
Automated learning rates in machine learning for dynamic

mini-batch sub-sampled losses

by

Dominic Kafka

This thisis is submitted in partial fulfilment of the requirements for the degree

Philosophiae Doctor (Mechanical Engineering)

in the

Faculty of Engineering, the Built Environment and Information Technology

University of Pretoria

Pretoria

South Africa

2020



To the pursuit of progress..

”We never get there, we only get better.” - Daniel N. Wilke
A gradient-only projection into the philosophical space.



Abstract

Title: Automated learning rates in machine learning for dynamic mini-batch
sub-sampled losses

Author: Dominic Kafka

Supervisor: Daniel N. Wilke

Learning rate schedule parameters remain some of the most sensitive hyperparameters in
machine learning, as well as being challenging to resolve, in particular when mini-batch sub-
sampling is considered. Mini-batch sub-sampling (MBSS) can be conducted in a number of
ways, each with their own implications on the smoothness and continuity of the underlying loss
function. In this study, dynamic MBSS, often applied in approximate optimization, is considered
for neural network training. For dynamic MBSS, the mini-batch is updated for every function
and gradient evaluation of the loss and gradient functions. The implication is that the sampling
error between mini-batches changes abruptly, resulting in non-smooth and discontinuous loss
functions. This study proposes an approach to automatically resolve learning rates for dynamic
MBSS loss functions using gradient-only line searches (GOLS) over fifteen orders of magnitude.
A systematic study is performed, which investigates the characteristics and the influence of
training algorithms, neural network architectures and activation functions on the ability of
GOLS to resolve learning rates. GOLS are shown to compare favourably against the state-of-
the-art probabilistic line search for dynamic MBSS loss functions. Matlab and PyTorch 1.0
implementations of GOLS are available for both practical training of neural networks as well as
a research tool to investigate dynamic MBSS loss functions.
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Chapter 1

Overview

Step sizes in neural network training are largely set using predetermined rules such as fixed
learning rates or learning rate schedules. These require user input or expensive global optimiza-
tion strategies to resolve their functional form and associated hyperparameters. Typically, these
learning rate parameters are among the most sensitive hyperparameters in neural network train-
ing. Attempts to resolve learning rates automatically using line searches have been hindered, as
minimization line searches require loss functions to be continuous and smooth. However, due to
growing data demands, memory-limited computational resources such as graphical processing
units (GPUs), and the dynamics of on-line learning, make mini-batch sub-sampling in neural
network training unavoidable. The omission of training data to produce a given mini-batch
introduces a sampling error into the loss function. Although different mini-batches represent
the full-batch loss function on average, individual instances might vary significantly from the
mean, or full-batch loss function [Tong and Liu, 2005].

In this work we specifically distinguish between static and dynamic mini-batch sub-sampled
(MBSS) loss functions. Generally, these two sub-sampling approaches are not explicitly disam-
biguated between researchers, as they are synonymous in the case where predetermined learning
rate schedules are applied. However, as the interest in conducting line searches for neural network
training increases, a lack of distinction between sub-sampling approaches within a line search
can lead to confusion. In static MBSS loss evaluations, mini-batches are fixed for a minimum
duration of a line search during training. This presents a line search algorithm with smooth
loss functions that have no variance, but distinct bias due to sampling error [Friedlander and
Schmidt, 2011, Bollapragada et al., 2017, Kungurtsev and Pevny, 2018]. Conversely, in dynamic
MBSS losses, new mini-batches are sampled at every loss evaluation within a line search. This
trades a fixed sampling error bias for variance as the sampling error is continuously changing
for every mini-batch [Mahsereci and Hennig, 2017, Wills and Schön, 2018, 2019]. Therefore,
this distinction is important, as the method of sub-sampling determines how the sampling error
manifests within a loss function, namely, either as bias or variance. Commonly, the variance
produced by dynamic MBSS is referred to as noise [Simsekli et al., 2019], implying that the
stochastic loss component has no structure. After further consideration of both static and dy-
namic MBSS, we argue that dynamic MBSS with a fixed training dataset results in point-wise
discontinuous loss functions that have a deterministically limited number of sampling errors.
The range of sampling errors are linked to the number of possible mini-batch combinations in
the training dataset. Therefore, as the training dataset and the mini-batch sizes increase, so do
the possible combinations of mini-batches to produce different sampling errors. Bottou [2010]
argues, that the act of constantly changing the mini-batch during approximate optimization
benefits training, as it exposes an algorithm to a larger amount of training data. However,
dynamic MBSS renders minimization line searches ineffective, since critical points may not exist
and function minimizers find spurious, discontinuity-induced local minima.

Since optimization within smooth and continuous loss functions is a well developed field
[Arora, 2011], we decide to shift our attention to optimization in dynamic MBSS loss functions
instead, as it dominates training problems encountered in machine learning. Training neural
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networks in particular is a rapidly developing field with wide scope for application. However,
applying matured methods from fields such as mathematical programming to aid neural network
training requires, at a minimum, the ability to reliably identify candidate solutions close to
optima of full-batch loss functions. As mentioned, the discontinuous nature of dynamic MBSS
losses restricts the ability of traditional optimality criteria such as local minima and critical
points to find such candidate solutions.

Instead, we suggest recasting the optimization problem in dynamic MBSS losses to find
Stochastic Non-Negative Associated Gradient Projection Points (SNN-GPPs). We demonstrate
that the SNN-GPP optimality criterion is less susceptible to dynamic MBSS induced disconti-
nuities than critical points or minimizers. Along a univariate descent direction, as used in line
searches, an SNN-GPP is identified by a sign change from negative to positive in the directional
derivative. We demonstrate that SNN-GPPs can be used to great effect in Gradient-Only Line
Searches (GOLS) to determine step sizes in the dynamic MBSS loss functions of neural network
training. This allows learning rate schedules to be resolved adaptively during training, effectively
eliminating the need for expensive parameter tuning. The ability of GOLS to determine step
sizes is independent of the algorithm used. Different algorithms can produce a variety of dis-
tinct search directions, while GOLS subsequently determine step sizes to estimate the location
of full-batch optima along the given search directions.

The purpose of this work is to progressively develop GOLS for dynamic MBSS losses in
neural network training, starting from building a visual intuition of the SNN-GPP optimality
criterion, to comparing GOLS methods to existing benchmarks such as minimization and prob-
abilistic line searches; and finally, exploring the characteristics of GOLS as applied in practice
for different training algorithms and activation functions. This work contributes to machine
learning optimization, not only by eliminating the need for learning rate schedules, but more
importantly by strengthening the ties between mathematical programming and machine learn-
ing. The introduction of effective line searches in dynamic MBSS losses allows more training
methods from classical optimization theory to be applied to neural network training. This pro-
motes popular classic optimization approaches such as Quasi-Newton methods [Arora, 2011] to
be explored more seriously in the context of dynamic MBSS neural network losses. Additionally,
GOLS can be used as a research tool to further explore the nature of neural network loss func-
tions. This study is divided into five additional self contained chapters, each exploring different
aspects related to gradient-only line searches. Each of these chapters are based on bodies of
work that have been submitted and/or accepted for publication in various journals.

In Chapter 2[Kafka and Wilke, 2019a] we conduct a visual investigation comparing local
minimum and SNN-GPP optimality criteria in the loss functions of a foundational neural net-
work training problem. We consider a variety of popular activation functions in the selected
feedforward network architecture. We show that SNN-GPPs better approximate the location
of full-batch optima, particularly when using smooth activation functions with high curvature
characteristics. This suggests that it is feasible to construct line searches that locate SNN-GPPs,
which can contribute significantly to automating neural network training.

Chapter 3[Kafka and Wilke, 2019b] develops a robust approach to adaptively resolve learning
rates in dynamic MBSS loss functions. Over a number of investigative studies we demonstrate
that gradient-only line searches (GOLS) are able to adaptively resolve learning rate schedules.
We show that GOLS outperform minimization line searches over a wide range of foundational
training problems with different network architectures. Additionally, we demonstrate that poor
search directions may artificially benefit from overstepping optima along a descent direction.
Conversely, improving search directions can lead to comparable performance to overstepping
optima. After establishing GOLS as a reliable line search approach, and using the property that
SNN-GPPs generalize to smooth functions, we can for the first time directly compare dynamic
and static MBSS within line searches for neural network training.

Subsequently, in Chapter 4[Kafka and Wilke, 2019] we benchmark the Gradient-Only Line
search that is Inexact (GOLS-I) (as developed in Chapter 3) against Probabilistic Line Searches
(PrLS) [Mahsereci and Hennig, 2017]. PrLS uses statistical surrogates to determine step sizes
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in dynamic MBSS losses, which comes with a significant amount of overhead. We show that
GOLS-I is a competitive strategy to reliably resolve step sizes, adding high value in terms of
performance, while being comparatively easy to implement. We show that PrLS is effective
in determining step sizes when mini-batches are very small (≈ 10), while GOLS-I becomes
increasingly competitive and outperforms PrLS as the mini-batch size grows (≤ 50) for the
investigated training problems.

Having demonstrated the capabilities of GOLS-I as a line search method in dynamic MBSS
loses, we study its ability to automatically determine the learning rate schedule for a selection
of popular neural network training algorithms in Chapter 5. These include NAG, Adagrad,
Adadelta, Adam and LBFGS, which are applied to a number of shallow and deep, as well
as a convolutional neural network architecture, trained on different datasets with various loss
functions. We find that overall, GOLS-I’s learning rate schedules are competitive with man-
ually tuned learning rates over seven optimization algorithms, three types of neural network
architecture, 23 datasets and two types of loss function. This showcases GOLS-I’s ability to
automatically adapt step sizes to a variety of training algorithms and problems. However, we
note that algorithms which include dominant momentum characteristics are not well suited to
be used with GOLS-I. In algorithms such as Adam, where this momentum behaviour can be
eliminated by changing algorithm parameters, the competitive performance of GOLS-I can be
immediately restored.

Lastly, we investigate the relationship between activation functions with different neural net-
work architectures and the training performance of GOLS in Chapter 6. Activation functions are
a significant component of neural network training problems. Their smoothness and continuity
characteristics directly effect loss function characteristics and thus the gradient information used
by GOLS. We find that GOLS are robust over a large range of activation functions, but caution
is advised when implementing Rectified Linear Unit (ReLU) activation functions in standard
feedforward architectures. The zero-derivative in ReLU’s negative input domain can lead the
gradient-vector to become sparse, which effectively stalls training. We demonstrate, that imple-
menting architectural features such as batch normalization and skip connections can alleviate
the difficulties experienced when training ReLU using GOLS. Additionally, these features also
benefit the remaining activation functions considered, by accelerating training overall.

This study is concluded in Chapter 7 and recommendations to stimulate future study are
offered. An overview of the major contributions of this work is given as follows: Firstly, we
explicitly define static and dynamic mini-batch sub-sampling in the context of loss landscapes
in Chapter 2 and line searches in Chapter 3. The separation of these sub-sampling approaches
allows us to focus explicitly on optimization of stochastic training problems using dynamic
MBSS from Chapter 3 onwards. This directed consideration prompts us to extend the gradient-
only optimality criterion [Wilke et al., 2013, Snyman and Wilke, 2018] to the Stochastic Non-
Negative Associated Gradient Projection Point. Subsequently, we develop four formulations of
GOLS in Chapter 3 to find SNN-GPPs with the purpose of determining step sizes in dynamic
MBSS losses. We benchmark GOLS against minimization line searches and probabilistic line
searches [Mahsereci and Hennig, 2017] in Chapters 3 and 4 respectively. Finally, we explore the
performance characteristics of GOLS in the context of different training algorithms in Chapter 5
and neural network architectures with a variety of activation functions in Chapter 6.

In the interest of transparency and reproducibility, we make our code available at https:

//github.com/gorglab/GOLS. The repositories include user-friendly versions of the source code
used to conduct the investigations in this study. Examples are available in both Matlab [Math-
works, 2015] and PyTorch 1.0 [pytorch.org, 2019], which provide a range of training problems
that can be solved using different combinations of GOLS and training algorithms. This col-
lection of examples demonstrates the ability of GOLS to determine step sizes for a sizeable
assortment of training problems, while also providing a platform with which to explore further
characteristics of GOLS.
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Chapter 2

Traversing the noise of dynamic
mini-batch sub-sampled loss
functions: A visual guide

Mini-batch sub-sampling in neural network training is unavoidable, due to growing data de-
mands, memory-limited computational resources such as graphical processing units (GPUs), and
the dynamics of on-line learning. In this chapter we specifically distinguish between static mini-
batch sub-sampled loss functions, where mini-batches are intermittently fixed during training,
resulting in smooth but biased loss functions; and the dynamic sub-sampling equivalent, where
new mini-batches are sampled at every loss evaluation, trading bias for variance in sampling
induced discontinuities. These render automated optimization strategies such as minimization
line searches ineffective, since critical points may not exist and function minimizers find spurious,
discontinuity induced minima.

In this chapter, we suggest recasting the optimization problem to find stochastic non-negative
associated gradient projection points (SNN-GPPs). We demonstrate that the SNN-GPP opti-
mality criterion is less susceptible to sub-sampling induced discontinuities than critical points
or minimizers. We conduct a visual investigation, comparing local minimum and SNN-GPP
optimality criteria in the loss functions of a simple neural network training problem for a variety
of popular activation functions. Since SNN-GPPs better approximate the location of true op-
tima, particularly when using smooth activation functions with high curvature characteristics,
we postulate that line searches locating SNN-GPPs can contribute significantly to automating
neural network training.

2.1 Introduction: The stochastic neural network optimization
problem

The training of neural networks centres around minimizing loss functions that commonly take
the form of

L(x) =
1

M

M∑
b=1

`(x; tb), (2.1)

where T = {t1, . . . , tM} is the training dataset of M samples, and the model parameters are
given by vector x ∈ Rp. The loss quantifying the adequacy of parameters x in terms of training
data T is given by L(x). The gradient of the loss function with regards to parameters x is given
by

∇L(x) =
1

M

M∑
b=1

∇`(x; tb), (2.2)
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which is computed efficiently using backpropagation [Werbos, 1994]. The loss surface of L(x)
is continuous, while the continuity of ∇L(x) depends on the continuity and smoothness of the
activation function (AF) used.

A local minimum of a function f(x) is defined as follows:

Definition 2.1.1. Local Minimum: Let x∗ be a local minimum of f(x), such that

∆f(x) = f(x)− f(x∗) ≥ 0, (2.3)

for any point x in the neighbourhood of x∗ [Arora, 2011].

In order to find minima, consider the update step of the popular Gradient Descent (GD)
algorithm, given as

xn+1 = xn − α∇L(xn), (2.4)

at a given iteration, n. Here the update is a function of a search direction dn = −∇L(xn),
the gradient of the loss function at the current location, and an undetermined step size, scalar
α. A visual representation of selecting the step size along a gradient descent search direction
is depicted in Figure 2.1. If α is too small, insufficient progress is made along the descent
direction, causing slow neural network training. If α is too large, the minimum along the search
direction is overshot, and training can become unstable. Line searches are common methods
employed in mathematical programming [Nocedal and Wright, 1999, Wächter and Biegler, 2005,
Nie, 2006, Arora, 2011] to resolve the step size, α, up to a desired accuracy, balancing training
performance and stability. Importantly, line searches perform best when the full dataset is
available to evaluate the loss function.

(a) GD update in a neural network loss function.

(b) Contour plot of an GD update step.

Figure 2.1: Potential gradient descent (GD) updates in a neural network loss function for the
Iris [Fisher, 1936] classification problem.
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However, nowadays machine learning (ML) training is rarely conducted using full batches
[Krizhevsky et al., 2012, Csiba and Richtárik, 2018]. Growing data demands, memory limited
efficient computational resources, such as graphical processing units (GPUs), the dynamic world
of on-line learning [Mahsereci and Hennig, 2017] and improved convergence characteristics [Saxe
et al., 2013, Dauphin et al., 2014, Choromanska et al., 2015], has cemented mini-batch sub-
sampling as a de facto standard in ML training. In particular, the use of a smaller number of
samples, i.e. B ⊂ {1, . . . ,M} with |B| �M , have become common practice. The approximated
loss and gradient functions are given by:

L(x) =
1

|B|
∑
b∈B

`(x; tb), (2.5)

and

g(x) =
1

|B|
∑
b∈B
∇`(x; tb). (2.6)

For most sampling approaches, these approximations have expectation E[L(x)] = L(x) and
E[g(x)] = ∇L(x) [Tong and Liu, 2005]. However, significant variations from the mean can be
observed between expressions of individual batches, B, which we call the sampling error. This
study distinguishes between two mini-batch sub-sampling (MBSS) approaches used to compute
a loss function, namely static and dynamic MBSS. These two MBSS approaches significantly
affect the characteristics of the various computed loss functions. This chapter aims to highlight
and demonstrate these implications, in addition to developing an intuition for interpreting the
available information within the context of line search approaches to resolve learning rates.

Before we explore static and dynamic MBSS, it is important to explore adaptive sub-sampling
methods, that primarily aims to resolve batches or batch sizes with desired characteristics. The
aim might be to select a sub-sample such that g(x) ≈ ∇L(x), or to ensure that descent directions
computed by dn = −g(x) are indeed mostly descent directions [Friedlander and Schmidt, 2011,
Bollapragada et al., 2017]. A carefully selected mini-batch is usually kept constant over a
few iterations along a few search directions [Martens, 2010, Friedlander and Schmidt, 2011,
Byrd et al., 2011, 2012, Bollapragada et al., 2017, Kungurtsev and Pevny, 2018, Paquette and
Scheinberg, 2018, Bergou et al., 2018, Mutschler and Zell, 2019], which can then also be used
to conduct line searches to resolve learning rates. We call this or any other approach that
keeps a mini-batch fixed along a search direction, dn, static MBSS. In this study, we denote
loss and gradient approximations computed using static MBSS by L̄(x) and ḡ(x), respectively.
Mini-batches sampled for static MBSS are denoted as Bn.

A 1-D loss function representation is illustrated in Figures 2.2(a) and (b). The training data
is split into 4 equally sized, static mini-batches (green, magenta, cyan, yellow), each resulting in
a continuous and smooth loss expression, L̄(x), with own minimizer, x∗Bn , and associated local
minimum. The blue curve denotes the true or full-batch loss, L(x). Evidently, the mini-batch
minimizers, x∗Bn denoted by the prefix ”MB”, are not equal to, but occur in a range around
the true or full-batch minimizer, x∗M denoted by the prefix ”True”.

Suppose now that a new loss function is constructed by an oracle [Agarwal et al., 2012],
that randomly selects one of the four batches for every increment, i, that the loss function
or derivative is evaluated along x as shown in Figures 2.2(c) and (d). We call this dynamic
MBSS and differentiate loss function and gradient evaluations using this scheme by L̃(x) and
g̃(x), respectively. Mini-batches sampled using dynamic MBSS are denoted Bn,i, as re-sampling
occurs at every increment, i, within iteration, n, of a potential optimization algorithm. This
results in a discontinuous loss function as the oracle randomly selects a loss function sampled
by one of the four mini-batches. We show this explicitly in Figure 2.2(c) and (d), by retaining
the colours of the contributing mini-batches towards the dynamic MBSS loss function. Here,
the contribution of each batch is evident, whereas, plotting the computed dynamic MBSS loss
function using a single colour hinders identification of the contribution of a single batch, as
shown in Figures 2.2(e) and (f). Note, that there are a finite number of combinations in which

22



(a) L(x) and 4 L̄(x) curves (b) ∇L(x) and 4 ḡ(x) curves

(c) L̃(x), with selected batches coloured (d) g̃(x), with selected batches coloured

(e) L̃(x) as a single function (f) g̃(x) as a single function

Figure 2.2: Conceptual depiction of static and dynamic mini-batch sub-sampled loss functions.
(a,b) The full batch expression (blue) is the average of 4 different batches (green, magenta,
cyan, yellow), each construct own expressions of the loss function and derivative with different
characteristics. (c,d) When sampling randomly between these 4 batches, the function value
and corresponding derivative alternates between mini-batch loss function expressions. (e,f) The
resulting loss function is discontinuous and non-smooth for function values and derivatives, which
is readily interpreted as noise.

the discontinuities can occur for a dataset of fixed size. The number of combinations, in Fig-
ures 2.2(e) and (f), were limited to four, but sampling conducted with replacement, there are
K =

(
M
|Bn,i|

)
combinations in which a mini-batch Bn,i can be assembled from the training set.

Consequently, the number of combinations explode for large M and small batch sizes, which
results in these discontinuities being interpreted readily as stochastic noise [Simsekli et al., 2019].
Not surprisingly, these discontinuities hinder attempts to directly minimize dynamic MBSS loss
functions using line searches. This is due to sampling induced discontinuities that manifest
as local minimizers. Concurrently, critical points typically do not exist at individual samples
L̃(x∗), although they might be present in expectation. This renders ineffective the predominant
mathematical programming paradigm for defining optimal as the minimum loss function.
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In spite of this, Bottou [2010] argues that approximate optimization methods, which imple-
ment dynamic MBSS, can benefit from being exposed to more information. In a recent study,
the probabilistic line search developed by Mahsereci and Hennig [2017] estimates step sizes for
dynamic MBSS loss functions. Benefits of changing the mini-batch sub-sample at every evalua-
tion include overcoming weaker local basins of attraction [Kleinberg et al., 2018, Simsekli et al.,
2019], in addition to acting as an effective regularizer to obtain solutions with better general-
ization properties [Masters and Luschi, 2018]. This motivated the use of adaptive and dynamic
(recursive) sampling [Kashyap et al., 1970, Csiba and Richtárik, 2018], as alluded to earlier, to
reduce the impact of these discontinuities. Alternatively, sub-gradient methods [Shor, 1985b],
originally developed for continuous non-smooth loss functions, utilizes fixed learning rates or
fixed learning rate schedules. Considering a simple modification [Wilke, 2011], they are also
able to optimize discontinuous loss functions, as has been done for years in ML training, albeit
often unwittingly. In fact, Wilke [2011] demonstrated that sub-gradient methods do not mini-
mize discontinuous loss functions but rather resolve non-negative associated gradient projection
points (NN-GPPs). NN-GPP were specifically designed to define optimality for discontinuous
functions [Wilke et al., 2013, Snyman and Wilke, 2018], and is given by:

Definition 2.1.2. NN-GPP: A non-negative associated gradient projection point (NN-GPP) is
defined as any point, xnngpp, for which there exists εmax > 0 such that

u · ∇f(xnngpp + εu) ≥ 0, ∀ u ∈ {y ∈ Rp | ‖y‖2 = 1} , ∀ ε ∈ (0, εmax]. (2.7)

This defines optimality solely based on the gradient of the loss function, without requiring
the gradient to be zero at the solution and neither requiring additional second order information
to be computed to ensure a local minimum solution.

NN-GPPs have been formalized on a rigorous mathematical foundation under gradient-only
optimization, and proven to be equivalent to semi-positive definite local minimizers for twice
continuously differentiable smooth functions [Wilke et al., 2013]. Returning to our example in
Figures 2.2(a) and (b), this means that both minimization and finding NN-GPPs can be applied
to the full-batch and static MBSS loss functions, where they resolve exactly the same points for
unimodal functions. A whole range of gradient-only line search optimizers to locate NN-GPP
have been proposed [Wilke, 2011, Wilke et al., 2013, Snyman and Wilke, 2018]. In 1-D, to locate
a NN-GPP along a descent direction, merely requires a sign change in the directional derivative
from negative to positive to be identified. This study recognizes that gradient-only optimization
may be effective in overcoming the difficulties associated with discontinuities induced by dynamic
MBSS.

However, when dynamic MBSS is employed to compute a loss function, minimization and
gradient-only optimization may identify distinctly different solutions, although both definitions
define the same optimal solution or true solution, x∗M when a unimodal full-batch sampled
loss function is considered. Minimization may resolve sampling induced discontinuities local
minima, whereas gradient-only optimization will largely ignore these sampling induced discon-
tinuities unless they manifest as a sign change along a search direction. For dynamic MBSS loss
functions, NN-GPP may appear and disappear stochastically in the vicinity of the true solution,
x∗M . Hence, sign changes in the directional derivative along a search direction may appear and
disappear stochastically as the oracle updates the mini-batches. It is important to note that
in addition to the sign change of each mini-batch loss function, additional sampling induced
sign changes may manifest along a search direction. This occurs when the oracle switches be-
tween a negative and positive directional derivative for essentially the same step along a search
direction. Similarly, in addition to the NN-GPP for each mini-batch loss function, additional
sampling induced NN-GPP may appear and disappear in the vicinity of x∗M . To accommodate
these stochastic sampling induced NN-GPP, we extend the definition of NN-GPP to Stochastic
NN-GPP (SNN-GPP) as follows:
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Definition 2.1.3. SNN-GPP: A stochastic non-negative associated gradient projection point
(SNN-GPP) is defined as any point, xsnngpp, for which there exists εmax > 0 such that

u · g(xsnngpp + εu) ≥ 0, ∀ u ∈ {y ∈ Rp | ‖y‖2 = 1} , ∀ ε ∈ (0, εmax], (2.8)

with probability greater than 0.

There is a considerable difference in the quality of information presented in terms of proximity
to true optimum when all minimizers are compared to all SNN-GPPs. Consider the red points
in Figure 2.2, where we identify local minima using Definition 2.1.1 in Figure 2.2(e), and SNN-
GPPs by stepping over a directional derivative sign change from negative to positive. We choose
the convention of highlighting the positive directional derivative at the sign change as the SNN-
GPP, as shown in Figure 2.2(f). Minimizers are largely unbounded along x, while SNN-GPPs
are much more localized around the true solution x∗M . The majority of spurious minimizers in
Figure 2.2(e), induced by dynamic MBSS, are completely ignored in Figure 2.2(f). In a recent
study, a simple gradient-only line search was implemented to estimate the location of SNN-GPPs
along a search direction [Kafka and Wilke, 2019]. This proved effective to automatically resolve
the learning rate, and yielded competitive results when compared to probabilistic line searches
[Mahsereci and Hennig, 2017]. However, the aim of this chapter is not to propose yet another
algorithm, but to rather gain insight into the implication of activation functions on the nature of
the loss and gradient functions, which ultimately translates to an understanding of the potential
for finding SNN-GPP as opposed to minimizers in ML training.

Although many studies have been done on neural network loss functions in either a theoret-
ical [Nguyen et al., 2018, Liang et al., 2018] or visual context [Goodfellow et al., 2015, Li et al.,
2017, Im et al., 2016], most studies concentrate on the convexity properties of the expected
loss function or true loss function. Given that almost all ML optimizers ignore the loss func-
tion to rather flow with the gradients [Robbins and Monro, 1951, Kingma and Ba, 2015, Duchi
et al., 2011], it is sensible to rather investigate the characteristics and properties of the gradient
field or directional derivatives, as well as how they are influenced by activation functions (AFs)
and dynamic MBSS sampling. In our investigations, we explicitly compare static and dynamic
MBSS in Section 2.2.2, and subsequently choose to focus our attention on the affects of dynamic
MBSS. To the best of our knowledge this is the first study to visually explore the qualitative
characteristics of gradient or directional derivative information in dynamic MBSS loss functions
of neural networks. We choose a visual approach to investigate the qualitative characteristics of
function value and gradient information in dynamic MBSS, such that an intuitive understanding
of the relationship between minima, SNN-GPPs and activation functions [Serwa, 2017, Karlik,
2015, Laudani et al., 2015] can be developed. As we visually explore the characteristics of func-
tion values and directional derivatives for different activation functions under dynamic MBSS,
it is important to continuously reassess the following: What is the quality of function value ver-
sus directional derivative information with regards to making informed decisions on candidate
solutions in mini-batch sub-sampled neural network training?

2.1.1 Our contribution

The contribution of this work lies neither in the dataset, nor the network architecture we use.
This chapter is written from the perspective where solving an optimization problem has two
key components, namely a loss function landscape, and an algorithm that searches for an op-
tima on this landscape. To take a step towards an optimum, many optimization algorithms
conduct line searches, i.e. find a univariate optimum along a search direction. As discussed,
mini-batch sub-sampling makes conducting line searches along search directions a non-trivial
issue in loss functions with the form of Equation (2.1). Therefore, this work focusses on opti-
mality criteria and the nature of information that is useful in static and dynamic MBSS losses.
Subsequently, we wish build an intuitive and visual understanding of function minimizers and
stochastic non-negative associated gradient projection points (SNN-GPPs) when dealing with
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dynamic mini-batch sub-sampled loss functions. Therefore, we restrict this chapter to an el-
ementary neural network classification problem in order to highlight concepts with absolute
clarity. The concepts explored in this chapter are not restricted to the example problem we
choose, as the optimality criteria investigated apply to all loss functions, including those of
state of the art deep neural networks explored by Li et al. [2017] and [Goodfellow et al., 2015].
We show that function minimization in dynamic MBSS loss functions is not effective. Instead,
gradient-only optimization that finds SNN-GPPs allows for a much improved representation of
full-batch optima. We demonstrate this for neural networks loss functions using the Sigmoid,
Tanh, Softsign, ReLU, leaky ReLU and ELU activation functions. We also highlight some key
differences between the features of the loss functions with the different activations in the context
of SNN-GPPs. We show, that the characteristics of activation function’s derivatives affect the
localization of SNN-GPPs in weight space.

2.2 Application of concepts to a practical neural network prob-
lem

In our investigations we analyse the loss functions of a single hidden layer neural network applied
to the classic Iris dataset classification problem. We use a fully connected layer containing 10
hidden units and employ the Mean Squared Error (MSE) loss. Since we do not actually train
the network in our experiments, but rather investigate the loss landscape characteristics, there
is no need to split the problem’s dataset into training and test sets. Instead, we make all the
available data available for the construction of our visualizations. The computed loss functions
and directional derivative surfaces are evaluated in a 100x100 grid with range of [−20, 20] units
in the directions d1 and d2 around a central point, x0. This initial guess, x0, is generated from a
uniform distribution with range [−0.1, 0.1]. Until and including Section 2.3.1, the surface plots’
axes denote steps along two random, but perpendicular, unit directions [Li et al., 2017], d1 and
d2 in Rp, where p = 83 is the number of weights in the network. Care should be exercised in
interpreting these two-dimensional visualizations of an 83-dimensional problem, as what seems
to be a local optimum in these two-dimensional surfaces may well have descent directions leading
away from these in different dimensions not depicted. Nevertheless, these visualizations allow
the general characteristics of loss functions to be investigated. We use this platform initially to
demonstrate some key concepts with the use of the Sigmoid AF, whereas from Section 2.3, we
expand this to various other activation functions.

2.2.1 Full combinatorial static and dynamic mini-batch sub-sampling

Firstly, we further explore the characteristics of static and dynamic MBSS in the context of
sampling uniformly from the problem dataset with replacement. Therefore, this exposes the
evaluation of L̃(x) to the full K =

(
M
|Bn,i|

)
possible combinations of constructing mini-batches.

In Figure 2.3, we plot the resulting loss in 2-D, to gain more intuition about the observed
characteristics. For all plots the true loss function L(x), is given in red. For static MBSS we
include three different loss function expressions of L̄(x), whereas for dynamic MBSS we add
only one plot of L̃(x) in the interest of visual simplicity. We plot the function value for both
static and dynamic MBSS with batch sizes M = 150 and |Bn,i| ∈ {149, 10, 1}.

In the case where the full batch is used, Figure 2.3(a) and (b), both sampling methods are
equal, as both have access to the same information at every sampled point along the given axes.
When one point is omitted, i.e. |Bn,i| = 149 in Figure 2.3(c), a difference begins to emerge.
The individual instances of L̄(x) have alternative loss function curvatures to L(x), resulting in
different patches of the loss function being visible. This becomes increasingly pronounced as the
batch size is decreased. In the case of |Bn,i| = 10 in Figure 2.3(e), the optima of individual L̄(x)
differ considerably and a sampling induced offset in loss function becomes evident. It is this
offset, that causes large discontinuities when alternating between batches in dynamic MBSS. If
the batch size is further reduced to |Bn,i| = 1 in Figure 2.3(g), the individual L̄(x) are no longer
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(a) L(x), M = 150 (b) L(x), M = 150

(c) L̄(x), |Bn| = 149 (d) L̃(x), |Bn,i| = 149

(e) L̄(x), |Bn| = 10 (f) L̃(x), |Bn,i| = 10

(g) L̄(x), |Bn| = 1 (h) L̃(x), |Bn,i| = 1

Figure 2.3: (a,c,e,g) Static and (b,d,f,h) dynamic mini-batch sub-sampling (MBSS) loss functions
plotted along two random directions using batch sizes M = |B| = 150 and |B| ∈ {149, 10, 1}.
Subscripts, n and i, are omitted in plot legends in the interest of compactness. A bias-variance
trade-off: Static MBSS produces continuous loss functions, which are biased to the sampling
error in Bn; dynamic MBSS represents L(x) on average, but introduces discontinuities by re-
sampling Bn,i at every loss evaluation.

reminiscent of L(x). Optimizing extensively in these individual loss functions would result in
solutions which are not representative of L(x).
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Dynamic MBSS on the other hand has different properties: By only omitting one random sub-
sample at every function evaluation, the surface of L̃(x) becomes discontinuous, as is evidenced
by the ”spotted” look of Figure 2.3(d), where blue indicates L̃(x) being larger than the true
or full-batch surface L(x) depicted in red. The severity of these discontinuities increases as the
batch size decreases. However, the important aspect of dynamic MBSS is that the mean of this
discontinuous plot approximates the shape of L(x). This indicates that the comparison between
static and dynamic MBSS is akin to the bias-variance trade-off. Static MBSS gives desired
characteristics for effective optimization in its smooth landscape, but is not representative of
the true problem unless a large, or according to adaptive sampling methods, a representative
batch is chosen. Conversely dynamic MBSS results in low bias, but high variance in the resulting
loss function. Optimization algorithms which are able to operate in this mode can make use
of more information in the dataset, as the information in a fixed batch size is alternated at
every function evaluation. However, they need to be be able to robustly deal with the sampling
induced discontinuities.

(a) Training error (b) Test error

Figure 2.4: A comparison between static and dynamic MBSS as applied in gradient-only line
searches [Kafka and Wilke, 2019], showing (a) training and (b) test classification error during
training of the MNIST [Lecun et al., 1998] dataset using the NetI [Mahsereci and Hennig, 2017]
network architecture.

A noteworthy attempt at optimizing using dynamic MBSS has been made with the applica-
tion of probabilistic surrogates (Gaussian Processes) [Mahsereci and Hennig, 2017] to conduct
line searches in stochastic gradient descent (SGD). However, this method is hampered in its
flexibility by having to use surrogates that have a bounded domain size for each iteration. An
explicit investigation has been conducted by which static and dynamic MBSS were directly
compared in the context of unbounded gradient-only line searches [Kafka and Wilke, 2019]. An
example is given in Figure 2.4, where the well known MNIST [Lecun et al., 1998] dataset is
trained using the NetI [Mahsereci and Hennig, 2017] network architecture. The faster decrease
in both training and test classification error demonstrates that dynamic MBSS can increase the
performance of training relative to computational cost. This is an example of where implement-
ing dynamic MBSS in line searches during neural network training shows promise. In order
to gain further insight, we wish to explore the landscapes of discontinuous loss functions with
dynamic MBSS. Therefore, for the remainder of this chapter, dynamic MBSS is referred to when
considering any form of sub-sampled loss function or directional derivative.

2.2.2 Variance properties of function value and directional derivative infor-
mation in the MSE loss using dynamic MBSS

Subsequently, we explore the quality of function value and directional derivative information the
context of our practical neural network problem with Sigmoid AFs. The directional derivatives
were calculated using the positive diagonal, i.e. the sum of the two unit directions, given as
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follows:

ddd =
(d1 + d2)

|d1 + d2|
. (2.9)

The directional derivative is evaluated by projecting each computed gradient onto the nor-
malized diagonal direction ddd, i.e. D̃d(x) = g̃(x)T ·ddd. This allows the scalar surface of D̃d(x)
to be visualized over the same 100x100 grid used plot function values. We compare the charac-
teristics of both function value and directional derivative surfaces in Figure 2.5 with mini-batch
sizes M = 150 and |Bn,i| ∈ {149, 10, 1}.

Note, that the apparent variance in the discontinuous directional derivative surface is much
lower than the discontinuous function value surface. As the batch size is reduced to Bn,i = 10,
the representation of L(x) is largely hidden in the high variance of the discontinuities in L̃(x).
However, in some sections of the sampled domain, the directional derivative information remains
considerably more consistent with its full-batch equivalent, compared to the function value plots.
This trend becomes exaggerated, as the mini-batch size is reduced further to Bn,i = 1.

We formalize this observation by considering the MSE loss:

`(x; tb) =
1

2
(tob − t̂

o
b(x, t

i
b))

T (tob − t̂
o
b(x, t

i
b)), (2.10)

where tib is the bth sample of the training data, tob is the bth output sample and t̂
o
b(·, ·) is the

neural network model estimation of output tob as a function of the model parameters, x. and
training sample, tib. We substitute Equation (2.10) into Equation (2.1) to obtain:

L̃(x) =
1

2|Bn,i|
∑
b∈Bn,i

(tob − t̂
o
b(x, t

i
b))

T (tob − t̂
o
b(x, t

i
b)). (2.11)

Therefore, the sampled gradient of the loss becomes

g̃(x) =
−1

|Bn,i|
∑
b∈Bn,i

(∇t̂ob(x, tib))(tob − t̂
o
b(x, t

i
b)), (2.12)

where the gradient of the model in terms of the model parameters is given by ∇t̂ob(x, tib).
To aid understanding of the different contributing factors, consider the notation eb = (tob −
t̂
o
b(x, t

i
b)), which constitutes the (q × 1) prediction error vector for observation k, where q is the

dimensionality of the output data and model output. The term Cb = ∇t̂ob(x, tib) denotes the
(p× q) gradient matrix of the model. This simplifies Equations (2.11) and (2.12) to

L̃(x) =
1

2|Bn,i|
∑
b∈Bn,i

(eTb eb), (2.13)

and

g̃(x) =
−1

|Bn,i|
∑
b∈Bn,i

(Cbeb). (2.14)

In the loss function, Equation 2.13 depends only on the eb term, while the product of Cbeb
determines the loss function gradient in Equation 2.14. According to the chain rule, the gradient
of the model, Cb, is a function of the weights, and the derivatives of the activation functions
in the various layers of a neural network [Werbos, 1982]. For most activation functions, the
derivative remains bounded. All the activation functions considered in our investigations have
derivatives ≤ 1. This means that for a fixed batch, Bn,i and a fixed point x in space, which
apply to both eb and Cb terms, the activation function derivatives are not going to increase the
magnitude of information passing through the network.

Let us now consider a fixed point in space, x, where we sample many mini-batches with a
constant size |Bn,i| < M . In this case both eb and Cb vary only as a function of tb, which we
can separate into expected values ēb and C̄b; with corresponding variance σ(eb) and σ(Cb) to
obtain
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(a) L(x), M = 150 (b) Dd(x), M = 150

(c) L̃(x), |Bn,i| = 149 (d) D̃d(x), |Bn,i| = 149

(e) L̃(x), |Bn,i| = 10 (f) D̃d(x), |Bn,i| = 10

(g) L̃(x), |Bn,i| = 1 (h) D̃d(x), |Bn,i| = 1

Figure 2.5: (a,c,e,g) Function value and (b,d,f,h) directional derivative plots along two orthogonal
random directions, d1 and d2, using batch sizes |Bn,i| ∈ {150, 149, 10, 1}. Variance for both L(x)
and D̃d(x) increases with decrease in batch size, with D̃d(x) being less affected than L(x).
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L̃(x) =
1

2|Bn,i|
∑
b∈Bn,i

(ēb + σ (eb))
T (ēb + σ (eb))

=
1

2|Bn,i|
∑
b∈Bn,i

(ēTb ēb + 2ēTb σ (eb) + σ (eb)
T σ (eb)), (2.15)

and

g̃(x) =
−1

|Bn,i|
∑
b∈Bn,i

(C̄b + σ(Cb)) (ēb + σ(eb))

=
−1

|Bn,i|
∑
b∈Bn,i

(
C̄bēb + σ(Cb)ēb + C̄bσ(eb) + σ(Cb)σ(eb)

)
. (2.16)

Hence, the variance in L̃(x) is dictated by 2ēTb σ (eb) + σ (eb)
T σ (eb), while the variance in

g̃(x) is dictated by σ(Cb)ēb + C̄bσ(eb) + σ(Cb)σ(eb). This implies that should |σ(eb)| >> 1,
due to changes in the mini-batch, the variance in L̃(x) will be larger than the variance in g̃(x).
This is due to the term σ(eb)

Tσ(eb) dominating in Equation (2.15), while Equation (2.16) scales
linearly in both σ(eb) and σ(Cb) which is bounded |σ(Cb)| ≤ 1, depending on x.

Alternatively, the variance in L̃(x) is significantly reduced when |σ(eb)| << 1, since

σ (eb)
T σ (eb) ≈ 0 (2.17)

while 2ēTb σ (eb) depends on the magnitude of ēb. In turn, the variance in g̃(x) depends mainly
on σ(Cb) which scales ēb and σ(eb), while C̄bσ(eb) also contributes. However, since |C̄b| ≤ 1 and
|σ(Cb)| ≤ 1 for small weights x, the variance in g̃(x) is bounded. Therefore, when |σ(eb)| << 1
the variance in g̃(x) can be larger than that of L̃(x). Also, when the magnitude of |ēb| << 1
the variance in L̃(x) is reduced as can be seen in the centre of the domains in Figures 2.5(e)
and (g). Lastly, it is evident that when |C̄b| ≈ 0, implying saturation of the activation function,
the variance |σ(Cb)| ≈ 0, which in turn causes the variance of g̃(x) to diminish. The flat, low
variance areas at the extremes of the sampled domains are particularly evident for the directional
derivative plots sampled with small batches in Figure 2.5(f) and (h). Here, the saturation of the
activation functions drives down the variance in the gradient.

2.2.3 The influence of variance on minimum and SNN-GPP optimality cri-
teria

Subsequently, we explicitly evaluate the means and variances of function value and directional
derivative surfaces by considering the same Iris dataset problem as discussed in Sections 2.2.1
and 2.2.2. The mean and variance estimates were calculated using 50 independent draws of
|Bn,i| = 10 samples at every one of the 100x100 grid points. In Figure 2.6(a), the full batch
function value surface, L(x), is shown in red, which allows for the comparison between L(x)
and the estimated mean, E[L̃(x)] (green). If E[L̃(x)] (green) dips below L(x) (red), given the
high variance, it is likely that a local minimum may occur at the given location. Conversely, if
E[L̃(x)] lies above L(x), a spurious maximum is more likely to occur.

We therefore show the function value plot from below in Figure 2.6(c), such that areas, where
E[L̃(x)] (green) permeate through L(x) (red), can be easily identified. The result is a uniformly
distributed mixture of red and green, indicating that local minima are spread over the entire
sampled domain. Almost all of the indicated local minima misrepresent the true minimum of
L(x). This highlights the challenges that a direct minimization strategy would face in dynamic
MBSS loss functions.

When considering the directional derivative plot in Figures 2.6(b) and (d), we are concerned
with localizing sign changes from negative to positive, in order to identify SNN-GPPs. Hence,
we plot the zero plane in red as a visual aid for recognizing SNN-GPPs. We show Figure 2.6(b)
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(a) E[L̃(x)] and std. (b) E[D̃d(x)] and std.

(c) Spatial spread of local minima (d) Spatial localization of SNN-GPPs

(e) Side view of std. comparison (f) Lower view of std. comparison

Figure 2.6: Estimated mean and standard deviation plots of (a) L̃(x) and (b) g̃(x). In (a)
L(x) is given in red, while in (b) the red plane denotes dd(x) = 0, to visually aid locating sign
changes. Viewing these plots from below (c,d) illustrates the spatial spread of potential optima.
Instances where E[L̃(x)] dips below L(x) (green areas) in (c) denote potential local minima.
In (d) the green regions denote D̃d(x) < 0 and red areas D̃d(x) > 0 respectively. The white
shaded areas in (d) are areas of uncertainty, where SNN-GPPs can occur. SNN-GPPs are highly
localized, while minima are spread uniformly across the sampled domain. Isolating (d) σ(L̃(x))
and (f) σ(D̃d(x)) surfaces, we observe a practical confirmation the discussion in Section 2.2.2.

from below (i.e. the negative domain) in Figure 2.6(d), where negative directional derivatives
are presented as green and positive directional derivatives as red. The shaded domains between
these two regions are uncertainty areas, where the zero plane intersects the standard deviation,
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but not yet the mean. Since we only depict the surface from below, the area of uncertainty is
essentially double the size of that which is dark brown. Therefore, we extended this area visually
with a white dotted line in Figure 2.6(d). The total encased area represents locations, where the
probability of encountering a SNN-GPP is high. Immediately, there is a stark contrast between
Figures 2.6(c) and (d): The areas of possible SNN-GPP occurrence are spatially localized, while
the locations of possible local minima are uniformly distributed in the sampled domain. We
remind the reader at this point, that both these plots represent the same problem, yet the
ability to localize optima between the different optimization formulations is distinct. Searching
for a solution in the form of a SNN-GPP is more representative of the true loss function, than
minimizing the discontinuous loss function. The implications for optimization and line searches
are clearer when considering the loss function along a 1-D search direction, as we will demonstrate
in the next section.

2.2.4 Optimality criteria along 1-D search directions

As a number of optimization approaches used in neural network training make use of 1-D direc-
tional information [Robbins and Monro, 1951, Nesterov, 1983, Mahsereci and Hennig, 2017], we
consider the behaviour of local minimum and SNN-GPP definitions along four selected hypothet-
ical 1-D search directions in the 2-D sampled domain. This explores the applicability of these
optimality criteria within line searches in dynamic MBSS loss functions. Note, that the euclidean
norm, ‖.‖2 is indicated using |.| from this section onwards in the interest of compactness.

Figure 2.7: Diagram depicting the investigated 1-D directions.

The chosen directions are the unit vectors along the uncoupled axes, d1
|d1| and d2

|d2| , as well as

the diagonals of the chosen axis directions, d1+d2
|d1+d2| ,

d1−d2
|d1−d2| , shown in Figure 2.7. These directions

are arbitrarily chosen in order to explore examples of univariate loss function characteristics that
might be encountered in line searches. Typically, these directions are given by an optimization
algorithm. If the domain range of the 2-D plots is [rmin, rmax] in both d1

|d1| and d2
|d2| , we sample

L̃(x) and D̃d(x) in n = {1, 2, . . . 100} discrete steps, α = rmax−rmin
nmax

, along d1
|d1| and d2

|d2| and

correspondingly, α =
√

2 · rmax−rmin
nmax

along d1+d2
|d1+d2| and d1−d2

|d1−d2| , while exhaustively counting the
number of local minimizers and SNN-GPPs along each direction. Minima are counted using
Definition 2.1.1, by comparing the function values of 3 adjacent discrete points, L̃(xn), L̃(xn+1)
and L̃(xn+2) respectively. If L̃(xn) > L̃(xn+1) < L̃(xn+2), a local minimum is identified and
counted. SNN-GPPs are counted when a sign change in directional derivative D̃d(x) from
negative, i.e. D̃d(xn) < 0, to positive, i.e. D̃d(xn+1) > 0, is observed, along the search direction.
The SNN-GPP is indicated at the positive sample, D̃d(xn+1), for consistency sake. The total
number of candidate optima along all four directions is counted and given in the legend of the
plots. We also show histograms of the spatial distribution of the minimizers and SNN-GPPs
along the respective search directions.

The true optima of the 1-D curves are indicated by the full batches in Figure 2.8(a) and (b),
where we see equivalence between true minima and true NN-GPPs for each respective search
direction. As was the case in the 2-D plots of Figure 2.6, when dynamic MBSS is implemented,
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(a) (b)

(c) (d)

Figure 2.8: 1-D plots of the (a) function value and (b) directional derivative along fixed directions
of the 2-D domains. We compare two states, using the full-batch loss with M = 150, and
dynamic MBSS loss with, |Bn,i| = 10. We note the number local minima and SNN-GPP in
either case according to the respective optimality criteria. Again, the locations of the local
minima are uniformly distributed along the sampled domains for all directions. In the case
of the directional derivative, directions that contain high curvature, such as d1, have highly
localized sign changes. Direction d2 progresses along the area of uncertainty in Figure 2.6 for
some of its domain, which makes the location of SNN-GPP more widespread.

the spatial distribution of local minima is spread uniformly along the search directions, as shown
in Figure 2.8(c). The total number of local minima counted over the 4 search directions is 128.
This means that a minimization line search is exposed to 124 potential false candidate solutions
across the chosen search directions. Arguably, the sensitivity of a minimization line search to
the number of candidate solutions depends on its particular algorithmic formulation [Arora,
2011]. A significant probability exists, that a discontinuity occurs at a given loss function
evaluation in dynamic MBSS. Therefore, every increment (step) within a line search poses the
risk of exposing a spurious minimum. However, not all local minima might be accepted by
a line search, especially when inexact line searches are conducted. The well known Armijo
and Wolfe conditions [Arora, 2011], as often used in inexact line searches, provide rules which
can reduce the range of candidate minima to be accepted. Nevertheless, the local minimum
definition provides a large number of candidate optima within a given formulation’s acceptable
range, which the particular formulation is required to contend with, reducing its effectiveness
Kafka and Wilke [2019b]. In turn, the spatial distribution of SNN-GPPs is much more localized
around the true optima as shown in Figure 2.8(d). The direction with the highest number of
SNN-GPPs is d2, since the first half of d2 runs along an area of uncertainty for SNN-GPP, seen in
Figure 2.6(d). Due to the low magnitude in directional derivative and the correspondingly high
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variance in the sampled gradient values, it is possible to encounter spurious sign changes along
this ridge. The remaining three directions show SNN-GPPs to be are tightly clustered around
the true optimum, indicating small spatial domains of uncertainty. This means that a line search
strategy that looks for SNN-GPPs would be significantly more effective in approximating the
location of the true optimum.

Subsequently, we use the tools developed to investigate the Sigmoid AF, to extend our
consideration to a number of popular activation functions, investigating their effect on finding
minimizers and SNN-GPPs as well as observing their variance around the true optimum along
a search direction.

2.3 Alternative Activation Functions

Though Sigmoid activations were popular in the past, other smooth activations, such as Tanh
[Karlik, 2015] and Softsign [Bergstra et al., 2009], are often preferred. Collectively, this type of
AF has been called the saturation class of AFs [Xu et al., 2016]. Today, the state of the art
networks use AFs that promote sparsity, namely the ReLU [Glorot and Bordes, 2011] family of
activations. We include leaky ReLU [Maas et al., 2013] and ELU [Clevert et al., 2016] into this
category and refer to this family as the sparsity class of AFs. Both these classes are plotted in
Figure 2.9 for comparison.

(a) Saturation class function values (b) Saturation class derivatives

(c) Sparsity class function values (d) Sparsity class derivatives

Figure 2.9: (a,c) Function value and (b,d) derivatives of activation functions considered in
our investigations. These are grouped together into (a,b) saturation and (c,d) sparsity classes
respectively. The saturation class makes use of the non-linearities of the activation functions to
construct mappings. The sparsity class makes use of the architecture in the network to introduce
the non-linearities, where specific ”channels” in the network are selectively activated, depending
on whether the activation function transmits information or not.

As their name suggests, the dominant characteristic of the saturation class functions is the
stagnating, plateau-like behaviour at in both negative and positive extremes of the x-domains.
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The differences within the saturation class concentrate primarily on the range over which the
transition from saturation to the active domain (where the gradient is high) and back to satura-
tion occurs. Activation functions with small ”active” ranges are noted as having high saturation
characteristics, while those that have higher gradients over a larger domain are said to have
low saturation characteristics. The active domains are centred around x = 0, but not all run
through the origin. The Sigmoid AF is only positive, while Tanh and Softsign pass through the
origin and allow both negative and positive outputs. As we will demonstrate, the differences
between the activation functions, though slight in their elemental form, can lead to significant
changes in loss function characteristics.

The sparsity class have fundamentally different characteristics to the saturation class in
that they allow a linear relationship in their ”activated” positive domain, while enforcing or
approximating an ”off” characteristic in the negative domain. The ReLU activation function
enforces a ”hard off”, setting the function value and derivative to 0 for the negative x-domain.
The leaky ReLU allows a small constant positive derivative in the negative domain of x. This
allows a small amount of information to permeate the network when the leaky ReLU is in its
”off” state. The transition to the positive domain x is discontinuous in the derivative, which like
ReLU enforces a drastic change in characteristics within the loss function. The ELU formulation
constructs the derivative to be smooth and continuous, in the form of an exponential, when
transitioning from negative to positive along x.

2.3.1 Global activation function characteristics in random directions over [-
20,20] domains in weight space

We now investigate the effect of the above discussed AFs on the distribution of minimizers and
SNN-GPPs. To allow for a direct comparison between AF-related loss function characteristics,
we use the same problem and architecture as explored with Sigmoids in Section 2.2, with the
only change being the AFs used in the neural network. The results are summarized in Table 2.1.
From Table 2.1 it is evident that the number of SNN-GPPs is much closer to that of the true
local minima, in comparison to the number of local minimizers for all activation functions. In
general, there are 12 to 32 times more identified local minimizers than true optima, whereas
there are only 1.5 to 6 times more SNN-GPPs than true optima. The number SNN-GPPs is the
closest to that of the true optima for the Softmax and ELU AFs, while Sigmoid and Tanh AFs
resulted in the largest estimation of SNN-GPPs compared to true optima.

The spatial distribution of the minimizers and SNN-GPPs are given in Appendix A.1.1 as
histogram plots. In the histogram plots, since SNN-GPPs are indicated as being after the sign
change in our analyses, cases can occur where the location of the true optimum is close to edge
of a bin in the histogram. In such instances the location of the SNN-GPP might be noted in the
bin that is adjacent of that indicated for the minima. This is not an error, but simply an artefact
of how local minima and SNN-GPP are identified from discrete samples of the loss function and
directional derivatives respectively.

One of the prominent differences between the saturation and sparsity activation function
classes is the behaviour on the extremities of the sampled domains. The saturation functions
have ”mountainous” features, in the sense that the landscape alternates between high and low
curvature regions. This occurs as different nodes in the network saturate, or activate. When
most but not all nodes have saturated, flat planes with low directional derivative values can be
observed. This can have a negative effect on the spatial distribution of SNN-GPPs, as seen in
Figures 2.8(d) and A.1(h). In cases where saturation is high (the AF derivative tends quickly
towards 0, as x → ±∞, Figure 2.9(b)), the directional derivative magnitude is low. Hence,
the variance of the directional derivative is lower than other areas of the loss function, but due
to the small directional derivative magnitude, it may still create spurious SNN-GPPs. This is
particularly prevalent for the Tanh activation function, see Figure A.1(h). Conversely, SNN-
GPPs are highly localized for the Softsign analysis, since saturation occurs much further from
x = 0, with higher derivatives at the edges of the domain, see Figures 2.9(b) and A.2(h). This
demonstrates that the derivative shape of the activation function matters with respect to finding
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AF Figure #
True
Optima

#
Local
Minima

#
SNN-
GPPs

Comments

Sigmoid 2.5, 2.8 4 128 17 Smooth features, spurious SNN-GPPs in
low curvature directions.

Tanh A.1 4 126 23 Higher curvature; SNN-GPPs more local-
ized, but high saturation, leading to spu-
rious SNN-GPPs at edges.

Softsign A.2 4 117 6 More curvature than Sigmoid, less than
Tanh; more curvature at origin gives bet-
ter localization; less saturation at ends
means less spurious SNN-GPPs at edges.

ReLU A.3 8 104 13 Exponential behaviour in MSE loss; Glob-
ally convex shape, but locally intricate;
more true optima; no saturation, no spu-
rious SNN-GPPs at edges.

Leaky
ReLU

A.4 8 101 17 No different to ReLU at global scale; low
curvature directions have more spurious
SNN-GPP due to leaky gradient (as op-
posed to hard-zero).

ELU A.5 4 99 6 Less true optima than other ReLUs;
smooth loss function features; higher gra-
dient curvature, resulting in more local-
ized SNN-GPPs.

Table 2.1: Summary of observations from analyses conducted by traversing random directions
over a scalar range of [-20,20] to give an impression of ”global” loss function characteristics. The
corresponding Figures A.1-A.5 are included in Appendix A.1.1.

SNN-GPPs.
The sparsity class exhibits very steep behaviour at the outer limits of the domain. This is

a feature related to the ”on” nature of the activation functions. When most/all activations of
the network nodes are in the positive domain, the input data is passed through the network and
potentially amplified by larger weights. Since we implement the MSE loss for these examples,
any classification error above 1 gets amplified, resulting in the aggressive increase in error. The
consequence of this is a relatively convex looking loss function on a ”global” scale. However, in
the centre of the domain, where the error is small, a significant amount of detail is present, that
is lost at this scale. It is also notable, that the number of true optima obtained when using ReLU
and leaky ReLU AFs are different to the rest for the same problem. This is a clear indication,
that there are unique features closer to the origin, that distinguish these activations from the
rest. In search for these features, we conduct a second analysis over a more local domain in the
weight space in Section 2.3.2.

2.3.2 Local activation function characteristics in descent directions over [-2,2]
domains in weight space

In this section we modify the definitions of d1 and d2, to be the steepest descent direction of
the full batch, d1 = −∇L(x) at initial starting point x0 located at (0,0), and d2 is chosen to be
a random direction perpendicular to d1. We also reduce the grid range to [-2,2], to give a more
detailed perspective of characteristics around local minima for different AFs. A summary of the
observations made is given in Table 2.2.

In this case, the number of local minima counted is 21 to 33 times higher than the number
of true optima present in the loss function. In comparison, the equivalent occurrence of SNN-
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GPPs compared to true optima is a factor of 3 to 9. Due to the smaller relative domains, the
step sizes along respective search directions are smaller, creating a higher chance of SNN-GPPs
occurring close to a true optimum. This accounts for the slight increase in the ratio between
counted SNN-GPPs and true optima, compared to the larger [-20,20] domains. The AF resulting
in the least identified SNN-GPPs for the saturation and sparsity classes are Softsign and ELU
respectively, while the corresponding worst performers are Tanh and leaky ReLU.

AF Figure #
True
Optima

#
Local
Minima

#
SNN-
GPPs

Comments

Sigmoid A.6 4 117 36 Smooth features; spurious SNN-GPP
again in low curvature directions;
mainly the contour direction.

Tanh A.7 4 130 15 Higher curvature than Sigmoid; SNN-
GPP fewer, more localized; contour di-
rection generates spurious SNN-GPP
over whole domain.

Softsign A.8 4 123 13 More local curvature than Tanh; SNN-
GPP highly localized.

ReLU A.9, A.12 5 105 17 Piece-wise, multi-modal with shallow
basins; directional derivatives are dis-
continuous; existence of flat planes
when all nodes are ”off” (insensitive
to sub-sampling); quadratic when all
nodes are ”on”

Leaky
ReLU

A.10, A.12 5 124 17 Similar features to ReLU, but ”flat
planes” have slight curvature

ELU A.11 4 121 11 Smooth loss function features; uni-
modal in diagonal directions; continu-
ous directional derivative; higher gra-
dient curvature; most localized SNN-
GPP for ReLUs.

Table 2.2: Summary of observations from analyses conducted by traversing a scalar range of
[-2,2] to give an impression of ”local” loss function characteristics. Here the search directions are
d1 = −∇L(x) and d2 is a random perpendicular direction to d1. The corresponding Figures A.6-
A.11 are shown in Appendix A.1.2.

Considering specific AFs, the most prominent feature of the ReLU and leaky ReLU loss
functions is that they do not have uniform characteristics. As is shown in Figure A.9(a), there
are flat planes, low curvature optima, high curvature optima, and quadratic characteristics
almost seemingly ”stitched” together. There are up to two optima in a given search direction.
Some are in very shallow basins (in the negative domains) and others are in basins of higher
curvature (around 0.5 units). This ”stitched” behaviour in the loss function are a result of the
discontinuous nature of the AF derivative, seen in Figures A.9(b) and A.10(b). Here, the steps
indicate different nodes switching ”on” and ”off”. The less nodes are active, the less curvature
is present in the loss function. Conversely, if many nodes are simultaneously ”on” with high
weight values, the loss function increases quadratically. This explains the multi-modality in
a given search direction, which is in stark contrast to the other activation functions, that are
smooth and continuous.

Importantly, there are also domains in the ReLU loss function where the directional deriva-
tives are exactly 0. These are domains where all nodes are ”off” and no information is able to
pass through the network. These areas are unaffected by mini-batch sub-sampling, exhibiting
directional derivatives that are consistently 0, see Figure A.12(a). This occurs when the network
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weights are such that all the incoming information from the data is pushed into the negative
domain of the ReLU activation function. These are problematic areas for neural network train-
ing, since most training algorithms make use of gradient information to update x. If there is no
gradient information, there will be no updates to the state of the network and training comes
to a premature halt. These flat planes are also present for the leaky ReLU. However, these
do not have derivatives that are 0 (see Figure A.12), thus preventing training algorithms from
stagnating during optimization. The additional curvature and smooth transition of gradients
given by the ELU activation function further aid in constructing smooth features in the loss
function. In this analysis these characteristics have led to a lower number of local optima, and
have further aided the location of SNN-GPP in dynamic MBSS loss functions (see Figure A.11).

For the saturation class of AFs, we see similar trends in this analysis compared to that of the
”global” domains: High curvature directions contain fewer and more localized SNN-GPPs. Low
curvature directions result in a wider range of possible SNN-GPP locations and in some cases can
even cause the likely location of SNN-GPP to shift. Specifically, the close-up Softsign analysis
shows the disappearance of a SNN-GPP out of the edge of the sampled domain. The true
NN-GPP at step size around ±− 1.9 moves beyond [-2,2] to fall between [-3.5,-3.1] (confirmed
by multiple mini-batch analyses in this extended domain). This SNN-GPP is far from the true
NN-GPP. If an optimization method were to find the solution in the [-3.5,-3.1] range, it would
be a poor representation of the true optimum, though the consequence in terms of error from
the model might be low, since the change in error is not high around this area. However, this
underlines the argument of preferring directions of high curvature for optimization purposes.

Overall, the same general trend holds for investigations on both the global and local domains
conducted in this chapter: The characteristics of the optimality formulations explored in Section
2.2.2 hold across all considered activation functions. The number of local minima counted is
often around an order of magnitude higher than the equivalent number of SNN-GPPs in dynamic
MBSS loss functions. Local minima are spatially spread across the whole domain, whereas only
low curvature directions exhibit a larger number of spurious SNN-GPPs. Due to their favourable
derivative characteristics, the activation functions that produced the best results for finding
SNN-GPPs were Softsign and ELU for their respective classes. Smooth derivatives and high
curvature directions are concepts that align well with attempts to incorporate mathematical
programming [Arora, 2011] methods into machine learning [Schraudolph et al., 2007, Martens,
2010].

2.4 Sensitivity of optimum formulations to mini-batch sample
size

Through our analyses of different activation functions with a constant batch size of |Bn,i| = 10,
we have demonstrated the sensitivity of optimality criteria to curvature in the loss function.
To round off the discussion around different optimum formulations, we show a representative
example of sensitivity to batch size. We again use the Sigmoid AF (the worst performer in the
saturation class) and conduct the same analyses with domains and directions as shown Sections
2.3.1 and 2.3.2, only changing the mini-batch sample size to |Bn,i| = 50.

The results shown in Figure 2.10(b) and (d) immediately exhibit a lower occurrence and
smaller spatial localization of SNN-GPP, especially in the low-curvature direction, d2, compared
to the results in Figures 2.8(d) and A.6(h). The increase in sample size reduces the variance
in the discontinuities due to changing mini-batches, which affects both function values and
directional derivatives. This is particularly effective for increasing the robustness of locating
SNN-GPPs in low curvature domains.

We compare the quantitative data of analyses with |Bn,i| = 10 and |Bn,i| = 50 in Table 2.3.
In both the global and local domains, the number of SNN-GPPs counted dropped by roughly
a factor of 3. With regards to function values, the number of local minima remained similar
to those counted for |Bn,i| = 10. This indicates that while local minima are largely insensitive
to a decrease in loss function variance, SNN-GPPs react positively to a reduction in gradient
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(a) Function value, domain [-20,20] (b) Directional derivative, domain [-20,20]

(c) Function value, domain [-2,2] (d) Directional Derivative, domain [-2,2]

Figure 2.10: Function values and directional derivatives along fixed search directions using mini-
batch size |Bn,i| = 50. The increase in batch size reduces the severity of sampling error. This is
particularly effective in low curvature directions, causing the locations of SNN-GPPs to be more
consistent. However, the localization of local minima is not positively affected by this increase
in |Bn,i|.

variance. As the sample size increases, the number and location of SNN-GPPs more closely
approximates that of the true optima. However, as demonstrated by Figure 2.5, this does not
occur as rapidly with the increase of mini-batch size for the local minima formulation. We can
only say with certainty that finding local minima is only reliable in the limit case of using all
data, or keeping the mini-batch static. The use of SNN-GPPs offers an improved alternative
to estimate the solution, in particular, when loss functions are computed using dynamic MBSS
with smaller batch sizes.

domain #
True
Optima

# Local
Minima for
|Bn,i| = 10

# Local
Minima for
|Bn,i| = 50

# SNN-
GPPs for
|Bn,i| = 10

# SNN-GPPs for
|Bn,i| = 50

[-20,20] 4 128 125 17 5

[-2,2] 4 117 125 36 13

Table 2.3: Number of local minima and SNN-GPPs counted in different domain sizes as a
function of mini-batch size, |Bn,i|.

2.5 Conclusion

This chapter visually explores the local minimum and stochastic non-negative associated gradi-
ent projection point (SNN-GPP) definitions in the context of dynamic mini-batch sub-sampled

40



(MBSS) loss functions of neural networks with different activation functions. We have high-
lighted the differences between static and dynamic MBSS strategies and have linked their prop-
erties to the bias-variance trade-off respectively. Static sub-samples result in a smooth loss func-
tion, which is beneficial to minimization optimization methods, but results in a bias towards the
selected mini-batch. Conversely, dynamic MBSS results in an unbiased but high variance loss
function with discontinuities, which obstructs minimization based optimizers. However, the fact
that new information is presented at every cycle in dynamic MBSS, seems to have performance
benefits to an optimization method that is able to operate in discontinuous loss functions.

We investigate the ability of local function minimizers and SNN-GPPs to localize true (full-
batch) optima when dynamic MBSS is implemented. Function minimizers formulated as the
standard mathematical programming problem give rise to a large number of spurious local min-
ima, which are high in number and uniformly distributed throughout the domain. This may
significantly hamper the effectiveness of minimization line searches in neural network training
using both exact and inexact line searches. Although inexact line searches may overcome some
minima, it is not guaranteed, especially when monotonic descent is enforced to achieve conver-
gent line search strategies.

SNN-GPPs, formulated as the solution to the gradient-only optimization problem, have been
shown to be spatially localized around the true optimum. Our results have shown that SNN-
GPPs have on average an order of magnitude less chance of occurrence than local minima over
the same domain. With increasing mini-batch sub-sample sizes, the chance of spurious SNN-
GPPs decreases even further, while local minima remain spatially spread. This holds for both
”global” and ”local” investigations performed. The spatial variance of SNN-GPPs depends on
the curvature in the loss function along the search direction. High curvature tends to result in
spatially concentrated SNN-GPPs, while low curvature search directions result in larger areas
of uncertainty. The curvature of the loss function is sensitive to the activation function chosen
in the neural network. In the problem considered, we showed that it is of interest to choose
activation functions that result in high curvature in the directional derivative, while avoiding
characteristics that might lead to the construction of numerous optima, or flat planes with zero
derivatives.

We divide the investigated activation functions into two classes, namely: Saturation and
sparsity. These classes have different characteristics and therefore can be selected based on
requirements of the given problem. According to our investigations, the activation functions
for each class with the most favourable characteristics for locating high quality SNN-GPPs in
dynamically sub-sampled loss functions were Softsign and ELU respectively. The ability to find
optima more reliably in dynamic MBSS loss functions allows for exploration in constructing
better optimizers for memory-restricted machine learning applications. Neural network models
in particular can benefit from considering training as finding SNN-GPP as opposed to minimizing
the loss function. This perspective of optimization may improve the construction of efficient and
effective line searches in dynamic MBSS losses, which is still an open problem.
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Chapter 3

Resolving learning rates adaptively
by locating SNN-GPPs using line
searches

Learning rates in stochastic neural network training are currently determined a priori to train-
ing, using expensive manual or automated iterative tuning. Attempts to resolve learning rates
adaptively, using line searches, have proven computationally demanding. Reducing the compu-
tational cost by considering mini-batch sub-sampling (MBSS) introduces challenges due to large
variance in information between batches that may present as discontinuities in the loss func-
tion, depending on the MBSS approach. This chapter proposes a robust approach to adaptively
resolve learning using dynamic MBSS loss functions. This is achieved by finding sign changes
from negative to positive along directional derivatives, which ultimately converge to a stochastic
non-negative associated gradient projection point (SNN-GPP). Through a number of investiga-
tive studies we demonstrate that this gradient-only line search (GOLS) approach allows the
learning rate to be adaptively resolved, convergence performance to improve over minimization
line searches, some local minima ignored, and an otherwise expensive hyper-parameter elimi-
nated. We also show that poor search directions may benefit computationally from overstepping
optima along a descent direction, which can be resolved by considering improved search direc-
tions. Having shown that GOLS is a reliable line search, for the first time we can investigate
the benefits of dynamic over static MBSS.

3.1 Introduction

The aim of this chapter is to compare gradient-only line searches to minimization line searches
in the context of mini-batch sub-sampled loss functions, that result in discontinuous loss func-
tions often encountered in Artificial Neural Network training. Given the ability to conduct
line searches in this environment, it would be possible to adaptively and robustly resolve step
sizes (learning rates). This chapter presents a formulation to achieve this. And to this end, we
introduce the various concepts required to conduct our investigations.

3.1.1 Loss Functions and Gradients

Machine learning models are often posed with loss functions of the form

L(x) =
1

M

M∑
b=1

`(x; tb), (3.1)

where x ∈ Rp is a p-dimensional vector of parameters, {t1, . . . , tM} is a training set of M data
points of dimension D, and `(x; t) is an elemental loss function quantifying the performance
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of parameters x on training sample t. The exact gradient w.r.t. x is then computed by back-
propagation [Werbos, 1994], giving

∇L(x) =
1

M

M∑
b=1

∇`(x; tb). (3.2)

For large M , the exact gradient can become computationally demanding to compute. Instead, a
mini-batch sample, B ⊂ {1, . . . ,M} of size |B| �M is selected from the training set to compute
an approximate loss function

L(x) =
1

|B|
∑
b∈B

`(x; tb), (3.3)

and approximate gradient

g(x) =
1

|B|
∑
b∈B
∇`(x; tb). (3.4)

Here, L(x) refers to a true or full-batch loss function and L(x) to an approximate or sub-sampled
loss function. It is important to note that since we compute L(x) using only a subset of the
training dataset, we introduce a sampling error. This sampling error can manifest in various
ways in the computed loss function, when conducting mini-batch sub-sampling (MBSS). This
mainly depends on i) when during optimization the mini-batch is updated from the training
data set, ii) the number of samples drawn per mini-batch and iii) how the samples are selected
for a mini-batch from the training data set.

This investigation is primarily concerned with the implications of i) when the mini-batch
is updated from the training data set. First, we consider the standard approach to update a
mini-batch, which is at the beginning of every unit search direction u [Bollapragada et al., 2017,
Friedlander and Schmidt, 2011, Martens, 2010]. The mini-batch is kept fixed along a search
direction and only newly sampled once a new search direction is computed. We refer to this
mini-batch sampling approach as static MBSS.

Definition 3.1.1. Static mini-batch sub-sampling is conducted when the mini-batch, B, used
to evaluate approximations L(x) and g(x) remains constant for the minimum duration of con-
ducting a line search along a descent direction dn. Consider iteration, n, of an optimizer, given
descent direction dn, the mini-batch Bn is sampled and kept constant when computing:

L̄(x) =
1

|Bn|
∑
b∈Bn

`(x; tb), (3.5)

and approximate gradient

ḡ(x) =
1

|Bn|
∑
b∈Bn

∇`(x; tb), (3.6)

along dn. The mini-batch is only updated again for iteration n + 1. The overhead bar is used
to identify approximations evaluated using static mini-batch sub-sampling as L̄(x) and ḡ(x)
respectively. For mini-batch size |Bn| and full batch size M , there are a total of K =

(
M
|Bn|
)

combinations from which to draw mini-batches.

Given the operation of differentiable norms on only smooth activation functions, a number
of smooth loss and derivative function instances can result along the search direction depending
on the sampled mini-batch at the beginning of the iteration as depicted in Figure 3.1. The
differences between the smooth loss and derivative functions computed from the various mini-
batches are a direct result of differences in sampling error between individual mini-batches.

Secondly, the number of samples drawn from the training data set influences the variance of
the sampling error between batches. To not distract from the focus of this investigation, once
a batch size, |B|, is chosen for an optimization run, it remains fixed for the duration of the
analysis. This deliberate choice does not diminish the contribution of other investigations that
have pointed out the advantages of changing the batch size [Friedlander and Schmidt, 2011].
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Figure 3.1: Illustration of the (a) full-batch loss function (blue) and four approximate loss
functions computed using four static mini-batches along a descent direction dn. Similarly, (b)
indicates the directional derivatives of these four static mini-batch sub-sampled loss functions
along dn.

Lastly, the way the samples are drawn from the training data set influences the variance of the
sampling error between batches. Usually, a mini-batch is drawn uniformly and independently
from the training set [Chen et al., 2017]. Uniform sampling of mini-batches over the whole
training set gives an expected loss E[L(x)] = L(x) and expected gradient E[g(x)] = ∇L(x),
that is given by the full-batch computed loss and gradient functions [Tong and Liu, 2005].
It has been noted that MBSS may lead to the non-convergence of certain algorithms [Balles
and Hennig, 2018], which can be improved by using stratified or active MBSS [Zhang et al.,
2018]. In this investigation, all mini-batches are computed by drawing samples uniformly and
independently from the training set.

Not only does MBSS benefit the computational cost of training, it may also aid convergence
[Ruder, 2016], by allowing optimizers to overcome local minima in multi-modal loss functions
[Choromanska et al., 2015, Dauphin et al., 2014, Goodfellow et al., 2015, Saxe et al., 2013]. This
is based on the premise that local minima may vary between mini-batches. Though this premise
is problem dependent, it seems to hold in general, when sampling using smaller batch sizes. In
addition, descent directions computed from MBSS gradient functions produce a cone of possible
descent directions distributed around the full-batch steepest descent direction, which may aid
or delay convergence.

Notation: Explicit dependency on variables are occasionally omitted e.g. L̄ instead of L̄(x).
Sequences are denoted by subscripts e.g. ḡi, denoting the gradient at the ith iterate. Entry-wise
products also known as the Hadamard or Schur products [Davis, 1962] are explicitly denoted
using �. Directional derivative denotes a derivative or gradient vector projected along a direc-
tion. Gradient vectors are assumed to be column vectors and the vector transpose is indicated
by superscript T. Note that the unit descent direction, u, is distinct from the unscaled descent
direction, d, which are related by u = d

||d||2 .

3.1.2 Optimization Formulations: Full-Batch Sampling

In general there are three formulations to define the solution or candidate solutions to an opti-
mization problem using (3.1) and (3.2), i.e. computed using full-batch sampling, namely:

1. Formulation 1: Direct minimization of (3.1) [Arora, 2011, Floudas and Pardalos, 2009,
Snyman and Wilke, 2018],

2. Formulation 2: Finding stationary points of (3.2), known as the optimality criterion [Arora,
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2011, Floudas and Pardalos, 2009, Snyman and Wilke, 2018], and

3. Formulation 3: Finding non-negative gradient projection points, xnngpp, [Snyman and
Wilke, 2018, Wilke et al., 2013], as defined by the optimality condition in Definition 3.1.2.

Definition 3.1.2. Suppose that f : X ⊆ Rp → R is a real-valued function for which the gradient
∇f(x) is uniquely defined for every x ∈ X. Then, a point xnngpp ∈ X is a non-negative gradient
projection point (NN-GPP) if there exists a real number ru > 0 for every u ∈ {y ∈ Rp / ‖y‖ = 1}
such that

∇fT(xnngpp + λu)u ≥ 0, ∀ λ ∈ (0, ru].

The NN-GPP refers to the directional derivative ∇fT(xnngpp + λu)u that is required to be
non-negative for any direction u along a non-zero distance λ ∈ (0, ru]. Note, that the gradient is
evaluated at xnngpp +λu, i.e. away from xnngpp. Alternatively stated, NN-GPPs can be viewed
as an optimality formulation that requires all directional derivatives of points in a non-empty
ball, Bε(x) = {x ∈ Rp : ‖x − xnngpp‖2 < µ, 0 < µ < ∞, x 6= xnngpp}, around the NN-GPP to
be non-negative. The directional derivative, ∇fT(x)u, of a point in the ball x ∈ Bε, is defined
by the direction vector that connects the non-negative gradient projection point, xnngpp, to the
point in the ball, x, i.e. u =

x−xnngpp

‖x−xnngpp‖2 , which is then projected onto the gradient evaluated at
x.

(a) Univariate loss function, F (x). (b) Derivative, F ′(x).

Figure 3.2: (a) Univariate loss function and (b) derivative function. The non-negative gra-
dient projection point (NN-GPP), xnngpp, (Formulation 3) for the example univariate func-
tion coincides with xnngpp = x2, at which the derivative is also zero (Formulation 2) and
the function value is a minimum (Formulation 1). NN-GPPs are defined using an opti-
mality formulation that requires all directional derivatives of points in a non-empty ball,
Bε(x) = {x ∈ R : |x − xnngpp| < µ, 0 < µ < ∞, x 6= xnngpp}, around the NN-GPP to be
non-negative.

Formulations 1-3 are well illustrated by the univariate loss function, F (x), and derivative of
the loss, F ′(x), depicted in Figure 3.2(a) and (b) respectively:

1. Formulation 1: x2 is the minimum of F (x).

2. Formulation 2: The only stationary point (candidate minimum) is x2, since the necessary
condition F ′(x2) = 0 holds. The candidate solution is an actual minimum if in addition
to F ′(x2) = 0, F ′′(x2) > 0 holds, which together forms the sufficiency conditions for x2 to
be a local minimum.

3. Formulation 3: Given, directions u− = −1 and u+ = 1, as well as xa+ = xa + λ and
xa− = xa − λ with λ ∈ (0, ru] for any point xa; the only non-negative gradient projection
point is x2, as both directional derivatives, to the left, F ′(x2−)u− > 0, and to the right
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F ′(x2+)u+ > 0 are both positive. This is in contrast to x1 and x3 that each have a negative
directional derivative, respectively to the right and left, as indicated in Figure 3.2(b).

Consider the application of Formulations 1-3 to the actual loss function of a single hidden
layer network applied to the Glass1 dataset [Prechelt, 1994], using the full training set in Fig-
ures 3.3(a) and (b). For given step length α along the steepest descent direction, −∇L(x0),
Figure 3.3(a) depicts the full-batch univariate loss function

F(α) = L(x0 − α∇L(x0)),

with Figure 3.3(b) depicting the corresponding directional derivative,

F ′(α) = − (∇L(x0 − α∇L(x0)))
T∇L(x0),

with each of the p components of x0 sampled from a uniform distribution over [−0.1, 0.1].
The minimum, stationary point and non-negative gradient projection point are equivalent and
coincide with α = 2.5.

Formulations 1-3 have been shown to be equivalent [Wilke et al., 2013], when restricting
Equation (3.1) to the class of convex functions. Formulation 1 requires the direct minimization
of Equation (3.1), while formulation 2 requires the roots of (3.2) to be computed. Formulation
3 is solved by finding sign changes, from negative to positive, in directional derivatives along
descent directions until no more descent directions remain. Note sign changes from negative to
positive along a descent direction implies a minimum without explicitly requiring the directional
derivative to be zero at the minimum. In addition, a sign change from negative to positive implies
a minimum based on derivative information. Hence, no additional second order condition is
required to identify a minimum based on derivative information. For continuous and smooth
convex functions, all three formulations are equivalent. However, as will become evident, these
formulations distinguish themselves as the continuity and smoothness requirements for computed
loss function are relaxed.

(a) Loss function. (b) Directional derivative.

Figure 3.3: Typical loss function along the steepest descent direction in neural network training,
with (a) function value and corresponding (b) directional derivative along the steepest descent
direction as a function of step size α. The problem is constructed using the full training data of
the Glass1 dataset [Prechelt, 1994] (for details see Section 3.3). The local minimum (Formulation
1) is indicated as a black dot in (a), while the stationary point (Formulation 2) and NN-GPP
(Formulation 3) are indicated by a black dot in (b).

3.1.3 Optimization Formulations: Static Mini-Batch Sub-Sampling

As noted, static MBSS computes a sequence of approximate loss L̄(x) and gradient functions
ḡ(x) to be considered by the optimizers for minimization. Since the mini-batch remains fixed
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along each search direction, the resulting loss and gradient functions are smooth, subject to the
utilization of smooth activation functions and norm operators. Consequently, computing loss
functions using static MBSS does not change the underlying smoothness and continuity of the
computed loss function along a search direction. The boundedness of minimizers along a search
direction may however be affected, i.e. different mini-batches may produce different minimizers
along a fixed search direction, since the sampling error changes between mini-batches, resulting
in a bias. In the limit case, it is possible that there is no minimizer when batch sizes are small,
whereas the full-batch resolves a unique minimizer along the same search direction.

Consequently, Formulations 1-3 remain equivalent for smooth and continuous convex func-
tions. However, the minimizers between different static MBSS loss functions are not unique.
Instead, there is a set of solutions to which an optimizer will converge, each solution being
the result of a particular mini-batch. This follows from considering Figures 3.1(a)-(b), which
depicts four approximate loss functions, with four distinct minima. These four minima define a
set of minima to which an optimizer can converge. For static MBSS, both the search direction
and mini-batch is updated between iterations, resulting in a distribution of sampled loss func-
tions that could be optimized at each iteration, where each sampled loss function has its own
minimizer. The sampling error therefore introduces a biased minimizer estimate, which implies
that convergence of an optimizer on static MBSS loss functions can only be guaranteed within
some bounded distance, ε, that is 0 < ε < ∞, of the full-batch minimum. Although, static
MBSS loss functions can be continuous, smooth and convex for a given mini-batch, the notion
of convergence to a unique minimizer needs to be relaxed to a set of minimizers.

First, we need to ensure that our batches are sufficient to ensure that the smoothness,
continuity and convexity characteristics of the full-batch function, L(x), are reflected in every
independently sampled mini-batch loss function, L(x):

Definition 3.1.3. A mini-batch loss function, L(x), and its gradient, g(x), are consistent,
when the loss and gradient functions computed using the given mini-batch have the same smooth-
ness, continuity and convexity characteristics as the full-batch loss function, L(x), and gradient,
∇L(x).

This avoids the computation of unbounded solutions along a search direction, which enables
us to prove that minimization of static mini-batch sampled loss functions will converge to a
finite ball of solutions, Bε(x) ⊂ Rp:

Theorem 3.1.1. Consider a static mini-batch sub-sampled loss function L̄(x), of a continuous,
smooth and convex full-batch loss function L(x), such that each computed mini-batch loss func-
tion is consistent. Then minimization of the static mini-batch sub-sampled loss function L̄(x)
is guaranteed to converge to the ball Bε(x) = {x ∈ Rp : ‖x − x∗‖2 < ε, 0 < ε < ∞, x 6= x∗},
where x∗ is the minimum of full-batch loss function.

Proof. Given a training set of M samples, there are K =
(
M
|B|
)

ways to choose |B| samples
from the training set. Since the mini-batch sub-sampled loss function is consistent, each of the
K mini-batch sub-sampled loss functions L̄(x) is continuous, smooth and convex. Therefore,
each of the K mini-batch sub-sampled loss functions L̄(x) has a unique minimizer given by
S = {x∗1,x∗2, . . . ,x∗K}. By selecting 0 < ε < ∞ such that S ⊂ Bε(x), we construct Bε(x) =
{x ∈ Rp : ‖x−x∗‖2 < ε, 0 < ε <∞, x 6= x∗} to span all possible minimizers of the mini-batch
sub-sampled loss functions L̄(x). Hence, minimization of the static mini-batch sub-sampled loss
function L̄(x) implies minimization of one of the K mini-batch sub-sampled convex loss functions
along the descent direction, i.e. a step of maximum improvement towards one of the minimizers
in S along the descent direction. This in turn, is a guaranteed step of finite improvement towards
Bε(x) as S ⊂ Bε(x), along the descent direction which proves the theorem.

3.1.4 Optimization Formulations: Dynamic Mini-Batch Sub-Sampling

As an alternative to static MBSS, dynamic MBSS draws a new batch for every evaluation of the
loss function:
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(a) Loss function
(b) Directional derivative

Figure 3.4: Illustration of full-batch and dynamic mini-batch sub-sampled (MBSS) loss function
and directional derivative along a unit descent direction, u. For every evaluation of L(x) and
g(x) a new mini-batch is sampled. This introduces discontinuities in the loss and directional
derivative functions, as every mini-batch, B, has a different sampling error. This variance in
sampling error is not present in the full-batch sampled loss function, which is smooth and
continuous. Note that g̃(x) is analytically computed using back-propagation for a given mini-
batch B, which implies that L̃(x) and g̃(x) are computed for the same mini-batch, B.

Definition 3.1.4. Dynamic mini-batch sub-sampling is conducted when the mini-batch, B, used
to evaluate approximations L(x) and g(x) is updated for every evaluation of L(x) and g(x)
whilst conducting a line search along as descent direction dn. Therefore, given descent direction
dn at iteration n, requiring i loss function evaluations along the descent direction, then the
mini-batch Bn,i is re-sampled for every loss function evaluation:

L̃(x) =
1

|Bn,i|
∑
b∈Bn,i

`(x; tb), (3.7)

and approximate gradient

g̃(x) =
1

|Bn,i|
∑
b∈Bn,i

∇`(x; tb). (3.8)

The overhead tilde is used to identify approximations evaluated using dynamic mini-batch sub-
sampling as L̃(x) and g̃(x) respectively. For mini-batch size |Bn,i| and full batch size M , there
are a total of K =

(
M
|Bn,i|

)
combinations from which to draw mini-batches.

An explicit comparison between static and dynamic MBSS is presented in Section 3.4.6,
which clearly demonstrates the computational efficiency of dynamic MBSS over static MBSS.
However, dynamic MBSS significantly affects the characteristics of the computed loss and gradi-
ent functions, which are illustrated in Figure 3.4. Here, the loss function is sampled at discrete
points along a given descent direction dn, while the mini-batch is updated or re-sampled at every
evaluation of the loss function. The same batch to compute the loss function is used to compute
the gradient, which in turn is projected onto the descent direction dn to compute the depicted
directional derivative. In addition to the dynamic MBSS loss and derivative functions, we also
depict the full-batch loss and directional derivative functions. Firstly, it is important to note
that both the dynamic MBSS loss and directional derivative functions are discontinuous. These
discontinuities are a direct result of abrupt changes in the sampling error between mini-batches.

Given the utilization of only smooth activation functions operated on by differentiable norms,
it follows that L(x) is everywhere differentiable. In turn, L̃(x) in the classic sense is not differen-
tiable everywhere as the limits of the derivative from left and right are not equal at discontinuities
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due to variance in the sampling error between mini-batches. However, we can compute the an-
alytical sensitivity using back-propagation for any given x and mini-batch, B. Following Wilke
et al. [2013], we define the associated derivative for dynamic MBSS loss functions as follows:

Definition 3.1.5. Let f : X ⊆ R→ R be a real univariate dynamic mini-batch sub-sampled loss
function, that is an everywhere defined point-wise discontinuous function. Given the mini-batch,
B, selected to evaluate the loss function at x, the associated derivative f ′a(x) at x is then given
by the left and right-hand derivative as x is approached when keeping B fixed. This is equivalent
to the computed analytical sensitivity at x using mini-batch B, which is easily computed using
back-propagation.

Secondly, the associated gradient for dynamic MBSS loss functions is given by:

Definition 3.1.6. Let f : X ⊆ Rp → R be a dynamic mini-batch sub-sampled loss function that
is an everywhere defined point-wise discontinuous function. The associated gradient ∇af(x)
for f(x) at x is defined as the vector of partial derivatives, where each partial derivative is an
associated derivative as given by Definition 3.1.5.

It follows from Definitions 3.1.5 and 3.1.6 that the associated gradient defines point-wise
discontinuous dynamic MBSS loss functions to be differentiable everywhere. For compactness
we will consider references to the gradient of a dynamic MBSS loss function, g̃(x), to imply the
associated gradient of L̃(x).

For the stochastic setting we extend the deterministic notion of a non-negative gradient
projection point (NN-GPP) to incorporate the stochastic nature of the loss function due to
dynamic MBSS as follows:

Definition 3.1.7. Suppose that f : X ⊆ Rp → R is a real-valued function for which the gradient
∇f(x) is uniquely defined for every x ∈ X. Then, a point xsnngpp ∈ X is a stochastic non-
negative gradient projection point (SNN-GPP) if there exists a real number ru > 0 for every
u ∈ {y ∈ Rp / ‖y‖ = 1} such that

∇fT(xsnngpp + λu)u ≥ 0, ∀ λ ∈ (0, ru],

with a non-zero probability.

It follows that every NN-GPP is also a SNN-GPP, as it satisfies the above definition with a
probability of 1.

Theorem 3.1.2. Consider a dynamic mini-batch sub-sampled loss function L̃(x), of a con-
tinuous, smooth and convex full-batch loss function L(x), such that each sampled mini-batch
with associated L(x) that is used to evaluate L̃(x) is consistent. Then there exists a ball,
Bε(x) = {x ∈ Rp : ‖x − x∗‖2 < ε, 0 < ε < ∞, x 6= x∗}, that contains all the stochastic
non-negative gradient projection points (SNN-GPPs), where x∗ is the minimum of the full-batch
loss function.

Proof. Given a training set of M samples, then there are K =
(
M
|B|
)

ways to choose |B| samples
from the training set. Since the mini-batch sub-sampled loss function is consistent, each of the
K mini-batch sub-sampled loss functions L(x) is continuous, smooth and convex. Therefore,
each of the K mini-batch sub-sampled loss functions, L(x), has a unique minimizer, which is
also a non-negative gradient projection point (NN-GPP) or equivalently stochastic non-negative
gradient projection point (SNN-GPP). The set of NN-GPP is given by S = {x∗1,x∗2, . . . ,x∗K}.
By selecting 0 < ε <∞ such that S ⊂ Bε(x), we construct Bε(x) = {x ∈ Rp : ‖x−x∗‖2 < ε, 0 <
ε < ∞, x 6= x∗} to span all possible NN-GPPs of the mini-batch sub-sampled loss functions
L(x). This Bε(x) then spans the set of SNN-GPPs, as SNN-GPPs are merely the consequence
of stochastically selecting loss functions with their NN-GPP confined to S. It therefore follows
that Bε(x) spans all possible SNN-GPPs of the dynamic mini-batch sub-sampled loss function
L̃(x), which proves the theorem.
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To illustrate these definitions and visualize the ball of possible solutions along a search
direction, reconsider the Glass1 dataset classification problem [Prechelt, 1994]. We now compute
the dynamic MBSS loss function L̃(x). Figures 3.5(a) and (b) show the function values and
directional derivatives along the steepest descent direction for different mini-batch sizes |B| ∈
[10, 30, 50], which is compared to the full-batch loss function, i.e. M = 108. Consequently, a
batch size of 10 result in ≈ 3.8 × 1013 combinations, |B| = 30 in ≈ 4.4 × 1026 and |B| = 50 in
≈ 1.8× 1031 combinations from which to draw a mini-batch.

(a) Function values. (b) Directional derivatives.

(c) Minima versus mini-batch size. (d) % local min. along search direction.

Figure 3.5: (a) Loss function and (b) directional derivative along the steepest descent direction
with step size α for different mini-batch sizes, |B| ∈ [10, 30, 50], stochastically sub-sampled.
The spatial variance in SNN-GPPs along the descent direction is indicated by vertical lines for
different batch sizes. (c) The number of local minima and SNN-GPP that manifest for mini-
batches sizes between |B| = 1 and M = 108 sampled over the domain 0 ≤ α ≤ 10 divided
into 101 increments. The quality of the solutions captured as the (d) variance in location of
local minima and SNN-GPP over the domain 0 ≤ α ≤ 10 for a batch size of 10. The full-batch
solution is at α∗ = 2.5.

Differences between Formulations 1-3 are evident when aiming to optimize dynamic mini-
match sampled loss functions. Considering Formulation 1, it is evident that finding a minimum
of L̃(x) is both problematic and not representative of the full-batch loss function. Similarly,
considering Formulation 2, requires the directional derivative to be zero, which (though numer-
ically close to zero in some instances) may not exist for g̃(x). In fact, directional derivatives
close to zero may lead to poor approximations of the true solution of ∇L(x), as is evident with
the diminishing directional derivatives for larger α. Finally, SNN-GPPs are significantly more
robust approximations to the full-batch minimum x∗, since they are localized more tightly in a
ball around the full-batch NN-GPP. Evidently, for this problem larger batch sizes resolve tighter
balls that confine the SNN-GPP as indicated by the vertical dotted lines in Figure 3.5(b), for
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the corresponding mini-batch sizes.
Given the context of line searches, we quantify the number and quality of local minima and

SNN-GPPs along d0 = −∇L(x0) at some fixed initial point x0. In particular, we count the
average number of local minima and SNN-GPPs over 100 reconstructions, i.e. n = 1, . . . , 100, of
a line search F (αn,i) = L̃(x0 + αn,id0) for αn,i = 0.1i, i = 1, . . . 100, where the function value
and gradient evaluations at each increment, i, are computed using a newly sampled mini-batch.
The starting point, x0, is only sampled once at n = 1, from a uniform distribution between
[−0.1, 0.1] for each component of x0, and kept constant for n = 2, . . . , 100, resulting in the
univariate function depicted in Figure 3.5(a) and (b).

A point, αn,i, is identified as a local minimum should F (αn,i−1) > F (αn,i) < F (αn,i+1), while
αn,i is deemed a SNN-GPPs when F ′(αn,i−1) < 0 and F ′(αn,i) > 0. Since there are 100 steps
along the descent direction, the maximum number of local minima and SNN-GPP that can be
found is 49 and 50 respectively. Conversely, if the function is monotonically decreasing, no local
minima or SNN-GPP will be observed. We count the number of local minima and SNN-GPP
over 100 constructed line searches, such as the line search shown in Figure 3.5(a) and (b), for
batch sizes, B = {1, 2, . . . , 108}. This allows us to quantify the effect of batch size on the average
sensitivity of local minima and SNN-GPP. The full-batch function has only one local minimum
or equivalently SNN-GPP within the depicted domain along the descent direction. The mean
number of local minima and SNN-GPP are depicted in Figure 3.5(c), with shading denoting
the standard deviation. As expected, it is evident that there is a unique local minimum and
SNN-GPP when the full-batch is considered. As the batch size is reduced, the SNN-GPPs are
still able to identify a unique solution, whereas the number of local minima grow rapidly. Even
when the batch size is one, the number of SNN-GPPs that manifest is less than a third of the
local minima.

To quantify the quality of the solutions, we depict in Figure 3.5(d), the location of the local
minima and SNN-GPPs along the search direction for a batch size of 10. The full-batch optimum
is located at α = 2.5, around which the SNN-GPP are tightly clustered and mainly spread
between 2 ≤ α ≤ 3, whereas the local minima are uniformly distributed between 1 ≤ α ≤ 10.
Firstly, it is evident, that SNN-GPPs approximate the full-batch solution better than local
minima when only optimizing the L̃(x). Secondly, it is clear that convergence can only be
guaranteed to a ball of solutions when dynamic MBSS is considered.

The implication is that line searches that aim to find SNN-GPPs should be more resilient and
robust in approximating the location of true optima than line searches that aim to minimize
along a descent direction, which may constantly be hindered by spurious local minima. The
probability of SNN-GPPs is high around the full-batch optimum and diminishes as we move
away from the full-batch optimum until the probability is a definite zero outside ball, Bε. This
has implications primarily for exact line searches, where we can only expect to resolve SNN-
GPPs to within ball, Bε, i.e. ε-accuracy for a given batch size. Usually, the larger the batch size
the tighter ε that confines all SNN-GPPs.

3.1.5 Related Work

Supervised machine learning is often divided into ”noisy” stochastic optimization problems [Byrd
et al., 2012] related to smaller batch sizes (typically a single data point) and batch averaged
approximation regimes that utilize larger batch sizes. As demonstrated in this chapter, both
problems are discontinuous, with the size of the discontinuities decreasing as the batch size
increases. Additional approaches to reduce the impact of discontinuities include dynamic sample
sizes i.e. increasing the sample size as the optimizer converges [Byrd et al., 2012, Friedlander
and Schmidt, 2011]. This results in continuous functions in the limit of the full-batch, but is
not well suited for memory constrained datasets. Active sub-sampling [Zhang et al., 2018] is
another approach to reduce the discontinuity size, in which the training data is split into separate
datasets based on their error and then sub-sampled stochastically. Active sub-sampling [Zhang
et al., 2018] has been shown to address convergence issues [Balles and Hennig, 2018] of well
known machine learning optimizers such as Adam [Kingma and Ba, 2015]. The generalization
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of the optimization problem to find SNN-GPPs allows for a framework that is well suited for
stochastic, dynamic and active sub-sampling. Global optimization strategies such as particle
swarm optimization [Engelbrecht, 2005], genetic algorithms [Montana and Davis, 1989] and
Bayesian combined genetic programming approaches [Marwala, 2007], are useful in the context
of highly non-linear and multi-modal problems while only relying on loss function evaluations.
However, these methods are well-known to be computationally demanding.

Stochastic gradient algorithms were introduced by Robbins-Monro [Robbins and Monro,
1951], and include developments such as Nesterov’s dual averaging method [Nesterov, 2009].
Sub-gradient methods introduced by Shor [Shor, 1985a,b] are closely related to stochastic gradi-
ent algorithms. In fact, stochastic gradient descent (SGD) is a classical sub-gradient method i.e.
steepest descent with a fixed learning rate [Bertsekas and Massachusetts Institute of Technology,
2015]. In turn, sub-gradient methods are closely related to the newly coined proximal-gradient
methods [Bertsekas and Massachusetts Institute of Technology, 2015]. All these methods make
use of a priori selected step sizes that are either constant or follow some schedule with known
convergence characteristics. These learning rate parameters remain the most sensitive for sen-
sible performance [Bergstra and Bengio, 2012], and are currently determined either by the user
on a ”trial and error” basis, or by computationally expensive automated means [Bergstra et al.,
2011, Bergstra and Bengio, 2012, Jaderberg et al., 2017, Snoek et al., 2012]. An attempt to
incorporate an adaptive learning rate using an inexact line search strategy based on the Wolfe
conditions requires dynamic sub-sampling that iteratively increases the batch size up to the
full-batch size [Byrd et al., 2012], which finally ensures a continuous problem free from discon-
tinuities with well-known convergence characteristics. Another approach has been to conduct
probabilistic line searches in a Bayesian optimization framework [Mahsereci and Hennig, 2017].
All the approaches discussed so far are referred to as function minimizers, i.e. they aim to find
the minimum function value of the loss function.

Dynamic MBSS has seen limited application in line searches as these perform poorly or do
not converge since the underlying assumptions on which the line searches were developed do
not apply for stochastic sub-sampling. Theoretical developments of convergence proofs and esti-
mating theoretical convergence rates include the well-known linear convergence rate of gradient
descent methods for strongly-convex loss functions. Sub-linear convergence rates are achieved
when f is only convex [Karimi et al., 2016]. A number of alternatives to strong convexity have
been presented that include error bounds [Luo and Tseng, 1993], essential strong convexity [Liu
et al., 2015], weak strong convexity [Gong and Ye, 2014], restricted Secant inequality [Zhang
and Yin, 2013], quadratic growth with the Mangasarian-Fromovitz constraint qualification [An-
itescu, 2000], Polyak-Lojasiewicz condition [Karimi et al., 2016] and associated derivative de-
scent sequences [Wilke et al., 2013]. In line with the discontinuous nature of the stochastic loss
function, associated derivative descent sequences are not based on assumptions of Lipschitz con-
tinuity or convexity but only assume associated derivative unimodal functions with convergent
subsequences.

An alternative to function minimizers are gradient-only optimization strategies that solve
for NN-GPPs as defined by the gradient-only optimization problem [Snyman and Wilke, 2018,
Wilke et al., 2013]. NN-GPPs were specifically proposed to define solutions for discontinuous
functions. In this chapter, we extend the notion of NN-GPP to stochastic NN-GPP (SNN-GPP)
in more detail, and consider line searches specifically developed to find SNN-GPPs. We base
our convergence proofs on associated derivative descent sequences.

3.1.6 Contribution

The gradient-only optimization problem which solves NN-GPPs [Snyman and Wilke, 2018, Wilke
et al., 2013] is a generalized problem, which applies to full-batch training (the conventional min-
imization problem) and deterministic discontinuous problems. In this chapter we introduce the
Stochastic NN-GPP (SNN-GPP) as applicable to training with dynamic MBSS (the discontin-
uous optimization problem). In practice NN-GPPs have been resolved using gradient-only line
search (GOLS) strategies [Snyman and Wilke, 2018, Wilke et al., 2013]. In this chapter we adopt
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these principles to find SNN-GPPs in sub-sampled neural network loss functions and thereby
automatically and adaptively determine the learning rates during supervised mini-batch train-
ing. We demonstrate its effectiveness and generality by comparing GOLS to minimization line
search strategies over a large number of neural network problems. Once the capabilities of GOLS
are established, we have the tools to optimize both continuous and discontinuous loss functions.
Therefore, for the first time, we have the ability to directly compare static and dynamic MBSS
in the context of optimization.

3.2 Method

As the emphasis of this chapter is on resolving step sizes and not the implications of search
directions, we restrict ourselves to the mini-batch stochastic gradient descent (SGD) algorithm.
We consider exact and inexact line searches that exclusively rely on loss function values [Arora,
2011, Floudas and Pardalos, 2009, Snyman and Wilke, 2018] or gradients [Snyman and Wilke,
2018, Wilke et al., 2013]. Additional benefits for considering line searches to resolve step sizes
include the potential to consider higher order algorithms such as conjugate gradient and Quasi-
Newton approaches to resolve curvature information of an underlying loss function [Arora, 2011,
Floudas and Pardalos, 2009, Snyman and Wilke, 2018].

3.2.1 Stochastic Gradient Descent with Line Search Strategies

Consider stochastic gradient descent (SGD) algorithm modified to incorporate line searches,
LS-SGD, as outlined in Algorithm 1. We denote αn,In to be the step size for a given iteration,
n. Line searches resolve αn,In along an unscaled descent direction dn from a starting point xn.
This may require numerous function evaluations, i, to achieve. Therefore we denote αn,i to be
the step size at the ith function evaluations of iteration, n. At termination αn,In indicates the
final step size, with In the number of function evaluations to resolve the step size for iteration,
n.

Algorithm 1: LS-SGD: Stochastic gradient descent with line search

1 Select starting point, x0, and set n = 0.

2 Evaluate L̃(xn) and dn = −g̃(xn).
3 Resolve step length, αn,In , using line search
4 Define xn+1 = xn + αn,Indn.
5 n := n+ 1,
6 Continue when stop criterion and limit on number of iterations have not been met else

stop.
7 Repeat steps 2 to 7.

Recall from Section 3.1, that F represented a univariate full-batch sampled loss function
along a descent direction. In this section, we distinguish between static and dynamic MBSS
representations of F following Definition 3.1.1 and 3.1.4, resulting in static MBSS sampled F̄
and dynamic MBSS sampled F̃ respectively.

Subsequently, obtaining αn,In for LS-SGD requires determining α for the univariate function

F̃n(α) = L̃(x(α)) = L̃(xn + αdn), (3.9)

with associated directional derivative along the descent direction dn,

F̃ ′n(α) =
dFn(α)

dα
= g̃T(x(α))

dx(α)

dα
= g̃T(xn + α · dn)dn. (3.10)

Typically line searches are minimizers, i.e. find

arg min
α∈R+

F̃n(α), (3.11)
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which defines functional value based line searches. Alternatively, line searches can be used to
find SNN-GPPs i.e.

argαsnngpp :=
{
α ∈ R : F̃ ′n(α+ ∆α)∆α ≥ 0

∣∣∣ ∀ |∆α| < r|r > 0}, (3.12)

to form the class of gradient-only line search strategies. For both approaches the desired
points can be resolved within a small tolerance to give an exact line search, or approximately,
which results in inexact line searches.

3.2.2 Exact line searches: Function Value based Golden Section (GS) and
Gradient-only Line Search with Bisection (GOLS-B)

Function value based line searches assume twice differentiable smooth loss functions with a single
minimizer isolated during the bracketing phase. We therefore present function value based line
searches within the context of static MBSS loss functions, F̄ . Conversely, gradient-only line
searches were developed for discontinuous loss functions. We therefore present gradient-only
line searches within the context of dynamic MBSS loss functions, F̃ , but remind the reader
that gradient-only line searches is also applicable for smooth loss functions such as F̄ . We
therefore distinguish between static and dynamic MBSS loss functions to highlight the differences
between minimization and gradient-only line searches, but note that both minimization and
gradient-only line searches can be applied to either static or dynamic MBSS loss functions,
albeit with varying success. Exact line searches were initially developed to isolate minimizers
for deterministic smooth functions, or NN-GPPs for deterministic discontinuous functions. Here,
we apply exact line searches to converge to any stochastic minimizer or SNN-GPP bracketed.
This is done to highlight the inherent quality of local minimizers vs SNN-GPPs for dynamic
MBSS loss functions. For dynamic MBSS loss functions, the accuracy of the function value and
gradient-only interval reduction schemes depends entirely on how representative the sampled loss
function and gradient information is of the full-batch loss function, using the different optimality
formulations (Section 3.1.4.).

(a) Golden Section (b) Gradient-only Line Search with Bisection

Figure 3.6: Comparison between exact line searches that (a) minimize, such as the Golden
Section (GS) method, versus (b) identify SNN-GPP by isolating sign changes from negative to
positive using Gradient-Only Line Search with Bisection (GOLS-B).

Exact line searches first bracket a candidate solution and then refine the interval to find the
minimum or SNN-GPP [Arora, 2011]. Refinement of a minimum requires more computation than
isolating a SNN-GPP as illustrated in Figures 3.6(a) and (b). Four points forming three intervals
are required to isolate a local minimum [Arora, 2011, Floudas and Pardalos, 2009, Snyman and
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Wilke, 2018]). The optimal interval reduction is achieved using Golden Section (GS), that
reduces the interval by 38% per iteration [Arora, 2011, Floudas and Pardalos, 2009, Snyman
and Wilke, 2018]. Isolating a SNN-GPP is equivalent to isolating the directional derivative sign
change from negative to positive along the descent direction, which can be done using bisection,
i.e. three points forming two intervals, that reduces the interval by 50% per iteration [Snyman
and Wilke, 2018]. We refer to this line search as gradient-only line search with bisection (GOLS-
B) with pseudo-code listed in Appendix A.3.1. It is important to note, that finding only a sign
change from negative to positive in the directional derivative along the descent direction enhances
the robustness of gradient-only approaches against sampling errors, since magnitude variations
in the directional derivative are ignored unless they result in sign changes from negative to
positive. For both GS and GOLS-B the step sizes towards either the minimizer or SNN-GPP
were resolved to a tolerance of 10−12. Once a required interval is bracketed, the interval is
reduced sequentially, based on the information presented to within the specified tolerance. For
GS, the interval reduction as outlined in [Arora, 2011] is used. For GOLS-B, the sign of the mid-
point can only be negative or positive, with the interval updated accordingly. This is repeated
until the specified tolerance is achieved, resulting in the convergence to a point within ball, Bε.

3.2.3 Inexact line search: Function value based Armijo’s rule (ARLS) and
Gradient-Only Line Search that is Inexact (GOLS-I)

Inexact line searches define ranges for acceptable steps that are not:

1. too small by defining a lower bound for the steps, and

2. not too large by defining an upper bound for the steps.

Ensuring that step sizes are large enough is usually achieved by backtracking from a large step
size until an acceptable step size has been found. Alternatively, a small step size is increased
until an acceptable step size has been found. Inexact line searches balance accuracy with compu-
tational efficiency, and are therefore ideally suited for computationally competitive approaches
to estimate step sizes.

(a) Function value inexact line search. (b) gradient-only line search that is inexact.

Figure 3.7: Schematic diagrams for (a) the function value based inexact line search that is based
on Armijo’s rule (ARLS) and the (b) gradient-only line search that is inexact (GOLS-I) with
the directional derivative slopes at the points of interest highlighted in red. Armijo’s rule was
developed for smooth functions, while the gradient-only inexact approach was developed for
discontinuous functions.

The chosen function value based inexact line search, Armijo’s rule line search (ARLS), is
based on the practical and robust Armijo’s Rule [Arora, 2011], that defines an upper bound to
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a domain of acceptable steps
F̄n(α) < F̄n(0) + α(pF̄ ′n(0)), (3.13)

with 0 ≤ p ≤ 1. For p = 0 any value below the level-set F (0) is allowed, and for p = 1 the step-
size for convex functions is reduced to 0. As a guideline p = 0.2 is preferred. In this investigation,
a robust implementation of Armijo’s Rule is realized that ensures the largest feasible step size
is taken as the update step. If the initial step is acceptable the step size is increased until the
condition is not satisfied and the largest acceptable step taken as the step. Should the initial
step fail Armijo’s rule, then the step size is reduced using backtracking until the first acceptable
step size is found. This selective employment of advancement or backtracking ensures that the
largest steps are taken. Step sizes are increased and decreased by a factor 2.

Our gradient-only line search that is inexact (GOLS-I), consists of two parts: An inexact
sign change search method, and an immediate accept condition. The search for a sign change

is conducted by considering the sign of the directional derivative at the initial guess, (
dF̃ (αn,0)

dα ).
If the sign is positive, the step size is reduced by a factor of η = 2, until the first negative

directional derivative is observed. Conversely, should (
dF̃ (αn,0)

dα ) < 0, the step size is grown by
the same factor, η, until a positive directional derivative is obtained.

The magnitude of η determines a trade-off between computational cost and accuracy. Larger
values of η make the line search more aggressive. However, this comes at the expense of ac-
curacy, as SNN-GPPs may be over- or undershot considerably. Conversely, a small η value
reduces the update increment size, increasing accuracy but also increasing the number of func-
tion evaluations per iteration needed to find SNN-GPPs. Although we found η = 2 to result in
an acceptable balance between accuracy and computational cost, more formal sensitivity stud-
ies can be conduced in future work. However, for the purpose of comparing minimization and
gradient-only line searches, we fix η = 2 for both inexact algorithms.

The immediate accept condition, if satisfied, results in the initial guess, αn,0 being chosen as
the step size for the current iteration, n. This condition is given as follows:

0 <
dF̃n(αn,0)

dα
≤ (c2)|

dF̃n(0)

dα
|, (3.14)

with 0 ≤ c2 ≤ 1. The notation of the ”overshoot parameter”, c2, is intentionally chosen to allude
to the strong Wolfe curvature condition [Arora, 2011]. However, note that the strong Wolfe
condition accepts negative directional derivatives, whereas our condition only considers positive
values. Here, c2 = 0 implies that no overshoot is acceptable, no immediate accept condition is
active and GOLS-I is reduced simply to a method that searches for a sign change. However,
c2 = 1 allows overshoots with positive directional derivatives of up to the same magnitude as

the directional derivative at the current position, |dF̃n(0)
dα |. We kept the overshoot parameter

constant at c2 = 0.9, unless stated otherwise. The algorithmic details of this method are given
in Appendix A.3.2.

As loss functions may have unbounded solutions for small batch sizes, we impose a maximum
step size limit αmax on both ARLS and GOLS-I, in addition to a minimum step limit αmin given
by

αmax = min(
1

‖dn‖2
, 107), (3.15)

αmin = 10−8. (3.16)

The minimum step size truncates the number of function evaluations required per line search
in the case where a spurious ascent direction is encountered. Here, line searches seek to drive
α→ 0, which can incur significant computational cost, when the step size is repeatedly divided
by η. Conversely, the maximum step size restricts excessively large step sizes in the case of a
uniformly descending search direction (akin to a linear function for e.g.), which occur when |Bn,i|
is small. The contribution of 1

‖dn‖2 to the maximum step size ensures that small step size are
conservatively enforced when the gradient norm is steep, while large updates are allowed when
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the gradient norm is moderate, which is often the case around saturated, stationary or saddle
points.

Both inexact line search strategies require an initial step size. For the first iteration, this
initial guess is set to α0,0 = αmin, to ensure that the step sizes are actively resolved by the
line searches. In subsequent iterations the initial guess is set to be the resolved step size of the
previous iteration, αn,0 = αn−1,In .

3.2.4 Theoretical Basis

Before we present proofs of convergence of associated derivative descent sequences for associated
derivative unimodal descendible functions, we present definitions for associated derivative convex
descendible functions. This includes a number of piece-wise smooth step discontinuous functions,
point-wise discontinuous functions and dynamic MBSS loss functions but excludes piece-wise
linear continuous functions.

In building up to associated derivative convex descendible functions, we define the associated
derivative convex descent sequence as follows:

Definition 3.2.1. For a given sequence {x{k} ∈ X ⊂ Rp : k ∈ P} suppose ∇af(x{k}) 6= 0
for some k and x{k} /∈ Bε with Bε defined in Theorem 3.1.2. Then the sequence {x{k}} is
an associated derivative convex descent sequence for f : X → R, if an associated sequence
{u{k} ∈ Rp : k ∈ P} may be generated such that if u{k} is a descent direction from the set of all
possible descent directions at x{k}, i.e. ∇afT(x{k})u{k} < 0 then

∇afT(x{k+1})u{k} < 0, for x{k} 6= x{k+1}. (3.17)

We can now define the class of associated derivative convex descendible multivariate functions

Definition 3.2.2. A multivariate function f : X ⊆ Rp → R is associated derivative convex
descendible if x{0} ∈ Rp and {x{k}} is an associated derivative descent sequence, as defined in
Definition 3.2.1, for f with initial point x{0}, then every subsequence of {x{k}} converges. The
limit of any convergent subsequence of {x{k}} is {x{k}} ∈ Bε as k → ∞, with Bε as defined in
Theorem 3.1.2.

Note. Performing exact gradient-only line searches result in associated derivative descent se-
quences, whilst our proposed inexact line search may or may not depending on the chosen pa-
rameter values. Although we consider parameter values in this study for which strict associated
derivative descent sequences do not hold (a degree of overshoot is allowed), the generated sub-
sequences are convergent for the problems considered in this investigation. This is due to the
implementation of our modified Wolfe curvature condition, which causes the norm of the gradi-
ent to decrease on average. However, the efficiency of this condition depends on the variance in
the sampling error of the gradients.

Theorem 3.2.1. Let f : X ⊆ Rp → R be a associated derivative convex descendible multivariate
function as defined by Definition 3.2.2. Let x{0} ∈ Rp and {x{k}} be an associated derivative
descent sequence, as defined in Definition 3.2.1, for f with initial point x{0}, then by definition
every subsequence of {x{k}} converges. The limit of any convergent subsequence of {x{k}} is Bε
as defined in Theorem 3.1.2.

Proof. It follows our assertion that f is a associated derivative convex descendible multivariate
function given by Definition 3.2.2, that every derivative descent subsequence {x{k}} converges.

Now let {x{k}m} be a convergent subsequence of {x{k}} and let xm∗ be its limit. Suppose,
contrary to the second assertion of the theorem, that xm∗ /∈ Bε as defined in Theorem 3.1.2.
Since we assume that xm∗ /∈ Bε, and by Definition 3.2.1, there exists a xm∗ + λu for λ 6= 0 ∈ R
and u ∈ {y ∈ Rp : ‖y‖2 = 1} such that ∇af(xm∗+ δu)u < 0, which contradicts our assumption
that xm∗ is the limit of the subsequence {x{k}m}. Therefore, for xm∗ to be the limit of an
associated derivative descent subsequence {x{k}m}, xm∗ ∈ Bε as defined in Theorem 3.1.2,
which completes the proof.
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The class of associated derivative convex multivariate functions can be generalized to include
associated derivative unimodal multivariate functions.

Definition 3.2.3. Consider a dynamic mini-batch sub-sampled loss function L̃(x), of a contin-
uous, smooth and unimodal full-batch loss function L(x), such that each computed mini-batch
loss function is consistent. The class of associated derivative unimodal multivariate functions is
defined when there exists a ball, Bε(x) = {x ∈ Rp : ‖x − x∗‖2 < ε, 0 < ε < ∞, x 6= x∗}, that
contains all the stochastic non-negative gradient projection points (SNN-GPPs), where x∗ is the
minimum of the full-batch loss function.

We can now extend the notation of associated derivative convex descent sequences to asso-
ciated derivative unimodal descent sequences:

Definition 3.2.4. For a given sequence {x{k} ∈ X ⊂ Rp : k ∈ P} suppose ∇af(x{k}) 6= 0
for some k and x{k} /∈ Bε with Bε defined in Definition 3.2.3. Then the sequence {x{k}} is
a associated derivative unimodal descent sequence for f : X → R, if an associated sequence
{u{k} ∈ Rp : k ∈ P} may be generated such that if u{k} is a descent direction from the set of all
possible descent directions at x{k}, i.e. ∇afT(x{k})u{k} < 0 then

∇afT(x{k+1})u{k} < 0, for x{k} 6= x{k+1}. (3.18)

This enables the definition of associated derivative unimodal descendible multivariate func-
tions

Definition 3.2.5. A multivariate function f : X ⊆ Rp → R is associated derivative unimodal
descendible if x{0} ∈ Rp and {x{k}} is an associated derivative descent sequence, as defined in
Definition 3.2.4, for f with initial point x{0}, then every subsequence of {x{k}} converges. The
limit of any convergent subsequence of {x{k}} is {x{k}} ∈ Bε as k → ∞, with Bε as defined in
Definition 3.2.3.

This enables us to extend our class of associated derivative descendible convex multivariate
functions to include associated derivative unimodal descendible multivariate functions.

Theorem 3.2.2. Let f : X ⊆ Rp → R be a associated derivative unimodal descendible mul-
tivariate function as defined by Definition 3.2.5. Let x{0} ∈ Rp and {x{k}} be an associated
derivative descent sequence, as defined in Definition 3.2.4, for f with initial point x{0}, then by
definition every subsequence of {x{k}} converges. The limit of any convergent subsequence of
{x{k}} is {x{k}} ∈ Bε as k →∞, with Bε as defined in Definition 3.2.3.

Proof. It follows our assertion that f is a associated derivative unimodal descendible multivariate
function given by Definition 3.2.5, that every derivative descent subsequence {x{k}} converges.

Now let {x{k}m} be a convergent subsequence of {x{k}} and let xm∗ be its limit. Suppose,
contrary to the second assertion of the theorem, that xm∗ /∈ Bε as defined in Definition 3.2.3.
Since we assume that xm∗ /∈ Bε, and by Definition 3.2.4, there exists a xm∗ + λu for λ 6=
0 ∈ R and u ∈ {y ∈ Rp : ‖y‖2 = 1} such that ∇af(xm∗ + δu)u < 0, which contradicts our
assumption that xm∗ is the limit of the subsequence {x{k}m}. Therefore, for xm∗ to be the
limit of an associated derivative unimodal descent subsequence {x{k}m}, xm∗ ∈ Bε as defined in
Definition 3.2.3, which completes the proof.

We consider the latter class of associated derivative unimodal descendible multivariate func-
tions as an appropriate definition for a large class of machine learning loss functions.

3.3 Numerical Studies

The primary aim of our numerical investigations is to demonstrate that GOLS presents a more
effective means than function value based line searches to adaptively resolve step sizes for dy-
namic MBSS neural network loss functions. At each iteration, an appropriate step size has
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to be resolved along a new descent direction. All our analyses are therefore conducted for a
fixed number of iterations, while the various line searches have distinct computational costs per
iteration. We therefore present our results in terms of function evaluations to allow the per-
formance and computational efficiency of the various line searches to be investigated. Since we
compare methods that use function values to those that use gradients, we need to equate the
computational cost of various computed information. In this chapter, one gradient evaluation
equates to two function evaluations, since a function evaluation is generated by a forward pass of
data through the network, while a gradient evaluation requires both a forward and a backward
pass (via backpropagation) through the network. For analyses that focus on the quality with
which the step size was resolved, we present results in terms of iterations as opposed to function
evaluations.

First we conduct an extensive analysis on a diverse set of foundational classification problems
to demonstrate that our GOLS formulations are effective over different datasets and architec-
tures in the context of dynamic MBSS. We show that both GOLS-B and GOLS-I resolve step
sizes adaptively, with regards to the characteristics of a specific problem. After establishing
the validity of our GOLS formulations, we subsequently have the necessary means by which to
directly compare static and dynamic MBSS in the context of line searches. This direct com-
parison using one method is enabled by the fact that the SNN-GPP, on which GOLS is based,
is applicable to resolve step sizes for both static MBSS loss functions that are continuous, and
dynamic MBSS loss functions that are discontinuous. To the best of our knowledge, this is the
first such comparison, that shows the benefits of dynamic MBSS over static MBSS.

We then apply GOLS-I to a Variational Autoencoder (VAE) example and use this example
to explore the effect of estimating SNN-GPPs inexactly, in particular within the context of LS-
SGD search directions for poorly scaled loss functions. We show that under these circumstances,
conservative line searches that isolate SNN-GPP locations are less competitive than deliberate
overshoot of SNN-GPPs. By overshooting SNN-GPPs along the primary, steep-descent direc-
tions efficient progress along secondary, more gradual descent directions are achieved. This is
in addition to potential benefits achieved when consecutive steepest descent directions are non-
orthogonal. We the proceed to demonstrate that these performance gains are purely a result of
improvements to ineffective steepest descent directions, as overshooting SNN-GPPs for LS-SGD
can be outperformed by accurately resolving SNN-GPPs for the improved search directions of
Adagrad. This investigation shows that GOLS is reliable in finding SNN-GPP for two classes
of descent directions; and demonstrates the capability of GOLS to adaptively resolve step sizes
in dynamic MBSS loss functions over different datasets, architectures, loss functions and search
directions.

3.3.1 Diverse Foundational Classification Problems

In our numerical investigations we consider 22 classification problem datasets that cover from
150 to 70 000 observations per dataset. Our earliest dataset was made available in 1936 and the
latest in 2016. The datasets vary in input features from 4 to 784 and classes from 2 to 29. This
range in characteristics gives the selected problems a large variety of loss function landscapes for
the different optimization algorithms to navigate. The primary aim of our numerical studies is to
demonstrate, that the performance trends observed of GOLS are general across vastly different
datasets when evaluating loss functions with dynamic MBSS. Details concerning the datasets
are given in Table 3.1 and the corresponding neural network architectures implemented for the
different datasets are given in Table 3.2. Fully connected neural network layers with one, as well
as two hidden layers were considered for all of the datasets but one. For the two hidden layer
case, each hidden layer was given the same number of nodes, as shown in Table 3.2. Resulting
in a total of 43 classification problems to be solved.

We consider all four optimizers outlined, namely the minimizing line searches (GS and ARLS)
and the gradient-only line searches (GOLS-B and GOLS-I). All optimizers completed 3000 iter-
ations for an arbitrarily chosen constant mini-batch size of 10 over all datasets. The variance in
sampling error of 10 samples on different datasets varies resulting in a range of sampling error
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Dataset properties

Dataset ref. no. Dataset name Reference Observations Features Classes

1 Cancer1 Prechelt [1994] 699 9 2

2 Card1 Prechelt [1994] 690 51 2

3 Diabetes1 Prechelt [1994] 768 8 2

4 Gene1 Prechelt [1994] 3175 120 3

5 Glass1 Prechelt [1994] 214 9 6

6 Heartc1 Prechelt [1994] 920 35 2

7 Horse1 Prechelt [1994] 364 58 3

8 Mushroom1 Prechelt [1994] 8124 125 2

9 Soybean1 Prechelt [1994] 683 35 19

10 Thyroid1 Prechelt [1994] 7200 21 3

11 Abalone Nash et al. [1994] 4177 8 29

12 Iris Fisher [1936] 150 4 3

13 H.A.R. Anguita et al. [2012] 10299 561 6

14 Bankrupted Co. (yr. 1) Ziȩba et al. [2016] 7027 64 2

15 Defaulted Credit Cards Yeh and Lien [2009] 30000 24 2

16 Forests Johnson et al. [2012] 523 27 4

17 FT Clave Vurkaç [2011] 10800 16 4

18 Sensor-less Drive Paschke et al. [2013] 58509 48 11

19 Wilt Johnson et al. [2013] 4839 5 2

20 Biodegradable compounds Mansouri et al. [2013] 1054 41 2

21 Simulation failures Lucas et al. [2013] 540 20 2

22 MNIST Handwriting Lecun et al. [1998] 70000 784 10

Table 3.1: Properties of the considered datasets for the investigation.

ANN properties

Dataset name Input nodes Hidden layer nodes Hidden layers Output nodes

Cancer1 9 8 1/2 2

Card1 51 5 1/2 2

Diabetes1 8 7 1/2 2

Gene1 120 9 1/2 3

Glass1 9 5 1/2 6

Heartc1 35 3 1/2 2

Horse1 58 2 1/2 3

Mushroom1 125 8 1/2 2

Soybean1 35 3 1/2 19

Thyroid1 21 8 1/2 3

Abalone 8 7 1/2 29

Iris 4 3 1/2 3

H.A.R. 561 7 1/2 6

Bankrupted Co. (yr. 1) 64 35 1/2 2

Defaulted Credit Cards 24 23 1/2 2

Forests 27 6 1/2 4

FT Clave 16 15 1/2 4

sensor-less Drive 48 47 1/2 11

Wilt 5 4 1/2 2

Biodegradable compounds 41 8 1/2 2

Simulation failures 20 8 1/2 2

MNIST 784 30 1 10

Table 3.2: Properties of the neural network architecture for each dataset.

variance across the datasets. Alternatively, the mini-batch size can be optimized to achieve
comparable variance across the datasets [Radiuk, 2017], but this is considered to be outside of
the scope of this investigation.

For all the given datasets, the data was split into training, validation and test datasets with a
2:1 ratio between number of samples in training to validation and training to test datasets. This
three-way split enables the comparison of results between the validation and test datasets, which,
if comparable, confirms that the test dataset is unbiased and has a sufficient number of samples.
Performance was measured for training, validation and test datasets at every iteration using the
mean squared error (MSE) loss function, expressed by Equation (A.3) in Appendix A.2. The
optimization runs of 3000 iterations are repeated 10 times using exactly the same starting points
between network architectures and optimizers, by drawing random values between [−0.1, 0.1] for
each neural network weight [Prechelt, 1994]. This small initialization range is deliberate to ensure
that all initial Sigmoid activation functions are in their sensitive domain.
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3.3.2 Variational Autoencoder Training

To investigate whether GOLS generalize to a different class of network architecture, we train
a Variational Autoencoder (VAE) on the MNIST dataset using GOLS-I. A Pytorch 1.0 [py-
torch.org, 2019] implementation of the VAE was sourced from Zou [Zuo and Chintala, 2018],
which in turn implemented the architecture proposed by Kingma and Welling [2013]. It was
subsequently modified to include and use GOLS-I and other variants using LS-SGD. Note, that
the loss function in this example is a function of KL-divergence and the binary cross entropy,
thus presenting GOLS-I with a new class of loss functions to navigate.

In this investigation we compare GOLS-I to three instances of LS-SGD with fixed step sizes
of αn,In = 10−5, αn,In = 10−4 and αn,In = 10−3. The constant learning rates were manually cho-
sen and selected such that one learning rate is too high, one appropriate and one too low, each
separated by an order of magnitude. We also explore variants of GOLS-I that allow overestima-
tion of the step size (GOLS-Max), and others that seek to be more conservative with regards
to finding the location of the sign change (GOLS-Back and modified GOLS-I with c2 = 0).
We do this to illustrate that: Firstly, when using various approaches to estimate univariate
SNN-GPPs along descent directions, these approaches estimate similar locations of univariate
SNN-GPPs. Secondly, that finding optima along descent directions alone is not necessarily con-
ducive to effective training when using LS-SGD, as instead a large amount of overshoot can be
beneficial. This occurs when the loss function has significantly varying curvature characteris-
tics in different directions. In such cases the primary direction of improvement may not direct
the algorithm to effective progress towards the high-dimensional SNN-GPP. Instead, secondary
directions with lower curvature may lead to more effective updates. Consequently, by overstep-
ping the univariate SNN-GPPs along the primary direction, implies a larger update towards
the high-dimensional SNN-GPP affected by the secondary direction. The implication of this
is that resolving sign changes along poor descent directions may lead to slower convergence,
than non-optimal updates along the same directions. Line searches are therefore sensible, when
locating univariate SNN-GPPs along primary directions implies significant progress towards the
SNN-GPP of the high dimensional problem. We demonstrate this by significantly improving
training of this problem with the use of GOLS-I to estimate SNN-GPP along Adagrad’s [Duchi
et al., 2011] descent directions.

3.3.3 Comparison between static and dynamic mini-batch sub-sampling

To conclude, we select a training problem proposed by Mahsereci and Hennig [2017], namely that
of the NetII architecture with the CIFAR10 [Krizhevsky and Hinton, 2009] dataset, to compare
the performance of static and dynamic MBSS within GOLS-I. NetII is a 3-hidden-layer classifier
network with 1000, 500 and 250 hidden nodes respectively. The number of input nodes is 3072,
as determined by the 32x32 resolution and three colour channels of the images in the CIFAR10
dataset. The images belong to 10 different classes, dictating the number of output nodes.
Each image is pre-processed by applying the standard transform to every image channel. NetII
implements Tanh activation functions, and is evaluated using the MSE loss. As prescribed by
Mahsereci and Hennig [2017], training is conducted using using Batch1 of the CIFAR10 dataset,
over 10,000 function evaluations per training run for mini-batch sizes of |B| ∈ {10, 100, 1000}.
In this investigation all parameters pertaining to GOLS-I and the construction of the training
problem remain the same, with the exception of conducting both static and dynamic MBSS.

3.3.4 Naming convention

Since we are able to determine αn,In for LS-SGD or a variety of different training algorithms
that have learning rates, using a number of different line search methods, we augment the name
of the training algorithm to accommodate the name of the method. For example, implementing
GOLS-I to determine step sizes in LS-SGD is denoted ”GOLS-I SGD”. However, as all the
numerical studies performed use LS-SGD, with the exception of one analysis in Section 3.4.5,
we only explicitly use this naming convention in this chapter for the case where GOLS-I Adagrad

61



is used in Section 3.4.5. In all other investigations LS-SGD is implied, and therefore the name
of the line search used is distinguished.

3.4 Results

The results are split into different loss plots for the training, validation and test datasets re-
spectively. This shows the training effectiveness of the various line searches, and displays the
consistency of obtained solutions to the unseen data. It is important to note here, that since
the optimizers operate only on the training data, their specific performances are gauged pre-
dominantly on the training data losses. The validation and test dataset loss plots indicate the
generalization of the trained networks to unseen data, establishing the utility and degree of
overfitting of a trained network as a secondary outcome.

3.4.1 Averaged results

Figure 3.8 shows the loss plots as averaged over all the foundational datasets for their respective
single hidden layer networks. The solid lines indicate the average losses for the different line
search algorithms in terms of the number of function evaluations. The shaded regions indicate
the variance clouds around the expected loss.

(a) Training data (b) Validation data (c) Test data

(d) Training data (e) Validation data (f) Test data

(g) Training data (h) Validation data (i) Test data

Figure 3.8: Average training, validation and test dataset losses averaged over (a)-(c) single
hidden layer networks, (d)-(f) double hidden layer networks and (g)-(i) both single and double
hidden layer networks.
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The large standard deviations in Figure 3.8, are indicative of a range of characteristics in
the considered datasets. As expected, due to optimization being performed on only the training
datasets, the training losses reduce more aggressively than the validation and test losses. It is
clear, that on average the models begin to overfit. The characteristics between the validation
and test plots are similar, which is a good indication that tuning of hyperparameters based on
the validation set would be representative of performance on the ”hold-out” test dataset. For
example, should a stop criterion be implemented around 104 function evaluations for GOLS-I,
this would also result in a good test dataset loss. This would stop training before overfitting
drives both validation and training loss higher at wasted computational expenditure.

In terms of computational cost, the exact line search algorithms require more function eval-
uations per iteration than the inexact line searches, as expected. The gradient-only based line
searches also require more function evaluations than the equivalent function value based meth-
ods. Therefore the question is whether the performance of the gradient-only methods outweighs
their added computational cost.

For the exact line searches consider the case of GS in the single hidden layer average results
in Figures 3.8(a)-(c). Though the training loss of GS does not progress as far down as that of
GOLS-B, the validation and test losses are essentially the same. This may indicate an ability
to find better local minima. However, this trend is not general, as can be seen in the case of the
double hidden layer networks in Figures 3.8(d)-(f). In this case GOLS-B is superior in both loss
values and computational cost to GS. This is evident for the averaged results over all problems
in Figures 3.8(g)-(i).

Between the inexact line searches it is clear that GOLS-I is superior. Function value based
ARLS fails to converge to useful solutions within the given number of iterations. Notably, its
performance is significantly worse than that of GS. This is due to the bracketing strategy of GS,
that exponentially grows the bracketed domain. This usually ensures that significantly larger
step sizes are taken than those of ARLS. Note, that though both methods use function value
information to resolve minimizers, there is a significant difference in their exhibited performance,
which again indicates that finding minimizers is not as robust as finding SNN-GPPs. This is evi-
dent when we consider the performance of the gradient-only based GOLS-I, which is comparable
to GOLS-B at an order of magnitude lower number of function evaluations. This is consistent
over all three average loss plots, demonstrating the ability of GOLS-I to be competitive over
both different datasets as well as network architectures.

3.4.2 Examples of individual best performances for different methods

For the foundational datasets, there were specific datasets, where different methods performed
considerably better than reflected in their averages. Such performances were measured by con-
sidering training, validation and test losses obtained at similar computational cost. If the losses
for the different methods were comparable, the best performer is the method with the least
computational cost. However, if a clear minimum in loss was achieved by a given method in
the set number of iterations, that method was considered to be the best performer, regardless
of its computational cost. Given here are some examples of such cases and the number of best
performances per line search method.

Golden Section as best performer (2 out of 43 cases)

Figure 3.9 gives an example of GS being effective in resolving quality step sizes. The given
problem is the Human Activity Recognition (HAR) dataset [Anguita et al., 2012] with a single
hidden layer architecture. In the training data loss plot in Figure 3.9(a), the convergence rate of
GS is comparable to that of GOLS-B, while being more computationally efficient. In contrast,
GOLS-I seems to stagnate towards the end of training, especially when considering the validation
and test dataset plots. Another case where GS was effective, is the Heartc1 dataset problem
[Prechelt, 1994] with 2 hidden layers. However, for the remaining problems, performance of GS
remained poor, being expensive and not offering competitive convergence performance compared
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(a) Training data (b) Validation data (c) Test data

Figure 3.9: Average (a) training, (b) validation and (c) test dataset losses obtained for different
line searches for the HAR dataset [Anguita et al., 2012] using the single hidden layer architecture,
an example of a dataset where the function value based Golden-Section method was the best
performer.

to the gradient-only methods.

Gradient-Only Line Search with Bisection as best performer (7 out of 43 cases)

(a) Training data (b) Validation data (c) Test data

Figure 3.10: Average (a) training, (b) validation and (c) test dataset losses obtained for different
line searches for the Gene1 dataset [Prechelt, 1994], an example of the Gradient-Only Line Search
with Bisection as the best performer.

Figure 3.10 shows an example of GOLS-B being the most effective in training. The problem
shown here is the Gene1 dataset [Prechelt, 1994], with 2 hidden layers. Its convergence rate
is the fastest, obtaining the lowest training as well as validation and test losses for the given
number of iterations. Though GOLS-I achieves similar training convergence rates at a reduced
computational cost, it is GOLS-B, that achieves a better generalization loss for this problem.
Examples such as these indicate that there are problems which require more accurate resolution
of the SNN-GPP in order to find solutions with better generalization properties.

An analysis with equivalent computational cost between GOLS-I and GOLS-B would be
required to determine an absolute performance comparison between the two. However, it is
unlikely that GOLS-I would beat GOLS-B in generalization, since it already overfits in the
given analysis. Nevertheless, given the number of fixed iterations, there were 7 datasets on
which GOLS-B marginally better than the rest.

Gradient-Only Line Search that is inexact as best performer (34 out of 43 cases)

Overall, GOLS-I is the most efficient in reducing the training loss while maintaining a low
computational cost. As confirmed in the averaged loss plots, it is able to reach comparable
validation and test loss values compared to GOLS-B at an order of magnitude fewer function
evaluations. However, in some cases its performance was considerably better than that of the
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rest. Figure 3.11 shows a case where the progress made is both more efficient as well as superior
in convergence.

(a) Training data (b) Validation data (c) Test data

Figure 3.11: Average (a) training, (b) validation and (c) test dataset losses obtained for different
line searches for the Mushroom1 dataset [Prechelt, 1994], an example of the gradient-only line
search that is inexact method as the best performer.

For the Mushroom1 dataset [Prechelt, 1994] with the single hidden layer architecture, GOLS-
I progresses quickly towards good solutions, causing the loss to drop rapidly. In training, the
obtained loss is 5 orders of magnitude lower than the nearest competitor GOLS-B. GOLS-I also
found a more general solution compared to GOLS-B and GS. This is one of the more extreme
examples, where training is superior both in loss achieved as well as convergence rate. However,
in the majority of cases the method was capable of returning comparable or better loss values
than the remaining methods at a order of magnitude lower computational cost, which held for
34 out of 43 of the examined problems.

This shows that the method, though inexact, is capable of reliably estimating step sizes for
various datasets and neural network architectures.

3.4.3 Comparing step size characteristics of the Glass1 and Cancer1 datasets

To investigate the adaptive nature of step sizes, the resolved step sizes at every iteration of
the various line search methods are depicted in Figures 3.12(a)-(f). Depicted are the mean step
sizes, training losses as well as validation losses averaged over 10 runs for the Glass1 and Cancer1
datasets with the double hidden layer architecture.

Consider the step sizes resolved for the Glass1 problem depicted in Figure 3.12(a). The
function value based ARLS produces small step sizes and therefore does not progress throughout
the loss function, as has been previously observed. The GS line search is more effective, as
it produces step sizes with a reasonable magnitude. However, these seem to vary around a
constant mean value. Conversely, GOLS-I and GOLS-B show a distinct variation in step sizes
as a function of iterations, first increasing by an order of magnitude to around αn,In = 101

around 500 iterations, then slowly decreasing to around αn,In = 100. This indicates, that GOLS
resolve step sizes adaptively for discontinuous loss functions that are difficult to pre-empt for a
learning rate schedule.

In turn, the step sizes resolved for the Cancer1 problem in Figure 3.12(d), are significantly
different to those of the Glass1 problem. GOLS-I’s step sizes are distinct from those of GOLS-B,
being 4 orders of magnitude larger and around the maximum allowed step size, αn,In = 107. This
shows that GOLS-I can significantly overshoot SNN-GPPs resulting in larger step sizes, whilst
GOLS-B resolves step sizes that are within the ball Bε. The decrease in gradient magnitude
towards the end of training results in GOLS-I increasing its step sizes towards the maximum
allowed. These large step sizes that overshoot SNN-GPPs still relate to good performance on the
training loss as depicted in Figure 3.12(e). In terms of validation loss, depicted in Figure 3.12(f),
a decrease in generalization is observed due to overfitting on the dataset. However, GOLS-I still
remains the best performer.
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(a) Step sizes (b) Training data (c) Validation data

(d) Step sizes (e) Training data (f) Validation data

Figure 3.12: Step size investigations for (a)-(c) the Glass1 dataset [Prechelt, 1994] and (d)-(f)
the Cancer1 dataset [Prechelt, 1994] used with the double hidden layer network architecture.
Shown are average step sizes, training losses and validation losses obtained for different line
search methods. The step sizes are given as a function of iterations, as step sizes are resolved on
an iteration basis. The training and test losses are given in the function value domain to remain
comparable with Figures 3.8-3.11. This illustrates that GOLS-I has comparable characteristics
to GOLS-B in resolving step sizes, but at a fraction of the computational cost.

The poor performance of ARLS can be attributed to local minima that result from the
discontinuous loss function, in particular, positive jump discontinuities [Wilke et al., 2013].
This significantly hampers resolving appropriate the step sizes away from its conservative initial
guess. In the case of GS, an exponential bracketing strategy is used, which is less prone to
this problem. It is the magnitude of the parameters in the bracketing strategy that aids the
progress. The discontinuities cause the bracketing strategy to fall short of encompassing a true
minimum. This results in GS not reliably adjusting the step size according to features in the
loss function. Statistically, this makes GS perform similarly to a fixed learning rate, dependent
on the magnitude of the parameters chosen for the initial bracketing strategy.

Conversely, both GOLS-B and GOLS-I are capable of adjusting the step size to the required
magnitude within a single optimization iteration, as can be seen for both investigated cases in
Figure 3.12(a) and (d). At the first iteration, both gradient based methods converge to similar
step sizes magnitude. It is in the latter stages of training for the Cancer1 dataset that the two
methods diverge in step size. The step size trends over iterations being distinct for the Glass1
and Cancer1 datasets underlines the importance of resolving the step size automatically on an
iteration basis via effective line search strategies.

3.4.4 Analysis of iterative performance of line search methods

It is evident, that the computational cost per iteration varies between line searches. We quantify
this variation by counting the average number of function evaluations per iteration for the line
searches in this investigation, and summarize them in Table 3.3.

To give context, a single iteration of LS-SGD with a constant learning rate consists of 2
function evaluations, since the gradient needs to be computed at every iteration. Function
value based line searches are essentially half as expensive as the gradient-only based methods,
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GS GOLS-B ARLS GOLS-I

Ave. # of function evaluations 42.8 83.3 4.75 9.0

Ave. # of information calls 42.8 41.7 4.75 4.5

Table 3.3: Average number of function evaluations and information calls per iteration for the
various line searches.

due to the added cost of computing the gradient. Inexact methods require around an order
of magnitude less function evaluations as compared to their exact line search counterparts.
Though comparing function evaluations per iteration gives an indication of computational cost
of the methods, it only indirectly accounts for the number of times line searches required new
information per iteration. We therefore also note the number of ”information calls”, where a
function value and gradient evaluation each constitute a single information call. On this basis
the respective exact and inexact line search methods perform similarly, having similar number
of information calls. This shows that algorithmically these methods are comparable, relying on
the same number of information per iteration. The only difference between these algorithms is
merely the information they use. Even with the added computational cost of the gradient-only
line searches, the information gain is substantial enough to offset its cost.

Due to the stochastic nature of the loss function, it seems more reasonable to consider inex-
act rather than exact strategies. An exact line search strategy wastes computational resources
resolving the accuracy to a bound that is smaller than the variance in the solution due to stochas-
tic sub-sampling. Gradient-only based GOLS-I is able to bypass discontinuities by observing
consistent gradient trends in the loss function, while requiring fewer gradient evaluations than
GOLS-B. It is therefore a plausible method to efficiently resolve the learning rate in the context
of discontinuous loss functions, as a result of dynamic MBSS, to sufficient accuracy.

3.4.5 Variational Autoencoder Training Investigation

The resulting training loss and corresponding step sizes for the Variational Autoencoder (VAE)
example are given in Figure 3.13. The training loss in Figure 3.13(a) shows the performance of
the different training methods. We remind the reader, that LS-SGD is used in this investigation
until otherwise stated. Therefore, labels in the figures denote the strategy used to determine
step sizes. The fixed learning rates αn,In = 10−3 and αn,In = 10−5 are too large and too small
respectively. This is indicated by the losses with αn,In = 10−4 being lower than either of the
other constant step sizes. This demonstrates the sensitivity of this problem to the learning
rate. It is necessary to estimate the step size to within an order of magnitude in order to have
satisfactory training performance.

Interestingly, the convergence of GOLS-I is superior to that of the fixed step size of αn,In =
10−5, but worse than either of the larger constant step sizes. This led to the development of a
modified formulation of GOLS-I, named GOLS-Max, which maximizes the step size and thereby
aggressively biases overshooting the SNN-GPP (see Appendix A.3.3). For GOLS-Max, the step
size is maximized to approximate a specified directional derivative overshoot. In our case we kept
this the same as the upper bound of the immediate accept condition for GOLS-I, meaning that
we choose the step size such that dF (α)

dα ≈ (c2)|dF (0)
dα |. For our VAE example, this consistently

results in step sizes being resolved that are about an order and a half larger than those resolved
by GOLS-I, see Figure 3.13(b). Surprisingly, this caused a drastic improvement in training
performance, see Figure 3.13(a). Note that for this investigation we consider all analyses in the
iterations domain. This is to allow direct comparison of the quality of the information used
in the different line search formulations, and not to scrutinize their comparative computational
efficiency.

This behaviour poses the question as to whether one obtains the best convergence perfor-
mance by finding optima, or whether these optima are beacons that need to be passed along the
path to better solutions for this problem. To investigate this question we conducted a number
of additional analyses. The first step is to put the performance of GOLS-I into context. We
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(a) Training Loss (b) Step Size

(c) Training Loss (d) Step Size

(e) Gradient norms at αn,In (f) Angle between successive descent directions

Figure 3.13: (a) Training loss and (b) step sizes for training a Variational Autoencoder on
MNIST [Lecun et al., 1998] using four variants of GOLS-I. GOLS-I estimates step sizes that are
small compared to constant step sizes and suffers worse convergence performance. Consequently
we implement GOLS-Max (which is more competitive), GOLS-I with c2 = 0 (no immediate
accept condition) and GOLS-Back (always accepts first negative direction derivative) in (c) and
(d), with (e) and (f) indicating the norm of descent directions and angles between successive
descent directions respectively.

conduct another analysis with GOLS-I, but set the overshoot parameter to c2 = 0. This consti-
tutes a conservative line search approach, as the immediate accept condition becomes inactive.
To ensure that this conservative line search does not simply find local optima that are close
the initial guess, a gradient-only backtracking line search, GOLS-Back is also introduced (see
Appendix A.3.4). This is a more aggressive algorithm to find a sign change, as its initial guess
is the maximum step, which is reduced until a negative sign change is encountered. Consider
see Figure 3.13(c) and (d), which shows a comparison between the training performance and
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GOLS-Max GOLS-I GOLS-I c2 = 0 GOLS-Back

mean angle [deg] 135 101 89 81

Table 3.4: Mean angles between consecutive search directions dn−1 and dn for various gradient-
only line search methods with LS-SGD.

step sizes for the different GOLS formulations. The fact that both the conservative GOLS-I
and GOLS-Back do not differ significantly in performance or in resolved step size, indicates
three important aspects: Firstly, the line searches are indeed approximating the location of
SNN-GPP for this problem (two distinct formulations show similar results); secondly, the local
minima along the descent directions are not significantly far apart, meaning the loss function
seems unimodal along the descent direction; and lastly, finding these optima along the descent
direction does not result in good convergence performance. Indeed, better performance can
be obtained by overshooting these optima. So what is the mechanism driving the sub-optima
performance of gradient-only line searches? The quality of descent directions.

To substantiate this claim, consider the following investigation: For the same four versions
of GOLS, we capture the norm of the gradient at the end of the line search (or descent direction
of the subsequent iteration), as well as the angle between successive descent directions in Fig-
ure 3.13(e) and (f). The norms of the gradients at line search termination are considerably larger
for GOLS-Max than for the rest of the methods. This is consistent with the concept of overshoot-
ing the SNN-GPP, since the resolved solution in on an ascending incline with larger gradients.
The remaining methods are in a less steep domain, indicated by smaller gradients, which is
consistent with being closer to a SNN-GPP. As expected, conservative GOLS-I and GOLS-Back
have similar behaviour, resolving SNN-GPP most accurately, resulting in the smallest gradient
norms. The slight overshoot of GOLS-I is also evident, as its resolved norms tend towards
higher values than those of conservative GOLS-I and GOLS-Back. However, Figure 3.13(f) is
the most telling as far as the observed convergence behaviour is concerned. All methods apart
from GOLS-Max have successive descent direction angles centred around 90 degrees. We have
explicitly listed the average angles throughout the given training duration in Table 3.4. Succes-
sive directions of 90 degrees are a typical trait of steepest gradient descent with a reasonably
accurately resolved line search [Arora, 2011]. Since LS-SGD is being used, this similarity is
impressive, since it indicates that firstly, the stochastically sampled search directions are on
average representative of the full-batch directions for this batch size; and secondly, the step
sizes are reasonably accurate. The visual results of GOLS-Back in Figure 3.13(f) are telling, as
they are closely clustered around 90 degrees. Since GOLS-Back does not allow any overshoot,
the odds of having a successive search direction that points to some degree back towards the
opposite direction (angle > 90 deg) are less likely, which corresponds to what we observe. In
contrast, GOLS-Max has a far higher average angle than the remaining methods, indicative of
back and forth oscillation within the loss function.

An explanation for why this still results in competitive convergence performance is given in
the following analogy: Suppose the loss function is a narrow ravine, much like a slanted pipe cut
in half along its length, as illustrated in Figure 3.14. The steepest descent direction will point
radially predominantly in towards the centre of the pipe, with a smaller component pointing
along its length in the general descent direction. If an inexact methods attempts to resolve
the optimum along the search direction, a degree of error is incurred, resulting in an over- or
undershoot. If the curvature is still steep at that point, an overshoot will cause the subsequent
descent direction to point predominantly back towards the centre of the pipe. This property is
exacerbated, depending on the degree of overshoot, resulting in a large angle between subsequent
descent directions. If resolving the optimum is inaccurate, but not severely over- or undershot,
the subsequent descent direction is almost perpendicular to the previous, as has been observed
for the steepest descent algorithm [Arora, 2011]. However, it is not the larger components of the
descent direction (pointing toward the centre of the pipe) that dominate progress here, but the
smaller components, that point along the pipe. A large step along the dominant components
also imply a larger step along the smaller components. As shown in Figure 3.14, the overshoot
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Figure 3.14: Gradient descent optimization along narrow, ”pipe”-like valleys can be decomposed
into primary and secondary directions of improvement. Larger step sizes result in significant
oscillations in primary directions of improvement, but ultimately lead to faster progression along
secondary directions.

allows a large degree of travel up the opposite side of the pipe, but also a significant step along
the slant of the pipe. The subsequent step ”bounces” back along the steep incline of the pipe,
but also again progresses along the slant of the pipe. During the oscillation along the pipe, the
sum of the larger components are eliminated due to pointing in opposite directions, but the
smaller components along the pipe accumulate for progression along the pipe. It is the large
accumulation of these smaller components that dominate the convergence performance. This
is the same argument made for second order methods in machine learning [Martens, 2010], the
implementations of which require robust line searches in dynamically sub-sampled loss functions.

We substantiate the directions argument by applying GOLS-I to resolve the learning rate of
the Adagrad algorithm [Duchi et al., 2011], which we subsequently refer to as GOLS-I Adagrad.
The directions given by this algorithm are updated based on historical gradient information and
therefore loosely translates to a variable metric method. An overview of the method can be
given as follows:

hn,q = −g̃(xn)q, (3.19)

xn+1,q = xn,q +
β√

Hn,qq + γ
· hn,q, (3.20)

for the qth component of the p-dimensional optimization problem, β is a constant learning rate
and γ is a small constant, usually of the order 10−8, added for numerical stability. Hn is a
diagonal matrix, where the entries denote the sum of squares of historical gradient components,
Hn,pp =

∑n
t=1 h

2
t,p. Therefore, historical information contained in the components of Hn,pp,

scale the current gradient, augmenting the descent direction. The inverted relationship to Hn

means that low gradient magnitude components (the slant of the ”pipe”) are amplified, while
large magnitude components (the walls of the ”pipe”) are reduced, in essence making the ”pipe”
appear more spherical.

Based on the Adagrad formulation, we define the descent direction, dn for the update at
iteration, n, with individual components

dn,q = − hn,q√
Hn,qq + γ

, (3.21)

and define the parameter update step as

xn+1 = xn + αn,Indn, (3.22)
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where we are subsequently able to resolve the learning rate parameter as a step size, αn,In ,
using GOLS-I. Adagrad is just one example of various methods used in machine learning, that
scale the search directions to be more uniform, allowing the optimizer to more closely follow
the contours of the loss function [Ruder, 2016]. Thus, by estimating Adagrad step sizes using
GOLS-I, we obtain GOLS-I Adagrad, which is able to make more efficient progress through the
loss function landscape.

(a) Training Loss (b) Step Size

Figure 3.15: (a) Training loss and (b) step sizes for training a Variational Autoencoder on MNIST
[Lecun et al., 1998], comparing LS-SGD with different inexact GOLS, to GOLS-I Adagrad, which
uses scaled search directions. Convergence performance dramatically improves over LS-SGD and
larger step sizes can be estimated by GOLS-I Adagrad.

The comparative performance is shown in Figure 3.15(a) and (b). It is clear that with LS-
SGD, GOLS-I is not competitive and overshoot is required to improve performance. However,
the improved directions of Adagrad make a significant difference. From the step sizes we also
recognize that GOLS-I is able to resolve significantly larger steps, which corresponds to travelling
along better descent directions ”down the slanted pipe”, to be consistent with our analogy.
Though this analysis opens the discussion to using gradient-only line searches to resolve learning
rates for improved descent directions (such as conjugate gradient and Quasi-Newton methods),
extensive investigations are outside the scope of our consideration and are reserved for future
work.

We have extensively shown that the use of SNN-GPPs in the context of line searches is a
powerful tool to automatically resolve step sizes for discontinuous, dynamic MBSS loss functions,
prevalent in neural network training. We introduced a number of gradient-only line search
methods: GOLS-B, GOLS-I, GOLS-Back and GOLS-Max; as alternatives to locate SNN-GPPs.
Of these we suggest GOLS-I as the default method, as it balances low computational cost with
moderate aggression in terms of step size, and ease of implementation. Gradient-only based
GOLS-I is capable of a step size range over 15 orders of magnitude and was immediately able
to resolve competitive learning rates automatically. Our investigations confirm the utility of
GOLS-I in eliminating the learning rate hyperparameter from neural network training while
using dynamic stochastic sub-sampling.

3.4.6 A demonstration of the merits of dynamic mini-batch sub-sampling

Recall the standard SGD update step, xn+1 = xn − αn,Ing(xn) [Robbins and Monro, 1951].
Adaptive sampling methods [Bollapragada et al., 2017, Friedlander and Schmidt, 2011] focus
predominantly on desired qualities of the g(xn) term. This leaves the step size, αn,In , as an
unresolved parameter. In addition, numerous researchers have speculated over the benefits of
resampling the mini-batch at every function evaluation [Bottou, 2010, Mahsereci and Hennig,
2017] (i.e. dynamic MBSS), due to a larger throughput of data. A concrete study based on this
observation within in the context of resolving learning rates has remained elusive. This has been
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(a) B = 10 (b) B = 10 (c) B = 10 (d) B = 10

(e) B = 100 (f) B = 100 (g) B = 100 (h) B = 10

(i) B = 1000 (j) B = 1000 (k) B = 1000 (l) B = 10

Figure 3.16: Static vs. dynamic MBSS: (a,e,i) Training and (b,f,j) test dataset classification
errors in terms of function evaluations for mini-batch sample sizes, |B| ∈ {10, 100, 1000}, with
(c,g,k) estimated step sizes and (d,h,l) corresponding cumulative step sizes. This problem is
adopted from [Mahsereci and Hennig, 2017] and implements a 3-hidden-layer network to classify
the CIFAR10 test dataset, while training on Batch1 of the training dataset. This problem
is limited in the number of function evaluations, resulting in different numbers of performed
iterations, based on the efficiencies of the line searches.

mainly due to the lack of an effective mathematical and optimality framework to resolve informa-
tion for dynamic MBSS discontinuous loss functions. Having proposed an optimality framework
that has been demonstrated to be robust in this study, allows us to investigate whether there
is a concrete benefit in conducting dynamic MBSS over static MBSS when resolving learning
rates. As employed by Mahsereci and Hennig [2017], dynamic MBSS allows for the utilization
of the last computed gradient at the previous iteration to serve as the search direction for the
next iteration. Conversely, static MBSS requires the search direction to be recomputed for each
iteration so that it is consistent with the current mini-batch.

The results, shown in Figures 3.16(a) and (b), indicate that both line searches are ineffective
for the smallest batch size, |B| = 10. For |B| = 100 presented in Figures 3.16(e) and (f), the
methods distinguish themselves in terms of both quality and computational efficiency, whereas
for |B| = 1000 the methods’ performances are similar, as shown in Figures 3.16(i) and (j).
Considering |B| = 100, for both the training and test errors, dynamic MBSS GOLS-I outperforms
static MBSS GOLS-I. This implies that dynamic MBSS GOLS-I is able to find better solutions
on the training dataset, which also generalize better, as is evident from the test error. In both
cases, the notable difference between the training and test errors point to overfitting on Batch1
of CIFAR10 during training.

By considering the differences in step sizes and cumulative step sizes between the static and
dynamic MBSS GOLS-I approaches, presented in Figures 3.16(c), (d), (g), (h), (k) and (l),
we can infer how the MBSS approach affects the GOLS-I step sizes per iteration. Since static
MBSS GOLS-I has to evaluate a new search direction at every iteration, it completes under
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half the number of iterations for a fixed number of function evaluations compared to dynamic
MBSS GOLS-I. It is evident that static MBSS GOLS-I takes larger steps than dynamic MBSS
GOLS-I for the three batch sizes under consideration. Note that differences in step sizes are
a direct consequence of the typical locations of sign changes along a descent direction, since
GOLS-I is guaranteed to step over a sign change for both the static and dynamic MBSS loss
functions. Hence, static MBSS sign changes are more likely to occur at larger step sizes along
the descent direction compared to dynamic MBSS sign changes. This implies that the sign
change of the mini-batch used to compute the fixed descent direction manifests at a larger step
size than the sign changes resulting from other mini-batches being sampled along the same
direction. As the batch size increases, the sign changes resulting from static and dynamic MBSS
loss functions cluster closer together, until they coincide for the full-batch loss function. This
seems to be the dominant factor contributing towards the similar cumulative step sizes between
static and dynamic MBSS GOLS-I for |B| = 1000. Placing the above observations into context,
using a higher throughput of information [Bottou, 2010] to resolve step sizes along a fixed step
direction, seems to result in more conservative line search updates. Although this preliminary
inquiry clearly demonstrates the benefits of dynamic MBSS, it is by no means exhaustive and
warrants further investigation into the interplay of static versus dynamic MBSS when resolving
learning rates.

3.5 Conclusion

Currently, learning rates or learning rate schedules in ANN training are either selected a priori
and manually adjusted until settings are found that are deemed acceptable by the user, or
expensively solved at the global hyperparameter level. Attempts to resolve step sizes using
line searches have proven to be challenging. This is mainly due to dynamic mini-batch sub-
sampling (MBSS) that is readily used when optimizing the weights for neural networks, to
speed up function evaluations for large datasets, save memory to allow computation on memory
limited devices such as graphical processing units (GPUs) and maximize the throughput of
training samples. However, dynamic MBSS comes at the cost of introducing discontinuities in
the loss function, which introduces local minima that may significantly hamper a function value
minimization line search strategy. This is evident by the poor performance of both the exact
and inexact function value based line searches in our investigations, when dynamic MBSS is
used. However, dynamic MBSS does have the benefit of adding variance to the function values
and gradients, which allows optimization strategies to move beyond ”weak” local minima or
SNN-GPPs in the loss function.

This chapter demonstrated that line searches can be reliably performed to determine step
sizes in discontinuous loss functions as seen in Neural Network training, alleviating the need for a
priori determined step sizes or step size rules. However, this required changing the optimizer aim
from minimizing along a search direction to finding stochastic non-negative gradient projection
points (SNN-GPPs) along a search direction. This is based on the observation, that local minima
due to sampling discontinuities do not manifest so readily as SNN-GPPs. In addition, SNN-
GPPs can be readily resolved using gradient-only line search (GOLS) strategies. This chapter
demonstrated that in the context of discontinuous loss functions due to dynamic MBSS, the
learning rate in steepest gradient descent can be reliably resolved using exact or inexact gradient-
only line search strategies over 22 different datasets used in shallow, deep, and Variational
Autoencoder neural network architectures with different loss functions.

Training of the Variational Autoencoder neural network did not seem to benefit from locat-
ing SNN-GPPs. This is due to the poor descent direction utilized in SGD algorithms, in which
significant performance gains can be achieved by maximizing the step size along a descent direc-
tion as opposed finding the optimal step lengths along a descent direction. As demonstrated, by
subsequently resolving SNN-GPPs along improved search directions, the performance increased
significantly. This observation naturally extends towards the potential benefits of GOLS when
considering conjugate gradient and Quasi-Newton approaches within the context of dynamic
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MBSS neural network training.
Being able to robustly resolve step sizes for dynamic MBSS discontinuous loss functions

enabled us for the first time, to conduct a preliminary investigation into the potential benefits
of having a higher throughput of information from the training dataset when resolving learning
rates. Our findings clearly demonstrate the benefits of dynamic MBSS from a computational
and quality of solution viewpoint. In addition, we showed that dynamic MBSS step sizes tend
to be more conservative when compared to step sizes resolved using a static MBSS approach.
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Chapter 4

Gradient-only line searches: An
Alternative to Probabilistic Line
Searches

Step sizes in neural network training are largely determined using predetermined rules such as
fixed learning rates and learning rate schedules. These require user input or expensive global
optimization strategies to determine their functional form and associated hyperparameters. Line
searches are capable of adaptively resolving learning rate schedules. However, due to discontinu-
ities induced by mini-batch sub-sampling, they have largely fallen out of favour. Notwithstand-
ing, probabilistic line searches, which use statistical surrogates over a limited spatial domain,
have recently demonstrated viability in resolving learning rates for stochastic loss functions.

This chapter considers an alternative paradigm, Gradient-Only Line Searches that are Inex-
act (GOLS-I), as an alternative strategy to automatically determine learning rates in stochastic
loss functions over a range of 15 orders of magnitude without the use of surrogates. We show
that GOLS-I is a competitive strategy to reliably determine step sizes, adding high value in
terms of performance, while being easy to implement.

4.1 Introduction

Determining the learning rate, or learning rate schedule parameters, is still an active field of
research in deep learning [Smith, 2015, Orabona and Tommasi, 2017, Wu et al., 2018], as these
parameters have been shown to be the most sensitive hyperparameters in neural network train-
ing [Bergstra and Bengio, 2012]. In practice, their magnitudes are often selected a priori by the
user. If these parameters result in update steps that are too small, training is stable, but com-
putationally expensive. Conversely, with updates that are too large, training becomes unstable.
In mathematical programming learning rates (step sizes) are commonly automatically resolved
by line searches [Arora, 2011], see Figure 4.1. However, these traditionally require smooth and
continuous loss functions on which to operate, see the full-batch loss in Figure 4.2.

In modern deep learning tasks the dataset sizes exceed the memory capabilities of individual
computational nodes. In particular with the rise of memory-limited parallel computing platforms
such as graphical processing units (GPUs) in deep learning, it is infeasible to evaluate full-batch
loss functions. Instead, a mini-batch of available training data is sub-sampled to evaluate an
approximate loss function. In fields such as adaptive sub-sampling methods, the primary concern
is to resolve approximate loss functions with desired characteristics. The aim might be to select
a sub-sample that results in the best mini-batch approximation of the full-batch loss function, or
to ensure that selected approximate losses on average result in descent directions, [Friedlander
and Schmidt, 2011, Bollapragada et al., 2017]. This means that for a standard update step,
which consists of a search direction and corresponding step size, the focus of adaptive sampling
methods is primarily on solving for the quality of the search direction. To make the most of the
carefully selected mini-batch, it is kept constant while conducting a line search along the given
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Figure 4.1: Contour plot of a neural network loss along two random perpendicular directions.
Finding an optimum along a search direction: Too small constant steps are expensive, while too
large constant steps can be unstable during training. Line searches balance performance and
stability.

search direction [Byrd et al., 2011, 2012, Martens, 2010]. We call this approach static mini-
batch sub-sampling (MBSS), see Figure 4.2, which constructs different loss function surfaces for
every static mini-batch. Critically, this means that the loss function presented to a line search
is continuous and smooth, which allows for the use of minimization line searches. However, the
act of fixing the mini-batch introduces a sampling error, which biases the step size to the given
mini-batch. The consequence is, that a different mini-batch can lead a line search to finding an
alternative minimum, as demonstrated by the cyan surface in Figure 4.2.

An alternative is to continuously resample new data for every approximate loss evaluation.
This approach was first introduced within the context of line searches by Mahsereci and Hennig
[2017], though at the time not explicitly differentiated from static MBSS as used in adaptive
sampling methods. We call the method of repeatedly sampling a new mini-batch for every
function evaluation along a search direction dynamic MBSS, also known as approximate opti-
mization [Bottou, 2010]. However, this spoils the utility of minimization line searches in neural
network training, as randomly alternating between the sampling error associated with each mini-
batch introduces discontinuities in resulting loss functions and gradients, see Figure 4.2. The
consequence is that alternating between approximate loss expressions, critical points may not
exist, and line searches falsely identify discontinuities as local minima [Wilson and Martinez,
2003, Schraudolph and Graepel, 2003, Schraudolph et al., 2007]. This led to line searches being
replaced by a priori rule based step size schedules typical of sub-gradient methods, including
stochastic gradient descent (SGD) [Schraudolph, 1999, Boyd and Park, 2014, Smith, 2015].

Recently, the use of Gaussian process surrogates using both function value and gradient
information along search directions has reintroduced line searches to neural network training
[Mahsereci and Hennig, 2017]. However, we postulate that a simpler and more accessible ap-
proach may be sufficient to construct line searches, using only gradient information. The premise
for this proposition is that 1) a stochastic adaptation to the gradient-only optimality formula-
tion of the Non-Negative Associated Gradient Projection Point (NN-GPP) [Wilke et al., 2013,
Snyman and Wilke, 2018], i.e. the stochastic NN-GPP (SNN-GPP) [Kafka and Wilke, 2019b],
is superior to local minima in identifying true optima in stochastic loss functions and 2) the dis-
continuities in function values are more severe than those in directional derivatives [Mahsereci
and Hennig, 2017, Kafka and Wilke, 2019a], aiding SNN-GPP identification.

We demonstrate how the combination of these characteristics allows for the construction of
gradient-only line searches that automatically determine step sizes. Based on empirical evidence,
we argue that developing line searches that locate SNN-GPPs offers a competitive, light-weight
and more robust alternative to conducting probabilistic line searches. We also present three
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Figure 4.2: Full and reduced fidelity loss representations with various definitions used to iden-
tify optima. Mini-batch sub-sampling (MBSS) can be conducted using static and dynamic
approaches, resulting in smooth and point-wise discontinuous loss approximations respectively.
The local minimum, non-negative associated gradient projection point (NN-GPP) and stochas-
tic NN-GPP (SNN-GPP) [Kafka and Wilke, 2019b] definitions apply to full-batch and static
MBSS losses. However, only the SNN-GPP is effective in localizing optima in dynamic MBSS
loss functions.

examples of using gradient-only line searches as a research tool.

4.1.1 Our Contribution

In this chapter, we compare the Gradient-Only Line Search that is Inexact (GOLS-I) to the prob-
abilistic line search (PrLS) proposed by Mahsereci and Hennig [2017] for determining learning
rates in dynamically mini-batch sub-sampled loss functions. GOLS-I approximates the loca-
tion of Stochastic Non-Negative Associated Gradient Projection Points (SNN-GPP) [Kafka and
Wilke, 2019b], an adaptation of the gradient-only optimality criterion [Wilke et al., 2013, Sny-
man and Wilke, 2018]. When considering univariate functions, such as loss functions along a
search direction, a SNN-GPP manifests as a sign change from negative to positive in the di-
rectional derivative along the descent direction. We stress that we do not rely on the concept
of a critical point [Arora, 2011] as we do not require the derivative at a SNN-GPP to be zero.
Specifying a sign change from negative to positive and not from positive to negative along a
descent direction, incorporates second order information in that it reflects a local minimum as
determined by gradient information.

Some common learning rate schedules use step sizes ranging over 5 orders of magnitude
[Senior et al., 2013], while the magnitudes of cyclical learning rate schedules typically range
over 3 to 4 orders of magnitude [Smith, 2015, Loshchilov and Hutter, 2016]. Manually selected
schedules can require a number of hyperparameters to be determined. Our proposed method,
GOLS-I, can determine step sizes over a range of 15 orders of magnitude without the need for
any parameter tuning. The high range of available step sizes within the line search allow GOLS-
I to effectively traverse flat planes or steep declines in discontinuous stochastic loss functions,
while requiring no user intervention.

We also use this platform to 1) explicitly compare static and dynamic MBSS in the context
of line searches, 2) uncouple the quality of search directions from the accuracy of resolving
optima along the given direction and 3) demonstrate the sensitivity of search directions in SGD
to mini-batch size in comparison to full-batch descent directions.
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4.2 Loss Functions and means of locating optima

Commonly, the loss functions used in neural network training have the form

L(x) =
1

M

M∑
b=1

`(x; tb), (4.1)

where {t1, . . . , tM} is a training dataset of size M , x ∈ Rp is an p-dimensional vector of
model parameters, and `(x; t) defines the loss quantifying the fitness of parameters x with
regards to training sample t. Backpropagation [Werbos, 1994] computes the exact gradient
w.r.t. x, resulting in:

∇L(x) =
1

M

M∑
b=1

∇`(x; tb). (4.2)

In this case, all the training data is used for both function and gradient evaluations, resulting
in the true or full-batch loss, L(x), and gradients, ∇L(x), which are continuous and smooth.
However, in modern deep learning problems the cost of computing the full-batch loss, L(x), is
high. Therefore, mini-batch sub-sampling (MBSS) can be introduced to generate loss function
approximations with using a subset of the training data, B ⊂ {1, . . . ,M} of size |B| � M ,
resulting in:

L(x) =
1

|B|
∑
b∈B

`(x; tb), (4.3)

and corresponding approximate gradient

g(x) =
1

|B|
∑
b∈B
∇`(x; tb). (4.4)

The approximate loss function has expectation E[L(x)] = L(x) and corresponding expected
gradient E[g(x)] = ∇L(x) [Tong and Liu, 2005], but individual instances may vary significantly
from the mean. Evaluating L(x) instead of L(x) decreases the computational cost and increases
the chance of an optimization algorithm overcoming local minima.

To formally extend our discussion to line searches, consider the following notation: We define
a univariate function at given iteration n of stochastic gradient descent that uses a line search
(LS-SGD) [Kafka and Wilke, 2019b] as Fn(α) along a descent direction, dn ∈ Rp from xn ∈ Rp:

Fn(α) = f(xn(α)) = L(xn + αdn), (4.5)

with associated directional derivative

F ′n(α) =
dFn(α)

dα
= dn · g(xn + αdn). (4.6)

If full-batch sampling is implemented, the univariate loss representations along a search
direction dn is denoted Fn(α) with respective derivative Fn(α). Suppose static mini-batch
sub-sampling (MBSS) is implemented, where:

Definition 4.2.1. Static mini-batch sub-sampling is conducted when the mini-batch, B, used to
evaluate approximations L(x) and g(x) remains constant for a minimum duration of conducting
a line search along a fixed search direction in iteration n of a training algorithm. Therefore,
mini-batches selected using static MBSS are denoted as Bn. The overhead bar notation is used
to identify approximations evaluated using static mini-batch sub-sampling as L̄(x) and ḡ(x)
respectively. [Kafka and Wilke, 2019b]
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The static MBSS loss is substituted into Equations (4.5) and (4.6) give static MBSS univari-
ate functions F̄n(α) and F̄ ′n(α) respectively.

In Figure 4.3 we use a simple single hidden layer neural network with Sigmoid activation
functions applied to the famous Iris [Fisher, 1936] dataset as an example of a loss function used in
neural network training. Note, that subscript n is dropped, as the plots represent a single search
direction. This allows us to explore loss function characteristics and applicable optimality criteria
typically encountered during neural network training. Shown in blue in Figures 4.3(a) and (b)
are F(α) and directional derivative F ′(α) for the full-batch loss evaluation of our illustrative
problem along arbitrary search direction d. Subsequently, the Iris training dataset is broken
into 4 equal sized mini-batches, each resulting in a unique function of F̄ (α) and F̄ ′(α), plotted
in green, magenta, yellow and cyan respectively.

(a)
(b)

(c) (d)

(e) (f)

Figure 4.3: Comparing univariate loss functions and directional derivatives along a search direc-
tion with (a)(b) full-batch and static MBSS evaluated loss functions, and (c)(d) full-batch and
dynamic MBSS loss functions. (e) and (f) show a closer comparison of the directional derivatives
of both MBSS modes.

Both F(α) and F̄ (α) with respective derivatives are smooth and continuous, meaning that
local minima and critical points are defined. Therefore, minimization line searches are effective in
finding the optima of these functions. However, note how conducting static MBSS incorporates
bias into the loss approximations. Due to the nature of using a sub-set of the full training
data, a sampling error is present for each univariate loss, resulting in the presence of a different
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minimizer for each mini-batch. Consequently, we define a ball Bε for the MBSS case, which
contains the location of all possible optima due to different mini-batches. In the 1D case, this
ball simplifies to a range.

Now, suppose that dynamic MBSS is implemented in our example problem, where:

Definition 4.2.2. Dynamic mini-batch sub-sampling is conducted when the mini-batch, B, used
to evaluate approximations L(x) and g(x) changes for every evaluation, i, of L(x) and g(x) in
a line search along a fixed search direction for iteration, n, of a training algorithm. Therefore,
mini-batches selected using dynamic MBSS are denoted as Bn,i. The overhead tilde notation is
used to identify approximations evaluated using dynamic MBSS as L̃(x) and g̃(x) respectively.
The mini-batch used to evaluate a given instance of both L̃(x) and g̃(x) is identical, but sub-
sequent evaluations of the L̃(x) and g̃(x) pair prompts the re-sampling of a new mini-batch,
Bn,i.

The unimodal functions constructed by applying dynamic MBSS to F (α) and F ′(α) are
denoted F̃ (α) and F̃ ′(α) respectively. In our Iris example in Figure 4.3(c) and (d) we randomly
select one of the four mini-batches (that result in cyan, yellow, green and magenta F̄ (α) curves)
for every loss function evaluation, i. The resulting loss approximation is discontinuous in both
function values and directional derivatives, as the sampling error constantly changes, depending
on the mini-batch selected at the given function evaluation. This leads to local minima being
identified at discontinuities over the whole sampled domain, see Figure 4.3(c). These disconti-
nuities also imply that the first order optimality criterion F̃ ′(α∗) = 0 [Arora, 2011] for a local
minimum may not exist for a given instance of F̃ ′(α∗), see Figure 4.3(d), even if it may exist for
the full-batch case, F(α∗) = 0.

An alternative gradient-only optimality criterion for discontinuous functions exists, namely
the non-negative associated gradient projection point (NN-GPP) [Wilke et al., 2013, Snyman
and Wilke, 2018] given by:

Definition 4.2.1. NN-GPP: A non-negative associated gradient projection point (NN-GPP) is
defined as any point, xnngpp, for which there exists ru > 0 such that

∇f(xnngpp + λu)u ≥ 0, ∀ u ∈ {y ∈ Rp | ‖y‖2 = 1} , ∀ λ ∈ (0, ru]. (4.7)

This definition was proposed for deterministic static point-wise discontinuous functions, but
generalizes to a minimum and/or a semi-definite critical point in smooth and continuous func-
tions [Wilke et al., 2013, Snyman and Wilke, 2018]. The NN-GPP definition incorporates second
order information in the form of requiring that within a certain radius, there are no descent di-
rections away from a NN-GPP. The associated gradient [Snyman and Wilke, 2018] defines the
derivative at a discontinuity. Essentially, when we only consider associated derivatives along a
line search we may interpret the discontinuous function presented in Figure 4.4(a) to be equiv-
alent to the continuous function presented in Figure 4.4(c), since both are consistent with the
associated derivatives presented in Figure 4.4(b). The NN-GPP therefore filters out or ignores all
discontinuities present in a discontinuous function. It is also clear, that the function minimizer of
the discontinuous function, depicted as a grey dot in Figure 4.4(a), is associated with a negative
directional derivative in its neighbourhood along the direction α = +1. This implies that the
global function minimizer present in the discontinuous function is not representative of a local
minimum according to the associated derivatives, [Wilke et al., 2013, Snyman and Wilke, 2018].
This is because a global or local minimum would be characterized by a directional derivative
going from negative to positive along a descent direction. Traditionally, for C1 smooth functions
the derivative would be zero at the local minimum, indicative of a critical point [Snyman and
Wilke, 2018]. As NN-GPPs were developed specifically for discontinuous functions, [Wilke et al.,
2013, Snyman and Wilke, 2018], it does not rely on the concept of a critical point as there is
usually no point where the derivative is zero when discontinuous stochastic functions are consid-
ered. A NN-GPP along a search direction manifests as a sign change from negative to positive as
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along the descent direction. As outlined by Wilke [2012], this way of characterizing solutions of
discontinuous stochastic functions is also consistent with solutions that sub-gradient algorithms
or SGD (with constant step size) would find, i.e. using SGD to optimize Figure 4.4(a) would
only result in converge around the NN-GPP (red dot), while the global function minimizer (grey
dot) would be ignored.

Figure 4.4: (a) Discontinuous stochastic function with (b) derivatives and (c) an alternative
interpretation of (a) that is consistent with the associated derivatives given in (b). The function
minimizer of F (α) (grey dot) and sign change from negative to positive along α (red dot) are
indicated.

Returning to our Iris example in Figure 4.3(b), the NN-GPP definition correctly identifies
critical points for both the true, full-batch loss function F ′(α) (True NN-GPP) and the static
MBSS loss approximations F̄ ′(α) (MB NN-GPP). However, jumping between batches causes
sign changes to occur where there are no NN-GPPs for any individual instance of F̄ ′(α), see
Figure 4.3(e) and (f). Consider Bε, i.e. the range between the NN-GPP of the cyan F̄ ′(α), and
that of the magenta F̄ ′(α) curve. Alternating between instances of F̃ ′(α) in Bε will result in
sign changes in the sampled directional derivatives, depending on the sequence of mini-batches
chosen. The locations of these sign changes are unlikely to be representative of NN-GPPs. The
definition of NN-GPPs were therefore extended for this stochastic setting to stochastic NN-GPPs
[Kafka and Wilke, 2019b]:

Definition 4.2.2. SNN-GPP: A non-negative associated gradient projection point (SNN-GPP)
is defined as any point, xsnngpp, for which there exists ru > 0 such that

∇f(xsnngpp + λu)u ≥ 0, ∀ u ∈ {y ∈ Rp | ‖y‖2 = 1} , ∀ λ ∈ (0, ru],

with non-zero probability.

This definition caters for dynamic MBSS, incorporating the discontinuity-filtering nature of
NN-GPPs outside of Bε, while accommodating sign changes in directional derivatives contained
within Bε that is not representative of a specific NN-GPP for any individual mini-batch. SNN-
GPPs generalize to NN-GPPs, since a NN-GPP is a SNN-GPP with probability 1 for smooth and
continuous functions. However, in the case of dynamic MBSS, even if α = αnngpp, the probability
of encountering a SNN-GPP is < 1 over a large number of sub-samples at α. This probability
depends on the variance in g̃, which is a function of |Bn,i| and the sampling strategy used. In
our practical implementations, we limit ourselves to sampling mini-batches, Bn,i, uniformly with
replacement, keeping the mini-batch size, |Bn,i| constant. Subsequently, the number of possible
mini-batch combinations is K =

(
M
|Bn,i|

)
. When M is large, the number of combinations, K

is so large, that discontinuities are often interpreted as stochastic noise [Simsekli et al., 2019].
Though this interpretation is undoubtedly useful, we suggest that strictly speaking, dynamic
MBSS loss functions are discontinuous, where the magnitude of discontinuities depends on M ,
|Bn,i|, the sampling strategy used and the data itself.
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4.3 Empirical evidence of improved localization of optima with
SNN-GPPs over minimizers

(a) (b)

(c) (d)

Figure 4.5: (a) Function values and (b) the directional derivatives of the loss function in di-
mensions x8 and x9 for a single hidden layer neural network applied to the Iris dataset [Fisher,
1936]. Directional derivatives are generated using a fixed search direction d, where the only
non-zero components are x8 and x9, equal to 1√

2
. The directional derivative is then evaluated

as dFn
dα = g(xn) · d, to generate the plots. When using full batches, both the function value and

the directional derivatives are smooth and continuous functions. (c) Function values and (d)
directional derivatives are discontinuous, when dynamic MBSS with mini-batch size |Bn,i| = 10
is implemented. The function value plot’s shape is not recognizable in comparison to (a), while
directional derivatives still contain features of the original shape.

Subsequently, we present empirical evidence that SNN-GPPs offer a more representative
means of identifying optima in dynamic MBSS loss functions over local minima. Firstly, we
consider the nature of function value and gradient information in practical neural network loss
functions with dynamic MBSS. Figure 4.6 shows weights x8 and x9 of our Iris network, as these
happen to have interesting curvature characteristics relative to one another. In Figure 4.6(a)
and (b) we show the full-batch loss and gradients in x8 and x9. As expected, these are smooth,
continuous surfaces. As we introduce dynamic MBSS with a mini-batch size of |Bn,i| = 10,
sampled uniformly with replacement, the shape characteristics of the loss function are lost to
the variance in the discontinuities, see Figure 4.6(a). Interestingly, the gradients are much less
affected by discontinuities, particularly around the edges of the sampled domain. The centre of
the domain still remains ”noisy”, but contrary to the function values, the shape characteristics
of the dynamic MBSS gradients remain comparable to the full-batch equivalents.
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(a) (b)

Figure 4.6: (a) Function values and (b) directional derivatives along the full-batch steepest
descent direction, dn = −∇L(x). The loss function is obtained from the Iris classification
problem of Figure 4.5 [Fisher, 1936]. The search direction is sampled by 100 points with sample
sizes ranging from |Bn,i| = 10 to |Bn,i| = M = 150. This is repeated 100 times and the average
number of minima and SNN-GPP found at every point is plotted. Minima are spread across
the entire domain for most sample sizes in (a). Both minima and SNN-GPPs identify the true
optimum, when the full batch is used The spatial variance of SNN-GPP is bounded around the
true optimum with increasing spread for decreasing sample size. However, even with the smallest
batch size, |Bn,i| = 10, SNN-GPPs remain spatially bounded, unlike local minima, which are
approximately uniformly spread along the sampled domain.

Now consider a hypothetical LS-SGD update performed at iteration, n, where dn = −∇L(x),
denotes the steepest descent direction of the full-batch loss function. We note the locations of
all the minimizers and SNN-GPPs along dn over 100 increments, i, of size αn,i−αn,i−1 = 0.002.
Local minima are identified where F̃n(αn,i−1) > F̃n(αmin) < F̃n(αn,i+1) and SNN-GPPs where
F̃ ′n(αn,i−1) ≤ 0 and F̃ ′n(αsnnpgpp) > 0 . We repeat this procedure 100 times with different sample
sizes |Bn,i| to approximate the likelihood of determining the locations of minima and SNN-GPPs
in Figure 4.6. The spatial distribution of local minima across the sampled domain approximate
a uniform distribution. The location of the true optimum is identified by full batch |Bn,i| = M .
Conversely, the spatial variance of SNN-GPPs are constrained in what resembles a Binomial
distribution around the true optimum, with variance inversely proportional to the sample size
|Bn,i|. The central message of these plots is that the spatial location of SNN-GPPs is bounded
within Bε, making it a reliable metric to be implemented to determine step sizes in stochastic
loss functions.

4.4 Algorithmic Details

We implement the Gradient-Only Line Search that is Inexact (GOLS-I) [Kafka and Wilke,
2019b], which requires as inputs only a given descent direction dn and an initial step size, αn,0,
which is incrementally modified. We use increment counter, i, to determine the number of
modifications made to αn,i and corresponding function evaluations performed, until a final step
size αn,In is chosen. Thus, the total number of modifications in iteration, n is In. Parameters
which are set, but are open to modification by the user if desired are the step size scaling
parameter η ∈ {R+ | η > 1} and the modified Wolfe condition parameter c2 = 0.9. For the
purpose of our discussion, we use the dynamic MBSS univariate F̃n(α) and F̃ ′n(α) notation for
function evaluations relating to GOLS-I. However, note that GOLS-I can be used in the context
of static and dynamic MBSS as well as full-batch sampling.

The method consists of two stages: 1) Determining the adequacy of the initial guess, and
2) searching for a sign change from − to + along a descent direction. For assessing the initial
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guess, a modified strong Wolfe condition is implemented, to give initial accept condition (IAC):

0 < F̃ ′n(αn,0) ≤ c2|F̃ ′n(0)|, (4.8)

with c2 > 0. If the initial guess satisfies Equation (4.8), it is immediately accepted as αn,In and
no further modification is made to the step size for the current iteration. The IAC implies that
initial step size has progressed over a sign change in the directional derivative in a controlled
manner, whereby the magnitude of the directional derivative is still decreased. In practice, this
condition was found to be superior to the standard strong Wolfe condition, |F ′n(α)| ≤ c2|F ′n(0)|
[Arora, 2011].

Figure 4.7: Schematic diagram of the Gradient-Only Line Search that is Inexact (GOLS-I):
Dynamic MBSS results in discontinuous loss functions. F̃ ′(αn,0) is tested on the initial accept
condition, Equation (4.8), if this holds, αn,0 is accepted. Otherwise, the directional derivative
sign of F̃ ′(αn,0) determines whether the step size needs to be increased by Equation (4.9) or
decreased by Equation (4.10) until an SNN-GPP is isolated.

If the initial accept condition is not satisfied, the algorithm enters stage 2, where the initial
step size is increased or decreased by factor η until a sign change is observed, i.e.

• If F̃ ′n(αn,0) < 0, then
αn,i+1 = ηαn,i, (4.9)

with i := i+ 1 until F̃ ′n(αn,i) > 0, or

• if F̃ ′n(αn,0) > 0, then

αn,i+1 =
αn,i
η
, (4.10)

with i := i+ 1 until F̃ ′n(αn,i) < 0.

This process is illustrated in Figure 4.7. An upper and lower limit is given for step sizes to
ensure algorithmic stability in cases of monotonically decreasing or ascending search directions
respectively. The maximum allowable step size is inspired by convergent fixed step sizes accord-
ing to the Lipschitz condition [Boyd and Park, 2014]. We therefore choose the maximum step
size conservatively as:

αmax = min(
1

‖dn‖2
, 107). (4.11)
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Conservative updates are enforced by ensuring that α < 1
‖dn‖2 , which restricts the step size

in the case of steep descent directions, but allows larger step sizes for more gradual descent
directions. The absolute upper limit restricts overly large step sizes in the case of flat search
directions. Taking the minimum of the two limits ensures that the line search can traverse
both steep declines and flat planes, while remaining stable in the case of spurious mini-batch
characteristics.

The minimum step size avoids high computational cost, should the line search encounter an
ascent direction. In such cases computational resources are wasted by continually decreasing
the step size towards zero. Therefore the minimum step size is limited to:

αmin = 10−8, (4.12)

which in combination with the maximum step size results in an available step size range of
15 orders of magnitude. Unlike PrLS [Mahsereci and Hennig, 2017], GOLS-I does not limit
the number of function evaluations per iteration, which makes the entire range of step size
magnitudes available to the line search in pursuit of a directional derivative sign change from −
to + along a descent direction.

In this study, the first iteration of GOLS-I (n = 0), the initial guess is selected to be α0,0 =
αmin. Therefore, GOLS-I is tasked with growing the step size from αmin to the desired magnitude
as dictated by the presented loss function and descent direction. In subsequent iterations, the
initial guess is set to be the final step size of the previous iteration, i.e. αn,0 = αn−1,In . The
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pseudo code for GOLS-I is given in Algorithm 2.

Algorithm 2: GOLS-I: Gradient-Only Line Search that is Inexact

Input: F̃ ′n(α), dn , αn,0
Output: αn,In , In

1 Define constants: αmin = 10−8, flag = 1, η = 2, c2 = 0.9, i = 0
2 αmax = min( 1

||dn||2 , 107)

3 Evaluate F̃ ′n(0), increment i (or use saved gradient from last F ′n−1(αn−1,In−1), to
evaluate g̃(xn−1 + αn−1,In−1 · dn−1)Tdn without incrementing i)

4 if αn,0 > αmax then
5 αn,0 = αmax

6 if αn,0 < αmin then
7 αn,0 = αmin

8 Evaluate F̃ ′n(αn,0), increment i

9 Define toldd = |c2F̃ ′n(0)|
10 if F̃ ′n(αn,0) > 0 and αn,0 < αmax then
11 flag = 1, decrease step size

12 if F̃ ′n(αn,0) < 0 and αn,0 > αmin then
13 flag = 2, increase step size

14 if F̃ ′n(αn,0) > 0 and F̃ ′n(αn,0) < toldd then
15 flag = 0, immediate accept condition

16 while flag > 0 do
17 if flag = 2 then
18 αn,i+1 = αn,i · η
19 Evaluate F̃ ′n(αn,i+1)

20 if F̃ ′n(αn,i+1) ≥ 0 then
21 flag = 0

22 if αn,i+1 >
αmax
η then

23 flag = 0

24 if flag = 1 then
25 αn,i+1 =

αn,i

η

26 Evaluate F̃ ′n(αn,i+1)

27 if F̃ ′n(αn,i+1) < 0 then
28 flag = 0

29 if αn,i+1 < αmin · η then
30 flag = 0

31 αn,In = αn,i+1

4.4.1 Proof of Global Convergence for Full-Batch Sampling

Concerning notation for the following proofs, the input variable x for loss functions is omitted
in aid of brevity, such that L(x) is represented simply as L. Therefore, suppose that the loss
function L obtained from full batch sampling is smooth, coercive with a unique minimizer x∗.
Any Lipschitz function L̂ can be regularized to be coercive using Tikhonov regularization with
a sufficient large regularization coefficient.

The iteration updates of an optimization algorithm can be considered as a dynamical system
in discrete time:

xn+1 = D(xn), D : Rp → Rp. (4.13)

It follows from Lyapunov’s global stability theorem [Lyapunov, 1992] in discrete time that
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any Lyapunov function Γ(x) defined by positivity, coercive and strict decrease:

1. Positivity: Γ(0) = 0 and Γ(x) > 0, ∀x 6= 0

2. Coercive: Γ(x)→∞ as x→∞

3. Strict descent: Γ(D(x)) < Γ(x), ∀ x 6= 0,

results in xn → 0 as n→∞, ∀ x0 ∈ Rp.

Theorem 4.4.1. Let f(x) be any smooth coercive function with a unique global minimum x∗,
for xn+1 = D(xn), ∀ xn 6= x∗n restricted such that f(βxn+1 + (1− β)xn) < f(xn), ∀ β ∈ (0, 1].
Then D will result in updates that are globally convergent.

Let the error at iteration n be given by en := xn−x∗ for which we can construct the Lyapunov
function Γ(e) = f(e + x∗)− f(x∗). It follows that Γ(0) = 0 and that Γ(e) > 0, ∀ e 6= 0, since
x∗ is a unique global minimum of f .

At every iteration our line search update locates an SNN-GPP along the descent direction
dn, by locating a sign change from negative to positive along dn. Wilke et al. [2013] proved
this to be equivalent to minimizing along dn when f(xn + αdn) is smooth and the sign of the
directional derivative ∇Tf(xn + αdn)dn, is negative ∀ α ∈ [0, α∗n) along dn. Here, α∗n defines
the step size to the first optimum along the search direction dn. It is therefore guaranteed that
f(xn+1) < f(xn) at every iteration n. In addition, f(βxn+1 + (1− β)xn) < f(xn), ∀ β ∈ (0, 1]
ensures that for our choice of discrete dynamical update D, we can always make progress unless
xn = x∗. Hence, for any en 6= 0 it follows that

Γ(en+1) = f(xn+1 − x∗ + x∗)− f(x∗) < f(xn − x∗ + x∗)− f(x∗) = Γ(en).

It then follows from Lyaponov’s global stability theorem that en → 0 as n→∞. Hence ∀ x0

we have that xn → x∗, which proves that finding an SNN-GPP at every iteration n results in a
globally convergent strategy.

4.4.2 Proof of Global Convergence for Dynamic Mini-Batch Sub-Sampling

Consider the discontinuous loss function L̃ obtained through dynamic mini-batch sub-sampling
with smooth expected response E[L̃] and unique expected minimizer x∗. Assume that the
function L̃ is directional derivative coercive (see Wilke et al. [2013]) around a ball x ∈ B̂ε(x) =
{q | ‖q − x∗‖ ≥ ε} of given radius ε ∈ R > 0 that is centred around the expected minimizer
x∗. This implies that for given radius ε and for any point outside the ball x1 ∈ B̂ε(x1) and any
point inside the ball x2 ∈ Bε(x2) = {q | ‖q − x∗‖ < ε} with u = x1 − x2 the following must
hold:

∇f(x1)
Tu > 0. (4.14)

As before, the iteration updates of an optimization algorithm can be considered as a dynamical
system in discrete time:

xn+1 = D(xn), D : Rp → Rp. (4.15)

We relax Lyapunov’s global stability theorem in discrete time for dynamic MBSS discontin-
uous functions, such that any smooth expected Lyapunov function E[Γ(x)] defined by expected
positivity, coercive and expected strict decrease around a ball x ∈ B̂ε(x) = {q | ‖q − x∗‖ ≥ ε}
of given radius ε ∈ R > 0, with:

1. Expected positivity: E[Γ(0)] = 0 and E[Γ(x)] > 0, ∀ x 6= 0

2. Coercive: Γ(x)→∞ as x→∞

3. Directional derivative coercive for any point x ∈ B̂ε(x) = {q | ‖q − x∗‖ > ε} of radius
ε ∈ R > 0
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4. Expected strict descent: E[Γ(D(x))] < E[Γ(x)], ∀ x 6= 0,

results in xn ∈ Bε(xn) = {q | ‖q − x∗‖ < ε} as n→∞, ∀ x0 ∈ Rp.

Theorem 4.4.2. Let f(x) be any smooth expected coercive function with a unique expected global
minimum x∗ that is directional derivative coercive around a ball B̂ε(x) = {q | ‖q − x∗‖ ≥ ε}
of radius ε ∈ R > 0. Then xn+1 = D(xn), ∀ xn ∈ B̂ε(xn) is restricted such that ∇Tf(xn +
αdn)dn < 0, ∀ α ∈ [0, α∗n) along descent direction dn. Then D will result in updates that globally
converge to the ball Bε(x) = {q | ‖q − x∗‖ < ε} of radius ε ∈ R > 0 centred around x∗.

Let the error at iteration n be given by en := xn−x∗ for which we can construct the Lyapunov
function Γ(e) = f(e + x∗)− f(x∗) and expected Lyapunov function E[Γ(e)] = E[f(e + x∗)]−
E[f(x∗)]. It follows that E[Γ(0)] = 0 and that E[Γ(e)] > 0, ∀ e 6= 0, since x∗ is a unique
expected global minimum of f .

At every iteration our line search update locates an SNN-GPP along the descent direction
dn, by locating a sign change from negative to positive along dn. Since the function is smooth
expected coercive and directional derivative coercive around a ball B̂ε(x), expected descent
follows E[Γ(D(x))] < E[Γ(x)], ∀ x /∈ Bε(x) = {q | ‖q − x∗‖ < ε} of radius ε ∈ R > 0. It is
therefore guaranteed that E[f(xn+1)] < E[f(xn)] at every iteration n. In addition, E[f(βxn+1+
(1 − β)xn)] < E[f(xn)], ∀ β ∈ (0, 1] ensures that for our choice of discrete dynamical update
D, we can always make progress unless xn ∈ Bε(x) = {q | ‖q −x∗‖ < ε}. In addition, since the
function is directional derivative coercive around the ball Bε(xn), any point x ∈ Bε(xn) remains
in Bε(xn) due to the update requirement of a sign change from negative to positive along the
descent direction. Hence, for any en such that ‖en‖ > ε it follows that:

E[Γ(en+1)] = E[f(xn+1 − x∗ + x∗)]− E[f(x∗)] < E[f(xn − x∗ + x∗)]− E[f(x∗)] = E[Γ(en)].

It then follows from Lyaponov’s relaxed global stability theorem that en ∈ Bε(x) as n→∞.
Hence ∀ x0 we have that xn ∈ B̂ε(xn)→ xn ∈ Bε(xn) as n→∞, which proves that finding an
SNN-GPP at every iteration n results in a globally converges to the ball Bε(xn).

4.5 Numerical Studies

The network architectures and problems implemented in the numerical investigations of this
chapter are predominantly taken from the work of [Mahsereci and Hennig, 2017], which serves
as the benchmark against which we compare GOLS-I. The work by Mahsereci and Hennig [2017]
introduces PrLS, which is used to estimate step sizes in stochastic gradient descent [Robbins and
Monro, 1951] with a line search (LS-SGD) and compared to standard SGD with a priori fixed
step sizes. We directly compare the performances of PrLS and GOLS-I for determining step
sizes for LS-SGD using the Matlab code for PrLS supplied1 in the relevant article [Mahsereci
and Hennig, 2017]. The datasets we consider are:

• Breast Cancer Wisconsin Diagnostic (BCWD) Dataset [Street et al., 1993], a binary clas-
sification problem, distinguishing between ”benign” and ”malignant” tumours, using 30
different features;

• MNIST Dataset [Lecun et al., 1998], a multi-class classification problem with images of
handwritten digits from 0 to 9 in grey-scale with a resolution of 28x28 pixels; and

• CIFAR10 [Krizhevsky and Hinton, 2009], a multi-class classification problem with images
of 10 natural objects such as deer, cats, dogs, ships, etc. with colour images of resolution
32x32.

1https://ei.is.tuebingen.mpg.de/publications/mahhen2015
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Table 4.1 gives further details about the datasets, as well as parameters specific to their
implementations such as: The neural network architectures used, number of function evalua-
tions to which training is limited and mini-batch sizes used. These details are implemented
as prescribed by Mahsereci and Hennig [2017]. GOLS-I was implemented in both Matlab and
PyTorch 1.0. The Matlab implementations are used for direct comparisons between GOLS-I
and PrLS, while the PyTorch implementation demonstrates how GOLS-I compares to fixed step
sizes. This latter implementation also demonstrates the ease by which GOLS-I is transferred to
GPU-capable computing platforms. All datasets were pre-processed using the standard trans-
formation (Z-score) for each input dimension in the dataset.

Datset Training
obs.

Test
obs.

Input
dim.

Output
dim.

Net structure Max.
F.E.

|Bn,i| in
training

BCWD 400 169 30 2 Log. Regression,
NetPI, NetPII

3000/
100000

10,50, 100,400

MNIST 50000 10000 784 10 NetI, NetII 40000 10,100, 200

CIFAR 10000
(Batch1)

10000 3072 10 NetI, NetII 10000 10,100, 200

Table 4.1: Relevant parameters related to the datasets used in numerical experiments.

Following Mahsereci and Hennig [2017], both MNIST and CIFAR10 are implemented us-
ing two different network architectures, NetI and NetII, while the smaller BCWD dataset was
trained using logistic regression and two single hidden layer fully connected networks, NetPI and
NetPII. The latter two network architectures are borrowed from the work of Prechelt [1994], in
which a modified version of the BCWD dataset was implemented. The parameters governing
the different implementations are summarized in Table 4.2. This constitutes a total of 7 combi-
nations of different datasets, architectures and loss functions used in the numerical study. All
networks are fully connected, and although the detail given concerning the hidden layers of the
network excludes the biases in Table 4.2, they are included in the implementations. Mahsereci
and Hennig [2017] have stated that a normal distribution was used to initialize all networks.
However, we found that the problems using NetII would not converge using normally distributed
weight initializations unless the variance was reduced to 0.1 for MNIST and 0.01 for CIFAR10
respectively. The latter variance scaling was also adopted for the NetI implementations of CI-
FAR10. For each problem, 10 training runs were conducted, where training and test classification
errors evaluated, as well as estimated step sizes are noted during training. The resolution of
the classification error plots in the log domain is limited by the size of the respective training
and test datasets. For the BCWD dataset, this is the full test dataset, while for MNIST and
CIFAR10, the classification errors are evaluated for a random subsample of 1000 observations
from the training and test datasets respectively. Therefore, to avoid bad scaling in error plots
for cases where the classification error is 0, a numerical constant of 1 · 10−4 was added to clas-
sification error calculations. Therefore the value 1 · 10−4 on classification error plots represents
absolute zero.

For our PyTorch implementation of the BCWD logistic regression problem, we selected three
constant step sizes, each one order of magnitude apart, αn,In ∈ {1, 10, 100}, ensuring that the full
training performance modality is captured. This means that the small fixed step size represents
a slow and overly conservative learning rate that leads to wasted gradient computations during
training. The medium fixed step results in an effective and efficient learning rate with desired
convergence performance and the large fixed step in training that is too aggressive and usually
leads to detrimental performance. GOLS-I’s training performance is compared to the three
constant learning rates, to investigate its feasibility in replacing a priori determined fixed step
sizes.

There is a significant difference in the information required by PrLS and GOLS-I. Apart
from using function value and gradient information, which is readily available in most neural
network software, such as Tensorflow [tensorflow.org, 2019] and PyTorch [pytorch.org, 2019],
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Network Hidden layer
structure

Activation
function

Initialization Loss function

Logistic
regression

N/A Sigmoid N (0, I) BCE

NetPI 32 Sigmoid N (0, I) BCE

NetPII 32 Sigmoid N (0, I) MSE

NetI 800 Sigmoid N (0, I) MNIST
N (0, 0.01I) CIFAR

BCE

NetII 1000,500,250 Tanh N (0, 0.1I) MNIST
N (0, 0.01I) CIFAR

MSE

Table 4.2: Parameters and settings governing the implemented network architectures and their
training.

PrLS also requires variance estimates of both function values and gradients, which are not
standard outputs. Conversely, GOLS-I requires only gradients to be evaluated, in order to
calculate directional derivatives. However, since gradients are evaluated via backpropagation,
function values are evaluated as a by-product. In order to be consistent with the information
presented to PrLS and GOLS-I in our direct comparisons (using Matlab), we consider a function
evaluation to be: A function value, the respective gradient, as well as the in-batch variance
estimates of function value and gradients as prescribed by Mahsereci and Hennig [2017]. Of this
information, GOLS-I then only uses the gradient vector, while PrLS uses all of the above. In
our PyTorch implementation of GOLS-I, only the gradient vector is evaluated.

Both PrLS and GOLS-I require an initial guess at the beginning of a training run, after
which the step size of the previous iteration is used as the initial guess for the next iteration,
i.e. αn,0 = αn−1,In . The starting initial guess for PrLS is set as α0,0 = 10−4, as prescribed by
Mahsereci and Hennig [2017], while GOLS-I uses a more conservative α0,0 = 10−8, as discussed
in Section 4.4. The minimum number of function evaluations per iteration is 1 for both PrLS and
GOLS-I, when the initial condition is satisfied. Conversely, the maximum number of function
evaluations for PrLS is capped at 7, while GOLS-I is uncapped in function evaluations, but
practically capped by the range of available step sizes until αmax is reached.

4.6 Results

Results are categorized according to the datasets and respective architectures investigated, where
the training and test classification errors, as well as estimated step sizes are shown for different
mini-batch sizes, |Bn,i|. Note, that classification error plots are shown in terms of function eval-
uations, while step sizes are shown in terms of iterations. This allows the training performances
between PrLS and GOLS-I to be compared in terms of computational cost, while also showing
the difference in function evaluations per iteration in step size plots.

4.6.1 The Breast Cancer Wisconsin Diagnostic (BCWD) Dataset with Lo-
gistic Regression, NetPI and NetPII

Training and test classification error as well as corresponding step sizes for the different network
architectures used with the BCWD dataset are shown in Figure 4.8. Note, that in order to clearly
distinguish and compare the performances of the investigated architectures for this problem, we
plot the mean over 10 runs using a solid line, while the variance cloud is indicated by a shaded
area around the mean. This representation is not used for subsequent figures, where each of the
10 runs is plotted individually, as determined by Mahsereci and Hennig [2017].

In the logistic regression (LogR) example, the performance of GOLS-I and PrLS is similar
for mini-batch sizes of |Bn,i| ≥ 50. In these cases, the step sizes estimated by both line searches
are also of comparable magnitude. This shows that both PrLS and GOLS-I automatically adapt
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their starting initial guesses from α0,0 = 1 · 10−4 and α0,0 = 1 · 10−8 respectively to magnitudes
around 1 and larger. For the logistic regression problem we observe an increase in step sizes as
a function of iterations for both methods. On average, the number of gradient evaluations per
iteration is in the low 2s for the BCWD dataset, but can be up to 17 for individual iterations
of GOLS-I. However, on average we see that GOLS-I and PrLS also complete a similar number
of iterations for a fixed maximum number of function evaluations. This suggests, that the
performance between the two line searches is competitive, an assertion supported by the almost
indistinguishable training, test and step size plots for the full batch case, M = 400.

(a) |Bn,i| = 10 (b) |Bn,i| = 50 (c) |Bn,i| = 100 (d) M = 400

Figure 4.8: Log training error, log training loss, log test error and the log of the step sizes as
obtained with various batch sizes for the BCWD dataset problem.

However, for |Bn,i| = 10 PrLS exhibits unstable behaviour, encountering numerical difficulties
that resulted in early termination. This is in contrast to the results shown by Mahsereci and
Hennig [2017], which suggest stability with |Bn,i| = 10 for 10,000 function evaluations. We
observe this unstable behaviour for all three architectures trained with PrLS and |Bn,i| = 10,
while conversely, GOLS-I completed all training runs with |Bn,i| = 10.

Next, consider the results of NetPI and NetPII with |Bn,i| ≥ 50. Training performance of
both line searches improves as a function of increasing mini-batch size. However, the performance
difference between GOLS-I and PrLS becomes more distinct for these network architectures. The
use of GOLS-I produces instances where the training classification errors are 0. In such cases,
the lower bound of the y-axis is limited to the numerical nugget of 10−4. The smallest non-zero
error for BCWD is log( 1

400) ≈ −2.6. For GOLS-I with |Bn,i| = 50, most training runs reach zero
training classification error after approximately 1000 function evaluations. This is accelerated to
500-800 function evaluations for |Bn,i| = 100. The use of PrLS does not produce perfect training
results for |Bn,i| = 50, but does improve for |Bn,i| = 100, first reaching 10−4 after ±1200 function
evaluations. This difference in performance is due to the difference in step sizes determined by
GOLS-I and PrLS for |Bn,i| ∈ {50, 100}. GOLS-I grows its step size at a significantly faster rate
than PrLS for both NetPI and NetPII, reaching αmax while still remaining stable. This means
that the step sizes determined by PrLS for |Bn,i| ∈ {50, 100} are more conservative. The step
size behaviour of PrLS changes significantly for M = 400, where the step sizes of both methods
grow at a similar rate until ±400 function evaluations, after which GOLS-I reaches its maximum
step size, but PrLS continues to grow its steps. This has the consequence that PrLS becomes
unstable after latest 1200 function evaluations. We postulate, that this weakness of PrLS is
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related to cases where the norm of the gradient vector approaches 0 towards the end of training,
an occurrence which we observe in training and test errors for all mini-batch sizes.

Apart from the late-training divergence of PrLS, the test classification errors between line
search methods and network architectures are largely the same for this problem. Overfitting
occurs readily after around 200 function evaluations, with the logistic regression implementations
showing higher test classification errors in later training than both NetPI and NetPII. This
indicates, that both PrLS and GOLS-I are in principle capable of fitting the given architectures
to the BCWD dataset. However, for this example GOLS-I has improved training performance
to PrLS, as well as exhibiting superior algorithmic stability.

Figure 4.9 shows log training losses and step sizes for the comparison between GOLS-I and
fixed step sizes applied to the logistic regression problem with the BCWD dataset over 100, 000
function evaluations, as first demonstrated by Mahsereci and Hennig [2017]. In these plots we
show all 10 runs for GOLS-I and each constant step size. In terms of constant step sizes, the
small step size exhibits slow convergence, the medium step size performs well, and the large
step size often leads to divergence. As the batch size increases, the performance of the large
constant step size becomes competitive for isolated instances, as observed for |Bn,i| = 100 and
|Bn,i| = 400. However, overall the large step size has the largest variance.

(a) |Bn,i| = 10 (b) |Bn,i| = 50 (c) |Bn,i| = 100 (d) M = 400

Figure 4.9: Log training error, log training loss, log test error and the log of the step sizes as
obtained with various batch sizes for the logistic regression problem for the BCWD dataset.

The log of the training loss for this problem gives a better perspective of the convergence
behaviour of GOLS-I compared to constant step sizes. The training classification errors, as
shown in Figure 4.8, hides the absolute performance of the training algorithm, due to rounding
the network output to obtain the classification. By considering the training loss, we can observe
the training performance in more detail, ignoring the effect of rounding. For |Bn,i| = 10, the
variance in the computed gradient between batches is high, hindering the performance of GOLS-I
in comparison to the small and medium fixed step sizes. As the batch size increases to |Bn,i| ≥ 50,
the quality of the computed gradient improves sufficiently, such that GOLS-I fits the model to
the training data up to numerical accuracy within 100, 000 function evaluations. This point
occurs earlier in training, as the mini-batch size is increased.

The step size range of 15 orders of magnitude available to GOLS-I is immediately evident in
Figure 4.9. At the beginning of training, the step sizes are tightly bound. However, as training
progresses, the variance in step sizes increases for |Bn,i| ∈ {10, 50, 100}. This occurs as the
decision boundary stabilizes in the classification problem. Samples close to the decision boundary
exhibit large gradients and prompt small update steps, others are far from the decision boundary
and have small gradients, which prompt GOLS-I to compensate and take large step sizes to find a
sign change. Depending on the samples in the mini-batch used to construct the search direction,
it is also possible to encounter ascent directions. In such cases, GOLS-I decreases the step
size until αmin is reached. However, in the smooth and continuous case of M = 400, the only
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inaccuracies introduced, are due to GOLS-I’s inexact step size resolution, causing the step size
rise to be rapid and comparatively consistent between runs. The growing step size behaviour is
an adjustment of the line search to the magnitude of the gradient decreasing as the algorithm
approaches an optimum. From 10, 000 function evaluations onwards, the variance in step size is
due to computational inaccuracy as the gradient approaches numerical 0. At the same point, the
loss ceases to decrease during training. This example demonstrates that GOLS-I outperforms
constant fixed step sizes and that it generalizes naturally from highly discontinuous, stochastic
loss functions to smooth loss functions, with performance increasing as the mini-batch size
increases.

4.6.2 The MNIST Dataset with NetI and NetII

(a) |Bn,i| = 10 (b) |Bn,i| = 100 (c) |Bn,i| = 200

Figure 4.10: log Training error, log training loss, log test error and the log of the step sizes as
obtained with various batch sizes for the MNIST dataset with the NetI architecture.

Subsequently, we compare GOLS-I and PrLS as applied to the MNIST dataset with the NetI
architecture. The results are given in Figure 4.10 for |Bn,i| ∈ {10, 100, 200}. For this example,
GOLS-I convincingly outperforms PrLS in both training and test error across all considered
mini-batch sizes. PrLS again exhibits divergent behaviour for |Bn,i| = 10, while GOLS-I remains
stable. There is a significant increase in training performance with GOLS-I, as the mini-batch
size increases to |Bn,i| = 100. Around 800 function evaluations, some of the first runs obtain
zero training classification errors. For |Bn,i| = 200, this point is reached around 500 function
evaluations. Though training with PrLS also improves as the mini-batch size increases, the
average training error reaches a minimum of the order 1 · 10−2.

As was the case with the BCWD dataset, GOLS-I computes larger step sizes than PrLS
while remaining stable during training, which shows that GOLS-I’s step sizes are representative
of the problem, while PrLS remains conservative. For MNIST on NetI, the number of iterations
performed by GOLS-I is visibly less than those of PrLS, indicating that PrLS more readily ac-
cepts the initial guess, while not refining the step size to determine a larger step size along the
search direction. There is also a difference in step size behaviour between PrLS and GOLS-I: The
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step sizes determined by PrLS stagnate and even tend to decrease as training progresses, while
GOLS-I’s step sizes increase during training, which is a function of decreasing gradient magni-
tudes closer to an optimum. Another noteworthy observation is that both GOLS-I and PrLS
automatically determine larger step sizes at the first iteration, as the mini-batch size increases.
This is particularly evident between the beginning step sizes determined for |Bn,i| = 10 and
|Bn,i| = 100 respectively, which is consistent with the constant step size analyses in Figure 4.9,
where larger step sizes can be more effective with larger mini-batches. The observations of Fig-
ure 4.10(last row) indicate that both GOLS-I and PrLS are able to identify this relationship,
albeit that PrLS remains more conservative.

(a) |Bn,i| = 10 (b) |Bn,i| = 100 (c) |Bn,i| = 200

Figure 4.11: Log training error, log training loss, log test error and the log of the step sizes as
obtained with various batch sizes for the MNIST dataset with the NetII architecture.

However, this conservatism can have potential benefits, as is demonstrated in Figure 4.11
by the training runs conducted on MNIST with NetII for |Bn,i| = 10. Here PrLS has superior
performance to GOLS-I, since GOLS-I often accepts the initial step size, evidenced by the
number of iterations performed almost matching the number of function evaluations. Since
this trend is the same over the different batch sizes, this indicates that the gradient norms of
the problem are reasonably consistent over |Bn,i|. In general, GOLS-I again determines larger
step sizes than PrLS. However, since the quality of the search direction drops with decreasing
|Bn,i|, the larger step sizes determined by GOLS-I for |Bn,i| = 10 lead to noisy, slow training in
comparison to PrLS. The smaller step sizes determined by PrLS for |Bn,i| = 10 results in more
stable, consistent training. It is likely, that the additional information used by PrLS works to
its advantage over GOLS-I, when the quality of information is poor.

However, as the batch size increases to |Bn,i| ∈ {100, 200} the search direction and directional
derivative quality improve sufficiently, such that GOLS-I again convincingly outperforms PrLS
in training. In turn, the test classification errors are comparable between the two line search
methods, indicating that both aid in constructing trained models, albeit that GOLS-I trains
the model more efficiently. It is important to note, that the step sizes determined by both
algorithms are smaller than those of NetI, and remain constant throughout training for both
line searches. This indicates that both line search methods are adapting the estimated step
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sizes to the information presented by the loss function. The comparative number of iterations
performed by PrLS is lower for NetII than for NetI, indicating that PrLS required more function
evaluations to estimate the step sizes for each iteration, instead of accepting the initial guess,
which was the dominant mode of operation for GOLS-I in this example.

4.6.3 The CIFAR10 dataset with NetI and NetII

(a) |Bn,i| = 10 (b) |Bn,i| = 100 (c) |Bn,i| = 200

Figure 4.12: Training error, test error and the log of step sizes as obtained with various batch
sizes for the CIFAR10 Dataset, as used with the NetI architecture. The training and test errors
are shown on a linear scale to allow comparison with results presented by Mahsereci and Hennig
[2017].

The training and test classification errors, with corresponding step sizes for CIFAR10 with
NetI are shown in Figure 4.12. To be consistent with results presented in Mahsereci and Hennig
[2017], the training and test error plots are plotted on a linear scale for all CIFAR10 analyses.
For |Bn,i| = 10, GOLS-I marginally outperforms PrLS in training. This is again due to GOLS-I
determining larger step sizes than PrLS, which also results in noisier training and higher test
errors, due to large updates with inconsistent search directions. Again, the conservative step
sizes of PrLS aids stability while training with the large discontinuities present for |Bn,i| = 10.
However, as mini-batch size increases to |Bn,i| ∈ {100, 200}, the performance of GOLS-I again
improves significantly, while the improvement for PrLS is marginal. For |Bn,i| = 100 GOLS-I
trains NetI to within 10% training classification error within 5,000 function evaluations, while
PrLS manages 50% at best after 10,000 function evaluations. It is to be noted, that the high
test classification errors of the CIFAR10 analyses are due to the training dataset containing
only Batch1, a 5th of the total available training data for this problem. Therefore, the networks
used for this dataset overfit readily, and do not generalize well. In terms of step sizes, PrLS
again remains conservative in comparison to GOLS-I. However, the difference between step sizes
determined by GOLS-I and PrLS decreases as the mini-batch size increases. Another notable
trend, is that the number of iterations performed by PrLS increases as a function of mini-batch
size. This indicates, that the initial accept condition of PrLS is more often satisfied, when more
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information is available. PrLS also exhibits a notable jump of an order of magnitude in step
size between |Bn,i| = 10 to |Bn,i| = 100. Though it is clear, that PrLS adjusted to the increased
quality of information afforded by larger mini-batch sizes, it does not lead to the same increase
in performance compared to GOLS-I.

(a) |Bn,i| = 10 (b) |Bn,i| = 100 (c) |Bn,i| = 200

Figure 4.13: Training error, test error, log of test loss and the log of step sizes as obtained
with various batch sizes for the CIFAR10 Dataset, as used with the NetII architecture. The
training error is shown on a linear scale to allow comparison to results produced by Mahsereci
and Hennig [2017].

Consider the results for CIFAR10 with NetII, shown in Figure 4.13. Here, the conservatism
of PrLS again benefits to training with |Bn,i| = 10. Though the step sizes determined by GOLS-
I and PrLS are less than an order of magnitude apart (the closest seen in our investigations),
those of PrLS are still on average smaller than those of GOLS-I. This has the implication, that
PrLS outperforms GOLS-I in training and test classification errors on NetII with |Bn,i| = 10.
In turn, there is a significant increase in the performance of GOLS-I with |Bn,i| ∈ {100, 200},
while simultaneously PrLS remains competitive with GOLS-I for |Bn,i| ≥ 100. The test error
of PrLS is lower than that of GOLS-I, which is related to: 1) the training data, 2) the network
architecture, and 3) the rate at which training occurs. Apart from training only with Batch1,
which allows overfitting to occur readily with NetI, NetII has significantly higher flexibility
due to having 3 hidden layers. This further increases the ability of NetII to overfit to the
incomplete training data. The rate at which overfitting occurs is directly correlated to training
performance. To highlight this aspect, we include the test loss in the third row of Figure 4.13.
With |Bn,i| ∈ {100, 200}, training occurs so rapidly, that the minimum test loss (the point
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at which overfitting begins) occurs within the first 1,000 function evaluations. As training
continues, the training algorithms quickly move past solutions which generalize well, to solutions
which minimize the training loss. Consequently, both the test loss and test classification errors
continue to increase. Slower training results in the algorithm remaining around solutions which
generalize for a larger number of iterations, resulting in lower test loss and test classification
errors. This is the case for PrLS for this example, which trains slowly and therefore delays
overfitting.

This observation is supported by considering the step sizes shown in the last row of Fig-
ure 4.13. For mini-batch sizes |Bn,i| ∈ {100, 200}, the step sizes determined by GOLS-I remain
constant, while those of PrLS decrease three orders of magnitude from αn,In ≈ 1 · 10−1 to
αn,In ≈ 1 · 10−4 during training. This contributes to the slower training behaviour of PrLS,
as well as the less aggressive overfit. Unfortunately, this performance can not be attributed to
PrLS adapting to the data imbalance of the problem, since the line search is only exposed to
the training data, for which it is tasked with minimizing the error. Since PrLS is less successful
than GOLS-I in doing so, its lower test error is purely coincidental, given the unique qualities
of the problem.

The results of |Bn,i| = 200 show an unexpected slowing of training for PrLS compared to
|Bn,i| = 100. This is confirmed by the test losses, where PrLS overfits faster with |Bn,i| = 100
than with |Bn,i| = 200. Conversely, the larger mini-batch size once more favours GOLS-I,
resulting in efficient training for |Bn,i| = 200. This behaviour by PrLS is remarkable, since
its step size schedule seems unchanged compared to training with |Bn,i| = 100. Therefore, the
only other factor is the quality of the search direction. We postulate, that the variance in
search direction allowed PrLS to overcome local optima more effectively with |Bn,i| = 100, while
|Bn,i| = 200 causes local optima to be more defined. In combination with its conservative step
sizes, this slows the training progress of PrLS. The same occurs to one training run with GOLS-
I, which determines much smaller step sizes. However, this occurs only after 1000 iterations,
at which point the neural network has already overfit, leading to no obvious deficit in training
classification.

In all 5 problems considered, the step sizes were adapted dynamically by both GOLS-I
and PrLS. Overall, we find PrLS to be more conservative than GOLS-I in terms of step size
magnitude. We find PrLS to be unstable at |Bn,i| << M and full-batch analyses with the
BCWD dataset, but superior in training for MNIST and CIFAR10 datasets, when |Bn,i| = 10.
In the latter case, we postulate that this is due to the use of added information in the form
of function value and gradient variance in highly discontinuous loss functions. However, the
absolute training performance PrLS with |Bn,i| = 10 remains underwhelming in comparison
to the performance gain offered by GOLS-I with |Bn,i| ≥ 100. For |Bn,i| ∈ {100, 200}, the
conservatism of PrLS leads to slower training performance, while GOLS-I gains a significant
performance advantage from the increased quality of gradient information, which causes SNN-
GPPs to be more localized. Additionally, GOLS-I does not require the evaluation of variance
estimates, nor the construction of surrogates at every iteration.

4.7 Differences to the original PrLS study

Considerable effort went into following the information given in Mahsereci and Hennig [2017]
and implementing PrLS as prescribed, especially with regards to constructing the required loss
and gradient variance estimates. However, there were some elusive differences between results
presented in Mahsereci and Hennig [2017] and our investigations, of which we have not yet found
the origin.

Firstly, we were unable to match the resolution obtained in log classification error plots,
particularly those of the BCWD dataset problems. This is due to the small number of samples
in the dataset. Particularly for the test classification errors, we observe plots with discrete
accuracy values, due to the binary nature of individual points being either correctly or falsely
classified. Though this is less notable in larger datasets, the same characteristics are present.
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Secondly, for the most part, we were not able to reproduce the same training behaviour for
PrLS as shown in Mahsereci and Hennig [2017]. Their work shows training and test errors that
drop rapidly, then plateau in the log domain for most of their investigated training problems. We
do not recover this behaviour for PrLS nor for GOLS-I. Instead, we observed linear convergence
in the log domain for both methods, which is consistent with theoretical convergence estimates
for SGD [Dekel et al., 2012, Li et al., 2014].

And lastly, though our results for training CIFAR10 with PrLS most closely match those
demonstrated in Mahsereci and Hennig [2017], we observe some inconsistencies. For our im-
plementations of NetI, we obtain clearly inferior training performance with PrLS compared to
those shown in Mahsereci and Hennig [2017]. Conversely, the training of NetII with PrLS is
superior with |Bn,i| = 100 and competitive with |Bn,i| = 200 to those presented by Mahsereci
and Hennig [2017]. By experimentation with our numerical parameters, we noted that the given
problems are sensitive to the initial guesses of the neural network weights. However, these are
not stated in detail in [Mahsereci and Hennig, 2017]. We therefore suspect, that this might be
a potential contributor to some of the encountered discrepancies. We highlight these differences
in the interest of reproducible science, not distracting from the PrLS method itself, as it clearly
serves its intended purpose in determining step sizes. All parameters were kept constant in this
study between PrLS and GOLS-I, with the only difference being the actual line searches used.
Although there are differences between our results, and those obtained for PrLS in Mahsereci
and Hennig [2017], the comparisons in our investigations hold for the parameters presented in
this study.

4.8 PrLS and GOLS-I: Line searches, not update rules

While training MNIST with NetII and CIFAR10 with NetI and NetII, the resulting step sizes
for both PrLS and GOLS-I showed that the immediate accept condition was operating more
often than the line search method itself. This can be deduced from the number of function
evaluations being close to the number of iterations performed. This gives the impression that
these line search methods function solely as ”update rules”, choosing step sizes based on a
heuristic, but not actively resolving step sizes. We counter this claim with a demonstration: We
select the NetPI architecture with the BCWD dataset and extend the number of hidden layers
with 32 nodes from 1 to 10. All other parameters remain the same as those used in Section 4.6.1
for NetPI, where training runs are limited to 3,000 function evaluations. We remind the reader,
that the first initial guess for each training run is α0,0 = 10−4 for PrLS and α0,0 = 10−8 for
GOLS-I respectively. The large number of hidden layers increases the non-linearity of the model,
increasing the complexity of the loss function. To ensure that the loss function is discontinuous,
while containing sufficient information, the mini-batch size of |Bn,i| = 100 is chosen. The
resulting training loss, step size, training classification error and test classification error are
shown in Figure 4.14. We show individual results for each of the 10 performed training runs in
thin, dotted lines, while highlighting the mean performance over the lowest common number of
iterations between runs in a thick, solid line.

The higher non-linearity in the loss function makes optimization within the loss landscape
more sensitive to the determined step size. Accuracy of the step size may be more critical in
such cases, as the penalty in loss for drastically overshooting an optimum may be more severe.
Therefore, the onus is on PrLS and GOLS-I to adjust their respective step sizes to the increased
non-linearity in the stochastic loss function. Repeated adjustment of step sizes is indicated by
an increased number of function evaluations performed per iteration within the line search. The
increased non-linearity decreases the probability of the initial guess from the previous iteration
being appropriate for the current iteration, reducing the likelihood of the initial accept conditions
being satisfied.

To shed light on the actions taken by the line searches, we summarize the minimum, max-
imum and mean number of function evaluations (Fe.) performed per iteration (It.) during
training for PrLS and GOLS-I in Table 4.3. The minimum number of Fe./It. is indicative of the
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(a) Training loss (b) Step size

(c) Training classification error (d) Test classification error

Figure 4.14: Training loss, step size, training classification error and test classification error for
the Cancer dataset problem with a modified NetPI architecture. We extend NetPI to contain
10 hidden layers, thereby making the training problem more non-linear, which prompts the line
search algorithms to perform more function evaluations per iteration.

immediate accept condition being triggered, while the maximum number of Fe./It. is indicative
of the ”effort” exerted by the line search to determine the step size for a given iteration. For
PrLS, this number is capped to 6(+1) as prescribed by Mahsereci and Hennig [2017]. GOLS-I
adjusts the step size repeatedly, until either a sign change in directional derivative is found, or
one of the min/max step size limits is reached. This allows for a significantly larger number
of Fe./It. to be performed at each iteration. Hence, the maximum number of Fe./It. being
performed in the first iteration by GOLS-I is 28, as it adjusts the step size from the conservative
initial guess of α0,0 = αmin = 1 · 10−8 to an appropriate magnitude of around α0,In = 1 · 100.
In subsequent iterations after initialization, the maximum number of Fe./It. performed by
GOLS-I during continued training for this problem was 11. This indicates that both PrLS and
GOLS-I were capable of continually adjusting step sizes according to the requirements of the
loss landscape. This assertion is also supported by the significant variance in step sizes early
on in training. This results in a lower number of iterations performed during the training runs
for a maximum 3,000 function evaluations. Generally, the number of Fe./It. drops as training
progresses, resulting in lower overall Fe./It. averages. This applies in particular for GOLS-I,
where the directional derivatives encountered at the step size upper limit are negative, triggering
the initial accept condition.

This investigation demonstrates, that both PrLS and GOLS-I adapt to the loss function
characteristics presented to them and can be considered functional line searches in discontinuous
loss functions. As is consistent with the previous analyses conducted in this chapter, GOLS-I
shows improved performance over PrLS for the given example. GOLS-I is able to reduce the
loss to 1 · 10−10 for isolated training runs as well as obtain zero training classification errors,
which is not the case with PrLS. Instead, PrLS exhibits divergent training behaviour after 1500
function evaluations on average.

Overall, GOLS-I has been shown to be more aggressive than PrLS in terms of the step
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Min Fe./It. Max Fe./It. Mean Fe./It.

GOLS-I 1 28 (11) 1.3

PrLS 1 7 2.7

Table 4.3: Various metrics of function evaluations (Fe.) performed per iteration (It.) during
training for PrLS and GOLS-I. Function evaluations performed during an iteration indication
of the ”effort” exerted by the line search to determine the step size. The maximum number of
Fe./It. in PrLS is fixed, which is not the case for GOLS-I. The absolute maximum number of
Fe./It. for GOLS-I is 28, which occurs in the first iteration due to a conservative initial guess
of α0,0 = 1 · 10−8. In subsequent training, the maximum number is 11.

size magnitudes, which can lead to detrimental performance when small mini-batches are used.
However, given the hardware capabilities currently available to machine learning practitioners,
it is feasible to implement mini-batch sizes of |Bn,i| ≥ 100, where GOLS-I has demonstrated
superior performance over PrLS for the problem considered. We also remind the reader, that
no variance estimates or surrogates are needed to implement GOLS-I, making its application
to existing machine learning technologies less involved and computationally more efficient than
PrLS.

4.9 Conclusion

For discontinuous dynamic mini-batch sub-sampled (MBSS) loss functions, we compare the
Gradient-Only Line Search that is Inexact (GOLS-I) [Kafka and Wilke, 2019b], to the Proba-
bilistic Line Search (PrLS) [Mahsereci and Hennig, 2017] for automatically resolving learning
rates. GOLS-I is an intuitive, computationally efficient alternative line search method, which
does not require surrogates or function value and gradient estimates, while remaining robust in
discontinuous loss functions. Instead of minimizing or finding critical points along descent di-
rections, GOLS-I locates Stochastic Non-Negative Associated Gradient Projection Points (SNN-
GPPs). Moving along a 1-D descent direction, SNN-GPPs are identified by sign changes from
negative to positive in the directional derivative, thus incorporating second order information
representative of a minimum.

We demonstrate the capabilities of GOLS-I on eight machine learning problems, with five
proposed by Mahsereci and Hennig [2017], three adapted from Prechelt [1994]. These include
the Breast Cancer Wisconsin Diagnostic (BCWD) dataset with four different architectures, as
well as MNIST and CIFAR10 each implemented with a shallow and deep network architecture.
We use these problems to demonstrate that step sizes can be efficiently determined for stochastic
gradient descent with a line search (LS-SGD) using GOLS-I. GOLS-I adaptively determines step
sizes that can vary over 15 orders of magnitude, i.e. from a minimum step size of αmin = 10−8 to
a maximum of αmax = 107. In our experiments, GOLS-I demonstrated training performance that
is competitive to superior to that of a manually tuned constant step size. As training progressed,
GOLS-I was able to dynamically re-adjust the step size, depending on the characteristics of the
loss function.

We have shown GOLS-I to outperform the probabilistic line search (PrLS) in training when
mini-batches are sufficiently large, while the performance of PrLS was complementary to GOLS-
I, in that it performed best with small mini-batch sizes. The combination of PrLS being more
conservative than GOLS-I in the step sizes, as well as the added information used by PrLS (in
the form of loss function and gradient variance estimates) on average makes PrLS more robust
than GOLS-I for the MNIST and CIFAR10 problems with mini-batch sizes |Bn,i| = 10. For
the BCWD dataset, PrLS exhibited divergent behaviour with |Bn,i| = 10 and some instances
full-batch training. However, using mini-batch sizes of |Bn,i| = 10 results in slow training overall.
Current computational resources support mini-batch sizes of sufficient size (|Bn,i| ≥ 100), such
that gradient information alone, in the form of the SNN-GPP as used by GOLS-I, is sufficient to
enable effective step sizes to be determine in dynamic MBSS loss functions. In such cases, GOLS-
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I comprehensively outperformed PrLS in this investigation, which consists largely of problems
and architectures proposed by the authors of PrLS. This makes GOLS-I a credible alternative
to determining learning rates in dynamic mini-batch sub-sampled loss functions, which leads to
curiosity regarding the feasibility of incorporating GOLS-I into other traditional mathematical
programming methods and popular neural network training algorithms.
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Chapter 5

Gradient-only line searches to
automatically determine learning
rates in stochastic training
algorithms

Gradient-only and probabilistic line searches have recently reintroduced the ability to adaptively
determine learning rates in dynamic mini-batch sub-sampled neural network training. However,
stochastic line searches are still in their infancy and thus call for ongoing investigation. We
study the application of the Gradient-Only Line Search that is Inexact (GOLS-I) to automat-
ically determine the learning rate schedule for a selection of popular neural network training
algorithms, including NAG, Adagrad, Adadelta, Adam and LBFGS, with numerous shallow,
deep and convolutional neural network architectures trained on different datasets with various
loss functions. We find that GOLS-I’s learning rate schedules are competitive with manually
tuned learning rates, over seven optimization algorithms, three types of neural network archi-
tecture, 23 datasets and two loss functions. We demonstrate that algorithms, which include
dominant momentum characteristics, are not well suited to be used with GOLS-I. However, we
find GOLS-I to be effective in automatically determining learning rate schedules over 15 orders of
magnitude, for most popular neural network training algorithms, effectively removing the need
to tune the sensitive hyperparameters of learning rate schedules in neural network training.

5.1 Introduction

In pursuit of improving the training of neural networks, learning rate parameters are consis-
tently some of the most sensitive hyperparameters in deep learning [Bergstra and Bengio, 2012],
and hence constitute an ongoing area of research [Smith, 2015, Orabona and Tommasi, 2017,
Wu et al., 2018]. The field of mathematical programming predominantly employs minimiza-
tion line searches to determine step sizes (or learning rates) [Arora, 2011]. However, ever since
neural network training has moved from full-batch to mini-batch sub-sampled (MBSS) training
in order to improve computational cost and training characteristics, line searches have fallen
out of favour [Wilson and Martinez, 2003, Schraudolph and Graepel, 2003, Schraudolph et al.,
2007]. The prohibiting factor in successfully implementing minimization line searches has been
the emergence of discontinuities in the loss functions and gradients, that are due to continuous
resampling of mini-batches, see Figure 5.1. Subsequently, the primary research focus in stochas-
tic minimization has been on various a priori selected step sizes [Schraudolph, 1999, Boyd et al.,
2003, Smith, 2015].

However, recently, line searches were reintroduced to dynamic MBSS loss functions in neural
network training in the form of the probabilistic line search by Mahsereci and Hennig [2017].
This method deals with the discontinuities in function value and gradients by constructing Gaus-
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Figure 5.1: Dynamic mini-batch sub-sampling introduces discontinuities into the loss and gra-
dients of a neural network. However, gradient information, depicted by the directional deriva-
tive along a unit direction of two weights, is less affected by discontinuities during resampling.
Gradient-only line searches exploit this property to determine step sizes with the aid of the
gradient-only optimality condition [Wilke et al., 2013, Snyman and Wilke, 2018, Kafka and
Wilke, 2019b, Kafka and Wilke, 2019].

sian process surrogates along search directions. The minimum of the surrogate can subsequently
be accurately determined. Alternatively, gradient-only line search methods [Kafka and Wilke,
2019b] employ concepts based on gradient-only optimization [Wilke et al., 2013, Snyman and
Wilke, 2018] to determine step sizes. This is achieved by locating Stochastic Non-Negative Asso-
ciated Gradient Projection Points (SNN-GPPs), which can be distinct from function minimizers
in discontinuous functions. An SNN-GPP manifests as a sign change in directional derivative
from negative to positive along a search direction. This means, that the SNN-GPP definition in-
cludes second order information, allowing the line search to avoid maxima and inflection points,
searching only for minima that are present in the derivative, thereby reducing the number of
candidate solutions. The use of the gradient-only paradigm has a double benefit: 1) Gradi-
ent information is less affected by discontinuities present in dynamic MBSS loss functions (see
Figure 5.1) and 2) the spatial location of SNN-GPPs remains bounded. When implemented,
these factors have resulted in a gradient-only line search formulation, which has been shown to
outperform probabilistic line searches in their current form [Kafka and Wilke, 2019].

In this chapter we investigate the suitability of using the Gradient-Only Line Search that is
Inexact (GOLS-I), see Appendix A.3.2, to determine the learning rate parameters for a collection
of seven popular neural network training algorithms on three types of neural network architec-
tures, two loss functions and 23 datasets. This work fits into the larger context of improving
optimization performance and efficiency in neural network training.

5.2 Connections: Approaches in advancing neural network train-
ing

Neural network training requires an optimization problem to be solved. Two fundamental com-
ponents to any optimization problem are the formulation of the problem, with the resulting
optimization landscape (called the loss function); and the behaviour of the optimizer selected
to traverse the given landscape in the search of an optimum (also referred to as the training
algorithm). We briefly review both of these aspects in the context of neural network training.

103



5.2.1 Modifying loss function landscapes

Significant research has been directed towards theoretical characterization of the loss functions
in neural network architectures. However, admittedly there is still a gap between theoretical
basis and practical experiences in training. Hence there has been movement to recast problems
in manners that lessen the void between practice and more rigorously understood optimization
theory [Kawaguchi, 2016].

Due to the non-convex nature of neural network loss functions, see Figure 5.1, many optimiz-
ers have difficulty finding optima. Therefore, there have been significant attempts to improve
the characteristics of the loss function by,

• Loss function scaling for a given model [Ioffe, 2017, Salimans and Kingma, 2016],

• Regularization of a network model for convexity [Bishop, 2006], and

• Modification of a network training problem via hyperparameter optimization [Bergstra
et al., 2011].

If length scales of the loss function in different dimensions are similar, the problem may
become less sensitive to the training algorithm and learning rate selected. Methods such as
both Batch Norm [Ioffe, 2017] and Weight Norm [Salimans and Kingma, 2016] can be used to
this effect. Batch Norm specifically is claimed to be effective in correcting the scaling of deep
networks, where the exploding or diminishing gradient problems become prevalent in deeper
layers, causing vastly differing curvatures along different directions.

A common method of introducing convexity into the loss function landscape is by adding a
regularization term such as a quadratic L2-normalization term to the network loss [Bishop, 2006].
Alternatively, work done by Li et al. [2017] shows how architectural decisions, specifically the
introduction of skip connections, in a neural network affect the convexity of the loss function.
Interesting investigative work done by Goodfellow et al. [2015] shows that networks, which
perform well when used with stochastic gradient descent (SGD) often result in convex training
paths. However, the authors do show that encountering narrow, flat ravines or flat planes
is a possibility. Given this highly non-linear nature of loss functions, it is unlikely that a
single fixed learning rate would perform well over all iterations. Goodfellow et al. [2015] also
demonstrated that another contributing factor to the performance of the algorithm were the
directions generated for a given update step. If the variance in the generated directions is
high, SGD follows trajectories which make little progress towards a minimum. This can be
especially pronounced when the optimizer is traversing a flat plane with a small learning rate.
These considerations are consistent with the observations by Smith et al. [2017], which suggests
finding better minima by ramping up the mini-batch size, thereby reducing gradient variance,
as opposed to decreasing the learning rate.

Global hyperparameter optimization strategies consider the various parameters involved in
problem formulation (network architecture, activation function, loss function etc.) and optimizer
(update rule, learning rates etc.). Depending on the problem, there might be combinations of
architecture and algorithm parameters that are more effective than others. Hyperparameter opti-
mization approaches seek to isolate such combinations by changing both the loss landscape and
optimization parameters simultaneously. Such methods include grid-searches, random search
and Bayesian optimization [Bergstra et al., 2011, Bergstra and Bengio, 2012, Snoek et al., 2012].
However, they are generally expensive and require a large number of trial runs to evaluate the
fitness of different parameter configurations. Although these methods are used to configure such
a wide range of parameters, work done by Bergstra et al. [2011], Bergstra and Bengio [2012]
shows that the learning rate parameters are consistently the most sensitive across different prob-
lems. It is therefore of interest to determine the learning rate parameters automatically, making
the remaining hyperparameter space smaller and easier to optimize.
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5.2.2 Improving optimizers

In the interest of constructing an effective optimizers for traversing the complex landscapes of
neural network loss functions, research has been focussed on

• a priori selected step sizes [Darken and Moody, 1990], and

• adaptively computed step sizes [Darken and Moody, 1990].

An alternative to line searches is the use of a priori determined fixed learning rates and
learning rate schedules, forming part of sub-gradient methods [Boyd et al., 2003]. However,
early work showed that fixed learning rates (step sizes) that are too small result in inefficient use
of computational resources, while parameters that are too large inhibit optimization algorithms
from converging to solutions with sufficient accuracy [Moreira and Fiesler, 1995]. Hence, a more
popular approach in the deep learning community is to use learning rate schedules [Darken and
Moody, 1990, Moreira and Fiesler, 1995, Senior et al., 2013, Vaswani et al., 2017, Denkowski and
Neubig, 2017], which change the learning rate according to a predetermined rule. Some schedules
focus on incorporating oscillatory behaviour such as learning rate cycling [Smith, 2015], which
ramps the learning rate up and down within a given range. A similar approach is the use of warm
restarts [Loshchilov and Hutter, 2016]. Both these methods periodically vary their learning rates
with regards to a specified function and schedule. This is inspired by allowing the optimization
algorithm to balance exploration (high learning rate) and exploitation (small learning rate) to
escape local minima or saddle points, and increase the odds of finding good minima. However,
in general the primary disadvantage of learning rate schedules is that both the functional form
of the schedule, as well as its own hyper-parameters, are problem dependent, but determined a
priori to training, making generalized application of learning rate schedules difficult. That being
said, popular optimizer improvements have included incorporating learning schedules directly
into steepest descent algorithms [Duchi et al., 2011, Zeiler, 2012, Kingma and Ba, 2015, Zheng
and Kwok, 2017, Wu et al., 2018]. However, in most cases, a learning rate magnitude parameter
remains.

Another area of learning rate research are adaptive step size methods, which change parame-
ters based on loss function information presented to the algorithm during training. This category
includes line searches, which have been implemented in training machine learning problems in the
field of adaptive sub-sampling. Here the emphasis lies on governing qualities of the training algo-
rithm’s descent direction through determining the mini-batch size. Once selected, mini-batches
remain unchanged over the course of an iteration [Friedlander and Schmidt, 2011, Bollapragada
et al., 2017]. However, Bottou [2010] argues, that continually changing mini-batches can benefit
training, by exposing the algorithm to increased amounts of information.

Consequently, alternative adaptive step size strategies have been developed, specifically to
operate on discontinuous loss functions. Examples of such methods include the incorporation
of statistical concepts into existing methods, such as the adaptation of coin betting theory
to determine the learning rate [Orabona and Tommasi, 2017] and a statistically motivated
adaptation of an annealed learning rate [Pouyanfar and Chen, 2017]. Interest also returned to
the well established gradient descent with momentum algorithm [Zhang and Mitliagkas, 2017].
The work by Zhang and Mitliagkas [2017] demonstrated that by adaptively fine tuning the
momentum term, performance of gradient descent with momentum can be competitive with
state of the art algorithms, while obtaining better generalization. A particularly interesting
albeit involved approach has been to use deep learning methods themselves to determine the
learning rate during training [Xu et al., 2017, Bello et al., 2017, Andrychowicz et al., 2016]. One
approach has been to use a controller recurrent neural network to learn the appropriate update
rule for the main network by assembling ingredients from a database of existing update rules
[Bello et al., 2017]. Another approach employs reinforcement learning by using the combination
of an actor and critic network to learn and determine the learning rate schedule for the main
network. This particular method trains 3 networks simultaneously [Xu et al., 2017]. Such
approaches can become computationally expensive, while trying to fill the void left by the
absence of mainstream adoption of line searches.
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On an exploratory note, it would be interesting to consider the effectiveness of Lipschitz
global optimization in the context of neural network training [Strongin et al., 2000]. This field has
been predominantly applied in engineering applications, where models have high dimensionality
and are expensive to evaluate [Kvasov et al., 2012]. Recent interest has even extended these
methods to stochastic functions [Aribi et al., 2019], which might be of interest to neural network
training. It is notable, that these methods require the Lipschitz constant to be determined,
which can be achieved using a variety of means [Strongin et al., 2000, Gaviano and Lera, 2008].
However, in this regard, the SNN-GPP as used in GOLS, has the advantage that it does not
strongly depend on the magnitude of the gradient, only its sign along a search direction.

5.3 Our contribution

Typical learning rate schedules generate values that exponentially decay from 0.1 to 10−6 [Senior
et al., 2013], while the magnitudes of the aforementioned cyclical learning rate schedules vary
over 3 or 4 orders of magnitude [Smith, 2015, Loshchilov and Hutter, 2016]. Such schedules can
have up to 6 different parameters which need to be set. The Gradient-Only Line Search that is
Inexact (GOLS-I) [Kafka and Wilke, 2019b] is able to determine step sizes within a maximum
range of 15 orders of magnitude and has no tunable hyperparameters. This allows the line search
to traverse various loss function features, such as flat planes as well as steep slopes.

We recast various popular training algorithms, namely (Stochastic) Gradient Descent (SGD)
[Robbins and Monro, 1951], SGD with momentum (SGDM) [Rumelhart et al., 1988], Nesterov’s
Accelerated Gradient (NAG) [Nesterov, 1983], Adagrad [Duchi et al., 2011], Adadelta [Zeiler,
2012] and Adam [Kingma and Ba, 2015] to be compatible with line searches. Subsequently,
we employ GOLS-I to determine the learning rates for these algorithms to explore whether the
line search can adapt step sizes according to the characteristics of a given algorithm. Every
algorithm contributes a search direction, for which GOLS-I is then tasked with determining
a step size. This presents two questions: 1) Is GOLS-I able to adapt step sizes to different
algorithms during training in the context of mini-batch sub-sampled loss functions? And 2)
Which directions perform best with a line search, see Figure 5.2. Arguably, none of the selected
algorithms (apart from perhaps SGD as a derivative of gradient descent) were designed to be
used with a line search, rendering the answer to the latter question non-self-evident.

Figure 5.2: Not all directions are created equal. Different assumptions and paradigms result in
a plethora of optimization strategies with varying search direction trajectories. Step sizes along
these directions can be determined using line searches.

In this chapter we first explore the interaction between GOLS-I and the various algorithms
by training 22 different foundational classification problems with both shallow and deep network
architectures. Subsequently we implement GOLS-I in PyTorch and apply it to the CIFAR10
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dataset with the ResNet18 architecture to demonstrate how GOLS-I interacts with different
algorithms on a larger problem.

5.4 A summary of gradient-only line search concepts

Deep learning loss functions are predominantly formulated as

L(x) =
1

M

M∑
b=1

`(x; tb), (5.1)

where x ∈ Rp is a vector of network weights, {t1, . . . , tM} is a training dataset with M samples,
and `(x; t) is the loss formulation used to evaluate the performance of weights x with regards
to training dataset sample t. Backpropagation [Werbos, 1994] is then used to compute the exact
gradient w.r.t. x such that:

∇L(x) =
1

M

M∑
b=1

∇`(x; tb). (5.2)

In the case where the full batch of training data is used to evaluate L(x) and ∇L(x), the
resulting smoothness and continuity is only dictated by the smoothness and continuity properties
of the activation functions, see Figures 5.1 and 5.3 where we construct loss functions using the
classic Iris [Fisher, 1936] dataset with a simple feed forward neural network with 10 hidden
nodes.

A line search can then be conducted along a search direction dn within the loss function, by
constructing one-dimensional function Fn as a function of step size α as follows:

Fn(α) = f(xn(α)) = L(xn + αdn), (5.3)

with corresponding directional derivative

F ′n =
dFn(α)

dα
= dTn · ∇L(xn + αdn), (5.4)

where n denotes the iteration of a particular algorithm, currently located at xn. Fn is a univariate
search of the multi-dimensional loss function along the search direction dn, where Fn denotes
a specific form of univariate search, where the loss function evaluated is L(x). An example
is shown on the top of the middle column of Figure 5.3. A line search then seeks to find the
optimum along the search direction of the loss function, see Figure 5.2, which may require a
number of function evaluations. We therefore denote step size as αn,In , where n remains the
iteration number, and In is the number of function evaluations required to determine the step
size for iteration n. This also generalizes to fixed step sizes (learning rates), where αn,In is
selected a priori and In = 1.

Minimization line searches have been shown to be effective in smooth, continuous func-
tions [Arora, 2011]. However, modern datasets coupled with large neural network architectures
[Krizhevsky et al., 2012] exceed the available memory resources of computational nodes or graph-
ical processing units (GPUs). Consequently, mini-batch sub-sampling (MBSS) is implemented,
where only a fraction of the available training data B ⊂ {1, . . . ,M} of size |B| � M is used to
construct an approximate loss:

L(x) =
1

|B|
∑
b∈B

`(x; tb), (5.5)

and corresponding approximate gradient

g(x) =
1

|B|
∑
b∈B
∇`(x; tb). (5.6)
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These approximations then replace L(x) and ∇L(x) for line searches in Equations (5.3)
and (5.4) respectively. Both approximations have respective expectations E[L(x)] = L(x) and
E[g(x)] = ∇L(x) [Tong and Liu, 2005]. However, individual evaluations of L(x) and g(x)
may vary significantly form the expectation, resulting in a sampling bias for each individual
mini-batch, and variance between subsequent mini-batches.

Figure 5.3: Summary of loss surfaces, static and dynamic mini-batch sub-sampling (MBSS) and
the performance of minima vs SNN-GPPs.

In the field of adaptive sub-sampling methods, the emphasis lies on determining |B| or sample
constituents of B that result in desired characteristics of L(x). The aim might be to select B,
such that L(x) ≈ L(x), or to construct L(x) such that it on average presents descent directions
to the given algorithm [Friedlander and Schmidt, 2011, Bollapragada et al., 2017]. Since a
lot of computational effort goes into selecting B for estimation L(x), it is maintained over a
minimum duration of a line search at iteration, n, in a given algorithm, before B is resampled
[Byrd et al., 2011, 2012, Martens, 2010]. This approach is referred to as static MBSS, denoted
as L̄(x), which presents smooth, but biased estimates to the optimization algorithm. A mini-
batch sampled using static MBSS is denoted as Bn [Kafka and Wilke, 2019b]. We give a specific
example in Figure 5.3, where we divide the training data into four mini-batches, the content of
which remain constant, resulting in four different expressions of L̄(x) and ḡ(x). Corresponding
line searches would be denoted F̄n with derivative F̄ ′n. This approach allows minimization line
searches to be used within given optimization algorithms. However, in our example a line search
will find one of four different minimizers, depending on which mini-batch is selected.

An alternative sampling strategy is dynamic MBSS, in which a new sub-sample of training
data is selected at every evaluation, i, of L(x), subsequently denoted as L̃(x) and g̃(x) with line
searches F̃n and F̃ ′n. Since mini-batches are resampled at every function evaluation, i, they are
correspondingly denoted as Bn,i. In the example shown in Figure 5.3 (last row), we uniformly
sample one of the four mini-batches (previously constructed for the static MBSS example)
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for each function evaluation. The resulting loss function estimates are discontinuous due to
continually changing mini-batches, which breaks the continuity of information between function
evaluations. These discontinuities make encountering a critical point, F̃ ′n(α∗) = 0 [Arora, 2011],
unlikely, even when F ′n(α∗) = 0 for the full-batch loss. Additionally, minimization line searches
often wrongly identify discontinuities as local minima [Wilson and Martinez, 2003, Schraudolph
and Graepel, 2003, Schraudolph et al., 2007], motivating the aforementioned shift to subgradient
methods [Schraudolph, 1999, Boyd et al., 2003, Smith, 2015]. Implementing dynamic MBSS
has also been referred to as approximate optimization [Bottou, 2010], having the benefit of
exposing algorithms to larger amounts of information, due to continuous re-sampling of data.
Line searches were first introduced into dynamic MBSS loss functions by Mahsereci and Hennig
[2017] and are subsequently receiving increased attention [Mahsereci and Hennig, 2017, Wills
and Schön, 2018, 2019, Kafka and Wilke, 2019a, Kafka and Wilke, 2019].

The GOLS-I method introduced by Kafka and Wilke [2019b] employs the stochastic gradient-
only equivalent to the optimality criterion in the form of the Stochastic Non-Negative Associative
Gradient Projection Point (SNN-GPP) [Kafka and Wilke, 2019b], which forms part of gradient-
only optimization [Wilke et al., 2013, Snyman and Wilke, 2018]. The work done by Kafka and
Wilke [2019b] presents proofs that GOLS-I converges within a bounded ball, Bε, where the
ball bounds all possible SNN-GPPs of the surrounding neighbourhood. The SNN-GPP itself is
defined as follows:

Definition 5.4.1. SNN-GPP: A stochastic non-negative associated gradient projection point
(SNN-GPP) is defined as any point, xsnngpp, for which there exists ru > 0 such that

∇f(xsnngpp + λu)u ≥ 0, ∀ u ∈ {y ∈ Rp | ‖y‖2 = 1} , ∀ λ ∈ (0, ru] (5.7)

with non-zero probability.

Along a search direction, an SNN-GPP manifests as a directional derivative sign change from
negative to positive. This definition makes allowance for the case where F̃n(α∗) = 0 may not
exist at α∗, while also generalizing to the case where F(α∗) = 0 or F̄ (α) = 0. In the latter two
continuous cases, the probability of encountering an SNN-GPP is 1. We numerically demonstrate
this assertion by estimating the probability density functions of encountering minima and SNN-
GPPs along a search direction in the third column of Figure 5.3. We conduct 100 line searches
with 100 increments of fixed step size αn,In = 0.0007 along the steepest descent direction for
the Iris problem. We capture the frequency and location of minima and SNN-GPPs along the
search direction and divide the frequency by the total number of occurrence to estimate the
probability density function of minima and SNN-GPPs occurring. For continuous functions,
all the probability of encountering a minimum or SNN-GPP is isolated to at α∗ = αsnngpp.
The same applies for static MBSS, with the only difference being that each mini-batch has an
optimum at a different location. We call the spatial range of these separate mini-batch optima
Bε, which essentially defines a 1-D ball.

In the case of dynamic MBSS, the sampling induced discontinuities cause local minima
to occur uniformly across the sampled domain. Importantly, the same does not apply to SNN-
GPPs, which remain bounded within the range Bε. This bound depends on the variance of F̃ ′n(α)
across mini-batches sampled using dynamic MBSS. In our foundational example, the range of
Bε has defined edges, as there are only 4 mini-batches, with distinct locations of SNN-GPPs
between the step sizes α ∈ [0.025, 0.04]. Outside of Bε, the probability of encountering a sign
change is zero for the given search direction, regardless of the order in which the mini-batches
are selected. However, within Bε sign changes can occur at varying probabilities, depending on
how mini-batches are selected. An SNN-GPP will only be encountered when a previous mini-
batch results in a negative directional derivative, and the next results in a positive directional
derivative. This can only occur within the range of the first and last mini-batch’s sign change
along a search direction.

However, unlike in our foundational example, most practical implementations of dynamic
MBSS in neural network training uniformly sample the content of mini-batches, Bn,i, directly
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from the training set. In Figure 5.4 we sample Bn,i with different batch sizes, ranging from
10 samples to the full selected training set of 76 samples. The plots shown are the result of
conducting 500 runs over αn,In ∈ {0, 0.002, 0.004, . . . , 0.2} and estimating the PDFs of locating
local minima and SNN-GPPs along the steepest descent direction as obtained from the full-batch
sampled loss, d = −∇L(xn) at fixed starting point xn. However, here we show the distributions
in the log domain for clearer comparison. For line search methods, a tightly bound distribution is
desired, as it indicates the location of an optimum with high reliability. Here, the distribution of
SNN-GPPs approximates a Gaussian form, centred around the true optimum and with increasing
variance as |Bn,i| is reduced. Recent work suggests that the variance in sampled gradients is
representative of α-distributions with α < 2 [Simsekli et al., 2019], implying that the tails of the
distributions are longer than those of Gaussians. The tails of α-distributions, like Gaussians,
eventually tend towards 0, meaning that the likelihood of encountering an SNN-GPP diminishes
far from the true optimum. However, this relationship does not hold for encountering local
minima in dynamically MBSS losses, as shown in Figure 5.4(a). The distribution of candidate
minimizers in Figure 5.4(a) approximates a uniform distribution over the sampled domain, and
is largely independent of mini-batch size, which is consistent with our foundational problem in
Figure 5.3. It is only for the full-batch loss functions, that the location of the local minimum is
bounded.

(a) Function values (b) Directional derivatives

Figure 5.4: Comparison between the estimated PDFs of (a) local minima and (b) SNN-GPPs
along the steepest descent direction using uniformly sampled mini-batches, for the Iris dataset
with mini-batch sizes ranging from |Bn,i| = 10 to M = 76 (subscripts omitted for compactness).
The x-axis indicates the step size α in 100 increments along d = −∇L(x) from a fixed starting
point. The y-axis shows the log of the probability of encountering a local minimum or SNN-GPP
along the search direction. SNN-GPPs are more localized around the true optimum at ≈ 0.076
with in accuracy proportionate to sample size. Local minima are approximately uniformly
distributed about the sampled domain for all sample sizes but M .

This experiment demonstrates the benefit of searching for SNN-GPPs when implementing
dynamic MBSS rather than function minimizers. The location of SNN-GPPs is bounded, mean-
ing that an estimate of the location of the true, full-batch minimum can be obtained. GOLS-I
employs an inexact line search approach, which interacts well with the approximate nature of
SNN-GPPs, while also reducing the computational cost of the method compared to exact line
searches [Kafka and Wilke, 2019b]. The availability of GOLS-I to determine step sizes for dy-
namic MBSS loss functions leads to the question as to how the method interacts with existing
popular neural network training algorithms.
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5.5 Training algorithms and constructing search directions

Recall the algorithms selected for this investigation, namely: (Stochastic) Gradient Descent
(SGD)[Morse and Feshbach, 1953], SGD with momentum (SGDM) [Rumelhart et al., 1988],
Nesterov’s Accelerated Gradient (NAG) [Nesterov, 1983], Adagrad [Duchi et al., 2011], Adadelta
[Zeiler, 2012] and Adam [Kingma and Ba, 2015].

These algorithms can be divided into two groups:

1. Coupled directions algorithm class: SGD, SGDM and NAG, in which learning rates operate
only on the length scale of search directions. The ratios between components in the
search direction remain fixed, while the learning rate modifies the magnitude of the search
direction vector. And,

2. Uncoupled directions algorithm class: Adagrad, Adadelta and Adam. These algorithms
incorporate separate learning rate schedules along each individual component of the search
direction, based on the respective component’s historical gradient information. This results
in the search directions that vary significantly in both magnitude and orientation from
historical gradient vectors.

The coupled class encompasses SGD as well as alterations to its formulation to alleviate un-
wanted behaviour. The addition of momentum is an attempt to allow SGD the generation of mild
ascent directions in order to overcome small local minima. It also alleviates the consecutively
orthogonal direction behaviour of gradient descent [Arora, 2011] that would also apply to SGD,
instead constructing directions that follow the contours of the loss function more closely. The
NAG algorithm is a further improvement of SGD with momentum, incorporating a pre-emptive
update step.

In contrast, the uncoupled class of algorithms applies a learning rate schedule along every
component of the weight vector, which is dependent on the history of gradient magnitudes in
each respective dimension. These algorithms have shown to be effective in generating search
directions for the non-convex loss functions of deep learning tasks. Each algorithm in this group
proposes a different schedule. Adagrad proposes an inverse relationship of the step size to the
sum of squared gradient components. The result of this is that as the sum increases, the step
size decreases, which can be problematic during training runs of many iterations, as updates
along dimensions with large gradient components quickly tend to zero. Adadelta and Adam are
two different formulations that seek to rectify this behaviour.

Importantly, all of the mentioned algorithms (except Adadelta) still have a learning rate
related hyperparameter that needs to be determined. To integrate line searches into these
algorithms, consider the formulation of the standard update step:

xn+1 = xn + αn,Inun, (5.8)

with the unit vector u = dn
‖dn‖ dictating the unit search direction along which an update is to

be made, while αn,In‖un‖ determines the distance or step along the direction to be taken. This
framework uncouples the direction of the update step, un from its magnitude, αn,In , which can
be useful for interpretation of the problem in the context of a line search. However, it is the
unscaled direction dn that is given by most learning algorithms. Evaluating the norm thereof
is unnecessary, since a line search can compensate for the magnitude of dn directly. As we are
predominantly interested in determining the step size required for the given direction, we pose
all given algorithms in the form:

xn+1 = xn + αn,Indn. (5.9)

Although some of the algorithms considered in this investigation were not originally proposed
within this framework, we have taken the liberty to cast them into the form of Equation (5.9), as
given in Appendix A.4. Since we are able to determine αn,In for the various algorithms using a
number of different line search methods [Kafka and Wilke, 2019b], we augment the name of the
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training algorithm with the prefix ”LS-” in Appendix A.4 to accommodate the name of the line
search. Therefore, as an example, implementing GOLS-I to determine αn,In for LS-SGD is called
”GOLS-I SGD”. Note, that the original formulations of these algorithm can be recovered by
using fixed step sizes for αn,In . This concludes the ingredients required to train neural networks
using gradient-only line searches with the search directions given by the selected algorithms.

5.6 Numerical studies

We consider the 7 chosen training algorithms combined with 23 different datasets, and in total 3
different types of network architecture, namely single hidden layer feed forward networks, deep
feed forward networks and the ResNet18 convolutional network architecture. Dynamic MBSS
is implemented for all investigations conducted in this chapter. We first consider performances
of individual datasets and training algorithms, exploring the interaction between GOLS-I on
a variety of problems. We compare GOLS-I to 3 fixed step sizes ranging over 3 orders of
magnitude. Importantly, the fixed step sizes are manually chosen to demonstrate a range of
training performances that are slow, efficient and unstable respectively. Conversely, GOLS-I is
implemented without any user intervention and performance is compared to that of manually
chosen learning rates, while the computational cost of selecting appropriate fixed learning rates
is omitted in the comparison. Thereafter we explore the average performances of GOLS-I over
the pool of datasets for the various algorithms.

Although single hidden layer neural networks have fallen out of favour over deep neural
networks, they still offer significant research value to identify insight and isolate the essence
concepts. Subsequently, we extend the investigation to deep networks of up to 6 hidden layers
to demonstrate the robustness of GOLS-I in the context of the deep learning. Finally, we
implement GOLS-I for training the ResNet18 architecture with 4 Convolutional layers on the
well known CIFAR10 dataset.

5.6.1 Single hidden layer feedforward neural networks

We implement single hidden layer feedforward networks with the mean squared error (MSE) loss
[Prechelt, 1994] to 22 classification datasets. The datasets span from 1936 to 2016 with sizes that
vary from 150 to 70 000 observations. These are used to investigate the generality of combining
GOLS-I with different training algorithms on datasets with diverse characteristics. The details
of the chosen datasets and associated parameters with network architectures are summarized
in Table 5.2. The number of nodes in the hidden layer for every dataset were determined by
a combination of a proposed guideline [Yu, 1992] and a regression upper bound, discussed in
Appendix A.5.

The selected fixed step sizes are split into small, medium and large respectively, each ex-
perimentally determined by conducting a number of training runs over a all datasets. The
magnitudes were chosen such that the medium fixed step sizes would give the most competitive
performance, while the small steps would cause slow convergence and the large steps would
result in divergent behaviour. The range between small and large fixed step sizes were fixed
at 3 orders of magnitude, in order to highlight the sensitivity of these parameters, see Table
5.1. However, the learning rates for the MNIST problem were more sensitive than the rest,
such that the large fixed step was reduced to the point where the algorithms did not crash. We
initialize GOLS-I with its minimum step size, αmin = 1 · 10−8, in order to allow the line search
automatically adapt the step size to the given problem. This avoids incorporating bias into the
line search, which might suit a particular problem.

Once established, no adjustments were made to algorithms between application to different
datasets. All datasets were prepared according to well known guidelines set out by Prechelt
[1994] and divided into a training, test and validation dataset respectively by the ratios 2:1:1.
The training set is used to optimize the model, while we consciously split the remaining data
into validation and test datasets to show the generality of the training algorithms. Validation
datasets are typically used to govern stopping criteria or tune other hyperparameters, while
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LS-SGD, LS-NAG LS-SGDM, LS-Adadelta LS-Adagrad, LS-Adam

Small Fixed Step 1 0.1 0.01

Medium Fixed Step 10 1 0.1

Large Fixed Step 100 10 1

Table 5.1: Learning rate ranges as used for different optimization algorithms.

Dataset properties ANN properties

No. Dataset name Author Observations, M Inputs, D Classes, K Hidden nodes, H

1 Cancer1 Prechelt [1994] 699 9 2 8

2 Card1 Prechelt [1994] 690 51 2 5

3 Diabetes1 Prechelt [1994] 768 8 2 7

4 Gene1 Prechelt [1994] 3175 120 3 9

5 Glass1 Prechelt [1994] 214 9 6 5

6 Heartc1 Prechelt [1994] 920 35 2 3

7 Horse1 Prechelt [1994] 364 58 3 2

8 Mushroom1 Prechelt [1994] 8124 125 2 22

9 Soybean1 Prechelt [1994] 683 35 19 3

10 Thyroid1 Prechelt [1994] 7200 21 3 20

11 Abalone Nash et al. [1994] 4177 8 29 7

12 Iris Fisher [1936] 150 4 3 3

13 H.A.R. Anguita et al. [2012] 10299 561 6 7

14 Bankrupted Co. (yr. 1) Ziȩba et al. [2016] 7027 64 2 35

15 Defaulted Credit Cards Yeh and Lien [2009] 30000 24 2 23

16 Forests Johnson et al. [2012] 523 27 4 6

17 FT Clave Vurkaç [2011] 10800 16 4 15

18 Sensor-less Drive Paschke et al. [2013] 58509 48 11 47

19 Wilt Johnson et al. [2013] 4839 5 2 4

20 Biodegradable Compounds Mansouri et al. [2013] 1054 41 2 8

21 Simulation Failure Lucas et al. [2013] 540 20 2 8

22 MNIST Handwriting Lecun et al. [1998] 70000 784 10 30

Table 5.2: Properties of the datasets considered for the investigation with the corresponding
neural network architecture.

the test dataset is used to assess the final fitness of the network. Therefore, good correlation
between validation and test dataset performances is desired, such that calibration on the vali-
dation dataset results in network performance that transfers well to the test dataset. Though
we did not do any hyperparameter tuning, and our training runs were conducted by limiting
the number of iterations, we include both validation and test dataset loss evaluations in our
investigation to demonstrate that both validation and test datasets where large enough to fairly
represent generalization performance. This avoids selecting biased ”generalization” data sub-
sets, as most of the considered datasets do not have predetermined training, validation and test
dataset separations.

During training, the mini-batch sizes was kept constant at |Bn,i| = 32, where each batch was
uniformly selected with replacement for every evaluation of L̃(x) and g̃(x) across all datasets.
Training, validation and test dataset loss evaluations were averaged over 10 training runs of
3000 iterations each. Initial network configurations, x0, were randomly sampled from a uniform
distribution with range [−0.1, 0.1]. These experiments were conducted using Matlab [Mathworks,
2015].

GOLS-I adapting to different datasets using LS-SGD

Firstly, we consider the training performance of a single algorithm with the selected fixed step
sizes as well as GOLS-I. Hence we choose LS-SGD and train on the ”Forests” [Johnson et al.,
2012, Chevallier and Jakubowska, 2018], Sensor-less Drive” [Paschke et al., 2013, Wenkel, 2018]
and ”Simulation Failure” Lucas et al. [2013], Bischl et al. [2017] datasets. We show these par-
ticular datasets, as they are representative examples of performances observed over all datasets.
The average training and test losses as well as the step sizes over 10 training runs are shown
in Figure 5.5. The fixed step sizes represent the desired range, from slow to divergent training,
while the medium step size is the best performer of the fixed step sizes. Note that the perfor-
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mance of GOLS-I is competitive or superior to that of the medium step size for the considered
problems. However, the step sizes determined by GOLS-I have different characteristics for each
example respectively.

(a) Forest dataset (b) Forest dataset (c) Forest dataset

(d) Simulation Failure dataset (e) Simulation Failure dataset (f) Simulation Failure dataset

(g) Sensor-less Drive dataset (h) Sensor-less Drive dataset (i) Sensor-less Drive dataset

Figure 5.5: LS-SGD employed with fixed step sizes and GOLS-I, as applied to (a)-(c) the
”Forests” [Johnson et al., 2012], (d)-(f) ”Sensor-less Drive” [Paschke et al., 2013] and (g)-(i)
”Simulation Failure” Lucas et al. [2013] datasets. GOLS-I successfully adapts step sizes accord-
ing to the characteristics of the problem.

In the case of the Forests dataset in Figure 5.5(a)-(c), GOLS-I’s determined a step sizes
closely approximate the medium fixed step. This was the most commonly observed trend, with
17 out of 22 datasets demonstrating step sizes close to that of the medium step, or starting at the
medium step size and slowly tending towards the larger step size as training progresses. Recall,
that the initial guess for the step size in the first iteration of GOLS-I is a very conservative
α0,0 = 10−8. The given results show that GOLS-I adapts the step size from its conservative
initial guess to the same magnitude as a manually chosen competitive fixed step size from the
first iteration.

There are other instances, where GOLS-I continues to grow step sizes until the upper limit
of allowed step sizes is reached. One out of 3 such cases is the Simulation Failure dataset in
Figure 5.5(d)-(f). The performance of GOLS-I is marginally superior to that of the medium
fixed step, while determining step sizes that are closer to the large fixed step in the beginning of
training. However, due to the adaptive nature of GOLS-I (possibly influenced by its ramping up
from a small initial guess), it does not diverge like the large fixed step. As training progresses for
this problem, and the algorithm approaches an optimum, the gradient magnitude diminishes,
which causes GOLS-I to increase the step sizes in search of an SNN-GPP. This is a consequence
of a decreasing gradient magnitude and the update step formulation proposed in Equation (5.9).
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The performance of GOLS-I for the Sensor-less Drive dataset in Figure 5.5 is particularly
interesting. Here, the step sizes determined by GOLS-I start close to the medium fixed step and
decrease gradually to the small step size. This occurred for 2 out of the 22 considered problems.
In this case, the training performance of GOLS-I is superior to both the medium and the small
step sizes. This offers confirmation that GOLS-I is capable of automatically adapting the step
size to the requirements of the problem. Conversely, it would be infeasible to pre-empt the shape
of the learning rate schedules, such as determined by GOLS-I, for each of the shown problems.

GOLS-I adapting to different algorithms of a fixed dataset

Subsequently, we restrict the investigation to the ”Forests” [Johnson et al., 2012] dataset, while
considering the LS-NAG, LS-Adadelta and LS-Adam algorithms with their respective fixed step
sizes and GOLS-I implementations. The training and test dataset losses with corresponding
step sizes are given in Figure 5.6. GOLS-I NAG performs similarly to the case considered for
the same dataset as applied to GOLS-I SGD, see Figure 5.5(a)-(c). This is the most common
case, where GOLS-I determines step sizes close to the medium fixed step during the early stages
of training, while tending towards the large fixed step towards the latter half. Here, the training
performance of GOLS-I is indistinguishable from that of the medium fixed step.

(a) LS-NAG (b) LS-NAG (c) LS-NAG

(d) LS-Adadelta (e) LS-Adadelta (f) LS-Adadelta

(g) LS-Adam (h) LS-Adam (i) LS-Adam

Figure 5.6: The ”Forests” [Johnson et al., 2012] problem as trained using (a)-(c) LS-NAG, (d)-(f)
LS-Adadelta and (g)-(i) LS-Adam with both GOLS-I and fixed step sizes. GOLS-I automatically
recovers step sizes close to medium fixed steps for the shown algorithms, while each algorithm
has different medium fixed step sizes, each an order of magnitude apart.

The interaction between GOLS-I and LS-Adadelta is noteworthy. Adadelta on its own does
not contain a learning rate parameter. However, we introduced the scalar modifier, αn,In = 1, to
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its formulation in order to explore the characteristics of its search directions. Unsurprisingly, LS-
Adadelta’s best performance with fixed step sizes is when αn,In = 1, i.e. recovering its original
formulation. However, the improvement in performance of GOLS-I Adadelta is significant: The
GOLS-I recovers average step sizes close to 1, while its performance is superior to that of fixed
step size 1 in both training and test losses. This implies that the small deviations from the
medium step sizes according to updates performed with GOLS-I improve the adaptation of
LS-Adadelta to the characteristics of the encountered loss surface.

GOLS-I Adam returns similar performance characteristics to those of GOLS-I NAG, with the
step size increasing from the medium step size as training progresses. However, the medium fixed
step sizes for LS-NAG, LS-Adadelta and LS-Adam are all an order of magnitude apart at 10,
1 and 0.1 respectively. This means that GOLS-I is able to automatically adapt the determined
step size according to the characteristics of the training algorithm dictating the search direction,
while resulting in superior or competitive training performance.

Averaged comparison of algorithms over 22 datasets

Now that it has been established that GOLS-I fulfils its intended purpose for independent
datasets and algorithms, we consider the average performance of all 6 algorithms over the 22
considered problems in order to examine the generality of the method. The resulting averaged
training, validation and test dataset losses are shown in Figures 5.7 and 5.8. As demonstrated,
the fixed step sizes encompass the performance range from too slow, to divergent within 3 orders
of magnitude. For our implementation of LS-Adagrad, the largest fixed step does not diverge,
but rather results in worst generalization of the 3 step sizes.

For most algorithms with the use of GOLS-I, the average validation and test set losses show
that overfitting occurs after approximately 1000 iterations for the datasets considered in this
analysis. Importantly, the characteristics of the validation and test loss plots are comparable.
This means that the network designer can reliably use the behaviour of the validation dataset
to enforce a stopping criterion or tune other network parameters.

As demonstrated in Sections 5.6.1 and 5.6.1, the training loss for GOLS-I is mostly either
the best performer or competitive with the medium fixed step. The obvious outlier is LS-
SGDM, where GOLS-I performs worse than any fixed step. This is a result of LS-SGDM adding
momentum, which is a fixed fraction of the previous update after the line search has already
determined the step size. This forces the optimizer past minima and up ascent directions. For
this reason, LS-SGDM is ill-suited to be used with a line search such as GOLS-I. Conversely,
small, fixed step sizes result in update steps with incremental changes in the loss function,
which also translates to less aggressive input from the momentum term, allowing the algorithm
to more closely follow the contours of the loss function. The ascending behaviour of GOLS-
I SGDM can be addressed by reducing the parameter γm, shifting the algorithm’s behaviour
closer to LS-SGD. The adaptation to the momentum algorithm offered by LS-NAG is effective
in overcoming the ascending problem, resulting in performance comparable to LS-SGD for the
coupled directions class of algorithms.

In terms of the uncoupled class of algorithms, GOLS-I performed best with LS-Adagrad and
LS-Adadelta relative to fixed step sizes. GOLS-I Adagrad produced an average performance that
was superior to that of the medium fixed step, while GOLS-I Adadelta on average performed
similarly to the results explored in Section 5.6.1. As discussed, this is an indication that the
bottleneck for LS-Adadelta is not the search direction, but rather the step size along its search
direction. LS-Adam in this case is the outlier, with the smallest fixed step performing best as
training extends beyond approx 1000 iterations. This is due to LS-Adam’s formulation, which
includes a term that acts like momentum. However, this effect is investigated more clearly in
Section 5.6.2 considering deep networks.
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(a) LS-SGD (b) LS-SGD (c) LS-SGD

(d) LS-SGDM (e) LS-SGDM (f) LS-SGDM

(g) LS-NAG (h) LS-NAG (i) LS-NAG

Figure 5.7: The training, test and validation dataset errors for (a)-(c) LS-SGD, (d)-(f) LS-
SGD with momentum and (g)-(i) LS-NAG, averaged over all datasets for 10 different starting
points per analysis. The algorithms are implemented with different fixed step sizes and the
gradient-only based GOLS-I.

Average performance over all algorithms

We consider the average performance over all datasets and all algorithms in Figure 5.9. We do
this in order to highlight two aspects: 1) How GOLS-I generalizes over all considered dataset-
algorithm combinations and 2) How GOLS-I competes overall in terms of function evaluations
per iteration compared to fixed step sizes.

The results up to and including Figures 5.9(a)-(c) are given in terms of iterations, as the
emphasis is on the comparison of performance gained and step size determined per iteration
between GOLS-I and the fixed steps. Here GOLS-I is competitive with or superior to the
selected medium step size.

As a line search, GOLS-I performs a number of function evaluations per iteration. For the
purposes of this chapter, a function evaluation is considered to be an evaluation of g̃(x). A
constant step size uses only a single function evaluation per iteration. On average GOLS-I
performed between 1-4 function evaluations per iteration, depending on the algorithm it was
coupled to, as well as the characteristics of the loss functions during training. Thus to compare
the relative computational cost of GOLS-I compared to fixed step sizes, the average algorithm
performances of the constant step methods and GOLS-I are plotted in terms of function eval-
uations in Figures 5.9(d)-(f). Although GOLS-I is on average a factor of 2.5 more expensive
compared to a well chosen medium step size, the extra cost does not offset the benefit gained
by not requiring to search for an effective fixed step size.

117



(a) LS-Adagrad (b) LS-Adagrad (c) LS-Adagrad

(d) LS-Adadelta (e) LS-Adadelta (f) LS-Adadelta

(g) LS-Adam (h) LS-Adam (i) LS-Adam

Figure 5.8: The training, test and validation dataset errors for (a)-(c) LS-Adagrad, (d)-(f) LS-
Adadelta and (g)-(i) LS-Adam, averaged over all datasets for 10 different starting points per
analysis. The algorithms are implemented with different fixed step sizes and the gradient-only
based GOLS-I.

5.6.2 Multiple hidden layer neural networks

Next, we extend our analyses to include deep neural networks. We consider GOLS-I with LS-
SGD, LS-Adagrad and LS-Adam; each applied to neural networks with a increasing numbers
of hidden layers [Bengio, 2009], ranging from 1 to 6. All parameters remained consistent with
those of the analysis described in Section 5.6.1, with exception of the number of hidden layers.
This investigation omitted the larger datasets, namely: Simulation failures [Lucas et al., 2013],
Defaulted credit cards [Yeh and Lien, 2009], Sensor-less drive diagnosis [Paschke et al., 2013]
and MNIST [Lecun et al., 1998], which makes a total number of datasets 18 for this section.

Figures 5.10(a)-(c) show the average training, validation and test losses over 1 to 6 hidden
layers using GOLS-I SGD. Here, variance clouds are shown with shaded colours around the
mean, which is denoted by a solid line. Reasonable training performance can be achieved for
smaller networks of 1 to 3 hidden layers in 3000 iterations. Convergence is slow on networks
with 4 hidden layers, although some progress is made within 3000 iterations. However, there is
a severe decrease in performance for networks with 5 and 6 hidden layers, with higher variance
between training runs, compared to smaller networks. This indicates, that the diminishing
gradient problem [Hochreiter and Frasconi, 2009] begins to affect the optimization algorithm
considerably from this network depth onwards. This plot is representative not only for GOLS-I
SGD, but also for analyses not shown here concerning GOLS-I SGDM and the GOLS-I NAG
algorithms, indicating the difficulty present for the coupled directions class of algorithms for this
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Average training, test and validation dataset errors over all datasets and all algorithm
in terms of (a)-(c) iterations and (d)-(f) function evaluations. For GOLS-I, the number of
function evaluations per iteration is on average 2.5, whereas that of a fixed step size approach is
always 1. This is also a proxy for computational cost. Therefore, plotting in terms of function
evaluations corrects for this disparity. Though GOLS-I is a factor of 2.5 more expensive than
the medium fixed step on average, it remains competitive, while requiring no tuning.

problem. It is also to be noted, that this problem can be alleviated with more advanced network
initialization methods, as proposed by Glorot and Bengio [2010].

The corresponding results with the use of GOLS-I Adagrad are shown in Figures 5.10(d)-(f).
As a representative of the uncoupled directions class of algorithms, GOLS-I Adagrad performs
much more consistently across increasing numbers of hidden layers, exhibiting lower variance
between training runs. However, there is still a slight relative decrease in performance for deeper
networks. The test and validation error plots in Figures 5.10(e) and (f) show that validation and
test dataset losses increase for the smaller networks due to overfitting, while the larger networks
still progress towards a minimum, albeit at a slower convergence rate.

In the case of GOLS-I Adam, as shown in Figures 5.10(g)-(i), convergence occurs at a
slower rate than with GOLS-I Adagrad for deeper networks. It is here, that the momentum-like
term in LS-Adam hampers its performance with GOLS-I considerably. This term, m̂n+1 in
the numerator of its formulation, see Appendix A.4.6, is governed by the β1 parameter. By
default this parameter is set as β1 = 0.9. However, if this parameter is reduced to β1 = 0,
the momentum behaviour of LS-Adam is deactivated, while the denominator still contributes
to produce uncoupled, scaled directions. In Figures 5.10(j)-(l), the results of separate training
runs of GOLS-I Adam with β1 = 0 are shown. It is clear, that there is a vast improvement in
performance, with performance now being comparable to that of GOLS-I Adagrad.

This investigation has confirmed that generally, momentum in the context of GOLS-I should
be avoided. And secondly, that the element-wise scaling of the direction entries creates a total
direction which allows for greater perturbation in the deeper layers of the networks, promoting
faster training. The inclusion of GOLS-I into the considered training algorithm capitalizes on
their various search directions for efficient, deep network training, while requiring no parameter
tuning.
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(a) GOLS-I SGD (b) GOLS-I SGD (c) GOLS-I SGD

(d) GOLS-I Adagrad (e) GOLS-I Adagrad (f) GOLS-I Adagrad

(g) GOLS-I Adam (h) GOLS-I Adam (i) GOLS-I Adam

(j) GOLS-I Adam, β1 = 0 (k) GOLS-I Adam, β1 = 0 (l) GOLS-I Adam, β1 = 0

Figure 5.10: Training, test and validation dataset losses of (a)-(c) GOLS-I SGD, (d)-(f) GOLS-I
Adagrad, (g)-(i) GOLS-I Adam and (j)-(l) GOLS-I Adam with β1 = 0 for 1-6 of hidden layers.
The averages are taken over a subset of datasets with 10 separate training runs per dataset.

5.6.3 CIFAR10 with ResNet18

Now that GOLS-I has been demonstrated on a variety of foundational problems, we apply it to
an architecture more likely to be encountered in practice. We therefore consider the CIFAR10
classification dataset with the ResNet18 Convolutional Neural Network (CNN) architecture [He
et al., 2016]. The baseline PyTorch code for this problem was sourced from Liu [2018], which was
then modified to accommodate GOLS-I. This experiment makes use of the cross entropy loss for
`(x, tb), which is more popular for classification tasks, as it can be viewed as minimizing the KL
divergence between the distributions of the neural network, and the target outputs [Goodfellow
et al., 2016]. The algorithms considered with GOLS-I are LS-SGD, LBFGS [Nocedal, 1980] (as
used with a line search as ”LS-LBFGS”), LS-Adagrad and LS-Adam as adapted for PyTorch
1.0. Incorporating lessons learnt from Section 5.6.2, the momentum term in LS-Adam is turned
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off, i.e. β1 = 0. The batch size chosen for this problem was constant at 128 and training was
limited to 40, 000 iterations. In this case, Bn,i is randomly sampled from the pool of training
data without replacement, until all training observations have been sampled. Thereafter, the
training dataset is shuffled and the process repeats.

(a) Training classification accuracy (b) Step sizes

(c) Performance versus cost (d) Test classification accuracy

Figure 5.11: The (a) training classification accuracy, (b) step sizes, (c) training classification
accuracy in terms of function evaluations and (d) test classification accuracy for various training
algorithms as applied to the CIFAR10 dataset with the ResNet18 architecture. The step sizes
are determined by GOLS-I, while the explicit reference to ”GOLS-I” is omitted in the legends for
compactness. explicit The step sizes are different between algorithms, while their performances
per iteration are comparable. This indicates that step sizes and not search directions may be
the bottleneck for training this problem. However, the cost of each algorithm is not the same,
revealing GOLS-I LBFGS to be the worst performer in terms of computational efficiency.

(a) Training loss (b) Training loss (c) Step sizes

Figure 5.12: The (a) training loss in terms of iteration, (b) training loss in terms of function
evaluations, (c) step sizes for various training algorithms as applied to variational autoencoder
[Zuo and Chintala, 2018] training. The step sizes as determined by GOLS-I are again different
for every algorithm (with ”GOLS-I” omitted in the legends for compactness), while highlighting
the effectiveness of Hessian approximations generated by LS-LBFGS.

The resulting training and test classification accuracy, step sizes and training classification
in terms of function evaluations are shown in Figure 5.11. The performances of GOLS-I SGD,
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GOLS-I Adagrad and GOLS-I Adam are almost indistinguishable in training, while marginally
outperforming GOLS-I LBFGS. This shows that for this problem, the quality of search directions
constructed by GOLS-I LBFGS are inferior to those of the remaining algorithms. The GOLS-I
LBFGS directions are generated based Hessian approximations, computed from the gradient
information at previous iterations. However, the combination of making use of dynamic MBSS
as well as GOLS-I being an inexact line search, reduces the quality of the hessian approximation
and can result in the generation of ascent directions after a number of iterations. In such cases
GOLS-I compensates by taking the minimum step size in that direction, resulting in the high
variance in step sizes we observe in Figure 5.11(b). This is also confirmed by the relatively noisy
training classification errors of GOLS-I LBFGS compared to the remaining algorithms.

We capture the number of function evaluations performed for each iteration and determine
the average number of function evaluations per iteration during training, as summarized in Ta-
ble 5.3. This shows, that GOLS-I LBFGS is on average 77% more expensive in the number of
function evaluations performed per iteration than the remaining algorithms. To compare per-
formance versus computational cost between the algorithms, we plot the training classification
accuracy in terms of function evaluations in Figure 5.11(c). This plot highlights, that the search
directions constructed by GOLS-I LBFGS do not offset the cost of their construction for this
problem. However, given that this is to our knowledge the first GOLS-I LBFGS formulation
that incorporates dynamic MBSS line searches in the construction of its hessian approximations
without any further modifications, the offered performance is not to be discounted. Future
work might consider, whether modifications such as increasing batch size or altering parameters
in LS-LBFGS can improve its efficiency. However, the insignificant difference in performance
between LS-Adagrad, LS-Adam and LS-SGD indicates, that the training algorithms are rela-
tively insensitive to the inclusion of curvature information for this problem. Therefore, CIFAR10
with ResNet18 may not be a fitting platform to fully test the validity of LS-LBFGS’ Hessian
approximations in neural network training.

LS-LBFGS LS-SGD LS-Adagrad LS-Adam, β1 = 0

Average # function evaluations per update 2.35 1.26 1.28 1.28

Table 5.3: Algorithmic comparison in terms of cost. A constant number of iteration was used
to simplify the comparison of training performance. However, not all algorithms use the same
number of function evaluations per iteration with GOLS-I coupled to different algorithms. Each
function evaluation consists of calling only the gradient, g̃(x).

In the case of GOLS-I SGD, GOLS-I Adagrad and GOLS-I Adam, the step sizes quickly
stabilize around a particular order of magnitude during training. As observed in Section 5.6.1,
this magnitude differs for every algorithm, yet is automatically recovered by GOLS-I. The step
sizes remain relatively constant, with oscillations of up to half an order of magnitude. Consistent
step sizes significantly reduce the total cost of training. As training continues, these oscillations
can increase to 4 orders of magnitude. We postulate that this increasing trend occurs due to
mini-batch samples that contain observations, that are far from the decision boundary, resulting
in small gradients; and mini-batches that are close to the decision boundary, resulting in large
gradients. As GOLS-I adapts, it randomly alternates between these cases causes increasing the
step sizes for small gradients, and the converse for larger gradients. To compensating for this
behaviour, Smith et al. [2017] proposes gradually increasing the batch size during training.

LS-LBFGS LS-SGD LS-Adagrad LS-Adam, β1 = 0

Accuracy in % 92.11 92.97 92.63 92.58

Table 5.4: Maximum achieved test classification accuracy after 40,000 training iterations on the
CIFAR10 dataset with various training algorithms in combination with GOLS-I.

All algorithms considered in this investigation trained the model to a test classification
accuracy of above 90%, which is evident from the plateau in test classification, see Figure 5.11(d).
Although the search directions vary in formulation for different algorithms, the outcome is
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comparable with the use of GOLS-I to determine step sizes. The maximum test classification
accuracy achieved by each algorithm is shown in Table 5.4. This investigation demonstrated, that
GOLS-I is also effective in larger, practical problems. Provided that no momentum terms are
present in the algorithms, vastly different algorithms can have comparable training performance
with the use of GOLS-I. This is in contrast to an investigation by Mukkamala and Hein [2017],
which used a priori selected learning rates and learning rate schedules to solve the same problem.
The authors’ study showed a significant variance in training error between different learning
rate schedules; and reported a best test classification accuracy of 86% after the equivalent of
156, 000 function evaluations. An equivalent result was achieved in our investigation after±7, 000
function evaluations for GOLS-I SGD, GOLS-I Adagrad and GOLS-I Adam. Test classification
accuracies achieved in our investigation are consistent with other studies [He et al., 2016, Huang
et al., 2018], which implement manually tuned optimizers. He et al. [2016] make use of LS-
SGDM with a αn,In = 0.1, which is reduced by an order of magnitude at a priori determined
intervals, for a total of 64,000 training iterations with a mini-batch size of |Bn,i| = 128, resulting
in a test error of around 91%. Huang et al. [2018] employ LS-Adam with αn,In = 0.01, using
a larger mini-batch size of |Bn,i| = 512 to achieve a test classification accuracy of 93.52%. We
achieve an average test classification error of 92.6% over GOLS-I SGD, GOLS-I LBFGS, GOLS-I
Adagrad and GOLS-I Adam (β1 = 0) with a mini-batch size of |Bn,i| = 128, confirming that
GOLS-I determined the step sizes of selected algorithms effectively, without requiring any prior
parameter tuning.

5.7 Conclusion

This chapter demonstrated that stochastic gradient-only line searches that are inexact (GOLS-I)
allow for a generalized strategy to determine the learning rates of different training algorithms
as opposed to conducting extensive hyper-parameter tuning studies. We considered 23 datasets
with sizes varying between 150 and 70 000 observations, input dimensions ranging between 4
and 3072 and output dimensions between 2 and 29. Network architectures considered were feed
forward networks with 1 to 6 hidden layers of varying sizes and a convolutional architecture
with residual connections. In addition a total of seven training algorithms namely: Gradient
Descent, Gradient Descent with momentum, Nesterov’s Accelerated Gradient Descent, Adagrad,
Adadelta, Adam and LBFGS were considered. Our investigations have shown, that algorithms
with momentum terms do not perform well with GOLS-I. However, if it is possible to remove
the momentum component from the algorithm, performance with GOLS-I drastically improves,
which was demonstrated on both shallow and deep feedforward neural networks. We also showed
that without any parameter tuning, the performance of GOLS-I with LS-SGD, LS-BFGS, LS-
Adagrad, and LS-Adam is competitive with other studies, which implement manually selected
learning rate schedules.

The use of GOLS-I avoids the need for manual parameter tuning or computationally expen-
sive global parameter optimization approaches to determine an effective average fixed learning
rate or explore learning rate schedule parameters. Gradient-only line search strategies on aver-
age require more than one gradient evaluation per iteration, making them more expensive than
fixed step size approaches per iteration. However, GOLS-I remains to our knowledge most effec-
tive adaptive learning rate optimization method to date. Additionally, our investigations have
shown, that incorporating GOLS-I into the LBFGS algorithm shows promise for future improve-
ments. This re-opens questions concerning the feasibility of conjugate gradient or Quasi-Newton
methods in stochastic environments such as neural network training.
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Chapter 6

The compatibility of Gradient-only
line searches with various activation
functions

Gradient-Only Line Searches (GOLS) can be used to determine step sizes in the discontinuous
loss functions of dynamic mini-batch sub-sampled neural network training. Step sizes in GOLS
are determined by localizing Stochastic Non-Negative Associated Gradient Projection Points
(SNN-GPPs) along a descent direction, which are identified by a sign change in the directional
derivative from negative to positive. Activation functions are a significant component of neu-
ral network architectures, as their smoothness and continuity characteristics directly effect the
gradient characteristics of the loss function. Therefore, it is of interest to investigate the rela-
tionship between activation functions and different neural network architectures in the context
of GOLS. We find that GOLS are robust for a range of activation functions, but sensitive to
the Rectified Linear Unit (ReLU) activation function in standard feedforward architectures.
The zero-derivative in ReLU’s negative input domain can lead to the gradient-vector becoming
sparse, which severely affects training. We show that implementing architectural features such
as batch normalization and skip connections can alleviate these difficulties and benefit training
with GOLS for all activation functions considered.

6.1 Introduction

The introduction of gradient-only line searches (GOLS) [Kafka and Wilke, 2019b] has allowed
learning rates to be automatically determined in the discontinuous loss functions of neural
networks training with dynamic mini-batch sub-sampling (MBSS). The discontinuous nature of
the dynamic MBSS loss is a direct result of successively sampling different mini-batches from
the training data at every function evaluation, introducing a sampling error [Kafka and Wilke,
2019b]. To determine step sizes, GOLS locates Stochastic Non-Negative Associated Gradient
Projection Points (SNN-GPPs), manifesting as sign changes from negative to positive in the
directional derivative along a descent direction. This allows GOLS to strike a balance between
the benefits of training using dynamic MBSS, such as 1) increasing the training algorithm’s
exposure to training data [Bottou, 2010] as well as 2) overcoming local minima [Saxe et al.,
2013, Dauphin et al., 2014, Goodfellow et al., 2015, Choromanska et al., 2015]; and the ability
to localize optima in discontinuous loss functions [Kafka and Wilke, 2019a]. This is in contrast
to minimization line searches [Arora, 2011], which find false local minima induced by sampling
error discontinuities. These have found to be uniformly spread along the descent direction,
rendering minimization line searches ineffective for determining representative step sizes [Kafka
and Wilke, 2019a,b].

Previous work has shown, that the Gradient-Only Line Search that is Inexact (GOLS-I) is ca-
pable of determining step sizes for training algorithms beyond stochastic gradient descent (SGD)
[Robbins and Monro, 1951], such as Adagrad [Duchi et al., 2011], which incorporates approxi-
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mate second order information [Kafka and Wilke, 2019b]. GOLS-I has also been demonstrated to
outperform probabilistic line searches [Mahsereci and Hennig, 2017], provided mini-batch sizes
are not too small (< 50 for investigated problems) [Kafka and Wilke, 2019]. The gradient-only
optimization paradigm has recently also shown promise in the construction of approximation
models to conduct line searches [Chae and Wilke, 2019].

Some of the most important factors governing the nature of the computed gradients are: 1)
The neural network architecture, 2) the activation functions used within the architecture, 3)
the loss function implemented, and 4) the mini-batch size used to evaluate the loss, to name a
few. In this chapter, we concentrate on the influence of activation functions (AFs) on training
performance of GOLS for different neural network architectures. Activation functions (AFs)
have a direct influence on how a neural network processes incoming data, and by extension,
dictate the nature of the gradients used in GOLS. We also consider the effect of architectural
features such as batch normalization [Ioffe and Szegedy, 2015] and skip connections [He et al.,
2016] on training architectures with different AFs using GOLS.

The AFs considered in this investigation can be split primarily into two categories, namely:

1. The saturation class [Xu et al., 2016]: Including Sigmoid [Han and Morag, 1995], Tanh
[Bergstra et al., 2009] and Softsign [Karlik, 2015]; and

2. The sparsity class: Including ReLU [Glorot and Bordes, 2011], leaky ReLU [Maas et al.,
2013] and ELU [Clevert et al., 2016].

(a) Saturation class function values (b) Saturation class derivatives

(c) Sparsity class function values (d) Sparsity class derivatives

Figure 6.1: (a,c) Function value and (b,d) derivatives of activation functions considered in
our investigations. These are grouped together into (a,b) saturation and (c,d) sparsity classes
respectively. The primary difference between saturation and sparsity classes are the derivatives
in the positive input domain. The saturation class is characterized by derivatives that tend
towards zero as input tends toward +∞. Conversely, the sparsity class, is characterized by unit
derivatives that spread over all of the positive input domain. This gives the sparsity class AFs
behaviour characteristics that approximate a ”switch”, being either ”on” or ”off”.

The respective function values and derivatives of both classes are shown in Figure 6.1 over an
input domain of [−5, 5]. The saturation class is predominantly characterized by derivatives that
tend to zero, as the inputs tend to ±∞. The function values begin either at 0 (as for Sigmoid)
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or -1 (Tanh and Softsign) have an upper limit of 1. Often, function values and derivatives of the
saturation class are smooth and continuous. The outlier in the saturation AFs chosen for this
survey is Softsign, which has a derivative that is continuous, but not smooth where the input is
0. The derivative characteristics of the Sigmoid AF are also notable among the saturation class
AFs. The maximum derivative value of Sigmoid is 0.25, which is a factor of 4 lower than those
of Tanh and Softsign with unit derivatives at the origin.

The original sparsity AF, ReLU, was introduced to recreate the sparseness and switching
behaviour observed in neuroscientific studies, in artificial neural networks [Glorot and Bordes,
2011]. ReLU is characterized by having an output of zero in the negative input domain, and
a linear output with unit gradient in the positive domain. This makes the function values of
ReLU continuous and non-smooth, while the derivative is step-wise discontinuous at input 0.
As with ReLU, the sparsity class is characterized by having linear outputs in the positive input
domain, while the derivatives approximate zero as the negative input domains tend to −∞.
However, the derivatives in the positive input domains are always 1, which is a critical difference
to the saturation class of AFs. The leaky ReLU AF relaxes the absolute sparsity of ReLU by
allowing a small constant derivative in the negative input domain. However, the non-smooth
function value and the discontinuous derivative properties of ReLU are maintained. The ELU
AF is a further modification that enforces smoothness in the function value and continuity in
the derivative. However, the derivative remains non-smooth. The formulations of leaky ReLU
and ELU are both claimed to improve training performance over ReLU [Clevert et al., 2016].

We consider the difference in loss function characteristics of the selected AFs for a sim-
ple neural network problem presented in Figure 6.2. The contours of the mean squared error
(MSE) loss function are depicted for a single hidden layer feedforward neural network with 10
hidden nodes, fitted to the Iris dataset [Fisher, 1936]. The plots are generated by taking steps
α{1} ∈ [−5,−4.5, . . . , 5] and α{2} ∈ [−5,−4.5, . . . , 5] along the two random perpendicular unit
directions, u1 and u2, as inspired by Li et al. [2017].

(a) Sigmoid (b) Tanh (c) Softsign

(d) ReLU (e) leaky ReLU (f) ELU

Figure 6.2: Contours of the mean squared error loss function along two random perpendicular
unit directions, u1 and u2, computed for a single hidden layer feedforward neural network using
different activation functions. The hidden layer consists of 10 hidden nodes and the architecture
is applied to the classic Iris dataset [Fisher, 1936].

The contours of the Sigmoid AF represent a smooth loss function, containing a single mini-
mum, where difference in function value is ±15 over the sampled domain. The use of the Tanh
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AF results in a larger range in function value of over ±120 and the emergence of an additional
local minimum. Although the loss function range of Softsign is between that of Sigmoid and
Tanh at ±60, in this case the two local minima drift further apart in the sampled domain. A
characteristic feature of the saturation class of AFs is, that the loss function contours are smooth.
Amongst the sparsity class of AFs, the ReLU AF retains the multi-modal nature of Tanh and
Softsign, but demonstrates abrupt changes in contour characteristics. The modification of ReLU
to include leaky gradients (leaky ReLU) softens these abrupt characteristics slightly, evidenced
by the contours around the local minimum at α{1} ≈ −2 and α{2} ≈ −2. However, ELU impacts
loss characteristics the most within the sparsity class, as it smooths out the contours of the loss
and brings the two local minima closer together. ELU also results in a larger range of function
value over the sampled domain, encompassing a change of ±300 compared to ±120 for ReLU
and leaky ReLU respectively.

It is clear, that the choice of AF can significantly influence loss function landscape character-
istics. By extension, these changes translate to the respective loss function gradients. Previous
studies have confirmed, that loss functions with higher curvature cause SNN-GPPs to be more
localized in space [Kafka and Wilke, 2019a]. Consequently, the aim is to investigate and quantify
the choice of AF with regards to the performance of GOLS in determining step sizes for dynamic
MBSS neural network training; and if it is adversely affected, what can be done to improve or
restore performance.

6.2 Connections: Gradient-only line searches and activation func-
tions

Consider neural network loss functions formulated as:

L(x) =
1

M

M∑
b=1

`(t̂b(x); tb), (6.1)

where x ∈ Rp denotes the vector of weights parameterizing the neural network, the training
dataset of M samples is given by {t1, . . . , tM}, and `(t̂b(x); tb) is the elemental loss evaluating
x (via neural network model prediction t̂b(x)) in terms of the training sample tb. Implementing
backpropagation [Werbos, 1994] allows for efficient evaluation of the analytical gradient of L(x)
with regards to x:

∇L(x) =
1

M

M∑
b=1

∇`(t̂b(x); tb). (6.2)

When L(x) and ∇L(x) are evaluated using the full training dataset of M samples, the
smoothness and continuity characteristics of both L(x) and ∇L(x) are subject only to the
smoothness and continuity characteristics of the AFs used in the neural network that constructs
t̂b(x).

In order to conduct neural network training, the loss function in Equation (6.1) is minimized.
Consider the standard gradient-descent update: xn+1 = xn − α∇L(xn)[Arora, 2011]. An itera-
tion, n, is performed when the parameters, xn, are updated to a new state, xn+1. To determine
step size, α, line searches are performed at every iteration, n, of the training algorithm in pursuit
of a good minimum. Thus an iteration, n, encompasses exactly one line search. Line searches
are conducted by finding the optimum of a univariate function, Fn(α), constructed from current
solution, xn, along a search direction, dn. If full-batch sampling is implemented in univariate
function Fn(α), we define:

Fn(α) = f(xn(α)) = L(xn + αdn), (6.3)

with corresponding directional derivative

F ′n(α) =
dFn(α)

dα
= dTn · ∇L(xn + αdn). (6.4)
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Figures 6.3(a) and (b) show examples of Fn(α) and corresponding directional derivative
F ′n(α) for different AFs. For compactness, the explicit dependency on variables such as α
is dropped in further discussions, unless specifically required. In Figure 6.3, Fn and F ′n are
constructed along the normalized search direction dn = u1+u2

‖u1+u2‖2 in our illustrative example
introduced in Section 6.1. Note, how all instances of Fn are continuous. This means that
minimization line searches [Arora, 2011] can be used to determine step sizes for training in full-
batch sampled loss functions. The minimizer of Fn, namely α∗, subsequently becomes the step
size for iteration n, i.e. αn,In = α∗, where In is the number of function evaluations required
during the line search to find the optimum at iteration n. This notation can also be used to
describe fixed step sizes. In such cases, αn,In is a predetermined constant value over every
iteration, and In = 1.

Figure 6.3: Univariate functions and directional derivatives of (a) Fn and (b) F ′n, using full-
batch sampling, and (c) F̃n and (d) F̃ ′n, using dynamic mini-batch sub-sampling with a selection
of activation functions.

However, modern datasets and corresponding network architectures have memory require-
ments that exceed current computational resources [Krizhevsky et al., 2012]. Therefore, only
a fraction of the training data, B ⊂ {1, . . . ,M} with |B| � M , is loaded into memory at a
given time. This is referred to as mini-batch sub-sampling (MBSS). Omitting training data to
construct mini-batches invariably results in a sampling error associated with the MBSS loss,
compared to the full-batch sampled loss. Some training approaches employ static MBSS, where
mini-batches are fixed for the minimum duration of a search direction, dn [Friedlander and
Schmidt, 2011, Bollapragada et al., 2017, Kungurtsev and Pevny, 2018, Kafka and Wilke, 2019b].
Alternatively, dynamic MBSS can be implemented, where a new mini-batch is resampled for ev-
ery evaluation, i, of the loss function. It has been shown that dynamic MBSS, also referred to
as approximate optimization [Bottou, 2010], can benefit a given training algorithm by exposing
it to larger amounts of information per search direction [Kafka and Wilke, 2019b]. We therefore
define dynamic MBSS approximations of L(x) and ∇L(x) respectively, as:
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L̃(x) =
1

|Bn,i|
∑
b∈Bn,i

`(t̂b(x); tb), (6.5)

and

g̃(x) =
1

|Bn,i|
∑
b∈Bn,i

∇`(t̂b(x); tb). (6.6)

Note, that the mini-batch, Bn,i, sampled for an instance of L̃(x) and g̃(x) is consistent
between the pair, while only at a new evaluation of pair L̃(x) and g̃(x) is Bn,i resampled
[Kafka and Wilke, 2019b]. However, the act of abruptly alternating between sampling errors
associated different mini-batches Bn,i, interrupts the smoothness and continuity characteristics
of the loss function, irrespective of the choice of AF used in the neural network architecture.
This results in point-wise discontinuous loss, L̃(x), and gradient, g̃(x), functions. Although
E[L̃(x)] = L(x) and E[g̃(x)] = ∇L(x) [Tong and Liu, 2005], the probability of encountering
critical points, g̃(x∗) = 0̄, is infeasibly low in dynamic MBSS loss functions. Additionally, the
point-wise discontinuities between consecutive evaluations of L̃(x) result in the emergence of
spurious candidate local minima [Wilson and Martinez, 2003, Schraudolph and Graepel, 2003,
Schraudolph et al., 2007], which have been shown to be approximately uniformly distributed
over the loss landscape [Kafka and Wilke, 2019a].

By substituting L̃(x) and g̃(x) into Equations (6.3) and (6.4) respectively, we obtain dynamic
MBSS univariate function F̃n(α) and corresponding directional derivative F̃ ′n(α). Consider Fig-
ures 6.3(c) and (d) for a range of AFs. Note, how sampling Bn,i uniformly from the full training
dataset in Figure 6.3(c), results in local minima all along the search direction. Although di-
rectional derivatives Figure 6.3(d) get close to zero, none are a critical point, i.e. F̃ ′n(α∗) 6= 0.
This is best illustrated by the first local minimum along the search direction for ReLU. Using
full-batch sampling, a clear local minimum, Fn(α∗), can be observed in Figure 6.3(a)(ReLU)
with corresponding critical point, F ′n(α∗) = 0, in Figure 6.3(b)(ReLU). Both are indicated by
the first red circle from left to right along Fn and F ′n respectively. Using dynamic MBSS in Fig-
ures 6.3(c)(ReLU) and (d)(ReLU), none of the directional derivatives are critical points, F̃ ′n 6= 0,
and local minima are located all along F̃n, illustrated by small red points.

The discontinuities in F̃n make minimization ineffective in determining step sizes in dynamic
MBSS loss functions [Kafka and Wilke, 2019b]. Historically, this has led to the popularity of sub-
gradient methods for neural network training, using a priori determined step sizes.[Schraudolph,
1999, Boyd et al., 2003, Smith, 2015]. Line searches were first introduced into dynamic MBSS
loss functions by Mahsereci and Hennig [2017], determining step sizes by using probabilistic
surrogates along F̃n to estimate the location of optima. An alternative approach is the use
of Gradient-Only Line Searches (GOLS) [Kafka and Wilke, 2019b, Kafka and Wilke, 2019],
which employ an extension of the gradient-only optimality criterion [Wilke et al., 2013, Snyman
and Wilke, 2018], namely the Stochastic Non-Negative Associative Gradient Projection Point
(SNN-GPP) [Kafka and Wilke, 2019b], given as follows:

Definition 6.2.1. SNN-GPP: A stochastic non-negative associated gradient projection point
(SNN-GPP) is defined as any point, xsnngpp, for which there exists ru > 0 such that

∇f(xsnngpp + λu)u ≥ 0, ∀ u ∈ {y ∈ Rp | ‖y‖2 = 1} , ∀ λ ∈ (0, ru], (6.7)

with non-zero probability. [Kafka and Wilke, 2019b]

Subsequently, a ball, Bε, exists that bounds all possible SNN-GPPs of a surrounding neigh-
bourhood, where each neighbourhood contains one true optimum:

Definition 6.2.2. Bε: Consider a dynamic mini-batch sub-sampled loss function L̃(x), of a
continuous, smooth and convex full-batch loss function L(x), such that each sampled mini-batch
with associated L(x) that is used to evaluate L̃(x) has the same smoothness, continuity and
convexity characteristics as L(x). Then there exists a ball,

Bε(x) = {x ∈ Rp : ‖x− x∗‖2 < ε, 0 < ε <∞, x 6= x∗}, (6.8)
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that contains all the stochastic non-negative gradient projection points (SNN-GPPs), where x∗

is the minimum of L(x). [Kafka and Wilke, 2019b]

Along any univariate function, Fn, an SNN-GPP manifests as a sign change in the directional
derivative from negative, F ′n < 0, to positive, F ′n > 0, along the descent direction. In the
deterministic, full-batch setting, Fn, the SNN-GPP reduces to the critical point associated with
a local minimum, i.e. Fn(αsnngpp) = Fn(α∗), and ball Bε reduces to a single point. In the
stochastic setting of dynamic MBSS losses, ball Bε has a finite range that is dependent on the

variance of the directional derivative as well as the expected curvature δE[F̃ ′n]
δα in a neighbourhood

[Kafka and Wilke, 2019a].
The SNN-GPP and Bε can be visually illustrated in Figure 6.3(d). With the Sigmoid acti-

vation function, there is a single neighbourhood, with a large ball Bε containing all SNN-GPPs.
There exist numerous sign changes from negative to positive along the descent direction in Bε,
due to the variance of F̃ ′n and the slow change in F̃ ′n along α. In the case of Tanh, ReLU and
ELU, there are two neighbourhoods in which SNN-GPPs can be found. These neighbourhoods
are separated by a maximum, as demonstrated by F ′n. Note, how the SNN-GPP definition
ignores maxima, as it considers only sign changes from negative to positive along the descent
direction. The F̃ ′n plots of Tanh, ReLU and ELU demonstrate how the size of ball Bε decreases,
with a decrease in variance and an increase in expected curvature. These F̃ ′n plots also show,
that the characteristics of Bε can change in different neighbourhoods of the loss function, and
vary according to each AF.

It has been shown, that an exact GOLS will converge to an SNN-GPP within ball Bε [Kafka
and Wilke, 2019b]. Therefore, GOLS determine the step size at iteration n of a training algo-
rithm, by locating an SNN-GPP such that αn,In = αsnngpp. It has also been demonstrated, that
the Gradient-Only Line Search that is Inexact (GOLS-I) behaves in a manner consistent with
Lyapunov’s global stability theorem [Lyapunov, 1992, Kafka and Wilke, 2019]. The latter proof
was developed in the context of loss functions that are positive, coercive and AFs that result in
strict descent [Kafka and Wilke, 2019]. Subsequently, this chapter explores how GOLS perform
with a larger range of AFs; and consider the implications a given AF may have on a neural
network architecture for a given problem.

6.3 Contribution

In this chapter we empirically study the interaction between activation functions and neural
network architectures, when using Gradient-Only Line Searches (GOLS) to determine step sizes
for dynamic MBSS loss functions. In our investigations we consider six activation functions,
as introduced in Section 6.1, in the context of 1) shallow and deep feedforward classification
networks, and 2) architectural features such as batch normalization and skip connections. To
this end, we use 13 datasets to construct a range of training problems, where we primarily use
the Gradient-Only Line Search that is Inexact (GOLS-I) [Kafka and Wilke, 2019b] to determine
step sizes for training. Depending on the nature of the investigation, the Gradient-Only Line
Search with Bisection (GOLS-B) [Kafka and Wilke, 2019b] and fixed step sizes are sporadically
used to be benchmarks against which the performance of GOLS-I can be compared. Overall,
our investigations demonstrate that GOLS-I is effective in determining step sizes in a range of
feedforward neural network architectures using different activation functions. However, we also
give examples, where activation function selection can significantly impede training performance
with GOLS-I. We show that these difficulties can be alleviated by modifying the network archi-
tecture of a given problem. Therefore, this chapter serves as a practical guide for neural network
practitioners to improve the construction of network architectures that promote efficient training
using GOLS.
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6.4 Empirical Study

In our studies we consider three different types of training problems, namely:

1. Foundational problems: Using small classification datasets with various feedforward neural
network architectures.

2. MNIST with NetII: A training problem used by Mahsereci and Hennig [2017] to explore
early stochastic line searches.

3. CIFAR10 with ResNet18: A state of the art architecture including skip-connections [He
et al., 2016] and batch normalization [Ioffe and Szegedy, 2015].

The foundational training problems are used to explore the influence of AFs on training
performance in the context of 1) hidden layer height and depth, 2) GOLS-I and GOLS-B, as
well as constant step sizes; and 3) full-batch versus dynamic MBSS training. The NetII problem
is used to demonstrate the potential sensitivity of training problems to the choice of AF, and
subsequently show the corrective effect of batch normalization on training. Skip connections
are another architectural consideration of interest with different AFs in the context of GOLS.
The relationship between AFs and neural networks with skip connections is explored using the
ResNet18 architecture with the CIFAR10 dataset, as adapted from the implementation by Liu
[2018].

The datasets used in our investigations, along with and their respective properties, are
listed in Table 6.1. All datasets were scaled using the standard transform (Z-score). For the
foundational problems (spanning datasets 1 to 11), the standard transform was applied for each
individual input D, while for MNIST and CIFAR10 the standard transform was applied over
each image channel. For MNIST, there is a single grey scale channel of 28x28 pixels (total of
784 inputs), while CIFAR10 has 3 colour channels of 32x32 pixels each (total of 3072 inputs).
Since the small datasets are not separated into training and test datasets by default, we divided
them manually into training, validation and test datasets with a ratio of 2:1:1 respectively. We
choose this division to demonstrate that the manual construction of validation and test datasets
resulted in representative, unbiased hold-out datasets. Therefore, we expect similar performance
between validation and test datasets. Conversely, both MNIST and CIFAR10 datasets have been
predetermined test datasets, which are subsequently used.

No. Dataset name Author Observations Inputs, D Classes, K

1 Iris Fisher [1936] 150 4 3

2 Glass1 Prechelt [1994] 214 9 6

3 Horse1 Prechelt [1994] 364 58 3

4 Forests Johnson et al. [2012] 523 27 4

5 Simulation failures Lucas et al. [2013] 540 20 2

6 Soybean1 Prechelt [1994] 683 35 19

7 Card1 Prechelt [1994] 690 51 2

8 Cancer1 Prechelt [1994] 699 9 2

9 Diabetes1 Prechelt [1994] 768 8 2

10 Heartc1 Prechelt [1994] 920 35 2

11 Biodegradable compounds Mansouri et al. [2013] 1054 41 2

12 MNIST Lecun et al. [1998] 70000 784 10

13 CIFAR10 Krizhevsky and Hinton [2009] 60000 3072 10

Table 6.1: Properties of the datasets considered for conducted investigations.

Table 6.2 summarizes the 11 investigations performed in this chapter on the corresponding
neural network training problems. For the foundational problems we implement shallow nets
with the number of hidden nodes being half of the input dimensions, D

2 and twice that of the
input dimensions, 2D. We also implement a deep architecture with 6 hidden layers of 2D nodes.
We conduct training limited by iterations for all training problems except NetII, which is limited
in the number of function evaluations, as prescribed by Mahsereci and Hennig [2017]. We couple
each of the training problems with the activation functions discussed in Section 6.2. Constructed
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dynamic MBSS, search directions dn = −g̃(x) were supplied by the line search stochastic gra-
dient descent (LS-SGD) algorithm [Robbins and Monro, 1951, Kafka and Wilke, 2019b] for all
training runs accept those of the deep architecture applied to the foundational problems, which
uses Adagrad [Duchi et al., 2011, Kafka and Wilke, 2019b] instead. We adopt the convention
whereby the name of a method is the combination of the line search used to determine the step
size, and the algorithm used to provide the search direction. For example, using GOLS-I to
determine step sizes for Adagrad is denoted ”GOLS-I Adagrad”. As indicated in Table 6.2, step
sizes for LS-SGD were predominantly determined using GOLS-I, while alternatively GOLS-B
and fixed step sizes were implemented, depending on the investigation performed. The fixed step
size, αn,In = 0.05, used in investigation 4 was manually tuned to give good training performance
for the foundational problems with the ReLU AF. The fixed step sizes chosen for investigation
8 were selected in order to highlight a range of training performance, from slow to unstable, for
the NetII training problem with the ReLU AF.

Inv.
#

Data-
set #

Hidden layer
structure

Batch
norm.

Step size
method

Training
limit

|Bn,i| Loss

1 1-11 [D2 ] No GOLS-I SGD 3000 Its. 32 MSE

2 1-11 [2D] No GOLS-I SGD 3000 Its. 32 MSE

3 1-11 [2D, 2D, 2D,
2D, 2D, 2D]

No GOLS-I Ada-
grad

3000 Its. 32 MSE

4 1-11 [2D] No αn,In = 0.05
with LS-SGD

3000 Its. 32 MSE

5 1-4 [2D] No GOLS-B SGD 3000 Its. 64 MSE

6 1-4 [2D] No GOLS-B SGD 3000 Its. M MSE

7 12 [1000, 500, 250] No GOLS-I SGD 40,000 FEs 100 MSE

8 12 [1000, 500, 250] No αn,In = 0.1,
αn,In = 0.01,
αn,In = 0.001
with LS-SGD

40,000 FEs 100 MSE

9 12 [1000, 500, 250] Yes GOLS-I SGD 40,000 FEs 100 MSE

10 13 ResNet18 Yes GOLS-I SGD 40,000 Its. 128 BCE

11 13 ResNet18 No GOLS-I SGD 40,000 Its. 128 BCE

Table 6.2: Parameters and settings governing the implemented network architectures and their
training for various investigations (Inv.).

All training runs were conducted using PyTorch 1.0 [pytorch.org, 2019]. By default, He
initialization [He et al., 2015] is used for networks implementing ReLU and leaky ReLU AFs,
while Xavier initialization [Glorot and Bengio, 2010] is used for networks with the remaining AFs
considered in this survey. For the foundational and NetII training problems, 10 training runs
were conducted for each dataset and AF combination, whereas for CIFAR10 with ResNet18, a
single training run per AF is performed.

6.5 Results

The results of our empirical study are ordered according to the training problems considered,
namely 1) foundational problems, 2) the MNIST dataset with the NetII architecture, and 3)
the CIFAR10 dataset with the ResNet18 architecture. Note, that the loss is used to evaluate
training performance for the foundational problems, while the classification errors of the datasets
are plotted to evaluate NetII and ResNet18. Note, that results given in terms of iterations are
not representative of computational cost, as a number of function evaluations can be performed
per iteration when line searches are implemented. However, giving results in terms of iteration
allows for comparison between line searches with different costs, while assessing the reduction
in loss (i.e. the quality) provided by the line searches.
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6.5.1 Foundational problems

The average training, validation and test losses with corresponding average step sizes for the
foundational problems are given in Figure 6.4. The results of the foundational problems are
averaged over all the respective datasets and their corresponding 10 training runs. This allows
a representative trend to be demonstrated for each AF over a number of datasets. The results
of the first analysis, with hidden layers of size D

2 , are shown in the first column, Figure 6.4(a).
Firstly, it is evident that step sizes estimated by GOLS-I result in effective training over a
range of datasets and AFs. The mean training loss continually decreases, while that of both the
validation and test datasets increases after 500 iterations, indicating the onset of overfitting. The
consistency between validation and test losses suggests, that both validation and test datasets
are large enough to give unbiased assessment of the neural networks’ generalization performance.

(a) D
2 , GOLS-I SGD (b) 2D, GOLS-I SGD (c) 2D(6), GOLS-I Ada. (d) 2D, αn,In = 0.05

Figure 6.4: Training, validation and test losses with corresponding log of step sizes for the
foundational problems with various networks architectures, including (a) investigation 1: single
hidden layer (HL) networks with D

2 hidden nodes, (b) investigation 2: single HL networks with
2D nodes and (c) investigation 3: networks with six HLs of 2D nodes using GOLS-I Adagrad.
For (a) to (c), GOLS-I was used to determine step sizes, while (d) investigation 4 implements
LS-SGD with fixed step sizes αn,In = 0.05 for a single HL network with 2D nodes.

In investigation 1, shown in Figure 6.4(a), ReLU is convincingly the worst performer. Con-
versely, the Sigmoid AF is the best performer in training, while the performance between the
remaining AFs is almost indistinguishable. The best validation and test losses also belong to
Sigmoid, with a marginal advantage over the remaining AFs (accept ReLU, where the difference
is significant). Interestingly, the step sizes of Sigmoid, presented in the last row of Figure 6.4(a),
diverge significantly from those of the remaining AFs. We postulate that this phenomenon com-
pensates for the Sigmoid’s small derivative magnitudes, see Figure 6.1(b). As mentioned, the
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maximum derivative magnitude of the Sigmoid AF is 0.25, while for the remaining AFs it is 1.
Cumulatively, this results in progressively smaller gradients for Sigmoid, as the training algo-
rithm progresses closer towards an optimum. Subsequently, this prompts GOLS-I to increase the
step sizes in the search for univariate SNN-GPPs. This is not common among the foundational
problem datasets, but the larger step sizes of individual problems dominate the calculation of
average step sizes.

The ReLU AF was introduced to promote sparsity within a neural network, which is meant
to approximate brain processes observed in neuroscience [Glorot and Bordes, 2011], where only
a fraction of the network is used at a given time. However, ReLU was developed predominantly
for large neural networks, which makes it unclear whether the bad performance observed in
Figure 6.4(a) is due to the use of GOLS-I for determining learning rates, or due to the network
architecture selected being too small.

We therefore perform training runs with increased hidden layer sizes of 2D for investigation 2
shown in Figure 6.4(b). Hence, the hidden layers of network architectures trained in investigation
2 are 4 times larger than those considered in investigation 1. However, this increase has little
effect on improving the training performance of ReLU. Instead, there is a shift between the
relative performances of the remaining AFs. Subsequently, leaky ReLU outperforms the Sigmoid
AF in training. However, this does not translate to generalization, where the Sigmoid still
outperforms leaky ReLU.

Presuming that the investigated architectures are still too small to cater for the sparsity that
ReLU induces, we increase the number of hidden layers to 6 with 2D nodes each in investigation
3. To aid training with deeper layers, we employ the GOLS-I Adagrad for this analysis. The
results shown in Figure 6.4(c) exhibit an average loss improvement of 0.0457 for ReLU over the
single hidden layer training runs performed for investigation 2 in Figure 6.4(b). It is notable,
that the performance rankings between the remaining activation functions has again changed.
In this case, the other AFs of the sparsity class (leaky ReLU and ELU), begin to dominate
both training and generalization over AFs of the saturation class. The increasing step sizes
in Figure 6.4(c)(last row) occur as GOLS-I corrects for the diminishing norm of Adagrad’s
search directions [Duchi et al., 2011], which is expected [Kafka and Wilke, 2019b]. Although
GOLS-I determines useful learning rates that result in effective training for a range of AFs for
a significantly larger network architecture, this analysis has failed to demonstrate a significant
improvement in the training performance of ReLU with GOLS-I. This suggests, that neither
architecture nor the search direction are dominant factors in explaining ReLU’s performance in
our experiments thus far. Therefore, the use of GOLS-I to determine the step sizes for ReLU
architectures comes under closer scrutiny.

We determine GOLS-I’s contribution to poor ReLU performance, by process of elimination.
In investigation 4, shown in Figure 6.4(d), we substitute GOLS-I for the use of a manually tuned
fixed step size of αn,In = 0.05 with LS-SGD for all AFs. It is clear, that the training performance
with ReLU improves significantly with αn,In = 0.05. However, this is not coincidental, as the
fixed step size was manually tuned for this purpose. This indicates, that the step sizes determined
by GOLS-I are not effective for ReLU with the foundational training problems. Interestingly,
the variance between training performances of the remaining AFs is higher with LS-SGD using
fixed step size, than when implementing GOLS-I SGD. The Sigmoid AF performs significantly
worse, due to its comparatively smaller derivatives, as discussed above. This confirms, that
GOLS-I is capable of adapting its step sizes to the properties of different AFs in feedforward
network architectures, with the exception of ReLU.

6.5.2 A closer look at ReLU loss functions using GOLS-B SGD

What makes ReLU the outlier among the considered AFs, is that it enforces sparsity in an
absolute manner, i.e. the derivative in the negative input domain is exactly zero. Previous
studies have shown, that the use of ReLU with the MSE loss can cause L̃(x) and g̃(x) to be
zero over a range of x [Kafka and Wilke, 2019a]. This breaks the assumptions of positivity,
coerciveness and strict descent, namely those of Lyapunov’s global stability theorem, which

134



govern the convergence of GOLS [Kafka and Wilke, 2019]. The reason for GOLS-I’s inability to
train feedforward networks with ReLU is as follows: Conducting updates with step sizes that
are too large, as is possible in an inexact line search such as GOLS-I, can cause numerous nodes
within a ReLU network to enter the negative input domain. If the step sizes are large enough, the
affected nodes remain ”off” irrespective of the variance in the incoming data. Subsequently, large
parts of the network may be ”off” permanently, causing the gradient vector to have numerous
zero-valued partial derivatives, i.e. become sparse. This results in no change to weights with
zero-partial-derivatives during update steps, effectively terminating training for the deactivated
portion of the architecture.

(a) DS 1, |Bn,i| = 64 (b) DS 2-4, |Bn,i| = 64 (c) DS 1, M (d) DS 2-4, M

Figure 6.5: Training loss, test loss and the log of step sizes for a subset of datasets (DS) from
the foundational problems dataset pool, trained using GOLS-B SGD (a,b) with mini-batch size
|Bn,i| = 64 for investigation 5 and (c,d) using full-batches, M in investigation 6.

These considerations, as well as the results observed in Figure 6.4, suggest that the step
sizes determined by GOLS-I are too large to result in stable training with ReLU. A contributing
factor is that GOLS-I’s initial accept condition [Kafka and Wilke, 2019b] allows univariate SNN-
GPPs to be overshot in a controlled manner. Although overshoot has been shown to aid the
training performance of LS-SGD [Kafka and Wilke, 2019b, Kafka and Wilke, 2019], it may be
too aggressive to be implemented with ReLU AFs. Therefore, investigations 5 and 6 focus on
whether GOLS-B [Kafka and Wilke, 2019b] with a conservative SNN-GPP bracketing strategy
is capable of determining step sizes for LS-SGD in feedforward networks with ReLU AFs. The
conservative bracketing strategy grows the minimum step size by a factor of 2, until a positive
directional derivative is observed. This increases the probability of encountering SNN-GPPs in
Bε that are closest to xn along the descent direction.

In investigations 5 and 6, we more closely consider the loss functions of the first 4 foundational
problems with ReLU AFs. The focus is primarily on the change in characteristics between
dynamic MBSS and full-batch sampled losses. Therefore, we find the largest mini-batch size
of the power 2 that allows MBSS for the first 4 problems. Due to separating problem data
into training, validation and test datasets, the training dataset sizes for the first 4 problems are
M ∈ {76, 108, 182, 263} respectively. Therefore, the largest common mini-batch size of power 2 is
|B| = 64, which is implemented for investigation 5. Subsequently, investigation 6 uses full-batch
sampling for the same datasets. The results for both investigations shown in Figure 6.5, where
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all step sizes are determined using GOLS-B. Satisfied, that the validation and test datasets have
been chosen representatively in Figure 6.4, we omit the validation dataset losses in Figure 6.5.
We also separate the results of dataset 1 in Figures 6.5(a) and (c) from those of datasets 2-4 in
Figures 6.5(b) and (d), as these have distinct training characteristics.

The results for training on dataset 1, which is the smallest considered dataset among the
foundational problems, with |Bn,i| = 64 on the single hidden layer architecture with 2D nodes
are shown in Figure 6.5(a). Here, training the ReLU architecture is still unstable, while training
the networks of the other AFs is effective. Note, that the step sizes of all AFs are significantly
smaller and noisier with GOLS-B SGD compared to those of GOLS-I SGD. This is due to a
combination of the conservative bracketing strategy and the lack of overshoot, compared to
GOLS-I. However, this conservative approach aids in successfully training feedforward networks
with the ReLU AF for datasets 2-4 in Figure 6.5(b). This is confirmation, that the larger step
sizes determined by GOLS-I led to the divergent training behaviour observed in Figure 6.4.
However, this improved stability comes at the expense of training performance, as GOLS-B is
an exact line search, which uses an order of magnitude more function evaluations per iteration
compared to GOLS-I [Kafka and Wilke, 2019b].

The full-batch sampled loss or true loss function results for investigation 6 are plotted in
Figures 6.5(c) and (d). The training performance of dataset 1 with ReLU in Figure 6.5(c) shows
little significant improvement in comparison to Figure 6.5(a). The average training loss is only
marginally better, with a mean drop in loss of 0.022 for full-batch training. This indicates, that
the deterministic loss function pertaining to dataset 1 with ReLU has descent directions leading
into flat planes, which trap the training algorithm.

Generally, the determined step sizes for all AFs are significantly more stable for the full-
batch case, than with |Bn,i|. There are no incidences of minimum step sizes, as all search
directions are deterministic descent directions. The variance that remains is due to the qualities
of the deterministic descent direction itself, where the step size to the SNN-GPP along each
descent direction is different. However, the step sizes of ReLU networks are particularly noisy,
as GOLS-B SGD contends with the boundary between obtaining gradients that are dense, or
sparse. Compared to dataset 1, this variance in step size is significantly reduced for datasets 2-4,
which indicates that the boundary between obtaining dense and sparse gradient vectors along a
descent direction is less abrupt, prompting less aggressive changes in step sizes. This is echoed
by the training performance for ReLU with datasets 2-4, which is competitive with that of the
remaining AFs. This suggests, that some ReLU feedforward network architectures construct
small positive directional derivatives that ”push” the line search back from zero-valued domains
in the loss function, an observation confirmed by Kafka and Wilke [2019a].

An additional interesting observation between Figures 6.5(b) and 6.5(d) is that the minimum
test losses of most AFs are lower in the dynamic MBSS case, than when using full-batch training.
It is clear, that training stagnates in Figure 6.5(b) compared to Figure 6.5(d), where the training
loss decreases at a more rapid rate. However, as training slows in Figure 6.5(b), the test losses
for all AFs accept for Sigmoid are lower than their full-batch equivalent in Figure 6.5(d). This
indicates, that dynamic MBSS together with a conservative gradient-only line search can either
slow training (as is the case for Sigmoid), or act as a regularizer during training (as is the case
for all other AFs), which definitely warrants future study.

This investigation has demonstrated, that successfully determining step sizes using GOLS
for feedforward neural networks with ReLU AFs is sensitive to both the line search strategy
used, and the architecture of the given problem. In the examples shown, GOLS-B effectively
resolved step sizes for LS-SGD in larger networks with ReLU AFs, while GOLS-I SGD was
unable to conduct reliable training on the same problems. Step sizes that are too large, and
variance produced by dynamic MBSS, lead to detailed features such as small positive directional
derivatives being ignored. This impedes the ability of GOLS-I to determine effective step sizes
for the ReLU AF. GOLS-B resolves more conservative step sizes, but bears a high computational
cost. Instead, relaxing the absolute sparsity of ReLU, by implementing the leaky ReLU or ELU
AF, significantly improves GOLS-I’s ability to determine effective step sizes in dynamic MBSS
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losses for the feedforward architectures considered in this survey. The non-zero derivatives of
ELU and leaky ReLU in their negative input domains ensure that g̃(x) remains dense. This
guarantees that all weights participate in update steps, and allows the training algorithm to
recover from previous step sizes that were too large.

6.5.3 MNIST with NetII

Next, we present a larger training problem, where the choice of AF significantly influences
training performance using GOLS-I SGD. The NetII architecture in combination with the well
known MNIST dataset has been used to demonstrate the ability of probabilistic line searches
to determine learning rates in dynamic MBSS loss functions [Mahsereci and Hennig, 2017].
Mahsereci and Hennig [2017] only implement the Tanh AF for this problem, which we extend
by analysing all the AFs considered in Section 6.2 for investigation 7. In addition, we quantify
the effect of batch normalization in investigation 9. The training and test classification errors,
as well as accompanying step sizes for the different AFs are given in Figure 6.6. We remind the
reader, that the results presented for investigations 7-8 are given in function evaluations to be
consistent with Mahsereci and Hennig [2017].

(a) GOLS-I (b) GOLS-I (c) GOLS-I

(d) Fixed step sizes (e) Fixed step sizes (f) Fixed step sizes

(g) GOLS-I, batch-norm. (h) GOLS-I, batch-norm. (i) GOLS-I, batch-norm.

Figure 6.6: Training and test classification errors with corresponding log of step sizes as obtained
for the MNIST Dataset with the NetII architecture for different activation functions. Step sizes
for LS-SGD are determined by (a)-(c) GOLS-I for the standard NetII architecture with all
considered AFs, (d)-(f) a range of fixed step sizes for the standard NetII architecture with only
ReLU, and (g)-(i) determined by GOLS-I for NetII with batch normalization and all considered
AFs.

In investigation 7, the training performance between different AFs varies significantly for the
standard NetII architecture with GOLS-I SGD in Figures 6.6(a)-(c). It is immediately evident,
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that ReLU is also unstable in the standard NetII architecture using GOLS-I SGD. The overall
best performance is obtained using leaky ReLU, followed by Sigmoid. The next best performer
is ELU, with Softsign marginally outperforming Tanh. Leaky ReLU trains particularly noisily
in the first 5,000 function evaluations, before establishing a clear lead over the remaining AFs.
Sigmoid trains slower than Tanh, Softsign and ELU during the first 10,000 function evaluations,
but outperforms these thereafter. The relative performances of the AFs generalize, as they are
also reflected in the test classification errors. There are a few indications that the resulting
loss function of leaky ReLU and the Sigmoid AFs have different characteristics to those of
Tanh, Softsign and ELU, namely: 1) The significantly lower training and test errors after 40,000
function evaluations, 2) the higher variance in error during training, and 3) step sizes that are
up to two orders of magnitude larger than those of the rest. We speculate that this is due to
specific interactions between activation function properties and the neural network architecture.

Both Sigmoid and leaky ReLU are AFs that ”activate” in the positive input domain and
tend towards zero in the negative input domain. Therefore, we postulate that the ability of the
AFs to approximate zero function value outputs, while having non-zero derivatives, constructs
loss function landscapes that are easier to traverse with GOLS-I SGD. This supports a study by
Xu et al. [2016], which found that a ”penalized Tanh”, that reduces the output magnitudes of
function values and derivatives of Tanh in the negative input domain, performed competitively
with sparsity class activation functions in deep convolutional neural network training. We pos-
tulate that the ability to significantly reduce the absolute function value of a node, decreases
the information passed forward into a network. Subsequently, this reduces the sensitivity of
nodes further downstream to the nodes that have low function value output. This contributes
towards uncoupling parameters in the optimization space, x, thus changing the nature of the
loss function and resulting the unique training characteristics observed for Sigmoid and leaky
ReLU.

Since ReLU demonstrates the same training difficulties with GOLS-I SGD as investigated
in Section 6.5.1, we consider training ReLU using LS-SGD with fixed step sizes of αn,In ∈
{0.1, 0.01, 0.001} for investigation 8 in Figures 6.6(d)-(f). Again, training performance improves
for ReLU using LS-SGD with fixed step sizes over GOLS-I SGD. However, the variance between
each of the 10 training runs performed increases proportionately to the fixed step size. Compared
to the relatively consistent performance of the other AFs with GOLS-I SGD, this result is
unsatisfactory. Although individual training runs with αn,In = 0.1 outperform GOLS-I with
Sigmoid or leaky ReLU, the fixed step size first needs to be determined, and subsequently
multiple runs performed to obtain an appropriate αn,In . This highlights, that training using
fixed step sizes is not a practical alternative to using GOLS-I with LS-SGD in feedforward
neural networks and ReLU activation functions. As argued in Section 6.5.1 implementing GOLS-
B instead is computationally too demanding. It is therefore preferable to explore alternative
means, by which the benefits of GOLS-I can be extended to ReLU architectures.

The problem of training ReLU feedforward architectures using GOLS-I, as considered in
Section 6.5.1, is summarized in Figure 6.7. At initialization, the distribution of information
entering ReLU’s input domain is centred around 0 [He et al., 2016], see Figure 6.7(a). This
allows the ”switching” mechanism proposed for ReLU to occur, whereby some data samples
cause the node to ”fire” (inputs in the positive domain) and others keep the node dormant
(inputs in the negative domain). As discussed, large variance in gradient norms and the nature
of a line search can cause step sizes that are spuriously too large, resulting in large changes in
weight updates. Such updates can shift all the training dataset variance propagated through the
network far into the negative or positive input domain of ReLU, see Figure 6.7(b). If all the data
variance is in the positive input domain (scenario 2), gradients are available to allow subsequent
update steps to correct for this shift. However, if all the dataset variance is in the negative input
domain (scenario 1), the zero-derivative of ReLU prohibits information from travelling through
the activation function to subsequent nodes. When this occurs to a significant portion of the
network architecture, the flow of information through the network is significantly hampered and
training stagnates.
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(a) At initialization (b) Spurious update w/o BN (c) With batch normalization

Figure 6.7: Schematic of the distribution of incoming information to a ReLU activation function
(a) at initialization, (b) without batch normalization (BN) after spurious updates due to step
sizes that are too large, and (c) after implementing batch normalization. Batch normalization
centres the incoming information distribution around 0 and scales it, ensuring that the ReLU
activation function remains active with a reasonable probability. Subsequently, g̃(x) is more
likely to remain dense than with the standard feedforward architecture.

Batch normalization [Ioffe and Szegedy, 2015] is a method by which the inputs to a layer
of nodes are continually centred by the mean of the previous layer’s output and scaled by the
corresponding variance. Applying batch normalization results in the distribution of information
into a node remaining around the centre of the ReLU input domain, see Figure 6.7, increasing
the likelihood of g̃(x) for the whole architecture remaining dense. This should increase the
ability of GOLS-I to determine step sizes for ReLU, as partial derivatives are more likely to be
non-zero, even after spurious updates.

We implement batch normalization for NetII with the given AFs for investigation 9 and show
the results in Figures 6.6(g)-(i). It is clear, that the training performance of ReLU is drastically
improved with GOLS-I. For the first time, it is possible to obtain competitive performance
with ReLU using GOLS-I. Additionally, all activation functions show accelerated training with
batch normalization over the standard NetII architecture. The best training performances are
shared by Leaky ReLU and Softsign. However, the test errors are more comparable, for all AFs,
ranging between 10−1.5 and 10−2 after 40,000 function evaluations. One exception is Tanh,
which diverges after 5,000 function evaluations. However, the training and test errors achieved
with batch normalization before 5,000 function evaluations are lower than those achieved for
the standard architecture after 40,000 function evaluations. Therefore, although the reason for
Tanh’s divergence is worthy of further investigation, in this study we are satisfied with observing
improved performance with Tanh due to batch normalization.

It is noteworthy, that the step sizes for NetII with batch normalization have a consistent
magnitude between different AFs and vary less in comparison to those determined for the stan-
dard NetII architecture. Since batch normalization alters the scaling of the search direction, the
loss function seems more spherical to LS-SGD, which results in the step sizes being more con-
sistent between AFs. However, this does not result in equal training performance between AFs
(as seen for Tanh), which indicates that the different AFs still contribute unique characteristics
to the loss function. Interestingly, the error variance characteristics also change, for many AFs.
Leaky ReLU and Sigmoid errors remain noisy, but AFs such as Tanh, Softsign and ELU exhibit
more variance with batch normalization than without, as their respective derivatives are highest
around 0.

In summary, this investigation has shown that:

1. Larger feedforward networks (than investigated in Section 6.5.1) with ReLU AFs can also
be unstable when training with GOLS-I.

2. The interaction between neural network architecture and AF can lead to significant differ-
ences in training performance with GOLS-I (even when the systemically poor performance
of ReLU is ignored).

3. Implementing constant learning rates is not a viable alternative to determining step sizes
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with GOLS-I for ReLU AFs.

4. Instead, batch normalization significantly improves training of ReLU architectures using
GOLS-I.

5. And lastly, batch normalization accelerated training for all AFs with GOLS-I in our in-
vestigation.

6.5.4 CIFAR10 with ResNet18

Consider the interaction between architectures that use skip connections [He et al., 2016] and
different AFs using GOLS-I SGD. To this end, we implement the ResNet18 architecture, as ap-
plied to the CIFAR10 dataset. Skip connections ensure that the information flow to subsequent
nodes remains unimpeded, regardless of whether an activation function such as ReLU prohibits
information from travelling through a given node. The role of AFs in this case is to manipulate
information that is additional to that transferred by the skip connections i.e. the ”residuals”.
The interaction between the ”skip-transferred” information and the residuals constructs the
mapping behaviour between input and output domains of the neural network. The standard
ResNet18 architecture includes batch normalization.

For investigation 10, we compare training and test classification error, as well as correspond-
ing step sizes for ResNet18 with the considered range of AFs in Figures 6.8(a)-(c). In this case,
there is a distinct difference in performance between the sparsity class and the saturation class
of AFs. ReLU and leaky ReLU perform best in terms of training, with a slight advantage over
ELU. However, this difference is less prominent in the test classification errors, where ELU is
competitive with the rest of its class. A similar clustering occurs between Tanh and Softsign
for the saturation class. Both perform very similarly in both training and test errors, with only
a slight advantage belonging to Tanh. The Sigmoid AF is convincingly the worst performer of
the considered AFs. Though training is slow and stable, the test losses are considerably noisier
than those of the remaining AFs.

(a) Standard (b) Standard (c) Standard

(d) No Batch-Norm (e) No Batch-Norm (f) No Batch-Norm

Figure 6.8: (a) Log training error, (b) log test error and (c) the log of step sizes for the CIFAR10
Dataset with the ResNet18 architecture trained using GOLS-I SGD. The standard ResNet ar-
chitecture includes batch-norm layers, which are omitted in (d)-(f) in order to highlight the
effect of skip connections on training with sparsity enforcing ReLU activation functions.

Using Xavier initialization [Glorot and Bengio, 2010], the initial weights for the Sigmoid
AF are distributed around 0 in the input domain. However, an input distribution around zero
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corresponds to a function value output centred around 0.5 for Sigmoid. This is in contrast to
the remaining saturation class AFs, which have outputs centred around 0. As shown by Glorot
and Bengio [2010], the cumulative effect of 0.5 outputs over a number of hidden layers can
push Sigmoid AFs in later layers into saturation, where the derivative is significantly decreased.
Batch normalization counters this problem by re-centring the outputs of network layers around
0, where the derivative is at a maximum. Additionally, the maximum derivative of Sigmoid is
0.25, which over many layers diminishes the gradient during backpropagation due to the chain-
rule. Batch normalization also compensates for this property by scaling the variance to be 1
for every layer, ensuring that the gradient magnitudes remain adequately scaled. It is clear,
that batch normalization has to do a significant amount of ”correcting” for the Sigmoid AF in
ResNet18. We suspect that the combination of these factors leads GOLS-I to estimate small
initial step sizes for Sigmoid, with slow subsequent step size growth. However, the step sizes
gradually increase to the point where they are comparable to those of the other AFs after 20,000
iterations.

Apart from the step sizes of the Sigmoid AF, the step size magnitudes between the remaining
AFs are similar and approximately constant. This matches the trend observed in Section 6.5.3
for NetII with batch normalization. However, unlike the training performance in the NetII
analysis, the Tanh AF does not diverge with ResNet18 and batch normalization. Interestingly,
the magnitude and variance of determined step sizes for all AFs (except Sigmoid) increases
significantly after 20,000 iterations. This correlates to an increase in gradient variance between
data points associated with large losses (resulting in larger gradient norms), and those with lower
losses (smaller gradient norms), as the architecture increasingly fits the data. thus, depending on
the data-points in mini-batch, Bn,i, the magnitude and direction of g̃(x) may vary significantly.
Subsequently, this variance is transferred to the directional derivatives used by GOLS-I, leading
to a higher variance in step sizes. A plausible corrective measure to manage this variance, is
to gradually increase Bn,i as training progresses [Friedlander and Schmidt, 2011, Smith et al.,
2017].

Since ResNet is constructed with both skip-connections and batch normalization, it is un-
clear, which of the two architectural features contribute more significantly towards improving
training performance with ReLU. We have considered the contribution of batch normalization to
improving training in Section 6.5.3. Here, we consider skip connections more closely. The differ-
ence between standard feedforward nodes and skip connected nodes is illustrated in Figure 6.9
with the ReLU AF. A standard node, shown in Figure 6.9(a) passes the incoming distribution
through the activation function at the node, which augments the distribution according to its
characteristics. As demonstrated in Figure 6.7, this can be problematic with the ReLU AF if
poor updates occur, as the propagation of gradients can become obstructed. For a skip con-
nected node, shown in Figure 6.9(b), the incoming distribution is added to the output of the
standard node. This ensures, that even in the worst case, where no information passes through
the AF, the incoming distribution always propagates forward. Subsequently, evaluated gradients
will always be dense.

In investigation 11 we observe the influence of skip connections in ResNet18. Therefore,
investigation 11 repeats the analysis of investigation 10, albeit without the use of batch normal-
ization. The results are shown in Figures 6.8(d)-(f). As is consistent with investigations 7 and 9
performed in Section 6.5.3, training performance slows without the use of batch normalization
for all AFs. The results of investigation 11 show that training progresses for all AFs, with the
exception of the Sigmoid AF. We postulate that this drop in performance is due to scaling dif-
ficulties in deep neural networks driven by Sigmoid’s positive offset, small maximum derivative
and saturating nature [Glorot and Bengio, 2010], which are subsequently not corrected by batch
normalization.

We confirmed this phenomenon by conducting numerous additional training runs with mod-
ified versions of AFs considered in this analysis. A modified version of the Tanh AF, namely
0.5∗Tanh+0.5 which is centred around 0.5 and has a maximum derivative of 0.5, performed
the same as Sigmoid. Conversely, successful training was observed using 2∗Sigmoid−1, which
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also has a maximum derivative of 0.5 while being centred around 0. This suggests that passing
through the origin is an important AF property for promoting effective training with deep net-
works, an assumption held for both Xavier [Glorot and Bengio, 2010] and He [He et al., 2015]
initialization strategies. Additionally, a modified leaky ReLU with maximum output derivative
< 0.5 also failed to train. Indeed, Xavier initialization assumes that AF derivatives are 1 around
the zero input domain [Glorot and Bengio, 2010]. As Sigmoid satisfies neither of these proper-
ties, it is not surprising that its implementation in ResNet18 without batch normalization failed
to train successfully.

(a) Standard Node (b) Node with skip-connection

Figure 6.9: Illustration of the structural difference between (a) standard feedforward nodes, and
(b) skip-connected nodes.

Importantly, training ResNet18 without bath normalization with the ReLU AF using GOLS-
I SGD is not only stable, it also shares the best training performance with leaky ReLU. This is
significant, as it demonstrates the effectiveness of skip connections in ensuring that gradients re-
main dense with ReLU AFs. This allows ReLU’s performance to be directly compared to that of
the remaining AFs without batch-normalization. Both ReLU and leaky ReLU are outperformed
by ELU during the first half of training, but overtake it during the latter half. Figures 6.8(d) and
(e) suggest that within the context of skip connections, the difference in performance between
ReLU and Leaky ReLU is insignificant.

It is an emerging trend, that the sparsity class of AFs gradually begins to outperform the
saturation class as the size of considered neural networks increases. For the foundational prob-
lems of Section 6.5.1, this difference is marginal, as the number of nodes in the architecture
increases. For the NetII problem in Section 6.5.3, two of the top three performers are from the
sparsity class for architectures with and without batch normalization. In the ResNet18 archi-
tecture, all of the sparsity class AFs outperform all of the saturation class AFs both with and
without batch normalization. This suggests, that the sparsity property becomes increasingly
useful, as the size of the network increases. This is consistent with how sparsity operates, as
the number of ”channels” available to construct the mapping between input and output spaces
increases with growing architecture size.

This investigation demonstrates that skip-connections are effective in ensuring that g̃(x)
remains dense for ReLU AFs, where sparsity is enforced. In cases where the outputs of ReLU
nodes are zero, it is only the residual that is zero, while the information of previous nodes is still
passed to subsequent layers through skip connections. This drastically improves GOLS-I SGD’s
ability to train ReLU neural network architectures. Subsequently, batch normalization layers
contribute additional benefit for all AFs considered in our investigations, by increasing robust-
ness and accelerating training. Additionally, this investigation supports the trends observed in
Sections 6.5.1 and 6.5.3, where the training performance of larger architectures using GOLS-I
SGD is improved by implementing sparsity class AFs.

6.6 Conclusion

In this chapter, we consider the interaction between gradient-only line searches and a variety
of neural networks constructed with six different activation functions. The activation functions
considered are split into two classes, namely the saturation class (Sigmoid, Tanh and Softsign),
and the sparsity class (ReLU, leaky ReLU and ELU). Gradient-only line searches are used to
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determine the step sizes for gradient based optimizers in full-batch and dynamic mini-batch sub-
sampled (MBSS) loss functions. In our investigations we implement the gradient-only line search
that is inexact (GOLS-I) as well as the Gradient-Only Line Search with Bisection (GOLS-B)
[Kafka and Wilke, 2019b]. Eleven investigations are conducted using 13 different datasets with a
total of 37 network architectures, some using the cross entropy loss and others the mean squared
error loss. Training problems include 11 foundational datasets with feedforward neural networks,
the MNIST dataset with NetII [Mahsereci and Hennig, 2017] and the CIFAR10 dataset with
ResNet18 [He et al., 2016]. These problems cover a range of architectural features, including
batch normalization [Ioffe and Szegedy, 2015] and skip connections.

We find, that GOLS is effective in determining the step sizes in dynamic MBSS training
for all but a few combinations of activation functions and network architectures. The small
neural networks show a close grouping in training performance between the considered activation
functions, with a slight advantage belonging to non-linear, saturation type activations. However,
training performance of feedforward networks with the ReLU activation function, coupled with
GOLS performed poorly. Analyses with NetII and ResNet18 without batch normalization show
that a particular activation function can significantly improve the training performance for a
given network architecture with GOLS-I. For NetII, the best performers were leaky ReLU and
Sigmoid activation functions, while the troublesome performance of ReLU with GOLS-I seen in
the foundational problems recurred for NetII.

Our investigations suggest that the predominant cause of GOLS-I’s inability to train ReLU
architectures are weight updates with step sizes that are too large. These updates shift the
distribution of information entering a ReLU activation function fully into its inactive domain,
thus producing zero-outputs and halting the flow of information through a node. This can lead
to large portions of the network becoming and remaining inactive, which leads to the gradient
vector being sparse in these cases. In addition, the implication that there exist domains in
the loss function that have zero-gradients means that ReLU loss functions with feedforward
architectures can break the assumptions of Lyapunov’s global stability theorem, which govern
the convergence properties of GOLS-I.

However, the training difficulties encountered with ReLU architectures using GOLS-I can be
alleviated by implementation of batch normalization, and skip connections as used in residual
networks. Batch normalization centres the distribution of information flowing between sequen-
tial network layers around zero, increasing the number of active nodes in the network. Alter-
natively, skip connections by design guarantee the propagation of input information throughout
the network architecture. These technologies ensure that the gradient vector remains dense,
allowing GOLS-I to recover form spurious updates, when they occur. Both skip connections
and batch normalization render ReLU’s competitive with the other activation functions. Batch
normalization has the added benefit of accelerating training for all activation functions. Training
ResNet18 using GOLS-I with and without batch normalization demonstrated, that additionally
implementing batch normalization with skip connections results in a double benefit of stability
for ReLU, as well as accelerated training for all activation functions.

Gradient-only line searches are effective at determining adaptive step sizes for gradient de-
scent based training algorithms. Our studies have demonstrated, that the interaction between
activation functions and neural network architectures matter. The ResNet18 training problem
showed a clear distinction between saturation and sparsity classes of activation functions, with
superior training performance belonging to the latter group. The properties of an activation
function’s derivative have a direct effect on the nature of the loss function presented to the
optimization algorithm. Our studies suggest, that activation functions that promote sparsity
are better suited to larger network architectures than classical saturation type activation func-
tions. Additionally, significant difficulties can be encountered when training feedforward ReLU
architectures with GOLS-I. Therefore, we suggest that practitioners consider technologies such
as batch normalization and skip connections, when constructing neural network architectures to
be trained with GOLS-I.
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Chapter 7

Conclusions and future work

We started by visually exploring the difference between static and dynamic mini-batch sub-
sampling (MBSS) to construct loss function approximations for neural networks. We showed
that static MBSS produces smooth, albeit biased, loss surfaces due to sampling errors result-
ing from the omission of training data in loss evaluations. Conversely, dynamic MBSS trades
the bias of individual mini-batches for variance resulting from different sampling errors at ev-
ery function evaluation. For a training dataset of fixed size and constant mini-batch size, the
number of different sampling errors attainable are deterministically limited. This means that
dynamic MBSS losses are strictly speaking not noisy and randomly unstructured, but deter-
ministically point-wise discontinuous. Stochasticity is subsequently introduced by the act of
randomly selecting mini-batches.

In dynamic MBSS loss landscapes, we explored the ability of local minima and stochastic
non-negative associated gradient projection points (SNN-GPPs) to approximate the location of
full-batch optima. We showed that SNN-GPPs are spatially isolated around full-batch optima,
while local minimizers uniformly identify discontinuities as spurious candidate solutions over
the sampled domains. These false local minima remain spread throughout the loss landscapes,
even for large mini-batches. We used static MBSS losses to better understand that SNN-GPPs
are unlikely to represent the optimum of any individual mini-batch, but rather a solution that
is contained within a ball, Bε, that encompasses the optima of all static mini-batches for a
given dataset-mini-batch size combination. As the mini-batch size increases, the sampling error
decreases, which also reduces the size of Bε. In the limit case of full-batch sampling, the SNN-
GPP generalizes to the full-batch optimum, as Bε reduces to a single point.

Subsequently, gradient-only line searches (GOLS) can be constructed to find SNN-GPPs in
the form of directional derivative sign changes from negative to positive along a search direction.
This affords GOLS the ability to determine step sizes for training algorithms in dynamic MBSS
loss functions. We empirically studied the performance of GOLS on an extensive set of training
problems, spanning 23 datasets with sizes varying between 150 and 70 000 observations, input
dimensions ranging between 4 and 3072 and output dimensions between 2 and 29. Network
architectures considered ranged from feedforward neural networks with 1 hidden layer, to skip-
connected convolutional deep neural networks with 18 layers and batch normalization. We
also optimized a representative training problem of the generative model family in the form
of a Variational Autoencoder. These problems encompassed a range of elemental loss function
formulations, specifically, the mean squared error (MSE), binary cross entropy (BCE) and KL
divergence losses. Activation functions used in various problems included two distinct groups
of activation functions, namely the saturation class: Sigmoid, Tanh and Softsign; as well as the
sparsity class: ReLU, leaky ReLU and ELU.

Various subsets of these problems were used for different investigations. First, GOLS were
extensively compared, and shown to be superior to two minimization line searches, Armijo’s rule
line search and Golden Section, in dynamic MBSS loss functions. Experiments also showed, that
GOLS are able to resolve learning rate schedules that are infeasible to determine a priori. The
fruits of these investigations were four different formulations of GOLS, namely GOLS-B, GOLS-
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I, GOLS-Back and GOLS-Max. Subsequently, the best overall performer, the Gradient-Only
Line Search that is Inexact (GOLS-I) was demonstrated to perform in a complementary manner
to the Probabilistic Line Search (PrLS). For very small mini-batch sizes (|B| = 10), GOLS-I
was outperformed by PrLS. However, at such small mini-batches training is slow overall. As
mini-batches increased (|B| ≥ 50), which is more representative of mini-batch sizes used in
practice, GOLS-I showed a clear performance advantage over PrLS. Additionally, GOLS-I is
computationally efficient, as it does not require loss and gradient variance estimates, nor the
construction of statistical surrogates.

Having established GOLS-I’s ability to determine step sizes effectively in dynamic MBSS
loss landscapes, and using the property that SNN-GPPs generalize to smooth functions, it is
possible to directly compare static to dynamic MBSS in terms of training performance using the
same method. Such analyses demonstrated that dynamic MBSS GOLS-I outperformed static
MBSS GOLS-I in training with regards to computational cost, confirming the arguments made
by [Bottou, 2010].

Subsequently, we exposed GOLS to a wide range of applications in order to explore their capa-
bilities and potential limitations. We modified the formulations of a number of popular training
algorithms to include a line search, namely: Stochastic Gradient Descent, Stochastic Gradient
Descent with Momentum, Nesterov’s Accelerated Gradient descent, Adagrad, Adadelta, Adam.
We also implement GOLS in LBFGS, which naturally accommodates a line search method.
Implementing GOLS-I to determine the step sizes for these algorithms revealed, that GOLS-I
is capable of automatically adjusting to the properties of the given training algorithms and is
competitive with manually tuned fixed step sizes for these algorithms. This investigation also
showed, that GOLS-I underperforms with training algorithms that include momentum-like be-
haviour. However, if this behaviour can be omitted, as is the case for Adam with β1 = 0, training
performance with GOLS-I is restored.

Finally, we investigated the compatibility of GOLS with various activation functions in dif-
ferent neural network architectures. The continuity and smoothness characteristics of activation
functions directly affect the continuity and smoothness characteristics of the loss function and
its gradient. Therefore, it is not self-evident that GOLS are compatible with all activation func-
tions. Overall, GOLS were shown to adapt automatically to the properties of saturation and
sparsity class activation functions. However, the fact that the ReLU activation function has
outputs that are analytically zero over the negative input domain, leads to loss function char-
acteristics that break the assumptions of Lyapunov’s global stability theorem. As this theorem
governs the convergence properties of GOLS, effective training was not attainable with ReLU in
standard feedforward networks. However, these difficulties can be alleviated by implementing
network architecture features such as batch normalization and skip connections.

This work has shown, that GOLS present a generalized strategy to automatically determine
learning rates of different training algorithms in a wide range of training problems. This elimi-
nates the need for conducting extensive hyper-parameter tuning studies to determine fixed step
sizes or parameterize learning rate schedules. Additionally, GOLS offer a number of avenues for
continued research.

7.1 Recommendations for future work

Having developed implementations of GOLS in PyTorch 1.0, the immediate next step is to
assemble these methods into a single, easily implemented PyTorch optimizer class. This would
allow all GOLS methods to be used seamlessly in existing PyTorch models, such that users
can explore the technology, as well as extend it. Since GOLS can be used with a variety of
training algorithms, it would be of interest to explore any emergent properties stemming from
the combination of different GOLS formulations and the different algorithm formulations on a
variety of training problems.

Throughout the studies conducted in this thesis, a number of interesting concepts have arisen
that are worthy of further consideration. One aspect of particular importance is more extensive
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comparison between static and dynamic MBSS in line searches. Although we have anecdotally
demonstrated that dynamic MBSS line searches can be advantageous over static MBSS line
searches, these analyses are by no means exhaustive. Now that it is possible to conduct both
static and dynamic MBSS line searches using the same method, the emphasis can shift from
line searches to the merits and characteristics of the different sub-sampling approaches. Some
preliminary analyses seemed to indicate that conducting static MBSS in SGD produces minima
that are close to the furthest edge of Bε, i.e. the bound of Bε which is a farther from starting
position xn. Such phenomena need to be more closely studied and qualified.

It is also of interest to quantify the size of Bε in more detail, particularly as a function of
training progress. This is independent of how existing GOLS formulations locate SNN-GPPs.
Early tests suggest that Bε grows during training, which is intuitive, since algorithms may
tend towards areas in the loss with lower curvature as training progresses. For a constant
variance, this leads to a larger spread in SNN-GPPs, see Chapter 2. This is a noteworthy
consideration when implementing an exact GOLS method such as GOLS-B, as it always finds
solutions within Bε. Increasing the mini-batch size during training is one approach to reduce
the size of Bε. However, the effect of ball size on training and the rate at which mini-batch size
is most effectively increased remains unclear.

Conversely, training results in Chapter 6 suggested that the larger size of Bε together with a
conservative bracketing strategy for GOLS-B might act as a regularizer in training. Conservative
GOLS-B naturally shrinks steps sizes as the algorithm approaches an optimum. This behaviour is
consistent with a number of predetermined learning rate schedules, such as simulated annealing
[Kirkpatrick et al., 1983]. Reducing step sizes in a manner that is in accordance with the
characteristics of loss functions might be a means by which to manage and delay overfitting.

Finally, all of the popular training algorithms considered in this study make use of gradient
information to construct their search directions. However, the gradient is also sensitive to the
sampling error introduced by conducting MBSS. It is therefore of interest to investigate the
interaction between MBSS and search direction quality. It is conceivable, that the descent
directions of Stochastic Gradient Descent (SGD) exhibit a form of conjugacy due to sampling
error. Benefit can also be derived from overshooting along SGD descent directions, even in the
case where full-batch sampling is used to resolve step sizes along the given search direction.
The Variational Autoencoder analysis in Chapter 3 showed indications of this phenomenon.
Therefore, it would be of interest to qualitatively assess this phenomenon. Subsequently, it
would be possible to uncouple the effect of search direction quality, from the ability to resolve
SNN-GPPs along a given search direction, on training performance. It is unclear at this point,
whether the search direction itself, or the accuracy of the resolved optimum is more affected by
dynamic MBSS, and which is more detrimental to training performance.

Provided continued analyses find dynamic MBSS line searches to be superior to those of
static MBSS, there are also questions concerning how dynamic MBSS and GOLS might affect
other algorithms from the field of mathematical programming. Although we include LBFGS with
GOLS in our investigations, the interaction between stochastic line searches and second-order
methods (including stochastic variants [Hennig, 2013]) needs to be further studied to explore
the potential benefit of approximate Hessians.

The investigations performed in Chapters 3 (Section 3.4.5) and 6 have demonstrated that
GOLS are not only able to automatically determine learning rates, but can also be used as
explorative tools in dynamic MBSS loss landscapes. As discussed, our investigations suggest
that there are further questions to be asked and other concepts to be examined. We therefore
hope this work will find other curious minds along the path towards improved machine learning
optimization.
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Appendix A

Appendix

A.1 Figures of Additional Activation Functions from Visual In-
vestigations

Appended here, we show figures relating to the additional activation functions considered in
our visual study of Chapter 2. These investigations are divided into global and local domains,
spanning steps along two random directions with ranges [-20,20] and [-2,2] respectively.
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A.1.1 Relating to Global Activation Function Characteristics in Random Di-
rections over [-20,20] Domains in Weight Space

(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Function value, |Bn,i| = 10 (d) Directional derivative, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.1: The Tanh AF: A steeper AF derivative around 0 means more curvature in the loss
gradients, which manifest as steeper directional derivatives. This aids SNN-GPP localization in
the active region (origin of (h)), but not at saturation (outer ranges of (h)).
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(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Function value, |Bn,i| = 10 (d) Directional derivative, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.2: The Softsign AF: The less aggressive taper-off in the AF derivative reduces the
chance for spurious SNN-GPPs in the saturation regions. In the centre domain, SNN-GPPs are
highly localized around the full-batch, true optima.
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(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Directional derivative, |Bn,i| = 10 (d) Function value, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.3: The ReLU AF: Pushing ReLU activations far into their active domain results in
convex behaviour of the MSE loss function on a large scale. However, directional derivative and
true optima plots indicate that more detail is contained in the basin.
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(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Function value, |Bn,i| = 10 (d) Directional derivative, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.4: The leaky ReLU AF: Since the magnitude of the ”leaky” gradient is relatively small,
its contribution is not apparent at this length scale. Therefore, the plots look very similar to
those of ReLU. SNN-GPPs are concentrated around the centre, where the magnitude of the
directional derivatives is small.
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(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Function value, |Bn,i| = 10 (d) Directional derivative, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.5: The ELU AF: The shapes of the convex element of the loss function are similar
to those of the other ReLUs. However, the structure in the basin seems to be different. This
is confirmed by the number of true optima. The narrow spatial grouping of SNN-GPPs is the
contribution of the continuous AF derivative.

152



A.1.2 Relating to Local Activation Function Characteristics in Descent Di-
rections over [-2,2] Domains in Weight Space

(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Function value, |Bn,i| = 10 (d) Directional derivative, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.6: The Sigmoid AF close-up: Shapes are smooth and have little curvature. SNN-GPPs
have a smaller spatial range in directions where the curvature is larger, while being more spread
out in low curvature directions.
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(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Function value, |Bn,i| = 10 (d) Directional derivative, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.7: The Tanh AF close-up: The higher curvature of Tanh helps localize SNN-GPPs.
Though this example captures lower variance directions in the function value (see (g), d2), this
does not alleviate the problem of uniformly spread spurious local minima.
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(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Function value, |Bn,i| = 10 (d) Directional derivative, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.8: The Softsign AF close-up: The small domain investigation confirms that the less
aggressive taper-off of the AF derivative contributes to localizing SNN-GPPs around the true
optimum, while avoiding spurious instances at saturation. Local minima remain uniformly
distributed.
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(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Function value, |Bn,i| = 10 (d) Directional derivative, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.9: The ReLU AF close-up: Notable features are the stark changes in the directional
derivatives. These correspond to the ”activation” and ”deactivation” of various nodes in the
network. A unique feature to the ReLU activation is the presence of flat planes where the
directional derivative is 0. These areas denote weight spaces where no information passes through
the network, for all mini-batches.
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(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Function value, |Bn,i| = 10 (d) Directional derivative, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.10: The leaky ReLU AF close-up: Flat planes with constant directional derivative
values are also present here. Although in this case they have a non-zero numerical value, they
do not contribute significantly to localizing SNN-GPPs or reducing the number of true optima
for the ReLU class.
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(a) Function value, M = 150 (b) Directional derivative, M = 150

(c) Function value, |Bn,i| = 10 (d) Directional derivative, |Bn,i| = 10

(e) True minima along search directions (f) True NN-GPPs along search directions

(g) Local minima along search directions (h) SNN-GPPs along search directions

Figure A.11: The ELU AF close-up: The smooth exponential derivative in the negative domain
of the AF results in a greater magnitude in negative directional derivatives in the loss ((d) and
(h)) compared to the remainder of the sparsity class. This in turn helps distance the directional
derivatives from 0, benefiting localization of SNN-GPPs compared to leaky ReLU.
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(a) ReLU (b) Leaky ReLU

Figure A.12: Detailed comparison of directional derivative plots between ReLU and leaky ReLU
activations when hidden units become ”inactive”. As expected, ReLU units switch ”off” en-
tirely, containing no gradient information, while the leaky ReLU results in non-zero directional
derivatives.

A.2 Artificial Neural Networks

The single and double hidden layer feedforward neural network architectures are expressed
mathematically by Equations (A.1) and (A.2) respectively below. The optimization vector, x
is sectioned and transformed into matrices X(c) for the relevant weights in connection layers c
of the network. The given data observation pair tb is separated to give the input data, T i

b, and
output data, T o

b . Suppose a given dataset has an input domain, T i with |B| observations and D
dimensions (features). The respective output domain, T o, has corresponding observations |B|
and output dimensions E (classes). Then for every observation b and every output dimension
e, a prediction of the output data T̂

o
can be constructed from the original data input domain

T i, given by

T̂
o
be = aouter(

M1∑
b=1

X
(2)
ej ainner(

D∑
i=1

X
(1)
ji T

i
bi + X

(1)
j0 ) + X

(2)
e0 ), (A.1)

for a single hidden layer neural network and

T̂
o
be = aouter(

M2∑
l=1

X
(3)
le a

(2)
inner(

M1∑
b=1

X
(2)
ej a

(1)
inner(

D∑
i=1

X
(1)
ji T

i
bi + X

(1)
j0 ) + X

(2)
e0 ) + X

(3)
l0 ), (A.2)

for a double hidden layer neural network.
The number of nodes in the respective hidden layers is given by Mn, n ∈ [1, 2]. The nodal

activation function is denoted by a and X(c), c ∈ [1, 2, 3] denotes the set of weights connecting
sequential layers in the network between the input layer and the output layer in a forward
direction. Thus the single hidden layer network has two sets of weights, X(c), and the double
hidden layer network has three respectively [Bishop, 2006].

The nodal weights x are optimized to a configuration which best captures the relationship
between the input and output data spaces. The loss-function used is the mean squared error
(MSE), determined over every b in batch size |B| and every class e ∈ E according to the Proben1
dataset guidelines [Prechelt, 1994] as:

`(x, tb) =
100

E · |B|

|B|∑
b=1

E∑
e=1

(T̂
o
be(x)− T o

be)
2, (A.3)

where T̂
o
(x) is the output estimation of the current network configuration as a function of

the weights, and T o is the target output of the corresponding training dataset samples.
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A.3 Pseudo code for Gradient-Only Line Searches

In this section we present the pseudo code of the gradient-only line searches developed in Chap-
ter 3. We give the pseudo code in terms of symbols that are agnostic to the mini-batch sub-
sampling method used. This is done in order to highlight that both approaches are legitimate
and these line searches generalize to all forms of sampling. In the limit case, gradient-only line
searches also adapt seamlessly to full-batch sampling.

A.3.1 Exact Line Search: Gradient-Only Line Search with Bisection (GOLS-
B)

The directional derivative values used in this method are defined as F ′n(α) = g(xn + α · dn)Tdn
and the search direction, dn, at the respective values for α at the different points.

Algorithm 3: GOLS-B: Gradient-Only Line Search with Bisection

Input: F ′n(α), dn
Output: αn,In , In

1 Define constants:Define constants: δ = 5, r =
√
5+1
2 , maximum step size αmax, minimum

step size αmin, tol = 10−12, flag = 1, i = 0, imax = 1000.

2 Determine step sizes for: the lower bound, αln = 0; middle, αmn = δ and upper,
αun = αmn + r · δ

3 flag = 1
4 evaluate F ′n(αmn ), increment i
5 evaluate F ′n(αun), increment i
6 if if αun > αmax then
7 αun = αmax
8 I = αun − αln
9 αmn = αln + 1

2I
10 evaluate F ′n(αmn ), increment i
11 evaluate F ′n(αun), increment i

12 while F ′n(αun) < 0 and flag and i < imax do
13 αmn = αun
14 αun = αmn + ri · δ, where i is the number of function evaluations
15 evaluate F ′n(αun), increment i
16 if αun > αmax then
17 flag = 0
18 αn,In = αmax

19 if if flag = 1, reduce the interval then
20 Define Interval, I = αun − αln
21 while I > tol and αun > αmin and i < imax do
22 if F ′n(αmn ) < 0 and F ′n(αun) > 0 then
23 αln = αmn
24 I = αun − αln
25 if F ′n(αmn ) > 0 then
26 αun = αmn
27 F ′n(αun) = F ′n(αmn )

28 I = αun − αln
29 αmn = αln + 1

2I
30 Evaluate the new F ′n(αmn ), increment i

31 finalize the step size: αn,In = αu
n+α

l
n

2
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A.3.2 Inexact Line Search: Gradient-Only Line Search that is Inexact (GOLS-
I)

Parameters used for this method are: η = 2, c2 = 0.9, αmin = 10−8 and αmax = 107. F ′n(α) =
g(xn + α · dn)Tdn.

Algorithm 4: GOLS-I: Gradient-Only Line Search that is Inexact

Input: F ′n(α), dn , αn,0
Output: αn,In , In

1 Define constants: αmin = 10−8, flag = 1, η = 2, c2 = 0.9, i = 0
2 αmax = min( 1

||dn||2 , 107)

3 Evaluate F ′n(0), increment i (or use saved gradient from last F ′n−1(αn−1,In−1), to
evaluate g(xn−1 + αn−1,In−1 · dn−1)Tdn without incrementing i)

4 if αn,0 > αmax then
5 αn,0 = αmax

6 if αn,0 < αmin then
7 αn,0 = αmin

8 Evaluate F ′n(αn,0), increment i
9 Define toldd = |c2F ′n(0)|

10 if F ′n(αn,0) > 0 and αn,0 < αmax then
11 flag = 1, decrease step size

12 if F ′n(αn,0) < 0 and αn,0 > αmin then
13 flag = 2, increase step size

14 if F ′n(αn,0) > 0 and F ′n(αn,0) < toldd then
15 flag = 0, immediate accept condition

16 while flag > 0 do
17 if flag = 2 then
18 αn,i+1 = αn,i · η
19 Evaluate F ′n(αn,i+1)
20 if F ′n(αn,i+1) ≥ 0 then
21 flag = 0

22 if αn,i+1 >
αmax
η then

23 flag = 0

24 if flag = 1 then
25 αn,i+1 =

αn,i

η

26 Evaluate F ′n(αn,i+1)
27 if F ′n(αn,i+1) < 0 then
28 flag = 0

29 if αn,i+1 < αmin · η then
30 flag = 0

31 αn,In = αn,i+1
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A.3.3 Inexact Line Search: Gradient-Only Line Search Maximizing step size
(GOLS-Max)

Parameters used for this method are: η = 2, c2 = 0.9, αmin = 10−8 and αmax = 107. F ′n(α) =
g(xn + α · dn)Tdn.

Algorithm 5: GOLS-Max: Gradient-Only Line Search Maximizing step size

Input: F ′n(α), dn , αn,0
Output: αn,In , In

1 Define constants: αmin = 10−8, flag = 1, η = 2, c2 = 0.9, i = 0
2 αmax = min( 1

||dn||2 , 107)

3 Evaluate F ′n(0), increment i (or use saved gradient from last F ′n−1(αn−1,In−1), to
evaluate g(xn−1 + αn−1,In−1 · dn−1)Tdn without incrementing i)

4 if αn,0 > αmax then
5 αn,0 = αmax

6 if αn,0 < αmin then
7 αn,0 = αmin

8 Evaluate F ′n(αn,0), increment i
9 Define toldd = |c2F ′n(0)|

10 if F ′n(αn,0) > 0 and αn,0 < αmax then
11 flag = 1, decrease step size
12 else if F ′n(αn,0) < 0 and αn,0 > αmin then
13 flag = 2, increase step size
14 else
15 flag= 0

16 while flag > 0 do
17 if flag = 2 then
18 αn,i+1 = αn,i · η
19 Evaluate F ′n(αn,i+1)
20 if F ′n(αn,i+1) ≥ toldd then
21 flag = 0

22 if αn,i+1 >
αmax
η then

23 flag = 0

24 if flag = 1 then
25 αn,i+1 =

αn,i

η

26 Evaluate F ′n(αn,i+1)
27 if F ′n(αn,i+1) < toldd then
28 flag = 0

29 if αn,i+1 < αmin · η then
30 flag = 0

31 αn,In = αn,i+1
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A.3.4 Inexact Line Search: Gradient-Only Line Search with Backtracking
(GOLS-Back)

Parameters used for this method are: η = 2, c2 = 0, αmin = 10−8 and αmax = 107. F ′n(α) =
g(xn + α · dn)Tdn.

Algorithm 6: GOLS-Back: Gradient-Only Line Search with Backtracking

Input: F ′n(α), dn , αn,0
Output: αn,In , In

1 Define constants: αmin = 10−8, flag = 1, η = 2, c2 = 0, i = 0
2 Evaluate F ′n(0), increment i (or use saved gradient from last F ′n−1(αn−1,In−1), to

evaluate g(xn−1 + αn−1,In−1 · dn−1)Tdn without incrementing i)
3 αmax = min( 1

||dn||2 , 107)

4 αn,0 = αmax
5 Evaluate F ′n(αn,0), increment i
6 Define toldd = |c2F ′n(0)|
7 if F ′n(αn,0) > 0 and αn,0 < αmax then
8 flag = 1, decrease step size

9 if F ′n(αn,0) < 0 then
10 flag = 0

11 while flag > 0 do
12 αn,i+1 =

αn,i

η

13 Evaluate F ′n(αn,i+1)
14 if F ′n(αn,i+1) < 0 then
15 flag = 0

16 if αn,i+1 < αmin · η then
17 flag = 0

18 αn,In = αn,i+1

A.4 Line Search Adapted optimization algorithms

Here we list the considered popular training algorithms that were adapted to accommodate line
searches in Chapter 5. Again, the algorithms are shown using symbols that are agnostic to the
mini-batch sub-sampling (MBSS) method used, as both static and dynamic MBSS is possible for
these algorithms. Gradient-only line searches adapt seamlessly to both sub-sampling methods.

A.4.1 Line Search Stochastic Gradient Descent (LS-SGD)

Stochastic Gradient Descent (SGD) [Robbins and Monro, 1951] is based on the steepest de-
scent algorithm [Arora, 2011], but uses MBSS loss function approximations, g(x) as its search
directions. When an a priori learning rate schedule has been selected, SGD is equivalent to a
subgradient approach [Boyd et al., 2003]. We use line searches to determine its learning rates,
called LS-SGD, in Algorithm 7 and coupled it with GOLS-I:

Algorithm 7: LS-SGD: Line Search Stochastic Gradient Descent

1 Set n = 0 and choose the initial weights x0

2 while stop criterion not met do
3 Compute g(xn)
4 Define the search direction, dn = −g(xn)
5 Set the step length, αn,In , using a line search
6 Update xn+1 = xn + αn,Inxn

163



A.4.2 Line Search Stochastic Gradient Descent with Momentum (LS-SGDM)

The addition of a momentum term to the steepest descent formulation allows for a fraction of
the previous update step to be added to the current step [Rumelhart et al., 1988]. This emulates
the behaviour of ”momentum” in a physical system. The rationale behind this approach is to
allow the algorithm to escape local minima with the aid of this ”momentum”. A consequence
thereof is that ascent steps can be taken, in particular if the momentum parameter is large. An
outline of the method with a line search is given in Algorithm 8:

Algorithm 8: LS-SGDM: Line Search Stochastic Gradient Descent using Momentum

1 Set n = 0 and choose initial weights x0, momentum constant γm = 0.9, an initial
update term c0 = 0̄

2 while stop criterion not met do
3 Compute g(xn)
4 Define the descent direction dn = −g(xn)
5 Set the step length, αn,In , using a line search
6 Define the update step cn+1 = αn,Indn + γmcn
7 Update xn+1 = xn + cn

A.4.3 Line Search Nesterov Accelerated Gradient Descent (LS-NAG)

Nesterov’s Accelerated Gradient Descent algorithm [Nesterov, 1983] can be seen as an extension
of the momentum strategy. In this case the gradient vector for the update step is evaluated only
once the momentum term has been added to the current solution, as opposed to afterwards as for
SGD with momentum. This therefore results in a less naive implementation of the momentum
concept. This method as used with a line search is given in Algorithm 9:

Algorithm 9: LS-NAG: Line Search Nesterov Accelerated Gradient Descent

1 Set n = 0 and choose initial weights x0, an initial update term c0 = 0̄, momentum
constant γm = 0.5

2 while stop criterion not met do
3 Compute g(xn + γmcn)
4 Define the search direction dn = −g(xn + γmcn)
5 Define the step length, αn,In , using a line search
6 Define the update step cn+1 = αn,Indn + γmcn
7 Update xn+1 = xn + cn+1

A.4.4 Line Search Adagrad

The Adagrad algorithm [Duchi et al., 2011] performs steepest descent updates with an integrated
learning rate scheme independently on each weight. This means, that a learning rate is assigned
to every dimension separately, the magnitude of which is determined to be a function of the
sum of the current, as well as previous squared gradient magnitudes. The learning rate schedule
is constructed such that it biases higher learning rates for dimensions that have a flat slope
(low partial derivative magnitudes), and assigns smaller learning rates to dimensions with large
slopes (high partial derivative magnitudes). We determine the learning rate for Adagrad using
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a line search in Algorithm 10.

Algorithm 10: LS-Adagrad: Line Search Adagrad

1 Set n = 0, v0 = 0̄, c0 = 0̄ and choose the initial weights x0

2 while stop criterion not met do
3 Compute g(xn)
4 Define cn = −g(xn)
5 Calculate vn+1 = cn � cn + vn with � indicating the element-wise multiplication or

Hadamard product [Reams, 1999]

6 Define the components of the search direction dn = (vn+1 + ε1̄)◦−
1
2 � cn, with 1̄

indicating a vector with all elements one and the superscript ◦ the Hadamard
power or the power of each element in the vector (vn+1 + ε1̄) to −1

2 .
7 Set the step length, αn,In , using a line search
8 Update xn+1 = xn + αn,Indn

A.4.5 Line Search Adadelta

A disadvantage of Adagrad is that the accumulation of all the past gradients in the vn term
causes the vn term to become large over time, diminishing the search direction.. This causes the
overall learning rate to decrease and can cause slow progress in later stages of training. Adadelta
[Zeiler, 2012] is an extension of Adagrad, which makes use of an exponentially decaying average
for vn, such that a reasonable learning rate remains throughout training. It also implements
and update magnitude rule in the form of an exponentially decaying average of the previous
updates, mn. We add a line search to this method in Algorithm 11:

Algorithm 11: LS-Adadelta: Line Search Adadelta

1 Set n = 0, v0 = 0̄, d0 = 1̄ and choose the initial weights x0 and β = 0.9
2 while stop criterion not met do
3 Compute g(xn)
4 Define cn = −g(xn)
5 Calculate vn+1 = (β − 1)cn � cn + βvn
6 Calculate mn+1 = (β − 1)dn � dn + βmn

7 Define the components of the search direction

dn+1 = (mn+1 + ε1̄)◦
1
2 � (vn+1 + ε1̄)◦−

1
2 � cn

8 Determine αn,In , using a line search
9 Define xn+1 = xn + αn,Indn+1

A.4.6 Line Search Adam

Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also makes use of different learning
rates for independent components of xn. These learning rates are a function of exponentially
decaying past averages. In this case these are obtained from the first moment (the mean) mn and
the second moment (the centred variance) vn of the past gradients. Due to the initial values for
both these variables being chosen to be 0, the initial learning rates tend to be too small, resulting
in slow training in the beginning. To account for this, the respective bias-corrected estimates
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are used, m̂n and v̂n. We determine its learning rates using a line search in Algorithm 12:

Algorithm 12: LS-Adam: Line Search Adam

1 Set n = 0, m0 = 0̄, v0 = 0̄, and choose the initial weights x0, β1 = 0.9 (β1 = 0) and
β2 = 0.999

2 while stop criterion not met do
3 Compute g(xn)
4 Define cn = g(xn)
5 Define mn+1 = β1mn + (1− β1)(cn)
6 Define vn+1 = β2vn + (1− β2)(cn � cn)
7 Calculate m̂n+1 = mn+1

1−β1
8 Calculate v̂n+1 = vn+1

1−β2

9 Define the components of the search direction dn = (v̂
◦ 1
2
n+1 + ε1̄)◦−1 � m̂n+1

10 Set the step length, αn,In , using a line search
11 Update xn+1 = xn + αn,Indn

A.5 Heuristics for determining the number of hidden units

The number of hidden units in a single hidden layer feedforward network, H, was chosen to be
the smaller of two heuristics, H1 and H2 given as:

H1 =
M
Cr
−K

D +K + 1
, (A.4)

and
H2 = D − 1. (A.5)

And therefore,

H = min(H1, H2), (A.6)

where D is the number of input features of a given dataset, M is the total number of ob-
servations, Cr is a regression constant and H1 is rounded down to the nearest integer value.
The regression constant Cr determines how rigid the model is, with Cr > 1 resulting in less
parameters relative to the degrees of freedom in the data, and Cr < 1 resulting in more pa-
rameters than data points in the training dataset. In our investigation this constant was set to
Cr = 1.5, which ensures that the model regresses through the data. Arguably, pruning [Reed,
1993] is an alternative approach, but our heuristic approach is sufficient for the purposes of this
investigation with the benefit of simplicity.
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