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ABSTRACT 

Markowitz’ Modern Portfolio Theory (MPT) optimises the ratio of mean portfolio returns and 

portfolio risk in the form of the variance of returns, giving rise to criticism relating to, inter 

alia, minimising upside risk, the assumption of normally-distributed returns, and a failure to 

recognise heteroskedasticity. In addressing these criticisms, this research investigates the 

use of alternative risk measures to optimise risk and return in MPT investment strategies 

using non-parametric numerical methods to optimise portfolios comprising assets from the 

S&P 1200 and MSCI GICS world indices. It investigates, in particular, downside 

semivariance, downside semideviation, mean absolute deviation, semi-absolute deviation, 

value at risk and conditional value at risk. In addition, the study investigates optimisation 

using backward-looking and forward-looking risk measures through exponentially-weighted 

moving average forecasts of risk measures and return. In general, all the alternative risk 

measures investigated result in investment strategies with higher returns than traditional 

MPT variance-optimised strategies, with semi-absolute deviation-optimised strategies 

performing best of all. The introduction of risk and return forecasting does not materially 

impact on strategy performance.  
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1 CHAPTER 1 - INTRODUCTION 

 

1.1 INTRODUCTION 

 

Modern Portfolio Theory (MPT), developed by Harry Markowitz, is a widely-lauded portfolio 

construction technique which allows the investor to trade off risk and reward (Markowitz, 

1952). It led to Markowitz’s award of the Nobel Prize for Economics in the 1950s and to 

Pensions & Investments magazine naming him the Man of the Century in 1999. 

 

Despite these accolades, MPT has its detractors. MPT uses the variance of stock returns 

as its measure for risk (Markowitz, 1952) even though an investor who successfully 

minimises variance in his portfolio minimises not only downside variation, but also upside 

variation. This, along with other underlying assumptions and characteristics of MPT has 

garnered the attention of critics (Boasson et al., 2011; Byrne & Lee, 2004; Cardoso et al., 

2019; Hunjra et al., 2020). 

 

Other criticisms of MPT include the assumption of symmetrical, normally-distributed returns 

(Boasson et al., 2011; Stanković et al., 2020), as well as the assumption that a portfolio 

which optimises the ratio of risk and return will maintain that ratio into the future (Markowitz, 

1952).  

 

Markowitz’s original model relied, inter alia, on risk being defined as variance of stock 

returns. Subsequently, he himself noted that variance is not an ideal risk measure for 

portfolio optimisation (Markowitz & Cowles, 1959).  

 

However, despite these criticisms, the technique of optimising the risk-return ratio which 

underlies MPT can still be used to build portfolios with desirable characteristics. One means 

of applying this technique is to apply it to risk measures other than variance, leading to 

numerous studies having used alternative risk measures to optimise portfolios (Boasson et 

al., 2011; Byrne & Lee, 2004; Gaivoronski, 2005; Hunjra et al., 2020; Lohre, 2010; Sortino, 
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1994; Stanković et al., 2020). Accordingly, where MPT optimises the ratio between expected 

return and variance, it is possible to optimise the ratio between expected return and 

downside semivariance, value at risk or conditional value at risk. Different risk measures 

have different characteristics which may make their use more tractable; some require no 

assumptions as to distribution or parameterisation, while others are asymmetric, measuring 

downside risk but ignoring upside risk. The characteristics of different risk measures attract 

different investors with different needs and requirements (Rachev et al., 2008). By 

substituting variance with a risk measure which fulfils these needs, it may be possible to 

construct a portfolio which minimises the relevant investor’s risk relative to a given return, 

and which may carry this optimised characteristic into the future. 

 

Each alternative risk measure has different characteristics and advantages. Downside 

semivariance is similar to variance, but includes only those returns below the sample mean 

return, thereby avoiding the minimisation of upside variance (Boasson et al., 2011; Hunjra 

et al., 2020; Lohre, 2010). Mean absolute deviation measures both upside and downside 

deviation, but includes deviations from the sample mean linearly, rather than squared 

deviations. This makes mean absolute deviation less sensitive to outliers than variance 

(Byrne & Lee, 2004). Semi-absolute deviation includes only downside deviations, and 

similarly to mean absolute deviation, is less sensitive to outliers than downside 

semivariance. Value at risk allows the investor to specify risk in terms of the nth-lowest 

percentile returns over a period. It may be estimated empirically and does not rely on 

normality of returns, but may be discontinuous, making portfolio optimisation difficult 

(Gaivoronski, 2005). Conditional value at risk is the expected return of returns lower than 

the value at risk, which shares some of the benefits of value at risk, but is also smooth and 

therefore more tractable to optimise. 

 

In further criticism of MPT, Lukomnik and Hawley (2021) argue that MPT fails to capture 

ambiguous events, black swan events and systemic risk. They cite COVID-19 as an 

example, which led to the loss of 15% of payroll jobs in the USA in just two months in 2020, 

but which, for obvious reasons, was not captured by preceding returns data and therefore 

was not an investment input into MPT models.  In corroboration, the 2020 market downturn 

is evident in both the benchmark portfolio and the MPT portfolios created in this study.  
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MPT also fails to capture investment influences which relate to corporate governance such 

as ESG (Lukomnik & Hawley, 2021). In combination, these shortfalls make MPT susceptible 

to market failures arising from policy, external influences and information asymmetry (Iyiola 

et al., 2012). 

 

This leads to another criticism: That risk and return do not persist into the future, and out-of-

sample performance of mean-variance optimised portfolios is often poor (Rigamonti & 

Lučivjanská, 2022). Markowitz’s portfolio optimisation relies on the persistence of expected 

returns and variance if it is to build a portfolio which performs well in the future. However, 

risk is known to be heteroskedastic (Rachev et al., 2008) and volatility exhibits clustering 

(Dachraoui, 2018). In reality, the expected values of risk and return used in MPT do not 

incorporate the circumstances which presently exist, but which did not exist when historical 

data upon which the forecasts are based was generated. That is, investors must estimate 

future values from past data which says nothing about why the risk being modelled is actually 

arising (Iyiola et al., 2012). In contradiction of this criticism, Lohre et al. (2010) found only a 

small difference in performance between their in-sample and out-of-sample results.  

 

This raises the question as to whether predictive models can be combined with MPT. There 

exist more sophisticated models for forecasting risk than to assume that the variance in the 

next period can be established by calculating the sample variance of the previous periods. 

If these more sophisticated models are used to forecast risk and expected returns, it may 

be that the MPT technique of optimising the risk-return ratio can be applied to the forecasts 

to construct an optimal portfolio which better maintains the desired risk-return ratio into the 

future.  

 

One such predictive model which may be so applied is the exponentially-weighted moving 

average (EWMA), a special case of the General Autoregressive Conditional 

Heteroscedasticity (GARCH) models of variance, which are able to capture 

heteroskedasticity and volatility clustering (Danielsson, 2011).  
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This study will investigate whether applying these variations to MPT results in better 

performance, thereby providing additional evidence for the corroboration or contradiction of 

the portfolio optimisation techniques used in MPT. 

 

1.2 PROBLEM STATEMENT 

 

MPT has a number of shortfalls which this study aims to address. Firstly, there is an implicit 

assumption in MPT that variance must persist for at least some period into the future from 

the date at which the portfolio is constructed (Maeso & Martellini, 2020). If this implicit 

assumption is correct, then the desirable characteristics of the portfolio for which an investor 

has optimised today will persist such that his portfolio will retain those same desirable 

characteristics tomorrow. However, the variance of stock returns is known to be 

heteroskedastic (Rachev et al., 2008), violating MPT’s implicit assumption of persistence of 

variance, and therefore weakening the premise that MPT will result in a better-performing 

portfolio in terms of risk and return compared to an arbitrary benchmark.   

 

Secondly, the risk measure traditionally used in MPT is variance, which is symmetrical and 

therefore imparts a penalty to assets imparting upside deviations from the mean return as 

well as downside deviations. The impact thereof would be exacerbated in a bull market, 

where a strict application of MPT would reduce the weighting of assets with the largest 

upside returns relative to their peers. 

 

Thirdly, since the variance of stock returns is heteroskedastic (Rachev et al., 2008) the 

investor must incorporate new information into his portfolio construction periodically for the 

portfolio to remain up-to-date with respect to changes in expected return and risk. MPT does 

not put forward a methodology for determining the importance and concomitant influence of 

new information as compared to old information in recalculating the portfolio at successive 

time steps, since variance, the risk measure proposed by Markowitz, weights each return 

observation in the sample period equally. 
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Finally, studies of MPT which optimise portfolios using different risk measures result in 

contradictory conclusions as to the efficacy thereof. More studies are required to build a 

body of evidence to demonstrate the merit or otherwise of applying MPT in this manner. 

 

1.3 PURPOSE STATEMENT 

 
The purpose of the study is to address the criticisms of MPT relating to minimising upside 

risk, the assumption of normally-distributed returns, and a failure to recognise 

heteroskedasticity through the use of alternative risk measures, non-parametric methods 

and the forecasting of risk measures. 

 

1.4 OBJECTIVES OF THE STUDY 

 

The study has three objectives; firstly, the study will investigate whether the use of 

alternative risk measures in portfolio optimisation leads to better portfolio performance. 

Further, the study will investigate whether the use of a forecasting model which takes into 

account the persistence and heteroskedasticity of the risk measures calculated on the 

returns results in better portfolio returns or risk-adjusted returns than the use of backwards-

looking risk measures. Of the studies reviewed, exponentially-weighted moving averages 

have been applied only to variance forecasting in MPT.  

 

The second purpose of the study will be to provide an empirical analysis of portfolios of 

sector exchange-traded funds (ETFs), represented by indices, optimised using a 

comprehensive variety of risk measures so as to facilitate comparisons with the majority of 

empirical studies of portfolio construction using alternative risk measures in other asset 

classes.  

 

The third purpose of the study is to investigate the efficacy of recalculating the optimal 

portfolio over different periods, thereby testing whether the frequency of incorporating new 

information into the portfolio’s construction impacts upon its performance. 
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1.5 CONTRIBUTION 

 

The study will provide a novel comparison of the performance of portfolios optimised using 

numerous unmodified risk measures as compared to the performance of portfolios optimised 

using an exponentially-weighted moving average risk forecasting model for those same risk 

measures. This will assess whether the application of an EWMA to the risk measures 

addresses the need to balance between the heteroskedasticity and short-term persistence 

of risk measures, thereby improving the performance of the portfolios they are used to 

construct and providing a method to improve the toolset of investors using MPT and MPT-

like methods. Of the studies reviewed, only one applied an EWMA to a single risk measure, 

variance, used to optimise portfolios (Cardoso et al., 2019).  

 

Further, by examining a wide variety of risk measures, the study will facilitate comparison to 

most existing empirical studies of portfolio optimisation using alternative risk measures 

based on different asset classes. This will provide a larger universe of risk measures for 

investors using MPT and MPT-like methods to choose from, through a side-by-side 

comparison of the relative merits and disadvantages of the use of each alternative risk 

measure. In particular, investors with a risk appetite which is not well characterised by 

portfolio variance, or who are required to measure their performance in terms of risk other 

than variance, may find, where classical MPT is precluded, that MPT-like methods 

associated with an alternative risk measure are useful in managing portfolios. 

 

The study will aim to provide some insight into the hyperparameters used (those parameters 

used to optimise the parameters themselves) and how they are arrived at, providing 

guidance to investors investigating the use of MPT or MPT-like optimisation methods. None 

of the literature reviewed discussed the process of parameterising the portfolios constructed 

explicitly, nor the relative merits of different hyperparameters.  

 

The study will examine the efficacy of portfolio construction on global sector indices. 

Literature relating to the construction of portfolios using indices as a proxy for investable 

ETFs is limited. Of the literature reviewed, only one study made use of indices, using indices 

to mimic different classes of securities (Boasson et al., 2011). However, this related to only 
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one of the risk measures proposed for this study. The study will be conducted on global 

sector index data used as a proxy for the ETFs which use them as a benchmark. The data 

sample selected for the study has the advantage of broad coverage, as the indices 

incorporate circa 70% of global market capitalisation (Standard and Poor's, 2022), giving 

the study applicability in many global markets. 

 

In summary, the study addresses several of the criticisms of classical MPT, thereby 

improving the applicability of MPT-like methods in portfolio management. 

 

1.6 DELIMITATIONS AND ASSUMPTIONS 

 

The study will investigate only standard deviation, variance, downside semivariance mean 

absolute deviation, semi-absolute deviation, value at risk (5% and 10% levels) and 

conditional value at risk (5% and 10% levels) to establish whether they improve portfolio 

performance when compared to variance-optimised portfolios. 

The relative merits of risk forecasting models other than EWMA (such as GARCH) will not 

be investigated in the study. 

The study will not derive closed-form solutions for optimisations. 

 

1.7 STRUCTURE OF THE STUDY 

 

A literature review is included in chapter 2, introducing MPT, the main criticisms of MPT and 

the alternative risk measures used in the study. Past studies conducted applying MPT-like 

methods to MPT are discussed. Chapter 3 covers the research design and the data used in 

the study. The non-parametric numerical methods techniques for optimising each portfolio 

are discussed, as is the methodology used to forecast expected returns and risk measures 

into the future. Chapter 4 covers the results of the study and the analysis thereof. The 

chapter contains a comparison of all the strategies investigated, commentary on the benefits 

of using an EWMA for forecasting and discussion about the most successful of the 

strategies. Chapter 5 provides a conclusion, including possible implications and avenues for 

future research.  
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2 CHAPTER 2 - LITERATURE REVIEW  

 

2.1 INTRODUCTION 

 

This chapter will present the theoretical basis for the study, discuss the relevant existing 

research and scholarly debates, show how the study relates to them, and present the new 

insights it will contribute. Accordingly, portfolio management theory is discussed before 

addressing Modern Portfolio Theory (MPT), and the subsequent extension thereof through 

the inclusion of a risk-free asset. 

 

The characteristics, advantages and disadvantages of the alternative risk measures 

investigated in the study are examined next, followed by a discussion of the issues and the 

best practice relating to forecasting these risk measures.  

 

2.2 PORTFOLIO MANAGEMENT THEORY 

 

Portfolio management is the process whereby an investor selects a portfolio of assets 

(typically securities) to invest into so as to meet his needs and preferences. It incorporates 

rebalancing, monitoring and evaluating the performance of the portfolio (Bodie et al., 2017). 

Portfolio management incorporates different frameworks, theories or principles, including 

that of MPT. 

 

Portfolio Management Theory can be categorised into the traditional approach and the 

modern approach, each of which incorporates different theories. Under the traditional 

approach, Dow Jones theory is characterised by the idea that markets are efficient and 

cyclical, following trends in the long, medium and short term, which can be confirmed by 

adequate trade volumes (Schannep, 2012).  

 

Hamilton (1922), an early proponent of another traditional approach, Formula Theory, built 

on Dow’s articles in the Wall Street Journal, maintaining that the stock market moved in 

cycles of growth and decline which could be predicted using mathematical formulae. 
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Formula Theory also incorporates the proposal that mathematical models can be used to 

determine the intrinsic value of stocks, based on the characteristics of the underlying 

company and discounting of future predicted dividends (Malkiel, 2015). 

 

Also under the traditional approach, Malkiel’s (2015) Random Walk Theory argues that stock 

returns are predominantly random and unpredictable, advocating passive investment 

strategies over stock picking. 

 

It is not, however, the traditional approach to portfolio management theory which is the 

subject of this study, but rather the modern approach. 

 

2.3 MODERN PORTFOLIO THEORY 

 

MPT falls under the modern approach to portfolio theory. It comprises a framework or set of 

principles which sets out how a rational investor can select a portfolio of assets in such a 

way as to trade off risk and return to arrive at an efficiently-diversified portfolio. The founding 

premise of MPT is efficient diversification, which provides that a risk-averse investor will 

choose a portfolio with a lower risk for any given expected return, or equivalently, a portfolio 

with a higher expected return for any given level of risk (Markowitz & Cowles, 1959; Sharpe, 

1964). 

 

MPT provides that the investor should not maximise discounted expected returns, since 

doing so would require placing the investor’s full funds into a single stock, thereby ignoring 

diversification (Markowitz, 1952). Markowitz described a process by which an investor could 

identify a set of efficient portfolios, each of which, for each given expected return, would 

have a minimum risk; or equivalently, for each given level of risk, would have the greatest 

possible expected return. Markowitz used the variances and covariances of assets to 

package stocks with negative correlations into the portfolio and thereby, given a specified 

portfolio return, minimise the variance of the portfolio. Markowitz used the variance of stock 

returns as the measure of risk to identify these optimal portfolios because of variance’s 

relative computational tractability, but noted that he believed semivariance would have been 

a better risk measure (Markowitz & Cowles, 1959). Markowitz concluded that mean-variance 
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efficiency might be a reasonable working hypothesis for investors seeking yield but trying to 

avoid risk.  

 

2.4 INCLUSION OF A RISK-FREE ASSET 

 

Given a risky portfolio and a risk-free asset, the Capital Allocation Line (CAL) is the set of 

all possible linear combinations on the standard deviation-return plane (Bodie et al., 2017).  

The Capital Market Line (CML), P𝜑Z in Figure 0.1,  is a special case of the CAL, with the 

risky portfolio having been specified as that which makes the CAL tangent to the efficient 

frontier (A𝜑B), joining the risk-free asset (P) and the efficient frontier, where the efficient 

frontier is that set of portfolios described by Markowitz (1959), each of which, for each given 

expected return, would have a minimum risk; or equivalently, for each given level of risk, 

would have the greatest possible expected return.  
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Figure 2.1  

The Efficient Frontier and the Capital Market Line  

Note. Graph of the efficient frontier and the capital market line. A𝜑B is the efficient frontier. 

P𝜑Z is the Capital Market Line.  

Source: Sharpe, 1964. 

 

Analogously, the risky portfolio is that portfolio on the efficient frontier at which the CML is 

tangential to the efficient frontier (at 𝜑). Consequently, given an efficient risk-expected return 

frontier of possible portfolios (A𝜑B) and a risk-free asset (P), any combination of risk 𝜎𝑅  and 

expected return ER on the CML, P𝜑Z, is attainable if the investor allocates a portion of his 

assets to the risk-free asset and a portion to the efficient portfolio at 𝜑; or alternatively, 

borrows at the same risk-free rate and invests the proceeds thereof into the efficient portfolio 

at 𝜑. Consequently, other than where the investor invests all his assets into the portfolio at 

𝜑 with no borrowing, the investor is able to achieve a higher expected return for the same 

level of risk, or a lower level of risk for the same expected return than by investing into any 

portfolio on the efficient frontier (Sharpe, 1964). In consequence, the portfolio 𝜑 is the 

optimal efficient portfolio of all portfolios which may be constructed from the risky assets 

being considered.  

A 

B 
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2.5 CRITICISMS OF MODERN PORTFOLIO THEORY 

 

Since its inception in 1952, academics and investors have raised many criticisms about 

MPT. These relate to the quantitative assessment of risk and return and its relationship with 

future risk and return as well as MPT’s underlying assumptions about investor behaviour.  

 

2.5.1 MPT assumes probability distributions are constant through time 

 

One of the criticisms of Markowitz’s mean-variance portfolio optimisation is the requirement 

for the simplifying assumption that the probability distributions of asset returns is static in 

time (Markowitz, 1952), which is not the case. Engle and Patton (2001) discuss several 

characteristics of volatility of returns, which included that volatility exhibits persistence, that 

it is mean-reverting and that it is influenced by exogenous variables. These characteristics 

imply that volatility is not constant over time, and that the probability distribution of returns 

is therefore also not constant over time. Engle (2001) goes on to note that heteroskedasticity 

is often an issue in financial time series, stating that “even a cursory look at financial data 

suggests that some time periods are riskier than others”. French et al. (1987) similarly 

observed that the volatility of stock returns is not constant when they examined the 

relationship between expected market premium and volatility. Reducing reliance on this 

simplifying assumption requires variance (or other risk measure) forecasts which vary from 

time-to-time, the estimation of which is crucial to portfolio optimisation, as is purported by 

Gosier (2005) who concluded that the use of shorter sampling intervals improves risk 

forecasting, not least because it permits the use of more timely information and reduces 

staleness. While observed expected returns and covariance for some period of the past for 

the constituents of a hypothetical portfolio are tentative inputs for their expected return and 

covariance, better methods than these must be available (Markowitz, 1952).  
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2.5.2 MPT assumes risk and return persist into the future 

 

Another criticism of MPT is that risk and return do not persist into the future, and out-of-

sample-performance of mean-variance optimised portfolios is often poor, as noted by 

Rigamonti and Lučivjanská (2022) who explore tractable methods to estimate the downside 

semivariance correlation matrix. Investors must estimate future values from past data which 

says nothing about why the risk being modelled is actually arising (Iyiola et al., 2012).  

 

Lohre et al. (2010) used the proportion of periods in which the optimised portfolio showed 

lower risk than the benchmark as a measure to indicate the efficacy of mean-risk measure 

optimised portfolios. They reported findings on mean-variance-optimised portfolios which 

contradicted the criticism that out-of-sample-performance of mean-variance optimised 

portfolios is often poor – they found that the number of periods in which the volatility of their 

Eurostoxx variance-optimised portfolio was lower than their benchmark moved from 94.5% 

when optimised over the full study period (that is, in-sample optimisation), to 93.15% when 

optimised out of sample.  

 

2.5.3 MPT minimises upside variation 

 

A further criticism of MPT is that it uses the variance of stock returns as its measure for risk 

(Markowitz, 1952) despite the fact that an investor who successfully minimises variance in 

his portfolio minimises not only downside variation, but also upside variation. This, along 

with other underlying assumptions and characteristics of MPT has garnered the attention of 

critics (Boasson et al., 2011; Byrne & Lee, 2004; Cardoso et al., 2019; Hunjra et al., 2020).  

 

Other risk measures exist which may substitute for variance as the risk measure to be 

optimised against (Hunjra et al., 2020). For example, where MPT optimises the ratio 

between expected return and variance, it is possible to optimise the ratio between expected 

return and downside semivariance, value at risk or conditional value at risk. Different risk 

measures have different characteristics which may make their use more tractable; some 

require no assumptions as to distribution or parameterisation, while others are asymmetric, 

measuring downside risk but ignoring upside risk. The characteristics of different risk 

 
 
 



 
15 

 

measures attract different investors with different needs and requirements (Rachev et al., 

2008). By substituting variance with a risk measure which fulfils these needs, it may be 

possible to construct a portfolio which minimises the relevant investor’s risk relative to a 

given return, and which may carry this optimised characteristic into the future. 

 

2.5.4 MPT assumes normally-distributed returns 

 

The MPT assumption of symmetrical, normally-distributed returns is incorrect (Boasson et 

al., 2011; Stanković et al., 2020). The market exhibits variance of returns which is greater 

and more frequent than the normal distribution would allow (Omisore et al., 2012). 

Richardson and Smith (1993) explore multiple tests for multivariate normality of returns 

where stock returns are highly correlated, noting that violation of the normality assumption 

in empirical studies can lead to incorrect inferences. They point out that while univariate 

normality does not imply multivariate normality, multivariate normality implies univariate 

normality, before showing that a sample of stock returns from the Dow Jones is not 

multivariate normal for the majority of the periods examined.  

 

Additionally, the distribution of returns evidenced in the market is not symmetrical, while 

normally-distributed market returns would be. Richardson and Smith (1993) found skewness 

in 45 of 130 tests on return distributions investigated. Skewness of returns makes variance 

an inappropriate risk measure for optimisation of portfolios, since variance penalises upside 

dispersion relative to the mean return just as it does downside dispersion. While this would 

not be problematic if returns were symetrically distributed, since upside dispersion and 

downside dispersion would be equal, upside dispersion and downside dispersion are not 

equal if returns are skewed (Boasson et al., 2011). 

 

2.5.5 MPT fails to capture systemic events 

 

Lukomnik and Hawley (2021) argue that modern portfolio theory fails to capture ambiguous 

events, black swan events and systemic risk. They cite COVID-19 as an example, which led 

to the loss of 15% of payroll jobs in the USA in just two months in 2020, but which, for 
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obvious reasons, was not captured by preceding returns data and therefore was not an 

investment input into MPT models.   

 

Lukomnik and Hawley (2021) look at the impact the portfolio selection undertaken by large 

institutional investors has on systemic risk and conclude that MPT also does not capture 

investment influences which relate to corporate governance such as ESG. They posit that 

institutional investors such as pension funds have a responsibility to promote the health and 

welfare of their clients, not only to maximise their monetary wealth. They note an increasing 

trend in the world’s largest institutional investors to seek to influence corporate governance 

positively. They argue that portfolio risk cannot be diversified away by selection of portfolio 

constituents through the use of modern portfolio theory, but rather that, in an investment 

market dominated by large institutions, such selection drives beta and systemic risk, leading 

to a feedback loop between portfolio risk management and systemic risk (Hawley & 

Lukomnik, 2018).  

 

In combination, these shortfalls make MPT susceptible to market failures arising from policy, 

external influences and information asymmetry (Iyiola et al., 2012). The study does not 

propose a solution to the criticism that MPT fails to capture systemic events, since the 

alternative risk measures investigated in the study are, similarly to variance, based on 

historical data and are therefore not able to take ambiguous or black swan events into 

account. Similarly, the use of EWMAs to better forecast risk and return makes use of 

historical data and is therefore unable to address this criticism. 

 

2.5.6 MPT ignores transaction costs 

 

Another criticism of MPT is that its early formulations ignore transaction costs (Omisore et 

al., 2012) because of the additional computational complexity. Traditionally, portfolios were 

optimised without considering costs, since it was the function of the trading desk to control 

and manage these, leading to portfolios with large trading costs, with potentially severe 

impacts on returns (Kolm et al., 2014). 
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However, some empirical studies have shown a marked difference in the performance 

before and after taking account of transaction costs. Rigamonti and Lučivjanská (2022) note 

that their strategy results in high turnover and comensurately high fees, which they include 

as a fee of 10bp per trade after optimisation without fees, while Nguyen et al. (2018) similarly 

note that the weights of some of the portfolios which they generate change materially over 

time, thereby incurring considerable transaction costs. 

 

More modern empirical research, assisted by more tractable computing capabilities, allow 

for the inclusion of fees. Kolm et al. (2014) note that it is common to amend the MPT 

framework with various constraints, including the costs of trading, with an example provided 

by Nguyen et al. (2018), who take the approach of incorporating transaction costs into the 

optimisation function rather than simply including the effect of fees after optimisation.  

 

2.6 RISK MEASURES 

 

Some of the criticisms of MPT may be addressed through optimisation of risk and return 

using different risk measures to variance. In particular, the criticisms relating to minimisation 

of upside risk and MPT’s assumption of normally distributed returns can be addressed 

through the use of non-parametric risk measures, and asymmetric risk measures (Boasson 

et al., 2011; Byrne & Lee, 2004; Hunjra et al., 2020; Liu et al., 2019). This section discusses 

these different risk measures and the literature relating to their use in MPT. 

 

Risk measures assign values to random variables, typically interpreted as losses. This 

aggregation results in a loss of information, but also allows investors’ preferences to be 

ordered relative to each other, thereby enabling tractable optimisation in portfolio theory 

(Rachev et al., 2008). 

 

Although variance is widely used in portfolio optimisation (Byrne & Lee, 2004), there is 

nonetheless a widely-held view that it is not an ideal risk measure, not least because it also 

results in the minimisation of upside risk (Boasson et al., 2011; Byrne & Lee, 2004; Hunjra 

et al., 2020; Liu et al., 2019). Affirming this, studies of portfolio optimisation have been 

carried out using a variety of risk measures. Examples include studies of portfolio 
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optimisation using downside semivariance (Boasson et al., 2011; Byrne & Lee, 2004; Hunjra 

et al., 2020; Lohre, 2010; Sortino, 1994), value at risk and Conditional value at risk 

(Gaivoronski, 2005; Hunjra et al., 2020; Lohre, 2010; Stanković et al., 2020), Mean-Absolute 

Deviation (Hunjra et al., 2020; Stanković et al., 2020) and Semi-absolute Deviation 

(Stanković et al., 2020). 

 

Different risk measures have different desirable characteristics, including (Rachev et al., 

2008) asymmetry of the risk probability distribution and the concomitant ability to take into 

account downside risk, aggregated risk, being the ability to take into account different risks, 

transaction costs, computational complexity, investor risk aversion, inter-temporal 

dependence, whereby current investor utility is a function of the investor’s prior utility, non-

linearity, whereby change in the risk measure output need not be a linear function of its 

inputs, and correlation and diversification. The complexity of comparing different risk 

measures is alluded to by Ramos et al. (2023) who derived linear optimisation models for 

several different risk measures in order to do so. 

 

The ten risk measures used to optimise portfolios in this study are discussed in the 

remainder of this section. 

 

2.6.1 Portfolio variance or standard deviation 

 

Portfolio variance measures the likelihood of deviations in the portfolio return away from the 

expected return (Bodie et al., 2017) and is the risk measure utilised by Markowitz in his 

seminal paper Portfolio Selection in 1952. Standard deviation (and therefore variance) 

remains the most popular risk measure, despite being a measure of uncertainty rather than 

of risk (Rachev et al., 2008). Variance has certain advantages over other risk measures, 

including cost, convenience and familiarity (Markowitz & Cowles, 1959) where cost is a 

proxy for computational complexity. It is non-linear (that is, Var(aX) ≠ aVar(X) for random 

distribution X) and can take into account correlation and diversification and can be used 

intertemporally (Rachev et al., 2008). However, it is symmetrical and consequently fails to 

differentiate between upside and downside risk (Boasson et al., 2011). 

 

 
 
 



 
19 

 

2.6.2 Lower partial moments and lower partial standard deviation 

 

Lower partial standard deviation (or the analogous downside semivariance) is part of the 

class of lower partial moment (LPM) risk measures. An LPM takes into account only those 

returns which perform more poorly than a specified target (Lohre, 2010). Accordingly, 

optimising a portfolio with respect to an LPM risk measure addresses the criticisms or MPT 

relating to minimisation of upside risk and MPT’s assumption of normally-distributed returns. 

  

In particular, the second lower partial moment with a target return equal to the expected 

portfolio return is the downside semivariance of returns (Lohre, 2010). Accordingly, it may 

be calculated similarly to portfolio standard deviation or variance, as a measure of deviation 

from the mean, but observations where the return exceeds the mean return are excluded. 

Other target returns used include the risk-free rate and a zero return (Lohre, 2010). 

 

Lower partial standard deviation is not as widely used in portfolio management as volatility 

(Gosier, 2005). However, as with variance, it is non-linear; can take into account correlation 

and diversification; and can be used intertemporally. Unlike variance, it is asymmetrical and 

able to differentiate between upside and downside risk. Using lower partial standard 

deviation has the advantage of ignoring the risk of upside performance (captured in the 

portfolio variance) and quantifying only downside performance risk (Bodie et al., 2017). This 

risk measure is particularly appropriate if the portfolio manager believes returns are 

skewed, and that the assumption of normality of returns is therefore unrealistic (Bodie et al., 

2017), since the risk measure will be asymmetric about the mean return and minimising 

downside risk will not necessarily minimise upside risk as well. Downside semi deviation 

captures risk commensurately with semi deviation when returns are symmetrical and the 

benchmark is the mean return, while improving thereon when returns are asymmetric or the 

benchmark is any return other than the mean (Estrade, 2006).  

 

One of the challenges associated with constructing mean-semivariance portfolios (hereafter, 

semivariance-optimised portfolios) is that the estimates for the expected return and the 

deviations from the mean for each of the portfolio constituents are more affected by 

estimation errors than when constructing mean-variance portfolios (hereafter variance-
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optimised portfolios) (Rigamonti & Lučivjanská, 2022) since the incidence of downside 

deviations, used for the calculation of the semivariance, will be lower than that of both 

downside and upside deviations, used for the calculation of variance. This challenge may 

be overcome by applying principal components analysis using minimum average partial on 

the downside correlation matrix used to estimate the semivariance of the portfolio. Rigamonti 

& Lučivjanská (2022) demonstrate the efficacy of this method, applying it to a 15-year data 

sample of stocks from the Dow Jones industrial average, the NASDAQ 100 and the S&P 

100. Their out-of-sample tests show their adjusted semivariance-optimised portfolios 

outperforming unadjusted mean-semivariance portfolios and variance-optimised portfolios 

before fees. However, their investment strategy trades significantly more often than the 

unadjusted strategies, with the result that after fees, the performance of the various 

strategies is broadly aligned. 

 

Lohr et al. (2010) conducted a study of the efficacy of portfolio construction using various 

downside measures, including downside semivariance, on a sample from the Dow Jones 

Euro Stoxx 50 between 1992 and 2009. They found that portfolio optimisation using 

downside semideviation and downside semivariance resulted in portfolios with lower 

downside semideviation and downside semivariance than their benchmark portfolio, but not 

lower than a portfolio optimised using volatility, while the total returns over the out-of-sample 

period were very similar for these different portfolios, with both outperforming the benchmark 

over the period. 

 

Stanković et al. (2020) concluded that a variance-optimised portfolio outperformed a 

semivariance-optimised portfolio on the Belgrade Stock Exchange over a 250-day study, out 

of sample, with the variance-optimised portfolio achieving a return of 3.3%, as compared to 

2.19% achieved by the semivariance-optimised portfolio. However, the Sharpe ratio of the 

semivariance-optimised portfolio was roughly 65% of that of the variance-optimised portfolio.  

 

In contrast, Rocha (2016) observed that variance-optimised portfolios resulted in lower 

returns than semivariance-optimised portfolios in most cases, while Lam et al. (2010) 

observed similar returns between variance-optimised portfolios and semivariance-optimised 
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portfolios based on stocks on the Kuala Lumpur stock exchange, but considerably lower risk 

on the semivariance-optimised portfolio. 

 

Hunjra et al. (2020) conducted a study on the Pakistan, Bombay and Dhaka stock 

exchanges for the period 2003 to 2015, wherein they compared the performance of, inter 

alia, variance-optimised portfolios as compared to semivariance-optimised portfolios across 

growth, crisis and recovery markets. The identification of each stage of the market, as well 

as the optimisation of the portfolios was conducted in sample, and a separate portfolio 

optimisation was undertaken for each market stage and each country.  The comparison of 

the two portfolio optimisation risk factors was inconclusive, with the variance-optimised 

portfolio outperforming the semivariance portfolio in some geographies and market stages 

in terms of both risk and return, but not in others. 

 

In conclusion, despite contentions that portfolios constructed using downside semivariance 

tend to perform better than those constructed using variance (Markowitz & Cowles, 1959), 

empirical results are varied. Examination of the efficient frontiers of a semivariance-

optimised portfolio and a variance-optimised portfolio constructed using the same assets 

show that a semivariance-optimised portfolio can result in lower downside risk than the 

commensurate variance-optimised portfolio for the same expected return (Boasson et al., 

2011; Stanković et al., 2020), as shown in Figure 2.2.  

 

  

 
 
 



 
22 

 

Figure 2.2 

Variance-optimised vs semideviation-optimised efficient frontiers 

 
Note. Graphical depiction of the statement by Boasson et al that constructing an efficient 

frontier using downside semivariance will result in lower downside risk than a variance-

optimised portfolio for the same level of returns.  

Source: Boasson et al., 2011 
 
However, some studies showed better aggregate returns for portfolios constructed using 

variance as a risk measure than those constructed with downside semivariance (Jacobsen, 

2005; Stanković et al., 2020), while other studies showed that better performance between 

semivariance-optimised portfolios and variance-optimised portfolios depended upon the 

geography and state of the market being tested (Hunjra et al., 2020). 

 

2.6.3 Mean absolute deviation and semi-absolute deviation 

 

Mean absolute deviation (MAD) is the average of the absolute values of the deviations from 

the mean, while lower semi-absolute deviation (SAD) is to MAD as downside semivariance 

is to variance, including in the measure only the absolute deviations from the mean return 

which are lower than the mean (Stanković et al., 2020). SAD is a similar measure to 

LPM(1,E(R)), since both sum un-squared observations below the mean return, albeit the 

former sums the absolute value of the deviations, while the latter sums the signed deviations, 

all of which will be negative, given the conditionality. 
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Optimisation of portfolios using SAD addresses the criticisms of MPT relating to 

minimisation of upside risk and MPT’s assumption of normally-distributed returns, while the 

latter criticism is also addressed by optimisation using MAD. Similarly to the comparison of 

variance and downside semivariance, MAD includes upside deviations from the mean in the 

risk measure, while SAD does not. 

 

MAD-optimised portfolios are more consistent with maximisation of expected utility than 

variance-optimised portfolios (Chen et al., 2022). MAD is less sensitive to outliers than 

variance (Byrne & Lee, 2004), since the deviations from the mean are not being squared. It 

is also computationally easier to optimise a portfolio using MAD than variance, while 

producing similar (Byrne & Lee, 2004) or more efficient (Hunjra et al., 2020) portfolio weights 

and trade-offs of risk and return. While some studies have shown that MAD-optimised 

portfolios sometimes result in lower returns variance (Hunjra et al., 2020), others show a 

contrary result (Silva et al., 2017). The use of MAD in portfolio optimisation may, however, 

result in a loss of information available in the asset returns (Byrne & Lee, 2004). 

 

A challenge associated with MAD-optimised models is that of estimation error; the out-of-

sample distribution of returns often differs substantially from the distribution of in-sample 

returns. Chen et al. addressed this issue by applying distributionally-robust methodologies 

to optimising MAD portfolios. In their out-of-sample tests on weekly data, a classic MAD-

optimised portfolio outperformed a variance-optimised portfolio by a small margin, at the 

cost of slightly higher risk, while their distributionally robust MAD-optimised portfolio 

significantly outperformed both as well as a uniformly-allocated benchmark portfolio. Testing 

on a daily data sample indicated poor performance of the MAD- and variance-optimised 

portfolios relative to the uniformly-allocated portfolio, due to conservative treatment of high 

volatility in the out-of-sample period by the risk-averse optimisation methods (Chen et al., 

2022). 

 

Silva et al. (2017) investigated the efficacy of, inter alia, MAD-optimised portfolios in highly 

volatile financial crisis periods, using data from the Brazilian Stock Exchange between 2004 
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and 2013. They found that MAD-optimised models outperformed variance-optimised models 

in four of the six test portfolios they created, but at the cost of higher risk (Silva et al., 2017). 

 

Stanković et al. (2020) concluded that MAD- and SAD-optimised portfolios substantially 

outperformed a variance-optimised portfolio on the Belgrade Stock Exchange over a 250-

day study, out of sample, with the variance-optimised portfolio achieving a return of 3.3%, 

as compared to 12.87% achieved by the MAD- and SAD-optimised portfolios. The MAD- 

and SAD-optimised portfolios resulted in much smaller numbers of shares being held (five) 

compared to the variance-optimised portfolio (27). The additional returns came at the cost 

of very slightly higher additional risk, but with the Sharpe ratio of the MAD- and SAD-

optimised portfolios circa four times that of the variance-optimised portfolio due to the 

significantly higher returns.  

 

In Hunjra et al.’s (2020) in-sample study on the Pakistan, Bombay and Dhaka stock 

exchanges for the period 2003 to 2015, MAD-optimised portfolios outperformed variance-

optimised portfolios across all three exchanges in growth, crisis and recovery markets in all 

instances except one. The study did not show any clear outperformance between MAD-

optimised portfolios and variance-optimised portfolios with respect to risk, using variance as 

a risk measure. 

 

Jacobsen (2005) compared the performance of portfolios constructed of two assets, being 

the Standard & Poor’s 500 and the Dow Jones Two-Year Corporate Bond Index, allocating 

between the two indices daily based on the past 60 days of trading history. A portfolio 

constructed using the first lower partial moment centred about a zero return (i.e LPM(1,0)) 

outperformed a variance-optimised portfolio for the sample period between 1996 and 2005 

by a relatively narrow margin, while showing fractionally higher risk. 

 

Kasenbacher et al. (2017) found that mean absolute deviation optimised portfolios 

outperformed variance optimised portfolios based on historical data from the S&P 500, with 

the mean absolute deviation optimised portfolio also displaying higher Sharpe ratios. 
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In summary, empirical studies comparing MAD-optimised portfolios to variance-optimised 

portfolios have typically reported higher total returns (Hunjra et al., 2020; Stanković et al., 

2020; Chen et al., 2022). Similarly, empirical studies of SAD-optimised portfolios report 

higher total returns than variance-optimised portfolios (Stanković et al., 2020), and empirical 

studies comparing the performance of an LPM(1,0) report total return exceeding that of 

variance-optimised portfolios (Jacobsen, 2005), albeit noting that the study uses a deviation 

from zero, rather than the mean return. 

 

2.6.4 Value at risk 

 

The value at risk (VaR) is the nth-percentile lowest return over a period, where n is a risk 

parameter (Lohre, 2010). Consequently, assuming past experience is a reasonable 

estimator for future returns, there will be an approximately 1-n% probability that the returns 

over each successive period will exceed the n%-VaR. VaR Is widely used by banks and 

financial regulators to calculate the appropriate amount of capital to set aside against 

operational losses (Lwin et al., 2017). Optimisation of portfolios using VaR addresses the 

criticisms of MPT relating to minimisation of upside risk and MPT’s assumption of normally-

distributed returns.  

 

There are three main methods of calculating VaR, being the nonparametric historical 

simulation approach, the parametric approach which typically fits an assumed distribution to 

the returns and the Monte Carlo simulation approach. The historical simulation approach is 

that which is most commonly followed by major firms (Lwin et al., 2017).  

 

Efficient frontiers calculated using variance provide a poor approximation for efficient 

frontiers calculated using VaR as the risk measure, with the consequence that investors 

wishing to minimise VaR should optimise over mean-VaR, rather than using other risk 

measures (Gaivoronski, 2005). However, the number of nonparametric VaR portfolio 

optimisation studies is small (Lwin et al., 2017). VaR has the advantage that it can be 

estimated empirically and does not rely on any assumption of normality of returns (Bodie et 

al., 2017). 
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VaR also has disadvantages as a risk measure. In contrast to portfolio variance, it violates 

the subadditivity requirement for a coherent risk measure: diversifying a portfolio does not 

necessarily reduce the VaR, and VaR does not provide any information about the extent of 

losses past the specified threshold. Portfolios optimised using VaR are also sensitive to the 

confidence level used (Boasson et al., 2011), to the extent that, for very wide confidence 

intervals, a minimum-VaR portfolio may not exist (Alexander, 2002). Another problem with 

using VaR to optimise portfolios is that it is not smooth (that is, the efficient frontier between 

expected returns and VaR is not smooth) and can result in local minima, making mean-VaR 

portfolio optimisation computationally intractable (Gaivoronski, 2005, Lwin et al., 2017). 

 

The returns on Jacobsen’s (2005) two-index portfolio were slightly higher when optimised 

using standard deviation than VaR for the sample period between 1996 and 2005, while the 

VaR-optimised portfolio showed slightly lower risk. 

 

Andreu et al. (2009) also observed that VaR-optimised minimum-risk indices exhibited lower 

risk than equivalent low-risk indices in the Spanish, United States and Argentinian stock 

markets, with higher returns than the indices in the Spanish and Argentinian markets. 

 

Stanković et al. (2020) concluded that a VaR-optimised portfolio underperformed a variance-

optimised portfolio on the Belgrade Stock Exchange over a 250-day study, out of sample, 

with the variance-optimised portfolio achieving a return of 3.3%, as compared to 2.68% 

achieved by the VaR-optimised portfolio. The VaR-optimised portfolios resulted in slightly 

smaller numbers of shares being held (23) compared to the variance-optimised portfolio 

(27). The variance-optimised portfolio also had a lower risk than the VaR-optimised portfolio, 

with the Sharpe ratio of the VaR-optimised portfolios being circa 80% of that of the variance-

optimised portfolio.  

 

In conclusion, empirical studies comparing portfolios optimised using VaR to those 

optimised using variance have reported mixed results, although the difficulty in comparing 

studies because of differences in VaR parameters between different studies is 

acknowledged. Some studies have resulted in broadly similar aggregate returns (Jacobsen, 

2005), while others resulted in poorer mean-VaR returns (Stanković et al., 2020). 
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2.6.5 Conditional value at risk 

 

Where VaR is defined as the nth-percentile lowest return over a period, Conditional value at 

risk (CVaR) is the expected loss given the return is below the  

nth-percentile lowest return over a period (Lohre, 2010). As with VaR-optimised portfolios, 

optimisation of portfolios using CVaR addresses the criticisms of MPT relating to 

minimisation of upside risk and MPT’s assumption of normally-distributed returns.  

 

Unlike VaR, CVaR is a coherent risk measure, satisfying the subadditivity requirement which 

VaR does not (Lim et al., 2011). Optimising a portfolio with respect to CVaR is more effective 

than doing so with respect to VaR (Lohre, 2010), and usually lead to well-optimised portfolios 

in terms of VaR; that is, CVaR-optimised portfolios should have low VaR as well (Stanković 

et al., 2020, Di Clemente, 2002). This is because the CVaR will never exceed the VaR which 

suggests that portfolios with low CVaR must necessarily have low VaR as well (Rockafellar 

& Uryasev, 2000).   

 

CVaR-optimised portfolios may be appropriate when the underlying assets are not 

symmetrically distributed, as in the case of put and call option portfolios (Dao, 2014) and in 

distressed markets (Nguyen et al., 2018).  

 

As with VaR, optimising a portfolio with respect to CVaR has certain disadvantages and 

challenges. It similarly requires a considerable amount of data to calculate, particularly for 

wider confidence intervals, or alternatively an assumption about the distribution of returns 

(Boasson et al., 2011; Lohre, 2010). Again as with VaR, CVaR-optimised portfolios are 

sensitive to the confidence interval used: Nguyen et al. report poorer performance of CVaR-

optimised portfolios where historical data is used as input to the optimisation problem and 

the confidence level is very high (Nguyen et al., 2018). Hunjra et al. (2020) reported 

dramatically different performance between CVaR-optimised portfolios using a 95% vs 99% 

confidence interval, with significantly different returns and no outright winner between the 

two across three geographic markets and three market states. More specifically, optimising 

using CVaR with a 99% confidence interval resulted in higher returns relative to optimisation 
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with a 95% confidence interval for some geographic markets in crisis, but lower for others. 

Optimisation with a 95% confidence interval resulted in higher returns for markets in 

recovery or growth stages across all three geographic markets investigated. Use of a 99% 

confidence interval resulted in lower variance for markets in recovery stages, but higher 

variance for markets in crisis or growth stages, across all geographic markets. 

 

Another possible disadvantage of CVaR-optimised portfolios is an increased trading 

frequency, resulting in higher fees and commensurately lower returns (Nguyen et al., 2018).  

 

Hafsa (2015) undertook a study using 20 stocks from the French SBF250 market index 

between 2005 and 2009, comparing variance optimised portfolios to CVaR- optimised 

portfolios. The study noted that the return distributions of the 20 stocks examined were 

significantly non normal. The study concluded that in most months the monthly return of the 

CVaR-optimised portfolio exceeded that of the variance-optimised portfolio.  

 

Nguyen et al. (2018) conducted a study on 23 different selection criteria of stocks from the 

NYSE, AMEX and NASDAQ based on different criteria. For each stock selection criteria, 

they compared performance of variance-optimised against CVaR-optimised portfolios, 

finding that 90% CVaR-optimised portfolios outperformed variance-optimised portfolios in 

approximately 93% of the selection criteria, ranked by Sharpe ratio. After adding the impact 

of trading fees, the percentage of CVaR-optimised portfolios which outperformed variance-

optimised portfolios decreased to circa 78%. 

 

In summary, empirical studies comparing portfolios optimised using CVaR to those 

optimised using variance also reported mixed results, with some CVaR-optimised portfolios 

outperforming variance-optimised portfolios (Lohre, 2010) and other studies showing CVaR-

optimised portfolios outperforming variance-optimised portfolios in some instances, but not 

in others (Hunjra et al., 2020; Nguyen et al., 2018; Hafsa, 2015). 

 

2.7 CONCLUSION 
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Modern Portfolio Theory allows the investor to identify an efficient frontier of portfolios, each 

of which, for each given expected return, has a minimum risk; or equivalently, for each given 

level of risk, has the greatest possible expected return (Markowitz, 1952). The inclusion of 

a risk-free asset into the hypothetical investment universe allows the investor to improve his 

risk or expected return by investing into a combination of the risk-free asset and the optimal 

portfolio, being the portfolio at the point at which the Capital Market Line touches the efficient 

frontier (Sharpe, 1964). 

 

MPT is the subject of a number of criticisms. Amongst these, MPT assumes the probability 

distribution of returns is constant through time; it assumes risk and return persist into the 

future; it minimises upside variance; it assumes returns are normally distributed; it fails to 

capture systemic events; it ignores transaction costs; and it assumes investor behaviour is 

rational. 

 

The criticisms relating to the assumption of normal returns and minimisation of upside 

variance have been addressed through variations of MPT’s portfolio optimisation 

methodologies using alternative risk measures. These alternative risk measures have 

included, inter alia, downside semivariance, value at risk and Conditional value at risk, 

Mean-Absolute Deviation  and Semi-absolute Deviation. The construction of portfolios using 

each risk measure has advantages and disadvantages relative to that carried out by 

Markowitz using variance as a risk measure. 

 

Typically, portfolios are constructed using past performance in the form of expected returns 

and various risk measures with the assumption that these measures will persist into the 

future, thereby retaining the optimal ratio of risk and return desirable to the investor, evident 

in the portfolio at the date it is constructed. However, risk is known to be heteroskedastic. 

Consequently, the persistence and heteroskedasticity of risk must be balanced against each 

other to obtain a risk measure which achieves this balance.  

 

In addition to balancing persistence and heteroskedasticity, the risk measures used to 

construct the optimal portfolio must also take into account the period of the available returns 

data and the frequency with which the portfolio weights are reset.  
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In general, using a shorter sample interval to construct a forecast of a risk metric will result 

in more robust forecasts; and resetting portfolio weights periodically leads to improved 

performance. Application thereof goes some way towards mitigating the criticisms that MPT 

assumes the probability distribution of returns is constant through time and that MPT 

assumes risk and return persist into the future. 
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3 CHAPTER 3 - RESEARCH DESIGN AND METHODS 

 

3.1 INTRODUCTION  

 

The preceding chapter discussed the available literature relating to MPT and described how 

it fits into broader Portfolio Theory. It went on to discuss the literature on the risk measures 

which will be used in the study. 

 

This chapter discusses how the research will be carried out. In particular, it details how each 

risk measure will be calculated; how the EWMA of each risk measure will be calculated; how 

each risk measure will be used to construct an optimal portfolio and the concomitant 

investment strategy; what performance measures will be used to measure each investment 

strategy; what data will be used in the study; how it will be collected; and how and with which 

tools the data will be processed. 

 

3.2 RESEARCH PARADIGM / PHILOSOPHY 

 

The study is based on a positivist research paradigm in terms of which the objective efficacy 

of different risk measures in portfolio construction will be investigated (Abdul Rehman & 

Alharthi, 2016). This study will undertake quantitative research which is characterised by the 

view that a single reality can be measured using objective scientific principles by researchers 

who are separated from their research subjects (Soiferman, 2010). It will be based on 

publicly-available data, which will allow it to be replicated and verified. 

 

3.3 DESCRIPTION OF INQUIRY STRATEGY AND BROAD RESEARCH DESIGN 

 

Time series data is defined as "a collection of observations on a variable that is measured 

over time at regular intervals" (Montgomery et al., 2015). Accordingly, the study will make 

use of an empirical enquiry strategy based on numeric time series data, specifically financial 

time series data collated by a third party. The data will be analysed using a combination of 

statistical and numerical methods. The type of data and the combination of statistical and 
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numerical methods proposed for the study are consistent with those used in similar studies 

(Boasson et al., 2011; Byrne & Lee, 2004; Gaivoronski, 2005; Hunjra et al., 2020; Lohre, 

2010; Sortino, 1994; Stanković et al., 2020). 

 

3.4 SAMPLING AND DATA COLLECTION 

 

The study sample comprises daily index data for a 10-year period for the Standard and 

Poor’s (S&P) Global 1200 sector indices, between 29 February 2012 and 25 March 2022. 

Accordingly, the data will be time series, quantitative data, with the indices calculated in US 

Dollars. The sample length covers multiple states of the market, including periods of both 

low- and high volatility, stable markets, bull- and bear markets. In addition, the sample period 

covers the CoVID19 crisis period. The indices aggregate stock returns over many 

geographical areas, thereby reducing the possibility of bias due to the peculiarities of a 

specific geographical market. 

 

 

The sectors and the constituents thereof represented in the S&P Global 1200 sector indices 

are defined per the top (most aggregated) tier of MSCI’s Global Industry Classification 

Standard (GICS) methodology. These constitute Energy, Materials, Industrials, Consumer 

Discretionary, Consumer Staples, Health Care, Financials, Information Technology, 

Communication Services, Utilities and Real Estate (Morgan Stanley Capital International, 

2020), although the Real Estate index is not included in the primary sample due to lack of 

data availability. The S&P Global 1200 index will be used as a benchmark against which the 

constructed portfolios will be measured. The S&P Global 1200 covers circa 70% of world 

market capitalisation. The S&P Global 1200 indices data for the study was downloaded 

directly from its creator, S&P. The data for each index is provided in Excel files and has been 

stored in source form.  

 

Since, unlike logarithmic returns, discrete simple portfolio returns are a linear function of the 

weights and simple returns of the constituent assets (Miskolczi, 2017), the study will use 

simple returns, calculated by dividing the index values in successive periods and subtracting 

one. This has the advantage that the partial derivative of the portfolio’s simple return with 
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respect to the weighting of each constituent asset is a function of that asset only, while this 

is not the case using logarithmic returns. Further, logarithmic returns, which hold the benefit 

of closer-to-normally-distributed returns, are not required because the study uses non-

parametric methods to calculate sample risk measures. 

 

Each index is calculated by S&P in real time, but rebalanced quarterly on a float-adjusted 

market capitalisation weighted basis (Standard & Poor's, 2021). While the index provides 

both price and total return tickers, the study will take its sample from the total return index 

data. 

 

The ten indices each have investable ETFs based on them, meaning that any portfolio 

optimisation strategy developed may be implemented as an investment strategy. Note that 

it is not required that the ETFs display the same risk characteristics as their constituents. 

The portfolio optimisation takes place based on the risk and return of the ETFs (represented 

by the indices) themselves. 

 

To corroborate the results of the primary analysis, the study will make use of a sample of 

the MSCI daily Industry Group- and Industry-level index data available from Refinitiv Eikon. 

Accordingly, the data will be time series data, with the indices calculated in US Dollars.  

 

The MSCI daily industry-level data comprises indices for 69 industries grouped into 24 

Industry Groups and the 10 sectors in the primary sample data. The GICS classifications 

broken down into Sectors, Industry Groups and Industries can be found in Appendix A. 

The industry-level indices do not all have investable ETFs, and as such, their use is not 

suitable for building an investable portfolio. 

 

Since the portfolio optimisation is carried out at the high-level sectors, and each sector index 

already represents a level of diversification across many companies’ shares, the study uses 

the indices for the 24 Industry Groups and the 69 Industries developed by MSCI at the next 

two levels down in the classification system to (partially or fully) replicate and corroborate 

the results. This is intended to establish whether the results of the optimisation carried out 

are pervasive across less aggregated or diversified assets. The portfolios created by this 

 
 
 



 
34 

 

analysis are not tradeable, since ETFs do not exist to cover all the indices for the Industry 

Groups and Industries. Where the Industry Groups or Industries indices have repeating 

values for in excess of fifty periods, these indices are not used in the analysis, on the basis 

that indices with incomplete data will not be used in the study. This excludes two of the 69 

Industry Indices (Diversified Consumer Services and Thrifts and Mortgage Finance). 

 

The increase in the number of input indices increases run times considerably. Consequently, 

while daily, weekly and monthly runs are conducted in the Sector indices, only weekly and 

monthly runs are conducted for the Industry Group and Industry input strategies.  

 

Note further than a direct comparison of the returns of the strategies using the S&P indices 

as inputs and the MSCI indices as inputs is problematic, since the S&P indices are total 

return indices (that is, they include reinvested dividends) whereas the MSCI indices are price 

indices (that is, they track only share prices and do not take account of dividends). However, 

a comparison of each strategy to their appropriate benchmarks allows indirect comparison 

of their efficacy. 

 

Descriptive statistics for the data are as follows: 

 

Table 3.1  

Descriptive statistics for the primary data sample 

 

Note. Descriptive statistics for the ten sector indices used in the study. 

Source: Author’s calculations 

 

Energy Financials
Consumer 

Staples

Consumer 

Discretionary
Health Care Industrials IT Materials Utilities Communications

Mean 0.0002        0.0004        0.0004        0.0005           0.0005        0.0004        0.0007        0.0003        0.0004        0.0003                   

Standard Error 0.0003        0.0002        0.0001        0.0002           0.0002        0.0002        0.0002        0.0002        0.0002        0.0002                   

Median 0.0002        0.0007        0.0005        0.0009           0.0007        0.0006        0.0011        0.0004        0.0008        0.0005                   

Standard Deviation 0.0151        0.0109        0.0072        0.0095           0.0086        0.0094        0.0115        0.0105        0.0091        0.0089                   

Sample Variance 0.0002        0.0001        0.0001        0.0001           0.0001        0.0001        0.0001        0.0001        0.0001        0.0001                   

Kurtosis 25.1026      18.8054      13.9923      12.6219         9.3263        17.1441      12.9207      10.5556      24.3023      10.8187                 

Skewness 0.7006-        0.7877-        0.6956-        0.7324-           0.3732-        0.5546-        0.4020-        0.4474-        0.4734-        0.6229-                   

Range 0.3597        0.2222        0.1420        0.1761           0.1428        0.2004        0.2211        0.2041        0.2068        0.1473                   

Minimum 0.1917-        0.1096-        0.0852-        0.0931-           0.0777-        0.0993-        0.1203-        0.1015-        0.1115-        0.0863-                   

Maximum 0.1680        0.1126        0.0567        0.0830           0.0652        0.1011        0.1008        0.1026        0.0953        0.0610                   

Sum 0.6315        1.0790        0.9442        1.2751           1.4224        1.0778        1.8888        0.8445        0.9925        0.8598                   

Count 2606 2606 2606 2606 2606 2606 2606 2606 2606 2606
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The data covers ten indices, each of which provides a daily end-of-day index value (for 

business days). Table 3.1 shows descriptive statistics for the daily returns calculated from 

these index values. The mean return per workday ranges from 2.4 basis points for the 

Energy sector to 7.3 basis points for the IT sector. Consumer Staples shows the lowest 

standard deviation of daily returns at 0.7%, while Energy shows the highest standard 

deviation at 1.5%, also evident in Energy having the smallest and largest minima and 

maxima respectively. The distribution of returns for Energy and Utilities display the heaviest 

tails, with kurtosis of 25 and 24 respectively, while Healthcare and Materials show lighter 

tails with kurtosis values of nine and 10.5 respectively. Energy, Financials and Consumer 

Discretionary are the most skewed to negative returns, while Healthcare and IT are the least 

skewed, in line with these two sectors having the highest mean return. 

 

All three of the Shapiro-Wilk test, the D’Agostino K2 test and the Anderson-Darling test for 

normalcy reject the null hypothesis that the daily returns are distributed normally for each 

index. The absence of normally-distributed returns has little impact on the study, since all of 

the risk measures in the study, with the exception of the EWMA of value at risk and the 

EWMA of conditional value at risk, are calculated using non-parametric methods, 

 

The performance of the sector indices over the study period is displayed in Figure 3.1. As is 

evident from Table 3.1, the IT sector index shows the greatest return over the study period, 

with Energy showing the lowest return. 
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Figure 3.1 

S&P Global 1200 Sector Indices based from 1.0 at start of study 

 

Note. Graph of the S&P Global 1200 Sector Indices performance over the study period. 
Source: S&P, 2022. 
 
In summary, all sector-level results tabulated in Section 4 are based on the S&P Global 1200 

sector index data, while all industry group- and industry-level results are based on the MSCI 

industry group and industry index data. 

 

3.5 DATA ANALYSIS 

 

This subsection describes how the index data was analysed. Existing research relating to 

the effect of sample period length and recalculation period is discussed in the context of the 

study’s data. This is followed by a description of how data was partitioned to calculate 

successive portfolios in the study and what results were calculated. Thereafter, each risk 

measure used in the study is discussed, followed by discussion of existing research relating 
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to forecasting risk and how this is applied in the study. Finally, the numerical methods 

algorithm used to calculate each successive optimal portfolio is described. 

 

3.5.1 Sampling periods and rebalancing 

 

Volatility forecasts are typically calculated using data sampled at the same interval as the 

forecast horizon. However, the use of low-frequency sample data can introduce stale 

information into the forecast. For example, monthly risk forecasts typically make use of 60 

sample periods, such that five-year-old information will have an influence on the current 

forecast. While this may be mitigated by weighting newer observations more heavily than 

older observations (Gosier, 2005), empirical studies of the persistence of volatility imply that 

five-year-old data provides very little information about present volatility. Engle (2001) 

estimated the half-life of volatility on the Dow Jones Industrial Index, being the period over 

which volatility will, on average, move half-way back from its current level towards its long-

term mean, to be 73 days (Engle & Patton, 2001), implying that a five-year-old observation 

will have only a 0.000003% impact on a volatility forecast. 

 

Another problem with the use of long sample intervals is that information suggested by intra-

period returns is lost. The use of shorter sample intervals makes risk measures more robust, 

even for forecasts with a horizon longer than the sample interval (Gosier, 2005). 

 

The study differences the index data at different time steps to derive daily (differencing each 

row), weekly (differencing every fifth row) and monthly simple returns (differencing every 

twenty-second row), thereby enabling comparison of the performance between portfolios 

created using each timestep. To obtain the 22-day monthly period, the number of daily 

observations in the 10-year sample is divided by 120 months to obtain 21.84 days per month. 

 

Related to the sample interval is the amount of time elapsed between successive 

recalculation of the optimal portfolio weights and resetting thereof. An investor can modify 

his portfolio utilising the same optimisation strategy, by either recalculating the optimal 

portfolio in successive time periods and modifying the weights of the assets (reweighting), 

or by rebalancing the weights, which will have changed as a result of the difference in returns 

 
 
 



 
38 

 

between the assets since the last rebalancing, back to the original weights, referred to as 

rebalancing. A portfolio cannot be rebalanced continuously (Maeso & Martellini, 2020), and 

studies as to whether rebalancing results in an increased return, that is a rebalancing 

premium, are limited by, inter alia, transaction costs, the rebalancing period and initial 

weighting schemes (Maeso & Martellini, 2020). Nonetheless, Maeso and Martellini (2020) 

concluded that periodic rebalancing did indeed result in a positive rebalancing premium. 

 

Recalculating the optimal portfolio weights periodically addresses the criticism of MPT that 

it assumes that the probability distributions of asset returns is static in time, since each 

successive optimisation allows the assumption of a new probability distribution. 

 

The study splits the returns data into rolling windows of three months each. Each window 

overlaps the previous window in the first n-1 of its n daily periods, as shown in Figure 3.5.11.  
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Figure 3.2 

Illustration of rolling windows used to calculate each optimal portfolio 

 

Note. Each portfolio is calculated using a 3-month (66 business days) rolling window of 

sector returns for each asset. For strategies recalculating portfolios daily, the rolling window 

is moved forward one day to calculate each subsequent portfolio.  

Source: Author’s calculations 

 

Applying a set of asset weightings to each set of returns creates a notional portfolio which 

has a set of portfolio returns. The portfolio returns over the three-month period are in turn 

used to calculate the risk measures, expected returns, λ (the rate of decay for the EWMA), 

and the EWMAs of the risk measures. By varying the weights, the portfolio return, mean 

return and risk measure over the window will change, and may then be maximised or 

minimised by numerical methods. 
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Accordingly, expected [Daily/Weekly/Monthly] return for timestep t + N = 

 

∑
∑ 𝑥𝑖𝑃𝑖 ,𝑑+𝑛

𝑋
𝑖=1

∑ 𝑥𝑖𝑃𝑖,𝑑
𝑋
𝑖=1

𝑡+𝑁

𝑑=𝑡+1

 
 

                                                                (1) 

 

Where: 

n = 1 for daily expected return; 5 for weekly expected return; 22 for monthly expected return 

t = the starting time step 

N = the number of days in the three-month estimation period (approximately 64) 

X = the number of constituents assets 

xi = the portfolio weight for the ith constituent asset 

Pi,d = the price of asset i on day d 

And successive expected returns are calculated on the rolling windows as portrayed in 

Figure 3.1. 

 

The asset weights which result in the optimal mean return and risk measure combination 

represent the asset allocation for the portfolio as at the last day in the rolling window. 

 

The portfolio strategy being assessed is calculated by rolling the window forward a period 

at a time and repeating the optimisation at each timestep. 

 

Calculation of the expected return, each risk measure and the EWMA of each risk measure 

is undertaken by a custom function which outputs an array consisting of the mean and the 

specified risk measure, having taken the rolling window and a set of asset weights as an 

input. The calculation of each risk measure can be corroborated by calculating it 

independently or manually in Excel based on the input data, and subsequent comparison to 

the function output. This allows the numerical methods-based optimisation of the expected 

return-risk measure ratio to call the function repeatedly, specifying the risk measure, the 

returns rolling window and the asset weights, thereby allowing it to be agnostic as to what 

risk measure it is using to optimise. 
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The numerical methods-based optimisation is also implemented as a custom function, which 

takes as an input the full returns data set, the desired timestep and the risk measure to 

optimise over. This allows optimisation across all timesteps and risk measures by looping 

through lists of each and calling the optimisation function with the relevant input parameters. 

The optimisation of the expected return-risk measure ratio is based on MPT, but is carried 

out with numerical methods, as this will allow the same procedure to be applied irrespective 

of the risk measure, and avoids, in most cases, the criticism of MPT that it assumes returns 

are normally distributed (Boasson et al., 2011; Stanković et al., 2020). This has the 

advantage of reducing complexity and ensure that the study is consistent in how it optimises 

across different risk measures, albeit noting that the function requires different 

hyperparameters for different risk measures. 

 

The use of functions allows reuse of code at each stage in the analysis, thereby reducing 

the time and complexity of the required analysis.  

 

Each portfolio’s returns are graphed for visual inspection and have various measures 

calculated upon them. To assess the success of each portfolio strategy, the study calculates 

annualised returns, risk measures and Sharpe ratios using the returns of the portfolio and 

compare these measures across portfolios to establish to what extent it holds that a portfolio 

optimised using a particular risk measure results in low risk and/or high returns, relative to 

portfolios optimised using other risk measures. The same custom function used to calculate 

the risk measures for the portfolio construction stage is used to calculate the risk measures 

used in the portfolio returns analysis stage of the study. Sharpe ratios are calculated using 

the full study period. 

 

A modular code design was chosen for the study in order to reduce development time and 

to reduce run time as many iterations of the portfolio optimisation process were carried out 

using different hyperparameters to assess the impact thereof. The modular code design 

allows this with minimal human intervention barring changes to input parameters, thereby 

saving time and allowing wider analysis.  
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3.5.2 Estimation of risk measures 

 

Each risk measure is calculated using only information from the current and preceding time 

steps, so as to ensure that the study does not incorporate any forward-looking bias. That is, 

the portfolios calculated in the study are forecasts, calculated out of sample. For each risk 

measure, the study constructs portfolios using three recalculation intervals, being one day, 

one week and one month. Daily total return data is used to calculate the risk measures and 

returns for each, and each measure is scaled to accommodate the length of the interval, to 

the extent required. The sample period for each reweighting interval is set at three months 

and is consistent between different risk measures. 

 

3.5.2.1 Variance 

 

Where return data for the constituents of the portfolio are available, the portfolio variance 

can be calculated as follows (Bodie et al., 2017): 


p = ∑ ∑ wiwj𝐶𝑜𝑣(ri, rj)

n
j=1

n
i=1                                        (2) 

Where: 

• wi and wj are the portfolio weight of each asset 

• Covi,j is the covariance of the ith and jth assets. 

 

Alternatively, portfolio variance may also be calculated directly from the returns of the 

portfolio:  


p = 

∑ (rt− r̅)2n
t=1

(n−1)
                              (3) 

Where: 

• rt is the return on the portfolio at period t 

• �̅� is the average return on the portfolio from periods 1 to n. 

The study uses the direct calculation. 

 

  

 
 
 



 
43 

 

3.5.2.2 Downside semivariance 

 

Downside semivariance is the second LPM with parameters 𝜏 being the mean return over 

the sample period (Lohre, 2010): 

 

LPMτ,k(R) = 𝐸 (τ − R)k | R <  τ). 𝑃(R <  τ)                                       (4) 

 

Where: 

• k determines which lower partial moment is being calculated 

• 𝜏 is the target return 

• R is the return distribution of the portfolio  

 

3.5.2.3 Mean absolute deviation and semi-absolute deviation 

 

Mean absolute deviation is defined as follows (Byrne & Lee, 2004): 

 

MAD =  
1

T
∑ |Rt − 𝐸(R)|T

t=1                                          (5) 

 

Where: 

• R is the return distribution of the portfolio 

 

Semi-absolute deviation is similarly calculated but instead incorporates only those 

observations where Rt − E(R) < 0. 

 

3.5.2.4 Value at risk 

 

The value at risk (VaR) is the nth-percentile lowest return over a period, where n is a risk 

parameter (Bodie et al., 2017). It is calculated by ranking the returns from lowest to highest 

in the sample and extracting the nth-percentile return in the sample. The study uses 

parameters for n of the 5th percentile and the 10th percentile. 
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As noted by Lwin et al., there are three main methods of calculating VaR, being the 

nonparametric historical simulation approach, the parametric approach which typically fits 

an assumed distribution to the returns and the Monte Carlo simulation approach. The 

historical simulation approach is that which is most commonly followed by major firms (Lwin 

et al., 2017) and is the approach followed in this study for the calculation of raw VaR (and 

for all other raw risk measures used in the study).  

 

However, since application of an EWMA to return observations n periods in the past will 

reduce them by a factor of (1 − λ)𝑛, the EWMAs for VaR (and CVaR) use a parametric 

calculation approach with an assumption of Normal returns. The distribution is fitted using 

the EWMAs of the return and the variance of returns, and the corresponding VaR or CVaR 

calculated from the tail of the distribution. 

 

3.5.2.5 Conditional value at risk 

 

Conditional value at risk is defined as follows (Stanković et al., 2020): 

 

CVaRα(R) = 𝐸(R|R ≤ VaRα(R))                               (6) 

 

Where: 

• R is the portfolio return 

• α is the confidence interval parameter, expressed as a percentage 

 

CVaR is calculated by ranking the returns from lowest to highest in the sample and then 

averaging the returns below the α-percentile return in the sample. The study uses 

parameters for α corresponding to the 5th percentile and the 10th percentile. 

 

3.5.3 Forecasting Risk Measures 

 

The final criticism of MPT which is addressed in the study is that MPT assumes that risk and 

return persist into the future, in that it seeks to optimise the present risk and return of a 
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portfolio in the hope that such optimisation will persist into the future. The study addresses 

this criticism by optimising forecast risk and forecast return. This section discusses the 

characteristics of risk measures which impact on how they may be forecast. 

 

3.5.3.1 Persistence and heteroskedasticity 

  

Volatility forecasts are crucial to portfolio construction (Gosier, 2005). Only when the 

measures used to determine the optimal portfolio are persistent (Maeso & Martellini, 2020) 

or predictable (Lohre, 2010) can investors benefit from optimising their portfolio with respect 

to those measures.  

 

However, risk is heteroskedastic (Rachev et al., 2008), with the consequence that risk 

measures for the same portfolio will change over time. Time-varying volatility is commonly 

observed in financial returns (Fan & Lee, 2017), with volatility clustering into periods of high- 

and low volatility (Dachraoui, 2018).  

 

The Autoregressive Conditional Heteroskedastic (ARCH) model, introduced by Engle in 

1982, introduced a means for volatility to change over time (Engle, 1982). 

 

Moreno and Olmeda discuss the use of time-varying models in MPT, in particular the ARCH 

model and the Generalised Autoregressive Conditional Heteroskedastic (GARCH) model, 

which allow the forecast of variance (or risk) to vary in time. They optimised the risk and 

return of portfolios comprising thirteen years of 35 MSCI country market index data, with 

their portfolio optimised using a GARCH variance forecasting model achieving marginally 

lower returns, but also marginally lower risk, than a standard homoscedastic variance-

optimised portfolio. They concluded that there was little material difference between the use 

of a heteroskedastic vs a homoscedastic variance forecasting model for the purposes of 

optimising a portfolio using MPT (Moreno et al., 2005).  

 

Nguyen et al. use an Autoregressive-GARCH (AR-GARCH) conditional location-scale 

model of monthly returns to calculate conditional means and covariance matrices as inputs 

into the calculation of CVaR-optimised portfolios. This overcomes the problem of stale data 
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by updating variance and mean based upon the most recent observations. They compared 

performance of CVaR-optimised portfolios using AR-GARCH inputs to that of CVaR-

optimised portfolios using raw inputs. The AR-GARCH input portfolios perform better than 

the raw input portfolios in approximately 80% of the selection criteria, ranked by Sharpe 

ratio. However, after adding the impact of trading fees, the percentage of AR-GARCH  

portfolios which outperformed raw input portfolios decreased to circa 46% (Nguyen et al., 

2018). 

 

3.5.3.2 Exponentially-weighted moving averages of risk measures 

 

An exponentially-weighted moving average assigns exponentially smaller weights to 

observations further back in time by employing a decay factor, lambda (λ) (Danielsson, 

2011).  

  

However, some risk measures may lose efficacy through smoothing. For example, the Basel 

Accords do not allow the use of EWMA in calculating VaR (Danielsson, 2011) since 

application of an EWMA to return observations n periods in the past will reduce them by a 

factor of (1 − λ)𝑛. Despite this, EWMAs are commonly applied to variance, which is in turn 

used as an input into a parametric VaR estimate. 

 

A potential disadvantage of using EWMA as a risk forecast is that λ is constant and identical 

for all assets, while this assumption is not borne out in practice. Although other GARCH 

models are able to relax these assumptions, the difference between the EWMA forecasts 

and other GARCH forecasts can in practice be very small (Danielsson, 2011). Suganuma 

(2000) tested the performance of a variety of simple moving average models, EWMA models 

with different assumptions for λ, and a GARCH model against a benchmark EWMA volatility 

prediction model, and found that none of the models investigated consistently outperformed 

the benchmark. 

 

The “true” volatility of the underlying data series is required to calculate λ. This may be 

calculated for a specific sample period as the sum of the squared returns. Lambda may then 

be calculated by minimising a function of the difference between the true volatility in the 
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series and the EWMA of the series. This minimisation can occur either in sample or out of 

sample and may use a variety of different functions of this difference to estimate λ, including 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), heteroskedasticity-adjusted 

RMSE (HRMSE) and the heteroskedasticity-adjusted MAE (HMAE). Bollen (2015) 

estimated λ over rolling out-of-sample 36-month windows on the S&P 500 index between 

1957 and 2013, and his results lend credibility to the contention that the use of a constant 

and identical assumption for λ may be inappropriate. 

 

3.5.4 Calculating the EWMA 

 

One of the criticisms of MPT is that it assumes that probability distributions are constant 

through time. The use of an EWMA, and in particular, an EWMA with time-dependent rate 

of decay optimised using a rolling window of data preceding the date of portfolio 

optimisation, seeks to address this criticism. 

 

The EWMA forecast for variance at time t may be calculated recursively as follows 

(Danielsson, 2011): 

 

 σ𝑡
2 =  (1 − λ)𝑟𝑖,𝑡−1

2 +   λσ𝑡−1
2                                  (7) 

 

Where: 

• 𝑟𝑖,𝑡 is the return for portfolio i in the period t 

• λ is the decay factor 

 

The study assumes that the daily mean return is zero for the purposes of calculating the 

EWMA of each risk measure, since incorporating a non-zero mean into each deviation will 

result in different weightings of the same observations. This is because the first non-zero-

mean deviation is a factor of λ, the second, a factor of λ(1 − λ), the third of λ(1 − λ)2 and so 

on. Consequently, if an unweighted mean is used to calculate each deviation, the first 

deviation will incorporate a term equal to 
1

𝑛
∑ 𝑟𝑖,𝑡 𝑛

𝑡=1 . It follows that every observation of the 

return incorporated into the mean term will then be weighted by a factor of λ, rather than by 
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the exponentially-reducing factors expected as a result of applying an EWMA. Conversely, 

the 𝑟𝑖
2,𝑡 terms in the EWMA will be weighted by the expected exponentially-reducing factors. 

As a result, using a non-zero mean in an EWMA of deviations from the mean will result in 

the same observations being weighted by different factors (that is, different multiples of λ). 

This discrepancy holds for each subsequent iteration of the EWMA. 

 

Further, if an EWMA-weighted mean is used to calculate each deviation, the mean term 

incorporated into the deviation will already be a function of multiples of λ. When the deviation 

is incorporated into the EWMA by weighting it by multiples of λ, the mean term portion of the 

deviation will then be weighted by λ again,  resulting in the double-weighting of some 

observations (the observations used to calculate the mean will be weighted first in 

calculating the mean and again when calculating the risk measure) and single-weighting of 

others (the observations of the returns which are differenced from the means will be 

weighted once).  

 

A zero mean is a frequent assumption for the calculation of risk measures in daily time-

series data (Alexander, 2008). 

 

Consequently, the exponentially-weighted moving average of each risk measure r at time 

step t, �̅�𝑡, is calculated recursively as follows: 

 

r̅t  =  λ xt + (1 −  λ)x̅t−1                             (8) 

 

Where: 

• �̅�𝑡 is the exponentially-weighted moving average of the risk measure at time t 

• 𝑥𝑡 is the value/sample observation of the risk measure at time t. Following from the 

assumption of zero mean return, and where the observed return is denoted as r, for: 

o Variance, standard deviation, downside semivariance and downside semi 

standard deviation, xt = r2 

o MAD and SAD, xt = |r| 
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o VaR and CVaR, xt = r2, where the EWMA will forecast the variance for a normal 

distribution of returns, which will in turn be used to determine parametric 

values for VaR and CVaR rather than empirical estimates (Bollen, 2015) 

• λ is a smoothing factor with values between 0 and 1 

 

The study determines appropriate rolling values for λ at each calculation period by applying 

the methodology put forward by Bollen (2014) over the sample period, using numerical 

methods to minimise the heteroskedasticity-adjusted mean absolute error (HMAE). Each 

observation (that is, each term) in the HMAE requires two sample periods to calculate. The 

first period is used to calculate an estimate for the risk measure, r, which is proposed to be 

one month, or 22 periods. The second period is used to calculate the forecast for the risk 

measure (that is, the EWMA, �̅�𝑡), and is proposed to be a minimum of two months, or 44 

periods, but may be longer, going back to the beginning of the full set of sample data. For 

the calculation of λ at time t, the observation of the HMAE at time t is therefore: 

 

HMAE_Obst  = |1 −
rt−22:t−1

r̅1:t−23
|                              (9) 

 

Where: 

• 𝑟t−22:𝑡−1is the value of the risk measure calculated on the sample returns between 

periods t-22 and -1 (inclusive); and 

• �̅�1:𝑡−23 is the value of the EWMA of the risk measure calculated on sample returns 

between the first period of the full sample and period -23 (inclusive) 

 

The full HMAE is calculated by successively moving backwards one period in time (from 

time t to t-1) and repeating, to calculate |1 −
rt−23:t−2

r̅1:t−24
|, then |1 −

rt−24:t−3

r̅1:t−25
| and so on, and 

averaging the iterations. Using subscript p to denote the number of times this is repeated, 

and the subscript j to denote the iteration over the periods between t-p and t: 

 

HMAE𝑡 =
1

p
∑ HMAE_Obst t

j= t−p                                       (10) 
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The HMAEt is then calculated for possible values of λ between 0.05 and 0.995 with a 0.005 

increment. The final estimate for λ is that value of λ between 0 and 1 (exclusive) which 

results in the lowest HMAEt.  

 

Evaluating a new value for λ in each reweighting interval addresses the criticism of EWMA 

that the λ parameter is constant despite changes in the underlying risk, and adjusts for 

possible differences in optimal λ between different risk measures.  

 

The periods used (that is, hyperparameters) are: 

• p = 3 months 

• The period over which the estimate of the risk measure is calculated is 1 month (22 

periods) 

• The period over which the EWMA is calculated is a minimum of 2 months (44 

periods), up to the full length of the sample data 

 

A longer period for calculating the risk measure estimate results in a relatively staler estimate 

for the true value of the sample observation at time t, but will smooth progression thereof, 

and consequently also that of λ. It seems feasible that the former may perform better in 

stable market periods, while the latter may perform better in more volatile markets. 

 

Similarly, a longer total estimation period, p, results in a smoother progression of λ over time, 

while a shorter period for p results in a faster and larger deviation in λ. Again, a longer total 

estimation period for calculating λ results in a relatively staler estimate for λ at time t, but will 

smooth progression thereof. 

 

Since the weekly and monthly portfolios use the daily data to calculate risk measures, it is 

not necessary to calculate different values for λ for each interval. 
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3.5.5 Determining the optimal portfolio at a point in time 

 

Having calculated the expected return and risk measures at each time step, Markowitz’s 

(1952) illustrative portfolio may now be constructed as follows: 

• Let random variable Ri be the return on the ith security and random variable R the 

portfolio return 

• Let Xi be the percentage of the investor’s portfolio invested into the ith security, with 

 Xi = 1 

 

Then:  

Return R =  Ri Xi                                             (11) 

Expected Return =  i=
 Xi I                (12) 

Variance =  i=
  j=

 ij 
 Xi Xj    (Markowitz, 1952)             (13) 

 

Per Markowitz’s (1952) formulation, any portfolio for which, given the return of the portfolio, 

there is no other portfolio with a smaller variance, will lie on the efficient frontier. For the 

purposes of calculating each risk-measure-optimised portfolio, variance is replaced with 

each risk measure in turn.  

 

Per Sharpe (1964), the portfolio on the efficient frontier which touches a tangential line 

connecting a risk-free asset and efficient frontier (the CML) is the optimal portfolio in terms 

of allocation of risk and return. Finding the portfolio which maximises the gradient of the 

CML finds the optimal portfolio.  

 

The study uses numerical methods to find the portfolio which maximises the gradient of the 

CML. Using numerical methods ensures that the same method can be used to find the 

optimal portfolio for any risk measure without introducing unintentional bias. However, the 

slope of the CML as a function of the weights of the portfolio constituents is discontinuous 

for some risk measures, which results in the application of numerical methods being 

intractable. Conversely, the use of numerical methods also allows calculation of an optimal 

portfolio where no tractable closed form solution exists and allows the imposition of 

constraints on the portfolio’s stock weightings.  
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The use of non-parametric numerical methods to calculate each risk measure investigated, 

with the exception of EWMA-weighted value at risk and EWMA-weighted Conditional value 

at risk, also addresses the criticism of MPT that it assumes returns are normally distributed. 

 

This methodology is applied for each risk measure, each EWMA forecast and each 

reweighting interval (that is, rolling from period to period) to find the relevant optimal portfolio 

as follows: 

 

1. Select a portfolio which contains all assets in the investment universe with weightings 

Xi, but subject to the constraint that Xi = 1. In the first reweighting interval, the 

weights Xi may be arbitrary or equal. However, at each subsequent reweighting 

interval the weights will rather be the optimal portfolio found at the previous iteration 

(that is, the previous period in which the optimal portfolio was calculated), thereby 

simulating the performance of the continuously-recalculated portfolio. This will have 

the advantage of reducing the computing requirement, as well as reducing the 

possibility that the portfolio will oscillate between differently-weighted portfolios with 

similar mean-risk measure characteristics, thereby avoiding unnecessary trading 

fees. 

2. Calculate the expected return and the risk measure (or EWMA forecast) as detailed 

in Sections 0 and 3.5.4 using the preceding three months of returns as the inputs. 

3. Optimise the portfolio using numerical methods by: 

a. Estimating a partial derivative, 
𝑑𝑆

𝑑𝑋𝑖
, of the slope, S = expected return / risk 

measure, with respect to each Xi by incrementing each Xi in turn by a small 

amount and then recalculating S.  

b. Once every partial derivative has been calculated, incrementing or 

decrementing Xi by a small amount in the direction which increases S.  

c. Repeating with successively smaller increments and decrements until the 

change in S falls below an acceptable threshold.  

4. Resize each Xi proportionately to ensure that  Xi = 1 
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The study imposes constraints on each Xi such that no short positions are allowed. 

 

3.5.6 Recalculating successive optimal portfolios 

 

Having identified the optimal portfolio at a point in time, the return of the portfolio between 

the given timestep t and the next timestep t+1 may be calculated using the weights at 

timestep t and the asset prices or total returns at timestep t and t+1. 

 

The process will be repeated at timestep t+1 and each subsequent timestep. 

 

The study incorporates the effect of fees on the aggregate return as follows: 

• Total expense ratio (TER) for each ETF of 0.1% per annum, as per the actual TERs 

charged by the ETFs based on the indices used; 

• Trading fees of USD 0.003 per share traded, based on the trading fees of the 

NASDAQ and NYSE. For the purposes of the study, it will be assumed that the 

starting value of each share will be the starting index value multiplied by 1.00 US 

Dollar; and  

• Zero commission.1 

 

Given the low fee levels there is little difference in trading fees between the different 

strategies, with fees across all strategies resulting in a circa 10bp reduction in annual return, 

except for the daily EWMA-optimised strategy which was closer to 12bp. The trading fees 

are typically low, given their very small amount per share traded, with the result that the total 

fees are typically close to the TER. 

 

While the applicable fees are subtracted from each portfolio at each time step in which the 

portfolio is recalculated, the impact of fees shown in the results tables in Section 4.3 

(Strategy Performance), is expressed as an annualised reduction in yield. Consequently, 

since the reduction in yield is a compounded figure, but the fees added to the portfolios are 

not compounded, the figures in the tables can be less than the 10bp. 

 

1 Based on the fees schedules of Merrill Edge, Fidelity Investments, TD Ameritrade and Interactive Brokers. 
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The incorporation of fees into the calculation of total returns addresses the criticism of MPT 

that it does not include fees, although fees are not included as a constraint into the 

optimisation problem itself.  

 

As indicated, the above procedure has been repeated for each risk measure, and for the 

EWMA of each risk measure. 

 

The output of this process is a set of returns for each of the portfolios or strategies. The 

process is summarised in Figure 3.5.12. 
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Note. Process flow followed to create each investment strategy.

Figure 3.3  

Optimisation process flow diagram 
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3.6 ROBUSTNESS CHECKS 

 

Possible sources of bias or error include the following: 

1) Asset sample size: The availability of tradeable ETFs based on the indices used in 

the study reduces the study sample size to only ten assets plus the global index. 

While other studies have used an asset universe as small as only two assets 

(Jacobsen 2005), the results will be corroborated or refuted by conducting a similar 

optimisation exercise on a subset of the portfolios investigated using the next-level-

down 24 MSCI Industry Group indices and the 69 MSCI Industry indices. 

2) In-sample testing: A portfolio construction technique which uses future information to 

construct a portfolio is likely to perform extremely well, but is also impossible to 

implement in reality. The study will ensure that only information prior to each timestep 

will be used to construct the asset weights to be applied at that timestep. Ensuring 

this is facilitated by checking that the returns inputs into the functions described in 

section 3.6 (Data analysis) do not include any information from after the timestep 

being optimised for. This also impacts on the choice of training period: Although there 

are training periods which result in better strategy outcomes than the three months 

selected, the training period was not altered to accommodate this. 

3) Overfitting of hyperparameters: If enough hyperparameters are assessed, it is 

possible that one or more will result in a particularly optimal output portfolio by 

chance, the results of which would not be replicable with different assets or a different 

period of sample data. This risk may be minimised by reporting on the process of 

identifying the study hyperparameters, and by using the portfolios optimised using 

the MSCI Industry Group and Industry indices as an out-of-sample test case. 
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3.7 RESEARCH ETHICS 

 

The data used in the study is collected and analysed as described, without manipulation or 

falsification of data or results. The findings are reported in a transparent manner and avoid 

the portrayal of any misleading outcomes or misrepresentations.  

 

All information from external sources is appropriately paraphrased and cited. 

 

The necessary approvals have been obtained from the Research Ethics Committee of the 

Faculty of Economic and Management Sciences.  

 

3.8 SUMMARY 

 

The study uses a positivist research paradigm based on an empirical enquiry strategy. It 

uses quantitative and statistical methods applied to time series numeric secondary data 

sourced from S&P corroborated with data from MSCI. These methods facilitate the 

construction of several investment strategies based on portfolios optimised using different 

risk measures; as well as the comparison of the risk-adjusted performance of the investment 

strategies. 
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4 CHAPTER 4 – RESULTS AND DISCUSSION 

4.1 INTRODUCTION 

 

Identifying an optimal investment strategy is built up from constituent steps, each of which 

will be discussed before the resulting strategies are compared and possible optimal 

strategies are examined in more detail. The steps followed in the study start with establishing 

that the optimisation algorithm employed is fit for purpose – that is, that the numerical 

methods optimisation does indeed result in an efficient portfolio. This is followed by the 

process of establishing appropriate hyperparameters, in line with one of the stated purposes 

of the study. Comparisons of the results of strategies implemented with different 

hyperparameters must, however, be weighed against the risk of introducing forward-looking 

bias. Hyperparameters examined in the study include the training period, the recalculation 

interval, the size of the asset universe, the choice of whether to optimise over raw risk 

measures or forecast risk measures, and the choice of lambda as an input parameter to the 

EWMA.  

 

The study calculated the returns, each risk measure used in the study, drawdown 

percentage and risk-adjusted returns, for the 140 different strategies investigated. While 

returns and strategy risk measures for all 140 strategies are included in Appendix B, only 

the summarised results and the best-performing strategy are discussed in detail in this 

chapter. In particular, the returns and Sharpe ratio of all strategies are compared to identify 

the best and worst performing strategies.  

 

4.2 POINT-IN-TIME PORTFOLIO CONSTRUCTION 

 

If the numerical methods algorithm used to calculate each successive optimal portfolio is 

ineffective in doing so, the results obtained from each strategy will be misleading. To guard 

against such a possibility, the algorithm was tested for point-in-time portfolios optimised 

using each risk measure and the EWMA of each risk measure2. The conclusion of the 

 

2 Since the results of the validation are sufficient to confirm the validity of the results coming out of the 
optimisation methods, it is not necessary to describe the full validation in the main body of the study. Readers 
interested in the process of validation can find the process and analysis described in Appendix B. 
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validation testing is that, firstly, certain risk measures are easier to optimise over than others, 

in particular, symmetrical risk measures (variance, standard deviation, mean absolute 

deviation) are typically more tractable for optimisation than single-sided risk measures (semi 

variance, semideviation, semi-absolute deviation, value at risk). The reasons for this are 

explained in Appendix B. Irrespective of this, the optimised portfolios are sufficiently well 

optimised that the resulting strategies are suitable for drawing inference about portfolios 

optimised using these risk measures. Secondly, it is clear that application of an EWMA to 

single-sided risk measures renders them tractable to optimisation using numerical methods. 

 

4.3 STRATEGY PERFORMANCE 

 

Having established that the optimisation algorithm does indeed result in efficient portfolios, 

the portfolios must be calculated in each time step to create an investment strategy. 

However, prior to doing so, an intermediate step is required, being to optimise each of the 

parameters which are required as inputs into the investment strategy; that is, to establish 

optimal hyperparameters. The remainder of this section touches briefly on the process of 

identifying optimal hyperparameters, before examining a possible solution to the criticism of 

MPT that past performance does not persist into the future. Thereafter, the performance of 

the different investment strategies examined in the study is compared taking into account 

the chosen hyperparameters, and finally more comprehensive results for the best-

performing strategies are examined in more detail.  

 

4.3.1 Hyperparameters 

 

The study required the optimisation of different hyperparameters before using them in the 

final investment strategies, being recalculation period, length of training period and GICS 

tier.  

 

In order to avoid forward-looking bias, the hyperparameters were optimised using past data, 

or alternatively, where this was not feasible, a parameter was chosen and the entire sample 

was used to corroborate, but not fit, the choice of parameter. 
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It is preferable to select hyperparameters for which adjacent parameter values have a 

positive but similar effect on the outcome of a strategy in preference to those which result in 

better strategy performance, but poor results for adjacent parameter values. Doing so 

means that a small shift in the investment environment with respect to the effect of the 

parameter is less likely to result in significant changes to the strategy performance. 

 

The choice of hyperparameters has a profound effect on the portfolios fitted from the data. 

Poorly-optimised or overfitted hyperparameters are likely to result in models with poor 

predictive capabilities, invalidating the results of the study. Conversely, hyperparameters 

with forward-looking bias might provide spuriously positive results which could never be 

obtained in reality - which has no access to future data - thereby equally invalidating the 

results of the study. Consequently, the process of calculating and choosing the 

hyperparameters is a key input into the results of the study. The outcome of the 

hyperparameterisation process is that the results of the study are calculated as follows: 

weekly and monthly portfolio recalculation periods provide the best returns; a training period 

of three months works well for the study; and using sector and industry group indices as 

inputs results in portfolios with better performance than using less-aggregated industry 

indices. 

 

The process of optimising hyperparameters is documented in Appendix C, while the financial 

results of portfolio optimisation using each different risk measure are documented in the 

remainder of this chapter. 

 

 

4.3.2 Comparison of all strategies  

 

Once the hyperparameters were established, the 140 risk-return optimised strategies were 

run incorporating each risk measure, GICS tier, length of recalculation period, and 

EWMA/raw risk measure combination. The annualised return for each strategy is shown in 

Table 4.1, while the Sharpe ratio is shown in Table 4.2 The gradation of performance by 

colour (green is better, red is worse) is displayed horizontally between risk measures in both 

tables. All results are out-of-sample. 
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Table 4.1 
Annualised returns for all investment strategies  

 

Note. Annualised returns for each investment strategy investigated. V = variance, SD = 

standard deviation, DSV = downside semivariance, DSSD = downside semideviation, MAD 

= mean absolute deviation, SAD = semi-absolute deviation, VaR0.1 = 10% value at risk, 

VaR0.05 = 5% value at risk, CVaR0.1 = 10% conditional value at risk, CVaR0.05 = 5% 

conditional value at risk. 

Source: Author’s calculations 

 

  

Tier
Calculation 

Period
Raw/EWMA V SD DSV DSSD MAD SAD VaR0.1 VaR0.05 CVaR0.1 CVaR0.05

Raw 9.61% 10.98% 10.88% 10.91% 10.94% 12.60% 9.31% 8.84% 9.92% 10.52%

EWMA 11.26% 8.71% 7.10% 7.72% 8.95% 8.72% 8.82% 9.01% 9.12% 9.64%

Raw 10.66% 11.72% 9.73% 13.94% 12.20% 13.50% 9.57% 8.06% 11.61% 11.87%

EWMA 10.71% 12.34% 12.70% 11.45% 16.18% 15.74% 12.63% 12.60% 5.11% 7.49%

Raw 11.34% 10.99% 10.50% 13.07% 12.61% 15.18% 9.27% 11.14% 10.90% 11.81%

EWMA 7.61% 11.43% 7.70% 10.64% 11.50% 11.62% 10.90% 11.26% 8.89% 11.94%

Raw 9.23% 14.48% 9.98% 13.71% 12.64% 11.60% 10.95% 14.57% 15.42% 16.27%

EWMA 10.53% 18.88% 14.93% 19.18% 20.01% 19.48% 18.69% 18.71% 14.90% 15.76%

Raw 11.78% 14.51% 12.41% 13.13% 13.75% 14.17% 12.63% 12.16% 15.51% 15.31%

EWMA 6.56% 10.53% 11.10% 13.03% 11.04% 12.29% 10.16% 10.17% 11.94% 10.29%

Raw 10.66% 11.72% 9.73% 13.94% 12.20% 13.50% 9.57% 8.06% 11.61% 11.87%

EWMA 10.71% 12.34% 12.70% 11.45% 16.18% 15.74% 12.63% 12.60% 5.11% 7.49%

Raw 11.34% 10.99% 10.50% 13.07% 12.61% 15.18% 9.27% 11.14% 10.90% 11.81%

EWMA 7.61% 11.43% 7.70% 10.64% 11.50% 11.62% 10.90% 11.26% 8.89% 11.94%

Raw 10.66% 12.20% 10.53% 13.11% 12.42% 13.67% 10.08% 10.57% 12.27% 12.78%

EWMA 9.29% 12.24% 10.56% 12.02% 13.62% 13.60% 12.10% 12.23% 9.14% 10.65%

Sector 10.20% 11.03% 9.77% 11.29% 12.06% 12.89% 10.08% 10.15% 9.26% 10.54%

Industry Group 9.52% 14.60% 12.11% 14.76% 14.36% 14.38% 13.11% 13.90% 14.44% 14.41%

Industry 10.08% 11.62% 10.16% 12.28% 13.12% 14.01% 10.59% 10.76% 9.13% 10.78%

9.97% 12.22% 10.55% 12.56% 13.02% 13.64% 11.09% 11.40% 10.70% 11.71%Overall
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Table 4.2 

Sharpe ratios for all investment strategies 

 

Note. Sharpe ratios for each investment strategy investigated. V = variance, SD = standard 

deviation, DSV = downside semivariance, DSSD = downside semideviation, MAD = mean 

absolute deviation, SAD = semi-absolute deviation, VaR0.1 = 10% value at risk, VaR0.05 = 

5% value at risk, CVaR0.1 = 10% conditional value at risk, CVaR0.05 = 5% conditional value 

at risk. 

Source: Author’s calculations 

 

Across all GICS tiers, all recalculation periods and both raw risk measure- and EWMA-

optimised strategies, semi-absolute deviation-optimised strategies achieved the highest 

overall annualised returns (Table 4.1) and Sharpe ratios (Table 4.2), followed by mean-

absolute deviation-optimised strategies and downside semideviation-optimised strategies. 

The performance of semi-absolute deviation-optimised strategies was also consistently 

strong, with, barring two outliers for the weekly raw risk measure-optimised strategy and the 

daily EWMA-optimised strategy, a relatively small difference between the best and worst 

performance. In combination with the principle relating to hyperparameters of the benefit of 

adjacent parameter values having a positive but similar effect on the outcome of a strategy, 

this shows semi-absolute deviation to be the best performing risk measure in the study.  

Tier
Calculation 

Period
Raw/EWMA V SD DSV DSSD MAD SAD VaR0.1 VaR0.05 CVaR0.1 CVaR0.05

Raw 0.65          0.70          0.68         0.69         0.69         0.82         0.58         0.54         0.62         0.65         

EWMA 0.77          0.55          0.45         0.48         0.57         0.56         0.55         0.57         0.58         0.62         

Raw 0.71          0.73          0.62         0.95         0.76         0.85         0.60         0.49         0.73         0.73         

EWMA 0.71          0.77          0.81         0.71         1.03         1.00         0.79         0.79         0.30         0.44         

Raw 0.91          0.79          0.82         1.07         0.92         1.11         0.70         0.82         0.78         0.85         

EWMA 0.59          0.86          0.56         0.76         0.87         0.89         0.82         0.85         0.71         0.84         

Raw 0.53          0.81          0.57         0.75         0.74         0.70         0.62         0.83         0.87         0.91         

EWMA 0.66          1.08          0.89         1.16         1.15         1.12         1.07         1.07         0.78         0.86         

Raw 0.79          0.88          0.87         0.82         0.84         0.88         0.77         0.76         0.96         0.96         

EWMA 0.43          0.64          0.68         0.76         0.70         0.76         0.62         0.62         0.59         0.52         

Raw 0.71          0.73          0.62         0.95         0.76         0.85         0.60         0.49         0.73         0.73         

EWMA 0.71          0.77          0.81         0.71         1.03         1.00         0.79         0.79         0.30         0.44         

Raw 0.91          0.79          0.82         1.07         0.92         1.11         0.70         0.82         0.78         0.85         

EWMA 0.59          0.86          0.56         0.76         0.87         0.89         0.82         0.85         0.71         0.84         

Raw 0.75          0.78          0.71         0.90         0.80         0.90         0.65         0.68         0.78         0.81         

EWMA 0.64          0.79          0.68         0.76         0.89         0.89         0.78         0.79         0.57         0.65         

Sector 0.72          0.73          0.66         0.78         0.81         0.87         0.67         0.68         0.62         0.69         

Industry Group 0.60          0.85          0.75         0.87         0.86         0.87         0.77         0.82         0.80         0.81         

Industry 0.73          0.79          0.70         0.87         0.90         0.96         0.73         0.74         0.63         0.72         

0.69          0.78          0.70         0.83         0.85         0.90         0.72         0.74         0.67         0.73         
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Significantly, given variance is the risk measure originally put forward in MPT, variance-

optimised strategies performed most poorly in terms of absolute returns and second most 

poorly in terms of Sharpe ratio.  

 

The performance of semi-absolute deviation-optimised strategies compared to variance-

optimised strategies is consistent with other empirical studies in the literature. Stanković et 

al. (2020) concluded that semi-absolute deviation-optimised portfolios substantially 

outperformed variance-optimised portfolios on the Belgrade Stock Exchange, albeit at the 

cost of higher risk. Similarly, Jacobsen (2005) showed that the performance of a semi-

absolute deviation-optimised portfolio outperformed a variance-optimised portfolio 

consisting of the Standard & Poor’s 500 and the Dow Jones Two-Year Corporate Bond 

Indices for the sample period between 1996 and 2005. 

 

One of the factors impacting the performance of semi-absolute deviation-optimised 

strategies is asset allocation concentration. Stanković et al. (2020) observed that semi-

absolute deviation-optimised portfolios resulted in much smaller numbers of shares being 

held compared to variance-optimised portfolios. The same is true in this study, with average 

asset allocation weights in semi-absolute deviation-optimised strategies across all periods 

being more concentrated than other strategies. Using sector-based raw monthly strategies 

as an example, semi-absolute deviation-optimised strategies had the highest and second 

most concentrated asset allocations of any strategy, allocating 37.5% of assets to IT and 

26.4% to Health Care on average, compared to the average most concentrated allocation 

across all the other strategies of 17.7%. This contributed to the success of the semi-absolute 

deviation-optimised strategies, since the average monthly return of the IT index was the 

highest of all the sector indices, at 1.7% per period, and the Health Care index achieved the 

third-highest monthly return at 1.1% per period.  

 

The improvement in annualised returns over the variance-optimised strategies evident in 

strategies optimised using downside semivariance, downside semideviation and semi-

absolute deviation, as evident in Table 4.1, is at least partially attributable to the use of 

these measures addressing the criticism made my Markowitz (1952) that MPT minimises 

upside risk as well as downside risk. Any constituent asset which exhibited large upward 

shifts in return relative to average returns will have been penalised in variance-optimised 
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portfolios, but not in strategies optimised using downside semideviation or semi-absolute 

deviation.  

 

Comparing individual variance-optimised strategies to downside semivariance-optimised 

strategies, and analogously, standard deviation-optimised strategies to downside 

semideviation-optimised strategies, the annual return results in Table 4.1 are mixed as to 

whether one materially outperforms the other or not, just as experienced by Jacobsen 

(2005), Stanković et al., (2020) and Hunjra et al. (2020) in each of their studies comparing 

variance-optimised strategies to downside semivariance-optimised strategies. On average, 

however, downside semivariance-optimised strategies outperformed variance-optimised 

strategies slightly, downside semideviation-optimised strategies outperformed standard 

deviation-optimised strategies, and semi-absolute deviation strategies each outperformed 

mean absolute deviation strategies by circa 1% p.a. 

 

Consequently, it appears that this particular criticism of MPT may be addressed through the 

use of single-sided risk measures in preference to symmetrical risk measures. 

 

The high annualised returns in Table 4.1 of mean absolute deviation- and semi-absolute 

deviation-optimised strategies relative to other strategies, may also be attributable to these 

risk measures conferring a penalty to inclusion of an asset into the portfolio proportional to 

the difference between each period's return and the mean return, rather than the square 

thereof. As contended by Byrne & Lee (2004), this makes these risk measures less sensitive 

to outliers than variance, and similarly less sensitive to outliers than standard deviation, 

downside semivariance and downside semideviation. A higher sensitivity to outliers would 

penalise the inclusion into the optimised portfolio of assets with bigger deviations in return 

away from the mean return. This would be particularly problematic for symmetrical risk 

measures such as variance, reducing the weighting in assets with large upside return 

deviations. However, assuming at least some symmetry of return distributions, penalising 

the portfolio weightings of assets with large downside return deviations would also impact 

negatively on the portfolio return, since the large upside return deviations associated with 

those same assets would also be excluded. This effect would be exacerbated by an 

environment in which the return on assets was generally positive, as is the case in the study 
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period, since, on average, excluding large deviations in return would be likely to exclude 

more large upside deviations than large downside deviations. 

 

Comparing variance-optimised strategies to standard deviation-optimised strategies, it is 

clear from Table 4.1 that the latter strategy results in higher annualised returns. This is a 

result of variance being the square of standard deviation. Where variance is the denominator 

of the function being optimised, being return/risk, the optimisation algorithm attributes more 

importance to risk than where standard deviation is the denominator, such that assets with 

lower risk and lower returns will be more heavily weighted in a variance-optimised strategy, 

while assets with proportionately higher risk and higher returns will be more heavily weighted 

in a standard deviation-optimised strategy. The same relationship is evident between 

downside semivariance-optimised strategies and downside semideviation-optimised 

strategies in Table 4.1, and for the same reason. 

 

The relatively low annualised returns in Table 4.1 of value at risk- and conditional value at 

risk-optimised strategies is a result of two factors. Firstly, while no similar discussion was 

evident in journal articles on this topic, these two risk measures penalise the weighting of 

assets with downside outliers, since to minimise value at risk or conditional value at risk, 

asset combinations resulting in downside returns lower than the nth
 percentile must be 

excluded from the portfolio. Again, to the extent that the assets in the portfolio display at 

least some symmetry of return distributions, penalising the portfolio weightings of assets 

with large downside return deviations would also impact negatively on the portfolio return, 

since the large upside return deviations associated with those same assets would also be 

excluded. Secondly, the returns of the indices generally display a reversal after achieving 

the minimum return amongst the assets. Using the raw monthly returns as an example, the 

impact of excluding the asset with the minimum return from the next period’s portfolio is a 

reduction in yield for eight of the ten assets, with an average reduction in yield of 1% per 

annum. Put more broadly, the value at risk and conditional value at risk-optimised strategies 

penalise ‘bounce back’ or mean reversion, which the indices’ returns show sufficiently to 

engender poor returns relative to other strategies. 

 

Boasson et al. (2011) noted that portfolios optimised using VaR were sensitive to the 

confidence level used. This was also reported by Hunjra et al. (2020), who noted that 
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portfolios optimised using a higher confidence interval outperformed those optimised using 

a lower confidence interval in some instances, and visa versa in other instances. This is 

apparent in the study results, with the strategies differing only in confidence level yielding 

very different results. Averaging both annualised returns and Sharpe Ratio across all 

strategies (see Tables 4.1 and 4.2), the strategies with a lower confidence level (5%) yielded 

better performance on average than those with a higher confidence level (10%). This is 

attributable to the strategies with a higher confidence level capturing a greater proportion of 

downside periods followed by a subsequent upwards correction in return for which the 

strategy has then already exited its position in said asset, as discussed in more detail in the 

previous paragraph.  

 

 

While semi-absolute deviation is optimal in terms of annualised returns and Sharpe ratio, it 

does not minimise the risk of the strategy relative to portfolios optimised using other risk 

measures. Again, this is consistent with the empirical studies of Stanković et al (2020) and 

Jacobsen (2005), which concluded that semi-absolute deviation-optimised portfolios result 

in higher risk than variance-optimised portfolios. Table 4.3 shows the average risk in terms 

of each risk measure used in the study for each risk measure-optimised portfolio, averaging 

across weekly and monthly recalculated EWMA- and raw risk measure-optimised strategies. 
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Table 4.3  

Annualised risk measures for each investment strategy  

 

Note. Annualised risk measures for the returns generated by each investment strategy 

investigated. V = variance, SD = standard deviation, DSV = downside semivariance, DSSD 

= downside semideviation, MAD = mean absolute deviation, SAD = semi-absolute deviation, 

VaR0.1 = 10% value at risk, VaR0.05 = 5% value at risk, CVaR0.1 = 10% conditional value 

at risk, CVaR0.05 = 5% conditional value at risk. Each risk measure is a sample statistic 

calculated based on the full strategy returns over the 10-year study period. Descriptions of 

the calculations for each are described in Section 3.5.2. 

Source: Author’s calculations  

 

The results of optimising over the different risk measures displayed in Table 4.3 are not 

counterintuitive when considering the penalties imposed on the optimisation by minimising 

each different risk measure. The underlying reasons for the relative riskiness of portfolios 

optimised using different risk measures is not discussed in the literature. However, 

consideration of the mathematical formulation of each risk measure shows which assets 

result in an increase in the final value of the risk measure and which do not, with particular 

reference to whether minimising a risk measure results in stricter or more lenient exclusion 

of assets in the portfolio. If the exclusion of assets from the portfolio as a result of minimising 

risk is viewed as a penalty, then the most extreme penalty applied is likely to be that of 

variance, which penalises all large movements away from the mean return, with larger 

movements away from the mean penalised more than smaller movements due to variance 

being the sum of the square of the differences. Downside variance is similar, but does not 

penalise the upside deviations which variance penalises. Conversely, value at risk and 

conditional value at risk have penalties which apply only to the tail, resulting in the fewest 

penalties being applied during the optimisation. Somewhere in between the two, mean 

V SD DSV DSSD MAD SAD VaR0.1 VaR0.05 CVaR0.1 CVaR0.05 Average

V 0.08% 2.77% 0.11% 3.28% 1.82% 2.09% 2.38% 3.49% 4.44% 6.08% 2.65% 23.5%

SD 0.09% 3.01% 0.12% 3.47% 1.99% 2.22% 2.47% 3.66% 4.73% 6.51% 2.83% 23.1%

DSV 0.08% 2.90% 0.11% 3.37% 1.90% 2.10% 2.56% 3.69% 4.75% 6.56% 2.80% 23.8%

DSSD 0.08% 2.91% 0.11% 3.35% 1.92% 2.08% 2.20% 3.40% 4.52% 6.33% 2.69% 22.1%

MAD 0.09% 3.00% 0.12% 3.46% 1.98% 2.20% 2.46% 3.57% 4.62% 6.36% 2.79% 22.9%

SAD 0.09% 2.99% 0.12% 3.48% 1.98% 2.21% 2.42% 3.66% 4.56% 6.29% 2.78% 24.6%

VaR0.1 0.09% 2.93% 0.11% 3.38% 1.96% 2.15% 2.5925% 3.67% 4.67% 6.37% 2.79% 23.4%

VaR0.05 0.09% 2.98% 0.12% 3.42% 1.99% 2.18% 2.46% 3.5743% 4.64% 6.44% 2.79% 24.0%

CVaR0.1 0.09% 2.93% 0.11% 3.38% 1.94% 2.16% 2.3997% 3.81% 4.76% 6.55% 2.81% 22.1%

CVaR0.05 0.10% 3.11% 0.12% 3.49% 2.05% 2.21% 2.61% 3.7446% 4.93% 6.83% 2.92% 23.3%

Max 
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absolute deviation applies penalties to both upside and downside deviations from the mean 

return, but has no increased weighting applied to returns far away from the mean, and semi-

absolute deviation is similar, but only penalises downside deviations from the mean. The 

application of these heavier or lighter penalties is evident in Table 4Error! Reference 

source not found..3, where the risk of portfolios optimised using each risk measure is 

generally inversely proportional to the extremity of each risk measure’s penalty.  

 

Stanković et al. (2020) suggested that optimising a portfolio with respect to conditional value 

at risk usually leads to well-optimised portfolios in terms of value at risk. While this seems 

to be true when comparing the value at risk of strategies optimised using conditional value 

at risk to that of strategies optimised using value at risk at a 10% confidence level (these are 

equal to each other; see Table 4.3), this breaks down at a 5% confidence level, where the 

value at risk-optimised strategy shows lower value at risk than the conditional value at risk-

optimised strategy. One possibility is that this is attributable to methodology differences 

between the calculation of the two risk measures. In the study, raw value at risk and raw 

conditional value at risk are calculated directly from historical data, whereas for their 

EWMAs, a distribution is fitted to losses and the risk measure estimated from the parameters 

thereof. However, this does not seem to be the case, non-parametric conditional value at 

risk-optimised strategies do not all have lower value at risk than non-parametric value at 

risk-optimised strategies, and similarly for the parametric cases. Despite this, the average 

value at risk for conditional value at risk-optimised strategies and value at risk-optimised 

strategies is only very slightly different. 

 

A number of conclusions can be drawn from the relative risk of the different strategies. 

Firstly, while the classical MPT variance-optimised strategy did not perform well in terms of 

returns, it performs extremely well in terms of minimising risk across all risk measures used 

to measure the risk of the strategy. The opposite is true of semi-absolute deviation, which 

has intermediate levels of risk as indicated by the risk measures, and the highest maximum 

draw down of any strategy. This implies that its high Sharpe ratio is more a function of high 

returns than of low risk. A second conclusion evident from Table 4.3 is that a strategy’s 

impact on risk is generally consistent across all risk measures, not just the risk measure 

being optimised over.   
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The tight range of maximum drawdown between different strategies is also noteworthy. 

Maximum drawdown was between 21.1% and 23.6% for all strategies and occurred during 

the CoVID19 market crash. This corroborates the contentions of Lukomnik and Hawley 

(2021) when they argued that modern portfolio theory fails to capture ambiguous events, 

black swan events and systemic risk, citing COVID-19 as an example, which was not 

captured by preceding returns data and therefore was not an investment input into MPT 

models. Intuitively, the choice of risk measure, all of which are backwards-looking, should 

not provide any significant mitigation against such events. This is also corroborated by the 

study. While capturing black swan events may not be possible, allowance for systemic 

events may be possible through the introduction of short selling and market-neutral 

investment strategies. However, since short selling is outside of the scope of this study, so 

is systemic risk. 

 

While the merits of replacing variance with an alternative risk measure to optimise a portfolio 

seem evident from the results in Table 4.1 and Table 4.2, Table 4.4 displays the percentage 

of instances in which the risk-adjusted returns of strategies optimised using alternative risk 

measures outperformed the risk-adjusted returns of strategies optimised using variance.  
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Table 4.4 

Percentage of alternative risk measure-optimised strategies which outperformed variance-
optimised strategies (by Sharpe ratio) 

   

Note. Outperformed Variance shows the percentage of the nine strategies in each category 

optimised using a non-variance risk measure which outperformed the variance-optimised 

strategy in that category. 

Source: Author’s calculations 

 

Table 4.4 shows that 68% of strategies optimised using alternative risk measures 

outperformed variance-optimised strategies, where better performance is categorised as 

having a higher Sharpe Ratio within each grouping of GICS tier, recalculation period and 

EWMA/Raw risk measure. Consequently, using an alternative risk measure as compared to 

variance to optimise a portfolio has significant merit. Speculatively, because of very short 

return cycles posited by Dow Jones theory (Schannep, 2012), strategies recalculated daily 

may suffer from the introduction of an EWMA, since the smoothing introduced by the EWMA 

would allow the introduction of assets with high short-term volatility which would otherwise 

be penalised by an unsmoothed risk measure. Further, since MPT is momentum-based, 

since weighting of investment into an asset is proportional to its previous-period return, using 

an EWMA to smooth returns may simply result in too-slow reaction to a short-duration return 

cycle. 

 

Data
Calculation 

Period
Raw/EWMA

Outperformed 

Variance

Raw 60%

EWMA 0%

Raw 60%

EWMA 70%

Raw 37%

EWMA 91%

Raw 100%

EWMA 100%

Raw 80%

EWMA 97%

Raw 60%

EWMA 70%

Raw 37%

EWMA 91%
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4.3.3 The benefits of using an EWMA 

 

The study attempted to address the criticism of MPT that risk and return do not persist into 

the future through estimation of the next period’s risk and return using an EWMA. These 

estimates were then used in lieu of the mean return and previous period’s risk measure as 

inputs into the calculation of the efficient frontier. 

 

Table 4.5 shows the difference in return between EWMA-optimised strategies and raw risk 

measure optimised strategies across the 70 strategies of GICS tier, calculation period and 

the risk measure. Categories in which EWMA-optimised strategies outperformed raw risk 

measure-optimised strategies are shaded.  

 

Table 4.5 

Difference in annualised return between EWMA-optimised and equivalent raw risk measure-
optimised strategies  

 

Note. Figures shown are, for each investment strategy, the EWMA strategy annualised 

return less the raw strategy annualised return. Strategies for which EWMA strategy return 

exceeded the raw strategy return, and by implication for which application of an EWMA was 

beneficial, are shaded in grey. 

Source: Author’s calculations 

 

Tier
Calculation 

Period
V SD DSV DSSD MAD SAD VaR0.1 VaR0.05 CVaR0.1 CVaR0.05

1.66% -2.27% -3.78% -3.19% -2.00% -3.88% -0.49% 0.17% -0.80% -0.89% -1.55%

0.05% 0.62% 2.97% -2.49% 3.98% 2.24% 3.06% 4.54% -6.50% -4.37% 0.41%

-3.72% 0.44% -2.80% -2.43% -1.11% -3.56% 1.63% 0.12% -2.01% 0.14% -1.33%

1.30% 4.39% 4.95% 5.47% 7.37% 7.88% 7.75% 4.15% -0.53% -0.50% 4.22%

-5.22% -3.98% -1.31% -0.11% -2.70% -1.88% -2.47% -1.99% -3.57% -5.03% -2.83%

0.05% 0.62% 2.97% -2.49% 3.98% 2.24% 3.06% 4.54% -6.50% -4.37% 0.41%

-3.72% 0.44% -2.80% -2.43% -1.11% -3.56% 1.63% 0.12% -2.01% 0.14% -1.33%

-1.37% 0.04% 0.03% -1.10% 1.20% -0.08% 2.02% 1.66% -3.13% -2.13% -0.01%

Key: EWMA return higher than Raw return

Raw return higher than EWMA return

Average
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Overall, there is very little difference between portfolios optimised using an EWMA and those 

optimised using raw risk measures, with raw risk measure-optimised portfolios 

outperforming EWMA-optimised portfolios by an average of 0.01%. However, it is evident 

that certain risk measures benefit from the use of an EWMA, while others do not. Value at 

risk-optimised strategies appear to benefit greatly, while those optimised using conditional 

value at risk or downside semi deviation are prejudiced by the use of an EWMA. Strategies 

optimised using the remainder of the risk measures show mixed results, with some GI CS 

tiers and calculation periods performing better then their raw risk measure equivalent, and 

others worse. 

 

The lack of improvement in the EWMA forecast-based strategies’ returns or risk-adjusted 

returns for the majority of risk measures is likely due to the forecasting methodology (EWMA) 

providing little improvement in forecasts as compared to the previous period’s risk or return 

(the raw risk measure and mean return).  

 

Despite the lack of improvement in the forecasts themselves, portfolios optimised using an 

EWMA of value at risk and conditional value at risk show significantly different returns from 

those optimised using their raw equivalents. Lohre (2010) stated that optimising a portfolio 

with respect to conditional value at risk is more effective than doing so with respect to value 

at risk, usually leading to well optimised portfolios in terms of value at risk. Part of the reason 

for this is that conditional value at risk, unlike value at risk, is a coherent risk measure, 

satisfying the subadditivity requirement (Lim et al., 2011). Conditional value at risk therefore 

presents as a smoothed value at risk and is more tractable and effective for optimising 

portfolios. Corroborating this, the study found that, on average, raw conditional value at risk-

optimised portfolios outperformed raw value at risk-optimised portfolios by an average of 

1%. However, application of an EWMA also smooths the risk measure, albeit in a different 

way. Again, applying such a smoothing mechanism to value at risk when optimising 

portfolios results in better returns, with EWMA value at risk-optimised portfolios 

outperforming raw value at risk optimised portfolios by an average of 1.8%. Applying a 

smoothing mechanism to value at risk also ameliorates the impact its lack of smoothness 
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has on optimisation (Gaivoronski, 2005, Lwin et al., 2017)3. Despite the benefits of 

smoothing on value at risk,  oversmoothing results in loss of information and eventually 

poorer optimisation4. Such oversmoothing may be the reason that EWMA conditional value 

at risk optimised portfolios perform poorly, since they represent a smoothing (through the 

application of the EWMA) of an already-smoothed value at risk (that is, the conditional value 

at risk), and therefore a double loss of information. 

 

Also evident from Table 4.5, is that strategies recalculated weekly benefit from the 

application of an EWMA, while those calculated daily or monthly do not. This might be 

attributable to two reasons. Firstly, they may simply be a sweet spot for smoothing around 

a recalculation period of one week. Short duration return cycles, as proposed in Dow Jones 

theory (Schannep, 2012), may result in poor returns when trades are based on a smoothed, 

slightly longer-duration signal provided by the EWMA. Similarly, the inverse may be true in 

the case of monthly portfolio recalculation, if trades are based on a shorter-duration EWMA 

than the rebalancing period. Secondly, the calculation of squared returns required for the 

calculation of most risk measures’ EWMAs is based on the difference between the return 

and zero, rather than between the return and the mean return5. Particularly in the case of 

long recalculation periods, this might result in loss of information when the mean return over 

the period has in fact been significantly different to zero. 

 

4.3.4 Semi-absolute deviation-optimised strategy performance 

 

Having established that the best-performing risk measure in the study for optimising an 

investment strategy is semi-absolute deviation, this section examines the performance 

thereof in more detail. The strategy is based on sector-level data, and compared to the S&P 

Total Return Global Index as a benchmark. The Global Index is the market capitalisation-

weighted aggregation of the companies which comprise the sector indices and therefore 

represents a reasonable alternative to optimisation-based diversification across the 

 

3 This impact is evident in Figure 7.1 in Appendix B, which shows the relative tractability of Value at Risk and 
its EWMA in optimising a single portfolio. 
4 An example of this can be seen in Table 8.3 in Appendix C, wherein longer training periods result in poorer-
performing portfolios. 
5 See 3.5.4 (Calculating the EWMA) for the reason this is the case. 
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constituent sector-based indices. The Global Index achieved an annualised return of 12.1% 

and a Sharpe ratio of 0.74 over the study period. The strategy is also compared to strategies 

optimised using the traditional risk measure used in MPT, variance, to examine in more 

detail the impact of using a different risk measure. 

Figure 4.1 

Semi-absolute deviation-optimised strategy performance 

  

Panel A: Performance of raw risk measure semi-absolute deviation-optimised strategies 
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Panel B: Performance of EWMA semi-absolute deviation-optimised strategies 

Note. Graphs of strategy returns compared to the benchmark S&P 1200 Global Index. The 

top panel shows returns for strategies calculated weekly and monthly using raw risk returns, 

while the bottom panel shows those for strategies calculated using EWMAs. 

Source: Author’s calculations 

 

Comparing first to the benchmark, Figure 4.1 shows the return on a $1 portfolio on the y-

axis, while the horizontal axis shows the date. The performance of raw semi-absolute 

deviation and EWMA-optimised strategies is shown for both a weekly and monthly 

recalculation period. As shown in Table 4.6, the annualised return of both weekly and 

monthly recalculated raw risk measure-optimised strategies outperforms the benchmark, as 

does the weekly EWMA-optimised strategy. However, the benchmark outperforms the 

monthly EWMA-optimised strategy by approximately 17bp (annualised). The Sharpe ratio 

of all four semi-absolute deviation-optimised strategies exceeds that of the benchmark.  

 

As can be seen from the period between early 2020 and the beginning of 2022 in Figure 

4.1, the semi-absolute deviation-optimised strategies generally performed particularly well 

during the recovery period of the market following the CoVID-19 pandemic. This conforms 

with the expectation that portfolios optimised using semi-absolute deviation will not penalise 

the weighting of assets with high upside deviations in return relative to the mean return, 

which is clearly advantageous in a bullish market. 

 

Table 4.6 

Annualised returns, fees, Sharpe ratios and risk measures for variations of SAD-optimised 
strategies 

 

Note. Returns, fees, Sharpe ratio and risk measures for the four semi-absolute deviation-

optimised strategies. V = variance, SD = standard deviation, DSV = downside semivariance, 

DSSD = downside semideviation, MAD = mean absolute deviation, SAD = semi-absolute 

Mean
Annualised 

Return
Fees

Sharpe 

Ratio

Max 

Drawdown
V SD DSV DSSD MAD SAD VaR0.1 VaR0.05 CVaR0.1 CVaR0.05

GlobalIndex 12.08% 11.56%       0.74 29.87% 2.17% 17.12% 14.44% 19.22% 25.34% 33.65% 14.74% 2.93% 9.72% 11.15%

Weekly 13.88% 13.50% 0.100%       0.85 35.46% 2.27% 17.58% 13.37% 19.59% 25.18% 34.46% 15.06% 3.09% 9.55% 10.56%

Monthly 15.21% 15.18% 0.099%       1.11 18.00% 1.71% 15.13% 10.46% 18.33% 20.24% 27.64% 13.07% 2.29% 9.46% 10.59%

Weekly 15.83% 15.74% 0.104%       1.00 27.29% 2.25% 16.58% 13.84% 19.68% 23.95% 32.15% 15.01% 2.75% 9.89% 10.25%

Monthly 11.91% 11.62% 0.100%       0.89 17.83% 1.52% 14.61% 9.97% 13.40% 19.18% 27.35% 12.31% 2.14% 8.52% 9.94%

R
a

w
E

W
M

A

Annualised risk measures
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deviation, VaR0.1 = 10% value at risk, VaR0.05 = 5% value at risk, CVaR0.1 = 10% 

conditional value at risk, CVaR0.05 = 5% conditional value at risk. 

Source: Author’s calculations 

 

In addition to annualised return and Sharpe ratio, Table 4.6 shows the annualised returns, 

fees and annualised risk measures for the four semi-absolute deviation-optimised strategies. 

Annualised risk measures were obtained by multiplying the risk measure by the number of 

periods per year (variance and downside semivariance) or the square root thereof (all other 

risk measures), while fees are expressed as an annualised reduction in return. 

 

Observing the small difference in the fees between weekly and monthly strategies, it seems 

that the increase in cost of more frequent trading inherent in a weekly, as compared to a 

monthly, recalculation of the strategy, is of relatively little impact, and the majority of the fee 

is comprised of the ETF’s total expense ratio, rather than trading fees. 

 

Comparing the risk of the different strategies, the observation made in Section 4.3.2 

(Comparison of all strategies), that a strategy’s impact on risk is generally consistent across 

all risk measures, not just the risk measure being optimised over, is corroborated. 

Accordingly, the monthly EWMA-optimised strategy displays the lowest risk across all risk 

measures, albeit at the cost of much lower returns than the other strategies. This is followed 

by the monthly raw risk measure-optimised strategy and then the weekly EWMA-optimised 

strategy. The riskiest strategies are the weekly raw risk measure-optimised strategy and the 

benchmark, displaying similar levels of risk; however, of the two, the weekly raw risk-

measure optimised strategy has a much higher return. 

 

Comparing the results of semi-absolute deviation-optimised strategies against those 

optimised using variance, the traditional risk measure used in modern portfolio theory, the 

former tends to outperform the latter. Figure 4.2 shows the performance of weekly semi-

absolute deviation-optimised strategies compared to variance-optimised strategies. While 

between 2013 and 2017 the variance-optimised strategies matched or outperformed the 

semi-absolute deviation-optimised strategies, the latter delivered exceptional returns 

thereafter, particularly during the recovery period following the CoVID-19 pandemic, 

doubling the portfolio in two years. As stated above, this conforms with the expectation that 
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portfolios optimised using semi-absolute deviation will not penalise the weighting of assets 

with high upside deviations in return relative to the mean return. Conversely, optimising 

using variance will confer a penalty on these assets because it includes upside deviations 

relative to the mean return into the risk measure. Further, those assets with the largest 

upside deviations will be most penalised due to variance squaring the deviations. The impact 

of this doubly-disadvantageous effect during a bull market is clearly evident in the difference 

in portfolio growth during the post-CoVID recovery period. 
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Figure 4.2 

Weekly semi-absolute deviation- vs variance-optimised strategy performance 

 

Panel A: Performance of weekly raw risk measure semi-absolute deviation-optimised 

strategies 

 

Panel B: Performance of weekly EWMA semi-absolute deviation-optimised strategies 

 

Note. Graphs comparing the returns of weekly semi-absolute deviation-optimised strategies 

to those of variance-optimised strategies. The top panel shows returns for strategies 

calculated weekly and monthly using raw risk returns, while the bottom panel shows those 

for strategies calculated using EWMAs. 

Source: Author’s calculations 
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The same is true of monthly strategies. Figure 4.3 shows the performance of the same 

strategies recalculated on a monthly instead of weekly basis. Again, the semi-absolute 

deviation strategies outperform the variance-optimised strategies. Unlike the weekly 

strategies, the variance-optimised strategy never materially exceeds the performance of the 

semi-absolute deviation-optimised strategy. 
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Figure 4.3 

Monthly semi-absolute deviation- vs variance-optimised strategy performance 

 

Panel A: Performance of monthly raw risk measure semi-absolute deviation-optimised 

strategies 

 

Panel B: Performance of monthly EWMA semi-absolute deviation-optimised strategies 

 

Note. Graphs comparing the returns of monthly semi-absolute deviation-optimised 

strategies to those of variance-optimised strategies. The top panel shows returns for 

strategies calculated weekly and monthly using raw risk returns, while the bottom panel 

shows those for strategies calculated using EWMAs. 

Source: Author’s calculations 
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While variance-optimised strategies are disadvantaged during a bull market, the opposite is 

certainly not true: the performance of semi-absolute deviation-strategies during normal 

market (that is, non-bull market) conditions does not appear to be materially worse than that 

of variance-optimised strategies, and better in some cases. For example, while weekly raw 

variance-optimised strategies outperform weekly raw semi-absolute deviation-optimised 

strategies in the normal market period leading up to 2020, the opposite is true for monthly 

EWMA-optimised strategies, and weekly EWMA- and monthly raw-optimised strategies 

show very similar performance during this period. 

 

The conjunction of better bull-market performance and similar or slightly better normal-

market performance results in semi-absolute deviation-optimised strategies providing better 

overall performance than variance-optimised strategies. 

 

4.4 SUMMARY OF FINDINGS 

 

One hundred and forty investment strategies were run across the combinations of ten 

different risk measures, three GICS tiers, three lengths of recalculation period and two 

applications of EWMA vs raw risk measure. Of all the risk measures, strategies optimised 

using semi-absolute deviation performed best in terms of absolute returns and Sharpe 

ratios, followed by mean absolute deviation-optimised strategies and semi-absolute 

deviation-optimised strategies. 

 

Strategies optimised using the traditional measure for MPT, variance, tended to perform 

poorly in terms of both absolute returns and Sharpe ratio. 

 

The characteristics of each risk measure influence the penalty applied to the choice of 

including indices into the portfolio, which would otherwise be based solely on return. In 

particular, portfolios optimised using asymmetrical risk measures outperformed portfolios 

optimised using symmetrical risk measures on average, lending credibility to the criticism of 

MPT that it minimises upside risk alongside minimising downside risk. Further, optimising 

portfolios using risk measures which incorporate a square of deviations penalised large 

 
 
 



 
82 

 

movements away from the mean return, as compared to risk measures which incorporated 

unsquared deviations. In a market environment with more positive large swings than 

negative large swings, or where large positive market corrections followed large negative 

market movements, portfolios optimised using unsquared risk measures benefited. A similar 

effect was evident in portfolios optimised using value at risk and conditional value at risk, 

which also penalised the inclusion of indices with larger volatility and therefore more outliers. 

 

Application of an EWMA to forecast returns and risk measures provided inconclusive results, 

with the average annualised performance and Sharpe ratios across all categories of raw risk 

measure-optimised strategies being only slightly higher than the average annualised return 

across all categories of EWMA-optimised strategies. 
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5 CHAPTER 5 – CONCLUSION 

5.1 INTRODUCTION 

 

MPT suffers a number of criticisms, including that risk and return do not persist into the 

future, that returns are not statically normally distributed and that the risk measure used to 

optimise portfolios minimises upside risk as well as downside risk. This study examines the 

use of alternative risk measures to optimise portfolios as well as the use of different risk 

forecasting techniques to those used by MPT for forecasting those risk measures. 

 

The literature contains studies of alternative risk measures applied to MPT, examples of 

which include downside semivariance and downside semi deviation, mean absoute 

deviation and semi-absolute deviation, value at risk and conditional value at risk. Although 

the results of these studies are varied, they show that the use of alternative risk measures 

to optimise portfolios often results in better returns than the use of variance. 

 

This study corroborates these findings: variance is not an ideal risk measure to optimise 

against. In over two thirds of the 140 strategies examined in the study, using an alternative 

risk measure to variance to optimise portfolios resulted in better annualised returns, with the 

single instance in which variance-optimised strategies performed best being daily EWMA-

optimised strategies on sector-level data.  

 

Portfolios optimised using alternative risk measures outperformed portfolios optimised using 

variance for a variety of reasons. Firstly, the criticism of MPT that using variance to optimise 

portfolios minimises upside risk as well as downside risk (Boasson et al., 2011; Byrne & Lee, 

2004; Cardoso et al., 2019; Hunjra et al., 2020) appears to have merit: On average, 

downside semivariance-optimised strategies in the study outperformed variance-optimised 

strategies, downside semideviation-optimised strategies outperformed standard deviation-

optimised strategies, and semi-absolute deviation strategies outperformed mean absolute 

deviation strategies by circa 1% p.a.  

 

Secondly, the use of variance to optimise portfolios penalises return profiles which contain 

more outliers relative to the use of risk measures which are a function of unsquared 
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differences between returns and average return. This leads to higher average returns for 

standard deviation-optimised strategies than variance-optimised strategies, and similarly for 

semivariance-optimised strategies and downside semideviation-optimised strategies. The 

impact is even more noticeable when comparing the performance of mean absolute 

deviation optimised strategies to variance optimised strategies, and that of semi-absolute 

deviation optimised strategies to downside semivariance optimised strategies.  

 

Having established that the use of alternative risk measures to optimise portfolios is indeed 

worthwhile, the question then becomes one of identifying which risk measures perform best. 

The study shows that of all the risk measure-optimised strategies, semi-absolute deviation-

optimised strategies had the best risk-adjusted returns most frequently. In particular, 

absolute deviation-optimised strategies performed well when coupled with an EWMA. 

 

Addressing the criticism of MPT that risk and return do not persist into the future (Rigamonti 

and Lučivjanská, 2022; Iyiola et al., 2012), the study investigated the use of an EWMA to 

better forecast the risk measures optimised against. The results were inconclusive, with the 

average annualised performance across all categories of raw risk measure-optimised 

strategies being only 0.07% higher than the average annualised return across all categories 

of EWMA-optimised strategies, and the difference between their Sharpe ratios being only 

0.017. At a more detailed level, weekly EWMA-optimised strategies outperformed weekly 

raw risk-optimised strategies, while daily and monthly raw risk-optimised strategies 

outperformed their respective EWMA-optimised strategies. 

 

The study attempted to avoid the criticism of MPT that it assumes that the probability 

distributions of asset returns are static in time by refitting the EWMA’s decay factor based 

upon a rolling 3-month window. However, it was unable to conclude that using a decay factor 

(lambda) which was constantly refitted to the past three month’s risk resulted in better 

performance of EWMA-optimised strategies than EWMA-optimised strategies which used a 

constant decay factor, since the risk-adjusted returns of weekly strategies using a variance 

decay factor outperformed those using a constant decay factor, while the opposite was true 

of monthly strategies. 
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The study showed that a daily recalculation period did not help absolute- or risk-adjusted 

returns. This was only partially because of higher trading frequency and fees. Strategies 

with weekly and monthly recalculation periods performed better on both an absolute- and 

risk-adjusted return basis. Linking to recalculation periods, training periods were typically 

optimal in the three- to six-month range. Longer and shorter training periods typically 

resulted in poorer annualised returns and Sharpe ratios for both raw-risk and EWMA-

optimised strategies. Another factor investigated was the number of assets in the investment 

universe. Although it was not possible to directly compare strategies with Sector-level inputs 

to those with Industry Group- or Industry-level inputs because of differences in index 

construction, direct comparison of strategies with Industry Group-level and Industry-level 

inputs was possible. In most instances, Industry Group-level strategies achieved better 

performance than Industry-level strategies. Consequently, increasing the number of 

investible assets does not necessarily improve performance. 

 

5.2 IMPLICATIONS 

 

The study addresses some of the criticisms of MPT. In particular, it addresses the criticism 

that MPT uses a symmetrical risk measure (variance) thereby penalising upside risk, by 

optimising against different single-sided risk measures. In each instance, the annualised 

returns over the study period of strategies optimised using single-sided risk measures are 

higher than those of the strategies optimised against their analogous symmetrical risk 

measures, with downside semivariance-optimised strategies outperforming variance-

optimised strategies slightly, downside semideviation-optimised strategies outperforming 

standard deviation-optimised strategies, and semi-absolute deviation strategies 

outperforming mean absolute deviation strategies by circa 1% p.a. each. This is a 

meaningful outcome in that it provides several robust and suitable alternatives to variance 

which can be used in MPT which each address this criticism. An implication of this outcome 

is that investors optimising risk and return using symmetrical risk measures, whether they 

be the traditional variance or another risk measure, may well be obtaining suboptimal results 

and should instead use the asymmetrical equivalent risk measure in their optimisation in 

order to improve their returns. 
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The study also addresses the criticism of MPT that it assumes normally-distributed returns, 

by, for the most part, demonstrating that a fully non-parametric approach to optimising risk 

and return based on historical data achieves reasonable results. This confirms that investors 

using MPT or MPT-like optimisation have the option of using numerical methods algorithms 

to optimise their portfolios instead of closed-form mathematical solutions. Doing so will 

engender two advantages upon investors: firstly, it is possible to apply the same methods 

to different risk measures, allowing investors a wider, more flexible and quicker-to-develop 

toolkit; and secondly, it is possible to include market-related complexity into the optimisation 

which is not possible with closed-form solutions, such as the impact of fees. By implication, 

given the availability of commercial optimisation software, investors using MPT-like 

optimisation should use numerical-methods-based optimisation and not closed-form 

solutions. 

 

The study attempted to address the criticism of MPT that it assumes risk and return persist 

into the future by comparing the traditional approach of optimising risk and return in the most 

recent historical period to an approach in which the optimisation occurs on the next period’s 

risk and return forecast. This was not altogether successful, with no consistent improvement 

in the forecast-based strategies’ returns or risk-adjusted returns. This was likely due to the 

forecasting methodology providing little improvement in forecasts of risk and return 

themselves, as compared to the previous period’s risk or return. Given these results, better 

forecasting techniques than an EWMA for either or both of risk and return may be required 

in order to improve the efficacy of MPT-like methods and in so doing, address the criticism 

of MPT that it incorrectly assumes risk and return persist into the future. 

 

The study set out to investigate strategies optimised using several common risk measures 

for a common period and set of constituent assets, given that most similar studies investigate 

only a few risk measures. This will afford future researchers a direct point of comparison 

between different strategies with minimal additional influences impacting upon such 

comparisons. Further, the study applied MPT-like optimisation to a sub asset class which 

has been the subject of relatively few similar exercises, providing future researchers with 

wider data coverage. Presently studies on alternative risk measures applied to MPT cover 

stocks, bonds and options, but very few instances of indices (as proxies for ETFs). 

Demonstrating the efficacy of MPT-like optimisation using alternative risk measures for a 
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hither-to under-researched asset class improves the case for investors using such 

optimisation, as it demonstrates that it is more generally applicable than was indicated prior 

to the research having been undertaken. 

 

Lastly, the study detailed the process by which it arrived at the strategy hyperparameters, 

which will assist future researchers undertaking similar studies. 

 

5.3 FUTURE AVENUES OF RESEARCH 

 

While the study achieved most of its purposes, it failed to show a definitive improvement in 

returns by optimising strategies based on forecast risk and returns, likely due to the 

forecasting methods used providing poor forecasts of risk and return themselves. This 

provides an opportunity for future research, as to whether better forecasts may be 

incorporated into the optimisation to improve the strategy results. An example of this may 

be to use GARCH forecasting models, or to build machine learning models to forecast risk 

and return as a function of qualitative inputs and use the outputs thereof as inputs into MPT-

like optimisation and diversification. If intra-day data is available (perhaps for different asset 

classes), shortening the prediction horizon might yield better predictive accuracy of risk and 

return, leading to suitable trading strategies, if not investment strategies. 

 

A mix of value-based investing and quantitative investment techniques could be 

investigated. In particular, purely quantitative methods are subject to the criticism that risk 

and return do not persist into the future, which the study attempted to address through the 

application of an EWMA. By using value-based investment techniques which take the 

characteristics of the underlying asset itself into account, rather than only the historical 

movements of its share price, a distribution for next-period returns might be constructed 

which could, in turn, be an input into MPT-like quantitative methods. Similarly, other proxies 

or drivers for future returns, such as arbitrage pricing could be incorporated into the model. 

 

As discussed in the study, the application of MPT like methods to as-yet uninvestigated 

asset classes improves understanding of how and whether these methods are effective. 

Further corroboration of the relative efficacy of each risk measure in building investment 
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strategies could be sought by applying the methods used in the study to different asset 

classes. A possible example could be to apply it to several different random subsets of the 

S&P 500, in order to avoid the impact of having chosen a specific set of assets which 

happens to result in a specific but spurious outcome.  

 

The study used long-only and fully-invested constraints when constructing each portfolio. 

These constraints could be relaxed to investigate whether this improves strategy 

performance. Different rule-based mechanisms for balancing long-and short positions could 

be investigated. Similarly, the impact of making capital invested in the next period a function 

of expected risk/ return could be investigated.  

 

Another avenue for future research relates to further optimisation of hyper parameters and 

analysis of how and why each hyperparameter impacts on the success of each strategy. In 

particular, rebalancing period and training period could be investigated in significantly more 

detail. If intra-day data is available (perhaps for different asset classes), moving the strategy 

from an investment strategy to a trading strategy can be investigated. 
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6 APPENDIX A: GICS CLASSICFICATIONS 

Table 6.1  

GICS Sector, Industry Group and Industry classifications 

  

Sector Industry Group Industry

Energy Energy Energy Equipment & Services

Oil, Gas & Consumable Fuels

Materials Materials Chemicals

Construction Materials

Containers & Packaging

Metals & Mining

Paper & Forest Products

Industrials Capital Goods Aerospace & Defense

Building Products

Construction & Engineering

Electrical Equipment

Industrial Conglomerates

Machinery

Trading Companies & Distributors

Commercial & Professional Services Commercial Services & Supplies

Professional Services

Transportation Air Freight & Logistics

Airlines

Marine

Road & Rail

Transportation Infrastructure

Consumer Discretionary (Consumer Cyclical) Automobiles & Components Auto Components

Automobiles

Consumer Durables & Apparel Household Durables

Leisure Products

Textiles, Apparel & Luxury Goods

Consumer Services Hotels, Restaurants & Leisure

Diversified Consumer Services

Retailing Distributors

Internet & Direct Marketing Retail

Multiline Retail

Specialty Retail

Consumer Staples (Consumer Defensive) Food & Staples Retailing Food & Staples Retailing

Food, Beverage & Tobacco Beverages

Food Products

Tobacco

Household & Personal Products Household Products

Personal Products

Health Care Health Care Equipment & Services Health Care Equipment & Supplies

Health Care Providers & Services

Health Care Technology

Pharmaceuticals, Biotechnology & Life Sciences Biotechnology

Pharmaceuticals

Life Sciences Tools & Services

Financials Banks Banks

Thrifts & Mortgage Finance

Diversified Financials Diversified Financial Services

Consumer Finance

Capital Markets

Mortgage Real Estate Investment Trusts (REITs)

Insurance Insurance

Information Technology Software & Services IT Services

Software

Technology Hardware & Equipment Communications Equipment

Technology Hardware, Storage & Peripherals

Electronic Equipment, Instruments & Components

Semiconductors & Semiconductor Equipment Semiconductors & Semiconductor Equipment

Communication Services Telecommunication Services Diversified Telecommunication Services

Wireless Telecommunication Services

Media & Entertainment Media

Entertainment

Interactive Media & Services

Utilities Utilities Electric Utilities

Gas Utilities

Multi-Utilities

Water Utilities

Independent Power and Renewable Electricity Producers

Real Estate Real Estate Equity Real Estate Investment Trusts (REITs)

Real Estate Management & Development
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7 APPENDIX B: POINT-IN-TIME PORTFOLIO CONSTRUCTION 

 

The purpose of this appendix is to demonstrate the efficacy of the numerical methods 

algorithm used to find the efficient portfolio when optimising risk and return for each risk 

measure. If the portfolios returned are not optimal, or close to optimal, then the conclusions 

drawn for the resulting strategies will not be correct. 
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Figure 7.1 

Examples of point-in-time optimised vs random portfolio 

Note. Risk vs return plots for random (blue), and optimised (red) portfolios optimised using each risk measure investigated in the study for a 

single period. The Capital Market Line (green) used to optimise portfolios is plotted between the risk and return of the risk-free asset and an 

optimised portfolio given the return of the particular risk-free asset. 

Source: Author’s calculations 
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Figure 7.1 plots the risk (x-axis) and mean return (y-axis) for point-in-time portfolios, with 

each graph showing portfolios for each different raw and EWMA-weighted risk measure. 

Each dot in the point-in-time portfolio figures show the mean return and variance for a 

portfolio estimated over 100 days of data. Using a Monte Carlo simulation approach, the 

blue dots represent 50,000 portfolios with randomly assigned constituent weights, subject 

to the constraint that the weights sum to one and no short selling (random portfolios), while 

the red dots represent portfolios on the efficient frontier (optimised portfolios). The optimised 

portfolios are calculated by choosing different risk-free rates (that is, points on the y-axis) 

and maximising the slope of the CML for each using the numerical methods procedure 

described above. The green line represents the CML, joining the actual risk-free rate at the 

end of the 100-day period and the efficient frontier. 

 

For portfolios optimised using the majority of the raw risk measures and all of the EWMA-

weighted risk measures, the gap between the 50,000 random portfolios and the efficient 

frontier indicates the efficacy of the optimisation procedure: the random portfolios are not as 

efficient as the optimised portfolios, even across 50,000 attempts.  

 

In contrast, portfolios optimised using raw downside semivariance, downside semi deviation, 

semi-absolute deviation and value at risk are not perfectly tractable risk measures for 

portfolio optimisation using the numerical methods employed in the study. This issue is 

noted by Gaivoronski (2005) and Lwin et al. (2017) when discussing the value at risk-

optimised portfolios. They note that the efficient frontier between expected returns and VaR 

is not smooth and can result in local minima, making mean-VaR portfolio optimisation 

computationally intractable.  

 

Semi-absolute deviation provides a further example, since the risk measure only includes 

an observation into its sum when the observation is negative. When optimising the weights 

of a portfolio, there are certain weights which, when nudged upwards or downwards, result 

in an observation moving from being included into the risk measure to being excluded, or 

visa versa. However, the numerical methods algorithm relies on the principle that successive 

small changes in each portfolio weight by the same amount should result in a similar change 

to the risk measure.  
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Figure 7.2 

Illustration of numerical methods algorithm premise 

  

Note. Example used to demonstrate how the numerical methods algorithm used to optimise 

each portfolio uses gradient descent to optimise. 

 

By way of example, Figure 7.2 illustrates the premise used in the numerical methods 

algorithm that in a two asset universe, if a move in the portfolio weights from 50% / 50% to 

49% / 51% results in a change in the risk measure from 100 to 99, then a move from 49% / 

51% to 48% / 52% should result in a change in the risk measure from 99 to approximately 

98. However, when the weights being optimised are near these thresholds of including or 

excluding return observations from the risk measure calculation, the move from inclusion to 

exclusion or visa versa invalidates this premise, thereby causing the numerical methods 

algorithm to over- or underestimate the impact of successive weighting changes. 

 

Because downside semivariance, downside semi deviation, semi-absolute deviation all 

exhibit the property of including or excluding return observations into the calculation of the 

risk measure dependent on the return of the portfolio in the period, and therefore upon the 

weights of the portfolio’s constituent assets over the period, none of these risk measures 

are perfectly tractable to optimise over. 

 

To address this, for these risk measures, the algorithm selects the portfolio weights resulting 

in the best risk/return ratio from a thousand randomised portfolio weightings as a starting 

point for the gradient descent, and repeats the full optimisation more than once, from which 

it chooses the best results.  

Asset A Asset B Risk Measure

Weighting 1 50% 50% 100

Weighting 2 49% 51% 99

Change -1% 1% -1

Asset A Asset B Risk Measure

Weighting 2 49% 51% 99

Weighting 3 48% 52% ~98

Change -1% 1% ~-1

implies that
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The graph for the portfolios optimised using a risk measure most affected by this 

characteristic, semi-absolute deviation, yields the following observations: firstly, because the 

algorithm selects the best of many random starting points, the final level of optimisation may 

differ, with the result that one optimised portfolio may be more optimal than another. This 

results in the CML in the semi-absolute deviation graph clearly not being tangential, since 

the portfolio found by optimisation to find the CML is less optimal than others found starting 

from other random starting points. Secondly, while the resulting efficient frontier for these 

risk measures are not as smooth as that of, for example, variance-optimised portfolios, the 

optimised portfolios are nonetheless better optimised than the 50,000 random portfolios 

generated in terms of the historical ratio of risk and return. Consequently, despite the 

portfolios optimised using these risk measures not necessarily being the most efficient 

portfolios possible, they are nonetheless considerably more efficient than even the best of 

the random portfolios, and the resulting strategies should be suitable for drawing inference 

about portfolios optimised using these risk measures. Thirdly, it is clear that application of 

an EWMA to these risk measures renders them tractable to optimisation using numerical 

methods. 
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8 APPENDIX C: HYPERPARAMETER OPTIMISATION 

 

The study required the optimisation of different hyperparameters before using them in the 

final investment strategies. In order to avoid forward-looking bias, the hyperparameters may 

only be optimised using past data, or alternatively, where this is not feasible, a parameter 

was chosen and the entire sample was used to corroborate the choice of parameter. 

 

It is preferable to select hyperparameters for which adjacent parameter values have a 

positive but similar effect on the outcome of a strategy in preference to those which result in 

better strategy performance, but poor results for adjacent parameter values. Doing so 

means that a small shift in the investment environment with respect to the effect of the 

parameter is less likely to result in significant changes to the strategy performance. 

 

The hyperparameters requiring calculation are recalculation period, length of training period 

and GICS tier. The first of these addresses is recalculation period. 

 

8.1 RECALCULATION PERIOD 

 

Comparing the returns and Sharpe ratios of daily, weekly and monthly strategies optimised 

using each raw risk measure, it is clear that a daily recalculation period is not helpful in 

optimising either annualised return or risk-adjusted returns. It is not entirely clear why this 

should be the case. Part of the reduced performance is attributable to higher trading costs 

due to more frequent trading, but this increase in costs was not sufficient to explain the full 

difference. As noted in Section 3.5.1 (Sample periods and rebalancing), the risk measures 

for weekly and monthly periods was calculated using daily data and scaled to fit their 

respective periods. It may be that such scaling understates the risk measures, resulting in a 

greater emphasis upon returns in the optimisation of return / risk for longer recalculation 

periods and concomitant higher annualised returns, albeit at the cost of higher risk. 

Annualised returns across weekly and monthly recalculation periods performed similarly, 

with five of the ten risk measure-optimised strategies recalculated weekly having the highest 

annualised return and four of the ten risk measure optimised-strategies recalculated monthly 

having the highest annualised return. On average, the annualised return for monthly 
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strategies was slightly higher than that of weekly strategies. Moving to Sharpe ratios, the 

monthly recalculation period achieved the highest Sharpe ratio across all ten risk measure-

optimised strategies. These results are summarised in table 8.1. 

 

Table 8.1 

Performance of raw-risk optimised strategies across different recalculation periods 

 

Note. Annualised returns and Sharpe ratios for strategies calculated using each raw risk 

measure compared across daily, weekly and monthly recalculation periods. 

Source: Author’s calculations 

 

Undertaking a similar comparison for daily, weekly and monthly strategies optimised using 

the EWMA of each risk measure, daily recalculation periods are again excluded due to poor 

performance. Weekly recalculation periods overwhelmingly perform best in terms of 

annualised returns, with seven of the ten risk measure-optimised strategies recalculated 

weekly having the highest annualised return, as well as weekly strategies having the highest 

average return by a significant margin. However, six of the ten EWMA risk measure 

optimised-strategies recalculated monthly have the highest Sharpe ratio, and monthly 

strategies also have the highest average Sharpe ratio. These results are summarised in 

table 8.2. 

 

 

  

Daily Weekly Monthly Daily Weekly Monthly

V 10.1% 11.2% 11.6% 65% 71% 91%

SD 11.5% 12.3% 11.4% 70% 73% 79%

DSV 11.5% 10.4% 10.9% 68% 62% 82%

DSSD 11.5% 14.1% 13.2% 69% 95% 107%

MAD 11.5% 12.7% 12.9% 69% 76% 92%

SAD 12.9% 13.9% 15.2% 82% 85% 111%

VaR0.1 10.0% 10.3% 9.7% 58% 60% 70%

Var0.05 9.6% 8.9% 11.5% 54% 49% 82%

CVaR0.1 10.6% 12.2% 11.4% 62% 73% 78%

CVar0.05 11.2% 12.5% 12.2% 65% 73% 85%

Average 11.0% 11.8% 12.0% 66% 72% 88%

Annualised Return Sharpe Ratio
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Table 8.2 

Performance of EWMA-risk optimised strategies across different recalculation periods 

 

Note. Annualised returns and Sharpe ratios for strategies calculated using each EWMA risk 

measure compared across daily, weekly and monthly recalculation periods. 

Source: Author’s calculations 

 

In conclusion, a monthly rebalancing period performed best at optimising returns and risk-

adjusted returns across the most risk-measure optimised strategies, even though weekly 

EWMA-optimised strategies performed best in terms of annualised returns. It is clear that a 

daily balancing period is generally suboptimal in maximising returns or risk-adjusted returns. 

Consequently, daily strategies were excluded from the analysis. 

 

8.2 TRAINING PERIOD 

 

The next hyperparameter examined is the length of the training period.  

 

Table 8.3 provides the annualised returns and Sharpe ratios respectively, averaged across 

the ten risk measure-optimised strategies, for raw weekly-optimised strategies, raw monthly-

optimised strategies, EWMA weekly-optimised strategies and EWMA monthly-optimised 

strategies. Each row represents a different period of training data, starting at one month and 

ending at eighteen months. The ‘Average of averages’ column is an average of the 

annualised returns and Sharpe ratios in the applicable row.  

Daily Weekly Monthly Daily Weekly Monthly

V 11.6% 11.2% 8.1% 77% 71% 59%

SD 9.4% 12.9% 11.8% 55% 77% 86%

DSV 7.9% 13.1% 8.3% 45% 81% 56%

DSSD 8.5% 12.1% 11.1% 48% 71% 76%

MAD 9.6% 16.2% 11.8% 57% 103% 87%

SAD 9.4% 15.8% 11.9% 56% 100% 89%

VaR0.1 9.6% 13.1% 11.3% 55% 79% 82%

Var0.05 9.7% 13.1% 11.6% 57% 79% 85%

CVaR0.1 9.8% 6.2% 9.3% 58% 30% 71%

CVar0.05 10.3% 8.5% 12.4% 62% 44% 84%

Average 9.6% 12.2% 10.8% 57% 74% 77%

Annualised Return Sharpe Ratio

 
 
 



 
105 

 

The training periods between three and nine months yield the best annualised returns and 

Sharpe ratios, with the exception of a seven-month training period. 

 

Table 8.3  

Average annualised returns and Sharpe ratios split by training period 

 

Note. Average annualised returns and Sharpe ratios for strategies calculated using each 

risk measure, EWMA vs raw risk measure and weekly and monthly recalculation periods 

using different lengths of training data, ranging from one month to eighteen months. Higher 

returns and higher Sharpe ratios indicate more effective strategies, coloured in green. 

Source: Author’s calculations 

 

While the study made use of 3 months of training data for all strategies presented, this period 

was not selected based on the efficacy of the training period, since doing so would have 

introduced in-sample data into the decision-making process. However, the risk-adjusted 

returns for strategies optimised using a 3-month training period are reasonable for monthly 

and weekly strategies, as compared to both longer and shorter training periods. 

 

Months training 

data Weekly Monthly Weekly Monthly Weekly Monthly Weekly Monthly
1 11.2% 9.0% 11.5% 10.8% 0.71        0.68        0.67        0.72        0.40        
2 9.3% 10.6% 6.7% 10.3% 0.58        0.80        0.41        0.67        0.35        
3 11.0% 11.2% 11.7% 10.3% 0.73        0.90        0.78        0.81        0.46        
4 14.2% 12.2% 10.3% 6.7% 1.04        0.98        0.75        0.46        0.46        
5 11.3% 12.5% 13.8% 10.6% 0.88        1.05        0.99        0.71        0.51        
6 12.2% 11.4% 9.5% 10.3% 0.82        0.97        0.57        0.76        0.44        
7 10.8% 11.6% 9.2% 7.8% 0.68        0.93        0.63        0.54        0.40        
8 12.3% 12.3% 11.8% 8.7% 0.81        1.04        0.75        0.63        0.46        
9 12.8% 13.1% 10.8% 7.8% 0.93        1.11        0.81        0.59        0.49        
10 12.5% 12.2% 8.4% 7.2% 0.96        1.01        0.57        0.52        0.43        
11 11.1% 11.5% 7.1% 6.5% 0.69        0.95        0.43        0.47        0.36        
12 10.4% 10.0% 12.8% 7.9% 0.63        0.82        0.85        0.61        0.42        
13 10.6% 10.2% 6.9% 5.7% 0.66        0.82        0.43        0.40        0.33        
14 11.4% 10.5% 8.0% 4.9% 0.81        0.84        0.56        0.33        0.36        
15 11.2% 10.8% 8.5% 5.8% 0.82        0.89        0.58        0.42        0.38        
16 10.8% 11.0% 11.3% 5.1% 0.66        0.89        0.68        0.34        0.37        
17 11.3% 11.1% 7.8% 7.1% 0.66        0.91        0.46        0.51        0.36        
18 11.4% 11.0% 9.9% 6.9% 0.72        0.88        0.64        0.52        0.39        

Average 

of 

averages

Raw

Average Annualised Return

EWMA

Average Sharpe Ratio

Raw EWMA
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8.3 INDUSTRY TIER 

 

The third hyperparameter examined in the study is the Industry tier. As discussed in Section 

3.4 (Sampling and data collection), the GICS has three tiers of categorisation, from the most 

aggregated Sector tier to the least aggregated Industry tier. While comparison between the 

strategies using the Industry Group and Industry indices as inputs is applicable, comparison 

to strategies with Sector inputs is not directly analogous, since the S&P Sector indices are 

total return indices, while the MSIC Industry Group and Industry indices are price indices. 

However, since only the Sector-level indices have investible ETFs available, the purpose of 

analysing the impact of the data tier on strategy performance is to provide reassurance that 

there is no material loss of performance associated with using the already-highly-aggregated 

indices. Examining the results laid out in table 8.5, this reassurance is indeed provided. 

 

Table 8.4 shows the average annualised return and average Sharpe ratio across all ten risk 

measure-optimised strategies, for each GICS tier. The results are split by recalculation 

period and Raw/EWMA categorisation, and indicate strongest performance from the mid-

tier Industry Group indices. This is closely followed by the performance of Sector-level 

indices, with strategies based on Industry-level indices performing poorly in comparison to 

those based on the two more aggregated sets of indices. 

 

Table 8.4 

Risk-adjusted returns for each GICS tier’s monthly raw risk-optimised strategies 

 

Note. Comparison of industry tier, split into sector, industry group and industry, showing the 

relative average performance of strategies grouped by recalculation period and raw vs 

EWMA risk measure. Higher returns and higher Sharpe ratios indicate more effective 

strategies, coloured in green. 

Source: Author’s calculations 

Raw EWMA Raw EWMA Raw EWMA Raw EWMA

Sector 11.3% 11.7% 11.7% 10.3% 0.72        0.74        0.88        0.77        

Industry Group 12.9% 17.1% 13.5% 10.7% 0.73        0.98        0.85        0.63        

Industry 11.4% 7.7% 10.3% 6.4% 0.59        0.42        0.64        0.39        

Ti
er

Average Annualised Return Average Sharpe Ratio

Weekly MonthlyWeekly Monthly
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The results lend themselves to the following conclusions: Firstly, diversifying across a less 

aggregated set of indices does not ensure that risk-return-optimised strategies perform 

better. Secondly, the use of Sector indices as inputs does not result in materially poorer 

absolute or risk-adjusted performance than Industry Group-level indices, particularly for a 

monthly recalculation period, although there is a material outlier in the form of very strong 

performance of weekly recalculated EWMA-optimised strategies.  

 

Accordingly, the use of Sector-level indices as input data into the study was corroborated 

as valid, although, were investible ETFs available for slightly less aggregated, Industry 

Group-level indices available, they would have provided a better-performing investment 

universe.  

 

8.4 EWMA PARAMETERISATION 

 

The fourth hyperparameter investigated relates to the choice of the EWMA’s rate of decay. 

This is required before attempting to address the criticism of MPT that risk and return do not 

persist into the future through estimation of the next period’s risk and return using an EWMA. 

 

Two different approaches to determining lambda were compared. The first approach, 

described in Section 3.5.4 (Calculating the EWMA), finds the value of lambda which 

minimises the absolute value of the difference between an estimate for the true risk measure 

and the EWMA, while for the second approach, lambda is a constant value of 0.97. The 

results of this comparison are displayed in table 8.5, which, for each approach, shows the 

average annualised return and average Sharpe ratio across the ten risk measure-optimised 

strategies for the weekly and monthly recalculation periods. The results are not conclusive, 

with the constant-lambda approach resulting in better performance for strategies 

recalculated monthly by a small margin, and the variable-lambda approach performing better 

for weekly strategies by a larger margin.  
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Table 8.5 

Comparison of variable λ vs constant λ for EWMA-optimised strategies 

 

Note. Comparison between EWMA-optimised strategies where the EWMA decay factor is a 

constant vs where it is re-optimised each period. Higher returns and higher Sharpe ratios 

indicate more effective strategies, coloured in green. 

Source: Author’s calculations 

 

Accordingly, the variable-lambda approach was used when calculating the EWMAs used in 

the study. 

 

  

Weekly Monthly Average Weekly Monthly Average

Constant lambda 13.1% 11.5% 12.3% 0.78 0.68 0.34

Variable lambda 17.1% 10.7% 13.9% 0.98 0.63 0.41

Average Annualised Return Average Sharpe Ratio
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9 APPENDIX D: ADDITIONAL STRATEGY RESULTS 

The results of strategies not discussed in detail are included in this appendix for reference 

purposes. 
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Table 9.1 

Sector-based strategy annualised returns and annualised risk 

 

Mean
Annualised 

Return
Fees

Max 

Drawdown
V SD DSV DSSD MAD SAD VaR0.1 VaR0.05 CVaR0.1 CVaR0.05

12.08% 11.56% 29.9% 0.0217 0.1712 0.1444 0.1922 0.2534 0.3365 0.1474 0.0293 0.0972 11.1%

V 10.13% 9.61% 0.103% 30.5% 0.0190 0.1464 0.1224 0.1895 0.2394 0.3283 0.1377 0.0214 0.0856 8.8%

SD 11.51% 10.98% 0.103% 30.7% 0.0217 0.1568 0.1336 0.2141 0.2610 0.3546 0.1474 0.0246 0.0939 9.7%

DSV 11.46% 10.88% 0.104% 33.2% 0.0225 0.1552 0.1284 0.2008 0.2541 0.3486 0.1501 0.0241 0.0914 9.3%

DSSD 11.46% 10.91% 0.101% 33.0% 0.0218 0.1568 0.1360 0.2118 0.2610 0.3518 0.1475 0.0246 0.0942 9.8%

MAD 11.49% 10.94% 0.103% 30.9% 0.0219 0.1573 0.1338 0.2161 0.2628 0.3566 0.1479 0.0247 0.0942 9.8%

SAD 12.93% 12.60% 0.102% 33.6% 0.0211 0.1529 0.1340 0.2053 0.2545 0.3417 0.1452 0.0234 0.0927 9.5%

VaR0.1 10.01% 9.31% 0.104% 35.9% 0.0220 0.1612 0.1328 0.2176 0.2647 0.3645 0.1484 0.0260 0.0927 9.8%

VaR0.05 9.62% 8.84% 0.103% 35.2% 0.0227 0.1601 0.1346 0.2147 0.2665 0.3638 0.1507 0.0256 0.0943 9.8%

CVaR0.1 10.59% 9.92% 0.103% 37.6% 0.0225 0.1610 0.1347 0.2169 0.2665 0.3651 0.1500 0.0259 0.0948 9.8%

CVaR0.05 11.15% 10.52% 0.103% 34.9% 0.0228 0.1606 0.1366 0.2138 0.2660 0.3633 0.1509 0.0258 0.0957 9.9%

V 11.63% 11.26% 0.116% 30.6% 0.0190 0.1476 0.1253 0.1903 0.2444 0.3325 0.1378 0.0218 0.0881 9.2%

SD 9.45% 8.71% 0.120% 36.2% 0.0216 0.1633 0.1395 0.2210 0.2665 0.3584 0.1471 0.0267 0.0964 10.2%

DSV 7.90% 7.10% 0.120% 31.9% 0.0207 0.1531 0.1377 0.2053 0.2582 0.3473 0.1440 0.0234 0.0934 9.7%

DSSD 8.54% 7.72% 0.120% 34.3% 0.0219 0.1621 0.1422 0.2220 0.2680 0.3606 0.1479 0.0263 0.0975 10.3%

MAD 9.63% 8.95% 0.120% 35.7% 0.0210 0.1590 0.1394 0.2125 0.2621 0.3520 0.1448 0.0253 0.0956 10.1%

SAD 9.42% 8.72% 0.121% 36.1% 0.0209 0.1600 0.1394 0.2151 0.2630 0.3529 0.1447 0.0256 0.0954 10.1%

VaR0.1 9.56% 8.82% 0.120% 36.3% 0.0218 0.1638 0.1394 0.2184 0.2664 0.3591 0.1476 0.0268 0.0966 10.2%

VaR0.05 9.73% 9.01% 0.120% 35.8% 0.0217 0.1621 0.1394 0.2196 0.2656 0.3570 0.1472 0.0263 0.0965 10.1%

CVaR0.1 9.79% 9.12% 0.117% 29.3% 0.0211 0.1576 0.1277 0.2144 0.2663 0.3689 0.1451 0.0248 0.0924 9.6%

CVaR0.05 10.27% 9.64% 0.117% 30.7% 0.0212 0.1546 0.1307 0.2136 0.2652 0.3633 0.1455 0.0239 0.0933 9.7%

V 11.19% 10.66% 0.101% 27.0% 0.0198 0.1641 0.1243 0.1913 0.2381 0.3235 0.1406 0.0269 0.0887 9.9%

SD 12.30% 11.72% 0.101% 27.4% 0.0229 0.1762 0.1404 0.2164 0.2613 0.3580 0.1512 0.0310 0.0971 10.8%

DSV 10.43% 9.73% 0.101% 26.9% 0.0215 0.1716 0.1425 0.2151 0.2570 0.3394 0.1466 0.0294 0.0934 10.5%

DSSD 14.08% 13.94% 0.100% 23.5% 0.0194 0.1586 0.1422 0.1984 0.2418 0.3159 0.1391 0.0252 0.0947 10.5%

MAD 12.73% 12.20% 0.101% 27.4% 0.0229 0.1734 0.1410 0.2119 0.2603 0.3571 0.1514 0.0301 0.0971 10.5%

SAD 13.88% 13.50% 0.100% 35.5% 0.0227 0.1758 0.1337 0.1959 0.2518 0.3446 0.1506 0.0309 0.0955 10.6%

VaR0.1 10.30% 9.57% 0.101% 27.4% 0.0219 0.1696 0.1454 0.2173 0.2563 0.3420 0.1481 0.0288 0.0948 10.2%

VaR0.05 8.93% 8.06% 0.101% 27.7% 0.0224 0.1737 0.1461 0.2124 0.2621 0.3522 0.1495 0.0302 0.0975 10.8%

CVaR0.1 12.18% 11.61% 0.101% 26.2% 0.0226 0.1722 0.1354 0.2180 0.2577 0.3523 0.1502 0.0297 0.0971 10.5%

CVaR0.05 12.46% 11.87% 0.101% 26.5% 0.0234 0.1769 0.1349 0.2238 0.2652 0.3584 0.1530 0.0313 0.0993 11.0%

V 11.24% 10.71% 0.104% 26.7% 0.0198 0.1614 0.1367 0.1771 0.2288 0.3067 0.1407 0.0260 0.0912 9.8%

SD 12.85% 12.34% 0.104% 26.8% 0.0229 0.1674 0.1443 0.2015 0.2475 0.3284 0.1513 0.0280 0.1000 10.4%

DSV 13.12% 12.70% 0.104% 26.5% 0.0219 0.1643 0.1439 0.1861 0.2401 0.3197 0.1478 0.0270 0.0966 10.1%

DSSD 12.06% 11.45% 0.104% 25.8% 0.0229 0.1708 0.1383 0.2107 0.2573 0.3428 0.1513 0.0292 0.1009 10.7%

MAD 16.22% 16.18% 0.104% 27.3% 0.0227 0.1655 0.1369 0.1969 0.2389 0.3204 0.1507 0.0274 0.1004 10.3%

SAD 15.83% 15.74% 0.104% 27.3% 0.0225 0.1658 0.1384 0.1968 0.2395 0.3215 0.1501 0.0275 0.0989 10.2%

VaR0.1 13.10% 12.63% 0.104% 26.8% 0.0228 0.1670 0.1442 0.2015 0.2473 0.3278 0.1510 0.0279 0.0997 10.4%

VaR0.05 13.08% 12.60% 0.104% 26.8% 0.0228 0.1667 0.1422 0.2015 0.2474 0.3286 0.1510 0.0278 0.0998 10.3%

CVaR0.1 6.17% 5.11% 0.104% 27.5% 0.0226 0.1799 0.1435 0.1952 0.2665 0.3670 0.1503 0.0323 0.0979 11.1%

CVaR0.05 8.47% 7.49% 0.104% 26.7% 0.0237 0.1808 0.1539 0.1953 0.2658 0.3573 0.1541 0.0327 0.1033 11.7%

V 11.58% 11.34% 0.100% 21.7% 0.0136 0.1386 0.1023 0.1370 0.1847 0.2567 0.1166 0.0192 0.0831 9.5%

SD 11.44% 10.99% 0.100% 18.7% 0.0172 0.1556 0.1023 0.1684 0.2111 0.2918 0.1311 0.0242 0.0929 11.1%

DSV 10.85% 10.50% 0.100% 19.1% 0.0145 0.1431 0.1036 0.1722 0.1998 0.2784 0.1205 0.0205 0.0851 9.7%

DSSD 13.15% 13.07% 0.099% 18.7% 0.0134 0.1409 0.0678 0.1413 0.1830 0.2655 0.1157 0.0199 0.0794 9.1%

MAD 12.90% 12.61% 0.100% 18.0% 0.0170 0.1513 0.1106 0.1538 0.2046 0.2792 0.1303 0.0229 0.0922 10.5%

SAD 15.21% 15.18% 0.099% 18.0% 0.0171 0.1513 0.1046 0.1833 0.2024 0.2764 0.1307 0.0229 0.0946 10.6%

VaR0.1 9.74% 9.27% 0.100% 19.8% 0.0150 0.1446 0.1089 0.1649 0.2025 0.2780 0.1226 0.0209 0.0879 10.0%

VaR0.05 11.54% 11.14% 0.100% 22.3% 0.0163 0.1501 0.0997 0.1565 0.1980 0.2827 0.1278 0.0225 0.0926 10.6%

CVaR0.1 11.36% 10.90% 0.100% 19.3% 0.0172 0.1469 0.0997 0.1711 0.2069 0.2924 0.1312 0.0216 0.0939 10.1%

CVaR0.05 12.18% 11.81% 0.100% 18.9% 0.0171 0.1451 0.0997 0.1424 0.2001 0.2848 0.1307 0.0210 0.0920 9.5%

V 8.14% 7.61% 0.101% 18.4% 0.0140 0.1415 0.1022 0.1686 0.2048 0.2818 0.1185 0.0200 0.0815 9.9%

SD 11.76% 11.43% 0.100% 19.4% 0.0156 0.1406 0.1032 0.1378 0.1980 0.2791 0.1248 0.0198 0.0881 9.5%

DSV 8.30% 7.70% 0.101% 22.5% 0.0157 0.1443 0.1133 0.1453 0.2177 0.3124 0.1254 0.0208 0.0864 9.5%

DSSD 11.13% 10.64% 0.100% 20.3% 0.0173 0.1460 0.1023 0.1329 0.2019 0.2938 0.1316 0.0213 0.0924 9.6%

MAD 11.82% 11.50% 0.100% 18.9% 0.0153 0.1447 0.0956 0.1442 0.1940 0.2757 0.1238 0.0209 0.0867 9.9%

SAD 11.91% 11.62% 0.100% 17.8% 0.0152 0.1461 0.0997 0.1340 0.1918 0.2735 0.1231 0.0214 0.0852 9.9%

VaR0.1 11.28% 10.90% 0.100% 19.4% 0.0157 0.1434 0.1106 0.1416 0.2009 0.2813 0.1255 0.0206 0.0891 9.8%

VaR0.05 11.60% 11.26% 0.100% 19.2% 0.0156 0.1411 0.1023 0.1391 0.1984 0.2813 0.1251 0.0199 0.0881 9.5%

CVaR0.1 9.30% 8.89% 0.100% 15.4% 0.0134 0.1371 0.0982 0.1574 0.1993 0.2681 0.1159 0.0188 0.0806 9.4%

CVaR0.05 12.35% 11.94% 0.100% 21.3% 0.0182 0.1498 0.1228 0.1743 0.2269 0.3165 0.1349 0.0224 0.0938 10.1%
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Note. Annualised returns for each strategy based on sector-level indices. V = variance, SD 

= standard deviation, DSV = downside semivariance, DSSD = downside semideviation, 

MAD = mean absolute deviation, SAD = semi-absolute deviation, VaR0.1 = 10% value at 

risk, VaR0.05 = 5% value at risk, CVaR0.1 = 10% conditional value at risk, CVaR0.05 = 5% 

conditional value at risk. 

Source: Author’s calculations 
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Table 9.2  

Industry Group-based strategy annualised returns and annualised risk 

 

Note. Annualised returns for each strategy based on industry group-level indices. V = 

variance, SD = standard deviation, DSV = downside semivariance, DSSD = downside 

semideviation, MAD = mean absolute deviation, SAD = semi-absolute deviation, VaR0.1 = 

Mean
Annualised 

Return
Fees

Max 

Drawdown
V SD DSV DSSD MAD SAD VaR0.1 VaR0.05 CVaR0.1 CVaR0.05

9.98% 9.10% 34.1% 0.0248 0.1773 0.1422 0.2370 0.2892 0.3966 0.1574 0.0314 0.1015 11.6%

V 10.14% 9.23% 0.123% 34.9% 0.0262 0.1769 0.1475 0.2078 0.2617 0.3550 0.1618 0.0313 0.0988 11.4%

SD 14.98% 14.48% 0.123% 35.1% 0.0288 0.1808 0.1514 0.2275 0.2758 0.3676 0.1697 0.0327 0.1058 11.6%

DSV 10.86% 9.98% 0.125% 34.6% 0.0267 0.1757 0.1400 0.1986 0.2661 0.3673 0.1634 0.0309 0.0975 10.8%

DSSD 14.39% 13.71% 0.122% 34.7% 0.0304 0.1867 0.1626 0.2269 0.2925 0.3873 0.1743 0.0348 0.1091 11.9%

MAD 13.25% 12.64% 0.124% 35.4% 0.0263 0.1774 0.1484 0.2180 0.2759 0.3680 0.1622 0.0315 0.1048 11.3%

SAD 12.20% 11.60% 0.121% 32.5% 0.0242 0.1812 0.1756 0.2307 0.2867 0.3724 0.1557 0.0328 0.1078 12.5%

VaR0.1 11.81% 10.95% 0.129% 36.3% 0.0279 0.1826 0.1481 0.2286 0.2884 0.3919 0.1669 0.0333 0.1083 11.6%

VaR0.05 15.02% 14.57% 0.125% 34.8% 0.0280 0.1814 0.1507 0.2328 0.2797 0.3669 0.1674 0.0329 0.1058 11.6%

CVaR0.1 15.81% 15.42% 0.123% 34.6% 0.0290 0.1797 0.1467 0.2252 0.2777 0.3661 0.1703 0.0323 0.1062 11.5%

CVaR0.05 16.56% 16.27% 0.127% 34.7% 0.0295 0.1840 0.1579 0.2185 0.2783 0.3684 0.1718 0.0339 0.1068 12.0%

V 11.14% 10.53% 0.159% 25.6% 0.0224 0.1606 0.1493 0.2248 0.2659 0.3523 0.1496 0.0258 0.0977 10.5%

SD 18.74% 18.88% 0.150% 26.4% 0.0283 0.1760 0.1436 0.2303 0.2756 0.3694 0.1683 0.0310 0.1092 11.4%

DSV 15.21% 14.93% 0.160% 25.7% 0.0256 0.1747 0.1534 0.2203 0.2763 0.3745 0.1599 0.0305 0.1066 11.7%

DSSD 18.87% 19.18% 0.160% 25.5% 0.0255 0.1670 0.1369 0.2009 0.2562 0.3464 0.1597 0.0279 0.1045 10.7%

MAD 19.69% 20.01% 0.156% 26.1% 0.0283 0.1712 0.1436 0.2145 0.2624 0.3534 0.1682 0.0293 0.1077 11.0%

SAD 19.25% 19.48% 0.160% 26.1% 0.0283 0.1754 0.1424 0.2140 0.2641 0.3552 0.1682 0.0308 0.1078 11.4%

VaR0.1 18.60% 18.69% 0.152% 26.6% 0.0286 0.1775 0.1458 0.2377 0.2764 0.3702 0.1691 0.0315 0.1099 11.7%

VaR0.05 18.61% 18.71% 0.151% 26.4% 0.0284 0.1769 0.1456 0.2303 0.2760 0.3699 0.1684 0.0313 0.1095 11.6%

CVaR0.1 15.58% 14.90% 0.182% 21.8% 0.0336 0.1789 0.1416 0.2301 0.2962 0.4142 0.1834 0.0320 0.1166 11.4%

CVaR0.05 16.20% 15.76% 0.171% 20.8% 0.0310 0.1716 0.1392 0.2081 0.2760 0.3904 0.1761 0.0294 0.1092 10.8%

V 12.23% 11.78% 0.111% 26.2% 0.0196 0.1599 0.0854 0.1178 0.1989 0.2990 0.1402 0.0256 0.0894 9.3%

SD 14.92% 14.51% 0.111% 26.9% 0.0246 0.1703 0.0908 0.1305 0.2210 0.3332 0.1570 0.0290 0.1014 10.0%

DSV 12.71% 12.41% 0.111% 23.2% 0.0183 0.1471 0.0823 0.1346 0.1976 0.2936 0.1354 0.0216 0.0898 8.8%

DSSD 13.61% 13.13% 0.112% 26.2% 0.0230 0.1647 0.0838 0.1341 0.2130 0.3341 0.1518 0.0271 0.0957 9.4%

MAD 14.23% 13.75% 0.111% 26.9% 0.0242 0.1755 0.0879 0.1290 0.2202 0.3338 0.1555 0.0308 0.0983 10.4%

SAD 14.54% 14.17% 0.108% 25.3% 0.0233 0.1680 0.0952 0.1229 0.2182 0.3328 0.1526 0.0282 0.1014 10.3%

VaR0.1 13.29% 12.63% 0.111% 30.6% 0.0243 0.1763 0.0692 0.1421 0.2187 0.3455 0.1558 0.0311 0.0966 9.5%

VaR0.05 12.72% 12.16% 0.112% 26.6% 0.0226 0.1669 0.0715 0.1556 0.2292 0.3501 0.1502 0.0279 0.0940 9.2%

CVaR0.1 15.79% 15.51% 0.111% 27.8% 0.0241 0.1754 0.0838 0.1416 0.2216 0.3470 0.1554 0.0308 0.0983 10.0%

CVaR0.05 15.57% 15.31% 0.111% 27.4% 0.0234 0.1656 0.0751 0.1412 0.2058 0.3160 0.1528 0.0274 0.1014 9.8%

V 7.38% 6.56% 0.117% 27.1% 0.0187 0.1650 0.0822 0.1375 0.2220 0.3375 0.1369 0.0272 0.0823 8.9%

SD 11.33% 10.53% 0.117% 28.2% 0.0239 0.1705 0.1218 0.1484 0.2338 0.3335 0.1545 0.0291 0.0995 9.8%

DSV 11.84% 11.10% 0.113% 27.7% 0.0236 0.1762 0.0784 0.1440 0.2401 0.3772 0.1537 0.0311 0.0957 9.7%

DSSD 13.71% 13.03% 0.115% 28.9% 0.0263 0.1827 0.0811 0.1558 0.2342 0.3654 0.1622 0.0334 0.1035 10.5%

MAD 11.68% 11.04% 0.113% 26.7% 0.0218 0.1665 0.0824 0.1279 0.2170 0.3417 0.1476 0.0277 0.0929 9.3%

SAD 12.91% 12.29% 0.113% 27.9% 0.0236 0.1717 0.0744 0.1329 0.2194 0.3479 0.1537 0.0295 0.0963 9.6%

VaR0.1 10.94% 10.16% 0.117% 27.7% 0.0231 0.1657 0.1175 0.1449 0.2306 0.3308 0.1520 0.0275 0.0973 9.4%

VaR0.05 10.96% 10.17% 0.117% 27.4% 0.0233 0.1658 0.1236 0.1498 0.2324 0.3311 0.1525 0.0275 0.0980 9.5%

CVaR0.1 13.21% 11.94% 0.120% 27.2% 0.0364 0.2136 0.1747 0.2384 0.3086 0.4188 0.1908 0.0456 0.1395 15.0%

CVaR0.05 11.60% 10.29% 0.123% 27.2% 0.0343 0.2007 0.1747 0.2354 0.2945 0.3904 0.1852 0.0403 0.1339 13.9%
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10% value at risk, VaR0.05 = 5% value at risk, CVaR0.1 = 10% conditional value at risk, 

CVaR0.05 = 5% conditional value at risk. 

Source: Author’s calculations 
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Table 9.3 

Industry-based strategy annualised returns and annualised risk 

 

Note. Annualised returns for each strategy based on industry-level indices. V = variance, 

SD = standard deviation, DSV = downside semivariance, DSSD = downside semideviation, 

MAD = mean absolute deviation, SAD = semi-absolute deviation, VaR0.1 = 10% value at 

Mean
Annualised 

Return
Fees

Max 

Drawdown
V SD DSV DSSD MAD SAD VaR0.1 VaR0.05 CVaR0.1 CVaR0.05

9.98% 9.10% 34.1% 0.0248 0.1773 0.1422 0.2370 0.2892 0.3966 0.1574 0.0314 0.1015 11.6%

V 11.19% 10.66% 0.101% 27.0% 0.0198 0.1641 0.1243 0.1913 0.2381 0.3235 0.1406 0.0269 0.0887 9.9%

SD 12.30% 11.72% 0.101% 27.4% 0.0229 0.1762 0.1404 0.2164 0.2613 0.3580 0.1512 0.0310 0.0971 10.8%

DSV 10.43% 9.73% 0.101% 26.9% 0.0215 0.1716 0.1425 0.2151 0.2570 0.3394 0.1466 0.0294 0.0934 10.5%

DSSD 14.08% 13.94% 0.100% 23.5% 0.0194 0.1586 0.1422 0.1984 0.2418 0.3159 0.1391 0.0252 0.0947 10.5%

MAD 12.73% 12.20% 0.101% 27.4% 0.0229 0.1734 0.1410 0.2119 0.2603 0.3571 0.1514 0.0301 0.0971 10.5%

SAD 13.88% 13.50% 0.100% 35.5% 0.0227 0.1758 0.1337 0.1959 0.2518 0.3446 0.1506 0.0309 0.0955 10.6%

VaR0.1 10.30% 9.57% 0.101% 27.4% 0.0219 0.1696 0.1454 0.2173 0.2563 0.3420 0.1481 0.0288 0.0948 10.2%

VaR0.05 8.93% 8.06% 0.101% 27.7% 0.0224 0.1737 0.1461 0.2124 0.2621 0.3522 0.1495 0.0302 0.0975 10.8%

CVaR0.1 12.18% 11.61% 0.101% 26.2% 0.0226 0.1722 0.1354 0.2180 0.2577 0.3523 0.1502 0.0297 0.0971 10.5%

CVaR0.05 12.46% 11.87% 0.101% 26.5% 0.0234 0.1769 0.1349 0.2238 0.2652 0.3584 0.1530 0.0313 0.0993 11.0%

V 11.24% 10.71% 0.104% 26.7% 0.0198 0.1614 0.1367 0.1771 0.2288 0.3067 0.1407 0.0260 0.0912 9.8%

SD 12.85% 12.34% 0.104% 26.8% 0.0229 0.1674 0.1443 0.2015 0.2475 0.3284 0.1513 0.0280 0.1000 10.4%

DSV 13.12% 12.70% 0.104% 26.5% 0.0219 0.1643 0.1439 0.1861 0.2401 0.3197 0.1478 0.0270 0.0966 10.1%

DSSD 12.06% 11.45% 0.104% 25.8% 0.0229 0.1708 0.1383 0.2107 0.2573 0.3428 0.1513 0.0292 0.1009 10.7%

MAD 16.22% 16.18% 0.104% 27.3% 0.0227 0.1655 0.1369 0.1969 0.2389 0.3204 0.1507 0.0274 0.1004 10.3%

SAD 15.83% 15.74% 0.104% 27.3% 0.0225 0.1658 0.1384 0.1968 0.2395 0.3215 0.1501 0.0275 0.0989 10.2%

VaR0.1 13.10% 12.63% 0.104% 26.8% 0.0228 0.1670 0.1442 0.2015 0.2473 0.3278 0.1510 0.0279 0.0997 10.4%

VaR0.05 13.08% 12.60% 0.104% 26.8% 0.0228 0.1667 0.1422 0.2015 0.2474 0.3286 0.1510 0.0278 0.0998 10.3%

CVaR0.1 6.17% 5.11% 0.104% 27.5% 0.0226 0.1799 0.1435 0.1952 0.2665 0.3670 0.1503 0.0323 0.0979 11.1%

CVaR0.05 8.47% 7.49% 0.104% 26.7% 0.0237 0.1808 0.1539 0.1953 0.2658 0.3573 0.1541 0.0327 0.1033 11.7%

V 11.58% 11.34% 0.100% 21.7% 0.0136 0.1386 0.1023 0.1370 0.1847 0.2567 0.1166 0.0192 0.0831 9.5%

SD 11.44% 10.99% 0.100% 18.7% 0.0172 0.1556 0.1023 0.1684 0.2111 0.2918 0.1311 0.0242 0.0929 11.1%

DSV 10.85% 10.50% 0.100% 19.1% 0.0145 0.1431 0.1036 0.1722 0.1998 0.2784 0.1205 0.0205 0.0851 9.7%

DSSD 13.15% 13.07% 0.099% 18.7% 0.0134 0.1409 0.0678 0.1413 0.1830 0.2655 0.1157 0.0199 0.0794 9.1%

MAD 12.90% 12.61% 0.100% 18.0% 0.0170 0.1513 0.1106 0.1538 0.2046 0.2792 0.1303 0.0229 0.0922 10.5%

SAD 15.21% 15.18% 0.099% 18.0% 0.0171 0.1513 0.1046 0.1833 0.2024 0.2764 0.1307 0.0229 0.0946 10.6%

VaR0.1 9.74% 9.27% 0.100% 19.8% 0.0150 0.1446 0.1089 0.1649 0.2025 0.2780 0.1226 0.0209 0.0879 10.0%

VaR0.05 11.54% 11.14% 0.100% 22.3% 0.0163 0.1501 0.0997 0.1565 0.1980 0.2827 0.1278 0.0225 0.0926 10.6%

CVaR0.1 11.36% 10.90% 0.100% 19.3% 0.0172 0.1469 0.0997 0.1711 0.2069 0.2924 0.1312 0.0216 0.0939 10.1%

CVaR0.05 12.18% 11.81% 0.100% 18.9% 0.0171 0.1451 0.0997 0.1424 0.2001 0.2848 0.1307 0.0210 0.0920 9.5%

V 8.14% 7.61% 0.101% 18.4% 0.0140 0.1415 0.1022 0.1686 0.2048 0.2818 0.1185 0.0200 0.0815 9.9%

SD 11.76% 11.43% 0.100% 19.4% 0.0156 0.1406 0.1032 0.1378 0.1980 0.2791 0.1248 0.0198 0.0881 9.5%

DSV 8.30% 7.70% 0.101% 22.5% 0.0157 0.1443 0.1133 0.1453 0.2177 0.3124 0.1254 0.0208 0.0864 9.5%

DSSD 11.13% 10.64% 0.100% 20.3% 0.0173 0.1460 0.1023 0.1329 0.2019 0.2938 0.1316 0.0213 0.0924 9.6%

MAD 11.82% 11.50% 0.100% 18.9% 0.0153 0.1447 0.0956 0.1442 0.1940 0.2757 0.1238 0.0209 0.0867 9.9%

SAD 11.91% 11.62% 0.100% 17.8% 0.0152 0.1461 0.0997 0.1340 0.1918 0.2735 0.1231 0.0214 0.0852 9.9%

VaR0.1 11.28% 10.90% 0.100% 19.4% 0.0157 0.1434 0.1106 0.1416 0.2009 0.2813 0.1255 0.0206 0.0891 9.8%

VaR0.05 11.60% 11.26% 0.100% 19.2% 0.0156 0.1411 0.1023 0.1391 0.1984 0.2813 0.1251 0.0199 0.0881 9.5%

CVaR0.1 9.30% 8.89% 0.100% 15.4% 0.0134 0.1371 0.0982 0.1574 0.1993 0.2681 0.1159 0.0188 0.0806 9.4%

CVaR0.05 12.35% 11.94% 0.100% 21.3% 0.0182 0.1498 0.1228 0.1743 0.2269 0.3165 0.1349 0.0224 0.0938 10.1%
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risk, VaR0.05 = 5% value at risk, CVaR0.1 = 10% conditional value at risk, CVaR0.05 = 5% 

conditional value at risk. 

Source: Author’s calculations 
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Figure 9.1 

Weekly raw risk measure-optimised strategy returns 

 

Note. Graph of the cumulative return of each weekly raw risk measure-optimised strategy. 

V = variance, SD = standard deviation, DSV = downside semivariance, DSSD = downside 

semideviation, MAD = mean absolute deviation, SAD = semi-absolute deviation, VaR0.1 = 

10% value at risk, VaR0.05 = 5% value at risk, CVaR0.1 = 10% conditional value at risk, 

CVaR0.05 = 5% conditional value at risk. 

Source: Author’s calculations 
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Figure 9.2 

Weekly EWMA-optimised strategy returns 

 

Note. Graph of the cumulative return of each weekly EWMA-optimised strategy. V = 

variance, SD = standard deviation, DSV = downside semivariance, DSSD = downside 

semideviation, MAD = mean absolute deviation, SAD = semi-absolute deviation, VaR0.1 = 

10% value at risk, VaR0.05 = 5% value at risk, CVaR0.1 = 10% conditional value at risk, 

CVaR0.05 = 5% conditional value at risk. 

Source: Author’s calculations 
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Figure 9.3 

Monthly raw risk measure-optimised strategy returns 

 

Note. Graph of the cumulative return of each monthly raw risk measure-optimised strategy. 

V = variance, SD = standard deviation, DSV = downside semivariance, DSSD = downside 

semideviation, MAD = mean absolute deviation, SAD = semi-absolute deviation, VaR0.1 = 

10% value at risk, VaR0.05 = 5% value at risk, CVaR0.1 = 10% conditional value at risk, 

CVaR0.05 = 5% conditional value at risk. 

Source: Author’s calculations 
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Figure 9.4  

Monthly EWMA-optimised strategy returns 

 

Note. Graph of the cumulative return of each monthly EWMA-optimised strategy. V = 

variance, SD = standard deviation, DSV = downside semivariance, DSSD = downside 

semideviation, MAD = mean absolute deviation, SAD = semi-absolute deviation, VaR0.1 = 

10% value at risk, VaR0.05 = 5% value at risk, CVaR0.1 = 10% conditional value at risk, 

CVaR0.05 = 5% conditional value at risk. 

Source: Author’s calculations 

 

 
 
 


