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Abstract

On the basis of the WHO legitimated fear that there will be an avian influenza virus strain capable
of mutating once it reaches the human population and sustains human-to-human transmissions, we
formulate an "hypothetical" mathematical model which accounts for the mutation of an avian influenza
virus having the ability to spill over into the human population and become a highly pathogenic
strain. We compute the basic reproduction number of the model and use it to study the existence and
stability of equilibrium points. We derive conditions for the global asymptotic stability of any of the
three equilibrium. The model is extended to incorporate six relevant time-dependent controls, and use
the Pontryagin’s maximum principle to derive the necessary conditions for optimal disease control.
Finally, the optimal control problem is solved numerically to show the effect of each control parameter
and their combination. The incremental cost-effectiveness ratios are calculated to investigate the cost-
effectiveness of all possible combinations of the control strategies. This study suggests that quarantine
infected humans might be the most cost-effective strategy to control avian influenza transmissions with
the virus mutation.
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1. Introduction1

The avian influenza virus (AIV) does not usually infect humans. Avian influenza is caused by several2

viruses sub-types which can undergo high mutation rate to become harmful to humans. Of the most3

pathogene, avian influenza viruses H5N1, H7N4, H7N7, H7N9, H9N2 pose a significant potential threat4

to humans. Infected poultry and their secretions, feces and water contaminated with the virus are the5

main sources of transmission of avian influenza. In the month of February 2013, 3 persons were infected6

for the first time, and as of May 31, 132 cases have been discovered, including 37 deaths, and the mortality7

rate is as high as 30% [1, 2, 3, 4]. At present, human infection with avian influenza A (H7N9) is still8

sporadic. Sporadic infections almost affect poultry mainly in farms, live poultry markets, wet markets9

and other areas [5, 6, 7, 8, 9]. In humans, the avian influenza virus causes similar symptoms to those10

of other types of influenza. These include fever, cough, sore throat, muscle aches, conjunctivitis and, in11

extreme cases, acute respiratory problems and potentially fatal pneumonia [3, 10]. The incubation time12

for humans who are infected with the H7N9 influenza virus is about seven days and currently there are13

drugs to fight this virus [3]. While these antiviral drugs are known to be clinically effective against avian14

influenza H7N9, there is still a very high death rate from avian influenza H7N9.15

It should be noted that poultry are the natural storage hosts of avian influenza virus. Exposed16

and infected poultry can shed the virus into the environment through their secretions and feces. The17
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virus can survive for several weeks to months in feces or contaminated environment under appropriate18

conditions. Environmental transmission therefore predominates over direct transmission in the spread19

of influenza virus [11, 12]. The most readily infectious source for humans is virus-carrying poultry, and20

the primary routes of transmission are poultry-to-human and environment-to-human [3]. Although the21

H7N9 virus is not thought to have a high capacity to spread efficiently from humans to humans, there22

is a strong fear that, once the virus infects humans from poultry, it will mutate to a highly pathogenic23

strain for humans and spreads among them. In this regards, the WHO circular [3] stipulates and I quote24

"The circulation of certain subtypes of avian viruses, such as A(H5) and A(H7N9) in poultry are a public25

health concern because these viruses generally cause severe disease in humans and have the capacity to26

mutate and thus transmit more easily from person to person". This is a sufficient motivation for us to27

propose a mathematical model which accounts for these features and highlight some recommendations28

for the future interventions in order to strengthen national and global preparedness and response. Of29

course, we are not the first researchers to consider this and there are very few existing models taking into30

the avian influenza vitus mutation to a strain might be highly pathogenic within humans [26, 28, 27].31

A number of mathematical modelling studies have been carried out to quantify the potential burden32

of an influenza pandemic (see, for example, [13, 14, 15, 16]). Although influenza A outbreaks in poultry33

are generally stopped by a systematic slaughtering of poultry, this practice is economically suicidal, and34

one should rather focus on affordable preventive measures. This calls for urgent control strategies, at35

the lowest cost, for the greatest poultry production. With these specific objectives, several mathematical36

models have been proposed by many researchers. Nunõ and co-workers [17] investigated a model37

to explore the role of hospital and community control measures, antiviral medicines, and vaccination38

in controlling an influenza pandemic in a population. In [18, 19, 20] the authors modeled the spread39

of H7N9 avian influenza with a semilinear and half-saturation incidence rate. In [21] the impacts40

of both pharmaceutical and non-pharmaceutical control strategies are considered, while the human41

psychological effect in response to H5N1 avian influenza outbreaks is examined in [22]. In [13], the42

authors proposed an epidemic model with control, in which they consider the incubation periods of43

avian influenza A (H7N9) virus with different time delay in the infective avian and human populations.44

In the same way, a deterministic compartmental eco-epidemiological model with optimal control of45

Newcastle disease (ND) in Tanzania is proposed and analysed by Hugo and co-workers [23]. Recently,46

Lee and his collaborators [24] modeled the transmission dynamics and control strategies assessment of47

H5N6 avian influenza in the Philippines. Jung and co-authors [25] extended the work in [26] by seeking48

the optimal control strategy for the prevention of the avian influenza pandemic. Similarly, Agusto [27]49

extended the work of Gumel [28] by monitoring the isolation rate of humans infected with avian and50

mutant strains.51

The current study takes over the work first mathematical model in [26], which considered the virus52

mutation and the spread of the mutated strain in the human population and extends it to account for the53

environmental transmissions (from environment to poultry; from environment to humans), mimicking54

our previous formulation in [11]. In so doing, we extend the above-mentioned models in the following55

three directions:56

(1) We consider a mutation of an avian influenza virus and its spill over to in a highly pathogenic57

strain in the human population and assume (according to WHO circular [3] and fear) that only the58

mutated strain spreads the disease from human-to-human.59

(2) In order to reduce the number of infected poultry, the number of infected humans, the concentration60

of avian influenza viruses in the environment, we consider the following six control strategies:61

The vaccination of poultry; the environmental sanitation; the treatment of infected humans; the62

quarantine of infected persons; the education campaigns aiming at advising people to avoid63

contacts with infected poultry and environments.64

(3) We design and solve an optimal problem to identify which of the six control strategies or combi-65
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nation minimizes the number of infected humans.66

The model obtained is thoroughly analyzed, both theoretically and computationally.67

The following is the layout of the remainder of the paper. After formulating the two-strain avian68

influenza model and showing its basic properties in Section 2, we present the global analysis of the69

avian–only model in Section 3. Section 4 focuses on the global analysis of the full model whereas70

Section 5 provides an analysis of the optimal control model. The theoretical findings are highlighted71

by numerical simulations in Section 6, and Section 7 deals with the control strategies cost-effectiveness.72

The last Section is about the conclusion and possible extensions.73

2. Two-strain avian influenza model formulation and its basic properties74

2.1. Two-strain avian influenza model formulation75

There are many dynamic models to describe the spread of infectious diseases. However, an impor-76

tant feature of avian influenza is that not only can it spread between avian and human populations,77

but, there is also a high mutation rate of the pathogen. That is, humans can be infected by viruses78

from infected poultry and poultry environment (avian strain) and also by modification of the genetic79

information in the genome of a human cell (mutant strain). Thus, modelling the dynamic system of the80

avian and humans population respectively, and combining the two models are appropriate for avian in-81

fluenza. Furthermore, to place our model derivation in a specific context, we provide the main modeling82

assumptions.83

• Infected poultry remains in the disease state and cannot recover.84

• Death due to disease in poultry population is negligible as compared to the natural mortality. This85

is due to the fact that avian influenza in poultry is low pathogenic.86

• Infected humans with the mutant strain can recover and this recovered humans must achieve87

permanent immunity.88

• Since avian influenza is highly pathogenic in humans, the natural death rate in the human popu-89

lation is negligible compared to that due to the disease.90

• Since the disease is extremely virulent among humans, those infected with the avian strain cannot91

recover naturally.92

Suppose that the total variable at time t of the poultry population Np(t) and the human population93

Nh(t) is divided into two and three sub-populations, respectively, according to disease status. Susceptible94

poultry and infected poultry are denoted by Sp(t) and Ip(t), respectively. Sh(t) and Rh(t) denote susceptible95

humans and recovered humans, respectively. The subpopulations Ih1(t) and Ih2(t) stand for infected96

humans with the avian strain and mutant strain, respectively. The concentration of the viruses in the97

environment is denoted by C. It is assumed that all new immigrants and newborns in the poultry and98

human populations are susceptible.99

The above description leads to a model which is symbolically schematized in Figure 1, and from100

which the following system of highly nonlinear differential equation is derived.101
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Figure 1: Flowchart of avian influenza transmission of system (2.1).



dSp

dt
= Λp − βvSpIp − βe

SpC
C + κ

− δpSp,

dIp

dt
= βvSpIp + βe

SpC
C + κ

− (δp + µp)Ip,

dC
dt

= φIp − ξC,

dSh

dt
= Λh − τpShIp − τeShC − βhShIh2 − δhSh,

dIh1

dt
= τpShIp + τeShC − (µh1 + δh + ε)Ih1,

dIh2

dt
= βhShIh2 + εIh1 − (µh2 + δh + γ)Ih2,

dRh

dt
= γIh2 − δhRh,

(2.1)
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Every parameter of model (2.1) given in Table 1 is assumed nonnegative and described as follows: Λh

Table 1: Biological significance of the model parameters (2.1)–(2.2).
Symbols Definition Units

Λp Numbers of imported poultry ind/week
βv Rate at which poultry-to-poultry avian influenza is contracted ( ind.week)−1

µh1 Death rate in humans due to the avian strain. week−1

βe Rate at which environment-to-poultry avian influenza is contracted ( ind.week)−1

δp Natural death rate of poultry week−1

µp Disease-related death rate week−1

Λh Recruitment rate for humans ind/week
βh Rate at which human-to-human avian influenza is contracted ( ind.week)−1

τp Rate at which poultry-to-human avian influenza is contracted week−1

ε Mutation rate of virus no unit
δh Natural death rate of humans week−1

κ Half-saturation constant for aerosols g.m3

ξ Natural mortality rate of virus week−1

τe Rate at which environment-to-human avian influenza is contracted ind /(g.m3.week)
φ Emission rate of poultry g.m3/(ind.week)
µh2 Human mortality rate induced by the mutant strain week−1

γ Recovery rate of humans infected with the mutant strain week−1

102

and Λp represents the recruitment rate of humans and the numbers of imported poultry, respectively. βv103

is the direct contact rate in poultry host such that βvIp measures the infection force of the infective poultry.104

In the latter saturated incidence function, βe denotes the indirect contact rate in poultry host, such that105

(βe � βv); 1/(κ + C) represents the saturation due to the cleaning of the farm when the concentration106

of excretion becomes large, and κ is the concentration of avian viruses attached to aerosol particles in107

the farm with 50% chance of catching the infection. The population of infected poultry is increased by108

the infection of susceptible poultry at rate
(
βvIp + βeC/(κ + C)

)
Sp and is diminished by natural death at109

constant rate δp and disease death at rate µp. The infected poultry infects the farm at constant rate φ110

and the natural death rate of virus is ξ. The susceptible humans decrease due to the spill over of the111

disease from poultry population and the disease mutation in human population. Then, τp is the rate at112

which poultry-to-human avian strain is contracted, τe is the rate at which environment-to-human avian113

strain is contracted and βh is the rate at which human-to-human individual mutant strain is contracted.114

According to Iwami et al [26], it is assumed that humans infected with the avian strain do not infect other115

humans, so the infected humans with avian strain decrease due to the mutation at rate ε, disease-related116

death at rate µh1 and natural death at rate δh. The infected humans with mutant strain diminish due to117

the recovery of the infected humans with mutant strain at rate γ, disease-related death at rate µh2 and118

natural death at rate δh.119

The initial condition for system (2.1) takes the form120

Sp(0) > 0, Ip(0) ≥ 0, C(0) ≥ 0, Sh(0) > 0, Ih1(0) ≥ 0, Ih2(0) ≥ 0, Rh(0) ≥ 0. (2.2)

By the fundamental theory of ordinary differential equations [29], we can establish that system (2.1) has121

a unique solution (Sp(t), Ip(t),C(t),Sh(t), Ih1(t), Ih2(t),Rh(t)) satisfying the initial condition (2.2).122

2.2. The positivity and boundedness of solutions123

This section shows that the solutions of system (2.1) are positive and bounded under the initial124

condition (2.2).125
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Theorem 2.1. All solutions of system (2.1) with initial condition (2.2) are defined on (0,∞) and remain positive126

for all t > 0.127

Proof. See Appendix B.1.128

Theorem 2.2. All solutions of system (2.1) with initial condition (2.2) are bounded.129

Proof. See Appendix B.2.130

From the above discussion, we can conclude that the following set131

Ω =

{
(Sp, Ip,C,Sh, Ih1, Ih2,Rh) ∈ R7

+/Sp + Ip ≤
Λp

δp
; Sh + Ih1 + Ih2 + Rh ≤

Λh

δh
; C ≤

φΛp

δpξ

}
is positively invariant for system (2.1).132

3. Global analysis of the avian–only model133

We first look at the poultry system below, as it decouples from the human system.134 

dSp

dt
= Λp − βvSpIp − βe

SpC
C + κ

− δpSp,

dIp

dt
= βvSpIp + βe

SpC
C + κ

− (δp + µp)Ip,

dC
dt

= φIp − ξC.

(3.1)

3.1. The basic reproduction numbers and feasible equilibria135

Two equilibria exist for system (3.1). The first one is the disease-free equilibrium.136

Z0 = (S0
p, 0, 0) where S0

p =
Λp

δp
,

which is the state in which infected poultry are absent and the environment is virus-free. The second is a137

poultry endemic equilibrium Z+ = (S+
p , I+

p ,C+), which represents the state in which infected poultry are138

found. This is calculated by computing the basic reproduction number of avian influenza in the poultry139

population, Rp
0. The infected compartments in system (3.1) are Ip and C, ordered (Ip,C). The nonlinear140

terms with new infection F and the outflow termV are given respectively by141

F =

 Sp

[
βvIp + βe

C
C + κ

]
0

 and V =

(
(δp + µp)Ip
−φIp + ξC

)
.

By evaluating the derivatives of F andV at the disease-free equilibrium Z0, the following matrices are142

obtained:143

F =

 βvS0
p

βeS0
p

κ
0 0

 and V =

[
δp + µp 0
−φ ξ

]
.

By applying the next generation approach developed by van den Driessche and Watmough [31], the144

basic reproduction number of system (3.1) is determined by the spectral radius of FV−1, namely145

R
p
0 =

βvΛp

δp(µp + δp)
+

βeφΛp

κδpξ(µp + δp)
.
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It is straightforward to see that if Rp
0 > 1, besides the disease-free equilibrium Z0, then system (3.1) has146

an endemic equilibrium Z+, satisfying147

C+ =
φ

ξ
I+
p and S+

p =
Λpξ

βe(φI+
p + κξ) + δp(φI+

p + κξ) + βeφI+
p
, (3.2)

where I+
p is the positive real root of the following quadratic equation:148

P(I+
p ) = b2I+

p
2

+ b1I+
p + b0 = 0, (3.3)

with149

b2 = −
βvφ(δp + µp)

ξ
,

b1 =
βvΛpφ

ξ
−
βeφ(δp + µp)

ξ
−
φδp(δp + µp)

ξ
− βvκ(δp + µp),

b0 = βvΛpκ +
βeΛpφ

ξ
− κδp(δp + µp) = κδp(δp + µp)

(
R

p
0 − 1

)
.

The solutions of (3.3) must be real and positive for the endemic equilibrium to exist. We note that150

b2 < 0; b0 < 0 ⇔ Rp
0 < 1; b0 ≥ 0 ⇔ Rp

0 ≥ 1. Set ∆(Rp
0) = b2

1 − 4b2b0 and b2
1 − 4b2b0 = 0. It follows that151

b2
1 − 4b2κδp(δp + µp)(Rp

0 − 1) = 0. Setting R∗ = R
p
0 gives152

R∗ = 1 +
b2

1

4b2κδp(δp + µp)
, that is R∗ = 1 −

ξb2
1

4βvφκδp(δp + µp)2 .

The following statements are true:153

∆(Rp
0) > 0⇔ R∗ < Rp

0; ∆(Rp
0) = 0⇔ R∗ = R

p
0 and ∆(Rp

0) < 0⇔ Rp
0 < R∗.

Different solutions can be obtained depending on the signs of b1 and b0. It then follows that :154

Theorem 3.1. System (3.3)155

(i) always has the disease-free equilibrium;156

(2i) has a unique endemic equilibrium if Rp
0 > 1;157

(3i) has a unique endemic equilibrium whenever Rp
0 = 1 and b1 > 0;158

(4i) has a unique endemic equilibrium of multiplicity 2 when Rp
0 = R∗ and b1 > 0;159

(5i) has two endemic equilibria, Z+
1 and Z+

2 when R∗ < Rp
0 < 1 and b1 > 0;160

(6i) has no endemic equilibria whenever R∗ > Rp
0 or whenever R∗ < Rp

0 < 1 and b1 < 0 or whenever Rp
0 < 1 and161

b1 < 0.162

Conclusion (5i) of Theorem 3.1 indicates that a backward bifurcation may occur when R∗ < Rp
0 < 1 and163

b1 > 0 for some parameter values. But in our case, the following Theorem applies.164

Theorem 3.2. The system (3.1) presents a trans-critical forward bifurcation at Rp
0 = 1.165

Proof. The proof is based on the theoretical results in [30]. The proof is omitted here, but we invite the166

reader to look at our previous work [11], dealing with a similar case. The forward bifurcation diagram167

is given in Figure 2 below.168
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Figure 2: The forward bifurcation curve. The parameter values we used are Λp = 50, ξ = 500, βv = 2, τe = 0.1, βe = 6, φ = 104, δp

= 5, βh = 0.003, Λh = 3, κ = 106, γ = 0.01, δh = 0.015, µh1 = 1, µh2 = 0.06, τp = 0.6, µp = 1, ε = 0.001.

3.2. Local asymptotic stability169

Theorem 3.3. The disease-free equilibrium Z0 of the poultry system (3.1) is locally asymptotically stable whenever170

R
p
0 < 1, but unstable when Rp

0 > 1.171

Proof. It’s straightforward.172

173

Theorem 3.4. The endemic equilibrium Z+ of the poultry system (3.1) is locally asymptotically stable whenever174

R
p
0 > 1.175

Proof. It is obvious.176

3.3. Global asymptotic stability177

In this section we are interested in the global asymptotic stability of each of the feasible equilibria of178

system (3.1).179

Theorem 3.5. If Rp
0 ≤ 1, the disease-free equilibrium Z0 of the poultry system (3.1) is globally asymptotically180

stable in Ω.181

Proof. Define the Lyapunov function182

H1(t) = Sp − S0
p − S0

p ln

Sp

S0
p

 + Ip +
βeΛp

κδpξ
C.
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Using the fact that Λp = δpS0
p, and calculating the derivative of H1(t) along positive solutions of system183

(3.1) yields184

dH1(t)
dt

=

1 −
S0

p

Sp

 dSp(t)
dt

+
dIp(t)

dt
+
βeΛp

κδpξ

dC(t)
dt

,

=

1 −
S0

p

Sp

 (Λp − βvSpIp − βeSp
C

C + κ
− δpSp

)
+

(
βvSpIp + βeSp

C
C + κ

− (δp + µp)Ip

)
+
βeΛp

κδpξ
(φIp − ξC),

= −
δp

Sp
(Sp − S0

p)2 + βvS0
pIp + βeS0

p
C

C + κ
+
βeφΛp

κδpξ
Ip

−(δp + µp)Ip −
βeΛp

κδp
C.

Straightforward calculations lead to185

dH1(t)
dt

≤ −
δp

Sp
(Sp − S0

p)2 + (δp + µp)
(
R

p
0 − 1

)
Ip < 0, when Rp

0 ≤ 1.

It is easy to see that the largest invariant subset included in the set
{

(Sp, Ip,C) ∈ Ω/
dH1(t)

dt
= 0

}
is the186

singleton
{
Z0

}
. Thus, by LaSalle’s Invariance Principle [32], the disease-free equilibrium Z0 is globally187

asymptotically stable in Ω. This completes the proof.188

Theorem 3.6. If Rp
0 > 1, the endemic equilibrium Z+ of the poultry system (3.1) is globally asymptotically stable189

in the interior of Ω.190

Proof. Let (Sp(t), Ip(t),C(t)) be any positive solution of system (3.1) with initial condition (Sp(0), Ip(0),C(0)).191

Define192

H2(t) = c3

[
Sp − S+

p − S+
p ln

(
Sp

S+
p

)]
+ c4

[
Ip − I+

p − I+
p ln

(
Ip

I+
p

)]
+ c5

[
C − C+

− C+ ln
( C
C+

)]
,

where the constants c3, c4 and c5 will be determined later.193

The derivative of H2(t) along the positive solutions of the system (3.1) gives194

dH2

dt
= c3

(
1 −

S+
p

Sp

)
dSp

dt
+ c4

(
1 −

I+
p

Ip

)
dIp

dt
+ c5

(
1 −

C+

C

)
dC
dt
,

= c3

(
1 −

S+
p

Sp

) [
δpS+

p + βvS+
p I+

p +
βeS+

p C+

κ + C+
− δpSp − βvSpIp −

βeSpC
κ + C

]
+c4

(
1 −

I+
p

Ip

) [
βvSpIp +

βeSpC
κ + C

−

(
βvS+

p +
βeS+

p C+

I+
p (κ + C+)

)
Ip

]
+c5

(
1 −

C+

C

) [
φIp −

φI+
p C

C+

]
,

195

= −c3
δp(Sp − S∗p)2

Sp
+ βvS+

p I+
p (c3 + c4) +

βeS+
p C+

κ + C+
(c3 + c4) + βvSpIp(c4 − c3)

+
βeSpC
κ + C

(c4 − c3) −
βvS+

p
2I+

p

Sp
c3 −

βeS+
p

2C+

Sp(κ + C+)
c3 + βvS+

p Ipc3 +
βeS+

p C

κ + C
c3

−βvS+
p Ipc4 −

βeS+
p C+

I+
p (κ + C+)

Ipc4 − c4βvSpI+
p − c4

βeSpCI+
p

Ip(κ + C)

+c5φIp − c5
φI+

p C

C+
− c5

φIpC+

C
+ φI+

p c5.
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By choosing196

c3 = c4 and c5 =
βeS+

p C+

φI+
p (κ + C+)

c4,

we have197

dH
dt

= −c3
(δp + v)(Sp − S+

p )2

Sp
+ c3βvS+

p I+
p

[
2 −

S+
p

Sp
−

Sp

S+
p

]
+c3

βeS+
p C+

κ + C+

[
3 −

S+
p

Sp
+

C(κ + C+)
C+(κ + C)

−

SpI+
p C(κ + C+)

S+
p IpC+(κ + C)

−
C

C+
−

C+Ip

CI+
p

]

= −c3
δp(Sp − S+

p )2

Sp
+ c3βvS+

p I+
p

[
2 −

S+
p

Sp
−

Sp

S+
p

]
+c3

βeS+
p C+

κ + C+

[
4 −

S+
p

Sp
−
κ + C
κ + C+

−
Sp

S+
p

I+
p

Ip

κ + C+

κ + C
C

C+
−

C+

C
Ip

I+
p

]
−c3

βeS+
p C+

κ + C+
+ c3

βeS+
p C

κ + C
− c3

βeS+
p C

κ + C+
+ c3

βeS+
p C+(κ + C)

(κ + C+)2

= −c3
δp(Sp − S+

p )2

Sp
+ c3βvS+

p I+
p

[
2 −

S+
p

Sp
−

Sp

S+
p

]
+c3

βeS+
p C+

κ + C+

[
4 −

S+
p

Sp
−
κ + C
κ + C+

−
Sp

S+
p

I+
p

Ip

κ + C+

κ + C
C

C+
−

C+

C
Ip

I+
p

]
−c3

κβeS+
p C+(C − C+)2

(κ + C)(κ + C+)2 .

When Rp
0 > 1, it follows from the inequality of arithmetic and geometric means that H′2(t) < 0198

for (Sp(t), Ip(t),C(t)) , (S+
p , I+

p ,C+). Therefore, by LaSalle’s Invariance Principle [32], the equilibrium199

(S+
p , I+

p ,C+) is globally asymptotically stable.200

4. Global analysis of the full model201

Now we investigate the full system (2.1).202

4.1. The basic reproduction numbers and feasible equilibria203

System (2.1) has three equilibria. The first one is the full disease free equilibrium204

F0 = (S0
p, 0, 0,S

0
h, 0, 0, 0) with S0

h =
Λh

δh
,

which represents the state in which the infected poultry with avian strain, infected humans with avian205

strain and mutant strain are absent and the environment is virus-free.206

For other equilibria, we first evaluate the basic reproduction number for mutant strain in the human207

population. By applying the next generation approach developed by van den Driessche and Watmough208

[31], the basic reproduction number of system (2.1) is209

R0 = max{Rp
0,R

h
0},

where210

R
h
0 =

βhΛh

δh(µh2 + δh + γ)
.
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4.2. Sensitivity of the basic reproduction number211

To determine the parameters that strongly affect the reproduction number, we use the same methods212

as [33, 34, 35, 36]. As can be easily observed from sections 3.1 and 4.1, that the reproduction number is a213

function of the vital parameters of the system dynamics.214

Definition 4.1. The normalized forward sensitivity index of a variable, Π, that depends differentially on a215

parameter, ω, is defined as:216

γΠ
ω =

∂Π
∂ω
×
ω
|Π|
. (4.1)

Now using (4.1), we derive the sensitivity of R0 to each of the parameters. The sensitivity index of R0217

with respect to βe, for example, is218

γR0
βe

=
∂R0

∂βe
×
βe

R0
. (4.2)

The detailed indexes of the sensitivity of R0 resulting from the evaluation of the other model parameters219

are presented in Table 2 below. A positive (resp. negative) index indicates that an increase in the220

parameter value results in an increase (resp. decrease) in the R0 value.221

Table 2: Sensitivity indexes for R0. The parameter values we used are: Λp = 50, ξ = 500, βv = 2, τe = 0.1, βe = 6, φ = 104, δp = 5,
βh = 0.003, Λh = 3, κ = 106, γ = 0.01, δh = 0.015, µh1 = 1, µh2 = 0.06, τp = 0.6, µp = 1, ε = 0.001.

Parameter Sensitivity index Value Parameter Sensitivity index Value
βv γR0

βv
0.9999 µp γR0

µp -0.1667

βe γR0
βe

9.9994×10−6 βh γR0
βh

1

Λp γR0
Λp

1 Λh γR0
Λh

1

φ γR0
φ

5.9996×10−5 δh γR0
δh

-1.1765

ξ γR0
ξ

-5.9996×10−5 µh2 γR0
µh2

-0.7059
δp γR0

δp
-1.8333 γ γR0

γ -0.1176

From Table 2, we can observe that the parameters βv, βe,Λp, φ, βh and Λh have each a positive influence222

in the value of R0. For instance, the biological implication of γR0
βh

= 1, γR0
Λp

= 1 and γR0
Λh

= 1 is that an223

increase in 100% of βh,Λp and Λh results in an increase in 100% in the reproduction number R0. In224

reviewing the sensitivity analysis, it is not biologically reasonable and economical to suggest that the225

mortality rate (poultry or human) be increased in order to control the disease. Other possible sensitive226

parameters that are important for effective disease control are the recruitment rate (poultry or human)227

through poultry vaccination and quarantine of infected humans or treatment of infected individuals and228

sensitisation of humans.229

The second equilibrium is the human-endemic equilibrium given by230

F+ = (S0
p, 0, 0,S

+
h , 0, I

+
h2,R

+
h ), where S+

h =
δh + µh2 + γ

βh
, I+

h2 =
δh

βh

(
R

h
0 − 1

)
, R+

h =
γ

δh
I+
h2,

which corresponds to the state in which poultry and humans infected with the avian strain are absent231

but humans infected with the mutant strain are present and the environment is free from virus.232

The third equilibrium is the full-endemic equilibrium given by233

F∗ = (S+
p , I

+
p ,C

+,S∗h, I
∗

h1, I
∗

h2,R
∗

h), where S∗h =
Λh

τpI+
p + τeC+ + βhI∗h2 + δh

,

234

R∗h =
γ

δh
I∗h2 and I∗h1 =

τpI+
p + τeC+

δh + µh1 + ε
S∗h,

11This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4414957

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



which corresponds to the state in which the poultry and humans are infected with the avian strain and235

the mutant strain. Here I∗h2 is the largest solution of the following equation:236

H(I∗h2) = α2I∗h2
2 + α1I∗h2 + α0 = 0, (4.3)

where237

α2 = βh(δh + µh1 + ε)(δh + µh2 + γ),
α1 = (τpI+

p + τeC+ + δh)(δh + µh1 + ε)(δh + µh2 + γ) − βhΛh(δh + µh1 + ε),
α0 = −εΛh(τpI+

p + τeC+).

Since H(0) < 0 and limI∗h2→∞
H(I∗h2) = ∞, F∗ is unique if it exists. The following Lemma summarises the238

above investigation about the existence of equilibria.239

Lemma 4.2. F0 always exists in Ω. If Rh
0 > 1 and Rp

0 < 1, then F+ exists in Ω. F∗ exists in Ω, if Rp
0 > 1.240

4.3. Local asymptotic stability241

The following Theorem is obtained for the local stability of these equilibria.242

Theorem 4.3. If Rp
0 < 1 and Rh

0 < 1, then F0 is LAS. If Rp
0 < 1 and Rh

0 > 1, then F+ is LAS. If Rp
0 > 1, then F∗ is243

LAS.244

Proof. See Appendix C.1.245

4.4. Global asymptotic stability246

This section is devoted to the global analysis of the spread of the avian strain and the mutant strain247

in humans. We denote by ψ0 the initial value for system (2.1) (that is ψ0 =
(
S0

p, I0
p,S0

h,C
0, I0

h1, I
0
h2,R

0
h

)
),248

and ω(ψ0) denotes an ω-limit set of the orbit passing through ψ0. We need the following Lemmas and249

Theorems to formulate our global stability Theorem.250

Lemma 4.4. Let S∞h = lim supt→∞ Sh(t). Then S∞h ≤ S0
h.251

Proof. Based on the fourth equality of system (2.1), we have252

Ṡh = Λh − τpShIp − τeShC − βhShIh2 − δhSh ≤ Λh − δhSh.

Integrating this inequality over [0, t] we obtain253

Sh(t) ≤ S0
h + |Sh(0) − S0

h|e
−δht.

Given ε1 > 0, we can choose t1 large enough so that254

|Sh(0) − S0
h|e
−δht
≤ ε1, for t ≥ t1.

Hence255

Sh(t) ≤ S0
h + ε1, for t ≥ t1.

Thus, for T1 ≥ t1, supt≥T1
Sh(t) ≤ S0

h + ε1. Letting T1 → ∞ we deduce that S∞h ≤ S0
h + ε1. Hence as ε1 can256

be chosen arbitrarily small, S∞h ≤ S0
h. This completes the proof of Lemma 4.4.257

As258

Ṡh + İh1 + İh2 + Ṙh = Λh − δh(Sh + Ih1 + Ih2 + Rh) − µh1Ih1 − µh2Ih2
≤ Λh − δh(Sh + Ih1 + Ih2 + Rh),

we can easily prove that S∞h + I∞h1 + I∞h2 + R∞h ≤ S0
h, where I∞h1 = lim supt→∞ Ih1(t), R∞h = lim supt→∞ Rh(t)259

and I∞h2 = lim supt→∞ Ih2(t).260
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Theorem 4.5. [26] Assume that X is a subset of Rn
+ and S is a subset of X. Let X be forward invariant. If261

ω(ψ0) ⊂ S for all ψ0 ∈ X and there only exists an equilibrium E such that E is GAS in S and E is LAS in X, then262

E is GAS in X.263

At present, we are able to prove the GAS of F0. Let264

Ω0 =
{
(Sp, Ip,C,Sh, Ih1, Ih2,Rh) / Sp > 0, Ip = 0,C = 0,Sh > 0, Ih1 = 0, Ih2 = 0,Rh = 0

}
,

Ω1 =
{
(Sp, Ip,C,Sh, Ih1, Ih2,Rh) / Sp > 0, Ip ≥ 0, C ≥ 0, Sh > 0, Ih1 ≥ 0, Ih2 ≥ 0, Rh ≥ 0

}
.

265

Theorem 4.6. If Rp
0 ≤ 1 and Rh

0 < 1, then F0 is GAS in Ω1.266

Proof. Since Rp
0 ≤ 1, it follows from Theorem 3.5 that limt→∞ Sp(t) = S0

p , limt→∞ Ip(t) = 0 and267

limt→∞ C(t) = 0. Thus268

lim
t→∞

Ih1(t) = lim
t→∞

λ1e−(δh+µh1+ε)t = 0,

and the following equation holds as t→∞,269

İh2(t) = (βhSh(t) − (µh2 + δh + γ))Ih2(t).

From Lemma 4.4, when t→∞, we have270

İh2 ≤ (βhS0
h − (µh2 + δh + γ))Ih2 ≤ (µh2 + δh + γ)

(
R

h
0 − 1

)
Ih2.

Thus271

lim
t→∞

Ih2 ≤ lim
t→∞

λ1e(µh2+δh+γ)(Rh
0−1) = 0 if and only if Rh

0 < 1.

It follows that, for any ψ0 in Ω1, ω(ψ0) exists in Ω0. It is obvious that F0 is GAS in Ω0. Consequently, we272

can conclude by Theorem 4.5 that F0 is GAS on Ω1.273

Now we give the following Theorem which proves that F+ is GAS. Let274

Ω2 =
{
(Sp, Ip,C,Sh, Ih1, Ih2,Rh) ∈ R7

+/Sp > 0, Ip = 0,C = 0,Sh > 0, Ih1 = 0, Ih2 > 0, Rh > 0
}
,

Ω3 =
{
(Sp, Ip,C,Sh, Ih1, Ih2,Rh) ∈ R7

+/Sp > 0, Ip ≥ 0, C ≥ 0, Sh > 0, Ih1 ≥ 0, Ih2 > 0, Rh > 0
}
.

275

Theorem 4.7. If Rp
0 ≤ 1 and Rh

0 > 1, then F+ is GAS in Ω3.276

Proof. The dynamics of the spread of mutant strain is given by the following system on Ω2.277 

dSp

dt
= Λp − δpSp,

dSh

dt
= Λh − βhShIh2 − δhSh,

dIh2

dt
= βhShIh2 − (µh2 + δh + γ)Ih2,

dRh

dt
= γIh2 − δhRh.

(4.4)

Obviously, the poultry system and the human system are independent. So limt→∞ Sp(t) = S0
p. Let us278

define279

Ω4 =
{
(Sp,Sh, Ih2,Rh) ∈ R4

+ / Sp > 0, Sh > 0, Ih2 > 0, Rh > 0
}
.

To prove Theorem 4.7, the following Lemma is relevant.280
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Lemma 4.8. If Rh
0 > 1, then (S0

p,S+
h , I

+
h2,R

+
h ) is GAS in Ω4.281

Proof. Let N = S+
h + I+

h2 + R+
h . System (4.4) is dissipative and has a positive equilibrium (S0

p,S+
h , I

+
h2,R

+
h ) if282

R
h
0 > 1. Furthermore, (S0

p,S+
h , I

+
h2,R

+
h ) is LAS (see Theorem 4.3) when Rh

0 > 1.283

Since system (4.4) is dissipative, positive constants k and K must exist such that k ≤ N ≤ K for a284

sufficiently large time. Let us define285

Ω5 =
{
(Sh, Ih2,Rh) ∈ R3

+ / Sh = S+
h , Ih2 = I+

h2,Rh ≥ 0, k ≤ N ≤ K
}
,

Ω6 =
{
(Sh, Ih2,Rh) ∈ R3

+ / Sh = S+
h , Ih2 = I+

h2, Rh = 0, k ≤ N ≤ K
}
.

Ω5 is a compact subset of R3
+, Ω6 is a compact subset of Ω5 and Ω5 is forward invariant. We define a C1

286

function: P : Ω5 → R+ such that P(σ) = Rh, which verifies P(σ) = 0 if and only if σ ∈ Ω6. On the other287

hand, Ṗ(σ) > 0, ∀σ ∈ Ω6. Therefore, there exists a positive constant δ such that lim inft→∞ Rh(t) ≥ δ,288

∀ψ0 ∈ Ω5 \ Ω6 by Appendix A.1. It results that ω(ψ0) exists in Ω5 \ Ω6, ∀ψ0 ∈ IntR3
+ . It is obvious289

that (S+
h , I

+
h2,R

+
h ) is GAS in Ω5 \Ω6. We can now conclude that (S+

h , I
+
h2,R

+
h ) is GAS in IntR3

+ by virtue of290

Theorem 4.5.291

It is worth noting that Lemma 4.8 indicates that the mutant strain is endemic in the human population292

if a human infected with the mutant strain exists and Rh
0 > 1.293

Thanks to Theorem 3.5, we have Rp
0 ≤ 1, limt→∞ Sp(t) = S0

p, limt→∞ Ip(t) = 0 and limt→∞ C(t) = 0.294

Therefore, limt→∞ Ih1(t) = 0. This results in ω(ψ0) existing in Ω2, for all ψ0 in Ω3. By virtue of the Lemma295

4.8, F+ is GAS in Ω2. We therefore deduce that F+ is GAS in Ω3 by Theorem 4.5.296

We next move on to the case where both the avian and mutant strains are spreading among humans.297

Definition 4.9. We say that system (2.1) is permanent if298

kS1 ≤ lim inft→∞ Sp(t) ≤ lim supt→∞ Sp(t) ≤ KS1

kI1 ≤ lim inft→∞ Ip(t) ≤ lim supt→∞ Ip(t) ≤ KI1

kC ≤ lim inft→∞ C(t) ≤ lim supt→∞ C(t) ≤ KC

kS2 ≤ lim inft→∞ Sh(t) ≤ lim supt→∞ Sh(t) ≤ KS2

kI2 ≤ lim inft→∞ Ih1(t) ≤ lim supt→∞ Ih1(t) ≤ KI2

kI3 ≤ lim inft→∞ Ih2(t) ≤ lim supt→∞ Ih2(t) ≤ KI3

kR ≤ lim inft→∞ Rh(t) ≤ lim supt→∞ Rh(t) ≤ KR,

for any solution of system (2.1) with ψ0 ∈ IntR7
+. The constants ki and Ki (i = S1, I1,C,S2, I1, I2,R) are positive299

and independent of ψ0.300

Afterwards, we first state and prove the following result which will help us to prove the global stability301

of the endemic equilibrium F∗.302

Theorem 4.10. If Rp
0 > 1, then system (2.1) is permanent, that is, the infected humans with avian strain and303

mutant strain persist.304

Proof. It is obvious that Ki; (i = S1, I1,C,S2, I1, I2,R) exist according to Theorem 2.2. Let’s define305

Ωa =
{
(Sp, Ip,C,Sh, Ih1, Ih2,Rh) ∈ R7

+ / Sp ≥ kS1 , Ip ≥ kI1 ,C ≥ kC, k1 ≤ Np + Nh ≤ K1

}
,

Ωb =
{
(Sp, Ip,C,Sh, Ih1, Ih2,Rh) ∈ R7

+ / Sp ≥ kS1 , Ip ≥ kI1 ,C ≥ kC, Sh = 0 , k1 ≤ Np + Nh ≤ K1

}
.
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Theorems 2.2, 3.5 and 3.6 show that Ωa is a compact subset ofR7
+, Ωb is a compact subset of Ωa and Ωa is306

forward invariant (Theorem 3.6 shows that Z+ is GAS whenRp
0 > 1).Consider P = Sh. Then P : Ωa → R+307

is C1 and verifies P(σ) = 0 if and only if σ ∈ Ωb. Furthermore, Ṗ(σ) > 0, ∀σ ∈ Ωb. Consequently, there308

exists a positive constant kS2 such that lim inft→∞ Sh(t) ≥ kS2 , for all ψ0 in Ωa \Ωb by Appendix A.1.309

Let’s now define310

Ωc =
{
(Sp, Ip,C,Sh, Ih1, Ih2,Rh)/Sp ≥ kS1 , Ip ≥ kI1 ,C ≥ kC,Sh ≥ kS2 , Ih1 = 0, k1 ≤ Np + Nh ≤ K1

}
.

Similarly, a positive constant kI2 exists such that lim inft→∞ Ih1(t) ≥ kI2 , for all ψ0 in Ωa \ Ωc. The same311

goes for all the other state variables. Therefore, we conclude that system (2.1) is permanent.312

Let us observe that in (2.1), the first three equations do not contain the variables Sh, Ih1, Ih2 and Rh. Also313

notice that the first three equations of the human system of (2.1) do not contain the variable Rh. Since314

Z+ is GAS on IntR3
+ according to Theorem 3.6, the study of the GAS of F∗ can be reduced to the study of315

the GAS of the equilibrium (S∗h, I
∗

h1, I
∗

h2) of system (4.5) below316 

dSh

dt
= Λh − τpShI+

p − τeShC+
− βhShIh2 − δhSh,

dIh1

dt
= τpShI+

p + τeShC+
− (µh1 + δh + ε)Ih1,

dIh2

dt
= βhShIh2 + εIh1 − (γ + µh2 + δh)Ih2.

(4.5)

From Theorem 4.10 and the boundedness of solutions, it follows that a compact absorbing set exists317

for system (2.1). Therefore, in Lemma Appendix C.1, both assumptions (H1) and (H2) are satisfied for318

R
p
0 > 1.319

We now apply Lemma Appendix C.1 to derive the global stability of the endemic equilibrium F∗ in320

the feasible region Ω. So, the following Theorem applies.321

Theorem 4.11. If Rp
0 > 1, then the infective equilibriumn F∗ of system (2.1) is globally asymptotically stable in322

the interior of Ω, if the following conditions are satisfied323

µh2 + γ ≤
εkI2

KI3

+ βhkI3 + τpI+
p + τeC+ + δh + µh1 + 2ε,

βhKI3 ≤
εkI2

KI3

+ δh + µh1 + ε.

Proof. See Appendix C.3.324

5. Optimal control study325

5.1. Optimal control problem formulation326

We now extend the two-strain model (2.1) by Introducing vaccination, environmental sanitation,327

quarantine, education campaigns and treatment. It should be noted that there are two categories of328

susceptible humans: those in contact with poultry and those in contact with the poultry environment.329

Improving the response of the susceptible human population through education campaigns is equivalent330

to changing the behaviour of the susceptible population by providing them with information on the331

occurrence of the disease. Therefore, disease information can be considered as a possible tool to trigger332

the responsiveness of susceptible humans. If we consider these response intensities u and w as control333

variables (0 ≤ u(t),w(t) ≤ 1), then 0 represents no response and 1 represents a complete response from334

informed humans.335
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Therefore, we obtain the following optimal control problem336 

dSp

dt
= Λp − βv(1 − u1(t))SpIp − βe(1 − u1(t))

SpC
C + κ

− δpSp,

dIp

dt
= βv(1 − u1(t))SpIp + βe(1 − u1(t))

SpC
C + κ

− (δp + µp)Ip,

dC
dt

= φIp − ξC − u2(t)C,

dSh

dt
= Λh − (1 − u3(t))τpShIp − (1 − u4(t))τeShC − (1 − u6(t))βhShIh2 − δhSh,

dIh1

dt
= (1 − u3(t))τpShIp + (1 − u4(t))τeShC − (µh1 + δh + ε)Ih1 − u5(t)Ih1,

dIh2

dt
= (1 − u6(t))βhShIh2 + εIh1 − (µh2 + δh + γ)Ih2,

dRh

dt
= γIh2 + u5(t)Ih1 − δhRh,

(5.1)

where,337

(i) u1(t) is the control variable based on the poultry vaccination,338

(ii) u2(t) is the control variable based on environmental sanitation,339

(iii) u3(t) is the control variable which is based on the education campaign for humans in contact with340

poultry,341

(iv) u4(t) is the control variable based on the education campaign for humans in contact with the poultry342

environment,343

(v) u5(t) is the control variable for measuring the effectiveness of the treatment of infected humans344

with avian strain,345

(vi) u6(t) is the control variable which is based on the effort to reduce the number of contacts with346

humans infected with mutant strain.347

The functions ui(t) are assumed to be at least Lebesgue measurable on [0, t f ]. The control set is defined348

as349

Ωc =
{
ui(t) ∈ L1(0, t f ) | 0 ≤ u1(t) ≤ vmax, 0 ≤ u6(t) ≤ wmax, 0 ≤ ui(t) ≤ 1

}
. (5.2)

The upper bound wmax is determined by the basic reproduction number of mutant strain Rh
0. vmax350

denote the upper bounds for the effort of vaccination. These bounds reflect practical limitations on the351

maximum rates of controls in a given time period. So we have352

R
p∗
0 =

βv(1 − u∗1(t))Λp

δp(µp + δp)
+

βe(1 − u∗1(t))φΛp

κδp(ξ + u∗2(t))(µp + δp)
; and Rh∗

0 =
(1 − u∗6(t)βhΛh

δh(µh2 + δh + γ)
.

It follows that353

R
p∗
0 > 1; and Rh∗

0 > 1 → vmax = 1 −
κδp(µp + δp)(ξ + u∗2)

βeΛpφ + κΛpβv(ξ + u∗2)
; and wmax = 1 −

1
Rh

0

.
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The existence of time-dependent controls makes the analysis of system (5.1) more involved. Indeed, now
the dynamics of the disease depends on the evolution of each control profile. In the sequel, an optimal
control analysis of this problem is carried out. We seek to minimise the total number of infections over
the time interval [0, t f ]; that is, by defining the objective functional

J =

∫ t f

0

{
B1Ip + B2Ih1 + B3Ih2 +

A1

2
u2

1 + A4u2 + A5u2
2 +

A6

2
u2

3 +
A7

2
u2

4 +
A2

2
u2

5 +
A3

2
u2

6

}
dt,

such that354

J(u∗1,u
∗

2,u
∗

3,u
∗

4,u
∗

5,u
∗

6) = min
Ωc

J(u1,u2,u3,u4,u5,u6). (5.3)

In this instance, the parameters, with the appropriate units, define the appropriate costs associated with355

these controls. The quadratic terms are introduced to indicate the nonlinear costs that can occur at high356

levels of intervention [37, 38, 39]. The disinfection cost terms, A4u2(t) + A5u2
2(t), are taken from [39]. The357

minimisation method is subject to the differential system (5.1), henceforth called equations of state.358

Our goal is to find optimal controls, u∗i (t), ∀i ∈ {1, 2, · · · , 6} such that (5.3) holds.359

5.2. Existence and characterization of the optimal control360

The existence of the finite-time optimal control for system (5.1) is studied here, and the Hamiltonian361

of the optimal control problem is constructed to derive the first-order necessary conditions for optimal362

control. For this, we use a result from [40].363

Theorem 5.1. The optimal control (u∗1,u
∗

2,u
∗

3,u
∗

4,u
∗

5,u
∗

6) and a corresponding optimal state (S∗p, I∗p,C∗,S∗h, I
∗

h1, I
∗

h2)364

exist such that expression (5.3) holds.365

Proof. The existence of the optimal controls for the problem under consideration is shown by using366

a result from [40, 41]. We point out that the state and control variables are nonnegative, and that the367

control set Ωc, by definition, is closed and bounded. This ensures that the optimal system is bounded,368

which is necessary for the existence of the optimal control. Moreover, the integrand B1Ip + B2Ih1 + B3Ih2 +369

A1

2
u2

1 + A4u2 + A5u2
2 +

A6

2
u2

3 +
A7

2
u2

4 +
A2

2
u2

5 +
A3

2
u2

6 is convex on the control set Ωc due to the quadratic370

character of control variables. Furthermore, a constant τ > 1 and positive numbers w1 and w2 exist such371

that372

B1Ip + B2Ih1 + B3Ih2 +
A1

2
u2

1 + A4u2 + A5u2
2 +

A6

2
u2

3 +
A7

2
u2

4 +
A2

2
u2

5 +
A3

2
u2

6 ≥ w1

 6∑
i=1

|ui|
2


τ
2
− w2.

The existence of the optimal control is completed by the boundedness of the state variables.373

By constructing a Hamiltonian H and applying the Pontryagin’s maximum principle [43, 42, 44], the374

optimal control is characterized in the following Theorem.375

Theorem 5.2. The optimal control variables are u∗1,u
∗

2,u
∗

3,u
∗

4,u
∗

5,u
∗

6 and the corresponding optimal state variables376

of the control system are S∗p, I∗p,C∗,S∗h, I
∗

h1, I
∗

h2. Consequently, there are adjoint variablesλ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t)377
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in R which satisfy the following adjoint equations:378

dλ1

dt
= (λ1 − λ2)(1 − u1)

[
βvIp + βe

C
κ + C

]
+ δpλ1,

dλ2

dt
= −B1 + (λ1 − λ2)βvSp(1 − u1) + (µp + δp)λ2 − φλ3 + τpSh(1 − u3)(λ4 − λ5),

dλ3

dt
= (λ1 − λ2)

(1 − u1)κβeSp

(κ + C)2 + (ξ + u2)λ3 + (λ4 − λ5)(1 − u4)τeSh,

dλ4

dt
= (λ4 − λ5)

[
(1 − u3)τpIp + (1 − u4)τeC

]
+ (λ4 − λ6)(1 − u6)βhIh2 + δhλ4,

dλ5

dt
= −B2 + (δh + µh1)λ5 + ε(λ5 − λ6) + u5λ5,

dλ6

dt
= −B3 + (λ4 − λ6)(1 − u6)βhSh + (δh + µh2 + γ)λ6,

(5.4)

and the transversality conditions379

λ∗i (t f ) = 0, i = {1, 2, · · · , 6}. (5.5)

In addition, the corresponding optimal controls are as follows:380

u∗1(t) = max

0, min


(λ2 − λ1)

[
βvSpIp +

βeSpC
κ + C

]
A1

, vmax


 ,

u∗2(t) = max
{
0, min

(
λ3C − A4

2A5
, 1

)}
,

u∗3(t) = max
{

0, min
(

(λ5 − λ4)τpShIp

A6
, 1

)}
,

u∗4(t) = max
{

0, min
(

(λ5 − λ4)τpShC
A7

, 1
)}
,

u∗5(t) = max
{
0, min

(
λ5Ih1

A2
, 1

)}
,

u∗6(t) = max
{

0, min
(

(λ6 − λ4)βhShIh2

A3
, wmax

)}
.

(5.6)

Proof. The Pontryagin’s maximum principle [43, 42, 44] is used to solve the optimal control problem by381

fixing t f = 365. It converts (5.1) into a pointwise minimization problem of a Hamiltonian H, with respect382

to ui, i ∈ {1, · · · , 6}. Here, the Hamiltonian is the integrand of the objective functional coupled to the six383

right-hand sides of the state equations:384

H(Sp, Ip,C,Sh, Ih1, Ih2, λi) = B1Ip + B2Ih1 + B3Ih2 +
A1

2
u2

1 + A4u2(t) + A5u2
2 +

A6

2
u2

3

+
A7

2
u2

4 +
A2

2
u2

5 +
A3

2
u2

6 +
∑6

i=1 λihi,
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where hi is the right-hand side of the differential equation of the ith state variable.385

The characteristic function J[a,b](t) is defined by386

J[a,b](t) =


1, if t ∈ [a; b],

0, otherwise.
(5.7)

For given optimal functions u∗i , i ∈ {1, 2 · · · , 6}, given corresponding optimal state variables S∗p, I∗p,C∗,S∗h, I
∗

h1, I
∗

h2387

of system (5.1), according to the Pontryagin’s maximum principle [43, 42, 44], there are adjoint variables388

λ1, λ2, λ3, λ4, λ5 and λ6 which satisfy the following equations:389

dλ1

dt
= −

∂H
∂Sp

(t),
dλ2

dt
= −

∂H
∂Ip

(t),
dλ3

dt
= −

∂H
∂C

(t),
dλ4

dt
= −

∂H
∂Sh

(t), (5.8)

390
dλ5

dt
= −

∂H
∂Ih1

(t),
dλ6

dt
= −

∂H
∂Ih2

(t), (5.9)

with transversality requirementsλi(t f ) = 0; (i = 1, 2, · · · , 6).By substituting the corresponding derivatives391

into the above inequalities and reorganising them, we obtain the adjoint equations (5.4). According to392

the optimality condition, we have393

∂H
∂ui

= 0, at ui = u∗i ,∀i ∈ {1, 2 · · · , 6}. (5.10)

Thus (5.6) holds true. According to the properties of the control set (5.2) and the conclusions above, we394

have for example395

u∗1 =



0, if
(λ1 − λ2)

[
βvSpIp +

βvSpC
κ + C

]
A1

≤ 0,

(λ1 − λ2)
[
βvSpIp +

βvSpC
κ + C

]
A1

, if 0 <
(λ1 − λ2)

[
βvSpIp +

βvSpC
κ + C

]
A1

< vmax,

vmax, if
(λ1 − λ2)

[
βvSpIp +

βvSpC
κ + C

]
A1

≥ vmax,

This completes the proof.396

6. Numerical results397

In this section, we numerically study the effects of optimal control strategies such as poultry vacci-398

nation, environmental sanitation, education campaigns, quarantine and treatment of infected humans399

in the spread of avian flu. The numerical solution of the optimal control problem is obtained by solving400

the optimality and adjoint systems thanks to the forward-backward sweep method. The adjoint systems401

are numerically solved by a fourth-order Runge-Kutta scheme using the direct solution of the state402

equations. The optimality condition is satisfied by convex updating of the previous control values. We403

describe the controls in the following strategies using the parameter values in Table 3 and the following404

initial condition (Sp, Ip,C,Sh, Ih1, Ih2) = (10, 2, 100, 10, 5, 2).405
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Table 3: Parameters and baseline values.
Symbol Baseline value Reference Symbol Baseline value Reference

Λp 50 Assumed ξ 500 Assumed
βv 2 [26] τe 0.1 [11]
βe 6 Assumed φ 104 Assumed
δp 5 [26] βh 0.003 [26]
Λh 3 Assumed κ 106 Assumed
γ 0.01 [26] δh 0.015 [26]
µh1 1 [26] µh2 0.06 [26]
τp 0.6 [45] µp 1 Assumed
ε 0.001 [26]

6.1. Strategy A: control with poultry vaccination (u1)406

With strategy A, only poultry vaccination u1 is applied to control the system, with the other controls407

set to zero. Figure 3 shows the effect of poultry vaccination on the poultry and human populations. The408

control profile suggests that the u1 control is at the highest level for about 200 days per year before falling409

to the lower limit. This result shows that the optimal control measure is effective in both the poultry and410

human populations and the community will therefore be free of the disease.
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Figure 3: Simulations of model (5.1) showing the effect of poultry vaccination.
411

6.2. Strategy B: control with environmental sanitation (u2)412

Here, only environmental disinfection u2 is applied to control the system. Figure 4 shows the impact413

of this control strategy, on the avian and human populations. We do not record any variation in the414

control profile. Thus, this result illustrates that the use of disinfectants as a control measure is not an415

optimal solution. It is therefore ineffective in the control of this epizootic.416

6.3. Strategy C: control with education campaign for humans in contact with poultry (u3)417

Figure 5 describes the effect of implementing an education campaign among humans in contact with418

poultry and the impact is slightly visible in the human population, while the control profile remains at419

its upper limit for almost 50 days.420
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Figure 4: Simulations of model (5.1) showing the effect of environmental sanitation.
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Figure 5: Simulations of model (5.1) showing the effect of education campaign for humans in contact with poultry.
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6.4. Strategy D: control with education campaign for humans in contact with poultry environment (u4)421

The objective of the education campaign strategy for humans in contact with the poultry environment422

is to make the community aware of the disease, its mode of transmission, prevention and control423

measures. When only control u4 is applied while the others are set to zero, Figure 6 shows a significant424

effect in human population. This is realistic, as our work [11] shows that the indirect transmission425

(environment-to-human) is more dominant that the direct transmission (avian-to-human). Moreover,426

the control profile remains at its upper limit for a long time before gradually decreasing to the lower427

limit.
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Figure 6: Simulations of model (5.1) showing the effect of education campaign for humans in contact with poultry environment.

428

6.5. Strategy E: control with quarantine of infected humans (u6)429

With strategy E, only quarantine of infected humans u6 is applied to control the system. Figure 7430

shows the impact of quarantine of infected humans on the avian and human populations.431

6.6. Strategy F: control with treatment of infected humans (u5)432

When only control u5 is applied while the others are set to zero, the significant effect occurs on433

the infected humans class (see Figure 8). It should be noted that this treatment control strategy is not434

effective without vaccination of susceptible poultry and is therefore not preferable for the community435

as an avian influenza control measure.436

6.7. Strategy G: control with combination of poultry vaccination (u1) and treatment of infected humans (u5)437

When we use vaccination of poultry and treatment of infected humans as control strategies we see,438

on Figure 9, a significant impact in both the poultry and human populations. Therefore, this combination439

can be used as a control strategy against this epidemic.440

6.8. Strategy H: control with combination of poultry vaccination (u1) and education campaign for humans in441

contact with poultry environment (u4)442

With strategy H, the combination of vaccination of poultry and sensitisation of humans in contact443

with the poultry environment is applied to control the epidemic. Figure 10 shows the meaningful effect444

of using this combination as a control strategy. Thus, it can also be used to eradicate this epizootic.445
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Figure 7: Effect of quarantine of infected humans on model (5.1).
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Figure 8: Simulations of model (5.1) showing the effect of therapeutic treatment of infected humans.
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Figure 9: Effect of combination of poultry vaccination and treatment of infected humans on model (5.1).
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Figure 10: Effect of combination of poultry vaccination and education campaign for humans in contact with poultry environ-
ment on model (5.1).
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6.9. Strategy I: control with combination of treatment of infected humans (u5) and education campaign for humans446

in contact with poultry environment (u4)447

By combining the treatment of infected humans with the sensitisation of humans in contact with the448

poultry environment, an important impact on the human population is shown on Figure 11. Therefore,449

this strategy can be used to eradicate this epidemic if and only if the poultry population is free of the450

disease.
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Figure 11: Effect of combination of treatment of infected humans and education campaign for humans in contact with poultry
environment on model (5.1).

451

6.10. Strategy J: control with combination of poultry vaccination (u1), treatment of infected humans (u5) and452

education campaign for humans in contact with poultry environment (u4)453

The numerical results show that the human and poultry populations infected and the virus con-454

centration are gradually decreasing, as shown on Figures 12 (b), 12 (d) and 12 (f), while susceptible455

humans and poultry are increasing (see Figures 12 (b) and 12 (e)). Vaccination, treatment and education456

campaigns in the community will greatly reduce the spread of the disease. On Figure 12 (a), we see that457

the control profiles remain at their upper limit for some time and, at the end, they gradually decrease to458

the lower limit.459

7. Cost-effectiveness analysis460

To make a decision on which intervention to choose, we evaluate the economic implications of461

avian influenza control strategies using the CEA technique. CEA helps us identify and propose the462

most cost-effective strategy to implement with limited resources. We evaluate the costs by using the463

incremental cost-effectiveness ratios (ICER) to compare the differences in costs and health outcomes of464

two competing intervention strategies. The infectious averted is computed by taking the absolute value465

of the difference between the total number of individual species without control and the total number of466

individual species with control. The control strategies are ranked in order of increasing infection averted467

as presented in Table 4.468
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Figure 12: Effect of the three controls on model (5.1).

Table 4: Control strategies in order of increasing infection averted.
Strategies Total infections averted Total costs ($) Objective functional J ($)
Strategy B 0 0 1.3048 ×105

Strategy C 0.0131 275.0413 1.0172 ×105

Strategy E 0.1078 0.5383 1.0883 ×105

Strategy D 0.7359 2.4224 ×103 1.0528 ×105

Strategy A 2.8138 2.8868 ×103 5.8584 ×104

Strategy I 3.5610 2.6921 ×103 8.8885 ×104

Strategy F 3.6060 2.3993 ×103 8.9032 ×104

Strategy H 4.4476 5.7095 ×103 5.1138 ×104

Strategy G 5.2540 4.6109 ×103 5.2637 ×104

Strategy J 5.9817 3.2439 ×103 3.9025 ×104

7.1. Taking into account the quarantine of infected persons (Strategy E is considered)469

We see from Table 4 that strategy B (environmental sanitation) cannot be used as a control measure470

because zero values in Total infections averted and Total costs indicate that no strategy is applied.471

ICER(C) =
275.0413
0.0131

= 20995.52, ICER(E) =
0.5383 − 275.0413
0.1078 − 0.0131

= −2898.66.

Now, comparing ICER (C) and ICER (E) using Table 4, a cost saving of −2898.66 is observed for472

Strategy C over Strategy E. The lower ICER for Strategy E indicates that Strategy C is strongly dominated.473

That is, Strategy E is more costly and less effective than Strategy E. Therefore, Strategy C is excluded474

from the set of alternatives so it does not consume limited resources. When we exclude C, we compare475

strategy E and D, and ICER is recalculated in Table 5 below.476

The comparison between strategies E and D indicate that strategy D is strongly dominated and is477

more costly than strategy E since ICER(E) < ICER(D). Then strategy D is discarded from the set of478

alternatives. Hence E and A are compared in Table 6.479

The comparison shows that ICER(E) < ICER(A); hence strategy A is more costly and excluded from480

the set of alternatives. We compare strategies E and I in Table 7.481
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Table 5: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 0.5383 4.9935
Strategy D 0.7359 2.4224 ×103 3855.85

Table 6: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 0.5383 4.9935
Strategy A 2.8138 2.8868 ×103 1066.62

Table 7: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 0.5383 4.9935
Strategy I 3.5610 2.6921 ×103 779.44

The comparison shows that ICER(E) < ICER(I). Therefore, strategy I is excluded from the set of482

alternatives and we compare strategies E and F in Table 8.

Table 8: Control strategies in order of increasing averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 0.5383 4.9935
Strategy F 3.6060 2.3993 ×103 658.71

483

Strategy F is strongly dominated and is more costly than strategy E. So, strategy F is excluded from484

set of alternatives. Thus, strategies E and H need to be compared.

Table 9: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 0.5383 4.9935
Strategy H 4.4476 5.7095 ×103 1315.49

485

Strategy H is strongly dominated and is more costly than strategy E. So, strategy H is excluded from486

set of alternatives. Strategies E and G are now compared in Table 10. As ICER(E) < ICER(G), strategy G

Table 10: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 0.5383 4.9935
Strategy G 5.2540 4.6109 ×103 895.88

487

is excluded from the set of alternatives and we compare strategies E and J in Table 11.

Table 11: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 0.5383 4.9935
Strategy J 5.9817 3.2439 ×103 552.16

488
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Comparison between strategies E and J shows that strategy E is more costly and less effective than489

strategy J as ICER(E) < ICER(J). Therefore strategy J is discarded from the set of alternatives. Finally,490

based on the above results, we conclude that strategy E is the most cost-effective among all strategies491

envisaged for controlling avian influenza.492

7.2. Without taking into account the quarantine of infected persons (Strategy E is not considered)493

ICER(C) =
275.0413
0.0131

= 20995.52, ICER(D) =
2.4224 × 103

− 275.0413
0.7359 − 0.0131

= 2970.89.

Now, comparing ICER (C) and ICER (D) using Table 4, a cost saving of 2970.89 is observed for Strategy494

C over Strategy D. The lower ICER for Strategy D indicates that Strategy C is strongly dominated. That495

is, Strategy C is more costly and less effective than Strategy D. Therefore, Strategy C is excluded from the496

set of alternatives so it does not consume limited resources. When we exclude C, we compare strategy497

D and A, and ICER is recalculated in Table 12 below.498

Table 12: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy D 0.7359 2.4224 ×103 3291.75
Strategy A 2.8138 2.8868 ×103 223.49

The comparison between strategies D and A indicate that strategy D is strongly dominated and is499

more costly than strategy A since ICER(A) < ICER(D). Then strategy D is discarded from the set of500

alternatives. Hence A and I are compared in Table 13.

Table 13: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy A 2.8138 2.8868 ×103 1025.94
Strategy I 3.5610 2.6921 ×103 –206.57

501

The comparison shows that ICER(I) < ICER(A); hence strategy A is more costly and excluded from502

the set of alternatives. We compare strategies I and F in Table 14.

Table 14: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy I 3.5610 2.6921 ×103 756
Strategy F 3.6060 2.3993 ×103 –6506.67

503

The negative ICER for strategy F in Table 14 shows that strategy I is more costly and less effective504

than strategy F. Therefore, strategy I is excluded from the set of alternatives and we compare strategies505

F and H in Table 15.

Table 15: Control strategies in order of increasing averted.
Strategies Total infections averted Total costs ($) ICER
Strategy F 3.6060 2.3993 ×103 665.36
Strategy H 4.4476 5.7095 ×103 3933.22

506

Strategy H is strongly dominated and is more costly than strategy F. So, strategy H is excluded from507

set of alternatives. Thus, strategies F and G need to be compared.508
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Table 16: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy F 3.6060 2.3993 ×103 665.36
Strategy G 5.2540 4.6109 ×103 1341.99

Table 17: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy F 3.6060 2.3993 ×103 665.36
Strategy J 5.9817 3.2439 ×103 355.52

Strategy G is strongly dominated and is more costly than strategy F. So, strategy G is excluded from509

set of alternatives. Strategies F and J are now compared in Table 17.510

Comparison between strategies F and J shows that strategy F is more costly and less effective than511

strategy J as ICER(J) < ICER(F). Therefore strategy F is discarded from the set of alternatives. Finally,512

based on the above results, we conclude that strategy J (combination of poultry vaccination, human513

education and treatment of infected humans) is the most cost effective among all strategies envisaged514

for controlling avian influenza. This result agrees quite well with the numbers and costs mentioned in515

Table 4.516

8. Conclusion and discussion517

A mathematical model for the dynamic transmission of avian influenza A is formulated in this paper,518

incorporating the following factors: (i) virus mutation and (ii) optimal control strategies. The evaluation519

of the model was presented in a qualitative manner.520

The most striking findings on the long-term dynamics of the system are outlined below.521

(1) A disease-free equilibrium was calculated, and the basic reproduction numbers Rp
0 and Rh

0 that522

determine the outcome of avian influenza A in the community were computed.523

(2) The disease-free equilibrium was proved to be globally asymptotically stable over a positively524

invariant region when Rp
0 ≤ 1 and Rh

0 < 1. Furthermore, we have shown that the model has525

a unique human-endemic and a unique full endemic equilibrium when Rh
0 > 1 and Rp

0 > 1,526

respectively. Their global asymptotic stability has been proven.527

(3) The Pontryagin’s maximum principle was used to derive and analyse the necessary conditions for528

optimal control strategies (vaccination of poultry, environmental sanitation, education campaigns529

for susceptible humans and treatment of infected humans). Optimal control thus minimises the530

population of infected humans.531

(4) Numerical results were presented to illustrate the theoretical results. Graphically, strategy (A)532

shows a significant impact in both poultry and human populations while strategies (C), (D) and533

(F) have a positive impact on human population. Strategies (B) has almost no effect on both534

populations.535

(5) From the cost-effectiveness analysis, the best way to control transmission or contain an outbreak536

of avian influenza with virus mutation is to quarantine infected humans. If mutation is not537

considered, then the best way to contain the outbreak is to combine vaccination of poultry and538

treatment of infected humans with an education campaign for humans in contact with the poultry539

environment.540
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Education campaigns usually have a time delay between the time they are implemented and the time541

they attract public interest. It is therefore interesting to develop an optimal control problem based on a542

system of differential equations with multiple delays in the state and control variables. It remains to be543

seen whether this will represent a significant challenge to the mathematical analysis or whether it will544

modify the optimal control solution. It is worth noting that, during the cost-effectiveness illustration, we545

have considered the same cost for all interventions. It would be more realistic to evaluate the outcomes546

knowing that they actually depend on the choice of the parameters. All these research perspectives will547

be investigated in our forthcoming work.548

Appendix A. Biological permanence549

In this part, we present and characterize the concept of biological permanence which is based on the550

Lyapunov instability Theorem.551

We consider the following system of autonomous differential equations:552

dx
dt

= f (x), (A.1)

where x ∈ Rn
+ and f : Rn

+ → R
n. Assume that X is a compact subset ofRn

+ and S is a compact subset of X.553

Let X be forward invariant. Suppose that there exists a C1 function P : X → R+ which satisfies P(x) = 0554

if and only if x ∈ S. Let ” · ” denotes differentiation along an orbit and π(x, t) the solution of (A.1) and x555

the initial value.556

Theorem Appendix A.1. [26] If Ṗ(σ) > 0, for all σ in S, then there exist a positive constant k and a sufficiently557

large time T such that P(π(ψ0, t)) > k, for all ψ0 in X \ S and t ≥ T.558

Appendix B. Positivity and boundedness of solutions559

Appendix B.1. Proof of Theorems 2.1560

Proof. We want to show that the solution variables (Sp, Ip,Sh,Eh, Ih,C,Rh) of system (2.1) correspond-561

ing to the initial conditions (2.2) are positive. We define562

W(t) = min
{
Sp(t), Ip(t), C(t), Sh(t), Ih1(t), Ih2(t), Rh(t)

}
.

It is obvious that W(0) > 0. Suppose that there exists t1 > 0 such that W(t1) = 0 and W(t) > 0 for all563

t ∈ [0, t1). If W(t1) = Sp(t1), then Ip(t) ≥ 0, C(t) ≥ 0, Sh(t) ≥ 0, Ih1(t) ≥ 0, Ih2(t) ≥ 0 and Rh(t) ≥ 0 for all564

t ∈ [0, t1]. According to the first equation of system (2.1), it follows that565

dSp

dt
= Λp −

(
βvIp(t) + βe

C(t)
C(t) + κ

+ δp

)
Sp(t), t ∈ [0, t1]

. Hence, we obtain566

d
dt

[
Sp(t) exp

{
δpt +

∫ t
0

(
βvIp(s) + βe

C(s)
C(s) + κ

)
ds

}]
≥ Λp exp

{
δpt +

∫ t
0

(
βvIp(s) + βe

C(s)
C(s) + κ

)
ds

}
.

Integrating the above inequality from 0 to t1 gives567

Sp(t1) ≥ Sp(0) exp
{
−

∫ t1

0

(
βvIp(τ) + βe

C(τ)
C(τ) + κ

+ δp

)
dτ

}
+ exp

{
−

∫ t1

0

(
βvIp(τ) + βe

C(τ)
C(τ) + κ

+ δp

)
dτ

}
× Λp

∫ t1

0 exp
{∫ s

0

(
βvIp(τ) + βe

C(τ)
C(τ) + κ

+ δp

)
dτ

}
ds > 0.
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This contradicts Sp(t1) = 0. Thus we obtain Sp(t) > 0, for all t > 0.We can also show in the same way that568

Ip(t) > 0, C(t) > 0, Sh(t) > 0, Ih1(t) > 0, Ih2(t) > 0 and Rh(t) > 0 for all t > 0.569

Appendix B.2. Proof of Theorems 2.2570

Proof. We prove that the total population of poultry and humans at time t, Np(t) and Nh(t) satisfies571

the boundedness property 0 < Np(t) ≤M1, 0 < Nh(t) ≤M2. We also prove that the concentration of virus572

satisfies the boundedness property 0 ≤ C(t) ≤ M3. We point out that this bound represents the unique573

equilibrium of the dynamics of the total population in the ideal situation where there is no ongoing574

infection. It follows from system (2.1) that575 
dNp

dt
(t) = Λp − δpNp(t) − µpIp(t) ≤ Λp − δpNp(t),

dNh

dt
(t) = Λh − δhNh(t) − µh1Ih(t) − µh2Ih2 ≤ Λh − δhNh(t).

Then,576

lim sup
t→∞

Np(t) ≤
Λp

δp
and lim sup

t→∞
Nh(t) ≤

Λh

δh
.

Hence Np and Nh are bounded. Thus, for ε1 and ε2 sufficiently small, there exists T1 > 0 such that if577

t > T1,578

Np(t) ≤
Λp

δp
+ ε1 and Nh(t) ≤

Λh

δh
+ ε2.

From the third equation of the system (2.1) it follows that, for t > T1,579

dC(t)
dt
≤ φ

(
Λp

δp
+ ε1

)
− ξC(t),

which leads to580

lim sup
t→∞

C(t) ≤
φΛp

δpξ
+
φε1

ξ
.

This inequality being true for an arbitrary number of ε1 > 0 sufficiently small, we conclude that581

lim sup
t→∞

C(t) ≤
φΛp

δpξ
.

Hence C is bounded.582

Appendix C. Local and global stability analysis583

Appendix C.1. Proof of Theorem 4.3584

Proof. The Jacobian of system (2.1) is given by the following matrix585

J =

(
A 0
C B

)
,

with586

A =


−βvIp − βeC − δp −βvSp −βeSp
βvIp + βeC βvSp − (δp + µp) βeSp

0 φ −ξ

 , C =


0 −τvSh −τeSh
0 τvSh τeSh
0 0 0
0 0 0

 ,
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587

B =


−τvIp − τeC − βhIh2 − δh 0 −βhSh 0

τvIp + τeC −(δh + µh1 + ε) 0 0
βhIh2 ε βhSh2 − (µh2 + δh + γ) 0

0 0 γ −δh

 .
Consequently, J evaluated at equilibrium F0,F+,F∗ is stable if and only if A and B are also stable. By588

virtue of Theorems 3.3 and 3.4 the submatrixA evaluated at F0 or F+ has only eigenvalues with negative589

real part if Rp
0 < 1. The submatrix A evaluated at F∗ has only eigenvalues with negative real part if590

R
p
0 > 1. Moreover, B is stable if and only if its first 3 × 3 block is stable. If we note591

B =


−τvIp − τeC − βhIh2 − δh 0 −βhSh

τvIp + τeC −(δh + µh1 + ε) 0
βhIh2 ε βhSh2 − (µh2 + δh + γ)


then, to study the local stability of the equilibria F0,F+ and F∗ amounts to checking only the eigenvalues592

of the submatrix B.593

The eigenvalues of B at F0 are594

λ1 = −δh, λ2 = −(δh + µh1 + ε) and λ3 = (µh2 + δh + γ)
(
R

h
0 − 1

)
.

If Rh
0 < 1, then Re(λi) < 0, ∀i = {1, 2, 3}. Thus F0 is LAS if Rp

0 < 1 and Rh
0 < 1.595

The characteristic equation for B at F+ is596

P(λ) = (δh + µh1 + ε − λ)
(
λ2 + δhR

h
0λ + βhS+

h δh

(
R

h
0 − 1

))
= 0.

Therefore, Z+ is LAS if Rp
0 < 1 and Rh

0 > 1.597

Since598

βhS∗h − (µh2 + δh + γ) = −
εI∗h1

I∗h2
,

the characteristic equation for B at F∗ reads599

P(λ) = λ3 + d2λ
2 + d1λ + d0 = 0,

where600

d0 = βhS∗hε(τvI+
p + τeC+) +

ε(δh + µh1 + ε)I∗h1

I∗h2
(τvI+

p + τeC+ + βhI∗h2 + δh)

+β2
hS∗hI∗h2(δh + µh1 + ε),

d1 = β2
hS∗hI∗h2 + (δh + µh1 + ε)(τvI+

p + τeC+ + βhI∗h2 + δh)

+
εI∗h1

I∗h2
(τvI+

p + τeC+ + βhI∗h2 + 2δh + µh1 + ε),

d2 = τvI+
p + τeC+ + βhI∗h2 + 2δh + µh1 + ε +

εI∗h1

I∗h2
,

601

d2d1 − d0 = β2
hS∗hI∗h2(τvI+

p + τeC+ + βhI∗h2 + δh) + εβ2
hS∗hI∗h1

+(δh + µh1 + ε)(τvI+
p + τeC+ + βhI∗h2 + δh)2

+(τvI+
p + τeC+ + βhI∗h2 + δh)(δh + µh1 + ε)2

+
εI∗h1

I∗h2
(τvI+

p + τeC+ + βhI∗h2 + δh + δh + µh1 + ε)2

+

(
εI∗h1

I∗h2

)2

(τvI+
p + τeC+ + βhI∗h2 + δh + δh + µh1 + ε) − βhS∗hε(τvI+

p + τeC+).
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Note that di > 0, i = 0, 1, 2 and d1d2 − d0 > 0. Then, by using Routh-Hurwitz criterion we conclude that602

the endemic equilibrium Z∗ of system (2.1) is locally asymptotically stable.603

Appendix C.2. Second additive compound matrix604

Let n be a positive integer, and A a linear operator on Rn and also denote its matrix representation605

with respect to the standard basis of Rn. A canonically induces a linear operator A[2] on ∧2Rn. For606

u1,u2 ∈ Rn, define A[2](u1∧u2) = A(u1)∧u2 + u1∧A(u2) and extend the definition over ∧2Rn by linearity.607

This is an
(

n
2

)
×

(
n
2

)
matrix with each entry being a linear expression of the entries of A. When n = 3,608

A = (ai j), then the second additive compound matrix A[2] is given by.609

A[2] =


a11 + a22 a23 −a13

a32 a11 + a33 a12
−a31 a21 a22 + a33

 .
Detailed information on A[2] can be found in [46, 47]. Let x 7→ f(x) ∈ Rn be a C1 function for x in an open610

set Ω ⊂ Rn. Consider the differential equation611

ẋ = f (x). (C.1)

Denote by x(t, x0), the solution of (C.1) with respect to x(0, x0) = x0. We make the following two basic612

assumptions on (C.1):613

(H1) There exists a compact absorbing set K ⊂ Ω.614

(H2) there exists a unique equilibrium point x ∈ Ω.615

Let x 7→ P(x) be an
(

n
2

)
×

(
n
2

)
matrix-valued function that is C1 for x ∈ Ω. Assume that P−1(x) exists616

and is continuous for x ∈ K. We define a quantity q by617

q = lim sup
t→+∞

sup
x0∈K

1
t

∫ t

0
µ(B(x(s, x0)))ds,

where618

B = P f P−1 + P
∂ f [2]

∂x
P−1.

The matrix P f is obtained by replacing each entry pi j of P by its derivative in the direction of f .619 ∂P∗i j

∂x

 f =
dPi j

dt
·
∂ f [2]

∂x
is the second additive compound matrix of the Jacobian matrix

∂ f
∂x

of f . µ(B)620

is the Lozinskil measure of B with respect to a vector norm ‖.‖ in R

 n
2


, defined by621

µ(B) = lim
h→0+

‖I + hB‖ − 1
h

.

It is shown in [46] that if Ω is simply connected, the condition q < 0 rules out the presence of orbits such622

as periodic orbits, homoclinic orbits and heteroclinic cycles; and it is robust under C1 local perturbations623

of f near any non-equilibrium point that is non-wandering. Now we state the following global stability624

result from [46].625

Lemma Appendix C.1. Assume that Ω is simply connected and assumptions (H1) and (H2) hold. Then the626

unique equilibrium point x of (C.1) is globally stable in Ω if q < 0.627
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Appendix C.3. Proof of Theorem 4.11628

Proof. As Rp
0 > 1, (Sp(t), Ip(t),C(t)) → (S+

p , I+
p ,C+) when t → ∞ and system (2.1) is permanent. The629

ω-limit set of system (2.1) lies in
{(

S+
p , I+

p ,C+,Sh, Ih1, Ih2,Rh

)
: (Sh, Ih1, Ih2,Rh) ∈ IntR4

+

}
. It is enough to630

consider system (4.5).631

The Jacobian matrix A of system (4.5), evaluated at a general solution (Sh, Ih1, Ih2) is632

A =


−δh − βhIh2 − τpI+

p − τeC+ 0 −βhSh
τpI+

p + τeC+
−(δh + µh1 + ε) 0

βhIh2 ε βhSh − (δh + µh2 + γ)

 .
Its second additive compound matrix is633

A[2] =


A11 0 βhSh
ε A22 0

−βhIh2 τpI+
p + τeC+ A33

 ,
where634

A11 = −2δh − βhIh2 − τpI+
p − τeC+

− µh1 − ε,
A22 = βhSh − βhIh2 − τpI+

p − τeC+
− 2δh − µh2 − γ,

A33 = βhSh − 2δh − µh1 − ε − µh2 − γ.

Define the function635

P(x) = P(Sh, Ih1, Ih2) = diag
(

Sh

Ih2
,

Sh

Ih2
,

Sh

Ih2

)
.

It holds that636

P f P−1 = diag

S
′

h

Sh
−

I
′

h2

Ih2
,

S
′

h

Sh
−

I
′

h2

Ih2
,

S
′

h

Sh
−

I
′

h2

Ih2

 .
Moreover,637

B = P f P−1 + PA[2]P−1

=



S
′

h

Sh
−

I
′

h2

Ih2
+ A11 0 βhSh

ε
S
′

h

Sh
−

I
′

h2

Ih2
+ A22 0

−βhIh2 τpI+
p + τeC+

S
′

h

Sh
−

I
′

h2

Ih2
+ A33


=

(
B11 B12
B21 B22

)
,

where638

B11 =
S
′

h

Sh
−

I
′

h2

Ih2
− 2δh − βhIh2 − τpI+

p − τeC+
− µh1 − ε , B12 =

(
0, βhSh

)
; B21 =

(
ε,−βhIh2

)T ,

639

B22 =


S
′

h

Sh
−

I
′

h2

Ih2
+ A22 0

τpI+
p + τeC+

S
′

h

Sh
−

I
′

h2

Ih2
+ A33

 .

Let (u1,u2,u3) be the vectors in R3
≡ R

 3
2


.640

We choose a norm inR3 as ‖(u1,u2,u3)‖ = supi |ui|, andµ(B) = supi(Re(bii)+
∑

j,i |bi j|) denotes the Lozinskil641
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measure with respect to the norm above. By the method in [47], we have the following estimate:642

µ(B) ≤ sup{g1; g2},

where643

g1 = µ1(B11) + |B12| and g2 = µ1(B22) + |B21|.

|B12| and |B21| are the matrix norms with respect to l1 − norm. µ1 is the Lozinskil measure with respect to644

the l1 − norm.645

Thus we have646

µ1(B11) =
S
′

h

Sh
−

I
′

h2

Ih2
− βhIh2 − τpI+

p − τeC+
− 2δh − µh1 − ε,

µ1(B22) =
S
′

h

Sh
−

I
′

h2

Ih2
+ max

{
βhSh − βhIh2 − 2δh − µh2 − γ , βhSh − 2δh − µh1 − ε − µh2 − γ

}
,

|B12| = max j(
∑2

i=1 |ai j|) = βhSh and |B21| = max j(
∑2

i=1 |ai j|) = ε + βhIh2.

.

Using the fact that647

I
′

h2

Ih2
= βhSh + ε

Ih1

Ih2
− δh − µh2 − γ,

we have648

g1 =
S
′

h

Sh
−
εIh1

Ih2
− βhIh2 − τpI+

p − τeC+
− δh − µh1 − ε + µh2 + γ,

g2 =
S
′

h

Sh
+ max

{
−δh −

εIh1

Ih2
+ ε,−

εIh1

Ih2
− δh − µh1 + βhIh2

}
,

for t > T. Because of the uniform persistence (see Theorem 4.10), we can select the constants so that there649

exists T > 0 independent of (S0
p, I0

p,C0,S0
h, I

0
h1, I

0
h2,R

0
h) ∈ K such that kI2 ≤ Ih1(t) ≤ KI2 and kI3 ≤ Ih2(t) ≤ KI3650

for t > T.651

Therefore, setting652

b1 =
εkI2

KI3

+ βhkI3 + τpI+
p + τeC+ + δh + µh1 + 2ε − µh2 − γ,

b2 =
εkI2

KI3

+ δh + µh1 − βhKI3 + ε,

we have653

µ(B) ≤
S
′

h

Sh
+ max

{
−b1,−δh −

εkI2

KI3

,−b2

}
=

S
′

h

Sh
− b,

where654

b = min
{

b1, δh +
εkI2

KI3

, b2

}
with b1 ≥ 0, b2 ≥ 0.

Along each solution (Sh(t), Ih1(t), Ih2(t)) of (4.5) such that (S0
h, I

0
h1, I

0
h2) ∈ K and t > T, we have655

1
t

∫ t
0 µ(B)ds ≤

1
t

∫ T
0 µ(B)ds +

1
t

∫ t
T

S
′

h

Sh
− b

 ds ≤
1
t

∫ T
0 µ(B)ds +

1
t

ln
Sh(t)
Sh(T)

− b
t − T

t
.

This implies that q ≤ −
b
2
< 0, if the following conditions hold true:656

µh2 + γ ≤
εkI2

KI3

+ βhkI3 + τpI+
p + τeC+ + δh + µh1 + 2ε,

βhKI3 ≤
εkI2

KI3

+ δh + µh1 + ε.

This completes the proof.657
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