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A B S T R A C T   

Background: In livestock disease surveillance, spatial analysis methods play a major role in the 
identification of areas where the risk of disease could be higher. Though widely used in human 
health, their extent and depth of use are not well known in livestock health in sub-Saharan Africa 
and this has hindered their update in livestock disease modeling. This study set out to provide a 
comprehensive review of spatial analysis methods and their application in livestock disease data 
analysis in sub-Saharan Africa. 
Methods: Articles were searched using keywords related to spatial and spatio-temporal analysis of 
livestock diseases in sub-Saharan Africa in PubMed, Web of Science, Embase, and Scopus. Articles 
were reviewed in terms of name of author, country of study area, study design, livestock species, 
livestock diseases, research tasks, and spatial epidemiological methods in terms of spatial sta
tistics and models among others. 
Results: A total of 56 articles were selected for review. Descriptive approaches such as simple 
maps of incidence and prevalence (n = 22) have been commonly used. Spatial scan statistics of 
the Kulldorff (n = 15) have also been the common spatial statistics employed. Model based spatial 
analysis has also been used (n = 14). Key research tasks that have been performed include 
investigating disease distribution, risk factors, space and time interaction and spatial risk pre
diction. The shortfalls of the reviewed studies include lack of exploration of irregularly shaped 
cluster scan statistics in case the actual disease clusters are irregular. There is also lack of use of 
multivariate scan and joint spatial models in case of multiple groups or diseases to show co
morbidity. Model based spatial analysis has not accounted for space and time interaction. Ma
chine learning niche models have failed to account for spatial autocorrelation in the data. Model 
based spatial risk prediction has mainly been retrospective as opposed to prospective for early 
warning. 
Conclusion: Future research may consider the application of multivariate scan statistics and joint 
spatial models for disease comorbidity analysis. It may also explore the use of irregularly shaped 
cluster scan statistics to enable detection of irregular disease clusters. Research opportunities may 
also include the use of machine learning models that account for spatial autocorrelation. Future 

* Corresponding author. 
E-mail address: alfred.ngwira@sacids.org (A. Ngwira).  

Contents lists available at ScienceDirect 

Scientific African 

journal homepage: www.elsevier.com/locate/sciaf 

https://doi.org/10.1016/j.sciaf.2024.e02113 
Received 14 April 2023; Received in revised form 14 January 2024; Accepted 5 February 2024   

mailto:alfred.ngwira@sacids.org
www.sciencedirect.com/science/journal/24682276
https://www.elsevier.com/locate/sciaf
https://doi.org/10.1016/j.sciaf.2024.e02113
https://doi.org/10.1016/j.sciaf.2024.e02113
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sciaf.2024.e02113&domain=pdf
https://doi.org/10.1016/j.sciaf.2024.e02113
http://creativecommons.org/licenses/by-nc-nd/4.0/


Scientific African 23 (2024) e02113

2

spatial prediction is another area worth exploring to show future disease risk trends for early 
warning.   

Introduction 

Spatial analysis methods play a vital role in livestock disease monitoring, prevention and control. The methods involve the use of 
quantitative approaches to analyze data collected at locations defined by geographical coordinates [1]. They are useful in describing 
and inferring the occurrence of a variable attribute in relation to geographical location [2]. The methods generate information on 
geographical distribution of diseases thereby highlighting areas with high disease burden needing immediate interventions for control. 
The disease distribution information is also used to hypothesize possible contextual factors [3] such as livestock and pastoral 
movements, limited sampling and climatic conditions. 

Reviews on spatial analysis of livestock disease data have shown different analytical approaches [4–7]. The simplest approaches 
include the use of simple descriptive methods such as mapping of disease incidences and prevalence [8]. Spatial autocorrelation 
analysis commonly use the Khulldorff scan, Getis-Ord Gi* and Cuzick-Edwards’ k nearest neighbor (kNN) statistic [4,5]. Other used 
spatial autocorrelation statistics are Moran’s I and K function [7]. Model based spatial analysis of livestock diseases uses the con
ventional generalized linear model (GLM) approaches, for example, logistic, Poisson and geographically weighted regression and 
Bayesian approaches based on the conditional autoregressive (CAR) [4,5,9]. Other modeling approaches include kriging and 
ecological niche modeling based on method of maximum entropy (MaxEnt) and multicriteria decision analysis [4,5]. Different types of 
livestock spatial data are used, which include areal or lattice [9] and point referenced [10] data. The data is based on primary surveys 
and secondary sources such as national departments of animal health disease monthly and annual reports and world disease infor
mation systems such as World Organization for Animal Health Information System (WAHIS) and Emergency Prevention System 
(EMPRES-i) for Priority Animal and Plant Pests and Diseases of the Food and Agriculture Organization (FAO) [11]. Spatial analysis of 
these data uses either standalone software or add-in packages. The notable software includes SaTScan for scan statistics and GIS 
software for mapping. Bayesian spatial modeling while using conditional autoregressive regression is frequently done by INLA R 
package. MaxEnt software is commonly used to implement method of maximum entropy ecological niche modeling. 

Challenges in spatial analysis of livestock diseases in poor resource settings such as those in sub-Saharan Africa mainly lie in data 
[12]. Data is usually limited due to poor surveillance systems characterized by under-reporting and storage of data on paper-based 
systems [13]. Livestock disease surveillance is also characterized by limited laboratories for diagnosis compared to human health 
[14], which results in unreliable data since diagnosis is based on clinical manifestation. ‘One Health’ disease surveillance between 
animals and humans is also minimal, which if done can permit joint spatial analysis of zoonotic diseases. Although there has been 
progress in ‘One Health’ initiatives in sub-Saharan Africa, countries still lack diagnostic capacity and coordinated surveillance [15]. 
Limited livestock data is also exacerbated by political and financial constraints facing livestock disease research, especially research 
about non-zoonotic diseases compared to human health [12,16]. Spatial analyses at national level require sub-national data, for 
example, farming system and livestock population and this data is obtained through livestock census studies which many African 
countries do not conduct in time [12]. Data for livestock diseases is also available for few diseases since not all diseases are considered a 
priority in reporting [12]. Livestock disease models at the global scale rely on large scale data and in most cases this data is not 
available and if available through the WAHIS and EMPRES-i, there are inconsistencies with national disease reports [17,18]. The other 
challenge of spatial analysis of livestock diseases is limited education and skills in animal related sciences in non-traditional statistics 
such as spatial statistics [19]. 

These challenges in turn may hinder the update, development and application of novel epidemiological methods in spatial analysis 
of livestock diseases. In particular, spatial analysis methods, if any, may be simple and non-novel. In this regard, a comprehensive 
review was conducted to find out the status of spatial analysis and modeling of livestock disease data in sub-Saharan Africa, more 
especially on the profile of spatial analysis methods, models employed and the research tasks considered. The main question guiding 
the scoping review was, what are the gaps in spatial statistics and models in spatial analysis of livestock disease data in sub-Saharan 
Africa? The specific objectives based on this research question were, (i) to determine common spatial statistical methods being used, 
and (ii) to identify research gaps in application of spatial statistics and models in spatial analysis of livestock disease data. The strength 
of this review is that it had a wider coverage in terms of review of spatial analysis methods applied in analysis of livestock disease data 
without being limited to a single disease. In this regard, a similar previous review in Africa has only considered a single disease [5], 
which has not given a comprehensive picture of the methods applied. 

Methods 

This review was done according to the guidelines of a scoping review [20] (Supplementary Table 1), namely, identifying research 
question and objectives, identification of studies, defining selection of studies criteria, and data extraction and presentation. 

Research question and objectives 

The main question guiding the scoping review was, what are the gaps in methods of spatial analysis of livestock disease data in sub- 
Saharan Africa? The specific objectives based on this research question were, (i) to determine common spatial analysis methods in 
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spatial analysis of livestock disease data in sub-Saharan Africa, and (ii) to identify research gaps in statistics and models that have been 
employed. 

Identification of studies 

Identification of studies involved searching for relevant documents using PubMed, Web of Science, Embase and Scopus database. 
The documents were also searched in Google Scholar. Identification of documents involved searching for phrases that used keywords 
such as “spatial”, spatio-temporal”, “analysis”, “livestock”, “diseases” and “Africa”. Using these key words, a search phrase such as 
“spatial analysis of livestock diseases in Africa” would be implemented. The key word “spatial” would be replaced with “spatio- 
temporal” to make another search phrase. Alternatively, a single search phrase using Boolean operators “AND” and “OR” would be 
used to include the term “spatial” and “spatio-temporal”. For example, the following was the search phrase with the terms “spatial” and 
“spatio-temporal” in PubMed: (((((spatial) OR (spatio-temporal)) AND (analysis)) AND (livestock)) AND (diseases)) AND (Africa). 

Inclusion and exclusion criteria 

The inclusion criteria involved selecting studies where, (i) spatial or spatio-temporal analysis of livestock disease data was done in 
sub-Saharan Africa, (ii) studies were published in journals, and (iii) spatial or spatio-temporal analysis was based on statistical 
approach. Studies were excluded if, (i) they involved wild or companion animals, (ii) zoonotic diseases were strictly about humans, 
(iii) disease vectors were residing outside the animal body such as tsetse flies, (iv) studies were conducted outside sub-Saharan Africa, 
(v) study area was entire Africa, and (vi) spatial analysis used mathematical models. 

Data extraction and presentation 

Data extraction involved the review of selected studies on selected variables. Data collected on each selected article included name 
of the author, country of study area, study design, nature of data, data source, spatial statistical methods, statistical software, name of 
livestock disease, livestock species, and research tasks or objectives. Data was entered in Microsoft Excel spread sheet and then 
presented descriptively by frequency tables and bar graphs. 

Fig. 1. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) selection of articles.  
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Results 

Study selection 

Fig. 1 shows the selection process of the reviewed articles. A total of 494 articles were found and out of these 98 articles were 
eligible upon screening the title and abstract. Three hundred and ninety-six articles did not meet the selection criteria upon screening 
the title and abstract. Ninety-three articles were retained after removing 5 duplicates. After full text screening, 56 articles were finally 
selected for review and 37 articles failed the inclusion selection criteria. 

Study country, livestock species and diseases 

Supplementary Table 2 shows individual study characteristics. The distribution of the sampled studies by country shows a greater 
number of studies have been conducted in Tanzania (n = 9), Zimbabwe (n = 8), Ethiopia, (n = 7), Uganda (n = 7) and Kenya (n = 6) 
(Fig. 2). The distribution of studies by livestock species shows that most studies have been conducted in cattle (n = 47) (Fig. 3). Other 
studied livestock species include pigs, poultry and small ruminants such as sheep and goats. The studied diseases in cattle have been 
Foot and mouth disease, Anthrax, East Coast fever, Rabies, Lumpy skin disease, Anaplasmosis, Rift valley fever, Leptospirosis, 
Trypanosomiasis, Bovine tuberculosis, Crimean Congo hemorrhagic fever virus, Bovine dermatophilosis, Coxiella burnetii, Brucellosis 
and Cryptosporidiosis. The diseases studied in small ruminants have been Foot and mouth disease, Anthrax, Contagious caprine 
pleuropneumonia, Foot rot, Peste des petits ruminants, Sheep and goats’ pox, Rabies, Rift valley fever, Crimean Congo hemorrhagic 
fever virus, Coxiella burnetii, and Cryptosporidiosis. Porcine cysticercosis and African swine fever have been the studied diseases in 
pigs. The studied diseases in poultry include Newcastle disease and Avian influenza (HPAI H5N1). Overall, the frequently studied 
diseases have been Foot and mouth disease (n = 15), Anthrax (n = 9) and Rift valley fever (n = 5). 

Study design, nature and source of data 

Table 1 is a summary of studies in terms of study design, nature and source of data. A large number of studies have used retro
spective study design (n = 34) compared to cross-sectional design (n = 22). In retrospective design, studies have used historical disease 
outbreak or case records review. In this regard, either the outcome has been the number of outbreaks or cases. In some cases, the 
outcome has been the presence or absence of an outbreak or a case [21–23]. In most cases, the historical outbreak or case data has been 
collected from livestock health institutions such as the central animal health diagnostic laboratories, statistical and epidemiological 
units of the Ministry of Agriculture and Livestock. Historical animal data has also been collected from district and regional veterinary 
offices. Collection of the historical outbreak or case data has been through review of annual or monthly reports [24–26] and sur
veillance data bases [25,27]. Historical disease outbreak data has also been collected from peer reviewed journal articles and con
ference proceedings [28,29]. Historical record review has also seen the use of abattoir meat inspection records [30]. In other cases, the 
historical outbreak data has been collated from world disease information systems such as WAHIS [29,31,32]. Retrospective design 
studies have also used questionnaire surveys to collect retrospective disease outbreak data [22]. On the other hand, cross-sectional 

Fig. 2. Distribution of studies by country and diseases in sub-Saharan Africa. BF: Burkina Faso; CM: Cameroon; LS: Lesotho; MG: Madagascar; SA: 
South Africa; UG: Uganda; and TZ: Tanzania. 
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Fig. 3. Distribution of studies by livestock species and diseases. FMD: Foot and mouth disease; ECF: East Coast fever; LSD: Lumpy skin disease; 
CCPP: Contagious caprine pleuropneumonia; PPR: Peste des petits ruminants; and SGP: Sheep and goats’ pox. 

Table 1 
Study design, nature and source of data.  

Method Frequency Disease Reference 

Study design    
Retrospective 34 Rift valley fever, Foot and mouth disease, Anthrax, Rabies, Peste des petits ruminants, 

Lumpy skin disease, Newcastle disease, East Coast fever, Bovine dermatophilosis, 
Bovine tuberculosis, Lumpy skin disease, Avian influenza, and African swine fever 

[8,21–32,53–73] 

Cross-sectional 22 Brucellosis, Leptospirosis, Trypanosomiasis, Coxiella burnetii, Foot and mouth disease, 
East Coast fever, Lumpy skin disease, Anaplasmosis, Sheep and goats’ pox, Porcine 
cysticercosis, Leptospirosis, Bovine tuberculosis, Rift valley fever, Crimean Congo 
hemorrhagic fever virus, Contagious caprine pleuropneumonia, Foot rot, Peste des 
petits ruminants, and Cryptosporidiosis 

[10,33–52,74] 

Nature of data    
Historical outbreaks 
/cases 

33 Foot and mouth disease, Anthrax, East Coast fever, Lumpy skin disease, Rabies, Rift 
valley fever, Newcastle disease, Peste des petits ruminants, Bovine dermatophilosis, 
Bovine tuberculosis, Avian influenza, and African swine fever 

[8,21–32,53–63,65–73] 

Serological 19 Foot and mouth disease, Trypanosomiasis, Rift valley fever, Bovine tuberculosis, 
Crimean Congo hemorrhagic fever, Leptospirosis, Coxiella burnetii, Brucellosis, and 
Porcine cysticercosis 

[10,33,34,36–49,61,74] 

Case confirmation    
Suspected/clinical 9 Foot and mouth disease, Porcine cysticercosis, Bovine dermatophilosis, Bovine 

tuberculosis, and Lumpy skin disease 
[22,30,50,53–58] 

Confirmed/laboratory 26 Foot and mouth disease, Anthrax, Rabies, Rift valley fever, Leptospirosis, African swine 
fever, Trypanosomiasis, Bovine tuberculosis, Peste des petits ruminants, Crimean 
Congo hemorrhagic fever virus, Coxiella burnetii, Brucellosis, Leptospirosis, Avian 
influenza, and Cryptosporidiosis 

[10,23,26,27,32–34,36–38, 
40–49,51,52,61,70,71,74] 

Suspected/clinical and 
laboratory 

15 Foot and mouth disease, Anthrax, Lumpy skin disease, Rift valley fever, and Porcine 
cysticercosis 

[8,24,28,29,31,39,60,62–67, 
72,73] 

Unknown 6 Anthrax, East Coast fever, Lumpy skin disease, Foot and mouth disease, Newcastle 
disease, Anaplasmosis, Contagious caprine pleuropneumonia, Foot rot, Peste des petits 
ruminants, and Sheep and goats’ pox 

[21,25,35,59,68,69] 

Data source    
Livestock health 
authorities 

29 Foot and mouth disease, Anthrax, Lumpy skin disease, Rabies, African swine fever, 
Newcastle disease, Rift valley fever, Peste des petits ruminants, Bovine 
dermatophilosis, and Avian influenza 

[8,23–29,53–73] 

WAHIS 3 Foot and mouth disease, and Rift valley fever [29,31,32] 
Abattoir 2 Porcine cysticercosis, and Bovine tuberculosis [30,50] 
Journal articles 2 Foot and mouth disease [28,29]  
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Table 2 
Spatial analysis, models, software and research tasks.  

Method Frequency Disease Reference 

Spatial analysis    
Spatial scan 7 Porcine cysticercosis, Foot and mouth disease, Bovine tuberculosis, 

Lumpy skin disease, and Cryptosporidiosis 
[31,39,48,52,67,69,74] 

Space-time scan 10 Foot and mouth disease, Rabies, Lumpy skin disease, Rift valley fever, 
Avian influenza, and Bovine dermatophilosis 

[27–29,31,55,56,60,65,67,71] 

Getis-Ord Gi* 2 Peste des petits ruminants, and Lumpy skin disease [23,58] 
Moran’s I 4 Peste des petits ruminants, Bovine tuberculosis, Foot and mouth disease, 

and Trypanosomiasis 
[23,30,48,49] 

Cuzick-Edwards’ kNN 5 Brucellosis, Leptospirosis, Coxiella burnetii, Avian influenza, Foot and 
mouth disease, Trypanosomiasis, and Cryptosporidiosis 

[31,40,44,52,71] 

Ripley’s K function 1 Porcine cysticercosis 
[39] 

Space-time K function 2 Rift valley fever, and Foot and mouth disease [32,55] 
Space-time cube 1 Peste des petits ruminants [23] 
Kernel density estimation 1 Trypanosomiasis [34] 
Inverse distance weighting 1 Brucellosis [46] 
Ordinary kriging 3 Foot and mouth disease, and Trypanosomiasis [29,31,44] 
Semi-variogram 2 Crimean Congo hemorrhagic fever, and Coxiella burnetii [10,47] 
Conditional autoregressive 2 Foot and mouth disease, and Anthrax [48,63] 
Matern function 1 Crimean Congo hemorrhagic fever [10] 
Exponential function 1 Coxiella burnetii [47] 
Standard deviation ellipse 1 Anthrax [62] 
Descriptive statistics such as 
frequency tables, graphs and 
maps 

22 African swine fever, Foot and mouth disease, East Coast fever, Lumpy skin 
disease, Anaplasmosis, Contagious caprine pleuropneumonia, Foot rot, 
Peste des petits ruminants, Sheep and goats’ pox, Anthrax, Porcine 
cysticercosis, Coxiella burnetii, Leptospirosis, Rift valley fever, Newcastle 
disease, and Trypanosomiasis 

[8,22,24–26,33,35,36,38,41,42, 
43,45,50,51,53,54,57,62,68,72, 
73] 

Model based risk prediction 12 Anthrax, Foot and mouth disease, East Coast fever, Trypanosomiasis, Rift 
valley fever, Peste des petits ruminants, Crimean Congo hemorrhagic 
fever, Coxiella burnetii 

[10,21,23,29,47,49,59,61,63,64, 
66,70] 

Spatial modeling    
Logistic 8 Rift valley fever, Foot and mouth disease, Crimean Congo hemorrhagic 

fever, Peste des petits ruminants, East Coast fever, Trypanosomiasis, and 
Coxiella burnetii 

[10,21,23,29,31,47,49,61] 

Negative binomial 1 Peste des petits ruminants [23] 
Zero inflated Poisson 1 Anthrax [63] 
Boosted regression trees 1 Anthrax [62] 
Ensemble 1 Anthrax [59] 
MaxEnt 2 Rift valley fever, and anthrax [66,70] 
Generalized estimation 
equations 

1 Trypanosomiasis [37] 

Software    
QGIS 16 Foot and mouth disease, Anthrax, Rabies, African swine fever, Lumpy 

skin disease, Porcine cysticercosis, Bovine dermatophilosis, and Coxiella 
burnetii 

[8,22,26,27,38,50,53,54,56,57, 
59,60,62–64,67] 

ArcGIS 15 Foot and mouth disease, Anthrax, Rift valley fever, Bovine tuberculosis, 
Trypanosomiasis, and Coxiella burnetii 

[28–31,34,41,44,47,51,61,65,66, 
69,72,74] 

GIS Idrisi 1 East Coast fever [21] 
ArcMap 4 Foot and mouth disease, East Coast fever, Lumpy skin disease, 

Anaplasmosis, Contagious caprine pleuropneumonia, Foot rot, Peste des 
petits ruminants, Sheep and goats’ pox, Trypanosomiasis, and Brucellosis 

[23,35,37,46] 

ArcView 2 Porcine cysticercosis, and Anthrax [24,39] 
Epi Map 1 Newcastle disease [25] 
ILWIS 1 Anthrax [70] 
DIVA-GIS 1 Anthrax [73] 
MapInfo 1 Trypanosomiasis [49] 
biomod2 R package 1 Anthrax [59] 
SaTScan 14 Foot and mouth disease, Rabies, Bovine tuberculosis, Lumpy skin disease, 

Rift valley fever, Bovine dermatophilosis, Porcine cysticercosis, and 
Avian influenza 

[27–29,31,39,48,55,56,60,65,67, 
69,71,74] 

spatstat R package 2 Trypanosomiasis, and Cryptosporidiosis [34,52] 
splancs R Package 2 Rift valley fever, and Foot and mouth disease [32,55] 
INLA R package 1 Anthrax [63] 
SSTAT 1 Avian influenza [71] 
smacpod, sp, and ragdal R 
packages 

1 Cryptosporidiosis [52] 

OpenBugs, and geoR R package 1 Coxiella burnetii [47] 
spdep, and CARBayes R 
packages 

1 Foot and mouth disease [48] 

(continued on next page) 
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design studies have mainly employed serum surveys to collect data [10,26,33–49]. Some cross-sectional studies have used abattoir 
meat inspection [50]. Cross-sectional study of biological and environmental samples such as bones, soil and animal feces has also been 
done [51,52]. Cross-sectional design has also seen the use of participatory epidemiology, where selected key informants have been 
asked to rank livestock diseases based on prevalence in each study site [35]. The status of case confirmation shows that most studies 
have used confirmed cases (n = 26) and a combination of suspected/clinical and laboratory confirmed cases (n = 15). Most of the 
studies that have used purely suspected/clinical cases have been retrospective design studies while using historical record review or 
survey (n = 8) [22,30,53–58]. 

Spatial statistics, models and software 

Table 2 shows a summary of studies in terms of spatial analysis methods, software and research tasks. The common spatial analysis 
approaches in spatial analysis of livestock diseases in sub-Saharan Africa have been the use of the exploratory statistics such as fre
quency tables, graphs and simple maps (n = 22) [8,22,24–26,33,35,36,38,41–43,45,50,51,53,54,57,62,68,72,73]. Exploratory spatial 
analysis has also seen the use of analysis of variance (ANOVA) to test for significant differences between regions [68]. The use of 
exploratory statistics has limited these studies not to dive deep into spatial epidemiology. In this regard, these studies have been 
limited in testing for significant spatial autocorrelation or clustering. Furthermore, the studies have been limited in taking into account 
disease risk factor information in the spatial distribution. Nevertheless, the advantage of exploratory analysis is in the ease of its 
implementation and that it offers a quick overview of disease distribution. 

Kulldorff spatial scan statistics have been the other frequently used methods of spatial analysis, mainly to search and test for 
significant disease clusters (n = 15) [27–29,31,39,48,52,55,56,60,65,67,69,71,74]. The search for disease clusters has been purely in 
space or time [31,39,48,52,67,69,74]. In some cases, other studies have performed the search for disease clusters in both space and 
time [27–29,31,55,56,60,65,67,71]. With the Kulldorff scan statistics, a search window is imposed over the disease outbreak region or 
time period. The method detects a region or time frame as a cluster if the disease risk within the window is greater than outside. For the 
purely spatial scan, the window is usually a circle or an ellipse, while for a space-time scan, the search window is usually a cylinder 
where the base represents the space and the height represents time. Depending on the nature of the data, different surveyed studies 
have used different scanning models. Some studies have used the Bernoulli model where the outcome data is assumed to be either the 
case or control [29,31,39,48,52,69,71]. The Poisson model has been used when the outcome data has been the number of cases and the 
population at risk has been known [27,39,67]. The permutation model has also been used in case of the presence of cases data only 
without the base population at risk [28,55,56,60,65]. While the Kulldorff scan statistics are able to adjust for confounders [28], none of 
the surveyed studies have controlled for confounders. The other limitation of the surveyed studies is that the Kulldorff scan statistics 
have been limited to detecting regularly shaped circular clusters only. Furthermore, while it is known that multivariate Kulldorff scan 
statistics can be applied to multiple disease outcomes simultaneously to investigate commodity [75,76], the potentially sampled 
studies to do so have not investigated multiple disease comorbidity while using multivariate scan statistics [27,52,60]. This if it was 
done, would ensure unraveling comorbidity risk between animals and humans [52] or between different animal species [27,60]. 
Similar to space-time scan statistic, the other study used the space-time cube statistic to detect and test for significant clustering [23]. 
The space-time cube uses a regular three-dimensional structure with x and y coordinates representing space and height representing 

Table 2 (continued ) 

Method Frequency Disease Reference 

MaxEnt 2 Rift valley fever, and Anthrax [66,70] 
gbm R package 1 Anthrax [64] 
PrevMap R package 1 Crimean Congo hemorrhagic fever virus [10] 
Research tasks    
Distribution 34 African swine fever, Foot and mouth disease, Anthrax, Trypanosomiasis, 

East Coast fever, Lumpy skin disease, Anaplasmosis, Contagious caprine 
pleuropneumonia, Foot rot, Peste des petits ruminants, Sheep and goats’ 
pox, Porcine cysticercosis, Coxiella burnetii, Rift valley fever, 
Leptospirosis, Bovine tuberculosis, Newcastle disease, and Bovine 
dermatophilosis 

[8,22,24–26,28,30–39,41–43,45, 
50,51,53,54,56,57,59,62,63,67, 
68,72–74] 

Cluster analysis 21 Brucellosis, Leptospirosis, Coxiella burnetii, Anthrax, Foot and mouth 
disease, Porcine cysticercosis, Rabies, Bovine tuberculosis, Rift valley 
fever, Lumpy skin disease, Peste des petits ruminants, Bovine 
dermatophilosis, Avian influenza, Trypanosomiasis, and 
Cryptosporidiosis 

[23,27–31,39,40,44,48,50,52,55, 
56,59,60,65,67,69,71,74] 

Interaction 2 Rift valley fever, and Foot and mouth disease [32,55] 
Risk factors 25 Rift valley fever, African swine fever, Foot and mouth disease, Anthrax, 

Porcine cysticercosis, Coxiella burnetii, Leptospirosis, Crimean Congo 
hemorrhagic fever, Peste des petits ruminants, East Coast fever, Bovine 
tuberculosis, and Trypanosomiasis 

[8,10,21–23,26,29,30,36,38,43, 
45,48–51,54,61–66,21,63,6469, 
70] 

Prediction 12 Rift valley fever, Anthrax, Foot and mouth disease, Peste des petits 
ruminants, East Coast fever, Crimean Congo hemorrhagic fever, 
Newcastle disease, Coxiella burnetii, and Trypanosomiasis 

[10,21,23,25,29,47,49,59,61,64, 
66,70] 

Emergence of hot spots 1 Peste des petits ruminants [23] 
Dispersion and direction 1 Anthrax [62]  
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time dimension to search for clusters. To test for significant clustering in each space-time window, a Getis-Ord Gi* statistic is used, and 
to test for the cluster trend, a Mann-Kendall statistic is employed [77]. The strength of the study by Nkamwesiga et al. [23] was its 
ability to show the increasing or decreasing trend of the cluster. Thus, the advantage of the space-time cube over the space-time 
Kulldorff scan is that it can show the growth and shrinkage of a disease cluster over time. 

The other used spatial autocorrelation statistic has been the Moran’s I [23,30,49]. In this case, the Moran’s I has been used to test 
for the presence of spatial autocorrelation. A positive value of the Moran’s I means the presence of clustering and a negative value 
means the presence of dispersion. The use of the Moran’s I in these studies failed to show high and low value clusters. This might be the 
reason why Nkamwesiga et al. [23] also used the Getis-Ord Gi* statistic in addition to the Moran’s I which is capable of separating low 
from high value clusters [78]. The Cuzick-Edwards’ kNN statistic has been another used cluster statistic in spatial analysis of livestock 
diseases in sub-Saharan Africa [31,40,44,52,71]. It is used to test for clustering of point process case-control data. The statistic defined 
as Tk =

∑n
i=1δidk

i is based on the total number of cases dk
i which are in the k nearest neighbor of each case and control. The parameter δi 

is a binary indicator of a case (δi= 1) and a control (δi = 0). While the Cuzick-Edwards’ kNN test is capable of adjusting for the base 
population at risk including the known and unknown confounding factors [79], the surveyed studies did not control for the con
founding factors. The other used spatial cluster statistic has been the Ripley’s K function, K(h) [39] coined by Ripley [80]. This is 
similar to the Cuzick-Edwards’ kNN test which is used to test for clustering of point level case and control data. It measures the ‘in
tensity’ of incidences within the distance h of a randomly selected event. It tests the hypothesis that cases are more clustered than the 
controls. Other studies have used the bivariate K function to investigate the interaction of space and time in disease clustering, K(s, t)
[32,55]. In this regard, K(s, t) defines disease ‘intensity’ within the distance s and time t of the randomly selected event. Specifically, 
the significance of the space-time interaction and the presence of excess risk due to space and time interaction has been investigated. In 
the absence of space-time interaction, K(s, t) = K1(s)K2(t). The use of K function in these studies has shown limitation in explicitly 
showing the location of disease hot spots. Kernel density estimation (KDE) has been another spatial analysis method in spatial analysis 
of livestock diseases in sub-Saharan Africa [34]. In this approach, the probability of a disease event occurring at location s called 
‘density’ was calculated using a kernel and mapped. A kernel is basically a function which is symmetric about the mean such as the 
Gaussian distribution. In the KDE approach, the kernel is estimated at each data location and then the overall KDE is the sum of 
separate kernel functions. The advantage of the KDE is that it creates a smooth and continuous map surface without considering 
boundaries, which is visually impressive. Furthermore, the KDE can evaluate both clustering and location of clusters which is not the 
case with the K function [81]. Nevertheless, its disadvantage is that the specification of a band width for the kernel that determines 
smoothness of the estimate may give inconsistent results for different values [82]. 

Inverse distance weighting (IDW) has been another spatial analysis technique in spatial analysis of livestock disease data in sub- 
Saharan Africa [46]. This is a method of spatial interpolation, where a value at unobserved location s0 is estimated by the 
weighted sum of the sampled values si denoted by z(s0) =

∑n
i=1λiz(si), where λi are weights of the sampled values. The weights λi are 

the inverse of the distance of the sampled point to the predicted point. The disadvantage of IDW is that it does not account for statistical 
properties of the data, since the method is more of mathematical than geostatistical. A statistical approach to spatial interpolation has 
been kriging [29,31,44]. This is similar to IDW, only that the method uses the weights based on the semi-variogram model rather than 
been assigned by the user. Thus, the method is more of geostatistical than deterministic. Kriging is also capable of accounting for 
directional bias in spatial autocorrelation which is not the case with IDW. While kriging by Chimera et al. [29] was based on disease 
risk values adjusted by confounders in the model, Sirdar et al. [31] and Chimera et al. [44] kriging was based on the unadjusted disease 
incidence and prevalence respectively. The standard deviation ellipse (SDE) has been another used statistic in spatial analysis of 
livestock diseases in sub-Saharan Africa [62]. This has been used to show the central tendency, dispersion and orientation of a disease 
cluster. It uses the ratio of long axis to short axis to measure orientation effects. If the ratio is more than 1, it entails the presence of 
orientation in the cluster and if the ratio is 1, it implies absence of orientation. 

Model based spatial analysis has been another method of spatial analysis of livestock diseases in sub-Saharan Africa (n = 14) [10, 
21,23,29,37,47–49,59,61,63,64,66,70]. In this approach, a model of the disease outcome has been fitted on the predictor variables and 
in most cases, based on the fitted model, the disease risk has been predicted and mapped. To take into account spatial autocorrelation 
in the data, spatial autocorrelation statistics are employed. Different models have been fitted depending on the nature of outcome data. 
The logistic regression has been used in case the outcome data has been the presence or absence of the disease [10,21,23,29,47–49,61]. 
Of these studies, only Munsey et al. [48], Proboste et al. [47] and Telford et al. [10] took into account spatial autocorrelation of the 
outcome data by modeling location as spatially correlated random effect. Both Proboste et al. [47] and Telford et al. [10] used the 
geostatistical approach, where location was assigned the Gaussian distribution with zero mean and variance covariance matrix. To 
capture spatial dependency, the covariance matrix was specified as a Matern [10] or an exponential function [47], where in both cases 
spatial autocorrelation was a function of the distance between two points. Parameters of these covariance functions were dependent on 
the semi-variogram model of the residuals. In this regard, a semi-variogram is an exploratory plot of simi-variance of all pairs of points 
for different values of separating distance in geostatistical modeling. It serves to depict the extent of spatial autocorrelation. The 
problem of geostatistical models is that they are more often limited to point referenced data. On the other hand, Munsey et al. [48] used 
the conditional autoregressive (CAR) distribution to account for spatial autocorrelation. In this case, the random effect of location si 
was modeled on the values of immediate neighbors. In this way, the smooth pattern is estimated within the immediate neighborhood. 
The problem of the study by Munsey et al. [48] however was that it did not use the model to estimate the overall risk which would then 
be mapped. The CAR approach is usually appropriate in dealing with areal data as opposed to geostatistical approaches. In case the 
outcome data has been the number of disease outbreaks or cases, count data models have been employed [23,63]. In this case, Ndolo 
et al. [63] are using a Poisson hurdle model, which is a two staged model of the presence and absence and incidence of anthrax data. 
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The presence and absence data use the logistic regression and the incidence data is using the zero inflated Poisson (ZINP) distribution 
model. Location and year were modeled as spatial and temporal components respectively. Spatial autocorrelation was captured by the 
CAR model through the Besag, York and Mollié specification [83], where location was considered to be spatially correlated and 
uncorrelated. The correlated temporal component was modeled by the random walk prior and the uncorrelated temporal component 
was modeled by independent normal distribution with zero mean. The advantage of ZINP model is that it is capable of taking into 
account extra variation due to excess zero counts which is common in livestock disease data. The model however did not evaluate the 
space-time interaction. Nkamwesiga et al. [23] used the negative binomial (NB) distribution regression with the aim of accounting for 
overdispersion in the data. The model did not model location as a spatial parameter. 

Machine learning models in the context of ecological niche modeling have also been employed. Boosted regression trees [64], 
method of maximum entropy (MaxEnt) [66,70] and ensemble [59] are some of the observed machine learning approaches. The studies 
aimed at predicting probability of habitat suitability of the livestock diseases based on environmental variables. The advantage of 
boosted regression trees is that they can model complex nonlinear terms and interactions and their challenge is that they tend to overfit 
the data in case of too much noise. On the other hand, ensemble approach uses a set of machine learning algorithms with the aim of 
outperforming individual algorithms [59]. The use of machine learning has not accounted for spatial autocorrelation of disease 
suitability probability, where probability of nearby locations could be considered similar. The use of generalized estimation equations 
(GEE) has been another approach in spatial modeling of livestock diseases in sub-Saharan Africa [37]. In this case, they were used to 
estimate apparent disease prevalence with the aim of adjusting for correlation within communities. The method was not explicit in 
adjusting for other confounders. 

The use of software for spatial analysis of livestock diseases has fallen into standalone and add-in packages software. The commonly 
used standalone software include the familiar GIS related software such as QGIS (n = 16) and ArcGIS (n = 15). Other used GIS related 
software have been ArcView, ArcMap, MapInfo and Epi Map. The studies have also employed ILWIS, Diva GIS and GIS Idris. The GIS 
related software have mainly been used in mapping. SaTScan (n = 14) has been another commonly used standalone software, 
especially for disease cluster detection analysis [27–29,31,39,48,55,56,60,65,67,69,71,74]. The less used standalone software include 
OpenBugs [47] and MaxEnt [66,70]. The OpenBugs is designed to estimate Bayesian models via Markov chain Monte Carlo (MCMC) 
while using the Gibbs sampling algorithm. On the other hand, MaxEnt software is convenient in estimating ecological niche models 
while using the machine learning approach called method of maximum entropy. The use of add-in packages has seen the use of R and 
non R related packages. The R package smacpod has been used to implement cluster scanning using the Kulldorff scan statistics [52]. 
The other used R package has been spatstat for density estimation [34] and performing Cuzick-Edwards’ kNN test [52]. The 
Cuzick-Edwards’ kNN test has also been done by the Microsoft Excel add-in package known as SSTAT [40,71]. The use of R packages 
has also seen the use of splancs for computing the K functions [32,55] and sp and ragdal for drawing maps [52]. The R package geoR 
[47] and PrevMap [10] have been used in geostatistical modeling. The spdep and CARbayes R packages have been employed to test and 
account for spatial autocorrelation using the Moran’s I and CAR model respectively [48]. The implementation of the CAR model has 
again been done by the INLA R package. Machine learning models have seen the use of the gbm R package to implement boosted 
regression trees [64] and biomod2 [59] R package to implement ensemble modeling. While the use of add-in packages offers additional 
functionalities and flexibility over standalone software such as most of the familiar GIS software, they are not user friendly, especially 
those that are added in R programming software due to the use of coding to make commands. 

Research tasks 

Various research tasks have been performed in spatial analysis of livestock disease data in sub-Saharan Africa (Table 2). Some 
studies have merely investigated the distribution of disease incidence or prevalence through exploratory spatial analysis while using 
simple maps of disease prevalence or incidence [8,22,24,26,33,35–38,41–43,45,51,53,54,57,62,63,68,72,73]. Other studies have 
investigated disease clustering while using cluster statistics [23,27–31,39,40,44,48,50,52,55,56,58–60,65,67,69,71,74]. Nevertheless, 
Porphyre et al. [50] cluster analysis was exploratory basing on the size of apparent prevalence to define a cluster. The other research 
objective has been spatial prediction [10,21,23,29,47,49,59,61,63,64,66,70]. In this regard, in most cases, model based prediction has 
been used. The other form of prediction has been spatial interpolation while using cluster statistics such as KDE [34], IDW [46], and 
kriging [29,31,44]. The main aim of spatial interpolation has been smoothing. The shortfall of these studies however with exception to 
Chimera et al. [29] is that they implemented interpolation while using covariate unadjusted prevalence values. In general, spatial 
prediction has been retrospective rather than prospective. Mubamba et al. [25] attempted future prediction while using first order 
moving average time series model, but it is was not spatial prediction either. Determination of risk factors has been another research 
objective [8,10,21–23,26,29,36,38,43,45,48–51,54,59,61–66,69,70]. The shortfall of some of these studies though is that the risk 
factors were not used for spatial risk prediction [8,22,26,30,36,38,43,45,48,50,51,54,62,65,69]. Other studies have looked at 
investigation of space and time interaction while using the space-time K function [32,55]. In this regard, the investigation of 
space-time interaction while using the spatio-temporal model has been limited. Detection of emerging disease clusters has been 
another research task that has been performed in spatial analysis of livestock diseases [23] while using the Mann–Kendall statistic. The 
other research task that has been performed has been dispersion, direction and orientation of a disease cluster [62] while using the 
standard deviation ellipse. 
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Key findings and research gaps 

The review has found most studies employing exploratory approaches to spatial analysis compared to cluster statistics and models. 
The review has found lack of adjustment for confounders in the use of cluster statistics which are explicitly capable of adjusting for 
confounders such as the Cuzick-Edwards’ kNN and spatial scan statistics. The study has also found lack of use of irregularly shaped 
cluster scan statistics other than Kulldorff spatial scan statistics which are known to be limited in detecting irregular clusters. The use of 
cluster statistics has failed to explore disease comorbidity while using multivariate scan statistics [27,52,60]. Spatial modeling has 
revealed a few of the model based studies taking into account spatial autocorrelation in the data by modeling location as a spatial 
random effect [10,47,48,63]. In this regard, a special concern is on studies employing machine learning approaches which have not 
considered spatial autocorrelation in disease risk prediction. The investigation of space-time interaction has been limited to the use of 
cluster statistics such as space-time K function [32,55] as opposed to the use of spatio-temporal models. Model based spatial prediction 
has also been limited to retrospective prediction instead of prospective prediction so as to unravel future trends. Model based spatial 
analysis has also lacked evidence of comorbidity disease clustering between groups. For example, one interesting case would be Ndolo 
et al. [63] in using a joint spatial model to investigate comorbidity of anthrax between livestock and wildlife. Key research oppor
tunities therefore include the adjustment for cofounders in the use of cluster statistics. It also includes the use of scan statistics that can 
detect irregular disease clusters. The use of cluster analysis also calls for exploration of multivariate scan statistics to investigate disease 
comorbidity between groups. Spatial modeling research opportunities include the incorporation of space and time interaction in 
disease modeling. It further includes the prospective spatial prediction to unravel future trends. Joint spatial modeling to unravel 
disease comorbidity between groups may also be explored. 

Discussion 

This review aimed at determining the status of spatial analysis of livestock diseases in sub-Saharan Africa, more especially on the 
spatial statistics and models that have been employed. The strength of the review has been a wider coverage of livestock diseases than 
in previous reviews. This has given a comprehensive picture of the spatial analysis methods that are commonly used as far as all 
livestock diseases are concerned in sub-Saharan Africa. The research gaps found will thus help biostatisticians in veterinary epide
miology to know areas that need application or development of novel spatial analysis approaches. 

The study has found a greater usage of retrospective design than cross-sectional survey design. The greater use of retrospective 
design may be attributed to the easiness in data collection, especially if historical record review is employed, since in this scenario, data 
is readily available from animal health institutions. The other advantage of retrospective designs is that they can cover a wide 
geographical area, especially if the record review is based on a regional or world disease information system such as the EMPRES-i of 
the FAO [11]. Nevertheless, retrospective record review suffers the problem of data quality, due to missing records for some periods of 
time. Also, if the historical case notification was based on suspicion, there is no option to have confirmed cases. To circumvent the 
problem of missing data in historical record review, a retrospective questionnaire survey may be administered to animal health of
ficers, asking them about the occurrence of the disease in the past as done by Jemberu et al. [22]. Nonetheless, the disadvantage of this 
approach lies in the difficulty for animal health officers to remember when they had an outbreak in the past. Most of the reviewed 
cross-sectional design studies have employed serum surveys. Although disease cases are usually confirmed, serum surveys are 
expensive to implement and hence forth tend to cover a small geographical area. The use of participatory epidemiology [35] 
cross-sectional design ensures that sufficient information is collected in areas where data is hard to find, which is the case with most 
livestock data, especially in developing countries such as in sub-Saharan Africa. The problem of this approach might be the use of 
wrong clinical experience in disease listing from some key informants with poor disease clinical experience. 

The study has found a greater proportion of studies employing exploratory approaches in spatial analysis of livestock diseases 
compared to modeling in sub-Saharan Africa [8,22,24–26,33,35,36,38,41–43,45,50,51,53,54,57,62,68,72,73]. Some studies have not 
used risk factor information in predicting spatial risk while using models [8,22,26,30,36,38,43,45,48,50,51,54,62,65,69]. In either 
case, this may be related to challenges facing livestock health including lack of expertise in modeling due to lack of well-trained 
biostatisticians at veterinary related institutions. In this regard, the so-called biostatisticians at most veterinary institutions have 
their background not related to statistics. Also, lack of modeling skills might arise due to absence of postgraduate programs in 
biostatistics at veterinary institutions. Although, there are biostatistics programmes in non-agriculture training institutions, these tend 
to focus much of application in human health compared to animal health, thereby limiting advanced application in livestock health. It 
is high time that non-agriculture institutions biostatistics programmes strike a balance between different fields of application including 
animal health. Lack of data is another problem facing modeling in livestock diseases [12]. This is due to the poor surveillance systems 
characterized by under-reporting, absence of electronic data base systems and inadequate laboratories for diagnosis. Limited livestock 
data is also attributed to political and funding constraints facing livestock disease research, especially that about non-zoonotic diseases 
[12,16]. 

The use of spatial autocorrelation or cluster statistics has shown lack of controlling for confounders, and that the Kulldorff scan 
statistics have been limited to regular circular shapes. Adjusting for cofounders can allow the depicting of spatial autocorrelation 
without the contribution of nuisance factors. In this regard, it has been documented in the literature that the cluster statistics such the 
Cuzick-Edwards’ kNN can adjust for the base population at risk, unknown and known confounders by the wise choice of controls [79]. 
Similarly, the Kulldorff scan statistics are also capable of adjusting for confounders [28]. For example, Alton et al. [84] were able to use 
covariate adjusted space-time scan on bovine pneumonic lung and parasitic liver condemnation data in Ontario, Canada. In this case, 
four different methods of adjustment were employed and the results had shown substantial difference. The observed limited 
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application of covariate adjustment spatial scan statistics in sub-Saharan Africa may also be attributed to the poor data quality due to 
poor surveillance systems to capture all data variables including the confounders. It may also be attributed to lack of technical 
know-how in implementation of the adjustment methods. The problem that arises when using the regularly shaped cluster scan sta
tistic is that in case the true disease cluster is irregular, circular scan statistics tend to underestimate or overestimate the clusters [85], 
resulting in false alarms in case of overestimation. Irregular cluster scan statistics are available which biostatisticians need to explore 
[86]. Investigating disease comorbidity between groups while using autocorrelation and cluster statistics is another interesting area 
that has also been lacking. In this case, it would be vital to see if disease outcomes between groups are correlated over space which 
would aid in hypothesis formulation about common risk drivers. Investigation of disease comorbidity between groups may also 
enhance ‘One Health’ approaches, especially if comorbidity is between livestock, wildlife and humans. In this regard, outside 
sub-Saharan Africa, some studies have attempted to use multivariate scan statistics to simultaneously investigate spatial distribution of 
livestock disease outcomes [75,76]. Aleuy et al. [76] are using a multinomial model where the infectious bronchitis virus genotypes are 
considered as nominal levels. On the other hand, Jonsson et al. [75] are using the multiple data set adjustment approach to simul
taneously study clusters of Campylobacteriosis in humans and broiler flocks. 

Model based spatial analysis has shown limitation in taking into account spatial autocorrelation in disease distribution [10,48,63]. 
Spatial autocorrelation in livestock data is likely due to limited sampling in some areas. In this case, some veterinary officers are not 
diligent enough to consistently record and report disease cases. Livestock disease spatial autocorrelation may also be caused by 
livestock and pastoral movements [87], land use, climatic and environmental factors [11]. Non accounting for spatial autocorrelation 
can results in biased parameter estimation and decreased model predictive performance [88]. The greater concern is with the studies 
that have used ecological niche machine learning approaches, where not even one study has considered the issue of spatial auto
correlation in the data. In this case, the literature has shown that spatial autocorrelation also affects ecological niche models. In this 
regard, the presence of spatial autocorrelation in the data tends to inflate the significance values [89]. It also tends to inflate measures 
of model accuracy such as the area under the curve (AUC) of the receiver operating characteristic (ROC) [90]. According to Segurado 
et al. [89], two methods can be used to deal with spatial autocorrelation in niche models, namely, sub-sampling original data to 
eliminate certain data cells, and including an auto-covariate in a spatial model. The other problem in model based spatial analysis of 
livestock diseases has been lack of investigation of the interaction of space and time. This if done can allow the taking into account 
extra variability due to space and time interaction in overall risk estimation. This is possible as Bekara et al. [9] in France used a 
Bayesian model which incorporated the space and time interaction. Model based risk prediction has also been retrospective as opposed 
to prospective. This is an important limitation since prospective spatial risk prediction would enable visualization of future risk trends 
by space, which would be vital for early warning. Similar to limitation in disease comorbidity investigation by cluster statistics, joint 
spatial disease modeling needs to be enhanced for elucidation of common spatial trends between disease groups. This is possible, more 
especially in the frame work of Bayesian disease modeling. An important scenario where joint modeling can be useful would be 
modeling zoonotic diseases to understand comorbidity between humans and animals. In this case, joint models would be useful in 
understanding divergent and shared risk of zoonotic diseases between wild animals, livestock and humans [91]. It may also be used to 
correlate animal host population with human disease incidence [92]. Joint modeling may also be used to collate animal and human 
data to inform risk of zoonoses [93]. 

The following are the weaknesses of this study. The first weakness is that the review might have missed some important studies in 
other languages since the review was done in English. The other shortfall is that the study did not widen the scope to look at the entire 
world. This would have offered an opportunity to compare spatial analysis methods in sub-Saharan Africa with other continents. The 
study also focused on statistical methods rather than widening the scope to even look at mathematical approaches to spatial analysis. 
Future similar studies may thus explore the world-wide review and incorporate mathematical approaches in spatial analysis to 
compare with statistical approaches. 

Conclusion and recommendation 

The review has found majority of studies employing exploratory tools in spatial analysis of livestock diseases in sub-Saharan Africa. 
It has also found limited usage of risk factor information in estimating disease risk. The study has also found lack of usage of irregular 
shape cluster scan statistics. There is also no adjustment for nuisance factors in the usage of spatial cluster statistics. Disease co
morbidity spatial scanning and modeling has also been lacking. Model based spatial analysis has not investigated the interaction of 
space and time. Most model based spatial analysis, especially machine learning approaches, have not explored the issue of spatial 
autocorrelation in the data. Model based spatial prediction has not considered future prediction for early warning. Future research can 
consider application of irregular cluster scan statistics in detection of disease clusters. It can also consider adjustment for cofounders 
and investigation of disease comorbidity while using the multivariate spatial scan statistics. Future research should consider devel
opment and application of joint spatial models for multiple diseases or groups to show disease comorbidity. The use of machine 
learning in niche models should consider exploring the effect of spatial autocorrelation in the data. Lastly, future research can consider 
prospective spatial prediction as opposed to retrospective prediction to aid in early warning. 
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