
On the binary codes of length 552 which
admit the simple group Co3

as a transitive permutation group

Wolfgang Knapp, Mathematisches Institut, Universität Tübingen, Germany
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Abstract

In this this paper all binary codes of length 552 are determined which admit
the sporadic simple group Co3 as an imprimitive transitive permutation group. Our
aim is to understand the results also by arguments and to discuss the combinatorial
properties of the codes as well as their relation to some special properties of the
Leech lattice group Co3. We obtain for all codes the weight enumerators (with two
exceptions) and in many interesting cases the classification of codewords under the
action of the group of code automorphisms Co3. The exempted codes are both self-
dual and have minimum weight 12
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Introduction

The purpose of this paper is to determine all binary codes of length 552 which admit the
sporadic simple group Co3 as an imprimitive transitive permutation group. The second
author has obtained the codes by computation. Our aim is to get these results , but pre-
senting theoretical arguments and to discuss the combinatorial properties of the codes and
their relation to some special properties of the Leech lattice group Co3. We obtain all
weight enumerators (with two exceptions) and in many interesting cases the classification
of codewords under the action of the group of code automorphisms Co3. The two exempted
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codes are both self-dual and have minimum weight 12. This work grew out of a collab-
orative research visit of the second author at the University of Tübingen in November 2018.

We prove the following

Main Theorem.
Let F = F2 and let Ω be a set of size 552 on which Co3 acts transitively. The FG-
submodule lattice of FΩ (lattice of FG-invariant codes of length 552) is as displayed in
the overview Table I. The 19 codes of the lattice obey the orthogonality rule Ci

⊥ = C552−i.
For all occurring i ̸= 276 we have exactly one code Ci of dimension i and all 5 codes Cj

276

of dimension 276 are self-dual. The group theoretic and combinatorial properties of these
codes are described in detail in Section 3.
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1 Background and Preliminary results

We shall use the following concepts from coding theory.
An ordered pair (V,B), where V is a finitely generated free (left) F -module over a

commutative ring F and B is an F -basis of V , is called a Hamming space over F . In
this paper F will always be a field whose multiplicative group is denoted by F#. dimF V
is called the length of the Hamming space (V,B). A Hamming space (V,B) carries the
following canonical structures.

Let B = (ei)i∈Ω and let x =
∑

xiei for any x ∈ V .

(i) V carries the nondegenerate symmetric bilinear form (x, y) 7→ ⟨x, y⟩ = ⟨x, y⟩B =∑
xiyi.

(ii) V carries the norm wB : x 7→ w(x) = wB(x) :=
∑

|xi| where | · | denotes the
trivial absolute value of F . w(x) = wB(x) is called the (Hamming) weight of x. Let
supp(x) = suppB(x) = {ei : xi ̸= 0} denote the support of x with respect to B.
Then, of course, w(x) = |supp(x)|.

(iii) To the norm w = wB there corresponds canonically the Hamming metric d = dB
defined by dB(x, y) := wB(x− y).

For any subset X of V let Wi(X) denote the set of all vectors in X of weight i, called
the i-weight class of X. Furthermore let X⊥ denote the set of all vectors in V orthogonal
to every element of X with respect to ⟨·, ·⟩. Of course, X⊥ = ⟨X⟩⊥ is a (linear) subspace
of V of dimension dimV − dim⟨X⟩.
Any triple (V,B,C) where C is a subspace of V is called a linear code having ambient space
V and ambient basis B. If the Hamming space (V,B) is given by the context we usually
write C = (V,B,C). C is said to be an [n, k]-code if dimV = n and dimC = k;n = dimV
is called also the length of C. Throughout the paper we shall follow the convention that a
“code” is always understood to be a linear code.
If C is a code of length n, the (n+ 1)-tuple (wi(C))0≤i≤n where wi(C) = |Wi(C)| is called
the weight distribution of C, and the homogeneous polynomial

∑
wi(C)ξiηn−i ∈ C[ξ, η] of

degree n is called the weight enumerator of C. The weight enumerators of a code C and
of its “dual” C⊥ determine each other via the MacWilliams identities, see e.g. [12].
If F = F2 is the field of 2 elements, a code C is also called a binary code; if all occuring
weights in a binary code are even, then C is called even; if all occurring weights in a binary
code C are multiples of 4 then C is called doubly-even; if all occurring weights in a binary
code C are multiples of 8 then C is called triply-even.
If C ̸= 0 then µ(C) := min{i : 0 ̸= i and wi(C) ̸= 0} is called the minimum weight of
C. By convention we denote a linear code over F of length n, dimension k and minimum
weight d as an [n, k, d]-code over F , in short as an [n, k, d]q-code if |F | = q.
For computational purposes the ambient vector space V of a code C can be standardized
as F n with n = dimV and standard ambient basis B = (ei)1≤i≤n.
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It is clear that permutations of the ambient basis in their linear extension to the ambient
space preserve the Hamming weight. In this paper we will consider mostly binary codes
(F = F2). Then all code automorphims can be understood as permutations of the ambi-
ent basis which (linearly extended) leave the code invariant; the corresponding concept of
isomorphism is accordingly simple. (In the non-binary case one has to consider in general
monomial transformations as isomorphisms and a more complicated concept of automor-
phisms involving field automorphisms. However, it makes sense to consider permutation
automorphisms also in the non-binary case.)

Let SymΩ denote the full symmetric permutation group of the set Ω and we write
Symn for the symmetric group acting on {1, . . . , n} and Altn for the alternating group on
{1, . . . , n}. Recall that a group G acting on a set Ω ̸= ∅ from the right via (α, g) 7→ αg is
called transitive if for any α, β ∈ Ω there exists an element g ∈ G auch that αg = β. (The
corresponding definition for left actions is obvious.) A group G of permutations of Ω is
called transitive if the natural action of G is transitive. Let k be a positive integer. The
action of G on Ω (or the permutation group G on Ω) is called k-fold transitive (in short k-
transitive) if the action ofG on the set of injective k-tuples over Ω ((αi)1≤i≤k, g) 7→ (αg

i )1≤i≤k

is transitive. The action of G on Ω (or the permutation group G on Ω) is called primitive
if there are no G-invariant equivalence relations besides the trivial ones {(α, α) : α ∈ Ω}
and Ω×Ω. A transitive action of G or permutation group G is called imprimitive if there
exists a non-trivial G-invariant equivalence relation (or “system of imprimitivity”); the
equivalence classes η(α) of such a equivalence relation η are called blocks of G belonging
to η, We write Ω/η = {η(α) : α ∈ Ω} for the block system defined by η.

If a group G acts transitively on a set Ω and α ∈ Ω then there is a natural bijection
between the subgroups U of G containing the point stabilizer Gα and the set of blocks
containing α belonging to G-invariant equivalence relations , given by U 7→ αU = {αg : g ∈
U}. In particular, the length of the corresponding block is the subgroup index |U : Gα|, an
invariant of the G-invariant equivalence relation. Consequently, G acts primitively on Ω if
and only if G acts transitively on Ω and Gα is a maximal subgroup of G for any α ∈ Ω.

If G acts transitively on Ω and α ∈ Ω then the number of orbits of Gα in Ω (the
“suborbits of G in Ω”) is independent of the choice of α and is called the rank of the action
(or of G), denoted by rkΩ(G) = rk(G). Clearly, the rank of G is also the number of orbits
of G on the set Ω×Ω with componentwise action; these orbits are called orbitals of G (on
Ω). With the rule ∆(α) = {β : (α, β) ∈ ∆} for orbitals ∆ we have the convenient notation
∆(α)g = ∆(αg) for any g ∈ G and α ∈ Ω. To any orbital ∆ we associate its mirror image
(or paired orbital) ∆′ = {(β, α) : (α, β) ∈ ∆}. An orbital ∆ of G is called symmetric (or
self-paired) if and only if ∆ = ∆′.

Clearly, a transitive group G acts 2-transitively on Ω if and only if G has rank 2. The
discussion above shows that 2-transitive groups are primitive.

For our purpose the relations of these concepts to properties of the “permutation mod-
ules” related to the action of a finite group G are important. Let G act on the finite set Ω
and let F be a field. The formal sums

∑
α∈Ω rαα constitute an F vector-space on which G

acts as a group of F -linear mappings via (
∑

α∈Ω rαα)
g =

∑
α∈Ω rαα

g, giving the structure
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of an FG-module denoted by FΩ. This module is called the permutation module over F
to the action of G on Ω (or the permutation group G if G is a permutation group on Ω).
Clearly the set Ω can be viewed as an F -basis of the permutation module and (FΩ,Ω) is a
Hamming space in the sense introduced above. Moreover, the action of G on FΩ preserves
the Hamming weight and the canonical bilinear form with orthonormal basis Ω. So the
submodules of FΩ can be considered as linear codes with ambient space FΩ and ambient
basis Ω whereas G acts as a group of code automorphisms on any such code. For simplicity
- with this understanding - we denote the codes and submodules with the same letters.

We need a short discussion of the relation of the rank of an action to the corresponding
permutation module. The complex character of G associated with the permutation module
CG is called the permutation character of G on Ω, denoted by πΩ. Recalling the definition
of a group character as value of the trace function we see that the permutation character
just counts the number πΩ(g) of fixed-points of g ∈ G in Ω. If πΩ =

∑
i miχi for distinct

irreducible complex characters χi of G then
∑

i mi
2 = rkΩ(G). mi = (πΩ, χi) is called

the multiplicity of χi in πΩ; πΩ is called multiplicty-free iff all multiplicities of irreducible
characters in πΩ are at most 1. Note that the multiplicity of the trivial character 1G in πΩ

is the number of G-orbits in Ω as follows from the Cauchy-Frobenius Lemma (sometimes
incorrectly called Burnside’s Lemma).

In order to discuss the general fundamental properties of the endomorphism ring (F-
algebra) of a permutation module FΩ we associate to any orbital ∆i ofG the endomorphism
εi of FΩ given by α 7→

∑
β∈∆i(α)

β. (So the matrix of εi with regard to the canonical basis

Ω is just the indicator matrix of the orbital ∆i.) It is easy to check that the endomorphisms
εi, 1 ≤ i ≤ r = rkΩ(G), form a basis of the F -algebra of FG-endomorphisms of FΩ. This
holds regardless of the field F , therefore we always have rkΩ(G) = dimEndFG(FΩ). Note
that the endomorphism algebra in its canonical matrix form is also called the centralizer
algebra of the action of G on Ω. Recall that an FG-module is called uniserial if it has a
unique composition series. Clearly, uniserial FG-modules are indecomposable.

As a particular case we may consider F = C. Let for the permutation character hold
πΩ =

∑
i miχi with distinct irreducible complex characters. Then the C-algebra of CG-

endomorphims of the permutation module CG is semisimple and has structure
⊕

iCmi×mi

where Cmi×mi denotes the algebra of complex mi×mi-matrices. This explains the formula
rkΩ(G) =

∑
imi

2.

(1.1) Lemma.
Let a finite group G act transitively on a set Ω such that the permutation character πΩ(G)
is multiplicity-free, and let F be a field. Then the following hold.

(i) The endomorphism F -algebra of the permutation module FΩ is commutative.

(ii) If all constituents of the permutation character are real then all orbitals of G on Ω
are symmetric (self-paired).

Proof. In the case F = C assertion (i) is immediate considering the structure of the en-
domorphism algebra. Considering the basis given by the orbital endomorphisms εi (whose
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matrices have only 0, 1 entries) now shows that commutativity carries over to any field
F in any characteristic. For (ii) recall that the number of symmetric orbitals is equal
to the number of real characters occurring in the permutation character πΩ since it is
multiplicity-free, see [1]. □

In the present paper we consider the simple group Co3 in its imprimitive action on 552
points with block length 2. We show that in such a situation the permutation module F2Ω
has a very special non-trivial square-nilpotent endomorphism.

(1.2) Proposition.
Let G be a finite group acting transitively but imprimitively on a set Ω with a G-invariant
equivalence relation τ in Ω such that the corresponding system of imprimitivity Ω/τ consists
of blocks of length 2. We may choose a transversal T of Ω/τ such that T ′ = Ω \ T is also
a transversal and a bijective mapping α 7→ α′ of T onto T ′ such that the blocks in Ω/τ are
just the sets {α, α′} = τ(α) = τ(α′) for α ∈ T . Let F be a field of characteristic 2. We
consider the permutation module FΩ. Let ε denote the endomorphism of FΩ defined by
assigning α 7→

∑
β∈τ(α) β for α ∈ Ω, extended linearly. Then the following hold.

(i) ε is a non-zero FG-module endomorphism of FΩ with the properties

Ker(ε) = Im(ε) = {
∑

α∈T rα(α + α′) : rα ∈ F} and ε2 = 0.

(ii) Ker(ε) = Im(ε) and FΩ/Ker(ε) are isomorphic to the permutation FG-module F (Ω/τ)
via the homomorphism theorem and the naturally given map assigning α+α′ to τ(α)
for α ∈ T .

(iii) Ker(ε) = Im(ε) = Im(ε)⊥ is a maximal isotropic subspace of FΩ. So it is self-dual
considered as a code with ambient space FΩ and ambient basis Ω.

Proof. We have F (Ω/τ) = W(τ) in the sense of [8]. (i) and (ii) follow from Theorems 3
and 7 in [8] and basic algebra. (Note that we do not need the multiplicative properties of
W(τ)). (iii) follows from (i) and (ii) by [8, Theorem 7], counting dimensions.

□

All groups and combinatorial structures in this paper are assumed to be finite. In
the following let F = F2 = GF (2) denote the prime field in characteristic 2. Also in the
following let G = Co3 denote the third simple group of Conway of order 210·37·53·7·11·23 =
496, 766, 566, 000.

2 The binary Co3-invariant codes of length 276

According to the ATLAS [2] the group G has a doubly-transitive permutation represen-
tation on a set Ω of size 276 with a point stabilizer isomorphic to the maximal subgroup
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McL : 2 where McL denotes the simple group of McLaughlin. The corresponding permuta-
tion character is πΩ = 1+275, written as a sum of irreducible complex characters, denoted
by their degree.

We determine all FG-submodules of the permutation module FΩ and their coding
theoretic properties with respect to the canonical Hamming space (FΩ,Ω).

(2.1) Theorem. (i) FΩ is a uniserial FG-module with unique composition series

{0} = C0 < C1 < C23 < C253 < C275 < C276 = FΩ and sequence of composition
factor dimensions (1, 22, 230, 22, 1).

(ii) We have C⊥
i = C276−i for all i. C1 is the repetition code and C275 is the even weight

code of length 276.

(iii) C23 is a doubly-even self-orthogonal code with minimum weight 100 and weight enu-
merator 1(ξ0η276+ξ276η0)+11, 178(ξ100η176+ξ176η100)+37, 950(ξ112η148+ξ148η112)+
1, 536, 975(ξ128η164 + ξ164η128) + 2, 608, 200(ξ132η144 + ξ144η132).

All Hamming-weight classes in C23 are G-orbits with point-stabilizers either G or
maximal subgroups of G of ATLAS type HS,U4(3) : (2

2)133, 2
4·A8, 2×M12 respectively.

(iv) The minimum weight of C253 = C⊥
23 is 6 and the class of minmum weight vectors is

a G-orbit of size 708, 400, whose point stabilizer is a maximal subgroup of G with
ATLAS type 31+4

+ : 4S6.

(v) The weight distributions of all G-invariant subcodes Ci of FΩ are known.

Proof. According to [14] the 2-modular permutation character of the FG-module FΩ is
the sum of irreducible 2-modular characters (denoted by their degrees) 2 ·1+2 ·22+1 ·230.
Since dimEndFG(FΩ) = 2 it follows that FΩ has a unique irreducible submodule C1, of
dimension 1. Moreover, the permutation module FΩ is self-dual. It follows that FΩ has
a composition series as asserted in (i). Application of MeatAxe yields that there are no
other submodules, so we get assertion (i). Assertion (ii) now easily follows since FΩ is a
self-dual FG-module. (iii) has been proved in [5]; alternatively it can be obtained as in [9,
Section 4]. MacWilliams’ identities now give the weight enumerator of C253 = C⊥

23. Using
the ATLAS [2] establishes (iv). (v) follows from all previous asssertions. □

3 The binary Co3-invariant codes of length 552

Now we consider the simple group Co3 in its imprimitive action on 552 points with block
length 2. We know from Proposition (1.2) that the permutation module F2Ω has a very
special non-trivial square-nilpotent endomorphism ε. We use the notation introduced in
Proposition (1.2) and add the following notational convention:

We fix an (arbitrary) element x ∈ Ω and set M cL := Gx. Then M cL is isomorphic to
MacLaughlin’s simple group McL. The group M cL fixes in Ω exactly 2 points, x and x′,
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and has two long orbits, ∆ and ∆′ of length 275 on which M cL acts as a primitive rank 3
group. We can take T := ∆∪ { x} as the chosen transversal of Ω/τ . Then T ′ := ∆′ ∪ {x′}
is the transversal complementary to T and we may take the bijection ∆ → ∆′ : β 7→ β′ as
an isomorphism of M cL-sets. Later we will see in Proposition (3.8)(iv) that – surprisingly
– there is an essential difference between x and x′ when all other notations are fixed.

We use in the following always the same names for the FG-submodules of FΩ and
the associated codes with ambient space FΩ and ambient basis corresponding to Ω, see
the introduction. Using Proposition (1.2) we get immediately a “canonical” composition
series of the permutation module as an FG module which comprises most submodules
(respectively subcodes).

(3.1) Proposition.
Let C0

276 := Ker(ε)(= Im(ε)). Then there is a unique composition series of the permutation
module FΩ containing C0

276, namely

{0} = C0 < C1 < C23 < C253 < C275 < C0
276 < C277 < C299 < C529 < C551 < C552 = FΩ,

where dimCi = i for all i and C276+i is the full preimage of Ci under ε for 0 < i < 276.
Moreover, the following hold:

(1) C0
276 is self-dual as an FG-module and a self-dual code as well.

(2) For all i we have Ci
⊥ = C552−i.

(3) The weight enumerators of all codes occurring in the composition series are known:

For C0
276 and the codes Ci, 0 < i < 276, the weight enumerators can be computed start-

ing from (2.1) by an obvious “doubling procedure” and then the weight enumerators
of Ci, 276 < i ≤ 552 are obtained by MacWilliams’ identities.

Proof. Applying the FG-endomorphism ε of FΩ means that x ∈ Ω is replaced by x + x′,
F -linearly extended. So one may think of C0

276 as the permutaion module FΩ where the
basis elements α = {x, x′} ∈ Ω = Ω/τ are “doubly” written as x + x′ in FΩ. So the first
part of the assertion easily follows from Proposition (1.2) and Theorem (2.1). Note that
the module (code) denoted Ci in Theorem (2.1) corresponds to a module (code) denoted
here also by Ci which, however, should not cause confusion. Assertion (1) is now immediate
and assertion (2) follows; assertion (3) is another easy consequence. □

(3.2) Corollary.
Using the notation of Proposition (3.1) the following hold.

(i) The FG-module C1 of fixed points is the unique minimal FG-submodule of FΩ. Hence
FΩ is an indecomposable FG-module. C1 is the repetition code and has minimum
weight 552.

(ii) The FG-module C551 = C1
⊥ is the unique maximal FG-submodule of FΩ. C552 is

the even weight subcode of FΩ.
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(iii) C23 is a self-orthogonal triply-even code with minimum weight 200, the codewords of
minimum weight forming a G-orbit of length 11, 178 with point stabilizer isomorphic
to the Higman-Sims group HS.

(iv) C253 is a self-orthogonal doubly-even code with minimum weight 12, the codewords of
minimum weight forming a G-orbit of length 708, 400 with point stabilizer isomorphic
to a group of ATLAS type 31+4

+ : 4S6.

(v) C275 is a self-orthogonal doubly-even code with minimum weight 4, the codewords of
minimum weight (x + x′ + y + y′ where {x, x′} and {y, y′} are distinct G-blocks in
Ω) forming a G-orbit of length 37, 950 with point stabilizer isomorphic to a group of
ATLAS type U4(3) : (2

2)133.

(vi) C0
276 is a self-dual even code with minimum weight 2, the codewords of minmum weight

(x + x′ where {x, x′} are G-blocks in Ω) forming a G-orbit of length 276 with point
stabilizer isomorphic to McL : 2.

(vii) If x ∈ C529 \ C0
276 then the Hamming weight wΩ(x) ≥ 6 and is even. Therefore all

subcodes Ci with 276 < i < 551 are even of minimum weight 2, the minimum weight
codewords being contained in C0

276.

(viii) G has 3 orbits on minimum weight codewords of the even weight subcode C551. Each
of the two orbits not contained in C0

276 generates C551. Representatives for these two
orbits are x+ y and x+ y′ (where {x, x′} and {y, y′} are two distinct G-blocks) and
the point stabilizers belonging to these orbits, both of length 552, are isomorphic to
McL.

Proof. Since G acts transitively on Ω, the dimension of the fixed-point FG-submodule of
FΩ is 1. Hence C1 is the fixed-pont submodule of FΩ. Now, let X be any irreducible FG-
submodule of FΩ. If X ≤ C0

276 then X = C1. If X ̸≤ C0
276 = Ker(ε) then X +C0

276/C
0
276

∼=
X is isomorphic to the trivial FG-module C1, hence X ≤ C1 ≤ C0

276, a contradiction. So
the assertions (i) and (ii) easily follow. Assertions (iii), (iv) and (v) follow from Proposition
(3.1)(3) in conjunction with Theorem (2.1). Since C0

276 is isomorphic to FΩ as an FG-
module (vi) follows from Proposition (3.1). Since C0

276 = Ker(ε) and ε maps C529 onto C253

we get (vii). (viii) is easily verified looking at the action of ε. □

We want to determine also those FG-invariant subcodes of FΩ which do not occur in
the composition series obtained in Proposition (3.1). It is useful to refine the arguments
used in the proof of Corollary (3.2)(vii) by introducing a suitable notational concept.

(3.3) Definition.
Let u ∈ FΩ. Then u is called (partial) transversal if and only if suppΩ(u) intersects each
G-block B = {x, x′} in at most one element. u is called fully tranversal if u is a transversal
of the system of G-blocks, i.e. transversal and of Hamming weight 276.
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(3.4) Lemma.
Let 0 ̸= u ∈ FΩ.

(i) There exists a unique transversal u1 and a unique u0 ∈ C0
276 = Ker(ε) such that

u = uo + u1. We have ε(u) = ε(u1) and wΩ(ε(u)) = 2wΩ(u1).

(ii) u is transversal iff wΩ(ε(u)) = 2wΩ(u) holds.

Proof. Considering the action of the endomorphism ε gives (i); (ii) follows. □

(3.5) Lemma.
All elements of C277 \ C0

276 are fully transversal, hence have Hamming weight 276.

Proof. All elements of C277 \ C0
276 are mapped by ε onto 1Ω of Hamming weight 552. (Of

course, C277 \C0
276 is the full preimage of 1Ω.) The assertion follows from Lemma (3.4). □

(3.6) Lemma.
C23 is the unique FG-submodule of FΩ of composition length 2. So C529 is the unique
FG-submodule Y of FΩ such that FΩ/Y has composition length 2.

Proof. Let X be an FG-submodule of composition length 2. If X ≤ C0
276 nothing has

to be shown. Since by Corollary (3.2)(i) C1 is the only minimal submodule of FΩ the
composition factors of X must both be isomorphic to the trivial module C1 if X ̸≤ C0

276, a
contradiction against Corollary (3.2)(i), since G is nonabelian simple. □

(3.7) Lemma.
If X is an FG-submodule of FΩ not contained in C0

276 then X ∩ C0
276 ≥ C23.

Proof. This follows from Corollary (3.2)(i) and Lemma (3.6). □

(3.8) Proposition.
FΩ has exactly one FG-submodule C24 of dimension 24. We have C277 = C24 + C0

276 and
C24 ∩ C0

276 = C23. As an FG-module C24 is isomorphic to L = Λ/2Λ where Λ denotes the
Leech lattice whose group of automorphisms contains G as a subgroup fixing a given vector
of Leech norm 3. Moreover, the weight distribution of C24 and the G-orbits on the set of
elements of C24 are known. More explicitly, we have:

(i) The weight enumerator C24 is

1(ξ0η552 + ξ552η0) + 11, 178(ξ200η352 + ξ352η200) + 37, 950(ξ224η296 + ξ296η224)+

1, 536, 975(ξ256η328 + ξ328η256) + 2, 608, 200(ξ264η288 + ξ288η264) + 223ξ276η276.

(ii) All Hamming-weight classes contained in C23 (of Hamming weight ̸= 276) are G-
orbits with point-stabilizers either G or maximal subgroups of G of ATLAS type
HS,U4(3) : (2

2)133, 2
4 · A8, 2×M12 respectively.
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(iii) In C24 \ C23 = W276(C24) there are exactly 5 G-orbits, exactly one with length 552
(point stabilizer McL), the remaining two with length 48, 600 (point stabilizers M23),
934, 656 (point stabilizer U3(5)) and 4, 098, 600 (point stabilizer L3(4) : D6 ).

(iv) We can choose the notation so that for T = {x} ∪∆ the indicator function
∑

y∈T y
belongs to the G-orbit of length 552 in (iii). Then the indicator function

∑
y∈S y of

S = {x′} ∪ ∆ is not contained in C24. (Recall that the G-block containing x is by
convention {x, x′}.) However, the indicator function of the transversal T ′ = {x′}∪∆′

is contained in C24 and belongs to the mentioned G-orbit.

Proof. The assertions follows from Theorems (1.3) and [9, (4.3)], see also Application [9,
(4.8)]. Only (iv) needs an additional argument: If in addition

∑
y∈S y of S = {x′}∪∆ were

contained in C24 we would have x+x′ ∈ C24, hence also C
0
276 ≤ C24, clearly a contradiction.

(Note that 223 = 8, 388, 508.) □

(3.9) Proposition.
Let C1

276 := C275+Fs where for x ∈ T and the Gx-orbit ∆ and S = {x′}∪∆ the transversal
element s =

∑
y∈S y is not contained in C24 (Recall that Gx

∼= McL). In addition, we
define the FG-submodules (FG-invariant subcodes) C254 := C253 +C24, C275 := C253 +C24

and C2
276 := C275 + C24, all contained in C277. We immediately see that dimCi = i and

dimCk
276 = 276 for k = 1, 2. Then the following hold:

(i) The unique composition series of C277 as an FG-module containing C24 is

C0 < C1 < C23 < C24 < C254 < C2
276 < C277.

(ii) The unique composition series of C277 as an FG-module containing C1
276 is

C0 < C1 < C23 < C253 < C275 < C1
276 < C277.

(iii) The unique composition series of C277 as an FG-module containing C0
276 is

C0 < C1 < C23 < C253 < C275 < C0
276 < C277.

(iv) Every non-trivial FG-submodules of FΩ contained in C277 is one of the submodules
defined above. All proper subcodes Ci, i < 277, are self-orthogonal and the Ck

276, k =
0, 1, 2 are self-dual codes. The FG-submodules C0

276, C1
276 and C2

276 are the only
maximal submodules of C277 ; their pairwise intersection is C275 = C277

⊥.

(v) The weight enumerators of all codes defined above are known. The codewords of
minimum weight are for all these codes contained in C0

276.

(vi) C0
276 has minimum weight 2 whereas C1

276 and C2
276 have minimum weight 4. The

mimimum weight codewords form a G-orbit in all three cases.
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Proof. The argument in the proof of Proposition (3.8) shows that s is not contained in
C2

276. Therefore C1
276 is a well defined subspace of C277 of Dimension 276. Since C277/C275

is a trivial FG-module it follows that C1
276 is an FG-submodule. Standard arguments for

lattices of submodules now show that (i), (ii) and (iii) hold. (iv) can then be directly
checked. (v) follows from Proposition (3.1) and Lemma (3.5). (vi) follows likewise. Note
that the minimum weight codewords of C1

276 and of C2
276 are the same. □

Next we proceed by looking more closely at the somehow exceptional submodule C1
276

and at the orthogonal modules.

(3.10) Proposition.
For the FG-submodule C1

276 the following hold.

(i) C1
276 is uniserial and is generated by the G-orbit of the fully transversal codeword s

with orbit length 552, where s =
∑

y∈S y with S = {x′} ∪ ∆ as defined previously
above.

(ii) There exists an FG-endomorphism η of FΩ with Ker(η) = Im(η) = C1
276 and mapping

xg onto sg for g ∈ G.

(iii) C1
276 is not isomorphic to C0

276 neither as an FG-module nor as code.

(iv) C1
276 is not isomorphic to C2

276 neither as an FG-module nor as code, but both codes
have the same weight distribution.

Proof. (i) follows from Proposition (3.9) since C1
276 is uniserial. (ii) follows by the universal

property of the permutation module from (i). Now observe that C1
276 is generated by a

codeword in a G orbit of length 552 whereas C0
276 and C2

276 do not contain a codeword in a
generating G-orbit of length 552. So we get (iii) and (iv), the latter also since all elements
in C277 \ C0

276 are fully transversal. □

(3.11) Proposition.
Let C528 := C⊥

24 and C298 := C⊥
254. Then

C0 < C1 < C23 < C24 < C254 < C275 < C2
276 < C298 < C528

is the unique FG-module composition series of C528 containing C275. The weight enumer-
ators of all these codes are known; the minimum weight codewords of all these codes are
contained in C275 = C528 ∩ C0

276.

Proof. The mapping U 7→ U⊥ is an involutory antiautomorphism of the lattice of FG-
submodules of FΩ. This observation gives the first part of the assertion. The rest follows
using MacWilliams’ identities, also in view of Lemma (3.4). □

Computation by MeatAxe shows that there are only 2 more FG-submodules, C3
276 and

C4
276 situated between C254 and C298 = C254

⊥, both self-dual of dimension 276, see Table I.
It seems to be difficult to give a reasonable description of these modules. Using the

data produced by MeatAxe one can compute generator matrices mat3 and mat4 which

13



differ only in the last 22 rows such that the sums of the last row vectors mat3[i] +mat4[i]
belong to the submodule C275 (i = 255, . . . , 276). We could not determine the weight
enumerator, but it is highly probable that both corresponding codes have the same weight
distribution and probably are isomophic as FG-modules. Moreover, as a result of many
computations it seems that both codes contain no codewords which are transversal but
not fully transversal in the sense defined above. So all transversal codewords seem to be
contained in C254. Of course, both codes have minimum weight 12 by virtue of Lemma (3.4).

The proof of the Main Theorem is complete.
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