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Abstract 

Large mammalian herbivores (megafauna) have experienced extinctions and declines since 
prehistory. Introduced megafauna have partly counteracted these losses yet are thought to 
have unusually negative effects on plants compared with native megafauna. Using a meta-
analysis of 3995 plot-scale plant abundance and diversity responses from 221 studies, we 
found no evidence that megafauna impacts were shaped by nativeness, “invasiveness,” 
“feralness,” coevolutionary history, or functional and phylogenetic novelty. Nor was there 
evidence that introduced megafauna facilitate introduced plants more than native megafauna. 
Instead, we found strong evidence that functional traits shaped megafauna impacts, with 
larger-bodied and bulk-feeding megafauna promoting plant diversity. Our work suggests that 
trait-based ecology provides better insight into interactions between megafauna and plants 
than do concepts of nativeness. 
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Large terrestrial mammalian herbivores (≥45 kg; henceforth “megafauna”) have distinct effects 
on ecosystems by causing disturbance, consuming low-nutrient vegetation, and dispersing 
seeds and nutrients (1, 2). These effects were ubiquitous for ~55 million years until the 
extinctions of the Late Pleistocene and Holocene (~130,000 to 7000 years before present) (3). 
More recently, humans have introduced numerous megafauna, which have partially 
counteracted these declines numerically (4) and functionally (5, 6), and which contribute some 
lost ecological functions, such as increasing water availability through well digging and 
reducing wildfire (7, 8). 
 
However, introduced megafauna can also reduce native plant abundance and diversity and 
promote introduced plants (9). These effects are generally interpreted as evidence that the 
impacts of introduced megafauna are distinct from those of native megafauna (10). 
Accordingly, conservation policy has prioritized the eradication and culling of introduced 
megafauna, even though 50% of these species are threatened or extinct in their native ranges 
(11). 
 
The notion that native and introduced species have distinct effects is most often justified by 
the functional postulate that long-term community-wide coevolutionary history shapes 
ecological interactions (12–14). Coevolution has been inferred at broad macroevolutionary 
scales [e.g., the evolution of grasses and grazers throughout the Cenozoic, or the evolution of 
plant defenses (15, 16)] and plays a role in specialized interactions, as evidenced by the 
consequences of introduced pathogens (17). However, these observations have been 
extended to justify a broader biological reality to nativeness in which coevolution also shapes 
diffuse, generalist interactions with high taxonomic precision, such as between individual plant 
and megafauna species. Nativeness has thus become central to conservation policy (18); 
widespread notions of ecological “health” (19); and basic biodiversity data, which only count 
populations thought to be native (20). 
 
However, critics have argued that coevolution is unlikely to shape generalist interactions in 
the same way it does specialized ones and that long-term community-wide coevolution is 
unmeasurable (21, 22). Instead, critics have suggested that ecological factors, such as 
predation, the environment, and functional traits, may sufficiently explain the effects of both 
introduced and native organisms (23, 24). If so, and if it were impossible to determine the 
nativeness of an organism from their actual effects, then nativeness would remain a 
description of dispersal history but would not be a meaningful way to understand ecological 
interactions (23). 
 
We employed a meta-analytic dataset of 3995 responses from 221 studies to evaluate whether 
nativeness and/or ecological factors (Table 1) could explain the effects of wild herbivorous 
megafauna (≥45 kg) on plant abundance (N = 3221 responses) and plant diversity (N = 774) 
(25, 26). Studies consisted of comparisons between adjacent areas with different densities of 
megafauna due to exclosures, management (e.g., hunting), or introduction or eradication 
disparities (e.g., neighboring islands with and without introduced megafauna). The final 
dataset had a global extent (albeit one biased toward North America, Europe, and Australia; 
fig. S1) and included 2908 plant responses (160 studies) to 110 native megafauna species 
and 1087 responses (62 studies) to 20 introduced megafauna species (25). 
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Table 1. The main hypotheses and results. 
Contrary to our predictions, we found no evidence that megafauna nativeness, novelty, or 
coevolutionary history explained their effects on plant diversity or abundance. Instead, we found strong 
evidence that functional traits explain megafauna impacts on plants. 
 

Hypothesis Result
Introduced, “invasive,” or feral megafauna 
have more negative effects on native 
plants than do other megafauna. 

We found no evidence that introduced, “invasive,” or 
feral megafauna have more negative effects on native 
plant abundance or diversity (Fig. 1 and tables S1 and 
S2).

Introduced megafauna have more 
negative effects on native plants than do 
native megafauna, especially on oceanic 
islands, which lack evolutionary exposure 
to mammalian megafauna. 

We found no evidence that introduced megafauna have 
more negative effects on native plant abundance and 
diversity than do native megafauna—regardless of the 
evolutionary exposure of the landform (Fig. 2 and tables 
S1 and S2).

Introduced megafauna promote 
introduced plants more than native 
megafauna do, especially on oceanic 
islands. 

We found no evidence that introduced megafauna 
promote introduced plant abundance or diversity more 
than native megafauna do (Fig. 2 and tables S1 and S2).

Coevolutionary history between 
megafauna and individual plants or native 
plant communities shapes the impacts of 
megafauna on plants. 

We found no evidence that “coevolved” megafauna have 
different effects on native plant abundance or diversity 
than do evolutionarily novel megafauna (Fig. 3 and 
tables S1 and S2).

Phylogenetically and functionally novel 
introduced megafauna have more 
negative effects on plants. 

We found no evidence that more phylogenetically or 
functionally novel megafauna have more negative 
effects on native plant abundance or diversity (Fig. 3 and 
tables S1 and S2).

The effects of megafauna on plants are 
shaped by environmental factors (net 
primary productivity, maximum annual 
temperature and precipitation, absolute 
latitude, human footprint index). 

We found no evidence that environmental factors shape 
megafauna effects on plant diversity and abundance 
(tables S1 and S2). 

The effects of megafauna on plant are 
shaped by megafauna functional traits 
(dietary selectivity, body mass, dietary 
preference, and fermentation type). 

We found strong evidence that dietary selectivity, body 
mass, and dietary preference shape megafauna effects 
on plants (Fig. 4 and figs. S2, S3, and S6). We found no 
evidence that fermentation type (proportion of biomass 
with hindgut fermentation) shapes megafauna impacts 
on plants.

The effects of megafauna on plants are 
shaped by megafauna diversity 
(measured as species and functional 
group richness). 

We found no evidence that megafauna species and 
functional group richness shapes their impacts on plants 
(fig. S9). However, we did find weak evidence that more 
diverse megafauna communities suppress introduced 
plant abundance.

No evidence for a biological reality to nativeness 

Multilevel meta-analytic models found that native and introduced megafauna had similar 
effects (measured as Hedges’ g) on native plant abundance and diversity (Fig. 1, A and B; 
planned contrast P value range = 0.25 to 0.94). Megafauna nativeness did not improve model 
quality relative to intercept-only null models [likelihood ratio test (LRT), P value range = 0.22 
to 0.95]. These effects were consistent when only considering megafauna species studied in 
both their native and introduced ranges (fig. S2; contrast P values = 0.30 to 0.94, LRT P values 
= 0.75 to 0.97). See table S1 for model estimates and table S2 for model comparison and 
planned contrast test statistics. 
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Fig. 1. Native, introduced, “invasive,” and feral megafauna have similar effects on native plant 
abundance and diversity. 
(A and B) There was no evidence that native (gray) and introduced (blue) megafauna had different 
effects on native plant abundance (A) or native plant diversity (B). (C and D) There was no evidence 
that introduced megafauna considered among the world’s 100 “worst” invasive species (27) and feral 
megafauna (E and F) had different effects than other megafauna. The horizontal dashed lines indicate 
no effect on plant abundance or diversity. Points indicate individual responses, with size indicating the 
inverse of sampling variance, with larger points thus having greater influence on the model. Model 
estimates are shown with points, with 95% confidence intervals (horizontal error bars) and prediction 
intervals (vertical bars). Text annotations state the number of plant responses, with the number of 
studies in parentheses. IUCN, International Union for Conservation of Nature. 
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However, not all introduced megafauna are considered equally problematic. “Invasive” 
megafauna are thought to have uniquely detrimental effects on ecosystems (27), and some 
argue that feral megafauna (wild but descending from domestic populations) have distinct 
effects due to human selection on their ancestors (28). However, there was no evidence that 
the effects of “invasive” megafauna (n = 3 species) or of feral megafauna (n = 6) on native 
plant abundance and diversity were different from the effects of other megafauna (Fig. 1, C to 
F; invasive: contrast P values = 0.15 to 0.50; feral: contrast P values = 0.41 to 0.60). Neither 
of these factors improved model quality (LRT P values = 0.15 to 0.62). 
 
Introduced megafauna are considered to have particularly distinctive effects on oceanic 
islands, whose biota did not evolve with mammalian megafauna (29). Likewise, it has been 
suggested that introduced megafauna may promote introduced plants more than native 
megafauna do, especially on oceanic islands, in a process called an “invasional meltdown” 
(30). We thus analyzed the effects of native and introduced megafauna on oceanic islands 
relative to continents and offshore islands, whose biota have been exposed to mammalian 
megafauna for millions of years. Because of limited sample size, we grouped plant abundance 
responses on continents and offshore islands (26). 
 
On continents and offshore islands, native and introduced megafauna alike had similarly 
negative effects on native plant abundance (Fig. 2A; omnibus P values < 0.0001, contrast P 
value = 0.94) and neutral effects on introduced plant abundance (Fig. 2B; omnibus P values 
= 0.25, contrast P value = 0.35). There was no evidence that the effects of introduced 
megafauna on oceanic island native plant abundance were different from the effects of native 
megafauna on continents and offshore islands (Fig. 2A; contrast P value = 0.82), and there 
was no evidence that introduced megafauna on oceanic islands increased the abundance of 
introduced plants relative to native ones (Fig. 2, A and B; contrast P value = 1.0). The inclusion 
of megafauna nativeness or landform evolutionary history did not improve model quality 
relative to models containing only plant nativeness (LRT P values = 0.16 to 0.17). 
 
 
There was also no evidence that native and introduced megafauna had different effects on 
native plant diversity on continents or offshore islands (Fig. 2C; contrast P values = 0.59 to 
0.83). Nor was there evidence that introduced megafauna on oceanic islands had different 
effects than native megafauna on offshore islands or continents (Fig. 2C; contrast P values = 
0.22 to 0.97). Introduced and native megafauna also had similar effects on introduced plant 
diversity (grouped across landforms because of insufficient sample size; Fig. 2D; contrast P 
value = 0.89). As with abundance, these effects tended to be more neutral than their effects 
on native diversity, but not significantly so (contrast P values = 0.08 to 0.81). 
Instead, megafauna, both native and introduced (contrast P values = 0.69 to 0.79), tended to 
have more negative, albeit nonsignificant, effects on plant diversity on islands (both offshore 
and oceanic) relative to continents (Fig. 2C; Hedges’ g, [95% confidence intervals]: continents 
= 0.01, [−0.2, 0.2], islands = −0.53, [−1.0, −0.1], contrast P value = 0.06). The inclusion of 
megafauna nativeness or landform evolutionary history did not improve model quality (LRT P 
values = 0.38 to 0.63), but landform itself (island versus continent) did (LRT P values = 0.02). 
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Fig. 2. Nativeness and landform evolutionary history do not influence megafauna impacts on 
plant abundance or diversity. 
There was no evidence that native and introduced megafauna had different effects on (A) native or (B) 
introduced plant abundance, regardless of landform evolutionary exposure to mammalian herbivorous 
megafauna. Continents and offshore islands were grouped owing to insufficient sample size. (C) There 
was no evidence that native or introduced megafauna had different effects on native plant diversity on 
continents, offshore islands, and oceanic islands. Instead, there was strong evidence that megafauna, 
native and introduced, tend to suppress diversity on islands (both offshore and oceanic) relative to 
continents. (D) There was no evidence that introduced megafauna facilitate introduced plant diversity 
more than native megafauna do. Introduced plant diversity responses were analyzed across all 
landforms owing to insufficient sample size. All planned contrast tests between native and introduced 
megafauna were nonsignificant. 
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No evidence that coevolutionary history shapes megafauna impacts 

Some introduced megafauna interact with plant species with which they have shared a native 
range and with which they have potentially coevolved (13). The effects of megafauna on these 
plants are expected to be distinct from the effects of megafauna on noncoevolved plants, such 
as herbivory-sensitive oceanic island endemics (31). To test this, we focused on species-level 
plant abundance responses (N = 1247) and compared the plant species distribution [from (32)] 
to reconstructed megafauna distributions in the absence of extinctions and range contractions 
and under modern climate (26, 33). We found that megafauna had similar effects on plant 
species regardless of whether they shared a native range (“coevolved”) or whether they only 
recently began interacting, following the introduction of either the megafauna or the plant 
species (Fig. 3A; contrast P value = 0.24). 
 

 
 
Fig. 3. Coevolutionary history and phylogenetic and functional novelty of introduced megafauna 
do not shape effects on native plant abundance or diversity. 
(A) There was no evidence that megafauna impacts on species-level plant abundance were affected 
by whether the plant and megafauna species have shared a native range and have potentially 
coevolved (“Coevolved”) relative to megafauna-plant species pairs whose native ranges do not overlap 
(“Novel”). Introduced plants are included in this analysis. (B) There was no evidence that megafauna 
impacts on local plant diversity were influenced by whether a megafauna shared potential 
coevolutionary history with the study area biome (e.g., introduced from a continent to an offshore island 
in the same biome, or introduced within the megafauna’s prehistoric distribution). (C to F) There was 
no evidence that the phylogenetic or functional novelty of “novel” introduced megafauna relative to the 
most similar “coevolved” megafauna shaped their effects on native plant abundance [(C) and (E)] or 
native diversity [(D) and (F)]. Novelty was estimated as cophenetic distance and Gower distance, 
respectively. Oceanic island endemic plants and oceanic island biomes, which have no evolutionary 
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history with any mammalian megafauna, are indicated on the far right of (C) to (F). All novelty measures 
are community-wide averages, weighted by relative biomass per megafauna species. Model estimates 
for (C) to (F) are shown with solid lines, with 95% confidence intervals shown with shaded belts and 
prediction intervals shown with ribbons. 
 
To explore effects on plant diversity, we tested whether biomes that share evolutionary history 
with the introduced megafauna (e.g., introduced horses Equus caballus in their prehistoric 
North American distribution) are differentially affected compared with biomes with novel 
megafauna species (e.g., introduced horses in Australia). To do so, we compared the 
introduced megafauna to prehistorically native megafauna in the study location’s biome (using 
the same reconstructed megafauna distributions as above). Megafauna introduced from 
continents to adjacent offshore islands within the same biome were considered coevolved. 
We found no evidence that coevolved megafauna have different effects on native plant 
diversity than evolutionarily novel introduced megafauna (Fig. 3B; contrast P value = 0.70). 
Neither of these estimates of coevolutionary history improved model quality (LRT P values = 
0.24 to 0.70; table S2). 
 
Some, ourselves included (5), have suggested that introduced megafauna that are closely 
related or functionally similar to prehistoric native megafauna may have more positive effects 
on native plants than do more phylogenetically or functionally novel introduced megafauna. 
We tested this by calculating the phylogenetic and functional novelty between each introduced 
megafauna and the most similar prehistoric native species (26). Contrary to our predictions, 
we found no evidence that phylogenetic or functional novelty influenced the effects of 
megafauna on species-level plant abundance or on native plant diversity (Fig. 3, C and F; P 
values = 0.23 to 0.99). Neither of these factors improved model quality (LRT P values = 0.24 
to 0.99). 

Strong evidence that functional traits shape megafauna impacts 

We then tested a suite of factors (n = 24) hypothesized to influence megafauna impacts. These 
factors may have obscured cryptic differences between native and introduced megafauna but 
may also provide ecological explanations for megafauna impacts. These included megafauna 
functional traits (body mass, dietary selectivity, fermentation type, dietary preference for 
grazing relative to browsing), environmental variables (maximum annual temperature and 
precipitation, absolute latitude, human footprint index, and net primary productivity), 
megafauna diversity (species and functional group richness), and methodological factors 
(duration of megafauna exclusion and measurement scale) (26). Megafauna functional traits 
were relativized by relative biomass per community (available for 78.4% of observations) (26). 
 
For each variable, we used likelihood ratio tests to compare an intercept-only null model, a 
model containing the variable, and a model containing the variable as well as megafauna 
nativeness (see table S2). We then tested for significant differences between native and 
introduced megafauna while controlling for each variable (26). 
 
Megafauna nativeness did not improve model quality for any model, which suggests that 
nativeness provides negligible information value (LRT P values = 0.10 to 0.97; table S2). 
Likewise, we found no significant difference between the effects of native and introduced 
megafauna when controlling for functional traits, environmental and methodological variables, 
or megafauna community richness (contrast P values = 0.09 to 1.0). 
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Fig. 4. Dietary selectivity influences megafauna impacts on plant diversity. 
(A) There was strong evidence that megafauna communities dominated by bulk-feeding generalists 
increased local plant diversity. Dietary generalism was estimated with muzzle width of each megafauna 
community (maximum, weighted by relative biomass per species; see fig. S3 for mean muzzle width). 
Letters in the plot indicate the taxa highlighted in (C) to (F). [Icons: Gabriela Palomo-Munoz, Jan A. 
Venter, Herbert H. T. Prins, David A. Balfour, and Rob Slotow (vectorized by T. Michael Keesey)] (B) 
Effect sizes for select groups of representative taxa from communities where these species constitute 
>50% of total megafauna biomass. Deer include all Cervidae, and wild pigs include all Suidae (primarily 
introduced wild boar, Sus scrofa). Equids include all Equidae but primarily feral horses (Equus ferus 
caballus). Large, broad-muzzled bovids include the genera Bison, Bos, and Syncerus. (C) Native and 
introduced deer can reduce plant diversity by selectively browsing preferred plants (49, 50). [Photo: 
Murray Foubister] (D) Pigs are distinct for belowground foraging and are dietary generalists, despite 
their relatively narrow muzzles (51). Feral pigs often increase plant diversity, at times doubling native 
plant diversity by suppressing competitive dominants (52). [Photo: Valentin Panzirsch] (E) Feral horses 
(E. ferus caballus) appear to have mixed effects on local plant diversity. (F) Bulk-grazers, like cape 
buffalo (Syncerus caffer) and bison (Bison bison), tend to increase plant diversity (53). Our results 
suggest that this is driven by their inability to selectively feed, forcing them to consume the most 
abundant (i.e., competitively dominant) plants. [Photo: Stig Nygaard] 
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Instead, we found strong evidence that dietary selectivity best explained the effects of 
megafauna on native plant diversity (slope = 0.26, P value = 0.0002, LRT P value = 0.002). 
Communities dominated by selective feeders tended to decrease diversity, whereas 
communities dominated by nonselective bulk feeders tended to increase diversity (Fig. 4 and 
fig. S3). Dietary selectivity was estimated with muzzle width, as larger-muzzled megafauna 
are limited in their ability to select preferred plants (34) and are therefore more likely to 
consume competitively dominant ones, thus freeing subdominant species from competition 
(35). 
 
Larger-bodied megafauna communities also had more positive effects on native plant diversity 
(fig. S4; slope = 0.20, P value = 0.02, LRT P value = 0.03). This was not a function of 
megafauna biomass, which did not influence plant diversity (fig. S5, biomass/net primary 
productivity: slope = 0.10, P value = 0.21), supporting the observation that larger megafauna 
are not equivalent to a similar biomass of smaller megafauna (2). 
 
Megafauna dietary preference for graminoids also influenced their effects on different plant 
growth forms (diversity LRT P value = 0.01; abundance LRT P value = 0.006; table S2), with 
a negative relationship on graminoid abundance and diversity (fig. S6; P values = 0.001 to 
0.01); a positive relationship with forbs (P values = 0.02 to 0.03); but with nonsignificant effects 
on woody plants (P values = 0.09 to 0.54). 
 
Megafauna impacts on plants were not shaped by any environmental variable (table S2) or 
any megafauna diversity measure (i.e., species or functional group richness; fig. S7). 
However, megafauna diversity had a significant negative interaction with introduced plant 
abundance (fig. S8; P value = 0.02), supporting that more diverse megafauna communities 
may suppress introduced plant dominance (36). While megafauna body mass and its 
interaction with plant nativeness also improved model quality, this relationship was 
nonsignificant (fig. S9; P value = 0.09). 

Discussion 

We found that theory developed in native systems explains patterns across native and novel 
ones (37), with nonselective and larger megafauna tending to have more positive effects on 
plant diversity. Many prehistoric assemblages were dominated by large-bodied bulk-feeding 
megafauna (38). Overexploitation, agriculture, and predator persecution has led to 
communities dominated by small, selective feeders (39). The restoration of predators and 
large megafauna, that is, trophic rewilding (40), would likely shift biomass back toward larger-
bodied bulk feeders (41) with implications for plant diversity. 
 
We found no evidence that nativeness shapes the effects of megafauna on plants. Our results 
are corroborated by other meta-analyses that have failed to find consistent differences 
between the effects of native and introduced organisms (42). While some introduced 
organisms, particularly specialists or predators on islands, may have distinct effects relative 
to native species, our results suggest that generalizing to megafauna is empirically unjustified 
and a conflation of history with ecology. 
 
We note that our analyses did not consider subtleties in compositional change nor other 
aspects of ecosystem functioning [soil, arthropods, other vertebrates, etc., but see (43)]. Our 
results suggest that these factors will also be shaped by functional traits (fig. S6) as well as 
by contexts not captured in our analysis, such as predation (44). Thus, as with native 
megafauna, introduced megafauna may come into conflict with the conservation of other 
species. We suggest that ecological reasoning provides better insight into such conflicts than 
do notions of nativeness. 
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We evaluated megafauna impacts at the plot scale, a key scale for understanding local 
vegetation dynamics. However, negative effects on plant diversity at the plot scale can scale 
up to positive effects at landscape scales if megafauna use areas at different intensities, 
thereby increasing landscape heterogeneity [(45), but see fig. S10]. Moreover, care should be 
taken in inferring the effects of megafauna on plant populations themselves from plot-scale 
data. The effects of megafauna on herbivory-sensitive oceanic island endemics (31) will be 
masked at the plot scale if those plants are already locally extirpated. The persistence of these 
species will likely depend on the availability of refugia, as in native systems, where herbivory-
sensitive plants are often restricted to inaccessible habitats [e.g., cliffs (46)]. 
 
Given their similar impacts, the same empirical claims used to argue for the eradication of 
introduced megafauna could be used for any megafauna, except for a key normative 
difference: native megafauna are considered to “belong,” while introduced ones are not. As 
such, the effects of introduced megafauna can be described as “harmful,” regardless of what 
those effects are [e.g., (47)]. The intrusion of normative values into science not only excludes 
those with different beliefs and reduces public trust in science (48) but can also hinder the 
conservation of wild and diverse ecosystems (11). We argue that the effects of introduced 
megafauna should be studied as any other wildlife would be studied, through the lens of 
functional ecology, with the normative dimensions of their “belonging” considered separately 
and with transparency. 
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