)+1)*(N(3)+1) ,1); ueq (14*(N(1)+1)*(N(2)+1)*(

N(3)+1) -7*(N(2)+1)*(N(3)+1) +1:15*(N(1)+1)*(N(2)+1)*(N(3)+1)

-8*(N(2) +1)*(N(3) +1) ,1)];

264 dxyzuy = [ueq (15*(N(1) +1)*(N(2) +1)*(N(3) +1) -8*(N(2) +1)*(N(3) +1)

+1:16*(N(1) +1)*(N(2) +1)*(N(3) +1) -8*(N(2) +1)*(N(3) +1) ,1)];

265 uz = [zeros((N(2) +1)*(N(3) +1) ,1); ueq (16*(N(1) +1)*(N(2) +1)*(N

(3) +1) -8*(N(2)+1)*(N(3)+1) +1:17*(N(1)+1)*(N(2)+1)*(N(3)+1)

-9*(N(2) +1)*(N(3) +1) ,1)]+E(:,3);

266 dxuz = [ueq (17*(N(1) +1)*(N(2) +1)*(N(3) +1) -9*(N(2) +1)*(N(3) +1)

+1:18*(N(1) +1)*(N(2) +1)*(N(3) +1) -9*(N(2) +1)*(N(3) +1) ,1)];

267 dyuz = [zeros((N(2) +1)*(N(3) +1) ,1); ueq (18*(N(1) +1)*(N(2) +1)*(N

(3) +1) -9*(N(2)+1)*(N(3)+1) +1:19*(N(1)+1)*(N(2)+1)*(N(3)+1)

-10*(N(2) +1)*(N(3) +1) ,1)];

268 dzuz = [zeros((N(2) +1)*(N(3) +1) ,1); ueq (19*(N(1) +1)*(N(2) +1)*(N

(3) +1) -10*(N(2)+1)*(N(3)+1) +1:20*(N(1)+1)*(N(2)+1)*(N(3)+1)

-11*(N(2) +1)*(N(3) +1) ,1)];

269 dxyuz = [ueq (20*(N(1)+1)*(N(2)+1)*(N(3)+1) -11*(N(2)+1)*(N(3)+1)

+1:21*(N(1) +1)*(N(2) +1)*(N(3) +1) -11*(N(2) +1)*(N(3) +1) ,1)];
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270 dxzuz = [ueq (21*(N(1)+1)*(N(2)+1)*(N(3)+1) -11*(N(2)+1)*(N(3)+1)

+1:22*(N(1) +1)*(N(2) +1)*(N(3) +1) -11*(N(2) +1)*(N(3) +1) ,1)];

271 dyzuz = [zeros ((N(2)+1)*(N(3)+1) ,1); ueq (22*(N(1)+1)*(N(2)+1)*(

N(3)+1) -11*(N(2)+1)*(N(3)+1) +1:23*(N(1)+1)*(N(2)+1)*(N(3)

+1) -12*(N(2)+1)*(N(3)+1) ,1)];

272 dxyzuz = [ueq (23*(N(1) +1)*(N(2) +1)*(N(3) +1) -12*(N(2) +1)*(N(3)

+1) +1:24*(N(1)+1)*(N(2)+1)*(N(3)+1) -12*(N(2)+1)*(N(3)+1) ,1)

];

273

274

275 f = figure(i);

276 movegui(f,’west’)

277 scatter3(ux(TD),uy(TD),uz(TD) ,5,uz(TD))

278 title(Eig(i));

279

280

281 %uxB(i,1:N(1)+1,1,1:N(3)+1) = ux(TD);

282 %uyB(i,1:N(1)+1,1,1:N(3)+1) = uy(TD);

283 %uzB(i,1:N(1)+1,1,1:N(3)+1) = uz(TD);

284

285

286 %dxuxB(i,1:N(1)+1,1,1) = dxux(TD);

287 %dxuyB(i,1:N(1)+1,1,1) = dxuy(TD);

288 %dxuzB(i,1:N(1)+1,1,1) = dxuz(TD);

289 %dyuxB(i,1:N(1)+1,1,1) = dyux(TD);

290 %dyuyB(i,1:N(1)+1,1,1) = dyuy(TD);

291 %dyuzB(i,1:N(1)+1,1,1) = dyuz(TD);

292 %dzuxB(i,1:N(1)+1,1,1) = dzux(TD);

293 %dzuyB(i,1:N(1)+1,1,1) = dzuy(TD);

294 %dzuzB(i,1:N(1)+1,1,1) = dzuz(TD);

295 %dxyuxB(i,1:N(1)+1,1,1) = dxyux(TD);

296 %dxyuyB(i,1:N(1)+1,1,1) = dxyuy(TD);

297 %dxyuzB(i,1:N(1)+1,1,1) = dxyuz(TD);

298 %dxzuxB(i,1:N(1)+1,1,1) = dxzux(TD);

299 %dxzuyB(i,1:N(1)+1,1,1) = dxzuy(TD);

300 %dxzuzB(i,1:N(1)+1,1,1) = dxzuz(TD);

301 %dyzuxB(i,1:N(1)+1,1,1) = dyzux(TD);

302 %dyzuyB(i,1:N(1)+1,1,1) = dyzuy(TD);

303 %dyzuzB(i,1:N(1)+1,1,1) = dyzuz(TD);

304 %dxyzuxB(i,1:N(1)+1,1,1) = dxyzux(TD);

305 %dxyzuyB(i,1:N(1)+1,1,1) = dxyzuy(TD);

306 %dxyzuzB(i,1:N(1)+1,1,1) = dxyzuz(TD);

307 %set(0,’CurrentFigure ’,h(i));

308 %scatter3(ux,uy,uz)

309 %title(Eig(i));

310 %scatter3(ux,uy,uz ,5,uz)

311

312 %scatter3(uxB ,uyB ,uzB ,5,uzB)
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313 %hold on

314 %scatter3(ux,uy,zeros(size(uz)));

315

316 %hold on

317 %ux2 = ux(D(:,1,1));

318 %uy2 = uy(D(:,1,1));

319 %uz2 = uz(D(:,1,1));

320

321 %max2 = norm(uy2 ,Inf);

322 %uy2 = uy2/max2 *0.8;

323 %scatter3(ux2 ,uy2 ,uz2)

324

325 hold off

326 %axis ([0 1.1 -0.025 0.05 -0.025 0.025])

327 %dxux2 = dxux(TDV);

328 %dxuy2 = dxuy(TDV);

329 %dxuz2 = dxuz(TDV);

330 %dyux2 = dyux(TDV);

331 %dyuy2 = dyuy(TDV);

332 %dyuz2 = dyuz(TDV);

333 %dzux2 = dzux(TDV);

334 %dzuy2 = dzuy(TDV);

335 %dzuz2 = dzuz(TDV);

336

337

338 %sigma11 = 1/( gamma *(1+nu))*dxuxB + nu/(gamma *(1+nu)*(1-2*nu))

*(dxuxB+dyuyB+dzuzB);

339 %sigma22 = 1/( gamma *(1+nu))*dyuyB + nu/(gamma *(1+nu)*(1-2*nu))

*(dxuxB+dyuyB+dzuzB);

340 %sigma33 = 1/( gamma *(1+nu))*dzuzB + nu/(gamma *(1+nu)*(1-2*nu))

*(dxuxB+dyuyB+dzuzB);

341 %sigma23 = 1/(2* gamma *(1+nu))*(dzuyB + dyuzB);

342 %sigma31 = 1/(2* gamma *(1+nu))*(dzuxB + dxuzB);

343 %sigma12 = 1/(2* gamma *(1+nu))*(dyuxB + dxuyB);

344

345 %stress = ceil((N(1)+1)/2);

346

347

348 %Ty = [0.5*( dxux(stress) + dxux(stress)) 0.5*( dxuy(stress) +

dyux(stress)); 0.5*( dyux(stress) + dxuy(stress)) 0.5*( dyuy(

stress) + dyuy(stress))]

349 %Tz = [0.5*( dxux(stress) + dxux(stress)) 0.5*( dxuz(stress) +

dzux(stress)); 0.5*( dzux(stress) + dxuz(stress)) 0.5*( dzuz(

stress) + dzuz(stress))]

350 %T = [sigma11(stress) sigma12(stress) sigma31(stress); sigma12(

stress) sigma22(stress) sigma23(stress); sigma31(stress)

sigma23(stress) sigma33(stress)]

351
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352 %ux1 = ux(OD);

353 %uy1 = uy(OD);

354 %uz1 = uz(OD);

355

356

357 %f = figure ();

358 %movegui(f,pos);

359 %scatter3(ux,uy,uz);

360 %hold on

361 %grid on

362 %plot3(ux1 ,uy1 ,uz1);

363 %title(strcat(num2str(i),’ - ’,num2str(Eig(i))))

364 %view (2)

365 end

366 %}

367 %{

368 %[KM, KMPat] = sparseinv(K);

369 %KM = KM*M;

370 %smallest = 0;

371 %bestEig = 0;

372

373 for i = 20: -1:1

374 %smallest = 100;

375 plot_fig = figure(’NumberTitle ’, ’off’, ’Name’, strcat(’

Eigenvalue: ’,int2str(i),’ - ’,num2str(s)));

376 w = V(:,i);

377

378 % for j = 1: numEig

379 % X = K*w - M*w*Eig(j);

380 % if norm(X) < smallest

381 % smallest = norm(X);

382 % bestEig = Eig(j);

383 % end

384 % end

385 %plot_fig.suptitle(strcat(int2str(i),’ - ’,num2str(s)));

386 %mwb.Update(3, 1, 0.1, ’Plot ’);

387 %wg = gpuArray(w);

388 alpha = max(sum(abs(K) ,2)./diag(K)) -2;

389 L = ichol(K,struct(’type’,’ict’,’droptol ’,1e-3,’diagcomp ’,

alpha));

390 u = pcg(K,M*w,1e-1 ,2000000 ,L,L’);

391

392

393 %normalize = norm(w,Inf);

394 %u = normalize*u;

395 % u = (K)\MF*F;

396

397 %alpha = max(sum(abs(K) ,2)./diag(K)) -2;
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398 %L = ichol(K,struct(’type ’,’ict ’,’droptol ’,1e-3,’diagcomp ’,

alpha));

399 %u = pcg(K,MF*F,1e-3 ,200000 ,L,L’);

400 % mwb.Update(3, 1, 0.3, ’Plot ’);

401 u1 = [zeros((N(2) +1)*(N(3) +1) ,1); u(1: size(u,1) /3)] + E

(:,1);

402 u2 = [zeros((N(2) +1)*(N(3) +1) ,1); u(size(u,1) /3+1:2* size(u

,1) /3)] + E(:,2);

403 u3 = [zeros((N(2) +1)*(N(3) +1) ,1); u(2* size(u,1) /3+1:3* size(

u,1) /3)]+ E(:,3);

404

405

406 u1 = 1/norm(u1 ,Inf)*u1;

407 u2 = 1/norm(u2 ,Inf)*u2;

408 u3 = 1/norm(u3 ,Inf)*u3;

409

410 [D,E] = Domain(N,Delta);

411 plane = D(:,:,ceil((N(3)+1)/2)) ’;

412 plane = plane (:);

413 uplx = u1(plane);

414 uply = u2(plane);

415

416 % w1 = w(1: size(w,1)/3);

417 % w2 = w(size(w,1) /3+1:2* size(w,1)/3);

418 % w3 = w(2* size(w,1) /3+1:3* size(w,1)/3);

419

420 % mwb.Update(3, 1, 0.4, ’Plot ’);

421 ix = [];

422 if(N(1)+1 > 200)

423 % iy = [1 (N(2)+2)/2 (N(2)+1) (N(2)+1)*(N(3)+1) -(N(2)+1)

+1 (N(2) +1)*(N(3) +1)];

424 ih = ((N(2) +1) -1)/2;

425 iv = 1+((N(3) +1) -1)/2*(N(2) +1);

426 iy = iv+ih; %[1 1+ih 1+2*ih iv iv+ih iv+2*ih 2*iv -1 2*

iv+ih -1 2*iv+2*ih -1];%[ iv+ih];%

427 icount = 1;

428 div = floor((N(1)+1) /200);

429 for k = 1:div:(N(1)+1)

430 for j = 1:size(iy ,2)

431 ix(icount) = iy(j)+ (k-1)*(N(2) +1)*(N(3) +1);

432 icount = icount +1;

433 end

434 end

435 u1p = u1(ix);

436 u2p = u2(ix);

437 u3p = u3(ix);

438 % w1p = w1(ix);

439 % w2p = w2(ix);
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440 % w3p = w3(ix);

441

442 E1p = E(ix ,1);

443 E2p = E(ix ,2);

444 E3p = E(ix ,3);

445 Psize = size(iy ,2);

446 else

447 u1p = u1;

448 u2p = u2;

449 u3p = u3;

450

451 % w1p = w1;

452 % w2p = w2;

453 % w3p = w3;

454

455 E1p = E(:,1);

456 E2p = E(:,2);

457 E3p = E(:,3);

458

459 Psize = (N(2)+1)*(N(3)+1);

460 end

461 %mwb.Update(3, 1, 0.7, ’Plot ’);

462

463 u1p = 1/norm(u1p ,Inf)*u1p;

464 %u2p = 1/norm(u2p ,Inf)*u2p;

465 %u3p = 1/norm(u3p ,Inf)*u3p;

466

467 %umx = u1p(size(u1p ,1)/2

468

469

470 scatter3(u1p ,u2p ,u3p);

471 hold on

472 %scatter3(E1p ,E2p ,E3p ,0.1);

473 hold on

474 %scatter3(w1p ,w2p ,w3p);

475 %mwb.Update(3, 1, 1, ’Plot ’);

476 u1s = size(u1p);

477 u2s = size(u2p);

478 u3s = size(u3p);

479 for k = 1: Psize

480 hold on

481 plot3(u1p(k:Psize:k+u1s -2* Psize),u2p(k:Psize:k+u2s -2*

Psize),u3p(k:Psize:k+u3s -2* Psize),’-’);

482 end

483 temp_png = strcat(’\Plots\’,sprintf(’%.6f’,n1),’\PNG\Plot’,

sprintf(’%.6f’,i),’.png’);

484 temp_fig = strcat(’\Plots\’,sprintf(’%.6f’,n1),’\Fig\Plot’,

sprintf(’%.6f’,i),’.fig’);
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485 view ([0 0 90])

486 %legend([’ Eigenvalue: ’ num2str(Eig(i))]);

487 %saveas(plot_fig ,strcat(pwd ,temp_png))

488 %savefig(plot_fig ,strcat(pwd ,temp_fig))

489 %close(plot_fig)

490 end

491 clear u

492

493 %}

494 %mwb.Update(1, 1, 1, ’Total Progress ’);

495 % mwb.Close ();

496 return;

497

498 function [D,E] = Domain(N,Delta)

499 D = zeros(N(1)+1,N(2)+1,N(3)+1);

500 icount = 1;

501

502 for i = 1:N(1)+1

503 for k = 1:N(3)+1

504 for j = 1:N(2)+1

505 D(i,j,k) = icount;

506 icount = icount + 1;

507 end

508 end

509 end

510 E = zeros ((N(1)+1)*(N(2)+1)*(N(3)+1) ,3);

511 ix = 1;

512 iy = 1;

513 iz = 1;

514 ixt = 0;

515 for i = 1:(N(1)+1)*(N(2)+1)*(N(3)+1)

516 E(i,:) = [Delta (1)*(ix -1),Delta (2)*(iy -1),Delta (3)*(iz

-1)];

517

518 iy = iy+1;

519

520 if(ix == N(1) +2)

521 ix = 1;

522 end

523 if(iy == N(2) +2)

524 iy = 1;

525 ixt = ixt +1;

526 iz = iz+1;

527 end

528 if(ixt == N(3) +1)

529 ix = ix+1;

530 ixt = 0;

531 end
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532 if(iz == N(3) +2)

533 iz = 1;

534 end

535

536 end

537 %[Cubes ,CubeNumbers] = CreateCubes(E,N);

538 %Plot(E,N,Cubes)

539 return

540

541 function Next = Adjacent(N,D)

542 Next = zeros ((N(1) +1)*(N(2) +1)*(N(3) +1) ,27);

543 %1 - Itself

544 %2 - Forward

545 %3 - Backward

546 %4 - Forward + Left

547 %5 - Forward + Right

548 %6 - Left

549 %7 - Right

550 %8 - Backward + Left

551 %9 - Backward + Right

552 for i = 1:N(1)+1

553 for j = 1:N(2)+1

554 for k = 1:N(3)+1

555 Next(D(i,j,k) ,1) = D(i,j,k);

556 if(i<N(1) +1)

557 Next(D(i,j,k) ,2) = D(i+1,j,k);

558 else

559 Next(D(i,j,k) ,2) = nan;

560 end

561 if(i>1)

562 Next(D(i,j,k) ,3) = D(i-1,j,k);

563 else

564 Next(D(i,j,k) ,3) = nan;

565 end

566 if(i<N(1)+1 && j < N(2) +1)

567 Next(D(i,j,k) ,4) = D(i+1,j+1,k);

568 else

569 Next(D(i,j,k) ,4) = nan;

570 end

571 if(i<N(1)+1 && j > 1)

572 Next(D(i,j,k) ,5) = D(i+1,j-1,k);

573 else

574 Next(D(i,j,k) ,5) = nan;

575 end

576 if(j < N(2) +1)

577 Next(D(i,j,k) ,6) = D(i,j+1,k);

578 else

579 Next(D(i,j,k) ,6) = nan;
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580 end

581 if(j>1)

582 Next(D(i,j,k) ,7) = D(i,j-1,k);

583 else

584 Next(D(i,j,k) ,7) = nan;

585 end

586 if(i>1 && j < N(2) +1)

587 Next(D(i,j,k) ,8) = D(i-1,j+1,k);

588 else

589 Next(D(i,j,k) ,8) = nan;

590 end

591 if(i>1 && j>1)

592 Next(D(i,j,k) ,9) = D(i-1,j-1,k);

593 else

594 Next(D(i,j,k) ,9) = nan;

595 end

596

597 if(k < N(3) +1)

598 Next(D(i,j,k) ,10) = D(i,j,k+1);

599 if(i<N(1) +1)

600 Next(D(i,j,k) ,11) = D(i+1,j,k+1);

601 else

602 Next(D(i,j,k) ,11) = nan;

603 end

604 if(i>1)

605 Next(D(i,j,k) ,12) = D(i-1,j,k+1);

606 else

607 Next(D(i,j,k) ,12) = nan;

608 end

609 if(i<N(1)+1 && j < N(2) +1)

610 Next(D(i,j,k) ,13) = D(i+1,j+1,k+1);

611 else

612 Next(D(i,j,k) ,13) = nan;

613 end

614 if(i<N(1)+1 && j > 1)

615 Next(D(i,j,k) ,14) = D(i+1,j-1,k+1);

616 else

617 Next(D(i,j,k) ,14) = nan;

618 end

619 if(j < N(2) +1)

620 Next(D(i,j,k) ,15) = D(i,j+1,k+1);

621 else

622 Next(D(i,j,k) ,15) = nan;

623 end

624 if(j>1)

625 Next(D(i,j,k) ,16) = D(i,j-1,k+1);

626 else

627 Next(D(i,j,k) ,16) = nan;
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628 end

629 if(i>1 && j < N(2) +1)

630 Next(D(i,j,k) ,17) = D(i-1,j+1,k+1);

631 else

632 Next(D(i,j,k) ,17) = nan;

633 end

634 if(i>1 && j>1)

635 Next(D(i,j,k) ,18) = D(i-1,j-1,k+1);

636 else

637 Next(D(i,j,k) ,18) = nan;

638 end

639 else

640 Next(D(i,j,k) ,10) = nan;

641 Next(D(i,j,k) ,11) = nan;

642 Next(D(i,j,k) ,12) = nan;

643 Next(D(i,j,k) ,13) = nan;

644 Next(D(i,j,k) ,14) = nan;

645 Next(D(i,j,k) ,15) = nan;

646 Next(D(i,j,k) ,16) = nan;

647 Next(D(i,j,k) ,17) = nan;

648 Next(D(i,j,k) ,18) = nan;

649 end

650

651 if(k>1)

652 Next(D(i,j,k) ,19) = D(i,j,k-1);

653 if(i<N(1) +1)

654 Next(D(i,j,k) ,20) = D(i+1,j,k-1);

655 else

656 Next(D(i,j,k) ,20) = nan;

657 end

658 if(i>1)

659 Next(D(i,j,k) ,21) = D(i-1,j,k-1);

660 else

661 Next(D(i,j,k) ,21) = nan;

662 end

663 if(i<N(1)+1 && j < N(2) +1)

664 Next(D(i,j,k) ,22) = D(i+1,j+1,k-1);

665 else

666 Next(D(i,j,k) ,22) = nan;

667 end

668 if(i<N(1)+1 && j > 1)

669 Next(D(i,j,k) ,23) = D(i+1,j-1,k-1);

670 else

671 Next(D(i,j,k) ,23) = nan;

672 end

673 if(j < N(2) +1)

674 Next(D(i,j,k) ,24) = D(i,j+1,k-1);

675 else
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676 Next(D(i,j,k) ,24) = nan;

677 end

678 if(j>1)

679 Next(D(i,j,k) ,25) = D(i,j-1,k-1);

680 else

681 Next(D(i,j,k) ,25) = nan;

682 end

683 if(i>1 && j < N(2) +1)

684 Next(D(i,j,k) ,26) = D(i-1,j+1,k-1);

685 else

686 Next(D(i,j,k) ,26) = nan;

687 end

688 if(i>1 && j>1)

689 Next(D(i,j,k) ,27) = D(i-1,j-1,k-1);

690 else

691 Next(D(i,j,k) ,27) = nan;

692 end

693 else

694 Next(D(i,j,k) ,19) = nan;

695 Next(D(i,j,k) ,20) = nan;

696 Next(D(i,j,k) ,21) = nan;

697 Next(D(i,j,k) ,22) = nan;

698 Next(D(i,j,k) ,23) = nan;

699 Next(D(i,j,k) ,24) = nan;

700 Next(D(i,j,k) ,25) = nan;

701 Next(D(i,j,k) ,26) = nan;

702 Next(D(i,j,k) ,27) = nan;

703 end

704 end

705 end

706 end

707 return

708

709 function B = AdjacentType ()%CHECKED

710 B = zeros (27 ,27 ,16);

711 %CHECKED

712 B(1,1,:) = [2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

713 B(1,2,:) = [2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

714 B(1,3,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

715 B(1,4,:) = [2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

716 B(1,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

717 B(1,6,:) = [2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

718 B(1,7,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

719 B(1,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left
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720 B(1,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

721 %Up%CHECKED

722 B(1,10,:) = [2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

723 B(1,11,:) = [2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

724 B(1,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

725 B(1,13,:) = [2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

726 B(1,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

727 B(1,15,:) = [2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

728 B(1,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

729 B(1,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

730 B(1,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

731 %Down%CHECKED

732 B(1,19,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

733 B(1,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

734 B(1,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

735 B(1,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

736 B(1,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

737 B(1,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

738 B(1,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

739 B(1,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

740 B(1,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

741 %

.........................................................................................................

742 %CHECKED

743 B(2,1,:) = [1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

744 B(2,2,:) = [2 3 1 4 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

745 B(2,3,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

746 B(2,4,:) = [2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

747 B(2,5,:) = [1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

748 B(2,6,:) = [2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

749 B(2,7,:) = [1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

750 B(2,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

751 B(2,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

752 %Up%CHECKED
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753 B(2,10,:) = [2 6 1 5 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

754 B(2,11,:) = [2 7 1 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

755 B(2,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

756 B(2,13,:) = [2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

757 B(2,14,:) = [1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

758 B(2,15,:) = [2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

759 B(2,16,:) = [1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

760 B(2,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

761 B(2,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

762 %Down%CHECKED

763 B(2,19,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

764 B(2,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

765 B(2,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

766 B(2,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

767 B(2,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

768 B(2,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

769 B(2,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

770 B(2,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

771 B(2,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

772 %

.........................................................................................................

773 %CHECKED

774 B(3,1,:) = [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

775 B(3,2,:) = [1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

776 B(3,3,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

777 B(3,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

778 B(3,5,:) = [1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

779 B(3,6,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

780 B(3,7,:) = [1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

781 B(3,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

782 B(3,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

783 %Up%CHECKED

784 B(3,10,:) = [1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

785 B(3,11,:) = [1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

786 B(3,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward
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787 B(3,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

788 B(3,14,:) = [1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

789 B(3,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

790 B(3,16,:) = [1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

791 B(3,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

792 B(3,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

793 %Down%CHECKED

794 B(3,19,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

795 B(3,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

796 B(3,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

797 B(3,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

798 B(3,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

799 B(3,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

800 B(3,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

801 B(3,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

802 B(3,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

803 %

.........................................................................................................

804 %CHECKED

805 B(4,1,:) = [2 2 6 6 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

806 B(4,2,:) = [2 3 6 7 0 0 0 0 0 0 0 0 0 0 0 0]; %Forward

807 B(4,3,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

808 B(4,4,:) = [2 4 6 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

809 B(4,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

810 B(4,6,:) = [2 1 6 5 0 0 0 0 0 0 0 0 0 0 0 0];%Left

811 B(4,7,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

812 B(4,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

813 B(4,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

814 %Up%CHECKED

815 B(4,10,:) = [2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

816 B(4,11,:) = [2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

817 B(4,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

818 B(4,13,:) = [2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left
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819 B(4,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

820 B(4,15,:) = [2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

821 B(4,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

822 B(4,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

823 B(4,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

824 %Down%CHECKED

825 B(4,19,:) = [6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

826 B(4,20,:) = [6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

827 B(4,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

828 B(4,22,:) = [6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

829 B(4,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

830 B(4,24,:) = [6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

831 B(4,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

832 B(4,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

833 B(4,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

834 %

.........................................................................................................

835 %CHECKED

836 B(5,1,:) = [1 1 2 2 5 5 6 6 0 0 0 0 0 0 0 0]; %Itself

837 B(5,2,:) = [2 3 1 4 5 8 6 7 0 0 0 0 0 0 0 0];%Forward

838 B(5,3,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

839 B(5,4,:) = [2 4 6 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

840 B(5,5,:) = [1 3 5 7 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

841 B(5,6,:) = [2 1 6 5 0 0 0 0 0 0 0 0 0 0 0 0];%Left

842 B(5,7,:) = [1 2 5 6 0 0 0 0 0 0 0 0 0 0 0 0];%Right

843 B(5,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

844 B(5,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

845 %Up%CHECKED

846 B(5,10,:) = [2 6 1 5 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

847 B(5,11,:) = [2 7 1 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

848 B(5,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

849 B(5,13,:) = [2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

850 B(5,14,:) = [1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

851 B(5,15,:) = [2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left
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852 B(5,16,:) = [1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

853 B(5,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

854 B(5,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

855 %Down%CHECKED

856 B(5,19,:) = [5 1 6 2 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

857 B(5,20,:) = [5 4 6 3 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

858 B(5,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

859 B(5,22,:) = [6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

860 B(5,23,:) = [5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

861 B(5,24,:) = [6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

862 B(5,25,:) = [5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

863 B(5,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

864 B(5,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

865 %

.........................................................................................................

866 %CHECKED

867 B(6,1,:) = [1 1 5 5 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

868 B(6,2,:) = [1 4 5 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

869 B(6,3,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

870 B(6,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

871 B(6,5,:) = [1 3 5 7 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

872 B(6,6,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

873 B(6,7,:) = [1 2 5 6 0 0 0 0 0 0 0 0 0 0 0 0];%Right

874 B(6,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

875 B(6,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

876 %Up%CHECKED

877 B(6,10,:) = [1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

878 B(6,11,:) = [1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

879 B(6,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

880 B(6,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

881 B(6,14,:) = [1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

882 B(6,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

883 B(6,16,:) = [1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

884 B(6,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left
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885 B(6,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

886 %Down%CHECKED

887 B(6,19,:) = [5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

888 B(6,20,:) = [5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

889 B(6,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

890 B(6,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

891 B(6,23,:) = [5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

892 B(6,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

893 B(6,25,:) = [5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

894 B(6,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

895 B(6,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

896 %

.........................................................................................................

897 %CHECKED

898 B(7,1,:) = [6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

899 B(7,2,:) = [6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Forward

900 B(7,3,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

901 B(7,4,:) = [6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

902 B(7,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

903 B(7,6,:) = [6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

904 B(7,7,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

905 B(7,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

906 B(7,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

907 %Up%CHECKED

908 B(7,10,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

909 B(7,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

910 B(7,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

911 B(7,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

912 B(7,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

913 B(7,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

914 B(7,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

915 B(7,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

916 B(7,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

917 %Down%CHECKED
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918 B(7,19,:) = [6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

919 B(7,20,:) = [6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

920 B(7,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

921 B(7,22,:) = [6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

922 B(7,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

923 B(7,24,:) = [6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

924 B(7,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

925 B(7,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

926 B(7,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

927 %

.........................................................................................................

928 %CHECKED

929 B(8,1,:) = [5 5 6 6 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

930 B(8,2,:) = [6 7 5 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

931 B(8,3,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

932 B(8,4,:) = [6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

933 B(8,5,:) = [5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

934 B(8,6,:) = [6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

935 B(8,7,:) = [5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

936 B(8,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

937 B(8,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

938 %Up%CHECKED

939 B(8,10,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

940 B(8,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

941 B(8,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

942 B(8,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

943 B(8,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

944 B(8,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

945 B(8,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

946 B(8,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

947 B(8,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

948 %Down%CHECKED

949 B(8,19,:) = [5 1 6 2 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

950 B(8,20,:) = [5 4 6 3 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

951 B(8,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward
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952 B(8,22,:) = [6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

953 B(8,23,:) = [5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

954 B(8,24,:) = [6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

955 B(8,25,:) = [5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

956 B(8,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

957 B(8,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

958 %

.........................................................................................................

959 %CHECKED

960 B(9,1,:) = [5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

961 B(9,2,:) = [5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

962 B(9,3,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

963 B(9,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

964 B(9,5,:) = [5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

965 B(9,6,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

966 B(9,7,:) = [5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

967 B(9,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

968 B(9,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

969 %Up%CHECKED

970 B(9,10,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

971 B(9,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

972 B(9,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

973 B(9,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

974 B(9,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

975 B(9,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

976 B(9,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

977 B(9,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

978 B(9,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

979 %Down%CHECKED

980 B(9,19,:) = [5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

981 B(9,20,:) = [5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

982 B(9,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

983 B(9,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left
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984 B(9,23,:) = [5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

985 B(9,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

986 B(9,25,:) = [5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

987 B(9,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

988 B(9,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

989 %

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

990 %CHECKED

991 B(10,1,:) = [2 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

992 B(10,2,:) = [2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Forward

993 B(10,3,:) = [3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

994 B(10,4,:) = [2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

995 B(10,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

996 B(10,6,:) = [2 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0];%Left

997 B(10,7,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

998 B(10,8,:) = [3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

999 B(10,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1000 %Up%CHECKED

1001 B(10,10,:) = [2 6 3 7 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1002 B(10,11,:) = [2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1003 B(10,12,:) = [3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1004 B(10,13,:) = [2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1005 B(10,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1006 B(10,15,:) = [2 5 3 8 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1007 B(10,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1008 B(10,17,:) = [3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1009 B(10,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1010 %Down%CHECKED

1011 B(10,19,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1012 B(10,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1013 B(10,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1014 B(10,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1015 B(10,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1016 B(10,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left
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1017 B(10,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1018 B(10,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1019 B(10,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1020 %

.........................................................................................................

1021 %CHECKED

1022 B(11,1,:) = [1 1 2 2 3 3 4 4 0 0 0 0 0 0 0 0]; %Itself

1023 B(11,2,:) = [2 3 1 4 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1024 B(11,3,:) = [3 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1025 B(11,4,:) = [2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1026 B(11,5,:) = [1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1027 B(11,6,:) = [2 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1028 B(11,7,:) = [1 2 4 3 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1029 B(11,8,:) = [3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1030 B(11,9,:) = [4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1031 %Up%CHECKED

1032 B(11,10,:) = [2 6 1 5 3 7 4 8 0 0 0 0 0 0 0 0];%Itself

1033 B(11,11,:) = [2 7 1 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1034 B(11,12,:) = [3 6 4 5 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1035 B(11,13,:) = [2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1036 B(11,14,:) = [1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1037 B(11,15,:) = [2 5 3 8 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1038 B(11,16,:) = [1 6 4 7 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1039 B(11,17,:) = [3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1040 B(11,18,:) = [4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1041 %Down%CHECKED

1042 B(11,19,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1043 B(11,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1044 B(11,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1045 B(11,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1046 B(11,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1047 B(11,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1048 B(11,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1049 B(11,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

204



1050 B(11,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1051 %

.........................................................................................................

1052 %CHECKED

1053 B(12,1,:) = [1 1 4 4 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1054 B(12,2,:) = [1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1055 B(12,3,:) = [4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1056 B(12,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1057 B(12,5,:) = [1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1058 B(12,6,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1059 B(12,7,:) = [1 2 4 3 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1060 B(12,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1061 B(12,9,:) = [4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1062 %Up%CHECKED

1063 B(12,10,:) = [1 5 4 8 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1064 B(12,11,:) = [1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1065 B(12,12,:) = [4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1066 B(12,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1067 B(12,14,:) = [1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1068 B(12,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1069 B(12,16,:) = [1 6 4 7 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1070 B(12,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1071 B(12,18,:) = [4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1072 %Down%CHECKED

1073 B(12,19,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1074 B(12,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1075 B(12,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1076 B(12,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1077 B(12,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1078 B(12,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1079 B(12,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1080 B(12,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1081 B(12,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right
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1082 %

.........................................................................................................

1083 %CHECKED

1084 B(13,1,:) = [2 2 3 3 6 6 7 7 0 0 0 0 0 0 0 0]; %Itself

1085 B(13,2,:) = [2 3 6 7 0 0 0 0 0 0 0 0 0 0 0 0]; %Forward

1086 B(13,3,:) = [3 2 7 6 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1087 B(13,4,:) = [2 4 6 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1088 B(13,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1089 B(13,6,:) = [2 1 6 5 3 4 7 8 0 0 0 0 0 0 0 0];%Left

1090 B(13,7,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1091 B(13,8,:) = [3 1 7 5 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1092 B(13,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1093 %Up%CHECKED

1094 B(13,10,:) = [2 6 3 7 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1095 B(13,11,:) = [2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1096 B(13,12,:) = [3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1097 B(13,13,:) = [2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1098 B(13,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1099 B(13,15,:) = [2 5 3 8 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1100 B(13,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1101 B(13,17,:) = [3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1102 B(13,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1103 %Down%CHECKED

1104 B(13,19,:) = [6 2 7 3 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1105 B(13,20,:) = [6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1106 B(13,21,:) = [7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1107 B(13,22,:) = [6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1108 B(13,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1109 B(13,24,:) = [6 1 7 4 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1110 B(13,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1111 B(13,26,:) = [7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1112 B(13,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1113 %

.........................................................................................................
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1114 %CHECKED

1115 B(14,1,:) = [1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8]; %Itself

1116 B(14,2,:) = [1 4 2 3 5 8 6 7 0 0 0 0 0 0 0 0];%Forward

1117 B(14,3,:) = [4 1 3 2 8 5 7 6 0 0 0 0 0 0 0 0];%Backward

1118 B(14,4,:) = [2 4 6 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1119 B(14,5,:) = [1 3 5 7 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1120 B(14,6,:) = [2 1 6 5 3 4 7 8 0 0 0 0 0 0 0 0];%Left

1121 B(14,7,:) = [1 2 5 6 4 3 8 7 0 0 0 0 0 0 0 0];%Right

1122 B(14,8,:) = [3 1 7 5 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1123 B(14,9,:) = [4 2 8 6 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1124 %Up%CHECKED

1125 B(14,10,:) = [1 5 2 6 3 7 4 8 0 0 0 0 0 0 0 0];%Itself

1126 B(14,11,:) = [2 7 1 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1127 B(14,12,:) = [3 6 4 5 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1128 B(14,13,:) = [2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1129 B(14,14,:) = [1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1130 B(14,15,:) = [2 5 3 8 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1131 B(14,16,:) = [1 6 4 7 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1132 B(14,17,:) = [3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1133 B(14,18,:) = [4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1134 %Down%CHECKED

1135 B(14,19,:) = [5 1 6 2 7 3 8 4 0 0 0 0 0 0 0 0];%Itself

1136 B(14,20,:) = [5 4 6 3 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1137 B(14,21,:) = [8 1 7 2 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1138 B(14,22,:) = [6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1139 B(14,23,:) = [5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1140 B(14,24,:) = [6 1 7 4 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1141 B(14,25,:) = [5 2 8 3 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1142 B(14,26,:) = [7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1143 B(14,27,:) = [8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1144 %

.........................................................................................................

1145 B(15,1,:) = [1 1 4 4 5 5 8 8 0 0 0 0 0 0 0 0]; %Itself

1146 B(15,2,:) = [1 4 5 8 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1147 B(15,3,:) = [4 1 8 5 0 0 0 0 0 0 0 0 0 0 0 0];%Backward
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1148 B(15,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1149 B(15,5,:) = [1 3 5 7 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1150 B(15,6,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1151 B(15,7,:) = [1 2 5 6 4 3 8 7 0 0 0 0 0 0 0 0];%Right

1152 B(15,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1153 B(15,9,:) = [4 2 8 6 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1154 %Up

1155 B(15,10,:) = [1 5 4 8 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1156 B(15,11,:) = [1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1157 B(15,12,:) = [4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1158 B(15,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1159 B(15,14,:) = [1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1160 B(15,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1161 B(15,16,:) = [1 6 4 7 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1162 B(15,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1163 B(15,18,:) = [4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1164 %Down

1165 B(15,19,:) = [5 1 8 4 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1166 B(15,20,:) = [5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1167 B(15,21,:) = [8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1168 B(15,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1169 B(15,23,:) = [5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1170 B(15,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1171 B(15,25,:) = [5 2 8 3 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1172 B(15,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1173 B(15,27,:) = [8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1174 %

.........................................................................................................

1175 B(16,1,:) = [6 6 7 7 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1176 B(16,2,:) = [6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Forward

1177 B(16,3,:) = [7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1178 B(16,4,:) = [6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1179 B(16,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right
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1180 B(16,6,:) = [6 5 7 8 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1181 B(16,7,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1182 B(16,8,:) = [7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1183 B(16,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1184 %Up

1185 B(16,10,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1186 B(16,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1187 B(16,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1188 B(16,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1189 B(16,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1190 B(16,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1191 B(16,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1192 B(16,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1193 B(16,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1194 %Down

1195 B(16,19,:) = [6 2 7 3 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1196 B(16,20,:) = [6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1197 B(16,21,:) = [7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1198 B(16,22,:) = [6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1199 B(16,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1200 B(16,24,:) = [6 1 7 4 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1201 B(16,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1202 B(16,26,:) = [7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1203 B(16,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1204 %

.........................................................................................................

1205 B(17,1,:) = [5 5 6 6 7 7 8 8 0 0 0 0 0 0 0 0]; %Itself

1206 B(17,2,:) = [5 8 6 7 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1207 B(17,3,:) = [8 5 7 6 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1208 B(17,4,:) = [6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1209 B(17,5,:) = [5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1210 B(17,6,:) = [6 5 7 8 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1211 B(17,7,:) = [5 6 8 7 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1212 B(17,8,:) = [7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left
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1213 B(17,9,:) = [8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1214 %Up

1215 B(17,10,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1216 B(17,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1217 B(17,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1218 B(17,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1219 B(17,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1220 B(17,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1221 B(17,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1222 B(17,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1223 B(17,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1224 %Down

1225 B(17,19,:) = [5 1 6 2 7 3 8 4 0 0 0 0 0 0 0 0];%Itself

1226 B(17,20,:) = [5 4 6 3 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1227 B(17,21,:) = [8 1 7 2 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1228 B(17,22,:) = [6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1229 B(17,23,:) = [5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1230 B(17,24,:) = [6 1 7 4 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1231 B(17,25,:) = [5 2 8 3 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1232 B(17,26,:) = [7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1233 B(17,27,:) = [8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1234 %

.........................................................................................................

1235 B(18,1,:) = [5 5 8 8 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1236 B(18,2,:) = [5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1237 B(18,3,:) = [8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1238 B(18,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1239 B(18,5,:) = [5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1240 B(18,6,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1241 B(18,7,:) = [5 6 8 7 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1242 B(18,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1243 B(18,9,:) = [8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1244 %Up

1245 B(18,10,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself
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1246 B(18,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1247 B(18,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1248 B(18,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1249 B(18,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1250 B(18,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1251 B(18,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1252 B(18,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1253 B(18,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1254 %Down

1255 B(18,19,:) = [5 1 8 4 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1256 B(18,20,:) = [5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1257 B(18,21,:) = [8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1258 B(18,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1259 B(18,23,:) = [5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1260 B(18,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1261 B(18,25,:) = [5 2 8 3 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1262 B(18,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1263 B(18,27,:) = [8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1264 %

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

1265

1266 B(19,1,:) = [3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1267 B(19,2,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Forward

1268 B(19,3,:) = [3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1269 B(19,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1270 B(19,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1271 B(19,6,:) = [3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1272 B(19,7,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1273 B(19,8,:) = [3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1274 B(19,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1275 %Up

1276 B(19,10,:) = [3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1277 B(19,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1278 B(19,12,:) = [3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward
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1279 B(19,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1280 B(19,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1281 B(19,15,:) = [3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1282 B(19,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1283 B(19,17,:) = [3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1284 B(19,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1285 %Down

1286 B(19,19,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1287 B(19,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1288 B(19,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1289 B(19,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1290 B(19,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1291 B(19,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1292 B(19,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1293 B(19,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1294 B(19,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1295 %

.........................................................................................................

1296

1297 B(20,1,:) = [3 3 4 4 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1298 B(20,2,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1299 B(20,3,:) = [3 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1300 B(20,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1301 B(20,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1302 B(20,6,:) = [3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1303 B(20,7,:) = [4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1304 B(20,8,:) = [3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1305 B(20,9,:) = [4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1306 %Up

1307 B(20,10,:) = [4 8 3 7 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1308 B(20,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1309 B(20,12,:) = [3 6 4 5 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1310 B(20,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left
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1311 B(20,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1312 B(20,15,:) = [3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1313 B(20,16,:) = [4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1314 B(20,17,:) = [3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1315 B(20,18,:) = [4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1316 %Down

1317 B(20,19,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1318 B(20,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1319 B(20,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1320 B(20,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1321 B(20,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1322 B(20,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1323 B(20,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1324 B(20,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1325 B(20,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1326 %

.........................................................................................................

1327

1328 B(21,1,:) = [4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1329 B(21,2,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1330 B(21,3,:) = [4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1331 B(21,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1332 B(21,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1333 B(21,6,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1334 B(21,7,:) = [4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1335 B(21,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1336 B(21,9,:) = [4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1337 %Up

1338 B(21,10,:) = [4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1339 B(21,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1340 B(21,12,:) = [4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1341 B(21,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1342 B(21,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1343 B(21,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left
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1344 B(21,16,:) = [4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1345 B(21,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1346 B(21,18,:) = [4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1347 %Down

1348 B(21,19,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1349 B(21,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1350 B(21,21,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1351 B(21,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1352 B(21,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1353 B(21,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1354 B(21,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1355 B(21,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1356 B(21,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1357 %

.........................................................................................................

1358

1359 B(22,1,:) = [3 3 7 7 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1360 B(22,2,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Forward

1361 B(22,3,:) = [3 2 7 6 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1362 B(22,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1363 B(22,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1364 B(22,6,:) = [7 8 3 4 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1365 B(22,7,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1366 B(22,8,:) = [3 1 7 5 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1367 B(22,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1368 %Up

1369 B(22,10,:) = [3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1370 B(22,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1371 B(22,12,:) = [3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1372 B(22,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1373 B(22,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1374 B(22,15,:) = [3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1375 B(22,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1376 B(22,17,:) = [3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left
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1377 B(22,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1378 %Down

1379 B(22,19,:) = [7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1380 B(22,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1381 B(22,21,:) = [7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1382 B(22,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1383 B(22,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1384 B(22,24,:) = [7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1385 B(22,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1386 B(22,26,:) = [7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1387 B(22,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1388 %

.........................................................................................................

1389

1390 B(23,1,:) = [3 3 4 4 7 7 8 8 0 0 0 0 0 0 0 0]; %Itself

1391 B(23,2,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1392 B(23,3,:) = [4 1 3 2 8 5 7 6 0 0 0 0 0 0 0 0];%Backward

1393 B(23,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1394 B(23,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1395 B(23,6,:) = [3 4 7 8 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1396 B(23,7,:) = [4 3 8 7 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1397 B(23,8,:) = [3 1 7 5 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1398 B(23,9,:) = [4 2 8 6 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1399 %Up

1400 B(23,10,:) = [4 8 3 7 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1401 B(23,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1402 B(23,12,:) = [3 6 4 5 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1403 B(23,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1404 B(23,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1405 B(23,15,:) = [3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1406 B(23,16,:) = [4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1407 B(23,17,:) = [3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1408 B(23,18,:) = [4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1409 %Down
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1410 B(23,19,:) = [8 4 7 3 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1411 B(23,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1412 B(23,21,:) = [8 1 7 2 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1413 B(23,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1414 B(23,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1415 B(23,24,:) = [7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1416 B(23,25,:) = [8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1417 B(23,26,:) = [7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1418 B(23,27,:) = [8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1419 %

.........................................................................................................

1420 B(24,1,:) = [4 4 8 8 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1421 B(24,2,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1422 B(24,3,:) = [4 1 8 5 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1423 B(24,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1424 B(24,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1425 B(24,6,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1426 B(24,7,:) = [4 3 8 7 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1427 B(24,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1428 B(24,9,:) = [4 2 8 6 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1429 %Up

1430 B(24,10,:) = [4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1431 B(24,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1432 B(24,12,:) = [4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1433 B(24,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1434 B(24,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1435 B(24,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1436 B(24,16,:) = [4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1437 B(24,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1438 B(24,18,:) = [4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1439 %Down

1440 B(24,19,:) = [8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1441 B(24,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1442 B(24,21,:) = [8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

216



1443 B(24,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1444 B(24,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1445 B(24,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1446 B(24,25,:) = [8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1447 B(24,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1448 B(24,27,:) = [8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1449 %

.........................................................................................................

1450 B(25,1,:) = [7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1451 B(25,2,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Forward

1452 B(25,3,:) = [7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1453 B(25,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1454 B(25,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1455 B(25,6,:) = [7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1456 B(25,7,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1457 B(25,8,:) = [7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1458 B(25,9,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1459 %Up

1460 B(25,10,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1461 B(25,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1462 B(25,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1463 B(25,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1464 B(25,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1465 B(25,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1466 B(25,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1467 B(25,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1468 B(25,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1469 %Down

1470 B(25,19,:) = [7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1471 B(25,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1472 B(25,21,:) = [7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1473 B(25,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1474 B(25,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right
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1475 B(25,24,:) = [7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1476 B(25,25,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1477 B(25,26,:) = [7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1478 B(25,27,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1479 %

.........................................................................................................

1480 B(26,1,:) = [7 7 8 8 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1481 B(26,2,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1482 B(26,3,:) = [8 5 7 6 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1483 B(26,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1484 B(26,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1485 B(26,6,:) = [7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1486 B(26,7,:) = [8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1487 B(26,8,:) = [7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1488 B(26,9,:) = [8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1489 %Up

1490 B(26,10,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1491 B(26,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1492 B(26,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1493 B(26,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1494 B(26,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1495 B(26,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1496 B(26,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1497 B(26,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1498 B(26,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1499 %Down

1500 B(26,19,:) = [7 3 8 4 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1501 B(26,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1502 B(26,21,:) = [8 1 7 2 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1503 B(26,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1504 B(26,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1505 B(26,24,:) = [7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1506 B(26,25,:) = [8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1507 B(26,26,:) = [7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left
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1508 B(26,27,:) = [8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1509 %

.........................................................................................................

1510 B(27,1,:) = [8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %Itself

1511 B(27,2,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1512 B(27,3,:) = [8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1513 B(27,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1514 B(27,5,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1515 B(27,6,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1516 B(27,7,:) = [8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1517 B(27,8,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1518 B(27,9,:) = [8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1519 %Up

1520 B(27,10,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1521 B(27,11,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1522 B(27,12,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1523 B(27,13,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1524 B(27,14,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1525 B(27,15,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1526 B(27,16,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1527 B(27,17,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1528 B(27,18,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1529 %Down

1530 B(27,19,:) = [8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Itself

1531 B(27,20,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward

1532 B(27,21,:) = [8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward

1533 B(27,22,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Left

1534 B(27,23,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Forward +

Right

1535 B(27,24,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Left

1536 B(27,25,:) = [8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Right

1537 B(27,26,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Left

1538 B(27,27,:) = [8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%Backward +

Right

1539 return

1540
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1541 function [K11 ,K12 ,K13 ,K22 ,K23 ,K33 ,M] = SmallMatrix(Delta)

1542 %{

1543

1544 syms x

1545 syms y

1546 syms z

1547 mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (10) ’%’]);

1548 Q = zeros (64,1)*x;

1549 icount = 1;

1550 for i = 0:3

1551 for j = 0:3

1552 for k = 0:3

1553 Q(icount ,1) = x^i*y^j*z^k;

1554 icount = icount + 1;

1555 end

1556 end

1557 end

1558 mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (20) ’%’]);

1559 K11 = zeros(size(Q,1))*x*y*z;

1560 K12 = zeros(size(Q,1))*x*y*z;

1561 K13 = zeros(size(Q,1))*x*y*z;

1562 K22 = zeros(size(Q,1))*x*y*z;

1563 K23 = zeros(size(Q,1))*x*y*z;

1564 K33 = zeros(size(Q,1))*x*y*z;

1565 M = zeros(size(Q,1))*x*y*z;

1566 mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (25) ’%’]);

1567 for i = 1:size(Q,1)

1568 for j = 1:size(Q,1)

1569 K11(j,i) = diff(Q(j),x)*diff(Q(i),x);

1570 K12(j,i) = diff(Q(j),y)*diff(Q(i),x);

1571 K13(j,i) = diff(Q(j),z)*diff(Q(i),x);

1572 K22(j,i) = diff(Q(j),y)*diff(Q(i),y);

1573 K23(j,i) = diff(Q(j),z)*diff(Q(i),y);

1574 K33(j,i) = diff(Q(j),z)*diff(Q(i),z);

1575 M(j,i) = Q(j)*Q(i);

1576 end

1577 end

1578 mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (30) ’%’]);

1579 K11 = int(int(int(K11 ,x,[0 ,1]),y,[0 ,1]),z,[0 ,1]);

1580 K12 = int(int(int(K12 ,x,[0 ,1]),y,[0 ,1]),z,[0 ,1]);

1581 K13 = int(int(int(K13 ,x,[0 ,1]),y,[0 ,1]),z,[0 ,1]);

1582 K22 = int(int(int(K22 ,x,[0 ,1]),y,[0 ,1]),z,[0 ,1]);

1583 K23 = int(int(int(K23 ,x,[0 ,1]),y,[0 ,1]),z,[0 ,1]);

1584 K33 = int(int(int(K33 ,x,[0 ,1]),y,[0 ,1]),z,[0 ,1]);

1585 M = int(int(int(M,x,[0 ,1]),y,[0 ,1]),z,[0 ,1]);

1586 mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (35) ’%’]);

1587 T = MATRIX_T(Q);

1588 Tinv = inv(T);
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1589 mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (40) ’%’]);

1590 K11 = (Tinv)’*K11*Tinv;

1591 K12 = (Tinv)’*K12*Tinv;

1592 K13 = (Tinv)’*K13*Tinv;

1593 K22 = (Tinv)’*K22*Tinv;

1594 K23 = (Tinv)’*K23*Tinv;

1595 K33 = (Tinv)’*K33*Tinv;

1596 M = (Tinv) ’*M*Tinv;

1597 mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (45) ’%’]);

1598

1599 save(’matrices.mat’,’K11’,’K12’,’K13’,’K22’,’K23’,’K33’,’M’);

1600 %}

1601 L = load(’matrices.mat’);

1602 K11 = L.K11;

1603 K12 = L.K12;

1604 K13 = L.K13;

1605 K22 = L.K22;

1606 K23 = L.K23;

1607 K33 = L.K33;

1608 M = L.M;

1609

1610

1611 K11 = double(K11*Delta (2)*Delta (3)/Delta (1));

1612 K12 = double(K12*Delta (3));

1613 K13 = double(K13*Delta (2));

1614 K22 = double(K22*Delta (1)*Delta (3)/Delta (2));

1615 K23 = double(K23*Delta (1));

1616 K33 = double(K33*Delta (1)*Delta (2)/Delta (3));

1617 M = double(M*Delta (1)*Delta (2)*Delta (3));

1618 %mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (50) ’%’]);

1619 return

1620

1621 function T = MATRIX_T(Q)

1622 %{

1623 syms x;

1624 syms y;

1625 syms z;

1626

1627 n = size(Q,1);

1628 T = zeros(n);

1629 for j = 1:n

1630 T(j,1) = subs(Q(j) ,[x,y,z],[0,1,0]);

1631 T(j,2) = subs(Q(j) ,[x,y,z],[0,0,0]);

1632 T(j,3) = subs(Q(j) ,[x,y,z],[1,0,0]);

1633 T(j,4) = subs(Q(j) ,[x,y,z],[1,1,0]);

1634 T(j,5) = subs(Q(j) ,[x,y,z],[0,1,1]);

1635 T(j,6) = subs(Q(j) ,[x,y,z],[0,0,1]);

1636 T(j,7) = subs(Q(j) ,[x,y,z],[1,0,1]);
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1637 T(j,8) = subs(Q(j) ,[x,y,z],[1,1,1]);

1638

1639 T(j,9) = subs(diff(Q(j),x) ,[x,y,z],[0,1,0]);

1640 T(j,10) = subs(diff(Q(j),x) ,[x,y,z],[0,0,0]);

1641 T(j,11) = subs(diff(Q(j),x) ,[x,y,z],[1,0,0]);

1642 T(j,12) = subs(diff(Q(j),x) ,[x,y,z],[1,1,0]);

1643 T(j,13) = subs(diff(Q(j),x) ,[x,y,z],[0,1,1]);

1644 T(j,14) = subs(diff(Q(j),x) ,[x,y,z],[0,0,1]);

1645 T(j,15) = subs(diff(Q(j),x) ,[x,y,z],[1,0,1]);

1646 T(j,16) = subs(diff(Q(j),x) ,[x,y,z],[1,1,1]);

1647

1648 T(j,17) = subs(diff(Q(j),y) ,[x,y,z],[0,1,0]);

1649 T(j,18) = subs(diff(Q(j),y) ,[x,y,z],[0,0,0]);

1650 T(j,19) = subs(diff(Q(j),y) ,[x,y,z],[1,0,0]);

1651 T(j,20) = subs(diff(Q(j),y) ,[x,y,z],[1,1,0]);

1652 T(j,21) = subs(diff(Q(j),y) ,[x,y,z],[0,1,1]);

1653 T(j,22) = subs(diff(Q(j),y) ,[x,y,z],[0,0,1]);

1654 T(j,23) = subs(diff(Q(j),y) ,[x,y,z],[1,0,1]);

1655 T(j,24) = subs(diff(Q(j),y) ,[x,y,z],[1,1,1]);

1656

1657 T(j,25) = subs(diff(Q(j),z) ,[x,y,z],[0,1,0]);

1658 T(j,26) = subs(diff(Q(j),z) ,[x,y,z],[0,0,0]);

1659 T(j,27) = subs(diff(Q(j),z) ,[x,y,z],[1,0,0]);

1660 T(j,28) = subs(diff(Q(j),z) ,[x,y,z],[1,1,0]);

1661 T(j,29) = subs(diff(Q(j),z) ,[x,y,z],[0,1,1]);

1662 T(j,30) = subs(diff(Q(j),z) ,[x,y,z],[0,0,1]);

1663 T(j,31) = subs(diff(Q(j),z) ,[x,y,z],[1,0,1]);

1664 T(j,32) = subs(diff(Q(j),z) ,[x,y,z],[1,1,1]);

1665

1666 T(j,33) = subs(diff(diff(Q(j),x),y) ,[x,y,z],[0,1,0]);

1667 T(j,34) = subs(diff(diff(Q(j),x),y) ,[x,y,z],[0,0,0]);

1668 T(j,35) = subs(diff(diff(Q(j),x),y) ,[x,y,z],[1,0,0]);

1669 T(j,36) = subs(diff(diff(Q(j),x),y) ,[x,y,z],[1,1,0]);

1670 T(j,37) = subs(diff(diff(Q(j),x),y) ,[x,y,z],[0,1,1]);

1671 T(j,38) = subs(diff(diff(Q(j),x),y) ,[x,y,z],[0,0,1]);

1672 T(j,39) = subs(diff(diff(Q(j),x),y) ,[x,y,z],[1,0,1]);

1673 T(j,40) = subs(diff(diff(Q(j),x),y) ,[x,y,z],[1,1,1]);

1674

1675 T(j,41) = subs(diff(diff(Q(j),x),z) ,[x,y,z],[0,1,0]);

1676 T(j,42) = subs(diff(diff(Q(j),x),z) ,[x,y,z],[0,0,0]);

1677 T(j,43) = subs(diff(diff(Q(j),x),z) ,[x,y,z],[1,0,0]);

1678 T(j,44) = subs(diff(diff(Q(j),x),z) ,[x,y,z],[1,1,0]);

1679 T(j,45) = subs(diff(diff(Q(j),x),z) ,[x,y,z],[0,1,1]);

1680 T(j,46) = subs(diff(diff(Q(j),x),z) ,[x,y,z],[0,0,1]);

1681 T(j,47) = subs(diff(diff(Q(j),x),z) ,[x,y,z],[1,0,1]);

1682 T(j,48) = subs(diff(diff(Q(j),x),z) ,[x,y,z],[1,1,1]);

1683

1684 T(j,49) = subs(diff(diff(Q(j),y),z) ,[x,y,z],[0,1,0]);
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1685 T(j,50) = subs(diff(diff(Q(j),y),z) ,[x,y,z],[0,0,0]);

1686 T(j,51) = subs(diff(diff(Q(j),y),z) ,[x,y,z],[1,0,0]);

1687 T(j,52) = subs(diff(diff(Q(j),y),z) ,[x,y,z],[1,1,0]);

1688 T(j,53) = subs(diff(diff(Q(j),y),z) ,[x,y,z],[0,1,1]);

1689 T(j,54) = subs(diff(diff(Q(j),y),z) ,[x,y,z],[0,0,1]);

1690 T(j,55) = subs(diff(diff(Q(j),y),z) ,[x,y,z],[1,0,1]);

1691 T(j,56) = subs(diff(diff(Q(j),y),z) ,[x,y,z],[1,1,1]);

1692

1693 T(j,57) = subs(diff(diff(diff(Q(j),x),z),y) ,[x,y,z],[0,1,0])

;

1694 T(j,58) = subs(diff(diff(diff(Q(j),x),z),y) ,[x,y,z],[0,0,0])

;

1695 T(j,59) = subs(diff(diff(diff(Q(j),x),z),y) ,[x,y,z],[1,0,0])

;

1696 T(j,60) = subs(diff(diff(diff(Q(j),x),z),y) ,[x,y,z],[1,1,0])

;

1697 T(j,61) = subs(diff(diff(diff(Q(j),x),z),y) ,[x,y,z],[0,1,1])

;

1698 T(j,62) = subs(diff(diff(diff(Q(j),x),z),y) ,[x,y,z],[0,0,1])

;

1699 T(j,63) = subs(diff(diff(diff(Q(j),x),z),y) ,[x,y,z],[1,0,1])

;

1700 T(j,64) = subs(diff(diff(diff(Q(j),x),z),y) ,[x,y,z],[1,1,1])

;

1701 end

1702 %}

1703 T = [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0;

1704 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1705 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1706 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1707 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1708 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0;

1709 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 2 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0

0 0 0;
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1710 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 3 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0

0 0 0;

1711 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 2 0 0 2 2 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1712 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 1 0 0 1 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 2 0 0 2 0 0 0 0 0

0 0 0;

1713 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 2 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 4 0 0 0 0 0

0 0 0;

1714 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 3 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 6 0 0 0 0 0

0 0 0;

1715 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 3 0 0 3 3 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1716 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 1 0 0 1 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 3 0 0 3 0 0 0 0 0

0 0 0;

1717 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 2 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 6 0 0 0 0 0

0 0 0;

1718 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 3 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 9 0 0 0 0 0

0 0 0;

1719 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1720 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1721 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1722 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

3 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1723 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1724 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1

1 1 1;

1725 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

2 0 0 0 0 1 1 1 1 0 0 0 0 2 0 0 2 0 0 0 0 0 0 2 2 0 0 0 0 2

2 2 2;
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1726 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 1 1 0 0 0 0 3 0 0 3 0 0 0 0 0 0 3 3 0 0 0 0 3

3 3 3;

1727 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0

0 2 0 0 2 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1728 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0

1 0 0 0 0 2 0 0 2 1 0 0 1 1 0 0 1 0 0 0 2 0 0 0 2 2 0 0 2 2

0 0 2;

1729 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

2 0 0 0 0 2 0 0 2 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 4 0 0 0 0 4

0 0 4;

1730 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

3 0 0 0 0 2 0 0 2 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 6 0 0 0 0 6

0 0 6;

1731 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0

0 3 0 0 3 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1732 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0

1 0 0 0 0 3 0 0 3 1 0 0 1 1 0 0 1 0 0 0 3 0 0 0 3 3 0 0 3 3

0 0 3;

1733 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

2 0 0 0 0 3 0 0 3 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 6 0 0 0 0 6

0 0 6;

1734 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

3 0 0 0 0 3 0 0 3 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 9 0 0 0 0 9

0 0 9;

1735 0 0 1 1 0 0 1 1 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1736 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

1 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1737 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1738 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1739 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 2 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0

0 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1740 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 2 2 0 0 0 2 0 0 0 2 0 0 1 1 0 0 1 1 0 0 2 2 0

0 2 2;

1741 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 4 0 0 0 0 0 0 2 2 0 0 0 0 0

0 4 4;
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1742 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 6 0 0 0 0 0 0 3 3 0 0 0 0 0

0 6 6;

1743 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1744 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 4 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 4 0

0 0 4;

1745 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 0 0 0 0 0

0 0 8;

1746 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6 0 0 0 0 0

0 0 12;

1747 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 6 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1748 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 6 0 0 0 2 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 6 0

0 0 6;

1749 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 6 0 0 0 0 0

0 0 12;

1750 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 9 0 0 0 0 0

0 0 18;

1751 0 0 1 1 0 0 1 1 0 0 3 3 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1752 0 0 0 0 0 0 1 1 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

1 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1753 0 0 0 0 0 0 1 1 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1754 0 0 0 0 0 0 1 1 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1755 0 0 0 1 0 0 0 1 0 0 0 3 0 0 0 3 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0

0 0 0 3 3 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1756 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 3 3 0 0 0 3 0 0 0 3 0 0 1 1 0 0 1 1 0 0 3 3 0

0 3 3;

1757 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 6 0 0 0 0 0 0 2 2 0 0 0 0 0

0 6 6;

226



1758 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 9 0 0 0 0 0 0 3 3 0 0 0 0 0

0 9 9;

1759 0 0 0 1 0 0 0 1 0 0 0 3 0 0 0 3 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 6 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1760 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 6 0 0 0 3 0 0 0 3 0 0 0 2 0 0 0 2 0 0 0 6 0

0 0 6;

1761 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 4 0 0 0 0 0

0 0 12;

1762 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 6 0 0 0 0 0

0 0 18;

1763 0 0 0 1 0 0 0 1 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 9 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0;

1764 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 9 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 9 0

0 0 9;

1765 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6 0 0 0 0 0

0 0 18;

1766 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 9 0 0 0 0 0

0 0 27];

1767 T = T’;

1768 return;

1769

1770 function [B11 ,B12 ,B13 ,B22 ,B23 ,B33 ,BM] = AddMatrix(K11 ,K12 ,K13 ,

K22 ,K23 ,K33 ,M)

1771 B = AdjacentType ();

1772 B11 = zeros (216 ,216);

1773 B12 = zeros (216 ,216);

1774 B13 = zeros (216 ,216);

1775 B22 = zeros (216 ,216);

1776 B23 = zeros (216 ,216);

1777 B33 = zeros (216 ,216);

1778 BM = zeros (216 ,216);

1779 for g = 1:8

1780 for f = 1:8

1781 for i = 1:27

1782 for j = 1:27

1783 for k = 1:2:15

1784 if B(i,j,k) ~= 0

1785 B11(i+(g-1)*27,j+(f-1) *27) = B11(i+(g-1)

*27,j+(f-1) *27) + K11(B(i,j,k)+(g-1)*8,B(i,j,k+1)+(f-1) *8);
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1786 B12(i+(g-1)*27,j+(f-1) *27) = B12(i+(g-1)

*27,j+(f-1) *27) + K12(B(i,j,k)+(g-1)*8,B(i,j,k+1)+(f-1) *8);

1787 B13(i+(g-1)*27,j+(f-1) *27) = B13(i+(g-1)

*27,j+(f-1) *27) + K13(B(i,j,k)+(g-1)*8,B(i,j,k+1)+(f-1) *8);

1788 B22(i+(g-1)*27,j+(f-1) *27) = B22(i+(g-1)

*27,j+(f-1) *27) + K22(B(i,j,k)+(g-1)*8,B(i,j,k+1)+(f-1) *8);

1789 B23(i+(g-1)*27,j+(f-1) *27) = B23(i+(g-1)

*27,j+(f-1) *27) + K23(B(i,j,k)+(g-1)*8,B(i,j,k+1)+(f-1) *8);

1790 B33(i+(g-1)*27,j+(f-1) *27) = B33(i+(g-1)

*27,j+(f-1) *27) + K33(B(i,j,k)+(g-1)*8,B(i,j,k+1)+(f-1) *8);

1791 BM(i+(g-1)*27,j+(f-1) *27) = BM(i+(g-1)*27,j

+(f-1) *27) + M(B(i,j,k)+(g-1)*8,B(i,j,k+1)+(f-1) *8);

1792 else

1793 break

1794 end

1795 end

1796 end

1797 end

1798 end

1799 end

1800 return;

1801

1802 function [K11 ,K12 ,K13 ,K22 ,K23 ,K33 ,M,D,E] = Matrices(Delta ,N,

method)

1803 %mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (0) ’%’]);

1804 [K11q ,K12q ,K13q ,K22q ,K23q ,K33q ,Mq] = SmallMatrix(Delta);

1805 [B11 ,B12 ,B13 ,B22 ,B23 ,B33 ,BM] = AddMatrix(K11q ,K12q ,K13q ,K22q ,

K23q ,K33q ,Mq);

1806 %{

1807 K11 = spalloc ((N(1) +1)*(N(2)+1)*(N(3)+1) ,(N(1)+1)*(N(2)+1)*(N

(3) +1) ,(N(1)+1)*(N(2)+1)*(N(3)+1) *27);

1808 K12 = spalloc ((N(1) +1)*(N(2)+1)*(N(3)+1) ,(N(1)+1)*(N(2)+1)*(N

(3) +1) ,(N(1)+1)*(N(2)+1)*(N(3)+1) *27);

1809 K13 = spalloc ((N(1) +1)*(N(2)+1)*(N(3)+1) ,(N(1)+1)*(N(2)+1)*(N

(3) +1) ,(N(1)+1)*(N(2)+1)*(N(3)+1) *27);

1810 K22 = spalloc ((N(1) +1)*(N(2)+1)*(N(3)+1) ,(N(1)+1)*(N(2)+1)*(N

(3) +1) ,(N(1)+1)*(N(2)+1)*(N(3)+1) *27);

1811 K23 = spalloc ((N(1) +1)*(N(2)+1)*(N(3)+1) ,(N(1)+1)*(N(2)+1)*(N

(3) +1) ,(N(1)+1)*(N(2)+1)*(N(3)+1) *27);

1812 K33 = spalloc ((N(1) +1)*(N(2)+1)*(N(3)+1) ,(N(1)+1)*(N(2)+1)*(N

(3) +1) ,(N(1)+1)*(N(2)+1)*(N(3)+1) *27);

1813 M = spalloc ((N(1)+1)*(N(2)+1)*(N(3)+1) ,(N(1)+1)*(N(2)+1)*(N(3)

+1) ,(N(1)+1)*(N(2)+1)*(N(3)+1) *27);

1814 %}

1815 [D,E] = Domain(N,Delta);

1816 A = Adjacent(N,D);

1817 T = Type(N,A);

1818 %
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1819

1820 %mwb.Update(2, 1, 0, [’Matrix Creation ’ num2str (55) ’%’]);

1821 %{

1822 for i = 1:(N(1) +1)*(N(2)+1)*(N(3)+1)

1823 mwb.Update(2, 1, i/((N(1)+1)*(N(2)+1)*(N(3)+1)+1), [’Matrix

Creation ’ num2str(i/((N(1)+1)*(N(2)+1)*(N(3)+1)+1) *100) ’

%’]);

1824 for j = 1:27

1825 k = 1;

1826 while (B(T(i),j,k) ~= 0 && ~isnan(A(i,j)))

1827 K11(i,A(i,j)) = K11(i,A(i,j)) + K11q(B(T(i),j,k),B(

T(i),j,k+1));

1828 K12(i,A(i,j)) = K12(i,A(i,j)) + K12q(B(T(i),j,k),B(

T(i),j,k+1));

1829 K13(i,A(i,j)) = K13(i,A(i,j)) + K13q(B(T(i),j,k),B(

T(i),j,k+1));

1830 K22(i,A(i,j)) = K22(i,A(i,j)) + K22q(B(T(i),j,k),B(

T(i),j,k+1));

1831 K23(i,A(i,j)) = K23(i,A(i,j)) + K23q(B(T(i),j,k),B(

T(i),j,k+1));

1832 K33(i,A(i,j)) = K33(i,A(i,j)) + K33q(B(T(i),j,k),B(

T(i),j,k+1));

1833

1834 M(i,A(i,j)) = M(i,A(i,j)) + Mq(B(T(i),j,k),B(T(i),j

,k+1));

1835 k = k + 2;

1836 if(k >= 16)

1837 break;

1838 end

1839 end

1840 end

1841 end

1842 %}

1843 n = 0;

1844 for i = 1:(N(1) +1)*(N(2)+1)*(N(3)+1)

1845 for j = 1:27

1846 if ~isnan(A(i,j))

1847 n = n +1;

1848 end

1849 end

1850 end

1851

1852 %{

1853

1854 %}

1855 %{

1856

1857 NAN_A = ~isnan(A);
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1858 A2 = repmat(A(:,1) ,1,size(A,2));

1859 A3 = repmat ([1:27]’,1, size(A,1))’;

1860 iy = A(NAN_A);

1861 ix = A2(NAN_A);

1862 iz = A3(NAN_A);

1863 [ix iy iz];

1864

1865 for i = 1:size(iy ,1)

1866 mwb.Update(2, 1, i/(size(iy ,1)), [’Matrix Creation ’

num2str(i/size(iy ,1) *100) ’%’]);

1867 k = 1;

1868 while(k < 16 && B(T(ix(i)),iz(i),k) ~= 0)

1869 K11s(i) = K11s(i) + K11q(B(T(ix(i)),iz(i),k),B(T(ix(i))

,iz(i),k+1));

1870 K12s(i) = K12s(i) + K12q(B(T(ix(i)),iz(i),k),B(T(ix(i))

,iz(i),k+1));

1871 K13s(i) = K13s(i) + K13q(B(T(ix(i)),iz(i),k),B(T(ix(i))

,iz(i),k+1));

1872 K22s(i) = K22s(i) + K22q(B(T(ix(i)),iz(i),k),B(T(ix(i))

,iz(i),k+1));

1873 K23s(i) = K23s(i) + K23q(B(T(ix(i)),iz(i),k),B(T(ix(i))

,iz(i),k+1));

1874 K33s(i) = K33s(i) + K33q(B(T(ix(i)),iz(i),k),B(T(ix(i))

,iz(i),k+1));

1875 Ms(i) = Ms(i) + Mq(B(T(ix(i)),iz(i),k),B(T(ix(i)),iz(i)

,k+1));

1876 k = k + 2;

1877 end

1878 end

1879 %}

1880 %%{

1881

1882 if (method == 2)

1883 % mwb.Update(2, 1, 0.1, [’Matrix Creation ’ num2str (55)

’%’]);

1884 InvA = A’;

1885 NAN_A = ~isnan(InvA);

1886 A2 = repmat ([1:27]’,1, size(InvA ,2))’;

1887 A3 = repmat (1: size(A,1),size(A,2) ,1) ’;

1888 InvA3 = A3 ’;

1889 InvA2 = A2 ’;

1890 iy1 = InvA(NAN_A);

1891 ix1 = InvA3(NAN_A);

1892 iz1 = InvA2(NAN_A);

1893 Typex1 = T(ix1);

1894

1895 iy = [];

1896 ix = [];
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1897 iz = [];

1898 Typex = [];

1899

1900

1901 for i = 1:8

1902 for j = 1:8

1903 iy = [iy; iy1+(j-1)*size(A,1)];

1904 iz = [iz; iz1+(j-1) *27];

1905 ix = [ix; ix1+(i-1)*size(A,1)];

1906 Typex = [Typex; Typex1 +(i-1) *27];

1907 end

1908 end

1909

1910

1911

1912 %BAdd = B(Typex ,Typey ,:);

1913 %mwb.Update(2, 1, 0.2, [’Matrix Creation ’ num2str (60)

’%’]);

1914 K11s = B11(sub2ind(size(B11),Typex ,iz));

1915 %mwb.Update(2, 1, 0.3, [’Matrix Creation ’ num2str (65)

’%’]);

1916 K12s = B12(sub2ind(size(B12),Typex ,iz));

1917 %mwb.Update(2, 1, 0.4, [’Matrix Creation ’ num2str (70)

’%’]);

1918 K13s = B13(sub2ind(size(B13),Typex ,iz));

1919 %mwb.Update(2, 1, 0.5, [’Matrix Creation ’ num2str (75)

’%’]);

1920 K22s = B22(sub2ind(size(B22),Typex ,iz));

1921 %mwb.Update(2, 1, 0.6, [’Matrix Creation ’ num2str (80)

’%’]);

1922 K23s = B23(sub2ind(size(B23),Typex ,iz));

1923 %mwb.Update(2, 1, 0.7, [’Matrix Creation ’ num2str (85)

’%’]);

1924 K33s = B33(sub2ind(size(B33),Typex ,iz));

1925 %mwb.Update(2, 1, 0.8, [’Matrix Creation ’ num2str (90)

’%’]);

1926 Ms = BM(sub2ind(size(BM),Typex ,iz));

1927 %mwb.Update(2, 1, 0.9, [’Matrix Creation ’ num2str (95)

’%’]);

1928 elseif (method == 1)

1929 B = AdjacentType ();

1930 K11s = zeros(n,1);

1931 K12s = zeros(n,1);

1932 K13s = zeros(n,1);

1933 K22s = zeros(n,1);

1934 K23s = zeros(n,1);

1935 K33s = zeros(n,1);

1936 Ms = zeros(n,1);
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1937 ix = zeros(n,1);

1938 iy = zeros(n,1);

1939 ii = 1;

1940 for i = 1:(N(1)+1)*(N(2)+1)*(N(3)+1)

1941 %mwb.Update(2, 1, i/((N(1)+1)*(N(2)+1)*(N(3)+1)+1), [’

Matrix Creation ’ num2str(i/((N(1) +1)*(N(2) +1)*(N(3) +1) +1)

*100) ’%’]);

1942 for j = 1:27

1943 if ~isnan(A(i,j))

1944 ix(ii) = A(i,1);

1945 iy(ii) = A(i,j);

1946 k = 1;

1947 while (B(T(i),j,k) ~= 0 && ~isnan(A(i,j)))

1948

1949 K11s(ii) = K11s(ii) + K11q(B(T(i),j,k),B(T(i),j

,k+1));

1950 K12s(ii) = K12s(ii) + K12q(B(T(i),j,k),B(T(i),j

,k+1));

1951 K13s(ii) = K13s(ii) + K13q(B(T(i),j,k),B(T(i),j

,k+1));

1952 K22s(ii) = K22s(ii) + K22q(B(T(i),j,k),B(T(i),j

,k+1));

1953 K23s(ii) = K23s(ii) + K23q(B(T(i),j,k),B(T(i),j

,k+1));

1954 K33s(ii) = K33s(ii) + K33q(B(T(i),j,k),B(T(i),j

,k+1));

1955 Ms(ii) = Ms(ii) + Mq(B(T(i),j,k),B(T(i),j,k+1))

;

1956 k = k + 2;

1957 if(k >= 16)

1958 break;

1959 end

1960 end

1961 Tempi(ii) = T(i);

1962 Tempj(ii) = j;

1963 ii = ii +1;

1964 end

1965 end

1966 end

1967 end

1968

1969 %}

1970 K11 = sparse(ix ,iy ,K11s ,8*(N(1)+1)*(N(2)+1)*(N(3)+1) ,8*(N(1)+1)

*(N(2) +1)*(N(3) +1));

1971 K12 = sparse(ix ,iy ,K12s ,8*(N(1)+1)*(N(2)+1)*(N(3)+1) ,8*(N(1)+1)

*(N(2) +1)*(N(3) +1));

1972 K13 = sparse(ix ,iy ,K13s ,8*(N(1)+1)*(N(2)+1)*(N(3)+1) ,8*(N(1)+1)

*(N(2) +1)*(N(3) +1));
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1973 K22 = sparse(ix ,iy ,K22s ,8*(N(1)+1)*(N(2)+1)*(N(3)+1) ,8*(N(1)+1)

*(N(2) +1)*(N(3) +1));

1974 K23 = sparse(ix ,iy ,K23s ,8*(N(1)+1)*(N(2)+1)*(N(3)+1) ,8*(N(1)+1)

*(N(2) +1)*(N(3) +1));

1975 K33 = sparse(ix ,iy ,K33s ,8*(N(1)+1)*(N(2)+1)*(N(3)+1) ,8*(N(1)+1)

*(N(2) +1)*(N(3) +1));

1976 M = sparse(ix,iy,Ms ,8*(N(1)+1)*(N(2)+1)*(N(3)+1) ,8*(N(1)+1)*(N

(2) +1)*(N(3)+1));

1977 %{

1978 B(T(1:(N(1)+1)*(N(2)+1)*(N(3)+1)) ,1:27 ,2:2:16)

1979 K11q(B(T(1:(N(1) +1)*(N(2) +1)*(N(3) +1)) ,1:27 ,1:2:15),B(T(1:(N(1)

+1)*(N(2)+1)*(N(3)+1)) ,1:27 ,2:2:16))

1980

1981 sum(K11q(B(T(1:(N(1) +1)*(N(2)+1)*(N(3)+1)) ,1:27 ,1:2:15) >0,B(T

(1:(N(1) +1)*(N(2) +1)*(N(3) +1)) ,1:27 ,2:2:16)) >0)

1982 K11 (1:(N(1) +1)*(N(2) +1)*(N(3)+1) ,1:(N(1)+1)*(N(2)+1)*(N(3)+1))

= sum(B(T(1:(N(1)+1)*(N(2)+1)*(N(3)+1)) ,1:27 ,1:2:15))

1983 K11(1,:)

1984 size(K11)

1985 K11 (1:(N(1) +1)*(N(2) +1)*(N(3)+1),A(~ isnan(A(1:(N(1)+1)*(N(2)+1)

*(N(3) +1) ,1:27)))) = sum(K11q(B(T(1:(N(1) +1)*(N(2) +1)*(N

(3) +1)) ,1:27 ,1:2:15) >0,B(T(1:(N(1)+1)*(N(2)+1)*(N(3)+1))

,1:27 ,2:2:1)) >0);

1986 %}

1987

1988 %mwb.Update(2, 1, 1, [’Matrix Creation ’ num2str (100) ’%’]);

1989 return;

1990

1991 function T = Type(N,A)

1992 T = zeros ((N(1)+1)*(N(2)+1)*(N(3)+1) ,1);

1993 TEST = [1 10 nan 11 nan 2 nan nan nan 4

13 nan 14 nan 5 nan nan nan nan

nan nan nan nan nan nan nan nan;

1994 2 11 nan 12 10 3 1 nan nan 5

14 nan 15 13 6 4 nan nan nan

nan nan nan nan nan nan nan nan;

1995 3 12 nan nan 11 nan 2 nan nan 6

15 nan nan 14 nan 5 nan nan nan

nan nan nan nan nan nan nan nan;

1996 4 13 nan 14 nan 5 nan nan nan 7

16 nan 17 nan 8 nan nan nan 1

10 nan 11 nan 2 nan nan nan;

1997 5 14 nan 15 13 6 4 nan nan 8

17 nan 18 16 9 7 nan nan 2

11 nan 12 10 3 1 nan nan;

1998 6 15 nan nan 14 nan 5 nan nan 9

18 nan nan 17 nan 8 nan nan 3

12 nan nan 11 nan 2 nan nan;
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1999 7 16 nan 17 nan 8 nan nan nan nan

nan nan nan nan nan nan nan nan 4

13 nan 14 nan 5 nan nan nan;

2000 8 17 nan 18 16 9 7 nan nan nan

nan nan nan nan nan nan nan nan 5

14 nan 15 13 6 4 nan nan;

2001 9 18 nan nan 17 nan 8 nan nan nan

nan nan nan nan nan nan nan nan 6

15 nan nan 14 nan 5 nan nan;

2002 10 19 1 20 nan 11 nan 2 nan

13 22 4 23 nan 14 nan 5 nan nan

nan nan nan nan nan nan nan nan;

2003 11 20 2 21 19 12 10 3 1

14 23 5 24 22 15 13 6 4 nan

nan nan nan nan nan nan nan nan;

2004 12 21 3 nan 20 nan 11 nan 2

15 24 6 nan 23 nan 14 nan 5 nan

nan nan nan nan nan nan nan nan;

2005 13 22 4 23 nan 14 nan 5 nan

16 25 7 26 nan 17 nan 8 nan 10

19 1 20 nan 11 nan 2 nan;

2006 14 23 5 24 22 15 13 6 4

17 26 8 27 25 18 16 9 7 11

20 2 21 19 12 10 3 1;

2007 15 24 6 nan 23 nan 14 nan 5

18 27 9 nan 26 nan 17 nan 8 12

21 3 nan 20 nan 11 nan 2;

2008 16 25 7 26 nan 17 nan 8 nan

nan nan nan nan nan nan nan nan nan 13

22 4 23 nan 14 nan 5 nan;

2009 17 26 8 27 25 18 16 9 7

nan nan nan nan nan nan nan nan nan 14

23 5 24 22 15 13 6 4;

2010 18 27 9 nan 26 nan 17 nan 8

nan nan nan nan nan nan nan nan nan 15

24 6 nan 23 nan 14 nan 5;

2011 19 nan 10 nan nan 20 nan 11 nan

22 nan 13 nan nan 23 nan 14 nan nan

nan nan nan nan nan nan nan nan;

2012 20 nan 11 nan nan 21 19 12 10

23 nan 14 nan nan 24 22 15 13 nan

nan nan nan nan nan nan nan nan;

2013 21 nan 12 nan nan nan 20 nan 11

24 nan 15 nan nan nan 23 nan 14 nan

nan nan nan nan nan nan nan nan;

2014 22 nan 13 nan nan 23 nan 14 nan

25 nan 16 nan nan 26 nan 17 nan 19

nan 10 nan nan 20 nan 11 nan;
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2015 23 nan 14 nan nan 24 22 15 13

26 nan 17 nan nan 27 25 18 16 20

nan 11 nan nan 21 19 12 10;

2016 24 nan 15 nan nan nan 23 nan 14

27 nan 18 nan nan nan 26 nan 17 21

nan 12 nan nan nan 20 nan 11;

2017 25 nan 16 nan nan 26 nan 17 nan

nan nan nan nan nan nan nan nan nan 22

nan 13 nan nan 23 nan 14 nan;

2018 26 nan 17 nan nan 27 25 18 16

nan nan nan nan nan nan nan nan nan 23

nan 14 nan nan 24 22 15 13;

2019 27 nan 18 nan nan nan 26 nan 17

nan nan nan nan nan nan nan nan nan 24

nan 15 nan nan nan 23 nan 14];

2020 for i = 1:(N(1) +1)*(N(2)+1)*(N(3)+1)

2021 for j = 1:27

2022 bflag = true;

2023 for k = 1:27

2024 if(isnan(A(i,k))~= isnan(TEST(j,k)))

2025 bflag = false;

2026 end

2027 end

2028 if(bflag == true)

2029 T(i) = j;

2030 break;

2031 end

2032 end

2033 end

2034 return
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