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Abstract

On the basis of the WHO legitimated fear that there will be an avian influenza virus strain capable
of mutating once it reaches the human population and sustains human-to-human transmissions, we
formulate an "hypothetical" mathematical model which accounts for the mutation of an avian influenza
virus having the ability to spill over into the human population and become a highly pathogenic
strain. We compute the basic reproduction number of the model and use it to study the existence and
stability of equilibrium points. We derive conditions for the global asymptotic stability of any of the
three equilibrium. The model is extended to incorporate six relevant time-dependent controls, and use
the Pontryagin’s maximum principle to derive the necessary conditions for optimal disease control.
Finally, the optimal control problem is solved numerically to show the effect of each control parameter
and their combination. The incremental cost-effectiveness ratios are calculated to investigate the cost-
effectiveness of all possible combinations of the control strategies. This study suggests that quarantine
infected humans might be the most cost-effective strategy to control avian influenza transmissions with
the virus mutation.

Keywords: Avian influenza, Mutation, Environment transmission, Cost-effectiveness.

1. Introduction

The avian influenza virus (AIV) does not usually infect humans. Avian influenza is caused by several
viruses sub-types which can undergo high mutation rate to become harmful to humans. Of the most
pathogene, avian influenza viruses H5N1, H7N4, H7N7, H7N9, HIN2 pose a significant potential threat
to humans. Infected poultry and their secretions, feces and water contaminated with the virus are the
main sources of transmission of avian influenza. In the month of February 2013, 3 persons were infected
for the first time, and as of May 31, 132 cases have been discovered, including 37 deaths, and the mortality
rate is as high as 30% [1, 2, 3, 4]. At present, human infection with avian influenza A (H7ND9) is still
sporadic. Sporadic infections almost affect poultry mainly in farms, live poultry markets, wet markets
and other areas [5, 6, 7, 8, 9]. In humans, the avian influenza virus causes similar symptoms to those
of other types of influenza. These include fever, cough, sore throat, muscle aches, conjunctivitis and, in
extreme cases, acute respiratory problems and potentially fatal pneumonia [3, 10]. The incubation time
for humans who are infected with the H7N9 influenza virus is about seven days and currently there are
drugs to fight this virus [3]. While these antiviral drugs are known to be clinically effective against avian
influenza H7NDY, there is still a very high death rate from avian influenza H7NO.

It should be noted that poultry are the natural storage hosts of avian influenza virus. Exposed
and infected poultry can shed the virus into the environment through their secretions and feces. The
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virus can survive for several weeks to months in feces or contaminated environment under appropriate
conditions. Environmental transmission therefore predominates over direct transmission in the spread
of influenza virus [11, 12]. The most readily infectious source for humans is virus-carrying poultry, and
the primary routes of transmission are poultry-to-human and environment-to-human [3]. Although the
H7N9 virus is not thought to have a high capacity to spread efficiently from humans to humans, there
is a strong fear that, once the virus infects humans from poultry, it will mutate to a highly pathogenic
strain for humans and spreads among them. In this regards, the WHO circular [3] stipulates and I quote
"The circulation of certain subtypes of avian viruses, such as A(H5) and A(H7N9) in poultry are a public
health concern because these viruses generally cause severe disease in humans and have the capacity to
mutate and thus transmit more easily from person to person". This is a sufficient motivation for us to
propose a mathematical model which accounts for these features and highlight some recommendations
for the future interventions in order to strengthen national and global preparedness and response. Of
course, we are not the first researchers to consider this and there are very few existing models taking into
the avian influenza vitus mutation to a strain might be highly pathogenic within humans [26, 28, 27].

A number of mathematical modelling studies have been carried out to quantify the potential burden
of an influenza pandemic (see, for example, [13, 14, 15, 16]). Although influenza A outbreaks in poultry
are generally stopped by a systematic slaughtering of poultry, this practice is economically suicidal, and
one should rather focus on affordable preventive measures. This calls for urgent control strategies, at
the lowest cost, for the greatest poultry production. With these specific objectives, several mathematical
models have been proposed by many researchers. Nuné and co-workers [17] investigated a model
to explore the role of hospital and community control measures, antiviral medicines, and vaccination
in controlling an influenza pandemic in a population. In [18, 19, 20] the authors modeled the spread
of H7N9 avian influenza with a semilinear and half-saturation incidence rate. In [21] the impacts
of both pharmaceutical and non-pharmaceutical control strategies are considered, while the human
psychological effect in response to H5N1 avian influenza outbreaks is examined in [22]. In [13], the
authors proposed an epidemic model with control, in which they consider the incubation periods of
avian influenza A (H7N9) virus with different time delay in the infective avian and human populations.
In the same way, a deterministic compartmental eco-epidemiological model with optimal control of
Newcastle disease (ND) in Tanzania is proposed and analysed by Hugo and co-workers [23]. Recently,
Lee and his collaborators [24] modeled the transmission dynamics and control strategies assessment of
H5NG6 avian influenza in the Philippines. Jung and co-authors [25] extended the work in [26] by seeking
the optimal control strategy for the prevention of the avian influenza pandemic. Similarly, Agusto [27]
extended the work of Gumel [28] by monitoring the isolation rate of humans infected with avian and
mutant strains.

The current study takes over the work first mathematical model in [26], which considered the virus
mutation and the spread of the mutated strain in the human population and extends it to account for the
environmental transmissions (from environment to poultry; from environment to humans), mimicking
our previous formulation in [11]. In so doing, we extend the above-mentioned models in the following
three directions:

(1) We consider a mutation of an avian influenza virus and its spill over to in a highly pathogenic
strain in the human population and assume (according to WHO circular [3] and fear) that only the
mutated strain spreads the disease from human-to-human.

(2) Inorder toreduce the number of infected poultry, the number of infected humans, the concentration
of avian influenza viruses in the environment, we consider the following six control strategies:
The vaccination of poultry; the environmental sanitation; the treatment of infected humans; the
quarantine of infected persons; the education campaigns aiming at advising people to avoid
contacts with infected poultry and environments.

(3) We design and solve an optimal problem to identify which of the six control strategies or combi-
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nation minimizes the number of infected humans.

The model obtained is thoroughly analyzed, both theoretically and computationally.

The following is the layout of the remainder of the paper. After formulating the two-strain avian
influenza model and showing its basic properties in Section 2, we present the global analysis of the
avian-only model in Section 3. Section 4 focuses on the global analysis of the full model whereas
Section 5 provides an analysis of the optimal control model. The theoretical findings are highlighted
by numerical simulations in Section 6, and Section 7 deals with the control strategies cost-effectiveness.
The last Section is about the conclusion and possible extensions.

2. Two-strain avian influenza model formulation and its basic properties

2.1. Two-strain avian influenza model formulation

There are many dynamic models to describe the spread of infectious diseases. However, an impor-
tant feature of avian influenza is that not only can it spread between avian and human populations,
but, there is also a high mutation rate of the pathogen. That is, humans can be infected by viruses
from infected poultry and poultry environment (avian strain) and also by modification of the genetic
information in the genome of a human cell (mutant strain). Thus, modelling the dynamic system of the
avian and humans population respectively, and combining the two models are appropriate for avian in-
fluenza. Furthermore, to place our model derivation in a specific context, we provide the main modeling
assumptions.

e Infected poultry remains in the disease state and cannot recover.

e Death due to disease in poultry population is negligible as compared to the natural mortality. This
is due to the fact that avian influenza in poultry is low pathogenic.

e Infected humans with the mutant strain can recover and this recovered humans must achieve
permanent immunity.

e Since avian influenza is highly pathogenic in humans, the natural death rate in the human popu-
lation is negligible compared to that due to the disease.

e Since the disease is extremely virulent among humans, those infected with the avian strain cannot
recover naturally.

Suppose that the total variable at time ¢ of the poultry population N,(t) and the human population
Nj,(t) is divided into two and three sub-populations, respectively, according to disease status. Susceptible
poultry and infected poultry are denoted by S,(t) and I,(t), respectively. Sj(t) and Ry (t) denote susceptible
humans and recovered humans, respectively. The subpopulations Ij,;(t) and Ij,(t) stand for infected
humans with the avian strain and mutant strain, respectively. The concentration of the viruses in the
environment is denoted by C. It is assumed that all new immigrants and newborns in the poultry and
human populations are susceptible.

The above description leads to a model which is symbolically schematized in Figure 1, and from
which the following system of highly nonlinear differential equation is derived.



Figure 1: Flowchart of avian influenza transmission of system (2.1).
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Every parameter of model (2.1) given in Table 1 is assumed nonnegative and described as follows: Ay

Table 1: Biological significance of the model parameters (2.1)—(2.2).

Symbols Definition Units

Ap Numbers of imported poultry ind/week

Bo Rate at which poultry-to-poultry avian influenza is contracted (ind.week)™!
U1 Death rate in humans due to the avian strain. week ™!

Be Rate at which environment-to-poultry avian influenza is contracted ~ (ind.week)™!
op Natural death rate of poultry week ™!

Up Disease-related death rate week™!

Ay Recruitment rate for humans ind/week

B Rate at which human-to-human avian influenza is contracted (ind.week)™
Tp Rate at which poultry-to-human avian influenza is contracted week™!

€ Mutation rate of virus no unit

O Natural death rate of humans week™!

K Half-saturation constant for aerosols g.m?

& Natural mortality rate of virus week™!

Te Rate at which environment-to-human avian influenza is contracted  ind /(g.m3.week)
¢ Emission rate of poultry g.m%/(ind.week)
Un2 Human mortality rate induced by the mutant strain week ™!

y Recovery rate of humans infected with the mutant strain week ™!

and A, represents the recruitment rate of humans and the numbers of imported poultry, respectively. 8,
is the direct contact rate in poultry host such that I, measures the infection force of the infective poultry.
In the latter saturated incidence function, . denotes the indirect contact rate in poultry host, such that
(Be > Po); 1/(x + C) represents the saturation due to the cleaning of the farm when the concentration
of excretion becomes large, and « is the concentration of avian viruses attached to aerosol particles in
the farm with 50% chance of catching the infection. The population of infected poultry is increased by

the infection of susceptible poultry at rate (ﬁvIp + BeC/(x + C)) Sp and is diminished by natural death at
constant rate 6, and disease death at rate y,. The infected poultry infects the farm at constant rate ¢
and the natural death rate of virus is . The susceptible humans decrease due to the spill over of the
disease from poultry population and the disease mutation in human population. Then, 7, is the rate at
which poultry-to-human avian strain is contracted, 7. is the rate at which environment-to-human avian
strain is contracted and f, is the rate at which human-to-human individual mutant strain is contracted.
According to Iwami et al [26], it is assumed that humans infected with the avian strain do not infect other
humans, so the infected humans with avian strain decrease due to the mutation at rate €, disease-related
death at rate pj,; and natural death at rate 6. The infected humans with mutant strain diminish due to
the recovery of the infected humans with mutant strain at rate y, disease-related death at rate yj, and
natural death at rate o,
The initial condition for system (2.1) takes the form

5,(0) >0, I,(0) > 0, C(0) 20, S,(0) >0, I4(0) = 0, I;2(0) = 0, R,(0) = 0. (2.2)

By the fundamental theory of ordinary differential equations [29], we can establish that system (2.1) has
a unique solution (Sy(t), I,(t), C(t), Sy(t), I (), I2(t), Ry (t)) satisfying the initial condition (2.2).

2.2. The positivity and boundedness of solutions

This section shows that the solutions of system (2.1) are positive and bounded under the initial
condition (2.2).
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Theorem 2.1. All solutions of system (2.1) with initial condition (2.2) are defined on (0, co) and remain positive
forall t > 0.

Proof. See Appendix B.1. m
Theorem 2.2. All solutions of system (2.1) with initial condition (2.2) are bounded.
Proof. See Appendix B.2. m

From the above discussion, we can conclude that the following set

Ap A PAp
Q= (Sp, CSh,Ihl,Ihz,Rh)G]R /S +Ip Sh+1h1+1h2+Rh<_' C<—
6 6}1 6p5

is positively invariant for system (2.1).

3. Global analysis of the avian—-only model

We first look at the poultry system below, as it decouples from the human system.

s, 5,C
=5 =N 7 BoSply = Bel - = 0pSps
dI 5,C
= PoSplp + Peiz— = ©Op + pip)ps (3.1)
ac
iy S
ar = P eC

3.1. The basic reproduction numbers and feasible equilibria
Two equilibria exist for system (3.1). The first one is the disease-free equilibrium.

70 = (8%,0,0) where Sg = 6_;7/

P
which is the state in which infected poultry are absent and the environment is virus-free. The second is a
poultry endemic equilibrium Z* = (S;r , I; ,C"), which represents the state in which infected poultry are
found. This is calculated by computing the basic reproduction number of avian influenza in the poultry
population, Rg. The infected compartments in system (3.1) are I, and C, ordered (I, C). The nonlinear
terms with new infection ¥ and the outflow term V are given respectively by

ro el ) ()

By evaluating the derivatives of ¥ and V at the disease-free equilibrium ZY, the following matrices are
obtained:

0 PeSy op + 0
F=| BoSp % |and V= [ Hp ]
0 0 —¢ ¢

By applying the next generation approach developed by van den Driessche and Watmough [31], the
basic reproduction number of system (3.1) is determined by the spectral radius of FV~!, namely

@ Pty BNy
O Oopluy +8p) - wOpE(y +0p)

6
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It is straightforward to see that if Rg > 1, besides the disease-free equilibrium Z°, then system (3.1) has
an endemic equilibrium Z*, satisfying

¢ Apé

Ct==I'and S} = , 32
g P Be(@Iy + 1&) + Op(PIF + k&) + Bep L 52)
where [ is the positive real root of the following quadratic equation:
P(I}) = bl + b1y + b = 0, (3.3)
with
PoP(Op + ip)
b> e
AN eP(Op + 0p(0p +
by PolApd  Pe(Op + pip) — PO(0p ‘up)_ﬁvK(ép‘i'[-lp)r
3 B qbg 3
by = Bolpk+ % — 10p(8p + 1) = kOO + 1) (R = 1).

The solutions of (3.3) must be real and positive for the endemic equilibrium to exist. We note that
b <0y <0 Rg <Lb >0 Rg > 1. Set A(Rg) = b% — 4byby and b% — 4byby = 0. It follows that
b? — 4by16,(6p + ip)(RE — 1) = 0. Setting R* = R gives

R* =1 b% h R =1 Eb%
=14 —————, thatisR"=1- .

The following statements are true:
AR >0 R <R AR =0 R =R and A(R)) <0 & R < R".
Different solutions can be obtained depending on the signs of b; and by. It then follows that :
Theorem 3.1. System (3.3)
(i) always has the disease-free equilibrium;

(2i) has a unique endemic equilibrium if Rg >1;

(3i) has a unique endemic equilibrium whenever Rg =1and b; > 0;

(4i) has a unique endemic equilibrium of multiplicity 2 when Rg =R*and by > 0;

(6i) has two endemic equilibria, Zf and Z; when R* < 7%8 <land by > 0;

(6i) has no endemic equilibria whenever R* > R’g or whenever R* < RZ < 1and by < 0 or whenever R’g <land
bl < 0.

Conclusion (57) of Theorem 3.1 indicates that a backward bifurcation may occur when R* < Rg < 1land
b1 > 0 for some parameter values. But in our case, the following Theorem applies.

Theorem 3.2. The system (3.1) presents a trans-critical forward bifurcation at Rg =1

Proof. The proof is based on the theoretical results in [30]. The proof is omitted here, but we invite the
reader to look at our previous work [11], dealing with a similar case. The forward bifurcation diagram
is given in Figure 2 below. m
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Figure 2: The forward bifurcation curve. The parameter values we used are A, =50, £ =500, 8, =2,7,=0.1,5, =6, ¢ = 104, Op
=5, B, =0.003, A, =3, x =10%,y = 0.01, 6, = 0.015, pps =1, iz = 0.06, 1, =0.6, 11, =1, € =0.001.

3.2. Local asymptotic stability

Theorem 3.3. The disease-free equilibrium Z° of the poultry system (3.1) is locally asymptotically stable whenever
Rg <1, but unstable when Rg > 1.

Proof. It’s straightforward.
]

Theorem 3.4. The endemic equilibrium Z* of the poultry system (3.1) is locally asymptotically stable whenever
R > 1.
0

Proof. It is obvious. =

3.3. Global asymptotic stability

In this section we are interested in the global asymptotic stability of each of the feasible equilibria of
system (3.1).

Thelorem 3.5. If Rg < 1, the disease-free equilibrium Z° of the poultry system (3.1) is globally asymptotically
stable in C).

Proof. Define the Lyapunov function

BelAp

w5,£C

5
Hi(t) = S, — S9 - S) 1n[5—§] +1, +
p



s Using the fact that A, = 6,59, and calculating the derivative of Hj(t) along positive solutions of system

184 (3.1) yields
dHi (f)
dt

(1_

SO

:

Sp

ds,(t)

dL,(b)

PelNp dC(t)

dt

dt

k0p& dt

SO C
_ (1 - s_p] (A9 = BeSoly ey = 305))
By
+ (ﬁvsplp tPeSp e~ G+ )l )+ ) K0 5@ R ¢
5, C ﬁe¢Ap
= _S_p(sp ~ 5P+ ﬁvSOIp + BeS) KOpé e

—(0p + pp)lp —

185

dH;(t)
dt

186

187 singleton {ZO}.

188

189
190

in the interior of CJ.

191

122 Define

Hz(t) = (3 [Sp S - St ln(

193

194

Straightforward calculations lead to

Sy
S+

ﬁep

C.
K0p

It is easy to see that the largest invariant subset included in the set {(Sp, ,C) e Q)

5
< -S—’”(s,,—so) + (6p +,Jp)( —1)1 <0, when R <1.
p

dHl()

0} is the

Thus, by LaSalle’s Invariance Principle [32], the disease-free equ111br1um 79 is globally
asymptotically stable in Q. This completes the proof. m

Theorem 3.6. If R’g > 1, the endemic equilibrium Z* of the poultry system (3.1) is globally asymptotically stable
Proof. Let (Sy(t), I,(t), C(t)) be any positive solution of system (3.1) with initial condition (S,(0), I,(0), C(0)).

)] to [Ip_ g m(;)

where the constants c3, ¢4 and c¢5 will be determined later.
The derivative of H,(t) along the positive solutions of the system (3.1) gives

+C5[C—C+ C+ln(cc+)]

dH, Sy \ dSy I\ dl, ct\dc
T C3(1_S_)dt+41 T8 R G
S+ S+ + ﬁ S C
p e“p edp
= (3 (1 - S_p) |:6PS;— + ﬁyS;I;— + +—C+ - 6PSP - ﬁvSpIp - m]
b 5,0, + P20C S+ PoC ),
el P e TP T paeren )
+ I;C
R e
195
6p(Sp _ S;)Z + .+
= —Cgs— + ﬁUS;I;(C3 + C4) + (C3 + C4) + ﬁvS I (C4 - C3)
P
27+ +2 + +
ﬁe p ﬁvS; Ip ﬁes C . 5 S @
K T C (C4 - 3) Sp C3 — p( )C3 + ﬁUS+ IPC3 + C C3
—5s+1c—ﬁ— — c4BuS,I — ﬁESCI
PR T e+ C P TR THE L0+ 0)
OLIC oIt
+C5¢IP —Cs5 Cp"' - Z: + qf)I;C5.



196

197

198
199

200

201

202

203

204

205
206
207
208

209

210

By choosing

BeS;C*
C3 = C4 and C5 = m@;,
p
we have o .
(5, + 0)(Sp — S) St s
i _ e 5 o LA
dt Sy S S;
WP S Cr ey SLCKHCH ¢
Sk +Ct S, C*(x+0) SiL,C*(x+C) C* CI}

+\2 +
= _C35p(sps—sp) + CgﬁvS;I; [2 - 'Z_P - g—i]
p p p
BeS,CY S, x+C S Lix+ctc ctly
k+C* | S, x+C* SiL, k+CC* CIf
BeSTCH BeSIC BSIC BeS;CHx +0)
PENCI P T

+C3

5 Sy
= —C3 + C3ﬁUS;I; [2 - > —]

S S, S&

+5 + p+ j
P, S x+C ShkectCc Ch
k+Ct| S, k+C" S, k+CCr CIY

KB.SECH(C — CH?
O R+ O+ C

When Rg > 1, it follows from the inequality of arithmetic and geometric means that H}(t) < 0
for (Sp(t), Ip(1), C(t)) # (S5, I, C"). Therefore, by LaSalle’s Invariance Principle [32], the equilibrium
(55,17, C") is globally asymptotically stable. =

4. Global analysis of the full model

Now we investigate the full system (2.1).

4.1. The basic reproduction numbers and feasible equilibria

System (2.1) has three equilibria. The first one is the full disease free equilibrium

F*=(89,0,0,5;,0,0,0) with S) = /6\—:
which represents the state in which the infected poultry with avian strain, infected humans with avian
strain and mutant strain are absent and the environment is virus-free.

For other equilibria, we first evaluate the basic reproduction number for mutant strain in the human
population. By applying the next generation approach developed by van den Driessche and Watmough
[31], the basic reproduction number of system (2.1) is

Ry = max{Rp,ﬂg},

where
I Br/An

0~ On(tn +On + )

10
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4.2. Sensitivity of the basic reproduction number

To determine the parameters that strongly affect the reproduction number, we use the same methods
as [33, 34, 35, 36]. As can be easily observed from sections 3.1 and 4.1, that the reproduction number is a
function of the vital parameters of the system dynamics.

Definition 4.1. The normalized forward sensitivity index of a variable, I1, that depends differentially on a
parameter, w, is defined as:
n_ I @
Yo = 90 00
Now using (4.1), we derive the sensitivity of Ry to each of the parameters. The sensitivity index of Ry
with respect to ., for example, is

(4.1)

%, _ 9Ro y Be

Vg, = PB. " Ry’

The detailed indexes of the sensitivity of Ry resulting from the evaluation of the other model parameters

are presented in Table 2 below. A positive (resp. negative) index indicates that an increase in the
parameter value results in an increase (resp. decrease) in the Ry value.

(4.2)

Table 2: Sensitivity indexes for Ry. The parameter values we used are: A, =50, £ =500,8,=2,7,=0.1,5,=6,¢ = 104, 6, =5,
Brn =0.003, Ay, =3, % =10°%, 7 = 0.01, 6, = 0.015, s =1, pp = 0.06, 1, = 0.6, 1, =1, € =0.001.

Parameter Sensitivity index Value Parameter Sensitivity index  Value
Bo Vg 0.9999 ™ Vi -0.1667
Be i~ 9.9994x1076 Bi V! 1
Ay o~ 1 Ay o~ 1
¢ yfgo 5.9996x107 o Vo -1.1765
3 e -5.9996x10~ Wi o -0.7059
Sp yg" -1.8333 y YR -0.1176

From Table 2, we can observe that the parameters ., B, Ay, ¢, f, and Ay, have each a positive influence
R

ﬁho v Vfi -
increase in 100% of B, A, and Ay, results in an increase in 100% in the reproduction number Ry. In
reviewing the sensitivity analysis, it is not biologically reasonable and economical to suggest that the
mortality rate (poultry or human) be increased in order to control the disease. Other possible sensitive
parameters that are important for effective disease control are the recruitment rate (poultry or human)
through poultry vaccination and quarantine of infected humans or treatment of infected individuals and
sensitisation of humans.

The second equilibrium is the human-endemic equilibrium given by

in the value of Ry. For instance, the biological implication of y 1 and yﬁz = 1 is that an

Op + U + 7y 6_h
B Bn

which corresponds to the state in which poultry and humans infected with the avian strain are absent
but humans infected with the mutant strain are present and the environment is free from virus.
The third equilibrium is the full-endemic equilibrium given by

(Ri-1), R = L1t

F* =(S),0,0,5;,0,I},, R}), where S} = =3l

+ _
h2’ 4 Ih2 -

Ay
Tply + TeCH + Bul}, + &y,

F' = (S+,I;,C+,SZ,I;11,I,’;2,RZ), where S; =

+ +
T,,Ip + 7,C .
hl

* y* *
Ri=L[ and[, = b "
h (Sh h2 an h1 6h+[-1h1 + €

11
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which corresponds to the state in which the poultry and humans are infected with the avian strain and
the mutant strain. Here [, is the largest solution of the following equation:

H(I;,) = el + ail) + ag = 0, (4.3)
where
ay = Puln+ pm +€)On + iz +7),
ar = (tply +7CT + 61)(Op + pima + €)(On + pin2 + ¥) — Puln(On + i +€),
ag = —eMy(tply + 7.CT).
Since H(0) < 0 and lim%_)c>0 H(I},) = oo, F* is unique if it exists. The following Lemma summarises the

above investigation about the existence of equilibria.

Lemma 4.2. F° always exists in Q. Ing > 1and Rg < 1, then F* exists in Q. F* exists in Q), ing > 1.
4.3. Local asymptotic stability
The following Theorem is obtained for the local stability of these equilibria.

Theorem 4.3. Ing < 1and Rg <1, then FY is LAS. Ing < 1and Rg > 1, then F* is LAS. Ifﬂg > 1, then F* is
LAS.

Proof. See Appendix C.1. m

4.4. Global asymptotic stability

This section is devoted to the global analysis of the spread of the avian strain and the mutant strain

in humans. We denote by ¢ the initial value for system (2.1) (that is ¢ = (52, 12, 52, CO,Igl,Igz, Rg)),

and w(yo) denotes an w-limit set of the orbit passing through 9. We need the following Lemmas and
Theorems to formulate our global stability Theorem.
Lemma 4.4. Let $° = limsup,_,, Sy(t). Then S5;° < S).

Proof. Based on the fourth equality of system (2.1), we have
Si = Ay — TpSuly — TeSiC = BrSnliz — 65Sn < Ay — O3S
Integrating this inequality over [0, t] we obtain
Sn(t) < SY +15,(0) — S0,
Given €1 > 0, we can choose t; large enough so that
1Sk(0) — Sple™®" < €1, for t > #.

Hence
Sn(t) < S + €, for t > t.

Thus, for T7 > 4, SUpP.T, Su(t) < 52 + €. Letting T} — oo we deduce that S;° < 52 + €1. Hence as €1 can
be chosen arbitrarily small, S;° < 52. This completes the proof of Lemma 4.4. m
As .
S+l +Ilp+Ry = Ap—=06p(Sp+ I + Iz + Ry) — il — izl
< Ap = 6u(Sp + Int +Inp + Ry),

we can easily prove that §° + [T + [ + R® < 52, where [IY = limsup,_, Iin(f), R> = limsup, , Ry(f)
and [;7 = limsup,_,, In2(f).
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Theorem 4.5. [26] Assume that X is a subset of R} and S is a subset of X. Let X be forward invariant. If
w(1o) C S for all Yo € X and there only exists an equilibrium E such that E is GAS in S and E is LAS in X, then
Eis GAS in X.

At present, we are able to prove the GAS of V. Let

Qp = {(SP’IP’C’ ShrlhlthZ/Rh) / Sp >0, Ip =0,C= O,Sh >0, I,;=0, I, =0,Ry, = 0},

O

{(Sp 1, C.Sp T, I Ry) / Sp > 0, 1, 20, C20, §,> 0, Iy 20, Iip 2 0, Ry 20}

Theorem 4.6. If R} < 1and Rg <1, then FO is GAS in Q.

Proof. Since Rg < 1, it follows from Theorem 3.5 that lim;c Sy(f) = SY

- lim; o Iy(t) = 0 and
limy, C(¢) = 0. Thus

thm In(t) = tlim A~ Onrum+et — o
and the following equation holds as t — oo,

Lo (8) = (BrSu(t) — (2 + O + Y)in ().

From Lemma 4.4, when t — o0, we have

Iio < (BuS) — (i + 0 + YDl < (i + 5+ 9) (R = 1) .

Thus ‘ ,
lim I)5 < lim At 0 (R=1) = 0 if and only if Rl < 1.

t—o0

It follows that, for any g in Q1, w(1g) exists in Q. It is obvious that FOis GAS in Q. Consequently, we
can conclude by Theorem 4.5 that F® is GASon Q;. =
Now we give the following Theorem which proves that F* is GAS. Let

Q

{(Sp, 1, C, S, I, T, Ry) € RY, /S, >0, 1, =0,C=0,5, > 0, Ijy =0, I >0, Ry >0,

3

{(Sp/ Ip/ C/ Sh/ Ihl/IhZI Rh) € RZ_/SP > 01 Ip = O/ C> 0/ Sh > 01 Ihl = 0/ Ihz > 0/ Rh > O} .

Theorem 4.7. If R < 1and R > 1, then F* is GAS in Q.

Proof. The dynamics of the spread of mutant strain is given by the following system on €.

ds,
S

=k = Ay - BruSnln2 — O1Sh,

ddt (4.4)
Inp

dd—t = BrSulna — (un2 + on + )i,
Ry, _
dt = VIhZ (5th.

Obviously, the poultry system and the human system are independent. So lim;,c Sy(t) = 52. Let us
define
Q4 = {(Sp/ SnoIn2, Ry) € lRi / Sp >0,5,>0,I)p>0, R, > 0}.

To prove Theorem 4.7, the following Lemma is relevant.
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Lemma 4.8. If R} > 1, then (S0, S, I}, R}) is GAS in Q.

Proof. Let N = S} + [/, + R;". System (4.4) is dissipative and has a positive equilibrium (Sg, Sy, Lh, Ry if
R’S > 1. Furthermore, (52, S7, I, Rl) is LAS (see Theorem 4.3) when Rg > 1.

Since system (4.4) is dissipative, positive constants k and K must exist such that k < N < K for a
sufficiently large time. Let us define

Qs = {(SnloR) €RS /Sy =S, In =T,

i Ri20, k<N <K},

Qs = {(SnloR) €RS /Sy =S, Ip =T

b Ri=0, k<N <K}.

Q)5 is a compact subset of IRi, Q) is a compact subset of Q5 and ()5 is forward invariant. We define a C!
function: P : Qs — Ry such that P(0) = Ry, which verifies P(0) = 0 if and only if o € Q. On the other
hand, P(c) > 0, Yo € Q. Therefore, there exists a positive constant 0 such that liminf;_,. Ry(t) > 6,
Vg € Q5 \ Qg by Appendix A.1. It results that w(yg) exists in Qs \ Qp, Y1Pg € Int]Ri . It is obvious

that (S}, I;2, R;;) is GAS in Qs \ Q. We can now conclude that (S, 11:2' R;) is GAS in IntIRi by virtue of

Theorem 4.5. m
It is worth noting that Lemma 4.8 indicates that the mutant strain is endemic in the human population
if a human infected with the mutant strain exists and Rg > 1.

Thanks to Theorem 3.5, we have Rg < 1, limye0 Sp(t) = Sg, lim;,c0 Ip(t) = 0 and lim;— C(t) = 0.
Therefore, lim; .« Iy () = 0. This results in w(p) existing in (), for all Yo in Q3. By virtue of the Lemma
4.8, F* is GAS in (). We therefore deduce that F* is GAS in QO3 by Theorem 4.5. m
We next move on to the case where both the avian and mutant strains are spreading among humans.

Definition 4.9. We say that system (2.1) is permanent if

ks, < liminf;e Sp(f) < limsup,_,  Sp(t) < K,
kr, < liminf; e I, (t) < limsup,_,  I,(t) < Kp,
kc <liminf; o C(t) < limsup,_,  C(t) < K¢
ks, < liminf; . Sp(t) < limsup,_, ., Sp(t) < Ks,
ki, < liminf; e Iy (f) < limsup,_,  In1(t) < K,
ki, < liminfi e Iip(t) < limsup,_,  Iip(t) < Kj,

kg < liminf; o Ry(t) < limsup,_, . Ru(t) < Kg,

for any solution of system (2.1) with g € Int]RZ. The constants k; and K; (i = S1,11,C, Sp, 11, I», R) are positive
and independent of 1.

Afterwards, we first state and prove the following result which will help us to prove the global stability
of the endemic equilibrium F".

Theorem 4.10. If Rg > 1, then system (2.1) is permanent, that is, the infected humans with avian strain and
mutant strain persist.

Proof. It is obvious that K;; (i = S1, 11, C, S, I1, I>, R) exist according to Theorem 2.2. Let’s define

Q,

{(Sp, 1, C, Sy It T Ry) € R, [ Sy 2 ks, , I 2 ki, C 2 ke, ki <N + Ny < Ky,

Q, {(Sp/ 1, C, S It o, Ry) €RY, [ Sy 2 ks, , I 2 ki, C2 ke, Sp=0, ki <N, + Ny <Ky}
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Theorems 2.2, 3.5 and 3.6 show that (), is a compact subset of R’,, Oy, is a compact subset of Q, and Q, is

forward invariant (Theorem 3.6 shows that Z* is GAS when Rg > 1).Consider P = S;,. Then P : Q, — R}

is C! and verifies P(0) = 0 if and only if o € (). Furthermore, P(0) > 0, Yo € Q,. Consequently, there

exists a positive constant kg, such that lim inf;_,. Sy(t) > ks,, for all {9 in Q, \ (3, by Appendix A.1.
Let’s now define

Qe = {(Sp, I, C, S T, T, Ri) /Sp = ks, Ty > ki, € 2 ke, Sy > ks, Tia = 0, ki < N+ Njy < Ky

Similarly, a positive constant kj, exists such that liminf; . I (t) > ki, for all 1 in €3, \ Q.. The same
goes for all the other state variables. Therefore, we conclude that system (2.1) is permanent. m

Let us observe that in (2.1), the first three equations do not contain the variables Sy, Iy, I, and Rj,. Also
notice that the first three equations of the human system of (2.1) do not contain the variable R;. Since
Z* is GAS on IntR? according to Theorem 3.6, the study of the GAS of F* can be reduced to the study of
the GAS of the equilibrium (S;, I} |, I},,) of system (4.5) below

ds
d_th = An — TpSuly — ©eSnC* = BuSnln2 = OnSn,

dlin

i = ’l'pShI; + TgShC+ - (Ivlhl + 0y, + €)1, (4.5)

dlpy

el BuSnlnp + €l — (y + pno + o).

From Theorem 4.10 and the boundedness of solutions, it follows that a compact absorbing set exists
for system (2.1). Therefore, in Lemma Appendix C.1, both assumptions (H;) and (H>) are satisfied for
R > 1
0 > L
We now apply Lemma Appendix C.1 to derive the global stability of the endemic equilibrium F* in
the feasible region Q. So, the following Theorem applies.

Theorem 4.11. If Rg > 1, then the infective equilibriumn F* of system (2.1) is globally asymptotically stable in
the interior of O, if the following conditions are satisfied

€k
Up+y < K—Iz + Buki, + TpI; + 7.CT + 6 + pn + 2e,
I3
€k
ﬁhKI;; < —h + Oy + Unp1 + €.
Ki,

Proof. See Appendix C.3. m

5. Optimal control study

5.1. Optimal control problem formulation

We now extend the two-strain model (2.1) by Introducing vaccination, environmental sanitation,
quarantine, education campaigns and treatment. It should be noted that there are two categories of
susceptible humans: those in contact with poultry and those in contact with the poultry environment.
Improving the response of the susceptible human population through education campaigns is equivalent
to changing the behaviour of the susceptible population by providing them with information on the
occurrence of the disease. Therefore, disease information can be considered as a possible tool to trigger
the responsiveness of susceptible humans. If we consider these response intensities u and w as control
variables (0 < u(t), w(t) < 1), then 0 represents no response and 1 represents a complete response from
informed humans.
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336 Therefore, we obtain the following optimal control problem

das, 5,C
ar =Ay = Bo(l -1 t))S I, - = Be(1 —ua (1)) —K — OpSp,

I, 5,C
= = Bo(l =Syl + Bl = 11()) = — = Op + i)y,

dcC
ar = (fﬂp - EC—up(t)C,

ds
dth = Ay — (1= uz(®)tpSply — (1 — ug(t))7eSpC — (1 — ue(t))BrSnlno — 61Sn, G.1)
dlhl

I = (1= us®)tpSulp + (1 — ua(t))TeSiC — (1 + O + €l — us(t)Ip,

dl
d}f (1 = u()BrSulnz + €l — (tnz + O + V)2,

dR
dth =yl + us(t)ly — 64Ky,

337 where,

3 (i) uy(t)is the control variable based on the poultry vaccination,

@
©

3

@
©

(i1) up(t) is the control variable based on environmental sanitation,

a0 (iii) wu3(t) is the control variable which is based on the education campaign for humans in contact with
341 poultry,

b

i
o

3 (iv) u4(t)is the control variable based on the education campaign for humans in contact with the poultry
343 environment,

as (V) us(t) is the control variable for measuring the effectiveness of the treatment of infected humans
345 with avian strain,

3 (vi) ug(t) is the control variable which is based on the effort to reduce the number of contacts with
347 humans infected with mutant strain.

X
[

ss  The functions u;(t) are assumed to be at least Lebesgue measurable on [0, ¢¢]. The control set is defined

349 as
Q= {Mi(t) € Ll(oz tf) |0 < u1(t) < Umax, O < up(F) < Winar, 0 < uit) < 1}' (5.2)

s0  The upper bound wy,, is determined by the basic reproduction number of mutant strain Rg. Unmax
551 denote the upper bounds for the effort of vaccination. These bounds reflect practical limitations on the
sz maximum rates of controls in a given time period. So we have

Po(1 — uj(H))A Pe(1 = uj ())PA, (1 = ug (OB

Ry = Ly and R = .
0 Op(tip + 0Op) KOp(E + u5 (1)) (up + 5p) O Sp(una + 0n +7)
ss3 It follows that
KOp(pp + 0p)(E + 143) 1
7> 1; and RM* > 1 =1-—"F7 7 2. and =1-—.
RO > 1, an Ro > 1 = Upax ,Be/\qu T KApﬁv(E n u;)/ and Wyax Rg
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The existence of time-dependent controls makes the analysis of system (5.1) more involved. Indeed, now
the dynamics of the disease depends on the evolution of each control profile. In the sequel, an optimal
control analysis of this problem is carried out. We seek to minimise the total number of infections over
the time interval [0, ¢7]; that is, by defining the objective functional

g A A A A A
] = f {Bllp + Balyy + Balip + =01 + Aqup + Asud + 2202 + L2 + Z2uk + —3u§}dt,
0 2 2 2 2 2
such that
](H;, u;z ugl uZI u;/ MZ) = ng)icn ](ull Up, Uz, U4, Us, l/l6)- (53)

In this instance, the parameters, with the appropriate units, define the appropriate costs associated with

these controls. The quadratic terms are introduced to indicate the nonlinear costs that can occur at high

levels of intervention [37, 38, 39]. The disinfection cost terms, Aguy () + A5u§(t), are taken from [39]. The

minimisation method is subject to the differential system (5.1), henceforth called equations of state.
Our goal is to find optimal controls, u:(t), Vie{l,2,---,6} such that (5.3) holds.

5.2. Existence and characterization of the optimal control

The existence of the finite-time optimal control for system (5.1) is studied here, and the Hamiltonian
of the optimal control problem is constructed to derive the first-order necessary conditions for optimal
control. For this, we use a result from [40].

Theorem 5.1. The optimal control (u}, u;
exist such that expression (5.3) holds.

oo Uy, Uy, Ut uy) and a corresponding optimal state (S*,I* cr, SZ,I;H, hz)

Proof. The existence of the optimal controls for the problem under consideration is shown by using
a result from [40, 41]. We point out that the state and control variables are nonnegative, and that the
control set Q)°, by definition, is closed and bounded. This ensures that the optimal system is bounded,
which is necessary for the existence of the optimal control. Moreover, the integrand B11, + Baly1 + Bsljp +
%u + Aquiy + Asii} +A?u +%i 1‘;2 §+%ué th
character of control variables. Furthermore, a constant 7 > 1 and positive numbers w; and w; exist such
that

is convex on the control set Q)¢ due to the quadratic

T

A A A Aj _
Bil, + Boljy + Baljp + ?lu% + Aqup + Asu3 + 76u§ + 77%21 +Su uz + (Z | ) —Wy.

The existence of the optimal control is completed by the boundedness of the state variables. m
By constructing a Hamiltonian H and applying the Pontryagin’s maximum principle [43, 42, 44], the
optimal control is characterized in the following Theorem.

Theorem 5.2. The optimal control variables are u}, 5, u3, u), uz, uy and the corresponding optimal state variables

of the control systemareS*,I* c,s, ., Consequently, therearead]omtvarmbles A1(D), Aa(t), As(t), Ag(t), As(E), Ag(t)

7 TH Thl Th2”
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a8 in R which satisfy the following adjoint equations:

A C
i (A = A2)(1 = u1) |Bolp + el opA1,
dAy
Z2 = <Bi+ (h = A)BeS,(1 — 1) + (tp + )A2 = PAs + TpSi(1 ) (e = A3),
dAs 1- ul)Kﬁesp
- = W= /\Z)W + (& +u2)A3 + (Ag — A5)(1 — us)TeSp,
(5.4)
dAy
a5 = (=29 [ = u3)T,, + (1 = 1) 7eC| + (Aa = A6)(1 = tg)Buliz + SpAs,
dA
d_t5 = =By + (O + pm)As + €(As — Ae) + usAs5,
dAe
Tt = Bt (A= Ae)d—ue)BuSy + (On + 2 + ) e,
are and the transversality conditions
At =0, i={1,2,---,6). (5.5)
seo In addition, the corresponding optimal controls are as follows:
peS
(A2 = A1) [ﬁvsplp : ”C
uj(t) = max{0, min A , Omax | ¢,
uy(f) = max {O mln(Ag’C A4 )},
As — Ag)TpSply
uz(t) = max {O, mm(( 5= A5k , 1)} , (5.6)
As — Ag)1,5,C
uZ(t) = max {0, mm(( > 4TS 1)},
uz(f) = max {O, min (A5Ih1 )}
A6 — Aa)BrSul
) = max {0 (( 6 4),3h Ay wmx)}.

ss1  Proof. The Pontryagin’s maximum principle [43, 42, 44] is used to solve the optimal control problem by
s82 fixing ty = 365. It converts (5.1) into a pointwise minimization problem of a Hamiltonian H, with respect

383 tou;,iefl,---
sss right-hand sides of the state equations:

,6}. Here, the Hamiltonian is the integrand of the objective functional coupled to the six

Aq
H(SP’IP’ C/ Sh/IhlthZr Al) = B]I +B21h1 +B3Ih2 + > Ll +A4M2(t) +A5u 2611%
A A
+ 27 2+ 22 §+2 2+Z /\ihif
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where }; is the right-hand side of the differential equation of the i" state variable.
The characteristic function ]|, 4)(t) is defined by

1, ift € [a; 1],

Jiap(t) = (5.7)
0, otherwise.

For given optimal functions ux, i€{l,2---,6}, givencorresponding optimal state variables S* I* c,S, I

7T Thl Th2

of system (5.1), according to the Pontryagin’s maximum principle [43, 42, 44], there are ad]omt variables
A1, A2, A3, Ay, As and A which satisfy the following equations:

dh _ O dhy | OH, o _ OH, dh_ OH
dAs s JH
R U it ) &2

with transversality requirements A;(t¢) = 0; (z = 1, 2,--+,6). By substituting the corresponding derivatives
into the above inequalities and reorganising them, we obtain the adjoint equations (5.4). According to
the optimality condition, we have

oH _ 0, atu; =u;,Vie{l,2---,6}. (5.10)
31/11' !
Thus (5.6) holds true. According to the properties of the control set (5.2) and the conclusions above, we
have for example

(M1 = 12) [ﬁvS L+ ”+”C

i <
O, if Al = 01

. (A — Az)[ﬁvs I +i”+’jc] ()\1—/\2)[ﬁvs I +ﬁ”+’”c]

u, =
! e ,if0 < i < Upuaxs
BoSpC
I
' (A1 —A2) [ﬁvs tic
Umax, if 2 Omax,

Aq

This completes the proof. m

6. Numerical results

In this section, we numerically study the effects of optimal control strategies such as poultry vacci-
nation, environmental sanitation, education campaigns, quarantine and treatment of infected humans
in the spread of avian flu. The numerical solution of the optimal control problem is obtained by solving
the optimality and adjoint systems thanks to the forward-backward sweep method. The adjoint systems
are numerically solved by a fourth-order Runge-Kutta scheme using the direct solution of the state
equations. The optimality condition is satisfied by convex updating of the previous control values. We
describe the controls in the following strategies using the parameter values in Table 3 and the following
initial condition (Sy, I, C, Sy, In1, In2) = (10,2,100, 10, 5, 2).
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Table 3: Parameters and baseline values.
Symbol Baseline value Reference Symbol Baseline value Reference

e 50 Assumed 3 500 Assumed

Bo 2 [26] Te 0.1 [11]

Be 6 Assumed ¢ 10* Assumed
op 5 [26] B 0.003 [26]

Ay 3 Assumed K 100 Assumed
Y 0.01 [26] On 0.015 [26]

Hn1 1 [26] Un2 0.06 [26]

Tp 0.6 [45] p 1 Assumed
€ 0.001 [26]

6.1. Strategy A: control with poultry vaccination (u)

With strategy A, only poultry vaccination u; is applied to control the system, with the other controls
set to zero. Figure 3 shows the effect of poultry vaccination on the poultry and human populations. The
control profile suggests that the 11 control is at the highest level for about 200 days per year before falling
to the lower limit. This result shows that the optimal control measure is effective in both the poultry and
human populations and the community will therefore be free of the disease.
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Figure 3: Simulations of model (5.1) showing the effect of poultry vaccination.

6.2. Strategy B: control with environmental sanitation (uy)

Here, only environmental disinfection u; is applied to control the system. Figure 4 shows the impact
of this control strategy, on the avian and human populations. We do not record any variation in the
control profile. Thus, this result illustrates that the use of disinfectants as a control measure is not an
optimal solution. It is therefore ineffective in the control of this epizootic.

6.3. Strategy C: control with education campaign for humans in contact with poultry (u3)

Figure 5 describes the effect of implementing an education campaign among humans in contact with
poultry and the impact is slightly visible in the human population, while the control profile remains at
its upper limit for almost 50 days.
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Figure 4: Simulations of model (5.1) showing the effect of environmental sanitation.
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Figure 5: Simulations of model (5.1) showing the effect of education campaign for humans in contact with poultry.
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6.4. Strategy D: control with education campaign for humans in contact with poultry environment (u4)

The objective of the education campaign strategy for humans in contact with the poultry environment
is to make the community aware of the disease, its mode of transmission, prevention and control
measures. When only control u4 is applied while the others are set to zero, Figure 6 shows a significant
effect in human population. This is realistic, as our work [11] shows that the indirect transmission
(environment-to-human) is more dominant that the direct transmission (avian-to-human). Moreover,
the control profile remains at its upper limit for a long time before gradually decreasing to the lower
limit.
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Figure 6: Simulations of model (5.1) showing the effect of education campaign for humans in contact with poultry environment.

6.5. Strategy E: control with quarantine of infected humans (ue)

With strategy E, only quarantine of infected humans ug is applied to control the system. Figure 7
shows the impact of quarantine of infected humans on the avian and human populations.

6.6. Strategy F: control with treatment of infected humans (us)

When only control us is applied while the others are set to zero, the significant effect occurs on
the infected humans class (see Figure 8). It should be noted that this treatment control strategy is not
effective without vaccination of susceptible poultry and is therefore not preferable for the community
as an avian influenza control measure.

6.7. Strategy G: control with combination of poultry vaccination (u1) and treatment of infected humans (us)

When we use vaccination of poultry and treatment of infected humans as control strategies we see,
on Figure 9, a significant impact in both the poultry and human populations. Therefore, this combination
can be used as a control strategy against this epidemic.

6.8. Strategy H: control with combination of poultry vaccination (u1) and education campaign for humans in
contact with poultry environment (u4)
With strategy H, the combination of vaccination of poultry and sensitisation of humans in contact
with the poultry environment is applied to control the epidemic. Figure 10 shows the meaningful effect
of using this combination as a control strategy. Thus, it can also be used to eradicate this epizootic.
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Figure 8: Simulations of model (5.1) showing the effect of therapeutic treatment of infected humans.
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Figure 9: Effect of combination of poultry vaccination and treatment of infected humans on model (5.1).
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Figure 10: Effect of combination of poultry vaccination and education campaign for humans in contact with poultry environ-
ment on model (5.1).
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6.9. Strategy I: control with combination of treatment of infected humans (us) and education campaign for humans
in contact with poultry environment (u4)

By combining the treatment of infected humans with the sensitisation of humans in contact with the
poultry environment, an important impact on the human population is shown on Figure 11. Therefore,

this strategy can be used to eradicate this epidemic if and only if the poultry population is free of the
disease.
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Figure 11: Effect of combination of treatment of infected humans and education campaign for humans in contact with poultry
environment on model (5.1).

6.10. Strategy J: control with combination of poultry vaccination (uy), treatment of infected humans (us) and
education campaign for humans in contact with poultry environment (us)

The numerical results show that the human and poultry populations infected and the virus con-
centration are gradually decreasing, as shown on Figures 12 (b), 12 (d) and 12 (f), while susceptible
humans and poultry are increasing (see Figures 12 (b) and 12 (e)). Vaccination, treatment and education
campaigns in the community will greatly reduce the spread of the disease. On Figure 12 (a), we see that

the control profiles remain at their upper limit for some time and, at the end, they gradually decrease to
the lower limit.

7. Cost-effectiveness analysis

To make a decision on which intervention to choose, we evaluate the economic implications of
avian influenza control strategies using the CEA technique. CEA helps us identify and propose the
most cost-effective strategy to implement with limited resources. We evaluate the costs by using the
incremental cost-effectiveness ratios (ICER) to compare the differences in costs and health outcomes of
two competing intervention strategies. The infectious averted is computed by taking the absolute value
of the difference between the total number of individual species without control and the total number of

individual species with control. The control strategies are ranked in order of increasing infection averted
as presented in Table 4.
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Table 4: Control strategies in order of increasing infection averted.
Strategies  Total infections averted Total costs () Objective functional J ($)
Strategy B 0 0 1.3048 x10°
Strategy C 0.0131 275.0413 1.0172 x10°
Strategy E 0.1078 0.5383 1.0883 x10°
Strategy D 0.7359 2.4224 x10° 1.0528 x10°
Strategy A 2.8138 2.8868 x10° 5.8584 x10*
Strategy I 3.5610 2.6921 x10° 8.8885 x10*
Strategy F 3.6060 2.3993 x10° 8.9032 x10*
Strategy H 44476 5.7095 x10° 5.1138 x10*
Strategy G 5.2540 4.6109 x10° 5.2637 x10*
Strategy ] 5.9817 3.2439 x10° 3.9025 x10*

7.1. Taking into account the quarantine of infected persons (Strategy E is considered)

We see from Table 4 that strategy B (environmental sanitation) cannot be used as a control measure
because zero values in Total infections averted and Total costs indicate that no strategy is applied.

275.0413 0.5383 — 275.0413
0.0131 0.1078 — 0.0131

Now, comparing ICER (C) and ICER (E) using Table 4, a cost saving of —2898.66 is observed for
Strategy C over Strategy E. The lower ICER for Strategy E indicates that Strategy C is strongly dominated.
That is, Strategy E is more costly and less effective than Strategy E. Therefore, Strategy C is excluded
from the set of alternatives so it does not consume limited resources. When we exclude C, we compare
strategy E and D, and ICER is recalculated in Table 5 below.

The comparison between strategies E and D indicate that strategy D is strongly dominated and is
more costly than strategy E since ICER(E) < ICER(D). Then strategy D is discarded from the set of
alternatives. Hence E and A are compared in Table 6.

The comparison shows that ICER(E) < ICER(A); hence strategy A is more costly and excluded from
the set of alternatives. We compare strategies E and I in Table 7.

ICER(C) = = 20995.52, ICER(E) = = —2898.66.
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Table 5: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs () ICER
Strategy E 0.1078 0.5383 49935
Strategy D 0.7359 24224 x10°  3855.85

Table 6: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs () ICER
Strategy E 0.1078 0.5383 4.9935
Strategy A 2.8138 2.8868 x10°  1066.62

Table 7: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 0.5383 4.9935
Strategy I 3.5610 2.6921 x10°  779.44

The comparison shows that ICER(E) < ICER(I). Therefore, strategy I is excluded from the set of
alternatives and we compare strategies E and F in Table 8.

Table 8: Control strategies in order of increasing averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 0.5383 4.9935
Strategy F 3.6060 23993 x10°  658.71

Strategy F is strongly dominated and is more costly than strategy E. So, strategy F is excluded from
set of alternatives. Thus, strategies E and H need to be compared.

Table 9: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies  Total infections averted Total costs (§) ICER
Strategy E 0.1078 0.5383 4.9935
Strategy H 4.4476 5.7095 x10°  1315.49

Strategy H is strongly dominated and is more costly than strategy E. So, strategy H is excluded from
set of alternatives. Strategies E and G are now compared in Table 10. As ICER(E) < ICER(G), strategy G

Table 10: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 05383 49935
Strategy G 5.2540 46109 X103  895.88

is excluded from the set of alternatives and we compare strategies E and J in Table 11.

Table 11: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy E 0.1078 0.5383 49935
Strategy | 5.9817 3.2439 X103 552.16
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Comparison between strategies E and ] shows that strategy E is more costly and less effective than
strategy ] as ICER(E) < ICER(]). Therefore strategy ] is discarded from the set of alternatives. Finally,
based on the above results, we conclude that strategy E is the most cost-effective among all strategies
envisaged for controlling avian influenza.

7.2. Without taking into account the quarantine of infected persons (Strategy E is not considered)

275.0413 2.4224 x 10° — 275.0413
— =2 .52, ICER(D) = = 2970.89.
0.0131 0995.52, ICER(D) 0.7359 - 0.0131 4 i

Now, comparing ICER (C) and ICER (D) using Table 4, a cost saving of 2970.89 is observed for Strategy
C over Strategy D. The lower ICER for Strategy D indicates that Strategy C is strongly dominated. That
is, Strategy C is more costly and less effective than Strategy D. Therefore, Strategy C is excluded from the

set of alternatives so it does not consume limited resources. When we exclude C, we compare strategy
D and A, and ICER is recalculated in Table 12 below.

ICER(C) =

Table 12: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies  Total infections averted Total costs ($) ICER
Strategy D 0.7359 24224 x10°  3291.75
Strategy A 2.8138 2.8868 X103 223.49

The comparison between strategies D and A indicate that strategy D is strongly dominated and is
more costly than strategy A since ICER(A) < ICER(D). Then strategy D is discarded from the set of
alternatives. Hence A and I are compared in Table 13.

Table 13: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs () ICER
Strategy A 2.8138 2.8868 x10°  1025.94
Strategy I 3.5610 2.6921 x10°  -206.57

The comparison shows that ICER(I) < ICER(A); hence strategy A is more costly and excluded from
the set of alternatives. We compare strategies I and F in Table 14.

Table 14: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ()  ICER
Strategy 35610 2.6921 x10° 756
Strategy F 3.6060 23993 x10°  -6506.67

The negative ICER for strategy F in Table 14 shows that strategy I is more costly and less effective
than strategy F. Therefore, strategy I is excluded from the set of alternatives and we compare strategies
F and H in Table 15.

Table 15: Control strategies in order of increasing averted.
Strategies  Total infections averted Total costs ($)  ICER
Strategy F 3.6060 23993 x10°  665.36
Strategy H 4.4476 5.7095 x10°  3933.22

Strategy H is strongly dominated and is more costly than strategy F. So, strategy H is excluded from
set of alternatives. Thus, strategies F and G need to be compared.
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Table 16: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy F 3.6060 23993 x10°  665.36
Strategy G 5.2540 4.6109 X10°>  1341.99

Table 17: Incremental cost-effectiveness ratio in increasing order of total infection averted.
Strategies Total infections averted Total costs ($) ICER
Strategy F 3.6060 2.3993 x10°  665.36
Strategy | 5.9817 3.2439 x10°  355.52

Strategy G is strongly dominated and is more costly than strategy F. So, strategy G is excluded from
set of alternatives. Strategies F and ] are now compared in Table 17.

Comparison between strategies F and ] shows that strategy F is more costly and less effective than
strategy | as ICER(J) < ICER(F). Therefore strategy F is discarded from the set of alternatives. Finally,
based on the above results, we conclude that strategy J (combination of poultry vaccination, human
education and treatment of infected humans) is the most cost effective among all strategies envisaged
for controlling avian influenza. This result agrees quite well with the numbers and costs mentioned in
Table 4.

8. Conclusion and discussion

A mathematical model for the dynamic transmission of avian influenza A is formulated in this paper,
incorporating the following factors: (i) virus mutation and (ii) optimal control strategies. The evaluation
of the model was presented in a qualitative manner.

The most striking findings on the long-term dynamics of the system are outlined below.

(1) A disease-free equilibrium was calculated, and the basic reproduction numbers Rg and Rg that
determine the outcome of avian influenza A in the community were computed.

(2) The disease-free equilibrium was proved to be globally asymptotically stable over a positively
invariant region when Rg < 1and 7%3 < 1. Furthermore, we have shown that the model has
a unique human-endemic and a unique full endemic equilibrium when R’S > 1 and Rg > 1,
respectively. Their global asymptotic stability has been proven.

(3) The Pontryagin’s maximum principle was used to derive and analyse the necessary conditions for
optimal control strategies (vaccination of poultry, environmental sanitation, education campaigns
for susceptible humans and treatment of infected humans). Optimal control thus minimises the
population of infected humans.

(4) Numerical results were presented to illustrate the theoretical results. Graphically, strategy (A)
shows a significant impact in both poultry and human populations while strategies (C), (D) and
(F) have a positive impact on human population. Strategies (B) has almost no effect on both
populations.

(5) From the cost-effectiveness analysis, the best way to control transmission or contain an outbreak
of avian influenza with virus mutation is to quarantine infected humans. If mutation is not
considered, then the best way to contain the outbreak is to combine vaccination of poultry and
treatment of infected humans with an education campaign for humans in contact with the poultry
environment.
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Education campaigns usually have a time delay between the time they are implemented and the time
they attract public interest. It is therefore interesting to develop an optimal control problem based on a
system of differential equations with multiple delays in the state and control variables. It remains to be
seen whether this will represent a significant challenge to the mathematical analysis or whether it will
modify the optimal control solution. It is worth noting that, during the cost-effectiveness illustration, we
have considered the same cost for all interventions. It would be more realistic to evaluate the outcomes
knowing that they actually depend on the choice of the parameters. All these research perspectives will
be investigated in our forthcoming work.

Appendix A. Biological permanence

In this part, we present and characterize the concept of biological permanence which is based on the
Lyapunov instability Theorem.
We consider the following system of autonomous differential equations:

= - fw, (A1)

where x € R} and f : R} — R". Assume that X is a compact subset of R} and S is a compact subset of X.
Let X be forward invariant. Suppose that there exists a C! function P : X — R which satisfies P(x) =
if and only if x € S. Let ” - ” denotes differentiation along an orbit and 7 (x, t) the solution of (A.1) and x
the initial value.

Theorem Appendix A.1. [26] If P(c) > 0, for all ¢ in S, then there exist a positive constant k and a sufficiently
large time T such that P(rt(y, t)) > k, for all pyin X\ Sand t > T.

Appendix B. Positivity and boundedness of solutions

Appendix B.1. Proof of Theorems 2.1
Proof. We want to show that the solution variables (Sp, Iy, Sny Eny In, G Ryy) of system (2.1) correspond-
ing to the initial conditions (2.2) are positive. We define

W(t) = min {S,(t), L,(t), C(t), Su(t), Tn(t), Tia(t), Ru(®)}.

It is obvious that W(0) > 0. Suppose that there exists t; > 0 such that W(t;) = 0 and W(t) > 0 for all
t € [0,t1). If W(t1) = Sp(t1), then I(t) > 0, C(t) 2 0, Sy(t) 2 0, Ija(t) = 0, Ijp(t) = 0 and Ry() > O for all
t € [0, t1]. According to the first equation of system (2.1), it follows that

das C(t
. (ﬁvzp(n e 6p) S,(), te[0,t]

. Hence, we obtain

d
E[ »() exp {5 t+f0 (,BUI (s) + ﬁec(s)_zK)ds}]
> Apexp {6pt + fo (ﬁvlp(s) + ﬁgc ) )ds}.

(s) +x

Sp(t) 2 Sy 0>exp{ b (ﬁ“’() ﬁeC( >+K }
+exp{ fo (ﬁvp()+ﬁec()+1< p)d}

x A fo exp{f0 (ﬁvl (1) +ﬁeC( C(0) +6p) }ds>0.

Integrating the above inequality from 0 to t; gives

+

Q

Q
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This contradicts Sy(t1) = 0. Thus we obtain S,(t) > 0, for all ¢ > 0. We can also show in the same way that
I,(t) >0, C(t) > 0, Sp(t) > 0, Iy (t) > 0, Ijp(t) > 0 and Ry(t) > O forallt > 0. m

Appendix B.2. Proof of Theorems 2.2

Proof. We prove that the total population of poultry and humans at time ¢, N,(t) and N,(t) satisfies
the boundedness property 0 < N, () < My,0 < Nj(t) < M. We also prove that the concentration of virus
satisfies the boundedness property 0 < C(t) < M3. We point out that this bound represents the unique
equilibrium of the dynamics of the total population in the ideal situation where there is no ongoing
infection. It follows from system (2.1) that

W(t) = Ap = 0pNp(t) — uplp(t) < Ap — 0pNy(t),
th
(f) Ap = 6uNy(t) = pntIn(t) — pnzlna < Ay — 6Ny ().
Then,
. Ay ) Ay
lim sup Ny(t) < — and limsup Nj,(f) < —.
t—o00 6p t—o0 6h

Hence N, and N;, are bounded. Thus, for € and €; sufficiently small, there exists T1 > 0 such that if
t> T] ,

A A
Np(t) < £ + €1 and Nj,(t) < —h + €.

From the third equation of the system (2.1) it follows that, for t > T,

0 - ¢(— te ) cC(),

dt op
which leads to P
€1
limsup C(f) € —& + —
e W
This inequality being true for an arbitrary number of €; > 0 sufficiently small, we conclude that
limsup C(t) < (P—
t—o0 g

Hence C is bounded. =

Appendix C. Local and global stability analysis

Appendix C.1. Proof of Theorem 4.3
Proof. The Jacobian of system (2.1) is given by the following matrix

A 0
7-(¢ )
with
0 —-1,5, -7.5
_ﬁvlp - ,Bec - 5}7 _;BUSP _ﬁesp 0 "Cz;?éhh Teghh
A= Bol, + B.C BoSp— (0p +1p)  BeSp |, C = 0 0 0o
0 ¢ —< 0 0 0
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—’CUIp - TEC - ﬁhlhz - 6h 0 _ﬁhsh 0

B Tolp + 7,C —(Op + pp1 +€) 0 0
Brlnz € BuSn2 — (2 + 6, +y) 0
0 0 Y —Op

Consequently, J evaluated at equilibrium FO F*, F* is stable if and only if A and B are also stable. By
virtue of Theorems 3.3 and 3.4 the submatrix A evaluated at F* or F* has only eigenvalues with negative
real part if Rg < 1. The submatrix A evaluated at F* has only eigenvalues with negative real part if
Rg > 1. Moreover, 8 is stable if and only if its first 3 X 3 block is stable. If we note

| —tolp = ©eC = Bulna — 61 0 —BnSn
B= Toly + 7.C —(6p + up1 +€) 0
Brlnz € BrSh2 — (tn2 + 04 + )

then, to study the local stability of the equilibria F’, F* and F* amounts to checking only the eigenvalues
of the submatrix B. _
The eigenvalues of B at F¥ are

A= =0, Ay = —(0p + 1 +€) and Az = (p + Oy +V)(RI(§ - 1)‘

If Rl < 1, then Re(A;) <0, Vi={1,2,3}. Thus F?is LASif R <1and R} < 1.
The characteristic equation for B at F* is

P(A) = (6 + . + € = A) (A% + 6, REA + 1S 0 (RE — 1)) = 0.

Therefore, Z* is LAS if Rg <land Rg > 1.

Since

el

. 7
IhZ

BrS, — (2 + Op +y) = —

the characteristic equation for B at F* reads
PA) = A3+ doA? +diA +dg =0,

where
€(0p + pm +e)l

dy = PnS,e(toly +1.CY) + I i (Toly +1.C* + Buly, + 1)
+B2Si I (O + 1 + €),
dl = is;ll;lz + ((Sh + Up + 6)(’[0[; + T€C+ + 5;11;12 + 6h)
el;
+ Fhl (Tol¥ + TeC* + Byl + 204 + i1 +€),
h2
61;,1
d = TZ,I; + TeCT + Byl , + 20, + ppy + € + T
h2
dody —do = BiS; I (Toly + T.CT + Buly, + Op) + €BrS I

+(Op + i + €)(Toly +T,CH + Bl + on)?
(ol + TeCT + Buly, + 0) (O + 1 + €)°

el
m

T (ol +T.C + Byl + Op + Oy + pi + €)?
n2

61* 2
+( ’ﬂ) (TUI;; + 7eCT + Buly, + 0p + Op + i +€) — ﬁhS;e(TUI; + 7,C™).
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Note that d; > 0,i = 0,1,2 and did, — dyp > 0. Then, by using Routh-Hurwitz criterion we conclude that
the endemic equilibrium Z* of system (2.1) is locally asymptotically stable. m

Appendix C.2. Second additive compound matrix

Let n be a positive integer, and A a linear operator on IR” and also denote its matrix representation
with respect to the standard basis of R". A canonically induces a linear operator A%l on A’R". For
u1,up € R", define A2 (uy Aup) = A(uy) Aup + uq A A(uz) and extend the definition over AZR" by linearity.

This is an ( ; ) X ( Z ) matrix with each entry being a linear expression of the entries of A. When n = 3,

A = (a;j), then the second additive compound matrix APlis given by.

a1 +ax a3 —a13
2
Al = as a1 +4as3 aip
—az] an1 az + 433

Detailed information on A2 can be found in [46, 47]. Let x — f(x) € R" be a C! function for x in an open
set () C R". Consider the differential equation

X = f(x). (C.1)

Denote by x(t, xq), the solution of (C.1) with respect to x(0,xg) = xo. We make the following two basic
assumptions on (C.1):
(H1) There exists a compact absorbing set K C ().
(Ha) there exists a unique equilibrium point x € Q.
n n
LetXHP(x)bean( 5 )x( 5
and is continuous for x € K. We define a quantity g by

) matrix-valued function that is C! for x € Q. Assume that P~!(x) exists

t
g = limsup sup % (B(x(s, x0)))ds,

t—+o00 xpeK 0

where 2]
af
B=P,P ' +p=—pL
f * dx

The matrix Py is obtained by replacing each entry p;; of P by its derivative in the direction of f.
[aP;f].) dP;; df12!

: . : : . 9f
5y f= oy 1S the second additive compound matrix of the Jacobian matrix P of f. u(B)

2 ]
is the Lozinskil measure of B with respect to a vector norm ||.|| in ]R[ 2 , defined by
. |I+hB||l-1
B)= lim ————.
HB) hgg* h

It is shown in [46] that if () is simply connected, the condition g < 0 rules out the presence of orbits such
as periodic orbits, homoclinic orbits and heteroclinic cycles; and it is robust under C! local perturbations
of f near any non-equilibrium point that is non-wandering. Now we state the following global stability
result from [46].

Lemma Appendix C.1. Assume that Q is simply connected and assumptions (Hy) and (Hp) hold. Then the
unique equilibrium point x of (C.1) is globally stable in Q) if g < 0.
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Appendix C.3. Proof of Theorem 4.11

Proof. As 7%5 > 1, (Sp(t), I(t), C(t)) — (S5, I;,C*) when t — oo and system (2.1) is permanent. The

w-limit set of system (2.1) lies in {(s+ I, C*, Si, Ity Lo, Rh) : (S, In1, Lo, Ry) € InﬂRi}. It is enough to
consider system (4.5).

prop’
prop’

The Jacobian matrix A of system (4.5), evaluated at a general solution (S, I1, I2) is

A=

—(5;[ - ﬁhIhZ - TpI; - "CeC+ 0
TPI; + 7,C*t

Bulno €

Its second additive compound matrix is

where

Define the function

It holds that
Moreover,
where
S/
Biy= 1 _12
11 S,

2|
Let (1, u2, u3) be the vectors in R = ]R[ )
We choose anorm in R3 as |[(11, s, u3)|| = sup; |u;|, and u(B) = supi(Re(bii)+Z]-¢i |bij|) denotes the Lozinskil

An
Ap =
Azz

A1q 0
A[z] = € A
_,BhIhZ TPI; + T3C+

—(0n + tm +€)

—BrSh
0

BrSn — (On + um + )

BrSh
0
A3z

= —25h — ,BhIhZ — TPI; - T6C+ — Un1 —€,
BuSn = Bulnz — tply — TeCT =20, — o =,
= BuSp—20p — n1 —€ — w2 — -
) S, S, S
P(x) = P(Sp, I, In2) = dlﬂg(—h, = —h).
Inp " Inp" Ino
pfp—l = diag i_lh_zli_lh_zli_lh_z )
S I Sn Iz Sn In2
PP~ + PARIP!
s I
h h2
I )
S I 11 g I,O Pon
o tn2
b2y A 0
© Si In C .
—Bul T, [F + 7,C* ﬂ—Ih—2+A
nlno ply + Te S, I 33

= 20y — Pulia = oI} = TeC* = i — €, B1o = (0, B4Sk) ; Bar = (6, —Puli2)",

S 1
A + Azz 0
TS R S

2
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measure with respect to the norm above. By the method in [47], we have the following estimate:

u(B) < supigi; 2},
where
g1 = p1(B11) +|B12|l and  g» = p1(B22) + |Ba1l.
|B12| and |By1]| are the matrix norms with respect to I; — norm. uj is the Lozinskil measure with respect to

the [y — norm.
Thus we have

’

H1(Bi) = S_ Tl Bulna — Tply — TeCT =204 — i — €,

7

I
p1(B) = —h — 22 4 max (B,Sy — Bulnz — 200 — iz = ¥ » BuSh — 200 — i1 — € = o — ¥},

Ih
IBial = max;(L.; laijl) = Sy and [Bai| = max;j(L, layl) = € + Buljo-
Using the fact that
I I
12 = B,Sy + e — 85— —y,
Iip Ii2
we have ,
Sh €l + +_5
81 = o 7 = Bula — Ly —TCT =6y~ —€+u +y,
gh Iip
€l €l
o = +max{-ah— e, = — +ﬁh1h2}/
S Inp I

fort > T. Because of the uniform persistence (see Theorem 4.10), we can select the constants so that there

exists T > 0 independent of (S, IO C0 50 10 ,IO ,R%) € K such that k;, < I} (t) < Ky, and ki, < I;p(t) < K;
p e e o B, > 2 3 A

fort>T.
Therefore, setting
o= g o 2
1 = KI + B [3+TPI + TeCT + 0p + U +2€ — 2 — Y,
3
ekr,
b2 = _+6h+[1hl_ﬁh1<l3+€/
Ki,
we have > ,
By< - —by, =6 — —2,—by b = =L — b,
1( )_Sh+max{ 1 =00 = 2} S,
where

-4 k
b = min {bl,éh + ;—Iz,bz} with b1 > 0,b, > 0.

I3

Along each solution (Sy,(t), In1 (), o () of (4.5) such that (S?, 121,122) € Kandt > T, we have

1 1 1. Su() -t-T
;foty(B)dss?foT (B)ds + ~ fT[ ]ds<-f0 1(B)ds +—1 Sh(T)—bT.

This implies that g < —g < 0, if the following conditions hold true:

ek
bp+y < KIZ + Brkr, + Tply + T,CH + Oy + i + 2€,
I3
ek,
‘BhKI3 < — +6h+uh1 + €.
K,

This completes the proof. m
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