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Chemical reactions occur everywhere in both natural and artificial systems. Some of the

reactions occur during the flow of a fluid (such a process is referred to as a reactive flow).

Given the hazardous nature of some reactive flows, computer simulations (rather than
physical experiments) are necessary for ascertaining or enhancing our understanding of

such systems. The process of simulation involves mathematical and numerical modelling
of the reactive flows. Mathematical models for reactive flow problems are complicated

partial differential equations that often lack exact solutions, thus, numerical solutions

are employed. Numerical methods must preserve almost all the relevant properties of
the problem for accuracy reasons. Dispersion relations are important properties of wave

propagation problems and numerical methods that satisfy them are called dispersion

preserving methods. Furthermore, stiff transport models are wave propagation problems
that cannot be solved efficiently with explicit methods. However fully implicit methods

are computationally expensive. A combination of implicit and explicit methods called

implicit-explicit methods are usually employed to efficiently resolve stiffness. An example
of problems of interest in this regard are the advection-diffusion-reaction (ADR) mod-

els. In this discussion, spectral analysis is performed on two implicit-explicit methods
to ascertain their dispersion preserving abilities in order to determine their suitabil-
ity for simulating general stiff reactive flow problems. The analysis shows that both

implicit-explicit methods are dispersion preserving, however, one particular method is
more suitable for general wave propagation problems.

Keywords: Reactive flow, Spectral analysis, Dispersion relations, Wave propagation prob-
lems, Implicit-explicit methods

1. Introduction

Dispersion is a phenomenon where waves of different frequencies travel at different

speeds. The concept of dispersion plays a crucial role in a wide range of scientific

and engineering applications that involve wave propagation. It has been investi-

gated extensively in electromagnetic wave propagation problem (see for example
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[ Álvarez-Pérez et al. (2019)] and [Li et al. (2018)]), acoustics (see for example

[Palermo et al. (2019)] and [Song et al. (2021)]) and in the area of optics (see for

example [Hassanien et al. (2020)] and [Hassanien and Sharma (2020)]). In most of

the extant literature, dispersion is used to characterise real physical wave prop-

agation problems through physical experiments and measurements. However, the

present work employs dispersion to characterise numerical solution procedures that

are developed for the simulation of reactive flow. Real physical experiments are not

always possible for reactive flows due to the cost and hazardous nature of some reac-

tive flow. Under such circumstances, computer simulations are employed to enhance

understanding of the systems. The simulations involve mathematical modelling and

numerical simulations.

Mathematical models for reactive flow phenomena are parabolic/hyperbolic par-

tial differential equations that describe advection, diffusion and reaction (ADR)

processes. The models describe the propagation of waves and are characteristically

non-linear [Djouad and Sportisse (2003)], composed of large systems of equations

(i.e. have high degrees of freedom, see [Amikiya and Banda (2018)] for further infor-

mation), usually characterised by stiffness due to disparate reaction rates. Among

the models, advection-diffusion-reaction models are common and cover a wide area

of applications (see for example [Sun et al. (2023); Tripathi and Bhupendra (2020);

Wang et al. (2019); Luo et al. (2019); Zhang and Decheng (2019)]) in the broad disci-

plines of engineering, biology and thermodynamics. Such models will be considered

in this discussion.

Further, due to complications in the model, it is not always possible to obtain

exact concentration profiles for the chemical species [Benito and Hristo (2013);

Suman et al. (2017); Amikiya and Banda (2018)]. An alternative to finding ex-

act solutions is developing numerical methods. Solutions obtained with numerical

methods are approximations to the exact solution, thus, accuracy depends on the

ability of the method to closely mimic the chemistry and physics described by

the governing equation [Suman et al. (2017)]. Thus the numerical methods must

preserve the natural properties of the natural phenomenon which they are approxi-

mating. The efficiency of such schemes is also paramount. It is necessary to develop

highly accurate numerical methods as alternatives to the exact solution. This re-

quires rigorous error analysis of the numerical method for a particular problem.

However, the non-availability of exact solutions make numerical analysis difficult

and sometimes impossible without simplifying assumptions. Models are often lin-

earised first, and then followed by analyses to obtain analytical relations (e.g. exact

solutions, dissipation and dispersion expressions), which are relevant for analysing

numerical methods [Suman et al. (2017)]. There are many techniques for analysing

numerical methods, the common techniques include Taylor expansions (used to ob-

tain consistency of the method), von Neumann stability analysis [Trefethen (1982);

Strikwerda (2004)], Gustafsson, Kreiss, Sundstrom (GKS) stability theory [Gustafs-

son et al. (1972)] and time-stability analysis [Carpenter et al. (1993); Zhong (1998)].
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Analysis performed in a full spectral domain yields stability, dispersion and dissi-

pation information about the governing equations [Sengupta (2013)]. However, the

traditional techniques of numerical analysis have limitations when applied in full

domain spectral analysis [Suman et al. (2017)]. In addition, the approximative na-

ture of the numerical approaches, spurious properties such as artificial oscillations

may be observed in the numerical solutions.

Traditionally, errors are quantified by measuring numerical solutions relative

to the exact solution, however, dispersion/dissipation relations are more appropri-

ate for quantifying errors in propagation problems. Numerical schemes that satisfy

dispersion relations for a particular propagation problem are said to be Dispersion-

Relation-Preserving (DRP) schemes. Dispersion relations obtained for a propaga-

tion problem vary across various analyses. Due to the limitations of the Von Neu-

mann (and other listed techniques), Global Spectral Analysis has gained popularity

in research involving propagation problems [Sengupta et al. (2017); Sengupta (2013);

Sengupta et al. (2009); Sengupta et al. (2009)].

The authors in [Sengupta et al. (2003)] have analysed numerical schemes for the

linear advection equation by adapting the Spectral Analysis approach presented in

[Vichnevetsky and Bowles (1982)]. By performing spectral analysis on the linear

advection equation, the authors in [Sengupta et al. (2007)] have shown that numer-

ical methods have different error and signal dynamics. Finite Difference Schemes for

linear diffusion equation have been analysed in [Sengupta and Bhole (2014)]. One no-

table observation in the linear advection and diffusion cases is that, numerical phase

speed and numerical coefficient of diffusion are not constant. Positivity-preserving

Galerkin method for advection-diffusion-reaction have also been analysed in [Joshi

and Jaiman (2017)] using the spectral approach. In [Sengupta et al. (2012)] spec-

tral analysis of Galerkin finite element method for the advection equation have been

discussed. One observation with the finite element methods is good error dispersion

behaviour.

Furthermore, compact finite difference and finite volume methods for Euler equa-

tions have been discussed in [Sengupta et al. (2005)]. The compact finite differ-

ence methods proved superior in the resolution of Riemann problems. Finite differ-

ence methods for Navier-Stokes equations have been analysed by traditional tech-

niques in [Sousa (2001); Kwok (1992); Chan (1984); Wesseling (1996)]. In [Suman

et al. (2017)], the authors extended the spectral approach to compact finite differ-

ence methods for linear advection-diffusion equation in order to ascertain accurate

schemes for the Navier-Stokes equations.

In this discussion, we consider models with a reactive term. We first derive dis-

persion relations for reactive flow models by performing spectral analysis of the

linear ADR equation. Next, we present and analyse two implicit-explicit numer-

ical methods for reactive transport problems in order to ascertain their suitabil-

ity for general chemical transport models that are characteristically stiff. Due to

high degrees of freedom, stiffness and positivity constraints associated with chem-
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ical transport problems, not all numerical methods are suitable [Blom and Verwer

(2000); Verwer et al. (2004); David et al. (2004); Anna et al. (2003)]. Fully im-

plicit methods are suitable for resolving stiffness [Djouad and Sportisse (2003);

McRae and Seinfeld (2000); Zhang et al. (1998)] however, such methods are expen-

sive to implement. An efficient numerical approach to resolving stiff problems is the

implicit-explicit approach, where implicit methods are applied to the stiff part and

explicit methods are employed for the non-stiff part [Christopher and Mark (2001);

Verwer et al. (2004)]. Further, in addition to low cost in computational time,

implicit-explicit methods possess properties of both explicit and fully implicit meth-

ods, thus, have broader application area. Suitable implicit-explicit methods must be

Dispersion-Relation-Preserving. Thus, dispersion relations (derived by performing

spectral analysis on the linear model) are used to analyse the implicit-explicit meth-

ods (with WENO and central differencing discretisation of the space derivatives).

Although a scalar linear model is considered in the analysis, we will show later that

results are not limited but apply to systems, multi-space dimensions, semi- and fully

nonlinear transport problems.

The aim of this work is to analyse and characterise efficient and suitable com-

putational methods for simulating reactive flows. The numerical procedures and

analysis presented here are novel, thus, the work contributes to the literature on

numerical simulation of wave propagation problems. The discussion here achieves

the goal in six sections. In Section 2, the unknown concentration variable and linear

transport equation are transformed to spectral variables and equations, respectively.

Followed by a discussion on the exact dispersion relations. In Section 3, the numer-

ical methods are presented, followed by a discussion on the numerical dispersion

relations for the implicit-explicit methods. In Section 4, suitability (i.e. consistency

and stability) analyses with regards to the normalised dispersion relation are pre-

sented. In Section 5, numerical experiments are conducted to confirm the analysis

and verify the numerical methods. Finally, the discussion is concluded in Section 6.

2. Dispersion relations of 1D advection-diffusion-reaction equation

Chemical transport phenomena involves physical processes (such as advection and

diffusion) and chemical reactions. Consider a prototype model such as a linear 1D

advection-diffusion-reaction equation given by:

∂U

∂t
+ u

∂U

∂x
= Γ

∂2U

∂2x
+KrU, (1)

where U denotes concentration of a chemical species, x is a space variable, t is a time

variable, u denotes constant transport velocity, Kr is chemical reactivity and Γ de-

notes constant diffusivity. Three special cases of the linear equation (1) occur when

the reactivity, Kr, takes the values zero, positive or negative. Thus Equation (1)

models pure diffusion (non-reactive), diffusion-destruction and diffusion-production

when the reactivity Kr takes the values zero, negative or positive, respectively.
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The exact dispersion relations for the linear transport equation are firstly deter-

mined by applying global spectral analysis. Thus, by transforming the concentration

function U(x, t), from the x− t plane to the hybrid spectral plane [Sengupta (2013);

Sengupta et al. (2003); Johnson (1997)], we obtain:

U(x, t) =

∫
U(κ, t)eiκxdκ, (2)

where U(κ, t) is the Fourier amplitude and κ is the wave number. Using the spectral

transform (2), the linear chemical transport model (1) can be represented in the

spectral plane as:

∂U
∂t

+ iuκU = −Γκ2U +KrU , (3)

Given a general initial condition U(x, 0) =

∫
U0(κ)eiκxdκ, the exact solution of

(3) can be obtained as follows:

U(κ, t) = U0(κ)e−(iκu+κ2Γ−Kr)t. (4)

Moreover, the concentration of the chemical species can also be represented in

the bi-dimensional Fourier-Laplace transform:

U(x, t) =

∫∫
U(κ, ω)ei(κx−ωt)dκ dω, (5)

where ω denotes circular frequencies. Applying the Fourier-Laplace transform (5)

directly in the linear convection-diffusion-reaction equation (1), yields the physico-

chemical dispersion relation:

ω = uκ− i(κ2Γ−Kr). (6)

Wave propagation problems are characterised by dispersion relations, that yield

information about the phase and group velocities of propagating signals [Johnson

(1997)]. Any numerical algorithm for solving a wave propagation problem can only

be suitable/accurate if it satisfies the dispersion relation for the problem under

consideration [Sengupta (2013); Sengupta et al. (2007)]. In [Sengupta et al. (2017)],

multiple time level schemes have been analysed based on correct dispersion relations

for convection problems and in [Suman et al. (2017)], the idea has been adapted

for convection-diffusion problems. In this discussion, the same idea will be used to

analyse the linear chemical transport problem.

Denote the time step size by ∆t, spatial step size by ∆x, Peclet number by

Pe = Γ∆t
∆x2 , Courant-Friedrich-Lewis (CFL) number by Cf = u∆t

∆x , λr = Kr∆t, and

the physico-chemical amplification factor by Gex. The amplification factor of the

exact solution is defined as follows:

Gex =
U(κ, t+ ∆t)

U(κ, t)
(7)

Using the analytical solution (4) in definition (7) yields the following physical-

chemical amplification factor:
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Gex = e−(iκu+κ2Γ−Kr)∆t. (8)

Using Peclet and CFL number relations, the amplification factor (8) can be

re-expressed as follows:

Gex = e−iω∆t

= e−Pe(κ∆x)2+λre−iCf (κ∆x). (9)

Further, if numerical approximations are applied to the advection and diffusion

derivatives after substituting (2) into the advection-diffusion reaction equation, a

semi-discrete equation is obtained as follows:

∂U
∂t

+ iuκadvU = −Γκ2
difU +KrU , (10)

where κadv and κ2
dif are functions of κ resulting from the numerical approximations

of the advection and diffusion derivatives, respectively. The functions κadv and κ2
dif

represent numerical wave numbers for advection and diffusion, respectively.

The analytical solution of the semi-discrete equation (10) with initial data

U(x, 0) =

∫
U0(κ)eiκx dκ is given by:

Uapx(κ, t) = U0(κ)e−(iuκadv+Γκ2
dif−Kr)t. (11)

Using the numerical solution (11) in definition (7) yields the following numerical

amplification factor:

Gapx = e−(Pe(κdif∆x)2−λr)e−iCf (κadv∆x). (12)

Another expression relating numerical diffusion wave number κdif, with the mag-

nitude of the amplification factor can be obtained from (12) as follows:(κdif

κ

)2

=
λr − ln |Gapx|
Pe(κ∆x)2

. (13)

According to the numerical amplification factor (13), the shift in phase for each

time step is given by:

φ = κadvu∆t, (14)

and is related to the amplification factor by the expression:

tan(φ) = −
( Im(Gapx)

Re(Gapx)

)
, (15)

where Im(Gapx) and Re(Gapx) denote the imaginary and real parts of the amplifi-

cation factor Gapx, respectively.

A normalized numerical advection wave number κadv related to the amplification

factor is obtained from (14) and (15) as follows:

κadv

κ
= − 1

Cf (k∆x)
arctan

( Im(Gapx)

Re(Gapx)

)
. (16)
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The normalized quantities (13) and (16) for a particular numerical method when

evaluated will be one if the method has the same numerical diffusion and advection

wave numbers as the exact solution. Highly accurate numerical methods for the

time-dependent advection-diffusion-reaction problem must have ratios close to one.

In the next section the numerical discretisation for the differential equations

using the method of lines are introduced. The spectral operators are introduced

and discussed.

3. Implicit-Explicit methods

The method of lines is introduced. For time discretisation the Implicit-Explicit

Methods are introduced. Further for the spatial discretisation, the Weighted Essen-

tially Non-Oscillatory (WENO) scheme will be employed.

3.1. Temporal discretisation

Method of lines procedure enable the conversion of a partial differential equation

(PDE) into an ordinary differential equation (ODE) [Blom and Verwer (2000)]. In

general, an autonomous time-dependent ODE states that, find U such that:

∂U
∂t

= F (U), (17)

subject to some initial conditions.

A combination of implicit and explicit discretisation procedures popularly called

IMEX discretisation yields efficient schemes for many problems including reactive

transport problems [Shu (1997)]. In this procedure the slope function F (U) is ex-

pressed as a sum of several other functions and then explicit procedures are applied

to non-stiff functions and implicit procedures are applied to stiff functions. The

ODE for the simplest case where the slope function is the sum of two functions,

states that:

∂U
∂t

= G(U) +H(U), (18)

where H(U) denotes the non-stiff part and G(U) denotes the stiff part. The non-stiff

term in the 1D linear reactive problem under consideration is the advection term

and the diffusion-reaction terms are considered stiff.

Thus one IMEX scheme (named IMEX-FBE1) for solving ODE (18) states that:

Un+1 = Un + ∆t
(
G(Un+1) +H(Un)

)
(19)

Applying the above approach to (3) yields the following functions:

H(U) = −iuκadvU , G(U) = (−κ2
difΓ +Kr)U . (20)

The IMEX-FBE1 method for the 1D linear problem can be re-written as:

(1− P )Un+1 = (1− iCfκadv∆x)Un, (21)
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where P = −Pe(κdif∆x)2 + λr.

Thus, the amplification factor for IMEX-FBE1 is given by:

GFBE1 =
1

1− P
− iCfκadv∆x

1− P
. (22)

Another IMEX scheme (named IMEX-FBE2) for solving the ODE (18) states

that:

U∗ = Un + ∆t
(
G(U∗) +H(Un)

)
Un+1 = Un + ∆t

(
G(U∗) +H(U∗)

)
(23)

Using fluxes (20) in expressions (23) yields the IMEX-FBE2 method:

(1− P )U∗ = (1− iCfκadv∆x)Un

Un+1 = Un + (P − iCfκadv∆x)U∗ (24)

Thus, the amplification factor for IMEX-FBE2 is given by:

GFBE2 =
1− (Cfκdif∆x)2

1− P
− iCfκadv∆x(1 + P )

1− P
. (25)

3.2. Spatial discretisation

Oscillations from inaccurate discretisation of the advection term could result in

negative concentration values which have no physical meaning. Weighted essentially

non-oscillatory (WENO) discretisations are very efficient for resolving such oscil-

lations [Shu (1997)]. The third order finite difference WENO is considered here.

Denote the linear advective flux in (1) by f(U) = uU, then a conservative finite

difference approximation at the ith spatial node xi, is given by [Shu (1997)]:

∂

∂x
f |xi
≈ 1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
, (26)

where f̂i+ 1
2

denotes a numerical flux evaluated at interface xi+ 1
2
. The third order

WENO reconstruction of the numerical flux is given by [Shu (1997); Tian and

Yong-Tao (1982)]:

f̂i+ 1
2

= w0

(1

2
f(Ui) +

1

2
f(Ui+1)

)
+ w1

(
− 1

2
f(Ui−1) +

3

2
f(Ui)

)
, (27)

where

wr =
αr

α1 + α2
, αr =

dr
(ε+ βr)2

, r = 0, 1,

the linear weights are d0 = 2
3 , d1 = 1

3 , the smoothness indicators are β0 =[
f(Ui+1) − f(Ui)

]2
, β1 =

[
f(Ui) − f(Ui−1)

]2
and ε = 10−3 is a parameter taken

to ensure a non-zero denominator.
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Applying the numerical flux (27) in approximation (26) yields:

∂

∂x
f |xi
≈ w1

2∆x
fi−2 −

(4w1 + w0)

2∆x
fi−1 +

3w1

2∆x
fi +

w0

2∆x
fi+1. (28)

WENO discretisations assume optimal order when the nonlinear weights become

linear, thus, the following analysis assumes that the WENO approximation (28) is

optimal (i.e. w0 = 2
3 and w1 = 1

3 ). Using the linear flux in (28), transforming into

spectral variables (using (2)) and manipulating algebraically yields:

κadv∆x =
−w1 sin(2κ∆x) + (4w1 + 2w0) sin(κ∆x)

2

− iw1 cos(2κ∆x)− 4w1 cos(κ∆x) + 3w1

2
(29)

The derivative corresponding to diffusion is discretised using the second order

central differencing approximation as follows:

Γ
∂2U

∂x2
|xi ≈

Γ

(∆x)2

(
Ui+1 − 2Ui + Ui−1

)
. (30)

Transforming (30) into spectral variables (by applying (2)) and manipulating

algebraically yields:

(κdif∆x)2 = 2− 2 cos(κ∆x). (31)

Therefore, the physico-chemical amplifications for IMEX-FBE1 and IMEX-

FBE2 are defined by (22) and (25), respectively, using expressions (29) and (31).

Normalised dispersion relations (i.e. Equation (13), Equation (16) and the ampli-

fication ratios) for both schemes are derived by applying the numerical schemes’

amplification factors (22) and (25), in Equation (16).

In the next section the numerical dispersion relations are discussed. Considera-

tion is first made for the preservation of the amplification relation. Thereafter, the

preservation of the diffusion relation is discussed followed by the preservation of the

advection relation and a comparative discussion is undertaken.

4. Dispersion analysis of the IMEX schemes

In this section, dispersion analysis is performed on the IMEX schemes presented

in Section 3. Consistency and stability information of each scheme are obtained

under three dispersion conditions (i.e. amplification factor, wave number diffusion

and wave number advection) and under three reactive flow categories. Consistency

and stability details of IMEX-FBE1 and IMEX-FBE2 are computed for different

Peclet numbers, CFL numbers, reaction conditions, and wave numbers. Contours of

normalised amplification factors, diffusion and advection wave numbers of the IMEX

methods are presented in Figures 1-6. A numerical method is consistent with regards

to a dispersion relation if the range of values for a particular normalised relation,
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evaluated for a numerical method contains a one (1). Further, the numerical method

is unstable if the range of values for a particular normalised relation evaluated for

any numerical method involves negative numbers. In the case of instability, the

region of instability is the area between the minimum value and zero.

4.1. Preservation of amplification relation

In the diffusion-production flow regime, normalised amplification factor for IMEX-

FBE1 method increases in the closed interval [0.01, 3.88] when Pe = 0.05 (see Figure

1a) and [0.03, 6.41] when Pe = 0.25 (see Figure 2a) across CFL and wave numbers.

The normalised amplification factor for IMEX-FBE2 increases in the closed interval

[0, 135.03] when Pe = 0.05 (see Figure 1b) and [0, 324.03] when Pe = 0.25 (see Figure

2b) across CFL and wave numbers. The observations here imply that both methods

are consistent and stable with regards to normalised amplification factor, however,

IMEX-FBE1 has better damping capabilities.

In the diffusion-destruction model, the normalised amplification factor for

IMEX-FBE1 method increases in the closed interval [0.01, 4.17] when Pe = 0.05

(see Figure 1c) and [0.04, 8.83] when Pe = 0.25 (see Figure 1d) across CFL and

wave numbers. The normalised amplification factor for IMEX-FBE2 increases in

the closed interval [0, 161.16] when Pe = 0.05 (see Figure 2c) and [0, 446.21] when

Pe = 0.25 (see Figure 2d) across CFL and wave numbers. The observations here

imply that both methods are consistent and stable.

In the non-reactive model, the normalised amplification factor for IMEX-FBE1

method increases in the closed interval [0.01, 3.96] when Pe = 0.05 (see Figure

1e) and [0.03, 7.52] when Pe = 0.25 (see Figure 2e) across CFL and wave numbers.

The normalised amplification factor for IMEX-FBE2 increases in the closed interval

[0, 146.6] when Pe = 0.05 (see Figure 1f) and [0, 379.94] when Pe = 0.25 (see Figure

2f) across CFL and wave numbers. These observations imply that both methods

are consistent and stable.

4.2. Preservation of diffusion relation

In the diffusion-production model, normalised numerical diffusion relation for

IMEX-FBE1 method increases in the closed interval [−4.6297E11, 6.26] when

Pe = 0.05 (see Figure 3a) and [−9.2594E10, 1.53] when Pe = 0.25 (see Figure 4a)

across CFL and wave numbers. The normalised diffusion relation for IMEX-FBE2

increases in the closed interval [−4.6293E11, 3.04] when Pe = 0.05 (see Figure 3b)

and [−9.2587E10, 3.04] when Pe = 0.25 (see Figure 4b) across CFL and wave num-

bers. The observation here imply that both methods are consistent and conditionally

stable with regards to normalised diffusion relation. However, IMEX-FBE2 is more

stable than IMEX-FBE1 due to its relatively smaller region of instability.

In the diffusion-destruction model, normalised numerical diffusion wave number

for IMEX-FBE1 method increases in the closed interval [−3.5367E11, 6.04] when

Pe = 0.05 (see Figure 3c) and [−7.0734E10, 1.45] when Pe = 0.25 (see Figure 4c)
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across CFL and wave numbers. The normalised diffusion relation for IMEX-FBE2

increases in the closed interval [−3.5371E11, 3.04] when Pe = 0.05 (see Figure 3d)

and [−7.0742E10, 2.96] when Pe = 0.25 (see Figure 4d) across CFL and wave num-

bers. The observations imply that both methods are consistent and conditionally

stable with regards to normalised diffusion relation. In contrast with the diffusion-

production case, IMEX-FBE1 is more stable due to its relatively smaller region of

instability.

In the non-reactive model, normalised diffusion relation for the IMEX-FBE1

method increases in the closed interval [−9.8696E7, 6.16] when Pe = 0.05 (see Figure

3e) and [−1.9739E7, 1.49] when Pe = 0.25 (see Figure 4e) across CFL and wave

numbers. The normalised diffusion relation for IMEX-FBE2 increases in the closed

interval [−9.8695E7, 13.74] when Pe = 0.05 (see Figure 3f) and [−1.9739E7, 2.96]

when Pe = 0.25 (see Figure 4f) across CFL and wave numbers. The observations

imply that both methods are consistent and conditionally stable with regards to

normalised diffusion relation. IMEX-FBE2 is more stable than IMEX-FBE1 due to

its relatively smaller region of instability.

4.3. Preservation of advection relation

In all flow regimes, normalised advection relation for the IMEX-FBE1 method in-

creases in the closed interval [−1, 0.7] when Pe = 0.05 and [−1, 0.7] when Pe = 0.25

across CFL and wave numbers. The normalized advection relation for IMEX-FBE2

increases in the closed interval [−2.62, 2.61] when Pe = 0.05 and [−2.62, 2.61] when

Pe = 0.25 across CFL and wave numbers. These observations are shown in Figures

5 and 6. The observations here imply that both methods are consistent and condi-

tionally stable. Further, IMEX-FBE1 has a smaller region of instability thus, it is

more stable than IMEX-FBE2.

4.4. Discussion of results

The results presented in the subsections above imply that, in the simulation of

a diffusion-production reactive flow system where chemical reactions result in the

increase in concentration of a species, both IMEX schemes are able to preserve

the amplification relation. However, IMEX-FBE1 preserves the advection relation

better due to its narrower region of instability. IMEX-FBE2 preserves the diffusion

relation better than IMEX-FBE1, due to its narrower region of instability.

Further, the results also imply that in the simulation of a diffusion-destruction

reactive flow system, both IMEX methods preserve the amplification relation. How-

ever, IMEX-FBE1 preserve advection and diffusion due to its narrower region of

instability.

Finally, the results imply that in the simulation of a non-reactive flow sys-

tem, both IMEX schemes are able to preserve the amplification relation. However,

IMEX-FBE1 preserves the advection relation better due to its narrower region of
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instability. IMEX-FBE2 preserves the diffusion relation better than IMEX-FBE1,

due to its narrower region of instability.

In general, IMEX-FBE1 is more suitable for all the flow regimes due to its

consistency and narrower region of stability. In the simulation of systems that are

dominated by diffusion, IMEX-FBE2 can be deployed due to its ability to preserve

the diffusion relation.

In the next section, further analysis is undertaken in which the IMEX schemes

are applied to different models (equations) possess the dispersion property.

5. Numerical experiments

In this section the findings in the previous section are further applied to three exam-

ples: a 1D system, a 1D nonlinear problem, a 2D problem as well as an environmental

chemical reaction example.

5.1. Experiments in spectral plane

The exact solution for the ODE (3) can be expressed in terms of the Peclet and

wave numbers as follows:

U(κ, tn) = U0(κ)e−n(iCfκ∆x+Pe(κ∆x)2−λr), (32)

where the nth time gridpoint is given by tn = n∆t. The solutions of the recurrence

relations (19) and (23) can be written as:

Un = U0(κ)Gnapx, (33)

where Gapx is given by GFBE1 in (22) for IMEX-FBE1 or GFBE2 in (25) for IMEX-

FBE2.

Figures 7, 8 and 9 show comparisons of the analytical solution and numerical

solutions obtained with the IMEX methods. In particular, Figures 7 and 8 show

that under different Peclet, CFL and wave number values, IMEX-FBE1 has better

damping properties than IMEX-FBE2. Figure 9 shows the superiority of IMEX-

FBE1 over IMEX-FBE2 in all cases.

5.2. Accuracy tests with 1D system

The first 1D problem (with exact solution) considered for testing the accuracy of

the IMEX schemes is a system (of two advection-diffusion transport equations with

stiffness in the reaction part) that seeks to find U(x, t) and V (x, t) such that:

∂U

∂t
+
∂uU

∂x
= Γ

∂2U

∂x2
−KuU + V, 0 < x < 2π, (34)

∂V

∂t
+
∂uV

∂x
= Γ

∂2V

∂x2
−KvV, 0 < x < 2π. (35)
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Using periodic boundary conditions, the exact solution for the system (34)-(35)

is:

U(x, t) =
(
e−(Ku+Γ)t + e−(Kv+Γ)t

)
cos(x− ut), (36)

V (x, t) = (Ku −Kv)e
−(Kv+Γ)t cos(x− ut). (37)

The input data are as follows:

Γ = 0.01, u = 0.01, Kv = 1, Ku = 100, (38)

and the initial data are as follows:

U(x, 0) = 2 cos(x), (39)

V (x, 0) = (Ku −Kv) cos(x). (40)

Figure 10, shows the solution and error profiles for IMEX-FBE1 and IMEX-

FBE2 applied to the stiff system. It is clear that both numerical schemes are accu-

rate and convergent for the stiff system. Table 1 shows that both schemes have the

same order of convergence. Two finite difference schemes (that are order one and

have been discussed in [Suman et al. (2017)]) have also been applied to solve this

system. The first finite difference scheme is derived by applying forward-differencing

to the time derivatives and central differencing to all spatial derivatives (this scheme

is named Euler-CD2-CD2) and the second finite difference scheme is obtained by

applying forward differencing to the time derivatives, forward differencing to ad-

vection terms and central differencing to diffusion terms (this scheme is named

Euler-UP1-CD2). Figure 11, shows that the IMEX schemes are superior in accu-

racy to both finite difference schemes. The results in this test problem shows that

the findings in the dispersion analyses are not limited to single transport equations.

5.3. Accuracy tests with 1D nonlinear problem

Secondly, a 1D reactive transport equation where all the processes (i.e. advection,

diffusion and reaction) are nonlinear, is considered for testing the accuracy of the

IMEX schemes. This fully nonlinear problem seeks to find U(x, t) such that [Tian

and Yong-Tao (1982)]:

∂U

∂t
+
∂U

∂x
=

∂

∂x
U
∂U

∂x
− 1− 0.25 cos(2(x− t)) + U, 0 < x < 2π. (41)

With the initial condition U(x, 0) = 1+0.5 sin(x) and periodic boundary conditions,

the analytical solution is:

U(x, t) = 1 + 0.5 sin(x− t). (42)

Some computed solutions for this 1D fully nonlinear problem are displayed in

Figure 12. The results show that the IMEX schemes (especially IMEX-FBE1) are
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Table 1: Errors and orders (L∞) of the numerical schemes applied to solve system

(34)-(35), errors were computed using analytical solution (37). The solutions and

errors were computed for diffusion dominated, advection dominated and semi-linear

transport cases using ∆t = 0.5∆x.

Convergence test

Transport Spatial steps (Nx)
IMEX-FBE1 IMEX-FBE2

Error Order Error Order

10 4.9012 - 4.9012 -

20 2.8100 0.8026 2.8100 0.8026

Diffusion 40 1.4371 0.9674 1.4371 0.9674

80 0.7190 0.9991 0.7190 0.9991

160 0.3660 0.9742 0.3660 0.9742

10 4.8363 - 4.8757 -

20 2.7788 0.7994 2.7886 0.8060

Advection 40 1.4103 0.9785 1.4129 0.9807

80 0.7119 0.9862 0.7119 0.9889

160 0.3568 0.9965 0.3568 0.9965

10 4.9040 - 4.9436 -

20 2.8065 0.8052 2.8166 0.8116

Advection-diffusion 40 1.4375 0.9652 1.4355 0.9724

80 0.7192 0.9991 0.7192 0.9971

160 0.3681 0.9663 0.3669 0.9710

accurate and have better stiffness resolution capabilities than the finite difference

schemes. Results for this test problem indicate that the findings in the dispersion

analyses are not limited to linear transport problems.

5.4. Accuracy tests with 2D problems

Furthermore, to show that the findings in the dispersion analyses are not limited

to 1D problems, two 2D reactive transport problems are considered here for testing

the accuracy of the schemes. The first problem is the 2D version of system (34)-(35)

given by [Tian and Yong-Tao (1982)]:

∂U

∂t
+
u

2

(∂U
∂x

+
∂U

∂y

)
=

Γ

2

(∂2U

∂x2
+
∂2U

∂y2

)
−KuU + V, 0 < x, y < 2π, (43)

∂V

∂t
+
u

2

(∂V
∂x

+
∂V

∂y

)
=

Γ

2

(∂2V

∂x2
+
∂2V

∂y2

)
−KvV, 0 < x, y < 2π. (44)

With periodic boundary conditions, the exact solution is:



October 8, 2023 18:43 WSPC/ARTICLE FOR REVIEW
Manuscript˙Revised

15

U(x, y, t) =
(
e−(Ku+Γ)t + e−(Kv+Γ)t

)
cos(x+ y − ut), (45)

V (x, y, t) = (Ku −Kv)e
−(Kv+Γ)t cos(x+ y − ut). (46)

The second 2D problem is fully nonlinear and its given by [Tian and Yong-Tao

(1982)]:

∂U

∂t
+ 0.5

∂U2

∂x
+ 0.5

∂U2

∂y
=

∂

∂x
U
∂U

∂x
+

∂

∂y
U
∂U

∂y
− U2

+ 1.125− 0.625 cos(2(x+ y − t)) + 0.25 sin(2(x+ y − t))
+ 0.5 cos(x+ y − t) + 2 sin(x+ y − t), 0 < x, y < 2π. (47)

With periodic boundaries, the analytical solution is:

U(x, y, t) = 1 + 0.5 sin(x+ y − t). (48)

The results are displayed in Figure 13. Both IMEX schemes are efficient in

resolving stiffness in the problem involving a system, while IMEX-FBE1 is better in

the fully nonlinear case. The results here indicate that the findings in the dispersion

analysis are not limited to 1D problems.

5.5. Application: environmental chemical engineering system

Acidic effluents from mineral mines have adverse ecological and health impact on

receiving environments. One method for attenuating the acidity in effluents is lime-

stone neutralisation. The acid-calcite reaction occur as follows [Werner and Leeet al.

(1961); Ayora et al. (2013); Plummer et al. (1978); Reddy et al. (1981)]:

CaCO3 +H+ 
 Ca2+ +HCO−3 , (49)

CaCO3 +H2CO3 
 Ca2+ + 2HCO−3 , (50)

CaCO3 +H2O 
 Ca2+ +HCO+
3 +OH−. (51)

Experimental data shows that reactions (50) and (51) contribute insignificantly

compared with reaction (49), thus, the system reduces to reaction (49) which con-

tains the chemical species [Amikiya and Banda (2018)]:

C =
(
CaCO3, H

+, Ca2+, HCO−3

)
,

whose corresponding concentrations (i.e. current and initial) and source/sink vectors

are denoted by [Amikiya and Banda (2018)]:

U =
(
U1, U2, U3, U4

)
, U0 =

(
U10, U20, U30, U40

)
and

S =
(

0, −KfU2 +KbU3U4, KfU2 −KbU3U4, KfU2 −KbU3U4

)
,
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respectively, where Kf and Kb denote reaction constants.

Hydrogen ions (k = 2) are responsible for acidity of the effluent water, therefore,

neutralisation of the hydrogen ions implies attenuation of the pollutant. Relevant

system of semi-linear transport equations to solve for hydrogen ions is given by:

∂U

∂t
+
∂uU

∂x
= Γ

∂2U

∂x2
+ S. (52)

System (52) has four (i.e. high) degrees of freedom thus, is computationally ex-

pensive to solve since only hydrogen concentration (i.e. one degree of freedom) is

required. A reduced semi-linear equation for hydrogen ions only (using the stoichio-

metric method in [Amikiya and Banda (2018)]) is given by:

∂U2

∂t
+
∂uU2

∂x
= Γ

∂2U2

∂x2
+ αH1U

2
2 + αH2U2 + αH3, (53)

where αH1 = Kb, αH2 = −Kf + Kb

(
2U20 + U40 + U30

)
and αH3 = Kb

(
U10 +

U40

)(
U20 + U30

)
.

Input data used in the numerical experiments are:

Lx = 2π, T = 1, u = 0.01,Γ = 0.01,Kf = 0.13, Kb = 0.0025,Kh = 1,

U20 = 0.01 cos(x), U30 = 0.0001 cos(x), U40 = 0.0001 cos(x).

Figure 14 shows the solutions of IMEX-FBE1 and IMEX-FBE2 (applied to

solve both large and reduced models) in all the transport cases (i.e. advection,

diffusion and advection-diffusion cases). It can be observed that the solution of both

schemes are decreasing with time thus, reproducing the chemistry of neutralisation.

Moreover, Figure 15, shows decreasing error profile for IMEX-FBE1 and increasing

error profile for IMEX-FBE2, thus IMEX-FBE1 is more compatible with the model

reduction procedure. Furthermore, CPU time given by Figure 16 shows that IMEX-

FBE1 is less expensive to implement.

6. Conclusion

Suitable and efficient computational methods for reactive flows are those methods

that preserve the dispersion relations as well as have low computational time. This

work has presented and analysed two computational methods that are suitable and

efficient for simulating reactive flow problems.

Firstly, normalised dispersion relations (amplification factor, diffusion and ad-

vection relations) for the linear advection-diffusion-reaction (a prototype of chemical

transport models) were derived using global spectral analysis in Section 2. Followed

by a discussion on the development of two implicit-explicit numerical methods (i.e.

IMEX-FBE1 and IMEX-FBE2) for simulating reactive flow problems (see Section

3).
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Secondly, the normalised dispersion relations (amplification factor, diffusion and

advection relations) were deployed to analyse the two implicit-explicit numerical

methods (i.e. IMEX-FBE1 and IMEX-FBE2), see Section 4. Analysis shows that

both methods preserve amplification relation, however, IMEX-FBE2 preserves the

diffusion relation better while IMEX-FBE1 preserves the advection relation better

than IMEX-FBE2. In general, IMEX-FBE1 has better consistency than IMEX-

FBE2 in all the three flow regimes considered.

Thirdly, numerical experiments were conducted to validate the analysis in Sec-

tion 5. The results from the numerical experiments show that the IMEX schemes

presented here are more accurate than some finite differencing schemes of the same

order. The results also show that the IMEX schemes can resolve stiffness in fully

nonlinear reactive flow problems. Further, the results show that the IMEX schemes

can resolve multi-dimensional stiff reactive flow systems and are compatible with

model reduction schemes. The results confirm that both schemes are efficient and

suitable for chemical reactive flow problems but IMEX-FBE1 has better solution

properties (i.e. more accurate and has low CPU time), as predicted by the dispersion

analysis.

In conclusion, the schemes presented here are dispersion-preserving and are ca-

pable of efficiently simulating reactive flow problems. However, it is worth noting

here that, IMEX-FBE1 is more efficient and thus, recommended for simulating

general reactive flow problems.
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(a) IMEX-FBE1/diffusion-production model(b) IMEX-FBE2/diffusion-production model

(c) IMEX-FBE1/diffusion-destruction model(d) IMEX-FBE2/diffusion-destruction model

(e) IMEX-FBE1/non-reactive case model (f) IMEX-FBE2/non-reactive model

Figure 1: Contours of normalised amplification factors for IMEX-FBE1 and IMEX-

FBE2 methods, obtained using Pe = 0.05. The bottom, middle and top rows display

non-reactive, diffusion-destruction and diffusion-production cases of the 1D linear

advection-diffusion-reaction equation, respectively.
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(a) IMEX-FBE1/diffusion-production model(b) IMEX-FBE2/diffusion-production model

(c) IMEX-FBE1/diffusion-destruction model(d) IMEX-FBE2/diffusion-destruction model

(e) IMEX-FBE1/non-reactive model (f) IMEX-FBE2/non-reactive model

Figure 2: Contours of normalised amplification factors for IMEX-FBE1 and IMEX-

FBE2 methods, obtained using Pe = 0.25. The bottom, middle and top rows dis-

play non-reactive, diffusion-destruction and diffusion-production of the 1D linear

advection-diffusion-reaction equation, respectively.
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(a) IMEX-FBE1/diffusion-production model(b) IMEX-FBE2/diffusion-production model

(c) IMEX-FBE1/diffusion-destruction model(d) IMEX-FBE2/diffusion-destruction model

(e) IMEX-FBE1/non-reactive case model (f) IMEX-FBE2/non-reactive model

Figure 3: Contours of normalised diffusion relation for IMEX-FBE1 and IMEX-

FBE2 methods, obtained using Pe = 0.05. The bottom, middle and top rows display

non-reactive, diffusion-destruction and diffusion production cases of the 1D linear

advection-diffusion-reaction equation, respectively.
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(a) IMEX-FBE1/diffusion-production model(b) IMEX-FBE2/diffusion-production model

(c) IMEX-FBE1/diffusion-destruction model(d) IMEX-FBE2/diffusion-destruction model

(e) IMEX-FBE1/non-reactive model (f) IMEX-FBE2/non-reactive model

Figure 4: Contours of normalised diffusion relation for IMEX-FBE1 and IMEX-

FBE2 methods, obtained using Pe = 0.25. The bottom, middle and top rows dis-

play non-reactive, diffusion-destruction and diffusion production of the 1D linear

advection-diffusion-reaction equation, respectively.
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(a) IMEX-FBE1/diffusion-production model(b) IMEX-FBE2/diffusion-production model

(c) IMEX-FBE1/diffusion-destruction model(d) IMEX-FBE2/diffusion-destruction model

(e) IMEX-FBE1/non-reactive case model (f) IMEX-FBE2/non-reactive model

Figure 5: Contours of normalised advection wave numbers for IMEX-FBE1 and

IMEX-FBE2 methods, obtained using Pe = 0.05. The bottom, middle and top rows

display non-reactive, diffusion-destruction and diffusion production cases of the 1D

linear advection-diffusion-reaction equation, respectively.
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(a) IMEX-FBE1/diffusion-production model(b) IMEX-FBE2/diffusion-production model

(c) IMEX-FBE1/diffusion-destruction model(d) IMEX-FBE2/diffusion-destruction model

(e) IMEX-FBE1/non-reactive model (f) IMEX-FBE2/non-reactive model

Figure 6: Contours of normalised advection relation for IMEX-FBE1 and IMEX-

FBE2 methods, obtained using Pe = 0.25. The bottom, middle and top rows dis-

play non-reactive, diffusion-destruction and diffusion-production of the 1D linear

advection-diffusion-reaction equation, respectively.
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(a) IMEX-FBE1/diffusion-production model(b) IMEX-FBE2/diffusion-production model

(c) IMEX-FBE1/diffusion-destruction model(d) IMEX-FBE2/diffusion-destruction model

(e) IMEX-FBE1/non-reactive case model (f) IMEX-FBE2/non-reactive model

Figure 7: IMEX-FBE1 and IMEX-FBE2 solutions of the 1D linear convection-

diffusion-reaction problem computed with CFL = π
2 and Pe = 0.05. The bottom,

middle and top rows display non-reactive, diffusion-destruction and diffusion pro-

duction, respectively.
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(a) IMEX-FBE1/diffusion-production model(b) IMEX-FBE2/diffusion-production model

(c) IMEX-FBE1/diffusion-destruction model(d) IMEX-FBE2/diffusion-destruction model

(e) IMEX-FBE1/non-reactive case model (f) IMEX-FBE2/non-reactive model

Figure 8: IMEX-FBE1 and IMEX-FBE2 solutions of the 1D linear convection-

diffusion-reaction problem computed with κ∆x = π
2 and Pe = 0.05. The bottom,

middle and top rows display non-reactive, diffusion-destruction and diffusion pro-

duction, respectively.
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(a) IMEX-FBE1/diffusion-production model(b) IMEX-FBE2/diffusion-production model

(c) IMEX-FBE1/diffusion-destruction model(d) IMEX-FBE2/diffusion-destruction model

(e) IMEX-FBE1/non-reactive model (f) IMEX-FBE2/non-reactive model

Figure 9: IMEX-FBE1 and IMEX-FBE2 solutions of the 1D linear convection-

diffusion-reaction problem computed with CFL = π
2 , κ∆x = π

2 and Pe = 0.25.

The bottom, middle and top rows display non-reactive, diffusion-destruction and

diffusion production, respectively.
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(a) Solutions/Diffusion transport (b) L∞ error/diffusion transport

(c) Solutions/advective transport (d) L∞ error/advective transport

(e) Solution/advection-diffusion transport (f) L∞ error/advection-diffusion transport

Figure 10: Errors (L∞) and numerical solutions of the 1D stiff system (34)-(35),

errors were computed using analytical solution (37). The solutions and errors were

computed for diffusion dominated, advection dominated and semi-linear transport

cases using ∆t = 0.5∆x.
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(a) Time/finite difference schemes (b) Time/IMEX schemes

(c) Space/finite difference schemes (d) Space/IMEX schemes

(e) Time/all schemes (f) Space/all schemes

Figure 11: Numerical and analytical solutions for the stiff system of semi-linear

transport problem (34)-(35), computed with time step size ∆t = 0.5∆x. The IMEX

schemes are compared (in space and time) with finite difference schemes of the same

order.
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(a) Time/finite difference schemes (b) Time/IMEX schemes

(c) Space/finite difference schemes (d) Space/IMEX schemes

(e) Time/all schemes (f) Space/all schemes

Figure 12: Numerical and analytical solutions for the 1D stiff nonlinear transport

problem (41)-(42), computed with time step size ∆t = 0.3∆x. The IMEX schemes

are compared (in space and time) with finite difference schemes of the same order.
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(a) Exact solution/nonlinear
2D problem

(b) Exact solution/stiff 2D
linear system

(c) IMEX-FBE1 /nonlinear 2D
problem (d) IMEX-FBE1 /stiff 2D

linear system

(e) IMEX-FBE2/nonlinear 2D
problem

(f) IMEX-FBE2/stiff 2D lin-
ear system

Figure 13: Numerical and analytical solutions for the 2D system (43)-(44) and

nonlinear transport problem (47), computed with time step size ∆t = 0.2∆x. The

right column represent solutions for the stiff system while the left column represent

solutions for the nonlinear problem.
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(a) IMEX-FBE1/diffusion transport (b) IMEX-FBE2/diffusion transport

(c) IMEX-FBE1/advective transport (d) IMEX-FBE2/advective transport

(e) IMEX-FBE1/advection-diffusion (f) IMEX-FBE2/advection-diffusion

Figure 14: IMEX-FBE1 and IMEX-FBE2 solutions of the acid drainage system
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(a) L∞ errors/diffusion transport (b) L2 errors/diffusion transport

(c) L∞ errors/advective transport (d) L2 error/advective transport

(e) L∞ errors/advection-diffusion transport
(f) L2 errors/advection-diffusion transport

Figure 15: IMEX-FBE1 and IMEX-FBE2 solutions of the acid drainage system

using 80 spatial steps.
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(a) CPU/large model/diffusion (b) CPU/reduced model/diffusion

(c) CPU/large model/advection (d) CPU/reduced model/advection

(e) CPU/large model/advection-diffusion (f) CPU/reduced model/advection-diffusion

Figure 16: CPU time for IMEX-FBE1 and IMEX-FBE2 computed with 80 spatial

steps in the acid drainage system


