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SUMMARY

THE SHAPE OPTIMISATION OF COMPLIANT STRUCTURES TO PRODUCE A DESIRED
SNAP-THROUGH LOAD-DISPLACEMENT PATH

by

Johann Mynhardt Bouwer
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The research problem completed in this thesis is to develop an efficient procedure to design the optimal
shape of compliant mechanisms for specified load-deflection paths and snap-through behaviour. Here,
computationally intensive simulations are required to approximate the entire load path as a function of
the shape or spatial variables. Solving this problem efficiently, as will be demonstrated in this thesis,
requires unconventional multidisciplinary strategies, as conventional modern techniques are ineffective or
impractical.

In the case of simulation in the loop, where the numerical simulation is evaluated directly in the op-
timisation loop, unavoidable numerical discontinuities are present in the objective function. These
discontinuities grow in number and size as the complexity and dimensionality of the problem increases.
Modern gradient-based optimisers are incapable of bypassing these discontinuities and terminate prema-
turely, misrepresenting these discontinuities as local minima. Therefore, this research advocates for the
use of non-negative gradient projection points, utilised by gradient-only optimisation techniques, to define
meaningful shape optimisation solutions. These techniques ignore the discontinuous changes in function
value to find non-negative gradient projection points.

Simulation in the loop is limited by the sequential nature of iterating from design to design, incurring the
time penalty of having to wait for time-consuming simulations. Surrogate-based optimisation parallelises
the time-consuming computational simulations, enabling computationally efficient surrogate models to be
constructed instead. As the load paths evolve with systematic load application, these models evolve not
only spatially but also temporally as a function of a pseudo-time variable. Spatial and temporal variables
result in two sources of anisotropy. Firstly, the response anisotropy of the function as the temporal
evolution of load-deflection curves is distinct from the spatial evolution as a function of shape variables.
Secondly, sampling anisotropy as spatial variables are sampled distinctly from the usually densely sampled
temporal variable resulting from iteratively evolving the load-deflection path. Response and sampling
anisotropies can result in significant mismatches between the model forms from sampled data and typical
isotropic kernels used in surrogate construction.

This study develops two solutions that address the response and sampling anisotropies, respectively. The
results definitively demonstrate that both sources of anisotropy need to be addressed to construct accurate
surrogate models that are meaningful for the shape optimisation problem.

First, a novel coordinate transformation scheme is developed to transform the function response to be
more isotropic as a data pre-processing step. The key here is to utilise gradient information to estimate an
updated isotropic reference frame, which also makes the strategy more tractable for higher dimensions.
Secondly, sampling anisotropy is addressed by redistributing the surrogate kernels over the spatio-temporal
domain and relying on regression to fit the surrogate response as opposed to limiting the centres to the
sampling points. These improved surrogate models require significantly fewer computational resources to
complete the optimisation problem as compared to placing the simulations directly in the optimisation
loop.
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Chapter 1 Introduction

The following thesis documents the contribution of the author as a post-graduate student in the Depart-
ment of Mechanical and Aeronautical Engineering at the University of Pretoria. Each of the following
chapters is based on published or submitted papers and are self-contained advancements towards
the development of a general and efficient procedure to perform shape optimisation of compliant
mechanisms to produce desired snap-through behaviour. At the time of writing, the complete list of
published articles are

• J. M. Bouwer, S. Kok and D. N. Wilke, "Challenges and solutions to arc-length controlled struc-
tural shape design problems", Mechanics-Based Design of Structures and Machines, pp.1–32,
2021.

• J. M. Bouwer, D. N. Wilke, and S. Kok, "Spatio-temporal gradient enhanced surrogate modeling
strategies," Mathematical and Computational Applications, vol. 28, no. 2, 2023.

• J. Bouwer, D. N. Wilke, and S. Kok, "A novel and fully automated coordinate system
transformation scheme for near-optimal surrogate construction," Computer Methods in Applied
Mechanics and Engineering, vol. 419, p. 116648, 2024.

The finite element solver used in this research is adapted from in-house code of the Mechanical
Engineering Department of the University of Pretoria, while all other methods and algorithms, unless
stated otherwise, are developed and implemented by the author in Python.

This chapter briefly discusses and provides context for the research problem, and then the layout of the
thesis is presented.

1.1 Background
The goal of this research is the shape optimisation of compliant mechanisms to produce a desired
highly non-linear load path. Specifically, the desired load path will exhibit snap-through behaviour,
i.e., the load path possesses multiple limit and equilibrium points. This optimisation problem exhibits
many characteristics that render conventional modern optimisation approaches ineffective. Therefore,
to complete this optimisation problem, current techniques will need to be improved, and new methods
must be developed.

1.1.1 Problem Statement

In general, the unconstrained optimisation problem is expressed as

Minimise
w.r.t x

F(x), x = [x1,x2, ...,xn]
T ∈ Rn, (1.1)

where F(x) is a scalar objective function to be minimised with respect to the column vector x, which
consists of real and continuous values. These values are referred to as design variables or, in the case
of shape optimisation, as shape parameters. These shape parameters can include characteristics such
as lengths, thicknesses, or radii of any given structure. There are two broad categories of methods that

1



Chapter 1 Introduction

can solve this optimisation problem. These are direct optimisation methods [1–5], or Surrogate-Based
Optimisation (SBO) methods [6–9].

Direct optimisation methods refer to the strategy in which the numerical simulation is evaluated directly
in the optimisation loop. Although this strategy is typically convenient to implement, the employed
methods can be computationally expensive due to the sequential nature in which the numerical
simulations must be completed, as the next simulation in the optimisation path depends on the results
of the previous simulation. Therefore, surrogate-based techniques were developed to parallelise the
computationally expensive simulations. In SBO the simulation is completed for predetermined designs
and the results used to construct a computationally efficient surrogate model. Specifically, in this
research, the construction of spatio-temporal models is required. These models are needed because
the load paths do not only evolve due to shape (or spatial) changes but also due to the systematic
increase of a temporal variable that describes the position along the load path. As such, the models
must incorporate both spatial and temporal variables to approximate the numerical simulation.

The implementation and the weaknesses of popular direct and SBO methods are discussed in more
detail later in the thesis. Both of these options are considered and adapted to handle the complexity of
the research problem.

1.1.2 Applications of Snap-through Structures

Snap-through structures are a family of structures that exhibit highly non-linear behaviour and typically
possess multiple limit and equilibrium points in their load paths. Figure (1.1) shows an example
snap-through structure, commonly known as the Lee Frame, as well as its associated non-linear load
path with multiple limit and equilibrium positions [10, 11].

Figure 1.1. Displacement Overlay and Load-Displacement Curve for the Lee Frame with limit points (red
dots) and equilibrium positions (blue dots) indicated on the load path.

Therefore, the goal of this research is to specify the load path, with any number of desired limit and
equilibrium points, and to return the structure that will most closely exhibit this load path.

Snap-through behaviour is often used in the design of so-called compliant mechanisms. Compliant
mechanisms are defined as any mechanism in which some portion of the mobility of the mechanism is
gained through the flexibility of the structure itself. These mechanism are used in a many applications
such as plastic bottle caps, mechanical switches, or micro-electro mechanical systems (MEMS).

Department of Mechanical and Aeronautical Engineering
University of Pretoria
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Specifically, snap-through behaviour is used to develop compliant designs that require multiple stable
equilibrium positions.

1.1.3 Analysis of Snap-through Structures

In this research, the function F(x) in Equation (1.1) consists of a computationally expensive Finite
Element (FE) simulation in which the nonlinear load path of a snap-through structure is solved. In
non-linear FE analysis, the governing residual equation is expressed as

R = K(u)u−λF, (1.2)

where K, u, λ , and F denote the stiffness matrix, the nodal displacement vector, the load parameter,
and the load vector respectively. In the load control scheme, the goal of some iterative non-linear
solver is to find the nodal displacement vector at some specified load parameter value that reduces the
governing residual, Equation (1.2), to 0 within some desired tolerance.

This iterative solver typically takes the form of Newton’s method, where the gradient of Equation (1.2)
is computed with respect to the nodal displacement vector. A problem with this solution strategy
arises when the load path has a limit point, as Newton’s method cannot fully trace the curve past this
point.

Therefore, in this work, the Arc Length Control (ALC) algorithm is selected to provide the analysis.
To justify this selection, three possible load-deflection paths are presented in Figure (1.2) that may be
encountered during the optimisation process. Figure (1.2)(A) shows a curve that can be solved with
the ALC method, load control, and displacement control. Figure (1.2)(B) can only be solved with
displacement control or the ALC method. Finally, Figure (1.2)(C) can only be solved with the ALC
method.

Figure 1.2. Three Possible Load-Deflection Curves that Structures can exhibit during the Optimisation
Process.

Therefore, the ALC method allows for more complex behaviour to be simulated and, because of this,
will also allow for more complex target curves to be provided for the optimisation problem. The
implementation of the ALC method on displacement control means that the restrictions placed in
previous work on this topic [1–3] are no longer needed, and far more general desired load-deflection
paths can be specified in the shape-optimisation problem.

The ALC algorithm is a path-following method that was first proposed by Riks [12]. It is often
implemented when load or displacement control algorithms fail to trace the entire load path due to the
highly non-linear behaviour of the simulated structure. The algorithm is implemented in a non-linear
Finite Element (FE) research code in the Octave environment.

Department of Mechanical and Aeronautical Engineering
University of Pretoria
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The ALC algorithm proposes a solution to the Newton-Raphson algorithm’s inability to bypass limit
points by adding a constraint equation,

L2 = NuTNu+ψ
2Nλ

2FTF. (1.3)

Here, L denotes the prescribed arc length, Nu is the total displacement vector update for the current load
step, Nλ is the total load parameter increment for the current load step, and ψ is some non-dimensional
scale factor. The scale factor scales the load increment to a more appropriate value so that the load
increment and displacement increment contribute similarly to the constraint equation. This variable ψ

is often set to zero, typically referred to as a spherical constraint, but if selected appropriately, it can be
beneficial for solution times. For the remainder of this research, it is assumed that the load vector F is
a single-point load with unit magnitude. Therefore, Equation (1.3) can be simplified to

L2 = NuTNu+ψ
2Nλ

2. (1.4)

This constraint equation implies that both the displacement vector update and load parameter increment
are now unknowns. The prescribed arc length, L, and ψ variables are problem-dependent hyperpara-
meters. Typically, the ALC algorithm requires the prescribed arc length, L, and then an accumulated
arc length that terminates the simulation once reached. The selection of an appropriate prescribed
arc length and accumulated arc length is problem specific, and often requires some iteration and
experimentation to find a combination that yields satisfactory results.

To enhance the robustness of the ALC algorithm, the prescribed arc length can be automatically
adjusted based on one of two scenarios. First, if there is no intersection between the prescribed arc
length and the equilibrium path, the prescribed arc length decreases by some factor until an intersection
is found. Secondly, if the intersection is not found within some set number of iterations, the prescribed
arc length is also decreased by some factor and the equilibrium iterations begin again. This automatic
prescribed arc length adjustment increases computational efficiency as the algorithm can now take
large solution steps when the load path behaves close to a linear fashion, and then adjust to take smaller
solution steps when the load path behaviour is more complex. The automatic prescribed arc length
adjustment heuristic is central to the challenges and solution process followed in this research.

The inclusion of the arc length constraint creates a new system of equations that needs to be solved
with some iterative solver. The reader is referred to the literature for solution strategies for this new
system of equations [13–15].

1.2 Outline of Research Contributions
The overall contribution of this thesis is the development of a general, robust, and efficient optimisation
strategy to complete shape optimisation of compliant mechanisms to produce a desired highly non-
linear load path. These aforementioned criteria mean that the strategy must be able to accommodate
a wide range of specified and simulated load paths, consistently find local and global minima in the
design domain, and be efficient with computational resources. These criteria are used to develop and
assess the developed optimisation framework.

To begin, the ALC algorithm is selected to facilitate the numerical simulation of highly non-linear
load paths, as it is capable of tracing a wide range of load paths with multiple limit and equilibrium
points. To improve the computational efficiency of the numerical simulations, the solution step size is
automatically adjusted during the simulation. This means that large steps are taken during linear regions
of the load path and then automatically reduced during highly non-linear regions of the load path.
Although this reduces the computational cost of the numerical simulations, this automatic stepping
means that the designer surrenders control of where simulation returns discrete solutions along the load
path. This will create discontinuities in any objective function that attempts to quantify the discrepancy
between a target and trail load path, as the number and locations of the points that describe these curves

Department of Mechanical and Aeronautical Engineering
University of Pretoria
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can differ greatly. These discontinuities can result in commonly used optimisation strategies to fail, as
they can misinterpret these discontinuities as local minima. Figure (1.3) illustrates such an objective
function for a two variable problem completed later in the study.

Figure 1.3. An example of a discontinuous objective function encountered in this research problem.

These discontinuities are numerical artefacts that would disappear in the limit of infinite computational
resources where an extremely small and constant step size could be implemented. Therefore, to
keep the optimisation strategy robust, these discontinuities should be ignored. Common best practice
advocates to eliminate these discontinuities with either complex interpolation strategies, or for the
implementation of zero-order optimisation methods [4, 5]. Instead, this work will find non-negative
gradient projection points with gradient-only optimisation techniques [16–18]. These techniques
should be capable of finding the user-specified load path regardless of the size and number of the
discontinuities present in the problem.

These gradient-only techniques require that gradient information be made available. Therefore,
the first contribution of this thesis is the development and verification of an analytical sensitivity
procedure that incorporates the ALC algorithm. To the best of the author’s knowledge, documented
analytical sensitivity procedures that include the ALC algorithm prior to this research are limited to
the first limit point in the load path [19, 20]. This analytical procedure will mean that computationally
expensive numerical sensitivity strategies, such as forward difference or complex step, do not need
to be implemented. The computational cost of these numerical methods also increases with the
dimensionality of the problem, while the developed analytical procedure is relatively insensitive to the
number of variables in the problem. This allows for higher-dimensional problems to be completed by
the developed optimisation strategies.

Another source of computational cost is the requirement that the simulations must be completed in
a sequential fashion. When the numerical simulation is placed in the optimisation loop, the next
simulation can only be completed once the result of the previous simulation has dictated the next trail
design. Therefore, if these simulations could be completed in parallel the computational cost of the
optimisation process will be greatly reduced.

This parallelisation is achieved by implementing surrogate-based optimisation. The computationally
expensive simulation is replaced by a computationally inexpensive model trained on generated data
from numerous simulations completed in parallel. This model is then used during the optimisation
process. These models will need to be a function of both the shape variables as well as the arc length
variable to provide an approximation of the entire load path. This requires the implementation of either

Department of Mechanical and Aeronautical Engineering
University of Pretoria
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spatio-temporal or network models. Spatio-temporal models are a function of both the shape (spatial)
variables as well as the arc length (temporal) variable, while the network models are a series of only
spatial models constructed at predetermined locations in the temporal domain.

The accuracy of the chosen model will have a major impact on the quality of the found optimum design.
There are two sources of concern that can negatively impact the performance of these models. First,
common surrogate models are typically constructed with isotropic kernels. These isotropic kernels
will therefore struggle to fit to anisotropic data manifolds. The anisotropic manifolds present in this
problem arise from two sources, specifically,

1. the evolution of the various shape parameters can have vastly different impacts of the evolution
of the load path, creating anisotropy in the spatial directions,

2. and the anisotropy due to the load path evolution as a function of the temporal variable compared
to evolution as function of the spatial variables.

These sources of anisotropy can be addressed by completing a transformation of the coordinate system
that will recast the problem into a reference frame where the function becomes isotropic. This concept
is demonstrated in Figure (1.4) where a 2-dimensional problem is linearly transformed into reference
frames where the function becomes progressively more isotropic.

Figure 1.4. A figure illustrating the transformation of a coordinate system into an isotropic reference frame.

Finding a transformation that will complete this task is an information dense problem. For a n-
dimensional problem, simply estimating one linear transformation requires a n×n rotation matrix and
n scaling parameters. Therefore, making use of gradient vectors that grow with the dimensionality of
the problem but remain computationally practical to compute using the developed sensitivity procedure
will be necessary. The developed transformation scheme will assume that the underlying function
of the problem is decomposable, i.e., that only a single linear transformation is required to find an
isotropic coordinate system.

The second characteristic of this optimisation problem that will be detrimental to surrogate performance
is specific to the spatio-temporal models. As these model incorporate both the spatial and temporal
variables in the problem, it must deal with the anisotropic locations of the samples in the full spatio-
temporal domain. This sampling anisotropy arises because spatial variables are sampled distinctly from
the usually densely sampled temporal variable resulting from iteratively evolving the load-deflection
path. This phenomena is shown in Figure (1.5) for a 3-dimensional problem where a full spatial
problem is compared to a spatio-temporal problem.

This anisotropy can be eliminated by redistributing the centres, i.e. the locations of the kernels,
throughout the full spatio-temporal domain. This redistribution once again creates an isotropic version

Department of Mechanical and Aeronautical Engineering
University of Pretoria
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Figure 1.5. The differences between the sample locations in a full spatial problem (sub-figure A) and a
spatio-temporal problem (sub-figure B) in three dimensions.

of the original anisotropic problem, which can greatly improve the accuracy of the spatio-temporal
models. With the implementation of the discussed techniques, the original shape optimisation problem
can them be resolved with hopefully greater computationally efficiency compared to the gradient-only
simulation in the loop strategy.

All of these characteristics described in this section are present in a wide range of optimisation
problems. Therefore, all the insights that are gained through this research will be applicable to the
field of optimisation at large, and not simply on the shape optimisation of compliant snap-through
mechanisms.

1.3 Structure of Thesis
The structure of the thesis is then as follows. Firstly, as almost all modern and computationally
efficient optimisation techniques require gradient information, the first step of this research completed
in Chapter 2 is to develop a design sensitivity procedure that is efficient and general. This procedure
is unaffected by and remains reliable regardless of the complexity or non-linearity present in the
simulation.

From this sensitivity procedure, it is possible to implement a direct optimisation strategy in Chapter 3.
This technique places the computationally expensive simulation directly in the optimisation loop. This
technique, due to the adaptive numerical solution strategy required to simulate snap-through structures,
creates large and unavoidable discontinuities in the objective function. These discontinuities require
the implementation of gradient-only optimisation algorithms, in order to find non-negative gradient
projection points, as current widely used optimisation algorithms simply cannot reliably bypass the
discontinuities and find the global best solution.

To improve the efficiency of the solution strategy Surrogate-Based Optimisation (SBO) is implemented.
SBO is a technique where computationally inexpensive surrogate model replaces the computationally
expensive Finite Element (FE) simulation. SBO has the benefit of implicitly storing the information
gained from each simulation in the surrogate model, unlike direct optimisation which discards the
information from the previous simulation once the optimisation step is completed.

The underlying surrogate models used in SBO often make the isotropic assumption, i.e., that all
variables in the problem have an equal impact on the outcome. This assumption is not reasonable on
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the underlying problem in this research. Therefore, a novel coordinate system transformation scheme
is developed in Chapter 4 that makes use of gradient information to recast the problem into a reference
frame where the isotropic assumption is once again valid. In this chapter the proposed transformation
method is only applied to test problems that are sampled uniformly.

Since the goal of the shape optimisation problem tackled in this work is to match the desired response,
i.e., a desired load path, and not simply a single scalar value such as maximum displacement or stress.
Two options are available to approximate the system response when using surrogates, as detailed
in Chapter 5. The first option is to use a network of surrogate models, referred to as the Network
Surrogate Model (NSM) technique, constructed at predetermined locations in the pseudo-time or arc
length variable domain. The second option is the construction of so-called spatio-temporal surrogate
models. In this case, the pseudo-time variable is included alongside the shape parameters as inputs to
the surrogate model. Consequently, the system response is sampled in a anisotropic fashion: sparse
sampling of the shape parameters and small incremental sampling in the pseudo-time direction. For
the spatio-temporal models such nonuniform sampling of the domain is ill-suited to current surrogate
modelling methods. Therefore, Chapter 6 demonstrates that these models become a useful addition
to the optimisation procedure only once the centres of the model are redistributed throughout the
spatio-temporal domain, and the coordinate system transformation scheme is implemented.

The remaining step completed in Chapter 6 is to compare the use of spatio-temporal surrogate models,
using the developed techniques to address the anisotropy in the problem, to both the NSM models
as well as the direct optimisation completed in Chapter 3. It is shown that the developed surrogate
model construction techniques require far less computational resources than the direct optimisation
approach.

Lastly, conclusions and areas of future research are offered in Chapter 7.
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Chapter 2 Analytical Sensitivity Derivations

2.1 Chapter Abstract
The following chapter develops an analytical shape sensitivity procedure, published in [21], for the case
where the arc length control algorithm is implemented with the four nodded assumed stress element.
Analytical sensitivities will allow for the implementation and development of powerful gradient-based
optimisation techniques throughout the study completed in this thesis.

The procedure generates the gradient information with respect to the node locations for both the load
and displacement values throughout the entire load displacement path. It also computes the sensitivity
of the load and displacement results with respect to the arc length variable.

The procedure is numerically validated with an example problem that increases in dimensionality that
also demonstrates the benefit in solution times for the analytical procedure over the numerical finite
difference approach.

2.2 Introduction
This chapter presents a procedure to calculate the analytical shape sensitivities [19,22,23] that includes
the ALC procedure for multiple limit points. To the best of the author’s knowledge, analytical shape
sensitivities that includes the ACL procedure is limited to the first limit point [19, 20], without offering
detailed guidelines on how to proceed for multiple limit points.

This analytical procedure will greatly improve the efficiency with which snap-through structures can
be designed using shape optimisation, for two reasons. First, more modern and efficient optimisation
techniques can be implemented that make use of reliable gradient information. Second, these optim-
isation techniques will not need to rely on the computationally expensive finite difference method of
calculating gradients.

2.3 Arc Length Control Sensitivity
The governing residual equation, with its dependencies, of a non-linear path independent FEM problem
at equilibrium is expressed as

R(u(λ (x),x),λ (x),x) = 0, (2.1)
where u, λ and x denote the nodal displacement vector, the load parameter, and the design vector
respectively. The gradient with respect to the design variable vector x is then expressed as

∂R
∂u

∂u
∂λ

∂λ

∂x
+

∂R
∂u

∂u
∂x

+
∂R
∂λ

∂λ

∂x
+

∂R
∂x

= 0. (2.2)

The terms ∂R
∂u and ∂R

∂λ
are simply the tangent stiffness matrix KT and the load vector F respectively.

Therefore, Equation (2.2) can be re-written as

KT
∂u
∂x

+

(
KT

∂u
∂λ

+F
)

∂λ

∂x
=−∂R

∂x
. (2.3)
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Expressing the derivative of Equation (2.1) with respect to the load parameter results in the equa-
tion

KT
∂u
∂λ

+F = 0. (2.4)
Substituting Equation (2.4) into Equation (2.3) results in the system of equations

KT
∂u
∂x

=−∂R
∂x

. (2.5)

This system of equations is then solved to find the displacement gradient term ∂u
∂x . As the design

variable term is a vector of values the resultant displacement derivative term is a N×M matrix where N
is the degrees of freedom in the mesh and M is the number of shape parameters in the design problem.
The derivative of the residual vector with respect to the design variable vector, ∂R

∂x , is dependent on
the implemented solution scheme and the element type used in the mesh. This term is discussed and
derived in Section (2.4).

In the case of the ALC algorithm, the displacement vector u and the load parameter λ both feature in
the Arc Length constraint equation

Nu(Nλ (x),x)TNu(Nλ (x),x)+ψ
2Nλ (x)2 = L2. (2.6)

Take note of the difference between the u, λ and Nu, Nλ terms in the Arc Length constraint equation.
The Arc Length constraint equation is satisfied exactly at each iteration while attempting to find the
equilibrium solution for a particular load step in the solution process [13]. The variables Nu and Nλ

denote the total incremental change of the nodal displacements and load parameter from the beginning
to the end of a load step (i.e. adding all the iterative changes, ∆u and ∆λ , for a particular load step).
The derivative of the Arc Length constraint equation is then expressed as

2NuT

(
∂Nu
∂Nλ

∂Nλ

∂x
+

∂Nu
∂x

)
+2ψ

2Nλ
∂Nλ

∂x
= 0, (2.7)

which can be simplified into

NuT ∂Nu
∂x

+

(
NuT ∂Nu

∂Nλ
+ψ

2Nλ

)
∂Nλ

∂x
= 0. (2.8)

What remains is to convert the total incremental terms in Equation (2.8) to the total terms in Equa-
tion (2.2). This can be done by expressing the total terms as the summation of all the previous total
incremental terms,

u =
I

∑
i
Nui, (2.9)

λ =
I

∑
i
Nλi, (2.10)

and then rearranging the equations such that current incremental terms at solution step I, is the
difference between the total terms and the summation of all the previous incremental terms, meaning
from the summation up to I−1,

NuI = u−
I−1

∑
i
Nui, (2.11)

NλI = λ −
I−1

∑
i
Nλi. (2.12)

Computing the gradients of Equation (2.11) and (2.12) w.r.t. the design variables results in

∂NuI

∂x
=

∂u
∂λ

∂λ

∂x
+

∂u
∂x
−

I−1

∑
i

dNui

dx
, (2.13)

∂NλI

∂x
=

∂λ

∂x
−

I−1

∑
i

dNλi

dx
. (2.14)
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These equations are then substituted into Equation (2.8),

NuT

(
∂u
∂λ

∂λ

∂x
+

∂u
∂x
−

I−1

∑
i

dNui

dx

)
+

(
NuT ∂Nu

∂Nλ
+ψ

2Nλ

)(
∂λ

∂x
−

I−1

∑
i

dNλi

dx

)
= 0, (2.15)

and then rearranged into

NuT ∂u
∂x

+

(
NuT ∂u

∂λ
+ψ

2Nλ

)
∂λ

∂x
= NuT

I−1

∑
i

dNui

dx
+

(
NuT ∂u

∂λ
+ψ

2Nλ

) I−1

∑
i

dNλi

dx
. (2.16)

This equation can then be used to solve for the load parameter derivative ∂λ

∂x as all the other terms in the
equation are known. The incremental terms, Nu and Nλ , are known as the sensitivity calculation occurs
at the end of a solution step, and the gradient terms ∂u

∂x and ∂u
∂λ

are calculated from Equations (2.5) and
(2.4) respectively. For the first solution increment the terms ∑

I−1
i

dNu
dx and ∑

I−1
i

dNλ

dx are zero.

A key difference that the derivations demonstrate between typical sensitivity analysis, where load or
displacement control is used, and the sensitivity analysis with the ALC algorithm is that the sensitivity
calculation is a function of the solution variables at previous iterations within the current load step.
Typically the sensitivity calculation is independent of the solution variables at intermediate iterations,
being only dependent on the converged values of the solution variables.

2.4 Residual Sensitivity
The residual derivative, ∂R

∂x , can be calculated using the chain rule

∂R
∂x

=
∂R
∂X

∂X

∂x
, (2.17)

where X denotes the global coordinates of the nodes in the mesh. Therefore the term ∂X
∂x quantifies

the effect the design variables have on the nodal coordinates of the mesh. A forward finite difference
scheme, where the design variables are altered by some small value and the structure re-meshed, is
used in this research to compute this term.

Since structures that exhibit highly non-linear behaviour, such as snap-through, typically exhibit this
behaviour when loaded in bending, the 4-noded assumed stress element [24] is used for the simulations
in this research. This element type is exact in bending for linear elasticity, and remains highly accurate
in bending for non-linear elasticity. The internal residual and tangent stiffness matrix of the assumed
stress element are expressed as

Rint = ∑
e
(teGeβe−Fe), (2.18)

K = ∑
e

te(Le +GeH−1
e GT

e), (2.19)

where Fe is the nodal load vector, te is the thickness of the element and the remaining terms, Ge, βe,
Le, and He are typically calculated using Gauss quadrature. These terms are calculated from

Ge = ∑
GP

BTFBdet(J)wGP, (2.20)

βe = H−1
e Me, (2.21)

Me = ∑
GP

PTEdet(J)wGP (2.22)

Le = ∑
GP

BTSBdet(J)wGP, (2.23)

He = ∑
GP

PTC−1Pdet(J)wGP, (2.24)
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Chapter 2 Analytical Sensitivity Derivations

where the terms J, B, P, S, E, and C are the Jacobian matrix, strain-displacement matrix, stress
interpolation matrix, the second Piola-Kirchoff stress matrix, the Green-Lagrange strain, and the
material constant matrix respectively. The Gauss quadrature weights are indicated by wGP.

The derivatives of the internal residual vector and the tangent stiffness matrix with respect to the nodal
coordinates are

dRint

dX
= ∑

e
te

(
dGe

dX
βe +Ge

dβe

dX

)
, (2.25)

dK
dX

= ∑
e

te

(
dLe

dX
+

dGe

dX
H−1

e GT
e +Ge

dH−1
e

dX
Ge +GeH−1

e
dGe

dX

)
. (2.26)

Therefore, the required derivatives of Equations (2.20) – (2.24) are expressed as
dGe

dX
= ∑

GP

(
dBT

dX
FBdet(J) +BT dF

dX
Bdet(J)

+BF
dB
dX

det(J)+BTFB
d det(J)

dX

)
wGP, (2.27)

dβe

dX
=

dH−1
e

dX
Me +H−1

e
dMe

dX
, (2.28)

dMe

dX
= ∑

GP

(
dPT

dX
Edet(J) +PT dE

dX
Pdet(J) + PTE

d det(J)
dX

)
wGP, (2.29)

dLe

dX
= ∑

GP

(
dBT

dX
SBdet(J) +BT dS

dX
Bdet(J)

+ BTS
dB
dX

det(J) +BTSB
d det(J)

dX

)
wGP, (2.30)

dHe

dX
= ∑

GP

(
dPT

dX
C−1Pdet(J) +PTC−1 dP

dX
det(J +PTC−1P

d det(J)
dX

)
wGP. (2.31)

These equations require the unknown terms dB
dX , dF

dX , d det(J)
dX , dH−1

e
dX , dP

dX , dE
dX , and dS

dX . The term dH−1
e

dX is
calculated using the known relationship

dH−1
e

dX
=−H−1

e
dHe

dX
H−1

e . (2.32)

The terms dF
dX , dS

dX , and dE
dX are calculated from the expressions

dF
dX

=
dB
dX

ue, (2.33)

dS
dX

=
dP
dX

βe +P
dβe

dX
, (2.34)

dE
dX

=
dF
dX

F+F
dF
dX

. (2.35)
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The Jacobian term for 2D analysis is expressed as

J =


∂x
∂η

∂y
∂η

∂x
∂ζ

∂y
∂ζ

 , (2.36)

where variables x and y are global coordinates and variables η and ζ are local element coordinates.
The relationships between these two sets of coordinates are expressed in the shape functions assumed
for FEM. In the case where the isoparametric formulation is used, these shape functions are used for
both the displacement and geometry. Equation (2.36) can then be rewritten as

J =


∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

∂N1

∂ζ

∂N2

∂ζ

∂N3

∂ζ

∂N4

∂ζ

Xe, (2.37)

where the shape functions, N1, N2, N3, and N4 for a 4 noded element are expressed as

N1 =
1
4
(1−η)(1−ζ ),

N2 =
1
4
(1+η)(1−ζ ),

N3 =
1
4
(1+η)(1+ζ ),

N4 =
1
4
(1−η)(1+ζ ). (2.38)

The determinant of J is described as∣∣∣∣∣∣∣
∂x
∂η

∂y
∂η

∂x
∂ζ

∂y
∂ζ

∣∣∣∣∣∣∣=
∂x
∂η

∂y
∂ζ
− ∂y

∂η

∂x
∂ζ

, (2.39)

where the terms in Equation (2.39) can easily be found from Equation (2.37). Therefore, the d det(J)
dX

term is described as
d det(J)

dX1
n

=
∂Nn

∂η

∂y
∂ζ

+
∂Nn

∂ζ

∂y
∂η

d det(J)
dX2

n
=

∂Nn

∂ζ

∂x
∂η

+
∂Nn

∂η

∂x
∂ζ

. (2.40)

The terms Xd
n denote the element node number n and d indicates the degree-of-freedom.

The strain-displacement term, B, is described as

B =

1 0 0 0
0 0 0 1
0 1 1 0

[J−1 0
0 J−1

]
T, (2.41)

where T is only a function of the local co-ordinate variables. Therefore, the derivative of this equation
is then simply

dB
dD

=

1 0 0 0
0 0 0 1
0 1 1 0

[dJ−1

dX 0
0 dJ−1

dX

]
T, (2.42)
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as both the constant matrix and the term T are independent of the nodal coordinates of the element.
The final remaining unknown term, dJ−1

dX , is then calculated using

dJ−1

dX
=−J−1 dJ

dX
J−1, (2.43)

where the term
dJ
dX

is expressed as

dJ
dX1

n
=


∂Nn

∂η
0

∂Nn

∂ζ
0


dJ

dX2
n
=

0
∂Nn

∂η

0
∂Nn

∂ζ

 . (2.44)

In summary, the total sensitivity procedure can be separated into two basic sub-procedures. The first
sub-procedure, Sub-procedure (1), calculates the internal residual derivative and is dependent on both
the implemented element and meshing scheme.

Sub-procedure 1: Residual Derivative for Assumed Stress Element

Result: dR
dx

1 Calculate dX
dx ;

2 for All Degrees of Freedom in the Mesh do
3 Compute Equation (2.44);
4 Use this result and Equation (2.43) to compute Equation (2.42);
5 Compute Equation (2.40);
6 Determine Equations (2.25) and (2.26) using Equations (2.27) to (2.31);
7 for All Design Variables do
8 Multiply the result by the appropriate component in the dX

dx matrix;
9 Assemble this component into the dR

dx matrix;
10 end
11 end

The other sub-procedure, Sub-procedure (2), incorporates the first sub-procedure and is dependent
on the ALC method. The implementation of these sub-procedures creates an analytical sensitivity
procedure for highly geometrically non-linear structures.

Sub-procedure 2: ALC Analytical Sensitivity

Result: du
dx and dλ

dx for each solution step.
1 Set du

dx and dλ

dx to 0;
2 for End of Each Solution Steps do
3 Complete Algorithm (1);
4 Solve Equation (2.16);
5 Accumulate the du

dx and dλ

dx vectors;
6 end
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2.5 Sensitivity Verification
To verify the proposed analytical sensitivity procedure, outlined in Sections (2.3) and (2.4), the Deep
Semi-Circular Arch structure is used. The original structure has a radius of 100mm and spans 270°
(from -45°to 225°). The boundary conditions are asymmetric, with the left end pinned and the right
end clamped. This asymmetry ensures that the structure will always initially deform to the left as
the pinned boundary condition is less stiff than the clamped boundary condition. The geometry is
parameterised using, 1, 2, 4 and 8 design variables, as shown in Figure (2.1). The chosen design
variables describe the radius of the arch at equal angle increments from -45°to 225°, excluding the
end points which remain at a radius of 100mm. The arch radius for any angle θ ∈ −45◦;225◦ is then
described by a cubic spline.

Figure 2.1. Shape parameter positions indicated in red for increasing dimensionality.

Figure (2.2) shows the resultant displacement overlay and load displacement curve.

The effect of these shape variables on the load path can be calculated with a sensitivity study. This is
done using a forward finite difference scheme as well as the proposed analytical sensitivity procedure.
The two methods are compared at four different locations along the arc length variable for one, two,
and four dimensional problems. The sensitivity of the loaded node UL and λL, indicated in red in
Figure (2.2), is used for this comparison. The results in Tables (2.1) - (2.6) show that the numerical and
analytical partial derivatives of the gradient vector for the circular design shown in Figure (2.2) agree
up to the 4th significant figure, when using a perturbation size of 10−6 in the forward finite difference
scheme. Therefore the proposed analytical sensitivity procedure produces the correct results.

Table 2.1. Displacement Sensitivity, dUL
dx , Results for Forward Finite Difference and Analytical Procedures

for the One Variable Problem at Four locations in the Arc Length Domain.

Accumulated Arc Length 400 1000 1600 2000
Analytical Procedure 0.03404428 -0.0507639 -1.04374297 -0.1844686

Forward Finite Difference 0.0340304 -0.0507698 -1.03473532 -0.1844291
Ratio 1.000300 0.9998837 1.0087052 1.000214
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Figure 2.2. Displacement Overlay and Load Displacement Curve for a Symmetrical Deep Semi-Circular

Arch.

Table 2.2. Load Sensitivity, dλL
dx , Results for Forward Finite Difference and Analytical Procedures for the One

Variable Problem at Four locations in the Arc Length Domain.

Accumulated Arc Length 400 1000 1600 2000
Analytical Procedure -0.02100906 -0.01510655 0.01866241 -0.0318967

Forward Finite Difference -0.02100897 -0.01510661 0.01866189 -0.0318977
Ratio 1.0000424 0.99999577 1.0000278 0.999987

Table 2.3. Displacement Sensitivity, dUL
dx , Results for Forward Finite Difference and Analytical Procedures

for the Two Variable Problem at Four locations in the Arc Length Domain.

Accumulated Arc Length 400 1000 1600 2000
x1

Analytical Procedure 0.08857023 0.04147087 -0.88527241 0.43308858
Forward Finite Difference 0.08856114 0.04146612 -0.88526949 0.43308432

Ratio 1.00010255 1.00011437 1.0000033 1.00081204
x2

Analytical Procedure -0.05027044 -0.09858645 -0.28893837 -0.64061523
Forward Finite Difference -0.05027264 -0.09859181 -0.28892333 -0.64060926

Ratio 0.99995624 0.99994558 1.00005207 1.00077512

Another benefit of this analytical procedure is the increase in computational efficiency. Using finite
difference schemes, multiple simulations per design variable are required to calculate the gradient of
the objective function. This can become computationally expensive if multiple design variables are
used or if the simulation itself is computationally expensive. The computational cost of the analytical
method on the other hand is insensitive to the number of design variables. Table (2.7) shows the
recorded solution times to compute the sensitivity results of this section.
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Table 2.4. Load Sensitivity, dλL
dx , Results for Forward Finite Difference and Analytical Procedures for the

Two Variable Problem at Four locations in the Arc Length Domain.

Accumulated Arc Length 400 1000 1600 2000
x1

Analytical Procedure -0.00548538 -0.00399829 0.01026828 -0.0456492
Forward Finite Difference -0.00548509 -0.00399837 0.01026855 -0.04561758

Ratio 1.00005297 0.99997809 0.99997358 1.00069308
x2

Analytical Procedure -0.0181498 -0.01299657 0.01072692 0.00976539
Forward Finite Difference -0.01814999 -0.01299666 0.01072569 0.00976615

Ratio 0.99998951 0.99999331 1.00011503 1.0002562

Table 2.5. Displacement Sensitivity, dUL
dx , Results for Forward Finite Difference and Analytical Procedures

for the Four Variable Problem at Four locations in the Arc Length Domain.

Accumulated Arc Length 400 1000 1600 2000
x1

Analytical Procedure -0.140657 -0.03900764 -0.03955682 -0.27462305
Forward Finite Difference -0.14066252 -0.03901245 -0.03955876 -0.27469613

Ratio 0.99996072 0.99987662 0.99995097 1.00019186
x2

Analytical Procedure 0.21768181 0.12473369 -1.01310569 0.17237048
Forward Finite Difference 0.21767762 0.12473147 -1.01311008 0.17127932

Ratio 1.00001928 1.0000178 0.99999566 1.00095851
x3

Analytical Procedure -0.01029556 -0.1702627 0.10939974 1.05805826
Forward Finite Difference -0.01029873 -0.17026403 0.10941162 1.05898409

Ratio 0.99969202 0.99999216 0.99989148 0.99256477
x4

Analytical Procedure -0.1172282 0.0279739 -0.23573261 -1.85925168
Forward Finite Difference -0.11722784 0.0279685 -0.23573114 -1.85375379

Ratio 1.00000376 1.00019304 1.00000625 1.00296582

2.6 Chapter Conclusion
This chapter develops and verifies an efficient and general procedure that can calculate the design
sensitivities for structures that are simulated with the ALC method. Unlike previous research this
procedure is not limited to the first limit point in the load path, but rather the sensitivity information is
available throughout the entire load path regardless of its complexity.

This procedure can now be incorporated in the reminder of the research into all the investigated and de-
veloped gradient-based optimisation methods in both the direct and surrogate-based techniques.
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Table 2.6. Load Sensitivity, dλL
dx , Results for Forward Finite Difference and Analytical Procedures for the

Four Variable Problem at Four locations in the Arc Length Domain.

Accumulated Arc Length 400 1000 1600 2000
x1

Analytical Procedure -0.00130446 -0.00195405 -0.00044107 0.00680901
Forward Finite Difference -0.00130379 -0.00195405 -0.00044083 0.00681081

Ratio 1.00051449 0.99999686 1.00053829 0.99973507
x2

Analytical Procedure -0.00695875 -0.0036526 0.02563156 -0.03213392
Forward Finite Difference -0.00695905 -0.00365266 0.02563178 -0.03207152

Ratio 0.99995668 0.99998548 0.99999142 1.0019456
x3

Analytical Procedure -0.00409695 -0.0041402 -0.03110107 -0.05417153
Forward Finite Difference -0.00409705 -0.00414017 -0.03110138 -0.05417311

Ratio 0.999977 1.00000733 0.99999018 0.99996378
x4

Analytical Procedure -0.01493864 -0.00996073 0.03780535 0.07281055
Forward Finite Difference -0.01493856 -0.0099608 0.03780438 0.07265629

Ratio 1.00000517 0.99999302 1.00002583 1.00021231

Table 2.7. Analysis and Sensitivity Calculation Times in seconds for Increasing Number of Variables

Number of Variables 1 2 4 8 16
Forward Difference 54.2 81 135 243 459

Analytical 48.1 48.2 48.1 48.6 48.5
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3.1 Chapter Abstract
The following chapter makes use of the sensitivity procedure developed in Chapter 2 to complete the
optimisation of load paths exhibited by snap-through structures [21].

A general and reliable optimisation scheme that performs shape optimisation of snap-through structures
in order to match a target load-deflection curve is presented. The developed optimisation scheme is
insensitive to the complexity of the target or simulated load-deflection paths.

The objective function for the optimisation problem is the mismatch between the simulated load-
deflection curve and the target load-deflection curve. The simulation of the snap-through structures
typically requires the implementation of the Arc Length Control (ALC) method. This path-following
algorithm allows the solution of problems that typical non-linear finite element simulations with load
or displacement control are unable to simulate fully.

The most general implementation of this algorithm automatically adjusts the solution step size during
the simulation, to enhance the algorithm’s ability to solve highly non-linear problems. This adaptive
stepping results in the presence of discontinuities in the objective function. The discontinuities are
a direct result of the changing number of solution steps in the simulation, and the location of these
solutions along the load-deflection curve. Conventional wisdom dictates that these discontinuities
must be eliminated by using a small constant step size, or the discontinuous objective functions must
be solved by zero-order methods. However, the author opts to solve the optimisation problems using
gradient-only optimisation. Gradient-only optimisation defines non-negative gradient projection points
as the solution to the optimisation problem.

Numerical examples demonstrate that the discontinuities in the objective function render conventional
gradient-based approaches ineffective [25, 26]. This is due to the use of function value information
to determine if a local minimiser was found. Function value based methods can misinterpret dis-
continuities as minima and hence terminate at poor solutions. In contrast, gradient-only algorithms
are demonstrated to be insensitive to numerical discontinuities, and they locate the correct solutions
reliably.

3.2 Introduction
The goal of this chapter is to develop a general and consistent method to complete shape optimisation of
highly non-linear snap-through structures where the FE simulation is located directly in the optimisation
loop. The developed optimisation scheme must be insensitive to the complexity or non-linearity present
in the problem. This task involves optimising the values of various shape parameters that describe a
known snap-through structure such that the structure exhibits a desired load-deflection path.

Previous work in the task of optimising these structures [1–5], are almost exclusively concerned with
topology optimisation of these structures. The majority of previous work [1–3] limit the complexity
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of the simulated load-deflection paths such that displacement control is adequate to fully simulate
the structure’s behaviour. This research on the other hand places no limit on the complexity of the
simulated behaviour and implements a far more reliable simulation and optimisation strategy.

The main contribution of this research over previously established work is the handling of complications
that arise due to the complex solution strategy required to always be able to solve these highly non-
linear load-deflection paths [27]. Although discussed in more technical detail later in this chapter, the
solution strategy implemented to solve these load-deflection paths requires the designer to surrender
control of where the simulation returns known solution locations. To overcome this lack of control,
researchers needed to implement complex interpolation strategies to find the solutions at standard
locations [4, 5]. The results in this chapter show that these complex interpolation strategies are a
redundant ingredient in an already complex design problem.

Figure (3.1) shows an example snap-through structure, commonly known as the Deep Semi-Circular
Arch [10], as well as its associated load-deflection curve. Although this chapter exclusively makes use
of the Deep Semi-Circular Arch for demonstration purposes there are many other known snap-through
structures. Leahu-Aluas and F. Abed-Meraim [11] offer many examples of snap-thorough structures
as benchmark buckling problems. In addition, although the proposed solution strategy is applied to a
shape optimisation problem, it can also be applied to solve topology optimisation problems where the
structural analysis is performed by the arc length control algorithm.
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Figure 3.1. (a) The Deep Semi-Circular Arch as an example snap-through structure with the loaded node
indicated in red on the initial undeformed state, and (b) the associated load-deflection curve of the loaded node.

The simulation of these structures solve for a discrete number of positions along the load-deflection
path, typically using some variant of the Arc Length Control (ALC) algorithm [12]. But the real
challenge is not analyzing a given structure to obtain the load-deflection curve, it is rather that the
desired load-deflection curve is known and the structure that exhibits this behaviour is unknown.
Therefore an inverse problem needs to be solved that minimizes the discrepancy between the desired
load-deflection curve and a simulated curve. Since subtle changes in the structure’s shape parameters
could drastically change the resultant load-deflection curve, automatic arc length adjustment is used to
ensure that the analyses can be performed for any design.

However, an unintended consequence of automatic arc length adjustment is that it creates discontinuities
in the objective function that quantifies the discrepancy between the target load-deflection curve and the
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simulation counterpart. Note however that these discontinuities are purely a numerical artefact: their
presence should be ignored by any algorithm that seeks to find the optimal solution. Figure (3.2) shows
such a discontinuous objective function for a simple two variable load path optimisation problem. It is
evident that classical gradient-based optimisation algorithms will struggle to navigate this objective
function landscape, as they often getting stuck at the discontinuities. A lesser known strategy is to
locate non-negative gradient projection points (NN-GPPs) as defined in the gradient-only optimisation
problem [28]. This strategy was developed specifically to optimise discontinuous objective functions,
where the discontinuities are numerically induced [16–18, 25, 26, 28, 29]. Gradient-only optimisers
developed to locate NN-GPPs [16, 26, 28, 29] have been demonstrated to solve problems of this type
reliably and efficiently.

Figure 3.2. Example of a discontinuous objective function for highly non-linear load path optimisation

The structure of this chapter is as follows. Firstly, following Snyman and Wilke [28], Section (3.3)
presents three formulations to define the solution to an optimisation problem. These formulations are
the function minimiser, optimality criteria (necessary and sufficiency conditions) and NN-GPPs. The
importance of NN-GPPs as a reliable optimiser formulation for piece-wise discontinuous functions
is highlighted. From the ALC description the source of the discontinuities depicted in Figure (3.2)
are detailed in Section (3.4). The chapter concludes with a systematic numerical investigation in
Section (3.5), which highlights the inverse shape optimisation problem to recover a given load-
displacement path for a selected snap-through structure [11]. The number of shape parameters are
increased from two to eight, allowing the behaviour and performance of the optimisation algorithms to
be investigated. The selected algorithms are the function minimization algorithm, Sequential Least
Squares Programming (SLSQP) [30], the gradient-only sequential spherical approximation method
(GOSSA) [28], and a Modified Subgradient method [26, 28].

3.3 Three Formulations for Optimisers
The problem considered in this research, which is to reduce the discrepancy between two curves, is
an unconstrained optimisation problem. Three formulations exist to define solutions to this problem,
namely function minimization (Section (3.3.1)), optimality criteria (first and second-order conditions)
(Section (3.3.2)) and NN-GPPs (Section (3.3.3)).

3.3.1 Formulation 1 - Function minimiser

In general the unconstrained optimisation problem is expressed as

Minimize
w.r.t x

F(x), x = [x1,x2, ...,xn]
T
εRn, (3.1)
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where F(x) is a scalar objective function to be minimized with respect to the column vector x, which
consists of real and continuous values. These values are referred to as design variables or, in the case
of shape optimisation, shape parameters such as lengths, thicknesses, or radii. In this chapter the shape
parameters consist of radii at specified angles.

The first option to define the optimal solution, x∗, uses objective function values. The definition
is

F(x∗)≤ F(x) for all x. (3.2)
As it is typically impossible to evaluate the function F(x) for all values of x, the solution x∗ is defined
as a strong local minima if the above condition is met for some local region in multi-dimensional space
that defines x. The optimisation problem at this point has been defined as a minimization problem.
gradient-based algorithms are typically considered as the most efficient to solve this optimisation
problem. A conventional gradient-based optimisation algorithm will use the gradient information
to determine a direction to update the proposed optimum solution until the minimization criterion,
F(x∗) ≤ F(x), is met. This implies that only the value of the function F(x) is considered when
defining an optimal solution. Considering the objective function landscape in Figure (3.2), the presence
of discontinuities will result in premature convergence of such an algorithm. This necessitates an
alternative definition of the optimal solution x∗.

3.3.2 Formulation 2 - Optimality criteria

The optimal solution to an unconstrained minimization problem can also be defined by the optim-
ality criteria. The 1st and 2nd order criteria, also defined as the necessary and sufficiency condition
respectively, are given by

dF(x)
dx

= 0, (3.3)
and

xT d2F(x)
dx2 x > 0 ∀ x 6= 0. (3.4)

These criteria require that at the proposed solution the norm of the objective function gradient is
zero, and the Hessian of the objective function is positive definite (the curvature in any direction
is non-negative). These two conditions are sufficient to define a candidate local minimum. One
can therefore define a candidate optimum position, x∗NS, as any vector that results in the gradient
vector to be zero. Of course there are potentially multiple solutions for which a scalar function can
exhibit a zero gradient vector, such as a local maximum or a saddle point. Therefore, to define a local
minimum, the sufficiency condition is required to define an optimum solution vector x∗N. Algorithms
that solve the optimality criteria typically require the Hessian of the objective function. Therefore
these algorithms are not as popular as gradient-based algorithms that only require the gradient of the
objective function.

3.3.3 Formulation 3 - NN-GPP

The last alternative to define the optimal solution to the unconstrained minimization problem is to
locate non-negative gradient projection points x∗nngpp [16]. A non-negative gradient projection point is
defined as a position in the design space for which any update to the solution vector, projected onto the
objective function gradient vector, is positive (or zero). These points are defined formally as a point
that for every u{y ∈ Rn, ||y||= 1} there exists a real number that satisfies the condition

OAF(x∗nngpp +λu)Tu≥ 0 ∀ λ ∈ (0,ru], (3.5)

where λ is the magnitude of the vector in the search direction.

This implies that as one approaches and passes such a point, the projected gradient changes sign from
negative to positive at x∗nngpp. Note that this definition of the optimal solution requires only the gradient
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information of the objective function, since the objective function values themselves are never used.
This criterion is sufficient to define a local optimum. Such a definition of optimality will be able
to ignore the numerically induced discontinuities present in the problem of interest, as long as the
gradient information remains consistent across such a discontinuity. A visual illustration of these
non-negative gradient projection points, and how they differ from the other formulations, are presented
in Section (3.3.4).

3.3.4 Optimiser Characteristics

To highlight the importance to differentiate between the four optimisers, x∗,x∗NS,x
∗
N,x

∗
nngpp, consider

the four uni-variate objective functions shown in Figure (3.3):

• Two infinitely differentiable functions (C∞), one being convex (Subproblem A) and the other
non-convex (Subproblem C),

• a C0 continuous function (Subproblem B), and
• a piece-wise discontinuous function (Subproblem D).

The associated derivatives are depicted in Figure (3.4).
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Figure 3.3. The Four Optimisers for Four One-Dimensional Problems
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Figure 3.4. The Four Optimisers for Four One-Dimensional Problems in the Gradient Space

The four optimisers are equivalent for sub-problem A, the infinitely differentiable convex function
shown in Figure (3.3). The infinitely differentiable non-convex function in sub-problem C distinguishes
between x∗N and the other three optimisers, x∗, x∗NS and x∗nngpp, which are again equivalent for this
problem.

The non-smooth function in sub-problem B demonstrates the differences between the two optimums
x∗N and x∗NS and the remaining two optimums x∗ and x∗nngpp. The gradient plot shows that no x-position
has a gradient of zero. Therefore, the two optimal positions x∗N and x∗NS do not exist.
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Lastly, sub-problem D is the same as sub-problem A, but it contains a discontinuity at x = −0.5.
This discontinuity creates a difference in the x∗ point when compared to the other optimum points.
Optimisers x∗NS,x

∗
N and x∗nngpp agree exactly even for non-continuous problems.

Therefore, these simple problems demonstrate the reliable nature of the positive gradient projection
points x∗nngpp. These points are unaffected by local maxima, which can impact x∗N, or discontinuities in
either the function or gradient space which impact x∗.

3.4 Discontinuities in the Design Problem
The automatic prescribed arc length adjustment used in this research creates discontinuities in any
calculation that compares one load-deflection curve to another. This is because the number and locations
of the discrete solution positions along the load path can differ suddenly due to an infinitesimal change
in the structure shape. This can be shown by reconsidering the design problem in Chapter 2.

As the goal is to find a structure that exhibits the same load path as some specified load path, an
objective function that quantifies the difference between two curves needs to be established. In general
these load-deflection curves need not be functions, such as the curves presented in Figures (1.2)(A)
and (B), which can be solved with displacement control as the load can be expressed as a function
of the displacement. Instead the load-deflection curves are represented as parametric curves, such as
Figure (1.2)(C), where the accumulated arc length is chosen as the independent variable and therefore
requires the implementation of the ALC algorithm. However, one complication is that both curves
are represented by a finite number of points on the curve. Also, the solution points are unlikely to be
available at the identical accumulated arc lengths used to represent the target curve.

Previously, this complication was either avoided or overcome with two broad categories of methods.
The first category involves limiting the complexity of the prescribed load-deflection path. Previous
research [1–3] require the desired load-deflection behaviour to be non-parametric. This means that
the problems must be such that the load can be expressed as a function of the displacement, such
as in Sub-Figure (1.2)B. The desired path is then described with a set number of load values at
predetermined displacement values. This method eliminates the aforementioned arc length adapting
complication, as a simple displacement control solution scheme can be implemented and the ALC
method is then no longer needed. However, this method cannot be used in general to solve more
complex load-deflection path optimisation problems where the load cannot be expressed as a function
of the displacement. Therefore, this method requires a restriction of the design space in order to avoid
more complex load-deflection paths.

The second more general method implemented by Bruns et al. [4, 5] handles this problem by construct-
ing a linear interpolation function that allows the designer to find the deformed state of the structure at
accumulated arc length locations other than the returned simulation locations. This method requires
the previously deformed state q at some accumulated arc length a and the current deformed state q∗
at some greater accumulated arc length value a∗. Then all the degrees of freedom in the mesh are
interpolated linearly to some deformed state q at some intermediate accumulated arc length value a
while ensuring that the ALC constraint condition is still met. This method can be computationally
expensive for meshes with a large number of degrees of freedom. Therefore, a far simpler interpolation
strategy is proposed whereby only interpolation functions for the parametric load and displacement
curves are needed instead of interpolation functions for each degree of freedom in the mesh.

The analyst must still choose between two interpolation options, namely for each iteration to:

1. interpolate the target points to the simulated points at the same accumulated arc lengths, or
2. interpolate the simulated points to target points at the same accumulated arc lengths.
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For the rest of this chapter interpolating the target curve is referred to as objective function A and
interpolating the simulated curve as objective function B.

Interpolation between target points or simulated points is required each time the objective function is
called, to ensure that the error terms are calculated at the same accumulated arc length. For the sake
of simplicity, only linear interpolation is considered. Figure (3.5) depicts example load curves that
illustrate both interpolation options graphically.
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Figure 3.5. Comparison of two linear interpolation schemes with points denoting known locations and crosses
interpolated locations. A - Interpolating the target curve, B - Interpolating the simulated curve.

Interpolating to the same accumulated arc lengths then allows for the computation of the mean square
error,

MSE =
1
N

N

∑
i
(λ T

i −λ
d
i )

2 +
1
N

N

∑
i
(uT

i −ud
i )

2, (3.6)

between points on the target curve, λ T
i and uT

i , and points on the simulated curve of the current design,
λ d

i and ud
i , at identical accumulated arc lengths. Here N is the number of solution steps taken to solve

the curve (objective function A) or the number of points used to describe the target curve (objective
function B). The gradient of this cost function is expressed as

dMSE
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Sampling the proposed objective functions for the Deep Semi-Circular Arch 200 times between arc
radii from 80mm to 120mm, where the load path at 100mm is the target curve, computes Figure (3.6).
All the simulations were completed with the same prescribed arc length as well as a fixed accumulated
arc length that terminates the solution once reached. The prescribed arc length is decreased by a factor
of
√

2 when more than nine iterations are required to find a solution.

Objective function A contains numerous large discontinuities even for this simple one-dimensional
problem. Objective function B lessens the severity of the discontinuities, but, there still seem to be a
few small discontinuities present in the problem. To gain a better understanding of the discontinuities
present, in either objective function, Figure (3.7) presents an explicit line search for a small variation
in the design variable at the same shape.

Notice that both interpolation schemes create a discontinuity at the same location in the design space.
The magnitude and direction of this discontinuity may differ, but neither interpolation scheme can
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A B

Figure 3.6. One-dimensional objective functions sampled 200 times between arc radii of 80 mm and 120 mm.
Sub-figure A shows objective function A, while Sub-figure B shows objective function B.

(a) (b)

Figure 3.7. Dense line search at the discontinuity around 82.6mm for the same structure, for (a) objective
function A and (b) objective function B. Note the reduction in the magnitude of the discontinuity in objective
function B compared to objective function A.

avoid them from manifesting in the objective function. The underlying source of these discontinuities
is the automatic arc length adjustment that creates a change in the number of discrete points along the
curve as well as the coordinates of these points. This can be shown by plotting the solved load paths
before and after the discontinuity in Figure (3.8).

These two load paths in Figure (3.8) are nearly identical but the ALC method returns significantly
different discrete locations along these curves. Both the arches require arc length adjustments during the
simulation but the size and number of these adjustments differ. This creates sudden and discontinuous
changes in the objective function for either interpolation scheme.

For objective function A the source of these discontinuities is shown in Figure (3.9), where the load
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Figure 3.8. Discrete points on the solved load paths before and after the discontinuity.

and displacement curves before and after the discontinuity are shown in the arc length space. The
change in the accumulated arc positions means the error calculation takes place at locations that could
be further away from the target curve, creating an increase in the error calculation, even though these
are still discrete locations on the same curve.

Figure 3.9. Discrete solved points before and after the discontinuity in the accumulated arc length space for
the load and displacement curves.

In the case of objective function B it is not as obvious what the source of these discontinuities is. The
error calculations consistently contain the same number of points and these points are consistently
at the same accumulated arc length coordinates. Therefore, an analyst can easily assume that the
objective function will contain no discontinuities, but, as can be seen in Figures (3.6) and (3.7), this is
not the case.

Figure (3.10) explains the source of these discontinuities, where an example curve in the accumulated
arc length domain is shown. When the locations of the solved positions along the curve change, the
interpolation can suddenly return significantly different results. Assume that a structure is analysed,
resulting in 5 solutions along the load path (the blue plus signs 1 to 5). An infinitesimal adjustment in
the structure could trigger the prescribed arc length adjustment, resulting in 4 solutions along the load
path (the green plus signs 1 to 4). The objective function is computed at different locations altogether,
indicated with the solid blue dots. Since none of the solutions are available at the same locations, linear
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interpolation (dashed lines) is used to interpolate the solution coordinates to the required coordinates.
Notice that the error contributions at locations i and i+1 undergo a step change due to different points
along the same curve being used to compute the error contributions.

Figure 3.10. Illustration of how objective function B is computed, and how it can result in discontinuities.

Although Bruns et al. [4] make no mention of discontinuities due to their interpolation scheme in
the solved optimisation problem, it is the author’s opinion that there is anecdotal evidence of the
presence of these discontinuities. Bruns et al. [4] report an improvement in the optimum result after
decreasing the step size of the optimisation process and attribute this to a local minimum in the
objective function. From Figure (3.10) it can be seen that a smaller step size will reduce the magnitude
of the discontinuities in the objective function, therefore, the author believes that what is attributed to
the optimiser bypassing a local minimum is in fact the optimiser initially misinterpreting a discontinuity
as a minimum. When the step size was reduced the severity of the discontinuity was likely reduced
such that the optimiser was then able to bypass it. Therefore, even the complex interpolation strategy
implemented by Bruns et al. [4, 5] may still result in discontinuities in the objective function. This
is consistent with Bruns et al. [5] reporting large oscillations in the objective function, referred to as
“chattering”, and stating that efforts to avoid these oscillations were ineffective.

To summarise, the differences in the number of solution points and their respective locations, combined
with subsequent linear interpolation, result in discontinuities in the respective objective functions.
These discontinuities are not from any physical property of the structure or inherent to the problem, but
are rather numerical artefacts arising from the automatic adjustment in arc length that makes analyses
more computationally efficient and reliable. Note that even though the objective function contains
discontinuities, the gradient or derivative of the objective function is computable for every design in
the design space.

3.4.1 Benefits of automatic arc length adjustment

To make use of any gradient-based optimisation algorithm, the gradient of the objective function
is required. If the gradient of the objective function is calculated at or near a discontinuity using a
numerical approximation (such as forward differences), the returned gradient could be incorrect in
both magnitude and direction [28]. To avoid these discontinuities two steps can be taken, namely, the
analyst can use a small enough prescribed arc length such that the simulation never requires an arc
length adjustment, or the analysis code can be adapted to always produce a solution coordinate at the
accumulated arc length value used to represent the target curve.

The first option, the small prescribed arc length, results in an increase in solution times. This can be
demonstrated by solving the same symmetrical Deep Semi-Circular Arch for various prescribed arc
lengths. Table (3.1) shows how for small prescribed arc length step sizes the solution times start to
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increase drastically when compared to a more appropriate arc length selection. Selecting a sufficiently
small arc length step size is further complicated in that it cannot be determined a priori whether the
arc length will be adjusted over all possible designs in the design space.

Table 3.1. Solution Times for Various Arc Length Step Sizes

Step Arc Length 100 50 25 12.5 6.25
Time (s) 26.2 42.5 53.67 89.61 163.75

Arc Adjustment True True True True False

The second option of sampling the target and design curves at standard locations still requires the
constructions of some interpolation functions for both the load and displacement as well as their
respective gradients (whenever the original prescribed arc length step is too large to converge). As
with any interpolation scheme, this will result in some loss of accuracy and can therefore still result in
discontinuities.

Therefore, neither method of attempting to eliminate the discontinuities can entirely eliminate discon-
tinuities from the objective function. In addition, the first proposed method can be computationally
expensive. The complex-step method [28, 31] offers a means to compute sensitivities at a discontinuity
but scales poorly with an increase in the number of design variables. This means that to make efficient
use of gradient-based algorithms it is necessary to compute sensitivities analytically. That is why
Chapter 2 developed an analytical sensitivity procedure for the ALC algorithm.

3.5 Load Path Optimisation
The performance of three different optimisers, that all make use of gradient information, are evaluated
on the Deep Semi-Circular Arch load path optimisation problem. The optimisers are the Sequential
Least Squares Programming (SLSQP) method, the Gradient Only Sequential Spherical Approximation
method (GOSSA) [28], and a Modified Subgradient method [26, 28]. The SLSQP method is a well
known optimiser and has been used on a wide variety of numerical optimisation problems [30]. The
GOSSA and Modified Subgradient methods are gradient-only methods that have been shown by
Wilke [26], Wilke et al. [16], [17], [18] and Snyman and Wilke [28] to be reliable when solving
problems that contain discontinuities.

The GOSSA algorithm estimates the Hessian of the objective function, making use of the spherical
assumption, for each iteration. The efficiency of this algorithm should be comparable to the SLSQP
algorithm, but it will not misinterpret discontinuities in the objective function as minima. The Modified
Subgradient method is a simple steepest descent method with a chosen fixed step size (no line searches
are performed) and the function minimiser along the search trajectory is not stored. This algorithm is
also reliable in the presence of discontinuities but its performance is dependant on a hyper-parameter,
meaning it can be computationally expensive when compared to the other algorithms.

The goal of the optimisation problem is to find the values of the design variables that result in the
same load path as the Deep Semi-Circular Arch, depicted in Figure (2.2). The load path of a fully
symmetrical arch is chosen as the target curve as no matter the level of dimensionality, the fully
symmetrical arch can be recovered exactly. This means the performance of the optimisers can be
assessed easily as the global optimum is known (zero). The converged solutions of the SLSQP, GOSSA
and Modified Subgradient methods will be referred to as x∗SLSQP, x∗GOSSA and x∗MS respectively in the
sections that follow.

Inverse problems, such as the problem presented here, are often ill-posed i.e. different designs
(structures) have the same load-deflection path. In the case of this design problem this is inconsequential.
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The goal is to find any structure with the desired load-deflection path, not to find a specific structure
with the target load-deflection path. Therefore, the uniqueness of the optimised solutions is not
investigated.

3.5.1 Bifurcation of the Load-Deflection Path

The example design problem presented in this research, the Deep Semi-Circular Arch, can exhibit
bifurcated load-deflection paths. Bifurcation refers to a loss of uniqueness in the solution to the
non-linear FEM equilibrium equations. This loss of uniqueness typically presents itself as a “fork”
in the equilibrium path, with there being multiple equilibrium positions of the structure for some
value of the accumulated arc length parameter. The load-deflection curve then exhibits multiple
branches. Figure (3.11) demonstrates an example of a bifurcation present in the Deep Semi-Circular
Arch problem (produced by a perturbation of the original constant radius shape).

Figure 3.11. Demonstration of the type of bifurcation present in the example problem. The overlays show the
“fork” equilibrium state in blue (identical for both figures) and the next two equilibrium states are shown in grey
and red and their locations on the equilibrium paths.

Although there are numerical strategies to consistently stay on the same branch, often referred to as
branch switching algorithms [32, 33], the solver implemented in this research makes no effort to avoid
these bifurcated load paths. Rather, the sudden increase in the objective function value if the solver
finds equilibrium on a different branch, should result in the optimisers moving away from areas in the
design space where bifurcation is present. This can be demonstrated by selecting some initial starting
points for the optimisers that describe structures that produce bifurcated load paths.

3.5.2 Two Shape Design Variables

The Two Variable Inverse Problem consists of two design variables at 45°and 135°that describe the
radius at these locations (shown in Figure (2.1)). To visualize the two objective functions described in
Equation ( (3.6)), a grid of 75×75 samples between 80 mm and 120 mm is used. The resultant plots are
shown in Figure (3.12). These 3D surface plots show the presence of similar discontinuities that were
present in the one variable objective function. The global minimum is at the point [100,100].

The problem is solved with the selected optimisers using five randomly generated starting positions,
two of which generate bifurcated load paths. The initial load path curves, and the target curve, are
shown in Figure (3.13), while the returned optimised curves for the three methods are shown in
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Figure 3.12. Objective functions of the Two Shape Design Variable Inverse Problem

Figure (3.14) for both objective functions. None of the returned optimal structures have bifurcated
load-deflection curves, therefore the optimisers are able to bypass and avoid regions in the design
space that result in bifurcated load-deflection curves.

Figure 3.13. Initial Curves of the two variable optimisation problem.

The SLSQP algorithm fails to find the optimal solution for three of the five initial designs for both ob-
jective functions although objective function B does offer a small improvement in results. The GOSSA
and Modified Subgradient algorithms consistently find the global minimum for all the starting positions
and both objective functions. To explain the cause of the occasional failure of the SLSQP algorithm,
the optimisation trajectories of the algorithms are presented in Figures (3.15) and (3.16).

These trajectories are overlaid with a quiver plot that shows the normalized gradient of the objective
function (i.e. the arrows only show the direction and not the magnitude of the gradient vector).
An important aspect to note of these gradient fields is the similarity between the two objective
functions. Objective function A has larger discontinuities when compared to objective function B (see
Figure (3.12)), but the resultant gradient fields for either objective function remain far more consistent.
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Figure 3.14. optimised Curves for the Three Algorithms and both objective functions for the Two Variable
Inverse Problem.
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Figure 3.15. Five different optimisation trajectories, indicated as dashed coloured lines, for objective function
A on the Two Variable Inverse Problem.

This means that the gradient information for the objective functions is far more reliable when compared
to the discontinuous function value information.

The optimisation trajectory plots show that the SLSQP and GOSSA algorithms both follow similar
optimisation paths, but the SLSQP method terminates early. This early termination is due to the
discontinuities in the objective function caused by the adaptive stepping method of the ALC algorithm.
This can be proven by completing a dense line search at these early termination points. Figure (3.17)
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Figure 3.16. Five different optimisation trajectories, indicated as dashed coloured lines, for objective function
B on the Two Variable Inverse Problem.

presents an explicit line search

MSE(α) = MSE(x∗SLSQP +αu∗SLSQP), (3.8)

along the SLSQP descent direction at convergence, u∗SLSQP, over a small range of α .

Figure 3.17. Line Searches at discontinuous local minimisers resulting in premature termination of SLSQP

SLSQP convergences to a discontinuity for both objective functions as sampling to the right of this
discontinuity results in an increase in the MSE. Consequently, SLSQP identifies the discontinuity
as a local minimum and terminates. However, the directional derivative remains negative to the left
and right of the discontinuity. Therefore, gradient-only optimisers proceed past the discontuinuity
unhindered until the directional derivative changes sign from negative to positive, indicating a NN-GPP
along a descent direction.

Tables (3.2) and (3.3) show the detailed results of the optimisers for this two dimensional problem, with
the error term being the norm of the difference between the returned optimum vector and the known
optimum. The norm of the gradient vector is two orders of magnitude larger at x∗SLSQP than at x∗GOSSA
and x∗MS. This demonstrates that the gradient information at these discontinuities is not impacted as
severely as the function value information. This means that by locating NN-GPPs, x∗NNGPP, instead of
minimisers, x∗, the optimisation algorithm is able to bypass the numerically induced discontinuities
in the objective function. For this design problem, as the objective function is unimodal, the x∗N and
x∗NNGPP optima agree exactly as the norm of the gradient vector at these positive gradient projection
points are zero within a tolerance of 10−5.
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Table 3.2. Detailed objective function A Results for Two Variable Inverse Problem

Method SLSQP GOSSA Modified Subgradient

# Iter. Evaluations Gradient Norm Error # Iter. Evaluations Gradient Norm Error # Iter. Evaluations Gradient Norm Error

(Func/Jac) (Func/Jac) (Func/Jac)

Start 1 14 23 / 14 2.62×10−3 5.86 18 – / 27 2.38×10−5 0.011 31 – / 31 2.38×10−5 0.051

Start 2 20 22 / 20 3.24×10−5 0.016 26 – / 33 4.13×10−6 0.006 63 – / 63 2.20×10−5 0.057

Start 3 20 25 / 20 8.53×10−5 0.023 14 – / 19 2.53×10−5 0.007 31 – / 31 2.17×10−5 0.051
Start 4 18 30 / 18 3.13×10−3 4.46 18 – / 26 9.43×10−6 0.003 51 – / 51 2.48×10−5 0.066

Start 5 10 11 / 10 4.66×10−3 2.27 17 – / 27 4.67×10−6 0.007 49 – / 49 2.19×10−5 0.061

Table 3.3. Detailed objective function B Results for Two Variable Inverse Problem

Method SLSQP GOSSA Modified Subgradient

# Iter. Evaluations Gradient Norm Error # Iter. Evaluations Gradient Norm Error # Iter. Evaluations Gradient Norm Error

(Func/Jac) (Func/Jac) (Func/Jac)

Start 1 10 20 / 10 1.42×10−3 5.49 8 – / 10 2.77×10−6 0.0012 20 – / 20 1.23×10−6 0.002

Start 2 25 25 / 25 6.66×10−7 0.0017 9 – / 14 2.80×10−6 0.001 42 – / 42 2.41×10−6 0.0016
Start 3 22 23 / 22 1.05×10−5 0.028 8 – / 11 3.39×10−6 0.0045 21 – / 21 1.89×10−6 0.0048

Start 4 12 20 / 12 8.65×10−4 2.3 7 – / 13 2.99×10−6 0.0019 25 – / 25 2.85×10−6 0.0032

Start 5 10 10 / 11 8.73×10−4 2.17 6 – / 10 1.33×10−6 0.0018 30 – / 30 3.45×10−6 0.0024

3.5.3 Four and Eight Shape Design Variables

To further assess the ability of gradient-only optimisers, more complex problems are solved. Firstly,
the problem is adapted to the Four Variable Inverse Problem (shown in Figure (2.1)). As before, the
target curve is that of a fully symmetrical arch. The initial curves are shown in Figure (3.18) while the
final optimised curves are shown in Figure (3.19).

Figure 3.18. Initial Curves of Four Variable Optimisation Problem

The GOSSA and Modified Subgradient algorithms again find the global optimiser independent of
the starting position in the domain and the implemented objective function. In contrast, the SLSQP
algorithm struggled to find the optimum with none of the returned solutions fully tracing the target
curve for either objective function, but objective function B again performs slightly better. Tables (3.4)
and (3.5) again show detailed results of the three optimisers on the two objective functions. Although
the GOSSA and Subgradient methods both returned the correct optimum curve, the increase in

Department of Mechanical and Aeronautical Engineering
University of Pretoria

34



Chapter 3 Direct Optimisation Methods

0.00

0.05

0.10

0.15

0.20

Lo
ad

 N

SLSQP Objective Function A GOSSA Objective Function A Subgradient Objective Function A

0 50 100 150 200
Displacement mm

0.00

0.05

0.10

0.15

0.20

Lo
ad

 N

SLSQP Objective Function B

0 50 100 150 200
Displacement mm

GOSSA Objective Function B

0 50 100 150 200
Displacement mm

Subgradient Objective Function B

Figure 3.19. optimised Curves for the Three Algorithms and both objective functions for the Four Variable
Inverse Problem

dimensionality begins to show the benefit in efficiency the GOSSA algorithm has compared to the
Modified Subgradient method. The Modified Subgradient method took as many as three times the
number of gradient computations to converge when compared to GOSSA. An indication that the
SLSQP method again misinterpreted the discontinuities as minima is the large gradient norm at a
discontinuous local minimiser when compared to the gradient norms at the GOSSA and Modified
Subgradient optimisers.

Table 3.4. Detailed objective function A Results for Four Variable Inverse Problem

Method SLSQP GOSSA Modified Subgradient

# Iter. Evaluations Gradient Norm Error # Iter. Evaluations Gradient Norm Error # Iter. Evaluations Gradient Norm Error

(Func/Jac) (Func/Jac) (Func/Jac)

Start 1 9 20 / 9 4.23×10−3 8.17 22 – / 39 1.01×10−5 1.34 38 – / 38 2.33×10−5 1.29

Start 2 16 17 / 16 3.72×10−3 7.86 34 – / 61 1.05×10−5 2.58 189 – / 189 2.29×10−5 4.95

Start 3 7 8 / 7 3.25×10−4 9.53 20 – / 32 2.16×10−5 3.15 94 – / 94 2.48×10−5 3.04

Start 4 13 25 / 13 5.34×10−3 8.84 20 – / 34 2.15×10−5 0.785 78 – / 78 2.42×10−4 0.76
Start 5 18 18 / 18 6.81×10−4 4.51 26 – / 44 7.48×10−6 3.01 71 – / 71 2.48×10−5 3.02

To verify that the SLSQP algorithm terminates at a discontinuous local minimiser along the descent
direction, Figure (3.20) presents a graph of the objective function values returned by a line search
conducted at one of the x∗SLSQP solutions. As with the Two Variable Inverse Problem, the SLSQP method
mistakes a discontinuity in the objective function for a local minimum, and terminates prematurely. As
before, the GOSSA and Modified Subgradient algorithms are able to bypass these discontinuities and
continue to the optimum solution by only making use of the gradient information.
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Table 3.5. Detailed objective function B Results for the Four Variable Inverse Problem

Method SLSQP GOSSA Modified Subgradient

# Iter. Evaluations Gradient Norm Error # Iter. Evaluations Gradient Norm Error # Iter. Evaluations Gradient Norm Error

(Func/Jac) (Func/Jac) (Func/Jac)

Start 1 15 15 / 15 2.13×10−4 2.44 30 – / 30 1.25×10−5 1.34 35 – / 35 1.36×10−5 1.45

Start 2 18 18 / 18 3.14×10−4 7.85 52 – / 52 2.34×10−5 2.01 167 – / 167 1.86×10−5 3.78

Start 3 8 8 / 8 8.24×10−4 9.57 26 – / 26 2.14×10−5 2.54 90 – / 90 2.52×10−5 3.01

Start 4 18 18 / 18 4.43×10−4 3.51 28 – / 28 1.65×10−5 0.43 75 – / 75 1.12×10−5 0.35
Start 5 16 17 / 16 4.41×10−4 4.62 20 – / 20 2.89×10−6 3.15 65 – / 65 2.23×10−6 2.98

Figure 3.20. Line Searches at discontinuous local minimisers resulting in premature termination of SLSQP
for the Four Variable Inverse Problem

The complexity of the problem is increased further to contain eight design variables (Figure (2.1)). The
initial curves are shown in Figure (3.21), while the final optimised curves are shown in Figure (3.22)
for the three optimisers.

Figure 3.21. Initial Curves of Eight Variable Inverse Problem

The performance of the SLSQP algorithm, when using objective function A, deteriorates to such an
extent that none of its optimised curves offer any reasonable similarity to the desired target curve.
Objective function B performs better, with the majority of the solutions being similar to the target curve.
The GOSSA and Modified Subgradient algorithms however remained reliable and still optimised fully
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Figure 3.22. optimised Curves for the Three Algorithms and both objective functions for the Eight Variable
Inverse Problem

to the desired target curve. Figure (3.23) illustrates some of the unsatisfactory final designs computed
by the SLSQP algorithm.
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Figure 3.23. optimised Shapes returned by the SLSQP Algorithm for the Eight Variable Inverse Problem
Overlaid with the Global Optimum. The best and worst results are indicated in blue and red respectively, using
Objective Function A and Objective Function B.

Tables (3.6) and (3.7) show the detailed results for the implemented optimisers. The efficiency of the
GOSSA algorithm is apparent at this level of dimensionality, as it consistently requires six to ten times
fewer simulations than the Modified Subgradient method to converge. Again, by simply inspecting the
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gradient norm at the returned optimums, it becomes apparent that the SLSQP algorithm struggled to
bypass the discontinuities in the objective function.

Table 3.6. Detailed objective function A Results for Eight Variable Inverse Problem

Method SLSQP GOSSA Modified Subgradient

# Iter. Evaluations Gradient Norm Error Iterations Evaluations Gradient Norm Error Iterations Evaluations Gradient Norm Error

(Func/Jac) (Func/Jac) (Func/Jac)

Start 1 23 42 / 23 4.10×10−2 25.93 95 – / 150 2.25×10−5 10.62 359 – / 359 1.24×10−5 4.61

Start 2 16 19 / 16 1.62×10−2 20.81 53 – / 92 1.07×10−5 12.72 279 – / 279 4.99×10−5 13.61

Start 3 11 22 / 11 3.64×10−2 47.53 16 – / 29 5.61×10−5 18.91 728 – / 728 5.44×10−5 17.31

Start 4 18 30 / 18 2.00×10−2 16.70 37 – / 59 2.11×10−5 3.93 221 – / 221 4.99×10−5 3.89
Start 5 16 46 / 16 2.81×10−2 13.19 64 – / 111 1.56×10−5 4.96 241 – / 241 4.99×10−5 5.16

Table 3.7. Detailed objective function B Results for Eight Variable Inverse Problem

Method SLSQP GOSSA Modified Subgradient

# Iter. Evaluations Gradient Norm Error # Iter. Evaluations Gradient Norm Error # Iter. Evaluations Gradient Norm Error

(Func/Jac) (Func/Jac) (Func/Jac)

Start 1 41 51 / 41 4.31×10−4 22.35 80 – / 80 1.89×10−5 9.86 301 – / 301 1.45×10−5 6.81

Start 2 35 36 / 35 4.51×10−4 14.21 45 – / 45 2.56×10−6 13.21 254 – / 254 2.71×10−6 12.34

Start 3 27 35 / 27 3.56×10−4 28.98 20 – / 20 3.54×10−5 17.41 689 – / 689 3.78×10−5 16.31

Start 4 34 38 / 34 2.21×10−4 5.06 30 – / 30 1.34×10−5 3.54 214 – / 214 1.93×10−5 3.84
Start 5 20 21 / 20 3.48×10−4 10.11 54 – / 54 2.84×10−5 4.84 231 – / 231 2.46×10−5 4.96

Figure (3.24) again shows a line search at a local minimiser x∗SLSQP along the descent direction for
SLSQP. As the complexity and dimensionality of the design problem increased, the size and number
of the discontinuities increased to the point where the SLSQP algorithm can no longer offer reasonable
performance. The gradient-only optimisers isolating NN-GPPs remained reliable as the complexity
of the problem increased. The number or size of the discontinuities did not affect the quality of the
results.

Figure 3.24. Line Searches for Eight Variable Inverse Problem at discontinuous local minimisers resulting in
premature termination of SLSQP

.

3.6 Chapter Conclusion
The results in this chapter show that an optimisation problem that requires the ALC algorithm when
computing the objective function, will exhibit discontinuities in the objective function if automatic
arc length adjustment takes place during the simulation. Instead of deactivating automatic arc length
control, it is retained in this work since it ensures that the algorithm is computationally efficient, and
that the load-deflection path is computable for all designs. However, the resulting discontinuities are
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purely numerical artefacts, and the chosen optimisation algorithms should ignore them when searching
for the optimal solutions.

The presence of discontinuities also implicitly limits the use of numerical approximations (such as
forward finite difference) to compute the gradient of the objective function, as such methods can
return incorrect results if the calculation takes place across one of these discontinuities. Although
the complex-step method might offer an alternative to compute sensitivities, an analytical sensitivity
procedure is implemented to calculate the gradient of the objective function that remains efficient as
the dimensionality increases.

As SLSQP aims to locate function minimisers x∗, it is prone to terminate prematurely at discontinuities
in the objective function, that presents as local minimisers along the search directions. This renders
classical gradient-based algorithms vulnerable. In turn, gradient-only optimisers that aim to isolate
NN-GPPs are able to reliably locate the global optimiser, making it computationally efficient for high-
dimensional problems. In particular, GOSSA proved more efficient than the Modified Subgradient
method, and also does not require any hyper-parameter tuning.

The results in this chapter provide compelling evidence that it is possible to design snap-through
structures that match the desired load-deflection path without limiting the complexity of both the
desired and simulated load-deflection paths. Essential features of the proposed approach are automatic
arc length adjustment to ensure efficient analysis, combined with gradient-only optimisation algorithms
that reliably locate NN-GPPs in the design space.

A question that arises naturally at this point is if the optimisation procedure can be accelerated. One
option is to replace the expensive FE simulations with accurate approximations, so-called surrogate
models. These models can be trained with data obtained through simulations completed in parallel,
thereby eliminating the computationally expensive sequential nature of the direct simulation in the loop
strategy completed in this chapter. The next chapter is dedicated to accurate construction of surrogates,
including the possible benefits of using the available analytical sensitivity information.
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Chapter 4 A Novel Coordinate System Transformation for
Isotropic Kernel-Based Surrogate Models

4.1 Chapter Abstract
To complete the surrogate-based optimisation strategy the performance of commonly used models
must first be investigated. Specifically, as the shape optimisation problem in this study can be highly-
nonlinear, it is unlikely that the defined shape parameters will have similar importance or impact on
the load path the structure will exhibit.

Therefore, this chapter develops a novel coordinate system transformation scheme to improve the
performance of common radial basis function surrogate models [34]. This coordinate system trans-
formation scheme is based on the fact that commonly used basis functions are isotropic, and that
underlying functions in typical engineering problems can contain anisotropic data manifolds.

Three main empirical findings are established in this study. Firstly, in general isotropic functions are
inadequate to describe anisotropic data manifolds due to a mismatch between the functional form and
the form of the data manifold resulting in poor generative performance. Counter-intuitively, utilising
additional gradients during surrogate training often worsens the generative capability.

Secondly, component-wise scaling of isotropic model forms during cross-validation is inadequate to
enhance the functional form of the data manifold form as anisotropic coupling in the data manifold
remains coupled. Improving the match between the functional form and the data manifold form
requires both rotation and scaling.

Thirdly, the coordinate system transformation scheme should predominantly be based on a collection
of local curvature estimations and not on global curvature approximations. Gradients are critical to
estimating the local curvature for identifying a near-optimal reference frame for surrogate construction,
which then translates to additional benefits of gradients in gradient-enhanced surrogates.

Based on the above observations, this chapter proposes an isotropic transformation for the data
coordinate system that performs near-optimal transformations on lower dimensional data without
requiring any cross-validation. The method is compared against commonly applied component-wise
cross-validation data coordinate system scaling as well as the more modern Active Subspace Method
on a carefully crafted decomposable test problem, which has a known optimal coordinate system, that
varies between 2 and 16 dimensions.

The chapter concludes after demonstrating that the developed transformation scheme, as well as
the other common methods, will offer little benefit on non-decompose problems and offers some
suggestions on future work to create a more general isotropic transformation.
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4.2 Introduction
The work completed in this research is focused on the impact that a suitable coordinate system
transformation pre-processing step will have on the performance of a surrogate model. In surrogate
model research, specifically in the context of surrogate-based optimisation (SBO), the model is used
to replace a computationally expensive function, which often includes some finite element (FE) or
computational fluid dynamics (CFD) simulations. The areas of SBO research can broadly be separated
into four main areas, shown in Figure (4.1).

Figure 4.1. Flow diagram showing the main areas of research in the context of surrogate-based optimisation
(SBO) as well as some of the main techniques used in each step.

Most of the current research into surrogate models focuses on the training step (Step 3) of the
process. This research includes various basis function cross validation strategies [9,35–37], component
scaling methods [38, 39], the regression of high fidelity and low fidelity information [7, 40], and the
inclusion of gradient information into the model [35, 41]. In the case where gradient information is
included directly into the model, specifically in basis function based models, often the model does not
experience the performance improvement expected from including highly information dense gradient
vectors [35, 42].

The work in this chapter critically demonstrates that the reason the inclusion of gradient information
does not offer the expected performance improvement is the model bias that the isotropic assumption
introduces into the model [9, 36]. The isotropic assumption refers to the fact that the model assumes
similar output variation given some input perturbation, regardless of the direction of the input perturba-
tion. Only when this assumption is formally addressed, in the case of this work as a pre-processing
step, does the inclusion of gradient information offer the expected improvement to the predictive
performance of the surrogate model.

Common radial basis function implementations inherit the isotropic assumption and typical cross
validation strategies only scale the curvature of the model uniformly in all directions [7,38]. Therefore,
some mechanism is needed to scale the curvature non-uniformly for any general function, to reduce the
model bias with respect to the sampled data. One strategy to accomplish this is to perform component-
based scaling of the coordinate system, or to perform component-based scaling of the basis functions
of the model. This approach assumes that all the variables in the problem independently impact the
outcome of the function, i.e. the variables in the problem are uncoupled. This work will demonstrate
that component-based scaling is an inadequate approach to reduce model bias, in the presence of the
isotropic assumption. Rather, a full transformation, i.e. some rotation and scaling of the coordinate
system, is needed. Figure (4.2) presents this argument graphically, where it is shown that if the data
has a rotated elliptical contour (not isotropic), a full transformation is needed to address the model bias
that the isotropic assumption introduces.

Therefore, this chapter proposes a consistent and tractable method to estimate a coordinate system
in which the model bias is lessened and the isotropic assumption is reasonable. This chapter then
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Figure 4.2. Visual demonstration of how different pre-processing strategies applied to different datasets that
exhibit behaviour ranging from uncoupled to scaled and coupled, can lessen the model bias in basis function
surrogate models.

demonstrates that in this new coordinate system the inclusion of gradient information offers the
expected improvement in predictive performance of the model. The proposed transformation scheme
is most accurate and efficient if it makes use of sampled gradient information.

The layout of the chapter is then as follows. Firstly, a discussion of related research is offered followed
by a more in depth demonstration of the isotropic assumption central to the research completed in this
chapter. The proposed transformation scheme is then derived in Section (4.5) and a test problem and
its important characteristics are discussed in Section (4.6). Results are then generated in Section (4.7)
where the proposed transformation scheme is compared to standard and more modern approaches.
Section (4.8) demonstrates the limitations of the proposed method in the case of non-decomposable
functions. Lastly, some conclusion and recommendations are offered in Section (4.9).

4.3 Related Work
In general, the unconstrained optimisation problem attempts to find some vector of design variables,
x = [x1,x2, ...,xn]

T ∈ Rn, that minimises some scalar function F(x) : Rn → R. In many modern
engineering optimisation problems, the evaluation of the function F(x) often includes a computationally
expensive simulation.

Although the other areas of research shown in Figure (4.1) are outside the scope of the research
completed in this work, the standard methods, and their alternatives, that are implemented in this work
are discussed in this section.
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4.3.1 Data Collection

The most common method used to sample the design coordinate system is the Latin Hyper-Cube
sampling strategy. There are many versions of this method in which additional criteria are placed on
the locations of the samples in the coordinate system such as maximising the average distance between
the points or minimising the correlation between the points. In this study the samples are located using
defacto-standard LHS sampling without the space-filling condition enforced [43].

During the sampling phase it is also possible to obtain gradient information at the sampled locations
in the design coordinate system. Although many papers [6–9] assume that in this scenario gradient
information of the function is not available, it is often not the case. Many papers [19, 20, 22, 23] detail
procedures to calculate the design sensitivities for functions that are computed using the Finite Element
Method (FEM) or Computational Fluid Dynamics (CFD). Many finite element packages have adjoint
sensitivities implemented, for example, Calculix [44]. This gradient information can be calculated
with respect to many different design variables to perform optimisation in a wide range of problems
such as shape optimisation, thermodynamics, and vibration analyses [19, 22, 45–47]. Therefore, in this
work sampling scenarios with and without gradient information are considered.

4.3.2 Common Surrogate Models

Surrogate models can be classified into function-value based, gradient-enhanced, and gradient-only [48].
Note that surrogate models that regresses through both function value and gradient information are
referred to as either gradient-enhanced (GE) models [35, 42], cooperative models (CO) [49, 50], or
first order (FO) models [48, 51]. For the remainder of this research gradient-enhanced (GE) is used
to describe surrogate models that regresses through both gradient and function value information.
Common surrogate models include Kriging Models, Radial Basis Functions (RBF) and polynomial
surrogate models [6, 9, 35–38]. In this chapter the function value (FV-RBF) and gradient enhanced
RBF (GE-RBF) models are implemented.

Radial basis function surrogates refer to the family of surrogates that use a linear summation of basis
functions that depend on a distance measure between two points. Popular options as basis functions
include

• Inverse quadratic: φ(x,c,ε) = 1
1+ε||x−c|| ,

• Multi-quadratic: φ(x,c,ε) = 1√
||x−c||+ε2

,

• Gaussian: φ(x,c,ε) = e−ε||x−c||2 ,

where the variable ε is referred to as the shape parameter and the point c is the centre of the basis
function. The most widely used basis function is the Gaussian function. The RBF surrogate is
expressed as a linear combination of k basis functions

fRBF =
k

∑
i=1

wiφi(x,ci,ε). (4.1)

This equation becomes a system of equations

f = ΦΦΦ(x,c,ε)w, (4.2)
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where the variable ΦΦΦ is a k× p matrix where p is the number of samples. This matrix is then expressed
as

ΦΦΦ =


φ(x1,c1,ε) φ(x1,c2,ε) . . . φ(x1,ck,ε)

φ(x2,c1,ε) φ(x2,c2,ε) . . . φ(x2,ck,ε)
...

...
...

...

φ(xp,c1,ε) φ(xp,c2,ε) . . . φ(xp,ck,ε)


k×p

. (4.3)

The remaining parameters of the surrogate include the number and locations of the centres c and the
value of the shape parameter ε .

A popular choice for the centres is to select p = k, meaning that the number of centres is equal to the
number of sampled points and to position the centres at the location of the sampled points. For this
choice the matrix ΦΦΦ becomes square and the weight vector can be solved directly from Equation (4.2).
This is the method implemented for this research.

Some research, for example, [52] implement a fussy K-means clustering scheme to allocate the centres
in the coordinate system. In this scenario the system becomes over-determined and the least squares
solution

ΦΦΦ
TTT f = ΦΦΦ

TTT
ΦΦΦw, (4.4)

must be implemented.

4.3.2.1 GE-RBF Models

GE-RBF models directly include the gradients in the model construction. This can either be done in an
interpolating sense, such that the model directly interpolates both the function and gradient information
at every point in the design space, or in a regression sense, such that the model neither exactly fits the
function or gradient information, but rather attempts to fit both in the least squares sense.

A regression-based model is typically preferred to a fully interpolating model for two main reasons.
Firstly, computational simulations that require discretisation and iterative solvers can result in noisy
solutions. Therefore, if the model fits the solutions exactly the model may fit more to the noise in the
data than to the underlying function. Secondly, a full interpolation matrix in either higher dimensional
or densely sampled problems may become prohibitively large to solve, while a regression-based model
can still offer useful results at a more reasonable computational cost. Therefore, regression-based
derivations are offered in this section for the discussed surrogate models.

Another reason that regression models are preferred in this research is that the goal of the numerical
investigations is to isolate the effect that the coordinate system transformation has on the performance
of the surrogate model. Therefore, the flexibility of the function and gradient-enhanced models are
kept constant (by keeping the number and location of the centres the same), so that the only variable
that is altered is the coordinate system transformation strategy. The effect of increased flexibility in
gradient-enhanced models, and how this increased flexibility is achieved, are outside the scope of this
research.

The construction of GE-RBF begin by firstly taking the gradient of the Gaussian basis function

dφ(x,c,ε)
dx

=−2εφ(x,c,ε)(x− c), (4.5)
where Equation (4.5) returns a column vector.
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A new system of equations can then be created from the gradient information at each sampled point
for p samples for the RBF surrogate model

d f1
dx
d f2
dx
...

d fp
dx

=


dφ(x1,c1,ε)

dx
dφ(x1,c2,ε)

dx . . . dφ(x1,ck,ε)
dx

dφ(x2,c1,ε)
dx

dφ(x2,c2,ε)
dx . . . dφ(x2,ck,ε)

dx
...

...
...

dφ(xp,c1,ε)
dx

dφ(xp,c2,ε)
dx . . .

dφ(xp,ck,ε)
dx




w1

w2
...

wk

 . (4.6)

The system of Equations (4.6), can then be written as

∇f = ΦΦΦ f ow f o. (4.7)

The subscript f o denotes that first-order information is used in the system. The gradient information
can then be added to the original function-based system to create a new system of equations[

f
∇f

]
=

[
ΦΦΦ

ΦΦΦ f o

]
wGE . (4.8)

The weight vector now contains the subscript GE to show that the weights solved from this system are
for the gradient-enhanced versions of the surrogate models.

An important characteristic to note of the GE models is the size of the systems that need to be solved.
In the function-value based models p scalar samples are taken of the underlying function, creating a
system of size p×k, while in the GE models p scalars and p gradient vectors of size n×1 are sampled,
creating a (p+ p×n)× k system. As the weight vector, wGE , is the same size, specifically k×1 in
both the function value and GE models, the models are of equal flexibility. The difference between the
function value and GE models is therefore that the GE models are constructed by regressing the model
to the gradient information using the least squares formulation (similar to Equation (4.4)).

4.3.3 The Isotropic Assumption

The isotropic behaviour of RBF surrogate models arise from the basis functions used in their imple-
mentation. This section demonstrates how this assumption is present in the basis functions as well
as why this assumption is detrimental to the performance of common surrogate models. Some of the
most common basis functions include

1. Gaussian: φ(x,c,ε) = e−ε||x−c||2 ,
2. Inverse quadratic: φ(x,c,ε) = 1√

||x−c||+ε2
,

3. Multi-quadratic: φ(x,c,ε) = 1
1+ε||x−c|| ,

where the variable ε is referred to as the shape parameter, the point c is the centre of the basis function,
and x is the point being evaluated. During the training of the surrogate model the hyper-parameter ε is
found, as well as the amplitude of each basis function. The contour of these basis functions are shown
in Figure (4.3).

From these contour plots it is clear that the basis functions are symmetrical and therefore make the
assumption that all the variables in the problem are uncoupled and have an equal impact on the outcome
of the problem.

The only tuneable parameters of these basis functions are the shape parameter ε and the amplitude. The
shape parameter can be determined with a k-fold cross-validation or Leave-Out-One cross-validation
(LOOCV) approach [6, 53]. In this research, various shape parameters between 10−2 and 101 are
evaluated using k-fold cross-validation as a metric and the shape parameter associated with the lowest
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Figure 4.3. Contour plots of the Gaussian, Inverse Quadratic, and Multi-quadratic basis function with ε = 1
in Subfigures A, B, and C respectively.

error is selected. The basis function amplitudes are computed using the least squres formulation in
Equation (4.4).

Although this shape parameter is optimised to fit the underlying function, it can only uniformly adjust
the curvature in all the directions in the design coordinate system. This uniform change in curvature can
be demonstrated algebraically by deriving the second derivative of the Gaussian basis function:

d2φ(x,c,ε)
dx2 =−2ε

dφ

dx
(x− c)T −2εIφ(x). (4.9)

If the second derivative is evaluated at the point x = c, this results in

d2φ(x,c,ε)
dx2

∣∣∣∣
x=c

=−2εI, (4.10)

where I is an identity matrix. Therefore, the act of altering or optimising the shape parameter
therefore clearly results in an equal change in the curvature of the basis function (at the centre) in all
directions.

Therefore, if one shape or scale parameter is used for all directions, the model makes the implicit
assumption that the underlying function is isotropic as the basis functions used in its construction are
isotropic or symmetric. However, it is unlikely that a practical engineering design or optimisation
problem will utilize variables that all have equal (or at least similar) impact on the outcome of the
design, and therefore, a large model bias will be present negatively impacting the performance of the
model.

4.3.4 Anisotropic Scaling Strategies

There are many cross-validation strategies in literature that attempt to alleviate the negative con-
sequences of the implicit isotropic assumption and find appropriate hyper-parameters. These strategies
include

• component-wise scaling of the coordinate system, i.e. distinct scaling factors per dimension, as
an attempt to recover isotropy after scaling [38, 39],

• adapting the basis function to explicitly handle anisotropic functions by using a shape parameter
for each principal direction in the design coordinate system [9, 35–37],

• or more recently, implementing the so-called Active Subspace Method (ASM) [54–57].
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The first two strategies, scaling the coordinate system or using multiple shape parameters, are referred
to as the Kriging hyper-parameter optimisation problem. Here an n-dimensional space needs to be
searched in order to find the optimum parameters. Therefore many papers apply some global optimiser
to solve this problem, such as the Genetic Algorithm (GA) or Particle Swarm Optimisation (PSO) [36].
In higher dimensions, this becomes computationally expensive, so much so that it can become the
bottleneck in computation time for SBO. Toal et al. [36] investigated four different tuning strategies
on problems varying from 1D to 30D. Each of the tuning strategies sampled the model 10 000 times
before a set of hyper-parameters was selected.

Other papers attempt to reduce the number of hyper-parameters in the model. Bouhel et al. [35, 37]
used a partial-least squares (PLS) method to introduce new kernels based on the information from the
PLS method. The number of hyper-parameters is then reduced to the number of principal components
(PCs) the designer decides to keep based on the information gathered from the PLS method. The ideal
number of PCs to be retained depends on the problem as well as the location of the sampled points.
There is currently no consistent method to determine this value.

The problem with the first two strategies is that the the surrogate models become computationally
intractable to construct for higher dimensional problems (typically ≥ 10) [35], and in the case where
the variables are coupled (see Figure (4.2)), the model bias is still large as no rotation of the coordinate
system takes place.

For comparison purposes, in this research a simplex search algorithm, such as that used by Toal et al.
[36], is implemented to find optimum scaling values for the Kriging hyper-parameter problem. To
keep the computational costs reasonable, as well as competitive with the other methods implemented,
the algorithm is limited to 100 iterations for 5 initial scaling vectors.

4.3.5 The Active Subspace Method

Although the Active Subspace Method (ASM) is typically a dimension reduction technique, it shares
some similarities with the developed transformation scheme in this work. This method finds a lower
dimensional reference frame, referred to as the active subspace, that captures the most variance in a
function [54].

This method is described in detail by Constantine et al. [54], but a brief overview needed for imple-
mentation is offered here. The method begins by assuming that gradient information of the underlying
function is available. It then constructs the following n×n matrix

C = E(∇ f (x)∇ f (x)T ), (4.11)

where C can be seen as the covariance matrix of the gradient vector. In case of SBO applications
the gradient vector ∇ f (x) is only available at discrete sampled locations. Therefore, the matrix C is
approximated with

C = C̃ =
1
p

p

∑
i

∇ f (xi)∇ f (xi)
T , (4.12)

where p is the number of samples of the underlying function and ∇ f (xi) is the gradient at these
locations.

The matrix C̃ can then be decomposed into the form

C̃ = VΣΣΣVT , (4.13)
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where V and ΣΣΣ are the eigenvectors and eigenvalues respectively. The eigenvalue matrix takes the
form

ΣΣΣ =


λ1 0 . . . 0

0 λ2 . . . 0

0 0 . . . 0

0 0 . . . λn

 , (4.14)

where λn is the eigenvalue associated with the n−th eigenvector.

In the case where coordinate system reduction is implemented only m of the n eigenvectors are
used to rotate the coordinate system, where the m vectors are the ones associated with the largest
eigenvalues. In this work all n eigenvectors are used as only the case where a full coordinate system
transformation is completed is considered. Lastly, the square root of the eigenvectors are then used to
scale the coordinate system so that the variance in each direction is approximately equal. This step is
occasionally omitted [57, 58], but it is included here as proposed in the original formulation [54]. The
ASM method can then be summarised as

1. Compute C̃ using Equation (4.12) from the sampled data set.
2. Decompose C̃ into its eigenvalues and eigenvectors V and ΣΣΣ respectively.
3. Rotate the coordinate system using the eigenvectors V and then scale each direction i with

√
λi.

4.4 Effect of Different Coordinate Systems
To demonstrate how different coordinate systems can impact the performance of a RBF model, the
following uncoupled 2D function with each dimension in the domain xi ∈ [0,1] is considered:

F(x) = sin(2πx1)+ sin(2πx2). (4.15)

The effect that the scaling and rotating of the coordinate system has on the performance of the RBF
surrogate model is demonstrated by defining two new coordinate systems. Firstly, a scaled coordinate
system x∗ is defined in which the inputs of the function are scaled using the equation

x∗ = Sx, (4.16)

where the matrix S is defined as

S =

[
2 0

0 1

]
. (4.17)

The scaled coordinate system x∗ is then rotated to the coordinate system x̂. In this coordinate system,
the function becomes coupled. The coordinate system transformation is given by

x̂ = Rx∗ = RSx (4.18)

where the rotation matrix R is defined as

R =

[
cos(30◦) −sin(30◦)

sin(30◦) cos(30◦)

]
. (4.19)

The functions in these three coordinate system, namely the “original”, “scaled”, and “scaled and
rotated” coordinate systems are shown in Figure (4.4).

Three RBF surrogates are then constructed using various sample numbers (varying from 10 to 25),
one in the “original” coordinate system, one in the “scaled” coordinate system, and lastly one in the
“scaled and rotated” coordinate system.

The performance of each surrogate is measured at 1000 randomly sampled test points. The number of
test points is selected so much higher than the number of construction points to ensure that the error
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Figure 4.4. Contour plots of the example function illustrated in the “original” coordinate system, “scaled”
coordinate system and “scaled and rotated” coordinate system.

measure is an accurate reflection of the quality of fit, and is not affected by the location of the test
points. To account for the randomness present in the location of the construction points, the error
calculation is repeated 50 times and the mean is recorded. To evaluate the dependency of the surrogates
on the locations of the construction points, a measure of the variance of the surrogates is recorded.
This is done by taking the variance of the error for each point in the test set and then recording the
mean of this variance across all the points. Ideally, this result should be zero, otherwise, the surrogate
greatly depends on the randomness of the sampling technique.

The performance measure used is the Root Mean Square Error (RMSE), expressed by

RMSE =

√
∑

N
i (V

i
T −V i

P)
2

N
(4.20)

where V i
T is the target value and V i

P is the predicted value from the surrogate. The results are shown
in Figure (4.5) where the shaded region in the plots indicates the mean variance (averaged over 50
instances) of the surrogates.

Clearly, the coordinate system the surrogate is constructed in has a meaningful and measurable impact
on the performance of a surrogate. The transformed coordinate systems, i.e. x∗ and x̂, negatively
impacted both the performance of the surrogate (increased error), as well as the consistency of the
surrogate (increased variance), especially at lower sampling densities. One can also see the benefit of a
complete transformation (rotation and scaling) that would transform the problem back from the rotated
x̂ coordinate system to the original x coordinate system.

The total error of a surrogate, ET , can then be defined as a summation of two errors. The first is the
error associated with the sparsity of information, ES, and the second is the error associated with the
coordinate system the surrogate is constructed in, ED. These errors are indicated in Figure (4.6).

4.5 Proposed Transformation Scheme
The goal of the developed transformation scheme is to recast the problem into a coordinate system
where the problem is isotropic, i.e. the variables are uncoupled and have an equal impact on the
outcome of the function. From the discussions presented in Sections (4.3.3) and (4.4) it is clear that,
firstly, RBF models struggle to accommodate anisotropic functions, and secondly, a coordinate system
transformation step can recast the problem into a more isotropic coordinate system. This section will
critically demonstrate that curvature information is what is needed to create a general transformation
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Figure 4.5. The mean RMSE (solid lines) and the mean variance (shaded regions) in the RMSE for the
surrogates constructed in the three coordinate systems for an increasing number of samples. Means are computed
across 50 instances.

Figure 4.6. The sources of poor performance of a surrogate. The total error ET consists of the sparsity of
information error ES and the construction coordinate system error ED.

scheme, and that this curvature information needs to be obtained from a collection of local estimations
and not a single global estimation.

4.5.1 Second-Order Non-linearity

To begin this argument consider a simple quadratic function given by

f (x) =
1
2

xᵀAx, (4.21)
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where A is a 2× 2 matrix that is also the Hessian of the function. Consider the three different
cases

A1 =

[
1 0

0 1

]
, A2 =

[
3 1

1 1

]
, A3 =

[
1 0.5

0.5 1

]
. (4.22)

Figure (4.7) depicts the contour plots for these three cases. The dashed lines in these figures indicate
the eigenvalues and eigenvectors of the A matrices.

Figure 4.7. Contour plots of quadratic functions with Hessians given by A1, A2 and A3. The dashed lines
indicate the eigenvectors and their lengths are chosen proportional to the eigenvalues.

The shape of the function in the case of A1, when the function is isotropic, closely resembles the
shape of the basis functions. Therefore, the goal of the transformation scheme should be to create
a coordinate system where for any A, the function evaluated in the transformed coordinate system
should resemble the case where A = A1.

This can be achieved by utilising the eigenvalues and eigenvectors of the Hessian matrix. The
coordinate system is then rotated using the eigenvectors of the Hessian and scaled by the square root of
the eigenvalues for each direction. Figure (4.8) shows the contours using this transformation scheme,
for the 3 different A matrices. Clearly, by taking into account the curvature in all directions the problem

Figure 4.8. Contour plots of quadratic functions with Hessians given by A1, A2 and A3, after applying the
proposed transformation scheme to the original coordinate system.

can be recast into a coordinate system where the function is isotropic.
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4.5.2 General Higher-Order Non-linearity

The challenge is to generalise this procedure such that it can be implemented on any non-linear
function (i.e. any problem with an unknown Hessian). Initially, it seems reasonable to take some
global curvature measure, since the surrogate is fit on the entire coordinate system. This is however
not the case. The theoretical motivation behind the transformation scheme developed in this section is
as follows: RBF surrogate models are constructed as a summation of isotropic basis functions placed
throughout the design domain. Therefore, if locally, meaning at the location of the basis function,
the underlying function is anisotropic the basis function will not offer a reliable estimation of the
local behaviour. As the model is a summation of these now unreliable basis functions, the overall
predictive ability of the model suffers. As such, by making use of local estimations of curvature it
becomes possible to predict the suitability of using isotropic basis functions to predict the underlying
functions behaviour. The eigenvectors and eigenvalues of these local estimations of curvature then also
inform what the optimum coordinate system is for each local basis function. Therefore, it is possible
to approximate a single global coordinate system as an average of all the optimum local coordinate
systems.

This theoretical framework will be motivated with two example numerical problems. Firstly, Consider
the 1D function

F(x) = sin( f πx)+15(x−0.5)2, (4.23)
where f is 6 and 12 for two example problems depicted in Figure (4.9). This can be thought of the
behaviour of a high dimensional function in two eigen directions. These functions are each sampled
50 times. Since the optimum local length scale in the two directions differ, this functions is clearly
anisotropic. If the functions are scaled such that the global curvature estimates become similar, no
scaling will be required as the global estimates both return a similar curvature estimations. However,
if the functions are scaled such that the local curvature estimates become similar, then the function
becomes more isotropic and should be approximated better using the summation of isotropic basis
functions.

Figure 4.9. Two 1D example problems illustrating the difference between a single global fit and many local
fits. The average optimum scaling factor proposed by both estimations,

√
λ , for the local and global fits are also

denoted on the figure.

The shortcomings of a single global approximation method is also demonstrated on the 2D problem
from Equation (4.15), in the scaled and rotated coordinate system using 25 samples. The function is
approximated using a full n−dimensional quadratic fit of the form

f =
n

∑
i

n

∑
j

wi jxix j +
n

∑
k

wkxk +wc, (4.24)
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where the weights wi j, wk, and wc are associated with the quadratic and coupling terms, the linear
terms, and the constant term in the equation respectively. For this example problem the case where
n = 2 is used. The wi j weights solved from this fitted function can then be re-arranged into the Hessian
of the quadratic fit

H =


2w11 w12 . . . w1n

w21 2w22 . . . w2n
...

...
...

...

wn1 wn2 . . . 2wnn

 , (4.25)

where w12 = w21 as the matrix is symmetric. In the implementation of this chapter, an interpolating fit
is constructed. This requires as many function values as there are unknown coefficients in the fit. These
points are selected as the closest points surrounding the point at which the Hessian is approximated,
resulting in a local approximation of the Hessian.

Figure (4.10) depicts the contour plots of the scaled and rotated function, a global full quadratic fit and
four local full quadratic fits. In this example local fits at four random sampled points are constructed.
The five nearest neighbours are used to construct the fit.

Figure 4.10. Contour plots of the original function, the global quadratic fit and local fits in subplots A, B and
C respectively. The local cluster of points used for each local fit are shown by the coloured dashed lines.

The global quadratic fit offers very little resemblance to the curvature of the underlying function. This
occurs as the quadratic assumption cannot capture the full non-linearity of the underlying function
across the entire coordinate system. The regressed quadratic fit instead offers a poor representation of
the underlying curvature as it completes a global least squares fit using function information. Although
the regressed quadratic fit has a low function value error, as this is the information it is constructed
with, it offers a poor representation of the curvature of the underlying function.

The local fits on the other hand clearly offer a better representation of the curvature present in the
problem. To remove variance in the local information some average measure of the local estimations
must be found. Obtaining an average orthogonal matrix from all the local eigenvectors is not a trivial
computation and averages of orthogonal matrices are not themselves orthogonal [59]. Therefore
one average global Hessian is created from the many local Hessians. This is done by using the
decomposition used in the Saddle-Free Newton method [60]

H = VΣΣΣVT , (4.26)

where V and ΣΣΣ are the eigenvectors and a diagonal matrix containing the eigenvalues along the
diagonal, respectively. Each local Hessian is then recreated by taking the absolute value of the
eigenvalue matrix,

Hrec = V|ΣΣΣ|VT . (4.27)
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The average global Hessian matrix is then calculated by taking the average of these reconstructed local
Hessians:

Havg =
1
N

N

∑
i

Hrec. (4.28)

The Hessian is reconstructed with the absolute values of the eigenvalues as the local Hessians can be
either concave or convex, as can be seen in Figure (4.9). The average of a collection of concave and
convex Hessians can be a zero matrix as the positive and negative curvatures may be equal. Therefore,
all the local Hessians are reconstructed to be convex, meaning with positive eigenvalues, such that only
the magnitude and direction of the local curvature is kept.

Next the eigenvalues and eigenvectors of this average global Hessian are computed. The coordinate
system is rotated using the eigenvectors as columns in an orthogonal matrix, and each direction is
scaled with the square root of the eigenvalues.

4.5.3 Hessian Estimation

For the research completed in this chapter two methods are selected to estimate Hessian information
depending on the information available. When only function information is available the quadratic
fits used in Section (4.5.2) are implemented. In the case where gradient information is available, the
Symmetric Rank 1 (SR1) Hessian update method [48] is used:

Hk+1 = Hk +
(yk−Hk∆xk)(yk−Hk∆xk)

T

(yk−Hk∆xk)T ∆xk
. (4.29)

The initial Hessian estimate H0 is an identity matrix and the term yk is defined as

yk = ∇F(xk +∆xk)−∇F(xk). (4.30)

To ensure that the local Hessian approximation is rank sufficient, n SR1 updates are performed at the
n closest points surrounding the point where the Hessian is estimated. This of course requires the
gradient vector at each of these n points. The two methods are referred to as gradient enhanced local
Hessian method (GE-LHM) and function value local Hessian method (FV-LHM).

A key difference between these two Hessian estimation methods is the minimum number of points
each method requires in order to provide an estimation of the local Hessian. The SR1 method
requires n+ 1 points (the centre point and the closest n points) while the quadratic fit requires a
local cluster containing n(n− 1)/2+ n+ 1 points in n-dimensional space. This implies that when
gradient information is available, the proposed transformation scheme scales favourably with problem
dimension (linear scaling), while the function value-based Hessian approximation method becomes
prohibitively expensive (quadratic scaling).

4.5.4 Numerical Transformation Example

To demonstrate the proposed method Figure (4.11) shows contour plots of Equation (4.15) in the
scaled and rotated coordinate system, in the GE-LHM transformed coordinate system, the FV-LHM
transformed coordinate system, and ASM transformed coordinate system for increasing sample num-
bers.

Ideally, as the sample number increases the methods should converge towards the original coordinate
system (depicted in Figure (4.4)). Figure (4.11) demonstrates that for this example problem the
GE-LHM quickly converges to the original ideal coordinate system, while the FV-LHM and ASM will
need additional samples.
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Figure 4.11. Contour plots of Equation (4.15) in the scaled and rotated coordinate systems, a transformed
coordinate system using 10 samples, and a transformed coordinate system using 20 samples.

4.5.5 Effect of Transformation on the Gradient Vector

When the coordinate system is transformed, the gradients are indirectly also transformed. Therefore
the gradients need to be transformed into the new coordinate system before they are used in the
construction of the surrogate model. This is done by first expressing the underlying function as a
function of the transformed coordinate system

F(x̂) = F(x̂(x)), (4.31)

where now the original coordinate system x is assumed to be coupled and anisotropic, and the
transformed coordinate system x̂ to be the ideal uncoupled and isotropic coordinate system.

Using the chain rule and Equation (4.31), the function gradient can be expressed as
dF
dx

=
dF
dx̂

dx̂
dx

, (4.32)
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where dF
dx are the gradients that were found when the underlying function was sampled and dF

dx̂ is the
gradients in the new transformed coordinate system. Therefore the new gradient vector can be found
by solving

dF
dx̂

=
dF
dx

(
dx̂
dx

)−1

, (4.33)

The required term (dx̂
dx)
−1 follows from

x̂ = RSx. (4.34)
Taking the gradient of Equation (4.34) yields

dx̂
dx

= RS. (4.35)

Since R is a orthogonal matrix, R−1 = Rᵀ. Therefore,(
dx̂
dx

)−1

= (RS)−1 = S−1R−1 = S−1Rᵀ. (4.36)

Since the scaling matrix S is a diagonal matrix, its inverse is simply the inverse of each diagonal entry
placed in the same location on the diagonal. The final transformed gradient from Equation (4.33) then
becomes

dF
dx̂

=
dF
dx

S−1Rᵀ. (4.37)

4.5.6 Summary of Proposed Transformation Procedure

The implementation of the proposed transformation procedure can be separated into three Sub-
procedures. The first Sub-procedure, Sub-procedure (3), iterates through all the sampled points
and calculates an average Hessian estimation.

Sub-procedure 3: Transformation Procedure
Input :Sampled Information of the Underlying Function.
Output :The transformed coordinate system x̂ and the gradients dF

dx̂
1 for All sampled points do
2 if Gradient Information is available then
3 Use Procedure (4)
4 else
5 Use Procedure (5)
6 end
7 end
8 for All Hessian Estimations do
9 Compute Equation (4.27)

10 end
11 Compute Equation (4.28);
12 Find the eigenvalues and eigenvectors of the average Hessian;
13 if Gradient Information is available then
14 Compute Equation (4.37);
15 end
16 Compute Equation (4.34) using the eigenvalues and eigenvectors;
17 Return x̂, and dF

dx̂

Sub-procedures (4) and (5) compute local Hessian estimations from some subset of points in the
sample set.
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Sub-procedure 4: Gradient Information Based Hessian Estimation
Input :A sampled point
Output :A Local Hessian Estimation

1 Find the n+1 closest points;
2 Initialise H0 as an Identity matrix ;
3 Arrange from furthest to closest;
4 for Closest Points Subset do
5 Compute Equation (4.29)
6 end
7 Return The local Hessian Estimation.

Sub-procedure 5: Function Information Based Hessian Estimation
Input :A sampled point
Output :A Local Hessian Estimation

1 Find the n(n−1)/2+n+1 closest points;
2 Fit local Quadratic function using Equation (4.24) ;
3 Rearrange weight vector into Hessian using Equation (4.25);
4 Return The local Hessian Estimation.

4.6 Test Problem
In order to further evaluate i) the benefit of adequate coordinate system transformation, and ii) the
proposed transformation scheme, an n-dimensional test problem is constructed. This test problem is
created by adapting the numerical problem used in section (4.4) to a more general form where the
dimensionality of the problem can be altered.

The test problem will then be used to investigate the benefit of appropriate coordinate system trans-
formation as a function of problem dimension. If the test function is selected as a decomposable
function

f (x) = f1(x1)+ f2(x2)+ · · ·+ fn(xn), (4.38)
then the resulting Hessian will be a diagonal matrix. Then independent scaling along each coordinate
axis might create an isotropic or near-isotropic function. Therefore the test function is deliberately
selected as a decomposable function, ensuring that the optimal reference frame in which to express
the function is known. The remaining feature that is deliberately embed into the test function, is
varying length scales in different coordinate directions. This results in a test function for which
certain characteristics can be easily altered, such as problem dimension and complexity. The fact that
key characteristics of the function can be easily altered allows for an independent study of desired
characteristics without the need to create a new test function entirely. The test function is chosen to
have the form

f (x) =
1
n

N

∑
i=1

Ai sin(Fixi), (4.39)

where n is the problem dimension and Fi and Ai are the frequency and amplitude in the ith coordinate
direction. The amplitudes and frequencies are found from

Ai =−2exp
−(2i−N)2

N
+3, (4.40)

Fi =
3π

2+2exp −20i+N
2

+
π

2
. (4.41)
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These frequency and amplitude equations attempt to keep the complexity of the function relatively
constant as the problem dimension increases. The frequency is bound between [0.5π;2π] and the
amplitude between [1,3].

Another feature that is easily added to the test function, is to rotate the problem into an arbitrary
reference frame. As the original test function exhibits a diagonal Hessian, a rotation of the design
space is added to create a problem where the variables are coupled. This version of the test function
will then assess how well the rotation aspect of the proposed transformation scheme works, i.e. if an
uncoupled reference frame exists then the transformation scheme must be able to find it. The original
coordinate system is rotated using a random rotation matrix R created from

R = expm(π(A−Aᵀ)), (4.42)

where A is a random matrix with elements sampled between [−0.5,0.5] and expm is the exponential
map. The exponential map of a skew matrix (A−Aᵀ) results in an orthogonal matrix [48].

In this research, the case where gradient information is available is also discussed. Therefore, the gradi-
ents of the n-dimensional test function are needed. The gradient of Equation (4.39) is simply

∂Fi

∂xi
=

1
n

AiFi cos(Fixi), (4.43)

where in the case of coordinate system rotation, the process detailed in Section (4.5.5) is fol-
lowed.

4.7 RMSE Results
The numerical results in this section follow a two-step process

1. a coordinate system transformation,
2. followed by surrogate construction.

The results, therefore, attempt to separate the contribution of these two steps to the performance
of a surrogate. Specifically, the information used to perform coordinate system transformation is
deliberately separated from the information used to construct the surrogate.

This is done by constructing the FV-RBF and GE-RBF surrogate models, in six different coordinate
systems. These six coordinate system transformation strategies are

• The gradient informed local Hessian estimation method (GE-LHM): Coordinate system trans-
formation (rotation and scaling) performed by estimating the Hessian using gradient information,

• The function informed local Hessian estimation method (FV-LHM): Coordinate system trans-
formation (rotation and scaling) performed by estimating the Hessian using function information,

• The Kriging hyper-parameter optimisation method: only coordinate system scaling (no rotation)
is used, as discussed in Section (4.3.4),

• The min-max scaled method: The coordinate system is scaled (no rotation) to [0;1] in all
dimensions,

• The Active Subspace Method: the implemented version selects all the eigenvectors, and
• The ideal transformation method: This transformation is only possible since an analytical

expression for the underlying function, where the optimal rotation matrix R and scaling factors
are known.

By using two different models in six different coordinate systems, the results will demonstrate if the
construction coordinate system consistently impacts the performance of the surrogate model, regardless
of the information used in the construction of the model. The two surrogate models, function value
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and gradient enhanced, are chosen to have the same model flexibility, i.e. the same number of centres,
to further isolate the effect the construction coordinate system has on the performance of the surrogate
model. By fixing the flexibility of the surrogate model it will be shown that the ill-suitably of the
coordinate system the model is constructed in, and not a lack of construction information, is the main
source of the approximation error.

The RMSE of the surrogates is found by sampling the error at 105 test points. Such a large number
of test points is selected to ensure that an accurate RMSE is computed even for the high-dimensional
versions of the test problem. This process is then repeated 50 times to be able to compute the
average RMSE error, as well as the variance in the RMSE. Figure (4.12) presents the results for the
2-dimensional test problem. The average RMSE (solid lines) and the variance in RMSE (shaded areas)
are shown for the function value and GE RBF models in all six construction coordinate systems. The
RMSE results are presented in the log coordinate system so that the performance of the models can be
compared across a wide range of accuracy levels.

Figure 4.12. RMSE results for the FV-RBF (left) and the GE-RBF (right) on the 2-dimensional test problem.

This 2D example shows that there is a benefit in constructing the surrogate in the transformed coordinate
system instead of the [0;1] scaled coordinate system. For example, if the goal accuracy of the problem
was 10−1 the GE-LHM coordinate system would require on average almost 50% less samples, from
20 to 11 samples, than the standard min-max coordinate system.

It is also noticeable that only scaling the coordinate system, i.e. the Kriging scaled results, is not
nearly as beneficial as complete coordinate system transformation (scaling and rotation) that is com-
plete by ASM and gradient informed LHM at lower sample densities. Once sufficient samples are
used, the function informed LHM begins to rapidly approach the performance of the gradient-based
methods.

The anisotropic nature of the problem is quickly overcome by sampling the coordinate system densely
enough, but, as will be shown, overcoming the coupled and anisotropic nature of the function with
dense enough sampling becomes far more difficult in higher dimensional problems. Figures (4.13) and
(4.14) present the results for the 4 and 8-dimensional problems respectively.
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Figure 4.13. Log RMSE results for the FV-RBF (left) and the GE-RBF (right) on the 4-dimensional test
problem.

Figure 4.14. Log RMSE results for the FV-RBF (left) and the GE-RBF (Right) on the 8-dimensional test
problem.
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This increase in problem dimension highlights both the importance of a complete transformation
scheme as well as the benefit of gradient information. Firstly, for the 4-dimensional problem, there is
some benefit of the Kriging-based scheme over the proposed function transformation and the simple
min-max scaling. But, as the problem dimension increases to 8, this benefit diminishes to almost zero
in the case of FV-RBF models. The second observation to note is the clear performance gain when
a suitable completely transformed construction coordinate system is used. This gain is once again
evident in the ideal transformation, gradient informed LHM, or ASM. Gradient information offers a
better approximation of local curvature, and therefore, returns a near-optimal approximation of the
ideal transformed construction coordinate system.

If again the goal accuracy of the models were a RMSE of 10−1 the GE-LHM coordinate system
requires on average 50% less samples in the 4-dimensional problem. For the FV-RBF models the
samples decrease from 100 to 40, and for the GE-RBF models the samples decrease from 60 to 32. As
the problem dimension is increased to 8, the benefit of appropriate transformation also increases. For
a goal of RMSE of 10−1 the FV-RBF and GE-RBF models required almost 60% less samples, from
400 to 160 and 260 to 120 samples for the FV-RBF and GE-RBF models respectively. Therefore, the
results in Figure (4.13) and (4.14) show that the benefit of coordinate system transformation increases
as the problem dimension increases.

The figures also demonstrate that the FV-RBF in the GE-LHM or ASM coordinate systems have better
performance than the GE-RBF models in the Min-Max coordinate system. This means that utilising
the gradient information to perform a coordinate system transformation, the ASM and GE-LHM
transformed coordinate systems, is more beneficial to surrogate performance than utilising the gradient
information for the construction of the model. This is because the estimation of a coordinate system is
a far more information dense task, that grows with the dimensionality of problem, than estimating a
single scalar value from data. Therefore, the fact that the amount of information in gradient vectors
grows with the dimensionality of the problem means that they are far more efficient at estimating an
appropriate coordinate system than function values.

The problem dimension is then further increased to 16 and the same results are repeated in Figure
(4.15).

From these results, it becomes apparent that the benefit of appropriate complete coordinate system
transformation, over both min-max scaling or Kriging scaling, grows with problem dimension. As
with the lower dimensional problems, the surrogates constructed in ill-suited coordinate systems offer
minimal performance improvement in low sample density scenarios when additional samples are
added. This slow rate of improvement for the “non-transformed” surrogate means that the proposed
gradient-based LHM transformation scheme and the ideal transformation coordinate system require
far less computational cost, i.e. fewer samples, to achieve the same accuracy. For example, if the
16-dimensional problem had a goal RMSE of 10−1 the proposed transformation scheme would require,
on average, 800 and 650 samples for the function value and GE models respectively, while the standard
min-max scaling would require 2000 and 1750 samples. Therefore, for this simple test function, the
proposed transformation scheme results on average in 60% less computational cost compared to the
standard min-max scaling procedure.

What is noticeable in the results is that at higher dimensions the FV-LHM offers very little improvement
over standard Min-Max scaling. This is due to the number of points needed to estimate curvature from
function values grows exponentially as a function of the dimensionality, therefore, at higher dimensions
instead of estimating local curvature the FV-LHM instead begins to estimate global curvature.
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Figure 4.15. Log RMSE results for the FV-RBF (left) and the GE-RBF (Right) on the 16-dimensional test
problem

An additional feature of the results in Figure (4.15) to note is the fact that the ASM performance
is worse than simple min-max or Kriging based scaling for the GE-RBF models at high sampling
densities in this numerical problem. This is most likely due to that fact that in this work the ASM is
implemented as a coordinate system transformation scheme instead of, and as it is originally developed
for, a coordinate system reduction technique.

4.8 Non-Decomposable Functions
The developed transformation technique assumes that the underlying function is decomposable,
meaning there exists a single linear transformation that will recast the problem into a coordinate
system where the variables in the underlining function are uncoupled. To investigate the performance
of the method on a non-decomposable problem the well known n−dimensional Rosenbrok function in
the domain [−1,1]n→ R is used. This problem is expressed in Equation (4.44) and the 2-dimensional
problem is shown in Figure (4.17).

f (x) =
n−1

∑
i=1

[
100 · (xi+1− x2

i )
2 +(1− xi)

2] (4.44)

The GE-RBF model is then constructed for various sample numbers at various dimensionalities using
the different transformation schemes. As this function is not decomposable there is not a clear or
obvious optimum reference frame as there is with the crafted test problem. Therefore, there is no ideal
transformation to compare to in this example.

The problem is completed for 2, 4, 8, and 16 dimensions at increasing sample numbers. As before, to
account for the randomness in the sample locations the RBFs are constructed on 50 sets of sampled
data and the mean RMSE error is recorded at 10000 randomly sampled points. The results are shown
in Figure (4.17)

Although there is some benefit in the proposed transformation scheme, there is very little difference
between the results of all the transformation schemes. These results are expected, as all the pre-
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Figure 4.16. Contour plot of the 2 dimensional Rosenbrock function

Figure 4.17. Results for the Rosenbrok Function

processing schemes are designed for decompose-able functions or functions that are already uncoupled.
Therefore, in order to handle non-decomposable functions the pre-processing transformation will need
to be non-linear and a function of the location in the design domain.

What is clear, from the results presented in this chapter, is that a general non-linear transformation
scheme will need to be based of local curvature information, and that its curvature information will
ideally be estimated from sampled gradient information.
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4.9 Chapter Conclusion
The work presented in this chapter demonstrates that the coordinate system in which common radial
basis function surrogate models are constructed in can have a significant influence on the predictive
performance of the surrogate. This is done with a few main findings.

Firstly, the addition of gradient information into the construction of a surrogate model will not result
in the expected improvement of the predictive performance of the surrogate if the coordinate system
is not suitable. Therefore, attention needs to be given to a pre-processing step that will adequately
transform the coordinate system in which the surrogate model will be constructed.

Secondly, a full coordinate system transformation, including both scaling and rotation, is required to
address the isotropic assumption. Simple component-wise scaling is not a sufficient strategy.

The information needed to inform the pre-processing step is a collection of local curvature information
rather than one global estimation of the curvature. This local curvature will need to be estimated in
most practical engineering problems. Although this estimation can be completed with either gradient
or function information, the results in this work demonstrate that gradient information offers a more
efficient and accurate approximation of the local curvature. This is seen clearly at higher dimensions
where to estimate local curvature from function values a large number of samples is required.

The coordinate system the models are constructed in impacts the performance of the surrogate model
regardless of the information used to construct the model. There is improvement in both the FV and
GE surrogate models when the coordinate system the models are constructed in is transformed using
the developed coordinate system transformation scheme. The transformation must be a fully coupled
rotation and scaling as only scaling the coordinate system is not sufficient.

The ASM method offers a noticeable performance improvement over standard min-max or Kriging
based scaling. The proposed transformation scheme does outperform the ASM on this numerical
problem, but it may come at a greater computational cost. The ASM completes one eigenvalue
decomposition, on the approximated Ĉ matrix, while LHM completes p+ 1 decompositions. The
computational cost can be reduced by computing these p+1 decompositions in parallel, or by only
using some subset of the p sampled points. If however the computational cost of evaluating the function
value and gradient vector is high (as expected), the cost of the proposed transformation scheme is
negligible.

Lastly, the use of gradient information allows for the estimation of local curvature to complete a
powerful, automatic, and fully coupled coordinate system transformation scheme that results in near-
optimal performance. Therefore, using the gradient information to transform the coordinate system
can be far more beneficial to surrogate performance than including this information directly in the
construction of the surrogate model.

Therefore, the developed transformation scheme in this chapter can now be tested on the load path
optimisation problem. Specifically, the ability of the RBF surrogate models, with the addition of
the coordinate transformation scheme, to approximate the load path of a snap-through structure as a
function of both spatial and temporal variables is investigated in the next chapter.
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5.1 Chapter Abstract
This chapter compares the performance of spatio-temporal surrogate models (STSMs) and network
surrogate models (NSMs) when a system’s response varies over time (or pseudo-time) and this response
must be approximated. A surrogate model is used to approximate the response of computationally
expensive spatial and temporal fields resulting from some computational mechanics simulations.
Within a design context, a surrogate takes a vector of design variables that describe a current design
and returns an approximation of the design’s response through a pseudo-time variable.

To compare various radial basis function (RBF) surrogate modeling approaches, the prediction of a
load-displacement path of a snap-through structure is used as an example numerical problem. This
work specifically considers the scenario where analytical sensitivities are available directly from
the computational mechanics’ solver and therefore gradient enhanced surrogates are constructed. In
addition, the gradients are used to perform a domain transformation preprocessing step to construct
surrogate models in a more isotropic domain, which is conducive to RBFs. This work demonstrates
that although the gradient-based domain transformation scheme offers a significant improvement to the
performance of the spatio-temporal surrogate models (STSMs), the network surrogate model (NSM) is
far more robust. This research offers explanations for the improved performance of NSMs over STSMs
and recommends future research to improve the performance of STSMs.

5.2 Introduction
This chapter investigates the use and suitability of Radial Basis Functions (RBF) surrogate models to
predict a system’s response through some pseudo-time variable. This type of problem is often present
in computationally expensive Computation Fluid Dynamics (CFD) simulations, crash-worthiness
simulations, or pressure control simulations, where a designer wishes to predict the change in a
design’s behaviour without recomputing a computationally expensive simulation. Therefore, the
surrogate model is intended to replace the computationally expensive simulation by accepting a vector
of variables that describe a design and offer a computationally inexpensive approximation of the
design’s response through a pseudo-time variable. In this problem, the surrogate model needs to return
a continuous approximation as a function of the pseudo-time variable, and not simply a single scalar
value as is often the case with surrogate models. Hence, the surrogate needs to return a response vector,
which is often referred to as a vector-valued surrogate model [61].

In this work, the scenario where the analytical gradients are available is considered. There are many
examples in literature [19, 20, 22, 23] where detailed procedures to calculate the design sensitivities for
functions that are computed using the Finite Element Method (FEM), Finite Volume Method (FVM)
for structural mechanics and Computational Fluid Dynamics (CFD) are offered. Some finite element
packages even have adjoint sensitivities implemented, for example, Calculix [44]. This gradient
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information can be calculated with respect to many different design variables for a wide range of
problems [19, 22, 45–47].

As per usual practice, these analytical sensitivities are used directly in the RBF surface approximation,
i.e., to construct Gradient Enhanced RBF models (GE-RBF) [53,62]. In addition, these sensitivities are
also used to perform a domain transformation preprocessing step that aims to find a transformation that
results in a near isotropic surface to be approximated. This domain transformation step was previously
developed by the author [34] to accommodate the application of RBF kernels that are isotropic on the
approximation of non-isotropic surfaces often resulting in engineering problems [9, 35, 38, 39]. This is
discussed in more detail later in the chapter in section (5.3).

There are two main options for constructing a surrogate model that can predict behaviour through a
pseudo-time variable. Firstly, the design variables and the pseudo-time variable can be uncoupled and
a network of smaller surrogate models can be constructed and trained at m predetermined locations in
the pseudo-time variable. In order to sample the approximated behaviour, each RBF model is then
sampled separately and some interpolation scheme is used to find the result at locations other than the
m pseudo-time points. In this work simple linear interpolation is implemented. This surrogate model
approach is referred to as the network surrogate model (NSM) [63].

The second option is to couple the design and pseudo-time variables and construct one surrogate
model over the shape and pseudo-time variables. Such a surrogate model is often referred to as a
spatio-temporal surrogate model (STSM) [64–66]. RBFs are a popular choice for the construction of
STSMs, and is used in this study. Hence, from here onwards STSM will imply an RBF-constructed
STSM. This option has the benefit of being easier to implement as only one model needs to be trained,
whereas, for the NSM, m models need to be trained. However, as will be demonstrated in this chapter,
if the limitations of the RBF model are not properly understood and addressed the STSM may offer
inferior predictive performance when compared to the NSM.

To assess the surrogate models in this work, the models are used to predict the load-displacement
paths of snap-through structures as a function of various shape parameters. As the load paths of the
structures are highly non-linear, the finite element method (FEM) simulation needs to be completed
with the Arc Length Control (ALC) method [13]. The ALC method introduces a pseudo-time variable,
commonly referred to as the arc length, to allow the calculation of highly non-linear force-displacement
curves.

The analytical sensitivity procedure used in this research to compute sensitivities has been completed
previously by the author [21]. Specifically, the assumed stress element in conjunction with the ALC
method is used to simulate the behaviour of snap-through structures.

The layout of this chapter is then as follows. Firstly, a brief mathematical description of RBF surrogate
models is offered in Section (5.3), where the use of gradient information, both directly in the model
itself and as a preprocessing step, is also detailed. This section also describes the NSM and STSMs in
more detail. In Section (5.4) a more detailed description of snap-through structures’ behaviour as well
as the required ALC solution strategy is described. From the description, in Section (5.4) the numerical
problem of predicting the load path of these structures is presented in Section (5.5). The numerical
results are detailed in Section (5.6), where the models are used to predict the load-displacement curves
of the selected snap-through mechanism. This is followed by observations and conclusions in Section
(5.7).
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5.3 RBF Surrogate Models
Surrogate model construction can broadly be separated into the following steps:

1. Domain sampling,
2. Preprocessing,
3. Model selection or construction,
4. Model Prediction.

Each of these steps is a research topic by itself, where various methods or algorithms have been
developed to produce optimum results. In this research, each of the steps is completed with the most
standard or common method, as the goal of the chapter is to isolate the effects of the preprocessing
step.

Radial Basis Function surrogate models refer to a group of models that use a linear summation of
basis functions that usually depend on some non-linear distance measure between two points. Popular
options as basis functions include

• Inverse quadratic: φ(x,c,ε) = 1
1+ε||x−c||2 ,

• Multi-quadratic: φ(x,c,ε) = 1√
||x−c||2+ε2

,

• Gaussian: φ(x,c,ε) = e−ε||x−c||2 ,

where the variables x, ε , c are the sampled point in design space, the centre of the basis function, and
the shape parameter respectively. A widely used basis function is the Gaussian function [6,7,53], which
is the basis function used in this research. The RBF surrogate is expressed as a linear combination of k
basis functions

fRBF =
K

∑
i=1

wiφ(x,ci,ε). (5.1)

This can be expressed as a system of equations

f = ΦΦΦ(x,c,ε)w, (5.2)

where the goal of fitting the surrogate model refers to finding the optimum values of the weight vector
w. The matrix ΦΦΦ is expressed as

ΦΦΦ =


φ(x1,c1,ε) φ(x1,c2,ε) . . . φ(x1,ck,ε)

φ(x2,c1,ε) φ(x2,c2,ε) . . . φ(x2,ck,ε)
...

...
...

...

φ(xp,c1,ε) φ(xp,c2,ε) . . . φ(xp,ck,ε)

 . (5.3)

The size of matrix ΦΦΦ is, therefore, p×k, where p is the number of samples in the design space and k is
the number of centres or basis functions used in the model. The methods for determining the locations
of the samples in the construction space in discussed in Section (5.3.3).

The remaining parameters of the surrogate include the number and locations of the centres c and the
value of the shape parameter ε . A popular choice for the centres is to select p = k, meaning that the
number of centres is equal to the number of sampled points and to position, the centres at the location
of the sampled points [53]. For this choice the matrix ΦΦΦ becomes square and the weight vector can be
solved directly from Equation (5.2). This is the option that is implemented in this research.

The shape parameter can either be determined with some heuristic [67], or with a k-fold cross-
validation or Leave-Out-One cross-validation (LOOCV) approach [6, 53]. In this research, various
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shape parameters between 10−2 and 101 are evaluated using k-fold cross-validation as a metric and the
shape parameter associated with the lowest error is selected.

5.3.1 Direct Gradient Enhancement

The so-called Gradient Enhanced RBF (GE-RBF) surrogate model is implemented in this research [62].
The usual function-value-only RBF model can be expanded to include gradient information in its
construction [53]. This can be done by first taking the gradient of the chosen basis function

dφ(x,c,ε)
dx

T

=−2εφ(x,c,ε)(x− c), (5.4)

where Equation (5.4) returns a column vector of the gradients of the RBF basis functions [53].

A new system of equations can then be created from the gradient information at each sampled point
for the p samples of the RBF surrogate model [53]

d f1
dx
d f2
dx
...

d fp
dx

=


dφ(x1,c1,ε)

dx
dφ(x1,c2,ε)

dx . . . dφ(x1,ck,ε)
dx

dφ(x2,c1,ε)
dx

dφ(x2,c2,ε)
dx . . . dφ(x2,ck,ε)

dx
...

...
...

dφ(xp,c1,ε)
dx

dφ(xp,c2,ε)
dx . . .

dφ(xp,ck,ε)
dx




w1

w2
...

wk

 . (5.5)

This system can then be written as
f f o = ΦΦΦ f ow f o. (5.6)

The subscript f o denotes that first-order information is used in the system. The gradient information
can then be combined with the original function-value-only system, Equation (5.2), to create a new
system of equations [

f
f f o

]
=

[
ΦΦΦ

ΦΦΦ f o

]
wGE . (5.7)

The weight vector now contains the subscript GE to show that the weights solved from this system
are for the gradient-enhanced versions of the surrogate models. Equation (5.7) can then be expressed
as

fGE = ΦΦΦGEwGE . (5.8)

As the weight vector, wGE , is the same size, specifically k×1 in both the function and GE models,
the system is, therefore, over-determined [53]. The difference between the function and GE models is
therefore that the GE models regress through both the zero-order and gradient information [53]. The
wGE is found using the least squares formulation,

ΦΦΦ
T
GEfGE = ΦΦΦ

T
GEΦΦΦGEwGE . (5.9)

5.3.2 gradient-based Domain Transformation

Typically, the domain over which the RBF surrogate model is constructed is the result of a simple
min-max scaling of the design domain as a preprocessing step [6]. This is done by

xs =
x− xmin

xmax− xmin
, (5.10)

for each design variable. Here xs is the scaled construction domain of the surrogate model, xmin is the
minimum value of the design variable and xmax is the maximum value of the design variable.

On the other hand, previous work by the author demonstrated that making use of the gradient in-
formation to approximate the underlying curvature of the function can greatly improve the predictive
performance of the RBF model [34]. This is due to the fact that RBF models often make the implicit
assumption that the underlying function is isotropic which is often not a suitable assumption in many
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practical engineering problems. Work to address the isotropic problem includes using Neural Networks,
Gaussian Mixture Models, or Sub-space methods [68, 69]. In this work, the author select to handle the
isotropic problem using their developed preprocessing procedure.

The proposed method developed by the author makes use of the gradient information to approximate
the underlying curvature and recast the problem into a domain where the isotropic assumption is
more appropriate by completing a full transformation, i.e. a rotation and scaling, of the domain as a
preprocessing step.

The method can be broken into the following steps:

1. For each centre point c:

(a) Find the n+1 closest points to the centre in the sampled points,
(b) complete a Symmetric Rank 1 approximation of the local curvature or Hessian [53],
(c) find the eigenvalues and eigenvectors of the local Hessian,
(d) recalculate the local Hessian with the absolute value of the eigenvalues.

2. Find the average local Hessian from the collection of absolute Hessians.
3. Calculate the eigenvalues and eigenvectors of the average Hessian.
4. Rotate the domain using the eigenvectors and scale with the eigenvalues of the average Hessian.

This method was shown to recover the ideal reference frame and scaling, for a benchmark problem
that is decomposable in a rotated frame [34].

5.3.3 Sampling Methods

Typically the locations of the samples for the construction of the RBF surrogate model are determined
with some Latin Hyper-Cube Sampling (LHS) method [7, 53]. The standard LHS method is shown in
Figure (5.1) for an increasing number of samples in two-dimensions.

Figure 5.1. An example of the LHS method in a two Dimensional problem with 7 and 12 samples respectively.

The standard LHS method can be improved upon by adding additional constraints to the method such as
maximising the minimum distances between nearest neighbours or incorporating Halton sequences [6].
In this research the sampling strategy is limited to the simplest version of LHS as the goal of the
chapter is to isolate the effects appropriate domain transformation have on NSM and STSM.

In addition to the LHS method, in this work, the sampling of the pseudo-time variable is completed
during some numerical simulation using an iterative solver. This means that the designer has little
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or no control over the locations, or number in the case of an adaptive solver, of the samples in this
domain. This creates a non-uniform sampling scheme as demonstrated in Figure (5.2), where design
problems with a pseudo-time variable are sampled.

Figure 5.2. Locations of samples in a one and two design variable problem respectively with a pseudo-time
variable t.

5.3.4 Network (NSMs) and spatio-temporal surrogate models (STSMs)

The surrogate models in this work need to return a continuous approximation of a result through
a pseudo-time variable. The first method is to uncouple the design and pseudo-time variables and
construct multiple smaller RBF models at predetermined locations in the pseudo-time variable. This is
represented visually in Figure (5.3).

Figure 5.3. An Example of the NSM approximating an underlying function in blue. The solid black lines
through the design variable domain indicate the constructed RBF models, while the dashed black lines through
the pseudo-time domain indicate the interpolated final approximated curve.

The designer needs to determine the number of smaller RBF models as well as their locations in the
pseudo-time domain. These decisions are problem specific. As more locations in the pseudo-time
variable are selected to have an RBF model, the more flexible the final approximations of the behaviour
will be, but, the more computationally expensive the training of the surrogate model becomes.
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On the other hand, STSM couple the design and pseudo-time variables into one large surrogate model.
This method is represented visually in Figure (5.4) on the same underlying function as for the NSM in
Figure (5.3).

Figure 5.4. Example of an STSM in red approximating the underlying function in blue.

Another key difference, that is highlighted in this research, between the two models is how they
make use of gradient information during their construction. The NSM is only constructed in the
design variable domain and therefore cannot make use of the gradient information with respect to the
pseudo-time variable. Once all the network RBFs are evaluated at a specific point in pseudo-time,
it would be possible to construct some interpolation scheme that uses the gradient information with
respect to the pseudo-time variable. In this chapter the linear interpolation in the pseudo-time variable
does not use the available gradient information in this direction. On the other hand, the STSM is
constructed in both domains, and can therefore make use of all the gradient information present in the
problem.

5.4 Simulating Snap-Through Behaviour
Snap-Through structures are compliant mechanisms that exhibit highly non-linear load-deflection paths.
This means that typical linear finite element solutions strategies are not equipped to fully simulate
the structures’ behaviour. Instead, a combination of a non-linear solver with the ALC method needs
to be implemented in order to accurately predict the structures’ load-displacement path. In typical
non-linear FEM analysis, the governing residual equation is expressed as

R = K(u)u−λF, (5.11)

where K, u, λ , and F denote the stiffness matrix, the nodal displacement vector, the load parameter,
and the load vector respectively. In the load control scheme, the goal of some iterative non-linear solver
is to find the nodal displacement vector at some load parameter that reduces the governing residual,
Equation (5.11), to 0 within some desired tolerance.

This iterative solver typically takes the form of Newton’s method, where the gradient of Equation (5.11)
with respect to the nodal displacement vector is computed. A problem with this solution strategy arises
when the load path exhibits a limit point, which is present in snap-through problems, as Newton’s
method cannot fully trace the curve past this point.
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The ALC algorithm proposes a solution to this problem by adding an additional constraint equa-
tion,

L2 = NuTNu+ψ
2Nλ

2FTF. (5.12)
Here, L denotes the prescribed arc length, Nu is the total displacement vector update for the current
load step, Nλ is the total load parameter increment for the current load step, and ψ is some non-
dimensional scale factor. For a more in-depth description of the ALC algorithm, the reader is referred
to literature [13].

The important characteristic of the ALC algorithm that influences this research is that the load and
displacement results are now functions of the introduced arc length variable, as can be seen in
Equation (5.12). This means that in this research the arc length domain can be treated as a pseudo-time
variable when the surrogate models are constructed.

5.4.1 Design Sensitivities

The FEM simulations in this research are completed using the assumed stress element [12] in com-
bination with the ALC method. The assumed stress element is implemented as often snap-through
behaviour occurs in bending-dominated problems and the assumed stress element returns accurate
results in bending problems. Therefore, as the analytical sensitivities are required for this research, the
author implement a procedure developed in previous research where the same solution strategy was
selected [21]. This sensitivity procedure returns the sensitivity information with respect to both the
shape variables as well as the arc length variable.

5.5 Numerical Example
The example problem for this research is to predict the non-linear load path of the so-called Deep
Semi-Circular Arch [10]. The load-displacement path as well as the deformation overlay is depicted in
Figure (5.5).

Figure 5.5. The deformation of the Deep Semi-Circular Arch that is pinned at the left and clamped on right
edge under a single point load.

This structure is parameterised such that a vector of design variables describes the radii of the structure
at equidistant points along the circumference. A cubic spline is then fitted through these radii and the
overall shape of a trial design is found. This is shown in Figure (5.6).

This parametrisation scheme is selected as the number of design variables can be systematically
increased to investigate the performance of the surrogate models as a function of the dimensionality
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Figure 5.6. The design variables of the Deep Semi-Circular Arch depicted in red with the design problem
increasing in dimensionality.

of the problem. The radii are sampled between 90mm and 110mm and the accumulated arc length is
limited to 2000 with the default arc length increment set to 100.

5.6 Results
The results of six different gradient-enhanced surrogate models are found. These include the domain-
transformed versions for both the NSMs and STSMs, as well as their standard min-max implement-
ations. NSMs include versions where the shape parameter of the surrogate models in the network
is allowed to vary and where the parameter is kept constant for all the models in the network. By
keeping the shape parameter constant the NSM model has the same number of tunable parameters
as the STSM. The number of tunable parameters for NSM and STSM is shown in Table (5.1). The
models are constructed on an equal number of sampled points and are evaluated by comparing the
predicted load-displacement paths to actual results.

Table 5.1. The number of parameters that must be tuned in the NSM where the shape parameter is kept
constant, the shape parameter is allowed to vary, and the STSM. The number of parameters is expressed as a
function of the number of centres K and the number of RBF models L in the NSM.

Parameters NSM Constant Shape Parameter NSM Varying Shape Parameter STSM
Weights K K K

Shape Parameters 1 L 1

Initially, a simple univariate shape variable problem is completed using 7 designs sampled using LHS.
Figure (5.7) compares the predicted load-displacement curves with the actual response, for four random
test designs.

The models are then assessed further by calculating the Root Mean Square Error (RMSE) for 75
load-displacement paths for randomly sampled designs. The RMSE is calculated by comparing
the approximated load (λ )and displacement (u) results of the model to the new 75 sampled load-
displacement paths. The models are evaluated at the arc length positions found by the solver for each
of the new load-displacement paths. This implies that the models must predict at new design variable
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Figure 5.7. One shape variable problem results for four randomly generated designs. The simulated structures
are shown of the left, followed by the STSM results, and then the NSM results with the labels MM and DT
indicating min-maxed and full domain transformation respectively.

locations as well as new arc length or pseudo-time locations. This RMSE for a single load-displacement
curve is expressed as

RMSE =

√
1
n

n

∑
i
(λ approx

i −λ
target
i )2 +

1
n

n

∑
i
(uapprox

i −utarget
i )2, (5.13)

where n is the number of arc length steps and the values of λ and u are normalised using the maximum
values from the training samples.

The average RMSE results are shown in Figure (5.8) in the form of a box and whisker plot.
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Figure 5.8. Average RMSE results for the one shape variable problem. A) min-max STSM, B) transformed
STSM, C) min-max NSM with a constant shape factor, D) min-max NSM with a varying shape factor, E)
transformed NSM with a constant shape factor, and F) transformed NSM with a varying shape factor

.

Clearly, the NSM outperforms the STSM but performing the gradient-based domain transformation
offers a significant improvement to the predictive performance of the STSM. There is also very little
improvement (if any) in the NSM when the shape parameter is allowed to vary compared to when the
shape parameter is kept constant. Hence, the improved NSM fits are not the result of additional shape
parameter flexibility, but rather due to ability of the NSM to complete different domain transformations
as a function of the pseudo-time.

The dimensionality of the problem is now increased to two shape variables and the number of LHS
samples is increased to 12. The results of the model are again overlaid with the simulated results in
Figures (5.9), and the average RMSE results are displayed in Figure (5.10).

The results of the two-variable shape variable problem are similar to the univariate shape variable
problem, with the NSMs outperforming the STSMs. In addition, the domain transformation improves
both the NSMs and STSMs. The benefit of an appropriately transformed domain is evident for the two-
variable problem. The difference in performance between the min-maxed models and the transformed
models clearly increased , while there is a negligible difference between the varying shape parameters
models compared to the constant shape parameter models.

Lastly, the problem dimension and the LHS sample number is increased to four shape variables and 25
samples respectively. The results are presented in Figures (5.12) and (5.11).

This problem demonstrates that the benefit of appropriately transforming the construction domain
increases with the problem dimension. The min-max STSMs offer extremely poor predictions of the
underlying function, while the transformed model remained robust.

The NSMs still outperform the STSMs, but there is a clear improvement at higher problem dimensions
when the transformed domain is employed as compared to the min-max scaling. On the other hand, the
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Figure 5.9. Two shape variables problem results for four randomly generated designs. The simulated structures
are shown of the left, followed by the STSM results, and then the NSM results with the labels MM and DT
indicating min-maxed and full domain transformation respectively.

varying shape parameter offers very little improvement to the model over the constant shape parameter
models, despite this increase in flexibility.
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Figure 5.10. Average RMSE results for the two shape variable problem. A) min-max STSM, B) transformed
STSM, C) min-max NSM with a constant shape factor, D) min-max NSM with a varying shape factor, E)
transformed NSM with a constant shape factor, and F) transformed NSM with a varying shape factor

.

Figure 5.11. Average RMSE results for the four shape variable problem. A) min-max STSM, B) transformed
STSM, C) min-max NSM with a constant shape factor, D) min-max NSM with a varying shape factor, E)
transformed NSM with a constant shape factor, and F) transformed NSM with a varying shape factor

.
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Figure 5.12. Four shape variable problem results for four randomly generated designs. The simulated
structures are shown of the left, followed by the STSM results, and then the NSM results with the labels MM
and DT indicated min-maxed and full domain transformation respectively.
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5.7 Chapter Conclusions
This chapter demonstrates that constructing surrogate models to predict the spatio-temporal behaviour
of a system requires careful consideration as a naive implementation may be unable to capture the
inherent complexities present in the spatio-temporal response. This study compares two strategies to
construct spatio-temporal surrogates, namely, spatio-temporal surrogate models (STSMs) and network
surrogate models (NSMs). From this, two main findings regarding the construction of surrogate models
are observed.

Firstly, merely including gradient information in the construction of the surrogate models is not
sufficient to construct high-quality models. Instead, the gradients should be employed to transform the
domain to a more isotropic domain (the inherent assumption of RBFs). This enables the construction
of accurate surrogate models for higher dimensional problems.

Secondly, NSMs significantly outperform the STSMs. The results from the constant and varying
shape parameter models demonstrate that this increase in performance is not due to the ability of the
NSM to fit different shape parameters, but rather it is due to two underlying characteristics of the
problem:

1. the locations of the centres of the spatio-temporal RBF model have a non-uniform structure to
them, i.e. the pseudo-time variable is sampled more densely than the shape variables, and

2. a single linear transformation might not be sufficient to transform the domain to be isotropic. The
shape variables may impact the results differently at different stages in the pseudo-time variable
domain and therefore a nonlinear transformation scheme that is a function of the pseudo-time
variable is required.

Therefore, from the results in this chapter, it is clear that before the spatio-temporal can be implemented
to complete the shape optimisation problem the anisotropic locations of the samples in the full spatio-
temporal domain needs to be addressed. This is completed in the following chapter by redistributing
the kernels throughout the full spatio-temporal domain. The original shape optimisation problem is
then solved using these vastly improved surrogate models.
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Chapter 6 Redistributing the Kernel Centres of
Spatio-Temporal Surrogate Models

6.1 Chapter Abstract
This chapter expands on Bouwer et al. [70]’s work to improve Spatio-Temporal surrogate models’
performance. Specifically, the case of non-uniform sampling is considered when the spatial variables
are sampled with a different numerical strategy than the temporal variable. Poor surrogate accuracy for
the non-uniform sampling case is addressed by redistributing the centres of the Radial Basis Function
(RBF) model throughout the spatio-temporal domain.

The benefit of separating the centre locations from the sample locations is demonstrated on a numerical
test problem, the same problem used in Bouwer et al. [34], and a practical engineering problem where
the non-linear load path of the Deep Semi-Circular Arch (DSCA) [10, 21, 70] is subject to a shape
optimisation problem.

The chapter concludes that the anisotropic behaviour in both the underlying function and the sampling
locations must be addressed before the spatio-temporal surrogate models are comparable in perform-
ance to the network surrogate model approach.

6.2 Introduction
This chapter extends the investigation completed by Bouwer et al. [70] into the use and suitability
of Radial Basis Functions (RBF) surrogate models to predict a system’s response that varies as a
function of some pseudo-time variable. In the authors’ previous work [70], it was shown that using
spatio-temporal surrogate models (STSM) is often inferior to using a network of surrogate models
(NSM) placed at predetermined locations in the pseudo-time variable. It was also demonstrated that
using a novel domain transformation scheme [34] developed by the authors offered improvement to
both STSMs and NSMs. The transformation scheme uses gradient information to estimate a more
isotropic design coordinate system, thereby improving the predictive performance of RBF surrogate
models.

The process of surrogate modelling can be separated into four main steps,

1. Data collection,
2. Pre-processing of the data,
3. Surrogate construction,
4. Post-processing.

These steps and some common strategies employed in these steps, are depicted in Figure (6.1).

Previous research by the authors [34, 70] focused on the pre-processing of the collected data to reduce
model bias. The work completed in this chapter focuses on improving the model’s training, specifically

80



Chapter 6 Redistributing the Kernel Centres of Spatio-Temporal Surrogate Models

Figure 6.1. Four main steps of surrogate construction, and associated common strategies.

in the case where spatio-temporal surrogate models are implemented by redistributing the centres
throughout the spatio-temporal domain.

The difference between spatio-temporal problems and more standard full spatial problems is that for
the spatio-temporal problem, there is an additional variable is sampled differently from the spatial
variables. Typically, the data collection step is completed using some variation of Latin Hyper-Cube
sampling to determine the locations of data points in the design domain. In spatio-temporal problems,
however, the time variable is sampled during the computational simulation, which is typical with some
iterative solver. This difference in sampling strategies is demonstrated in Figures (6.2) and (6.3).

Figure 6.2. The difference in sampling in a 2-dimensional problem for A) the full spatial problem and B) the
spatio-temporal problem.

The main characteristic to note which is important for the work completed in this chapter is the
non-symmetric nature of the sampling in the spatio-temporal problem compared to the full spatial
problem. This non-symmetry negatively impacts the STSM’s performance in much the same way
that an anisotropic underlying function is poorly modelled by RBF models [9, 34, 35, 38, 39]. In other
words, the isotropic radial basis function used in these models is ill-suited to the anisotropic nature of
the data locations in the design space. This work will demonstrate that the anisotropic nature of the
underlying function and the sampling strategy in spatio-temporal problems must be addressed before
the STSMs are comparable to the NSMs.

The layout of this chapter is then as follows. Firstly, Section (6.3) discusses surrogate-based optimisa-
tion and the concepts needed to complete the developed research. A brief mathematical description of
RBF surrogate models is offered in Section (6.3.3). This section also describes the NSM and STSM in
more detail. From these descriptions two numerical example problems are completed where the benefit
of redistributing the centres of the RBF model is demonstrated. Firstly, in Section (6.4) a carefully
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Figure 6.3. The difference in sampling in a 3-dimensional problem for A) the full spatial problem and B) the
spatio-temporal problem.

crafted test problem [34] is solved. Secondly, the Deep Semi-Circular Arch (DSCA) [10, 70] is used,
where the highly non-linear load path of a snap-through structure is subjected to a shape optimisation
problem. Lastly, based on the results of these two problems, conclusions and recommendations are
offered in Section (6.6).

6.3 Related Work
The type of problems that will typically make use of spatio-temporal models include Computation
Fluid Dynamics (CFD) simulations, crash-worthiness simulations, or pressure-controlled simulations,
where a designer wishes to predict the change in a design’s response as a time-like variable change
without recomputing a computationally expensive simulation. The surrogate model must accept a
vector of design variables and return a continuous approximation as a function of some pseudo-time
variable and not simply a single scalar value, as is often the case with surrogate models.

Therefore, the main research areas depicted in Figure (6.1) are discussed in this section in the context
of predicting a design’s response as some pseudo-time variable changes.

6.3.1 Data Collection

Typically in surrogate modelling the design domain is sampled using some Latin Hyper-Cube sampling
strategy [6,9]. This strategy is depicted in Figures (6.2)A and (6.3)A.This strategy can add space-filling
criteria to the sample locations, such as maximising the average minimum distance between the
locations, which is beneficial to surrogate performance [6]. In this research the standard variation of the
method, without additional criteria, is implemented for both the sample locations and the redistributed
centre locations.

It is also possible to sample gradient information during the data collection phase. In this research,
these gradient vectors are used to complete the Local Hessian Method (LHM) coordinate system
transformation developed by the authors [34]. The gradients are included in constructing the spatio-
temporal and network surrogate models to create Gradient Enhanced Radial Basis Functions (GE-
RBF) [53,62]. Many papers [19,20,22,23] offer procedures to obtain the analytical gradient vectors for
functions that are computed using the Finite Element Method (FEM) or Finite Volume Method (FVM)
for structural mechanics and Computational Fluid Dynamics (CFD), respectively. Some finite element
packages even have adjoint sensitivities implemented, for example, Calculix [44]. These gradient
vectors can be calculated for different design variables for various problems [19, 22, 45–47].
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6.3.2 Pre-Processing

Typically, the domain over which the RBF surrogate model is constructed results of a simple min-max
scaling of the design domain as a pre-processing step [6]. This is done by computing a scaled version
of each variable from

xs =
x− xmin

xmax− xmin

. (6.1)

Here xs is the scaled construction domain of the surrogate model, xmin is the minimum value of the
design variable and xmax is the maximum value of the design variable.

In this work the surrogate models will be constructed in the coordinate system found by LHM [34],
using the sampled gradient information. This transformed coordinate system attempts to recast the
problem such that the underlying function is more isotropic, and therefore, the model bias of the RBF
model is decreased. In the case of the NSM, each of the m models in the network have their own linear
transformation, while the STSM model only has one global linear transformation.

6.3.3 Model Training

Two main options exist for constructing a surrogate model to predict behaviour through a pseudo-time
variable. Firstly, the design and pseudo-time variables can be uncoupled, and a network of smaller
surrogate models can be constructed and trained at m predetermined locations in the pseudo-time
variable. If, as with the Arc Length Control method, the implemented numerical solver can adapt
the step size through the pseudo-time variable, the results will most likely not be available at the m
locations of the network RBF models. Therefore, some interpolation of the function values and the
gradient vectors found during the simulation needs to be completed with respect to the pseudo-time
variable such that the results are located at the same locations as the m models. In this work, this
interpolation is also completed using RBF models. To sample the approximated behaviour, each RBF
model is then sampled separately. Then a RBF model is used to interpolate these results to return a
continuous approximated response curve. This surrogate model approach is referred to as the network
surrogate model (NSM) [63].

The second option is to couple the shape design and the pseudo-time variables and construct one
surrogate model over the shape and pseudo-time variables. Such a surrogate model is often referred to
as a space-time or spatio-temporal surrogate model (STSM) [64–66]. This option has the benefit of
being easier to implement as only one model needs to be trained, whereas, for the NSM, m models
need to be trained. Unlike the NSM, this model can also directly use the available gradient in the
pseudo-time direction as this variable is included in the model.

Figures (6.4) and (6.5) graphically show the NSM and the STSM respectively.

RBF surrogate models refer to a group of models that use a linear combination of basis functions that
depend on a distance measure between two points. Popular options as basis functions include

• Inverse quadratic: φ(x,c,ε) = 1
1+ε||x−c|| ,

• Multi-quadratic: φ(x,c,ε) =
√
||x− c||+ ε2,

• Gaussian: φ(x,c,ε) = e−ε||x−c||2 ,

where the variable ε is referred to as the shape parameter and the point c is the centre of the basis
function. The most widely used basis function is the Gaussian function. The RBF surrogate can be
expressed as a summation k basis functions

fRBF =
k

∑
i=1

wiφi(x,ci,ε), (6.2)
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Figure 6.4. An Example of the NSM approximating an underlying function in blue. The solid black lines
through the design variable domain indicate the constructed RBF models, while the dashed black lines through
the pseudo-time domain indicate the interpolated final approximated curve.

Figure 6.5. Example of an STSM in red approximating the underlying function in blue.

which can be written as
f = ΦΦΦ(x,c,ε)w, (6.3)

where ΦΦΦ is a k× p matrix where p is the number of samples and k the number of centres or basis
functions. This matrix is then expressed as

ΦΦΦ =


φ(x1,c1,ε) φ(x1,c2,ε) . . . φ(x1,ck,ε)

φ(x2,c1,ε) φ(x2,c2,ε) . . . φ(x2,ck,ε)
...

...
...

...

φ(xp,c1,ε) φ(xp,c2,ε) . . . φ(xp,ck,ε)


k×p

. (6.4)

The remaining parameters of the surrogate model include the number and locations of the centres c
and the value of the shape parameter ε .
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A popular choice for the centres is to select p = k, meaning that the number of centres is equal to
the number of sampled points, and then to either position the centres at the location of the sampled
points or to redistribute the centres in the design domain. This research will demonstrate the benefit of
redistributing the centres in the case of the STSM. This redistribution of the centres is completed using
the same numerical strategy used to place the spatial samples, namely, the Latin Hyper-Cube method.
When p = k the matrix ΦΦΦ becomes square and the weight vector can be solved directly from the linear
system in Equation (6.3).

6.3.3.1 GE-RBF Models

GE-RBF models directly include the gradients in the model construction. This can either be done in an
interpolating sense, such that the model directly interpolates both the function and gradient information
at every point in the design space, or in a regression sense, such that the model neither exactly fits the
function or gradient information, but rather attempts to fit both in the least squares sense.

A regression-based model is typically preferred to a fully interpolating model for two main reasons.
Firstly, computational simulations that require discretisation and iterative solvers can result in noisy
solutions. Therefore, if the model fits the solutions exactly, it may fit more to the noise in the data
than to the underlying function. Secondly, a full interpolation matrix in higher dimensional or densely
sampled problems become prohibitively large to solve. At the same time, regression-based model
can still offer useful results at a more reasonable computational cost. Therefore, this section offers
regression-based derivations for the discussed surrogate models.

To implement the GE-RBF model the gradient of the Gaussian basis function is computed from
dφ(x,c,ε)

dx
=−2εφ(x,c,ε)(x− c), (6.5)

where Equation (6.5) returns a column vector.

A new system of equations can then be created from the gradient information at each sampled point
for p samples for the RBF surrogate model:

d f1
dx
d f2
dx
...

d fp
dx

=


dφ(x1,c1,ε)

dx
dφ(x1,c2,ε)

dx . . . dφ(x1,ck,ε)
dx

dφ(x2,c1,ε)
dx

dφ(x2,c2,ε)
dx . . . dφ(x2,ck,ε)

dx
...

...
...

dφ(xp,c1,ε)
dx

dφ(xp,c2,ε)
dx . . .

dφ(xp,ck,ε)
dx




w1

w2
...

wk

 . (6.6)

The linear system in Equation (6.6) is written as

∇f = ΦΦΦ f ow f o. (6.7)

The subscript f o denotes that first-order information is used in the system. The gradient information
can then be added to the original function-based system to create a new system of equations[

f
∇f

]
=

[
ΦΦΦ

ΦΦΦ f o

]
wGE . (6.8)

The weight vector now contains the subscript GE to show that the weights solved from this system are
for the gradient-enhanced versions of the surrogate models.

An important characteristic of the GE models is the size of the systems that need to be solved. In
the function-value based models p scalar samples are taken of the underlying function, creating a
system of size p×k, while in the GE models p scalars and p gradient vectors of size n×1 are sampled,
creating a (p+ p×n)× k system. As the weight vector, wGE , is the same size, specifically k×1 in
both the function value and GE models, the models are of equal flexibility. The difference between the
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function value and GE models is therefore that the GE models are constructed by regressing the model
to the gradient information using the least squares formulation

ΦΦΦ
T fff GE = ΦΦΦ

T
ΦΦΦwwwGE . (6.9)

6.4 Numerical Test Problem
The test function from the authors’ previous work [34] is re-used here. This test function is deliberately
created as a decomposable function

f (x) = f1(x1)+ f2(x2)+ · · ·+ fn(xn), (6.10)

defined in the domain x ∈ [0,1] where the final variable xn is now considered a pseudo-time variable.
The coordinate system is then rotated using a random rotation matrix R created from

R = expm(π(A−Aᵀ)), (6.11)

where A is a random matrix with elements sampled between [−0.5,0.5] and expm is the exponential
map. The exponential map of a skew matrix (A−Aᵀ) results in an orthogonal matrix [48]. This
rotation of a decomposable function results in a transformed function that is now coupled, which
is more representative of a practical engineering problem. Therefore, the results of the different
pre-processing procedures, min-max scaling and the LHM transformation scheme, can be compared
on a coupled function that can be uncoupled with a linear coordinate system transformation.

The test function is chosen to have the form

f (x) =
1
n

N

∑
i=1

Ai sin(Fixi), (6.12)

where n is the problem dimension and Fi and Ai are the frequency and amplitude in the ith coordinate
direction. The amplitudes and frequencies are found from

Ai =−2exp
−(2i−N)2

N
+3, (6.13)

Fi =
3π

2+2exp −20i+N
2

+
π

2
. (6.14)

These frequency and amplitude equations attempt to keep the complexity of the function relatively
constant as the problem dimension increases. The frequency is in the range Fi ∈ [0.5π;2π] and the
amplitude is in the range Ai ∈ [1,3].

In this research, the case where gradient information is available is discussed. Therefore, the gradients
of the n-dimensional test function are needed. The gradient of Equation (6.12) is simply

∂Fi

∂xi
= AiFi cos(Fixi), (6.15)

and the gradient vector in the transformed coordinate systems is found using the procedure described
by Bouwer et al. [34].

6.4.1 RMSE Results

The RMSE results are found using

RMSE =

√
∑

N
i (V

i
T −V i

P)
2

N
, (6.16)

where VT is the target value and VP is the predicted value from the model. The test set uses 10000
randomly placed points in the full spatio-temporal domain.
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Eight different models are tested, four different NSMs with 15 models equally spaced throughout the
pseudo-time domain, and four different STSMs. These models, and their abbreviations, include

• NSM with centres at the sample locations and min-max pre-processing (NSM).
• NSM with redistributed centres and min-max pre-processing (R-NSM).
• NSM with centres at the sample locations and the LHM pre-processing (NSM LHM).
• NSM with redistributed centres and the LHM pre-processing (R-NSM LHM).
• STSM with centres at the sample locations and min-max pre-processing (STSM).
• STSM with redistributed centres and min-max pre-processing (R-STSM).
• STSM with centres at the sample locations and the LHM pre-processing (STSM LHM).
• STSM with redistributed centres and the LHM pre-processing (R-STSM LHM).

To account for the variation in the randomness in both the sample locations and the redistributed centre
locations, each model is constructed 50 times and the RMSE for each case is recorded.

The models are then tested on the 2-, 3-, 5-, and 9-dimensional problems. The last dimension is
sampled as a pseudo-time variable with random step sizes between 0.05 and 0.1 to simulate a practical
engineering problem. The results for the 2-dimensional problem are presented in Figures (6.6), (6.7)
and (6.8) where 5 spatial samples are used. Figures (6.6) and (6.7) show curves for 6 randomly sampled
spatial variables for the different NSM and STSM models overlaid with the target curve.

Figure 6.6. NSM Results for 2 variables using 5 samples.

At this low problem dimension, Figures (6.6) and (6.7) demonstrate that all the different model options
already offer accurate approximations of the underlying function. Figure (6.8) shows the box and
whisker plots of the RMSE results.

As shown in the random curve results (Figures (6.6) and (6.7)), all the models already have low RMSE
results. The STSMs do outperform the NSMs at this problem dimension, mostly likely due to the
accuracy loss when the results are interpolated to the network model locations in the pseudo-time
variable. However, even at this high level of accuracy it is still clear that redistributing the centres and
using the LHM pre-processing step noticeably improve the accuracy of the STSMs. In the case of the
NSMs, redistributing the centres does not improve the model’s accuracy, while the LHM transformation
offers a small improvement.
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Figure 6.7. STSM Results for 2 variables using 5 samples.

Figure 6.8. RMSE Results for all models for 2 variables and 5 samples.

The number of spatial dimensions is now increased to 2, resulting in a problem dimension of 3. The
results are generated using 12 spatial samples. The six random curves are shown in Figures (6.9) and
(6.10).

At this problem dimension the difference between standard min-max scaling and LHM pre-processing
is more obvious. In the case of the NSMs, the redistributing of the centres does not offer any additional
performance, and only once the LHM transformation scheme is implemented is there a notable
improvement in accuracy regardless of the position of the centres.

For the STSMs the min-max scaling model with centres at the sample locations offers the worst
approximation of the underlying function. At this problem dimension redistributing the centres or
implementing the LHM drastically improves the models performance. These results are then further
shown in the RMSE results in Figure (6.11).

The RMSE results for the three-dimensional problem show the benefit of the LHM preprocessing
transformation for both the NSMs and STSMs. For the NSMs, redistributing centres do not offer any
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Figure 6.9. NSM Results for 3 variables using 12 samples.

Figure 6.10. STSM Results for 3 variables using 12 samples.

improvement to the accuracy of the model, regardless of the pre-processing procedure. This is because,
in the NSMs, there is no non-symmetry present in the sample locations, as only the locations of the
samples in the spatial domain are used.

The STSMs see a massive improvement in accuracy, from 10−3 to 10−7, when both the LHM pre-
processing and the redistributing of the centre locations are implemented. This demonstrates that by
addressing the anisotropy in both the underlining function and the sample locations, it is possible to
gain a large improvement in performance without requiring additional samples to be generated.

The same results are repeated for the five and nine-dimensional problem using 35 and 135 spatial
samples respectively. The six random sampled curves are repeated in Figures (6.12) and (6.13) for the
five-dimensional problem, and in Figures (6.15) and (6.16) for the nine-dimensional problem.
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Figure 6.11. RMSE Results for all models for 3 variables using 12 samples.

Figure 6.12. NSM Results for 5 variables using 35 samples.

The same trend in the results at the lower dimensions continues and grows at higher dimensions.
Firstly, addressing the anisotropy in the underlying function provides a notable improvement to both
the NSMs and the STSMs, regardless of the centre locations. The second result is that the model is
further improved by redistributing the centres in the STSMs, while in the NSMs, there is no notable
difference in RMSE results. This is expected as the sample locations are anisotropic only in the full
spatio-temporal domain. The NSMs that are trained using only the locations of the samples in the
spatial domain are not impacted by the difference in sampling density between the spatial and temporal
variables.
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Figure 6.13. STSM Results for 5 variables using 35 samples.

Figure 6.14. RMSE Results for all models for 5 variables using 35 samples.
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Figure 6.15. NSM Results for 9 variables using 135 samples.

Figure 6.16. STSM Results for 9 variables using 135 samples.
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Figure 6.17. RMSE Results for all models for 9 variables using 135 samples.
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6.5 Practical Example
The practical engineering example problem for this research is to find the shape of a snap-through
structure that will exhibit a user-specified non-linear load path. This example structure will be the
so-called Deep Semi-Circular Arch [10, 70]. The load-displacement path as well as the deformation
overlay are depicted in Figure (6.18).

Figure 6.18. The deformation of the Deep Semi-Circular Arch that is pinned at the left and clamped on the
right edge under a single-point load.

This structure is parameterised such that a vector of design variables describes the radii of the structure
at equidistant points along the circumference. A cubic spline is then fitted through these radii, and the
overall shape of a trial design is found. This is shown in Figure (6.19).

Figure 6.19. The design variables of the Deep Semi-Circular Arch depicted in red as the problem dimension
increases.

To simulate the structure’s behaviour, the finite element method (FEM) is coupled to the arc length
control algorithm to fully trace the non-linear load path. A detailed description of this algorithm
is found in the literature [13–15, 21], while the sensitivity procedure to sample the gradient vectors
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with respect to the shape variables is detailed in the authors’ previous work [21]. The structures are
simulated until an accumulated arc length of 2000 is reached, using 30 assumed stress elements [24]
due to its accuracy in bending problems.

The author’s previous work [21], it is noted that the DSCA is prone to bifurcation in its load path when
the structure is nearly symmetrical. Therefore, the design problem is adapted to one where the most
left radii between 90 and 110mm, while the remaining radii are between 80 and 90mm. The left and
right extremes are fixed at 100mm. These modifications avoid bifurcating load paths.

The objective function of the problem is the RMSE metric given by

RMSE =

√
1
n

n

∑
i
(λ approx

i −λ
target
i )2 +

1
n

n

∑
i
(uapprox

i −utarget
i )2, (6.17)

where the terms λ and u are the normalised load and displacement values, normalised using the
maximum load and displacement values from the target curve respectively. The target curve is sampled
from the exact centre of the domain, such that the global optimum is known and the performance
of the different optimisation techniques can be compared. Each subsequent trial curve during the
optimisation process is evaluated by interpolating the load and displacement values to the appropriate
accumulated arc length position [21].

The performance of the 8 different surrogate models used to replace the FEM simulation from Section
(6.4) is compared to the performance of two different optimisers used directly on the FEM simulation.
The optimisers are the Sequential Least Squares Programming (SLSQP) method and the gradient-only
sequential Spherical Approximation method (GOSSA) [28]. The SLSQP method is a well known
optimiser and has been used on a wide variety of numerical optimization problems [30]. The GOSSA
algorithm is a gradient-only method that is robust in handling the discontinuities present in this design
problem [16–18,21]. These discontinuities arise from the need to interpolate the load and displacement
values to standard accumulated arc length positions. The SLSQP algorithm is also implemented to
solve the surrogate-based optimisation problem.

To begin the two-shape variable problem is solved. The target curve for this problem is shown
in Figure (6.20). The 8 different surrogate models are all trained on the same 6 spatial samples.
Figure (6.21) depicts four load paths randomly sampled from the design domain overlaid with the
predicted load-displacement curves of the various surrogate models.

Figure 6.20. Target shape and load path for the 2 variable DSCAs shape optimisation problem.

Even at this low problem dimension of 2 shape variables, Figure (6.21) demonstrates the poor per-
formance of STSMs if the anisotropic behaviour of the full spatio-temporal domain and the sample
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Figure 6.21. Predicted Load-Displacement Paths for the 2 variable DSCA problem using 4 randomly sampled
DSCAs using 6 spatial samples.

locations are not adequately addressed. The models not addressing these anisotropic characteristics
offer a poor approximation of the underlining function.

The final optimised load path of the different surrogate-based optimisation strategies are shown in
Figures (6.22) and (6.23) for the STSMs and NSMs respectively. In contrast the best result for SLSQP
and GOSSA for the simulation in the loop strategy using 10 random starting positions is shown in
Figure (6.24). Each approximated curve is labelled with the error measure e defined by

e = ||xt −xopt ||22, (6.18)

where the 2-norm between xt , the known target variable vector, and xopt , the returned optimum variable
vector, is calculated.

The SLSQP and GOSSA algorithms required 7 and 22 simulations to find their optima respectively.
The result of the SLSQP algorithm again demonstrates the negative impact of the discontinuities
present in the objective function as the algorithm terminates prematurely after incorrectly interpreting
a discontinuity as a local minimum [21]. The surrogate-based optimisation techniques in the case of
NSMs required only 6 samples to find the global optimum within a tolerance of 10−6. In contrast, the
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Figure 6.22. The shape of the final 2 variable optimised DSCAs and their load paths using surrogate-based
optimisation provided by different STSMs.

Figure 6.23. The shape of the final 2 variable optimised DSCAs and their load paths using surrogate-based
optimisation provided by the different NSMs.

Figure 6.24. The shape of the final 2 variable optimised DSCAs and their load paths provided by the SLSQP
and GOSSA algorithms using simulation in the loop.

case of the STSM, only the transformed model with distributed centres found the global minima using
the same 6 spatial samples.
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To further investigate the performance of the STSMs, the results along the path that the SLSQP
algorithm took through the design domain, using the surrogate models, are compared to the result if
the FEM simulation was used instead. Specifically, at 3 random locations along the optimisation path
the objective function value, the true function value f and the approximated value fm, and the gradient
vectors are stored. Three metrics are then calculated to assess the performance of the surrogate models,
namely,

1. The ratio between the function values,
2. the ratio between the magnitudes of the gradient vectors,
3. the dot product between the normalised gradient vectors.

Using these metrics, the accuracy of the surrogate models can be demonstrated with respect to both
function value information, the ratio between function values, and gradient information, the magnitude
of the gradient vectors, as the direction of the gradient vectors. Ideally, the dot product between the
vectors will be 1, meaning the directions are identical. In the worst case, it will be -1 when they point
in opposite directions. These results are shown in Table (6.1) for the STSMs used in the two-shape
variable problem.

Table 6.1. A table showing the ratio of the objective function, the ratio of the gradient vector magnitude,
and the dot product of the gradient vectors between the actual value f and the approximated value fm from the
STSMs at 3 different locations along the optimization path in the design space for the 2 variable problem.

Location 1 Location 2 Location 3
Model f

fm
|d f

dx | / |
d fm
dx |

d f
dx ·

d fm
dx

f
fm

|d f
dx | / |

d fm
dx |

d f
dx ·

d fm
dx

f
fm

|d f
dx | / |

d fm
dx |

d f
dx ·

d fm
dx

STSM 0.05 2.08 -0.60 0.049 0.09 0.14 0.14 19.13 -0.63

R-STSM 0.16 1.62 0.86 0.11 1.29 0.10 0.10 0.83 0.07

STSM LHM 0.21 0.99 0.83 0.08 3.99 0.06 0.06 0.40 0.70

R-STSM LHM 0.88 1.01 0.97 0.89 0.92 0.98 0.98 0.99 1.00

The STSM models only offer accurate predictions of gradient and function information when the
R-STSM LHM version is implemented. The other models offer poor predictions of the function value
and can predict gradient vectors that point away from the actual gradient vector, undermining the
implemented optimisation algorithm.

The results are then repeated for the four variable shape optimisation problem where the new target
curve is shown in Figure (6.25).

The 8 different surrogate models are all trained on the same 12 spatial samples. Figure (6.26) again
depicts four load paths randomly sampled from the design domain overlaid with the predicted load-
displacement curves of the various surrogate models.

The same result for the 2 variable problem is repeated here in four dimensions. Specifically, the redis-
tributed and transformed model is the only STSM that accurately approximates the load-displacement
path.

As with the 2 variable problem the final optimised load path of the different surrogate-based optimisa-
tion strategies are shown in Figures (6.27) and (6.28) for the surrogate-based optimisation approach
using the STSMs and NSMs respectively, while the best results for SLSQP and GOSSA implemented in
the simulation in the loop strategy using 10 random starting positions are shown in Figure (6.29).
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Figure 6.25. Target shape and load path for the 4 variable DSCAs shape optimisation problem.

Figure 6.26. Predicted Load-Displacement Paths for the 4 variable DSCA problem for four randomly sampled
DSCAs.
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Figure 6.27. The shape of the final 4 variable optimised DSCAs and their load paths using surrogate-based
optimisation provided by the different STSMs.

Figure 6.28. The shape of the final 4 variable optimised DSCAs and their load paths using surrogate-based
optimisation provided by the different NSMs.

Figure 6.29. The shape of the final 4 variable optimised DSCAs and their load paths provided by the SLSQP
and GOSSA algorithms using simulation in the loop.

The R-STSM LHM model once again found the global optimum while the other STSMs struggled to
represent the underlying function accurately. The NSMs remain robust, and all the implementations

Department of Mechanical and Aeronautical Engineering
University of Pretoria

100



Chapter 6 Redistributing the Kernel Centres of Spatio-Temporal Surrogate Models

find the global minima used to generate the target load-displacement path in Figure (6.25).

In the case where the FEM simulation is placed directly in the optimisation loop (Figure (6.29)) the
SLSQP algorithm struggles to bypass the discontinuities in the objective function terminating after
37 simulations. The GOSSA algorithm remains robust enough to find the global optimum after 42
simulations. These results mean that the surrogate-based optimisers required 70% fewer simulations to
find the global optimum, but only when the data is appropriately transformed to an isotropic coordinate
system and the centres are redistributed in the case of the STSMs.

To further assess the STSMs the same metrics in Table (6.1) are repeated in Table (6.2). The R-STSM
LHM model far outperforms the other models, offering a better approximation of the function and
gradient information throughout the optimisation path.

Table 6.2. A table showing the ratio of the objective function, the ratio of the gradient vector magnitude,
and the dot product of the gradient vectors between the actual value f and the approximated value fm from the
STSMs at 3 different locations along the optimization path in the design space for the 4 variable problem.

Location 1 Location 2 Location 3
Model f

fm
|d f

dx | / |
d fm
dx |

d f
dx ·

d fm
dx

f
fm

|d f
dx | / |

d fm
dx |

d f
dx ·

d fm
dx

f
fm

|d f
dx | / |

d fm
dx |

d f
dx ·

d fm
dx

STSM 0.67 0.98 -0.56 0.21 4.91 -0.75 0.17 0.16 0.78

R-STSM 0.34 1.95 -0.07 0.35 4.31 0.72 0.07 0.88 0.26

STSM LHM 0.05 0.77 -0.08 0.04 0.21 0.24 0.15 1.51 -0.85

R-STSM LHM 1.10 1.02 0.99 0.99 1.38 0.90 0.88 0.97 0.99

Lastly, the 8-shape variable optimisation problem is completed using 25 spatial samples. The new
target curve is shown in Figure (6.30) and the four randomly sampled load paths are depicted in
Figure (6.31). For the 8 variable problem highly complex and non-linear paths are possible in this
shape optimisation problem.

Figure 6.30. Target shape and load path for the 8 variable DSCAs shape optimisation problem.

The R-STSM LHM option remains the STSM that best approximates the underlying function of all
the various STSM implementations. As with the lower dimensional problems, all the NSMs offer
reasonable approximations of the load paths as they, by construction, do not have to accommodate
the anisotropy present in the sample locations in the full spatio-temporal domain. Instead, as they
are only constructed in the spatial domain, the RBF kernel is better suited to how the samples are
distributed.
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Figure 6.31. Predicted Load-Displacement Paths for the 8 variable DSCA problem.

The results from the implemented optimisation strategies are shown below. Figures (6.32) and (6.33)
for the surrogate-based optimisation approach using the STSMs and NSMs respectively, while the best
results for SLSQP and GOSSA implemented in the simulation in the loop strategy using 10 random
starting positions are shown in Figure (6.34).

From the results for the 2-, 4-, and 8-shape variable problems, the benefit of appropriately transforming
the domain and redistributing the centres grows as the problem dimension increases. For both the
STSMs and the NSMs, only the models constructed with the LHM pre-processing procedure can find
the global optimum. In contrast, the other min-max scaled models cannot represent the underlying
function accurately enough to complete meaningful shape optimisation.

The same discontinuities present in the lower dimensional problems are aggravated in higher dimen-
sional problems. This can be seen from the poor optimum result returned from the SLSQP algorithm,
were it terminated after only 21 simulations. The GOSSA algorithms still finds the global optimum,
although it required 84 simulations. This means that appropriately constructed surrogate models, in this
problem, required approximately 70% less computational resources to find the global minimum.
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Figure 6.32. The shape of the final 8 variable optimised DSCAs and their load paths using surrogate-based
optimisation provided by the different STSMs.

Figure 6.33. The shape of the final 8 variable optimised DSCAs and their load paths using surrogate-based
optimisation provided by the different NSMs.

Figure 6.34. The shape of the final 8 variable optimised DSCAs and their load paths provided by the SLSQP
and GOSSA algorithms using simulation in the loop.

The metrics in Table (6.3) further highlight the superior accuracy of the R-STSM LHM over the other
STSMs. Therefore, by appropriately using gradient information and the redistribution of centres,
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STSMs become a viable and efficient strategy to solve an optimisation problem where a desired
user-specified response through some pseudo-time is being designed.

Table 6.3. A table showing the ratio of the objective function, the ratio of the gradient vector magnitude, and
the dot product of the gradient vectors between the actual value and the approximated value from the STSMs at
3 different locations along the optimization path in the design space for the 8 variable problem.

Location 1 Location 2 Location 3
Model f

fm
|d f

dx | / |
d fm
dx |

d f
dx ·

d fm
dx

f
fm

|d f
dx | / |

d fm
dx |

d f
dx ·

d fm
dx

f
fm

|d f
dx | / |

d fm
dx |

d f
dx ·

d fm
dx

STSM 0.052 2.33 -0.01 0.01 0.07 0.29 0.86 3.27 -0.22

R-STSM 0.072 2.64 0.32 0.06 3.04 -0.04 0.06 2.04 0.13

STSM LHM 0.02 0.43 -0.32 0.04 0.53 0.63 0.18 1.31 0.11

R-STSM LHM 0.98 1.20 0.72 0.94 0.85 0.78 1.00 1.03 0.99

6.6 Chapter Conclusion
The work presented in this chapter demonstrates that if appropriate pre-processing steps are taken,
spatio-temporal surrogate models become a viable and efficient surrogate-based optimisation technique.
These pre-processing steps must address anisotropic characteristics in both the underlying function
and the sample locations in the full spatio-temporal domain.

Although the NSMs address the anisotropic sample locations, the numerical problem in Section (6.4)
demonstrates that these models still benefit from implementing the LHM transformation scheme.
These models do require the interpolation of the data, meaning both function information and gradient
vector information need to be available at the required m locations in the pseudo-time domain, and
then the construction and training of all m RBF models needs to be completed separately. The designer
must, therefore, decide on the location and number of the m models, and these heuristics will be
problem-specific. Therefore, STSM is a more convenient model to implement when compared to the
NSM, as the STSM requires fewer heuristics to be tuned.

A numerical test problem and an engineering shape optimisation problem used in this chapter show
that the STSM can be an efficient and powerful optimisation tool, only if necessary steps are taken
to address the isotropic assumption in the RBF kernel. These steps need to address the anisotropy
in function behaviour as spatial and temporal variables are evolved, as well as the anisotropy in the
sample locations in the full spatio-temporal domain. In this work these steps are to firstly, perform a
coordinate system transformation based off gradient information, and then secondly, to redistribute the
centres of the isotropic kernel throughout the full spatio-temporal domain.
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This chapter briefly highlights the main findings and contributions of this thesis. It then offers
some insight into the possible future applications of the work as well as possible future research
avenues.

The objective of the research documented in this thesis is to develop methodology that can complete
meaningful and efficient shape optimisation of the highly non-linear load paths present in snap-through
compliant mechanisms. The developed methodology is assessed and motivated in the context of
generality, robustness, and computational efficiency. These criteria ensure that the work in this study
is capable of simulating and designing a wide range of complex non-linear load paths, that it will
consistently locate the optimum solutions in the design domain, and that computational resources are
used as efficiently as possible.

To simulate the highly non-linear behaviour present in this design problem, the implementation of the
arc length control algorithm is required. This solver is capable of tracing complex load paths with
multiple limit and equilibrium points, allowing for the development of a robust and general optimisation
procedure. To improve the computational efficiency of this algorithm is allowed to make adjustment
of solution step sizes as a function of the complexity of the load path during the simulation. The
by-product of this adaptive step is that any crafted objective function that quantifies the discrepancy
between a target and trail load path will experience unavoidable discontinuities. These discontinuities
occur as the number and the locations of the solution points along the load path will differ at different
locations in the design domain.

These discontinuities mean that popular optimisation algorithms can terminate prematurely by misin-
terpreting the sudden discontinuous increases in the objective function as local minima. Therefore,
to bypass these discontinuities and find true optimum designs, the implementation of non-negative
gradient projection points with gradient-only optimisers is required. The results of gradient-only tech-
niques show that complex interpolation strategies to eliminate the discontinuities are an unnecessary
complication to the design problem.

To efficiently implement the gradient-only optimisers, an analytical shape sensitivity procedure is
developed. This analytical sensitivity procedure means that computationally expensive numerical
methods to obtain gradient information, such as forward difference or complex step, are not needed.
The computational cost of these methods grow with the dimensionality of the design problem, where
as the developed analytical procedure remains relatively insensitive to the number of design variables
allowing for higher dimensional problems to be completed. At this stage in the research the shape
optimisation framework can complete the design of highly non-linear load paths for a wide range of
possible load paths, and consistently find the optimum solutions in the design space.

The next step is to improve the efficiency of the proposed optimisation framework by eliminating the
sequential manner in which the numerical simulations are completed. Instead, surrogate models can be
constructed with results found by running the simulations in parallel, and then replacing the expensive
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numerical simulation with the computationally inexpensive surrogate model. The focus now shifts to
ensuring these models can accurately approximate the load path as a function of the design space, as
the accuracy of the models directly impact the quality of the returned optimum design. Two modelling
strategies are considered, namely, spatio-temporal models and network models.

Two sources of inaccuracy in the models are addressed. The first is the highly anisotropic data
manifold present in the design problem. This anisotropy arises from the wide range of possible
shape or spatial variables and their distinct impact on the load path, as well as the distinct difference
in behaviour of the load path as a function of either the shape variables or the arc length variable.
This anisotropy is detrimental to the accuracy of surrogate models constructed with isotropic kernels
commonly used in research. This anisotropy is addressed with the development of a novel coordinate
system transformation scheme that attempts to find an isotropic reference frame for the problem. This
transformation scheme makes use of sampled gradient information to make local estimates of curvature
and from these local estimates complete a single global linear transformation. The method is shown to
greatly improve the accuracy of models, and the benefit to accuracy grows with the dimensionality of
the problem.

The second source of inaccuracy is the anisotropy present in the distinct methods used to sample the
shape and arc length variables. In the case of spatio-temporal models, the anisotropy is alleviated by
redistributing the centre or kernel locations throughout the full spatio-temporal domain. The network
models avoid this source of anisotropy by only constructing the models as a function of the spatial
variables at predetermined locations in the temporal domain.

By implementing these models on the original shape optimisation problem, the benefit of the developed
methods is demonstrated. The results demonstrate that only once both sources of anisotropy, functional
and sampling, are addressed are the spatio-temporal models a useful addition to the shape optimisation
problem. The newly developed surrogate modelling strategy requires far fewer computational resources
to find optimum solutions compared to the initial simulation in the loop strategy.

Therefore, this thesis develops a general, efficient and robust methodology to complete the shape
optimisation of highly non-linear load paths. In the author’s opinion, techniques and conclusions
with wide-reaching applications and consequences are developed during the development of this
methodology.

Firstly, in both the direct and surrogate-based strategies, it is shown that gradient vectors are useful and
necessary to complete practical and meaningful optimisation. Specifically, to bypass discontinuities in
the case of direct optimisation and to complete a powerful coordinate system transformation scheme
for isotropic kernel-based surrogate models. Therefore, the developed analytical sensitivity procedure
is most certainly required in any numerical simulation that uses the arc length control method if any
design or optimisation is to be completed.

Second, the developed transformation scheme demonstrates that gradient information is a greatly
beneficial addition to isotropic kernel-based surrogate models if they are used to estimate an isotropic
coordinate system and not simply naively included directly into the model. The author believes this
will allow for the construction of accurate surrogate models in more applications than simply shape-
optimisation problems such as environmental modelling, robotics and control systems, biomedical
applications, or any problem where complex relationships need to be modelled and optimised efficiently.
The developed procedure is a general method that requires no tuning of heuristics and is applicable in
any problem where obtaining gradient information is possible.
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Lastly, the ability of the transformation technique to improve the accuracy of the models grows with
the dimensionality of the problem. As the number of variables in the problem grows, the likelihood of
the underlying function being anisotropic and the severity of the anisotropy increase. In the author’s
opinion, this leaves the potential for creating far higher-dimensional models than what is currently
used in literature. This is a possibility as the poor performance of the high dimensional models may
have been incorrectly attributed to the sparsity of information in higher dimensions, i.e. the curse of
dimensionality, but may have been due to the severe anisotropic functions inherently present in high
dimensional problems.

The completed research opens many avenues of possible research opportunities, such as addressing the
bifurcation present in the load paths of snap-through structures, implementing the developed methods
on full three-dimensional problems, higher-dimensional problems, and continuing the research into
surrogate models.

In the author’s opinion, the most impactful area of research will be the continued development of
the foundational transformation scheme. The current transformation technique completes a single
linear transformation after finding an average of many transformations and is most impactful on
decomposable problems where a linear transformation is all that is required to find isotropy.

The first option to expand the transformation scheme to non-decomposable functions is by constructing
many local models, each with it’s own transformed coordinate system. An example of this methodology
is completed in [71], where every time the model is sampled a collection of nearest neighbours are
used to construct a new model. This methodology is typically implemented in the cases where the
problem has a large dataset or is highly dimensional and, therefore, computational memory may be
a bottle neck. If the assumption is made that a non-decomposable function can be represented as a
decomposable function for a sufficiently small domain, the developed transformation scheme can find
a local isotropic coordinate system using n+1 nearest neighbours for each new local model.

The other, more complex option is to find a single non-linear transformation of the entire coordinate
system that fits all the found local transformations. This non-linear version of the transformation
scheme will be completely general and applicable to all decomposable and non-decomposable problems
in which an isotropic kernel-based surrogate model is constructed. However, finding this single
transformation may be very computationally expensive, and the benefit of needing fewer samples
to construct accurate models may be offset by the computational cost of finding a fully non-linear
transformation scheme.
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