1	1	Rose and lavender industrial by-products application for adsorption of Acid
2 3 4	2	orange 7 from aqueous solution
5 6 7	3	
, 8 9	4	Gergana Marovska ¹ , Mariya Dushkova ² , Galena Angelova ³ , Mariya Brazkova ³ , Hendrik
10 11 12	5	Brink ⁴ , Nils Haneklaus ^{5,6} , Nikolay Menkov ² , Anton Slavov ^{1*}
13 14	6	
15 16	7	¹ Department of Organic Chemistry, Technological Faculty, University of Food Technologies,
17 18	8	26 Maritsa Blvd., Plovdiv 4002, Bulgaria. e-mails: Gergana Marovska (ORCID: 0000-0002-
19 20 21	9	<u>2687-3366</u>): <u>gerii_vlaseva@abv.bg;</u> Anton Slavov (ORCID <u>0000-0002-2699-5929</u>):
22 23 24	10	antons@uni-plovdiv.net
24 25 26	11	² Department of Process Engineering, Technical Faculty, University of Food Technologies, 26
27 28	12	Maritsa Blvd., Plovdiv 4002, Bulgaria. e-mails: Nikolay Menkov (ORCID 0000-0002-8585-
29 30 31	13	<u>6734</u>): <u>nimenkov@yahoo.com</u> ; Mariya Dushkova (ORCID <u>0000-0002-4157-2684</u>):
32 33	14	maria_douchkova@yahoo.fr
34 35 36	15	³ Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002
37 38	16	Plovdiv, Bulgaria; e-mails: Galena Angelova (ORCID 0000-0003-1452-8116):
39 40 41	17	g_angelova@uft-plovdiv.bg; Mariya Brazkova (ORCID 0000-0002-0184-9511):
42 43	18	mbrazkova@uft-plovdiv.bg
44 45 46	19	⁴ Department of Chemical Engineering, Faculty of Engineering, Built Environment and
47 48	20	Information Technology, University of Pretoria, Pretoria 0002, South Africa; ORCID 0000-
49 50 51	21	<u>0002-4699-6152;</u> e-mail: <u>deon.brink@up.ac.za</u>
51 52 53	22	⁵ Td-Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr
54 55 56	23	Karl-Dorrek-Straße 30, 3500 Krems, Austria. ORCID 0000-0002-0673-0376; e-mail:
50 57 58	24	nils.haneklaus@donau-uni.ac.at

⁶Institute of Chemical Technology, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany. e-mail: nils.haneklaus@chemie.tu-freiberg.de *Corresponding author: Department of Organic Chemistry and Inorganic Chemistry, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., Plovdiv 4002, Bulgaria. antons@uni-plovdiv.net, ORCID 0000-0002-2699-5929 Acknowledgment: This work was supported by the Ministry of Education and Science of Bulgaria (Bulgarian National Science Fund) [Grant Number: KII-06-Austria/4 13/08/2021] and the Federal Ministry of Education, Science and Research (BMBWF) through Austria's Agency for Education and Internationalization (OeAD) [Grant Number: Africa UNINET P056; BG 01/2021]. Abstract Lavender (L) and Rosa Damascena (RD) industrial solid by-products were used as biodegradable adsorbents for the removal of the azo dye Acid orange 7 from aqueous solutions. The equilibrium for the adsorption (1 g of adsorbent, 20 mL aqueous solution of dye, pH 7.05) occurred at the 60 min and at 100 mg/L initial concentration of azo dye. The adsorbed amount of Acid orange 7 was 1.63 mg/g (81.50% removal efficiency) for L and 1.74 mg/g (87% removal efficiency) for RD at 293 K. The effectiveness of the adsorption increased decreasing the pH medium: for L at pH 1.5 the removal was 1.975±0.08 mg/g (98.75%) and for RD at pH 3.5 was 1.975±0.08 (98.75%). The removal behavior for Acid Orange 7 fitted the Freundlich model and suggested a diffusion process related to physical adsorption. For the three investigated temperatures (293 K, 303 K and 313 K) negative values for Gibb's free energy ΔG^0 were observed revealing the spontaneous character of the

50	adsorption processes. The observed decrease of ΔG^0 (ranging from -18 to -21 kJ/mol) implies
51	a physical nature of the adsorption. The post-adsorption L and RD residues were subjected to
52	solid state cultivation using the fungus Ganoderma resinaceum GA1M yielding mycelium-
53	based biocomposites. The investigations revealed that the biocomposites were free from Acid
54	orange 7. The approaches presented here demonstrate that L and RD industrial by-products
55	can be successfully applied for the adsorption of Acid orange 7 while producing harmless
56	mycelium-based biocomposites through solid state fermentation using G. resinaceum GA1M.
57	
58	Keywords: azo dye; acid orange 7 adsorption; lavender and rose by-products; isotherm
59	models; Ganoderma resinaceum; mycelium-based biocomposites
60	
61	1. Introduction
62	2.
63	Azo dyes are among the most widely used by industry colorants. More than 60% of the
64	synthetic organic dyes generated are azo dyes [1]. These dyes are extensively used in the
65	textile, leather, plastic, and food industries due to their vivid and intense colors. More than
66	2000 azo dyes have been synthesized and it is not surprising that due to their important
67	industrial role their toxicity was widely studied. In general, azo dyes possess photolytic
68	stability and only negligibly biodegrade in nature. This stability poses an environmental risk.
69	Moreover, some of the azo dyes are known to be toxic and carcinogenic. Specifically, the
70	metabolization and decomposition of azo dyes lead to the production of aromatic amines of
71	which some are known as human carcinogens (Group III A 1 of the German MAK III list)
72	and compounds posing risks to animals thereby also posing risks to human health (Group III
73	A 2) [2]. In the European Union (EU) some azo dyes are restricted by several regulations,
74	such as: REACH, Toy safety directive, and the EU food contact material framework.
	3

Therefore, precautions must be taken to eliminate azo dyes from waste waters and to avoid human exposure to the most dangerous ones.

The problem is also related to the worldwide growing demand for water with high enough quality, necessity to protect water resources and to purify the wastewaters [3]. The overall increase of the industrial production capacity (textile, mining, papers, plastics, etc.) lead to extensive usage of water and obtaining of large volumes wastewaters. Dying and textile industry are among the largest consumers of water and around 15% of the dyes are released in the environment without proper treatment [4]. These practices pose serious environmental risks and hence proper purification methods and technologies should be investigated and introduced.

Acid orange 7 is an azo dye with an appealing red-orange color. It is mainly used for silk and 26 wool dyeing, polyamide fiber fabric of direct printing, leather and paper coloration, hair dyeing products, and is also utilized as an indicator and biological stain [5]. This azo dye is produced by coupling of *p*-aminobenzenesulfonic acid (after diazotation) and 2-naphtol. Reductive cleavage by bacteria or degradation by chemical or physical factors could result in the production of corresponding aromatic amino compounds. Brüschweiler and Merlot [6] reported that the o- and p-aminobenzenesulfonic acid could be mutagenic and are found in some wool, cotton and other cellulose fibers. P-aminobenzenesulfonic acid was amongst the 43 most frequently determined aromatic amines, found in 37 textile samples in concentrations in the 100-442 mg/kg range [5].

Various methods for decontamination and removal of compounds like azo dyes were proposed and investigated. Some of these methods are based on physicochemical interactions (such as flocculation, adsorption, ozonation, electrolytic and photooxidation, etc.), phytoremediation [7] and others rely on microbial or fungal degradation [8-12]. Taheri et al.

[13] performed a study for the removal of two azo dyes: Acid orange 7 and Acid red 18 by

34 567

9

several methods to compare the costs and effectiveness of the methods for decontamination. The authors found that the utilization of activated carbon in combination with membrane filtration in a sequencing batch reactor showed the most promising results. However, the initial investments are usually higher than performing a simple adsorption or microbial/fungal degradation. Numerous adsorbents have been tested for the removal of azo dyes [13-16] with the most significant advantage being the utilization of renewable and cheap resources as adsorbents. Such abundant and easily available materials are very often by-products / wastes from the food and agricultural industries which generate large amounts of biodegradable phytomass annually.

The essential oil industry, because of the usually low amount of the essential oil in the raw plant material, produces tonnes of solid by-products which are commonly discarded [17]. Lavender and roses are amongst the most processed crops in the essential oil industry and the by-products obtained from their distillation could be used as a cheap, abundant, and biodegradable adsorbent for pollutant removal. The solid lavender and rose post-distillation biomass have been successfully employed in numerous works for the removal of heavy metals in model studies and in waste waters [17] but few studies have specifically focused on the application for the adsorption of organic pollutants [18, 19]. Additionally, the residues from the adsorption of azo dyes could be subjected to further degradation by higher fungi, which are known for their abilities to produce enzymatic complexes able to degrade lignocellulosic materials and polyphenols [20-25].

Hence the aim of the present work was to investigate the applicability of rose and lavender industrial post-distillation by-products as natural adsorbents for removal of the azo dye Acid orange 7 and to study the factors, kinetics, thermodynamic parameters, and further fungal biodegradation of the post-adsorption residues. The study proposes an innovative method for lavender and rose post-distillation by-products valorization. It is known that due to their high

polyphenolic compounds content their direct disposal in landfills are likely environmentally harmful and therefore the method would contribute to sustainability, a circular economy, and zero waste approaches in general.

2. Materials and methods

2.1. Samples and reagents

Lavender (bio-certified Lavandula angustifolia Mill., "Sevtopolis" cultivar) - L and rose (bio-certified Rosa Damascena Mill.) – RD, by-products from industrial steam distillation of fresh plant stems and flowers were provided by the ECOMAAT distillery (Mirkovo, region of Sofia, Bulgaria; 2021 harvest). The L and RD by-products were collected when the distillation was finished: for RD residues the mass was pumped out from the still and after passing through a screw conveyor the solid residue was separated from the liquid phase; for L residue the mass was removed from the baskets in the still and collected. The solid residues were inspected for impurities and dried. The dried rose and lavender were washed with distilled water (100 g with 1600 mL water; added in portions of 400 mL) on a Buchner funnel. The residual mass was dried, milled, and sieved. For adsorption of the azo dye, the biomass fraction with particle size 100-250 µm were used. Acid orange 7 (4-(2-Hydroxy-1-naphthylazo) benzenesulfonic acid sodium salt) was obtained from local distributors (Table 1).

150		acteristics of the azo	aye Aela orange /					
	Name	Structure	Molecular	Mw	Density,	Solubility,		
	Ivanie	Structure	formula	(g/mol)	g/mL	g/L (20°C)		
	Acid orange 7	SO ₃ Na	* C ₁₆ H ₁₁ N ₂ NaO ₄ S	350.3	1.6	27		
151								
152	2.2. Methods							
153								
154	2.2.1. Adsorpt	ion procedure						
155	The adsorption of the azo dye was carried out as follow: 20 mL water solution of Acid orange							
156	7 with specified concentrations (20, 40, 60, 80 and 100 mg/L) were added to 1 g adsorbent in							
157	a 50 mL centrifuge tube and the tubes were placed on a laboratory shaker MLW THYS 2							
158	(VEB MLW Labortechnik Ilmenau, Germany), placed in a thermally controlled laboratory							
159	oven (the experiments were performed at three temperatures: 293 K, 303 K and 313 K). The							
160	shaker was started (100 rpm) and at a specified time (2.5, 5, 10, 20, 40, 60, 90 and 120							
161	minutes) a centrifuge tube was removed from the shaker and the mass was filtered first							
162	through a paper filter and second through a syringe filter CA 0.45 μ m (Isolab, Germany).							
163	Adsorption of the filtrate was measured at 500 nm using LLG-uniSPEC 2 UV-Vis							
164	spectrophotometer (LLG Labware, Germany). The concentration of non-adsorbed Acid							
165	orange 7 was o	calculated using a cal	libration curve, prepa	ared with wa	ater solutions	s of the dye		
166	with known co	oncentrations. The ad	lsorption of Acid ora	nge 7 by L a	and RD resid	lues at		
			7					

150 Table 1. Characteristics of the azo dye Acid orange 7

1	167	different pH mediums was performed as described above using 100 mg/L solution of the dye
2	168	at 313 K in – for pH 1.05: 0.05 M sulfuric acid; for pH 3.50: 0.05 M citrate buffer; for pH
4 5	169	5.50: 0.05 M citrate buffer; for pH 10.75: 0.05 M carbonate buffer.
6 7 8	170	2.2.2. Solid-state cultivation of Ganoderma resiaceum using L and RD residues from dye
9 10	171	adsorption as substrates for mycelium-based biocomposite preparation.
11 12 13	172	1) Substrate Preparation Procedure: The dried residue from dye adsorption (150 g) was
14 15	173	humidified with a solution with the following composition (g/L): Yeast extract: 2.0; Peptone:
16 17	174	2.0; KH ₂ PO ₄ : 0.5; K ₂ HPO ₄ : 1.0; MgSO ₄ : 0.5 up to final 65-70% moisture. 0.1% of calcium
18 19 20	175	carbonate was added, mixed well and the mixture was transferred into growing bags (SacO2,
21 22	176	Belgium). The mixture was sterilized at 394 K for 45 min, cooled down and used as a feeding
23 24 25	177	substrate for the next procedure of inoculation and cultivation.
26 27	178	2) Fungi Ganoderma resinaceum GA1M
28 29 30	179	The macrofungal strain Ganoderma resinaceum GA1M is part of the microbial collection of
31 32	180	the Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria and is
33 34 35	181	maintained at 4°C on Mushroom Complete medium (MCM) containing 20.0 g/L of glucose,
36 37	182	0.5 g/L of KH ₂ PO ₄ , $1.0 g/L$ of K ₂ HPO ₄ , $0.5 g/L$ of MgSO ₄ , $2.0 g/L$ of peptone, $2.0 g/L$ of
38 39	183	yeast extract, 2.0 g/L of agar, pH 4.8-5.2, and was subcultured every 30 days onto fresh
40 41 42	184	medium. The strain was previously isolated and molecularly identified [200].
43 44	185	3) Inoculation of the substrate and mycelium growth:
45 46 47	186	The inoculation of the substrate was performed with vegetative inoculum obtained through
48 49	187	cultivation of G. resinaceum in MCM broth at 301 K and 220 rpm for 7 days until pellets
50 51 52	188	were formed. Sterile filtration was used for the collection of the pellets which were then used
53 54	189	for the inoculation of the mixture. The determination of the pellets dry weight was performed
55 56	190	on a moisture analyzer (RADWAG, Poland).
57 58 59		
60 61		
62 63 64		8
65		

The mixing of the pellets (10 % w/w) with the substrate was made in sterile conditions in the 2 growing bag, which were placed at 298 K in darkness. The substrate was fully enveloped by the mycelium for 7 days. Each growing bag was observed and mixed daily to ensure the full coverage of the substrates particles and uniform mycelium growth. To obtain mycelium-based biocomposites with proper sample geometry, aseptic transfer of the substrate/mycelium mixture into molds and further cultivation according to [20] was performed. 4) Determination of residual Acid orange 7 in the biocomposites. 50 g of the mycelium-based biocomposites prepared by the fungal growth on L and RD post-19 adsorption residues was milled and extracted with 500 mL deionized water at 333 K and constant stirring (100 rpm) for 1 hour. The mass was filtered and the solid residue was subjected to the same extraction procedure 2 more times. The combined filtrates were evaporated to 100 mL final volume and lyophilized. The lyophilized extract was dissolved in deionized water at 100 mg/mL concentration and filtered through a syringe filter CA 0.45 µm (Isolab, Germany). Absorption of the filtrate was measured at 500 nm using LLG-uniSPEC 2 UV-Vis spectrophotometer (LLG Labware, Germany) and the concentration of the Acid orange 7 was calculated using a calibration curve, prepared with water solutions of the azo dye with known concentrations. 2.2.3. Infrared spectroscopy Infrared spectra of the rose and lavender biomass (before and after adsorption of Acid orange 7) were taken in KBr (4 mg sample) using Bruker VERTEX 70 FT-IR Spectrometer (USA) with 25 scans of the samples. 2.2.4. Sample morphology determination by Scanning electron microscopy (SEM)

1	215	The morphology analyses of the samples were performed by digitized Scanning Electron
1 2 3	216	Microscope Philips 515 (The Netherlands). Before the analyses, micro-quantities of the
4 5 6	217	samples have been fixed on standard microscope pins using adhesive tape and then covered
7 8	218	by Au-Pd metal film for better conductivity. An accelerating voltage of 7 kV was applied on
9 10 11	219	the electrons in this experiment.
12 13	220	
14 15	221	2.2.5. Isotherm modelling
16 17 18	222	The amount of dye adsorbed per unit mass of adsorbent (q_e , mg/g) was calculated using the
19 20	223	mass balance Eq. 1:
21 22 23	224	
24 25	225	$q_{e=\frac{c_0-c_e_V}{m}}$ Eq. 1
26 27 28	226	
29 30 31	227	where V is the solution volume, L; c_0 and c_e are initial and equilibrium concentration, mg/L;
32 33	228	m is the adsorbent mass, g.
34 35 36	229	The most widely used models for description and explanation of adsorption isotherms are
37 38	230	Langmuir, Freundlich and Temkin models.
39 40	231	
41 42 43	232	1) Langmuir isotherm model
43 44 45	233	Langmuir derived an empirical model that postulates a monolayer adsorption of molecules
46 47 48	234	onto a morphologically homogeneous adsorbent surface containing at a fixed number of
49 50	235	active adsorption sites, with no lateral interactions. Langmuir made several assumptions, the
51 52	236	most important is one-site occupancy adsorption, which occurs at specific homogeneous sites
53 54 55	237	on the surface of the adsorbent and proposes an empirical nonlinear model [26]. Langmuir
56 57 58	238	hypothesized that all the adsorption sites are identical in affinity and energy. The model
59 60		
61 62		10
63 64		

further assumes that the intermolecular attractive forces diminish steadily with distance increases. The original non-linear form of the Langmuir equation is expressed as: Eq. 2 $q_{e=\frac{q_mK_Lc_e}{1+K_Lc_e}}$ where q_m is the maximum adsorption capacity, mg/g; K_L is Langmuir constant associated with the affinity of the binding sites and energy of adsorption, L/g. The linear form of Langmuir Eq. 2 is expressed as [27]: $\frac{c_e}{q_e} = \frac{c_e}{q_m} + \frac{1}{q_m K_L}$ Eq. 3 2) Freundlich isotherm model The Freundlich model postulates a multilayer adsorption process, with non-uniform distribution of adsorption enthalpy and affinities onto the heterogeneous adsorbent surface without lateral interaction. The energetically favored binding sites are theorized to be occupied first and the binding strength decreases sequentially with increased coverage of the binding sites. The non-linear Freundlich equation is expressed as [28]: $q_e = K_F c_e^{1/n}$ Eq. 4 where K_F is Freundlich constant associated with adsorption capacity, L/g; n is an empirical constant connected to adsorption intensity. The linear form of Eq. 4 is expressed as [27]:

263
$$lnq_e = lnK_F + \frac{1}{n}lnc_e$$
Fq. 52642653) Temkin isotherm model265The Temkin isotherm model considers the effect of indirect adsorbate-adsorbing species266interactions on adsorption. It postulates that the heat of adsorption as a function of268temperature of all the molecules in the layer reduces linearly rather than logarithmically with269surface coverage due to adsorbent-adsorbate interactions [29]. The non-linear Temkin270isotherm equation is given by:271 $q_e = \frac{n\tau}{b}ln(A_{T}c_e) = Bln(A_{T}c_e)$ Eq. 6273vwhere T is the absolute temperature, K; $R = 8.314$ is the universal gas constant, J/(mol.K); A_T 274where T is the absolute temperature, K; $R = 8.314$ is the universal gas constant, J/(mol.K); A_T 275is the equilibrium binding constant, L/g; b is the variation in adsorption energy, J/mol; B is276the Temkin constant.277The linear form of Temkin equation is expressed as [27]:278 $q_e = BlnA_T + Blnc_e$ Fq. 72804) Thermodynamic parameters determination2814) Thermodynamic parameters determination282 $k_a = \frac{q_e}{c_e}$ Eq. 8283The coefficients k_d were calculated by the method suggested by Khan and Singh [30] from284the intercept of the plots of ln (q_a/c_a) vs. q_e . The coefficient k_d has the dimension L/g. It needs284the intercept of ln glots of ln (q_a/c_a) vs. q_e . The coefficient k_d has the dimension L/g. It needs

to be converted into dimensionless form K_e by multiplying with the density of water (1000 g/L) to be used in the thermodynamic equation [31]: $K_e = 1000 k_d$ Eq. 9 Then, the change in Gibbs free energy ΔG^0 , J/mol, enthalpy ΔH^0 , J/mol, and entropy ΔS^0 , were calculated from the Van't-Hoff equation: $lnK_e = \left(\frac{-\Delta H^0}{R}\right)\frac{1}{T} + \frac{\Delta S^0}{R}$ Eq. 10 From the plot of lnKe as a function of 1/T (van't Hoff plot) according to Eq. 10 the values of ΔH^0 and ΔS^0 J/(mol.K), were calculated using the slope and intercept of the straight lines respectively. The values of ΔG^0 were calculated using Eq. 11. $\Delta G^0 = \Delta H^0 - T \Delta S^0$ Eq. 11 2.3. Statistical analysis The experiments were performed in triplicate and data values are expressed as mean \pm SD (standard deviation). Statistical analysis was carried out by one way ANOVA (Tukey's post *hoc* test; p < 0.05). 3. Results and discussion 3.1. Kinetics of the adsorption of Acid orange 7 on L and RD by-products One of the most important parameters influencing the adsorption process is the contact time of the solution with the adsorbent. Fig. 1 shows the kinetics of the adsorption and the

1	309	dependence of the Acid orange 7 adsorption process on the contact time, temperature and
1 2 3 4	310	initial dye concentration. In the beginning the adsorption was very rapid and at the second
4 5 6	311	minute most of the dye was already adsorbed to the adsorbent surface. The equilibrium for
7 8	312	the adsorption of the Acid orange 7 was determined at 60 min for RD (293 K) and for L (at
9 10	313	the three investigated temperatures). For RD (at 303 K and 313 K) a constant but negligible
11 12 13	314	rise of the adsorbed dye was observed until the 120 min. The higher temperatures slightly
13 14 15 16 17 18	315	increased the adsorption of the azo dye on the L and RD. Increase of the initial concentration
	316	from 20 to 100 mg/L azo dye lead to an increase of the adsorbed amount from 0.32 to 1.63
18 19 20	317	mg/g adsorbent L at 293 K, from 0.28 to 1.61 mg/g adsorbent L at 303 K and from 0.28 to
21 22	318	1.58 mg/g adsorbent L at 313 K. The RD residue as adsorbent demonstrated slightly higher
23 24 25 26 27 28 29 30 31 32 33 34 35	319	capacity: with the increase of the initial concentration of the Acid orange 7 from 20 to 100
	320	mg/L the adsorbed amount incremented from 0.35 to 1.74 mg/g RD adsorbent at 293 K, from
	321	0.34 to 1.73 mg/g RD adsorbent at 303 K and from 0.34 to 1.71 mg/g RD adsorbent at 313 K.
	322	The highest adsorption capacity was demonstrated by both adsorbents with the highest initial
	323	concentration of 100 mg/L azo dye. These results correlate well with previously reported
36 37	324	literature data for adsorption of Metanil yellow azo dye on bottom ash and de-oiled soya [15],
38 39 40	325	adsorption of Basic blue 41 on Juniperus excelsa residues [32], and combined adsorption and
4 7	326	decolorization of Remazol brilliant violet 5R and Sunset Yellow [23].
43 44 45	327	
45 46 47		
48 49		
50 51		
52 53		
54 55		
56		
57 58		
59 60		
61 62		
63		14
64 65		

339 313 K for L and RD. Amount of RD and L adsorbents: 1 g; volume of dye solution: 20 mL; pH=7.05; shaking speed 100rpm

Table 2. Equilibrium concentration (ce, mg/L) at 20, 40, 60, 80 and 100 mg/L initial concentrations (c0, mg/L) and temperatures 293, 303 and

1	341	The influence of the pH medium was investigated at five different pH values (Table 3). At
1 2 3	342	lower pH (below 5.5) the effectiveness of adsorption increased and for L adsorbent at pH 1.5
4 5 6	343	the removal of the dye reached almost 99%. The RD was also effective at pH 3.5 and 5.5
7 8	344	(98.75% removal). In general it could be concluded that the acidic medium increased the
9 10 11	345	effectiveness of dye removal. The Acid orange 7 is an anionic dye and in acidic medium the
11 12 13	346	sulfo-groups will be protonated. In the same time at lower pH the net charge of the adsorbent
14 15	347	will be lower due to protonation of the carboxyl groups considered among the main
16 17 18	348	functional groups favoring adsorption [33] having in mind that the amount of pectic
18 19 20	349	substances in the RD and L are around 10-15% [17, 34]. By this way the electrostatic
21 22 23	350	repulsion will be lower and will favor the adsorption. The results for adsorption at higher pH
24 25	351	(only 2.50–3.75% removal) suggested that the electrostatic interactions plays important role
26 27 29	352	in the sorption process. These results are in accordance with the findings of Wu et al. [35]
28 29 30 31 32 33	353	and Pelosi et al. 2013 [36] investigating the Acid orange 7 adsorption on waste brewery's
	354	yeast and Salvinia natans biomass, respectively. However, Wu and coworkers [35] found that
33 34 35	355	above pH 5 the efficiency of waste brewery's yeast as adsorbent lowered significantly while
36 37	356	the effectiveness of L and RD at neutral pH was still 87.03% and 92.15%, respectively. These
38 39 40	357	findings are important because operating on a large scale at neutral medium than in acidic
41 42	358	condition is easier and beneficial for the environment. Besides, further neutralization of both
43 44 45	359	the spent adsorbent and the solution will be necessary. Except electrostatic repulsion between
46 47	360	negatively charged sulfo and carboxyl groups other interactions (chemical or physical), such
48 49 50	361	as: hydrogen bonding, coordinative bonding, hydrophobic interactions, double bond
51 52	362	attraction, pore filling, partitioning, could be involved in the mechanism of sorbent retention
53 54 55	363	[3].
56 57	364	
58 59		
60 61 62		
62 63 64		
65		

Table 3. Influence of the pH medium on the adsorption of Acid orange 7 on L and RD.

Adsorbed amount: mg/g (in brackets is given the efficiency of the adsorption in percentage).

Adsorbent: 1g; initial azo dye: 20 mL 100 mg/L (2 mg dye in the volume); temperature 313

K; shaking speed 100rpm

pH	1.05	3.50	5.50	7.05	10.75
L	1.975±0.08	1.95±0.09	1.775±0.1	1.63±0.08	0.075±0.02
L	(98.75)	(97.50)	(88.75)	(81.50)	(3.75)
	$1.80{\pm}0.07$	1.975 ± 0.08	1.975±0.08	1.74 ± 0.08	0.05 ± 0.02
RD	(90.06)	(98.75)	(98.75)	(87.00)	(2.50)

Table 4 presents the results for adsorption of Acid orange 7 by L and RD compared with different adsorbents found in the literature. Although, the L and RD residues showed lower adsorption capacities compared with other adsorbents, it should be noted that the results were achieved at neutral pH values. At acidic pH medium the effectiveness of the azo dye removal reached 98.75% for both adsorbents.

36

24

26

29

31

2

4

6 7

Table 4. Comparison of adsorption capacities of different adsorbents of Acid orange 7

1 2			Adsorption capacity	
3 4	Adsorbent	Conditions	(mg/g) / removal	References
5			efficiency, %	
3 9	Salvinia natans		46.53 /	
) -	biomass	293 K, pH 1	46.53%	[36]
			24.23/	
	Canola waste	288 K	>99%	[37]
			~9970	
			18	

1 2 3		Polypyrrole/nanosilica composite	328 K, pH 3	24.93	[38]
4 5			293 K, pH 2.5,	8.96/	
6 7		Canola stalks	100 mg/L dye	>90%	[33]
8 9 10		Detterr esh		3.78/	
11 12 13		Bottom ash		68%	[20]
13 14 15			303 K, pH 2	7.61/	[39]
16 17		De-oiled soya		58%	
18 19 20		Beech wood sawdust	303 K	5.06	[40]
21 22		Waste brewery's yeast	303 K, pH 2	3.561	[35]
23 24 25		Lavender by-product	293 K, pH	1.63 /	
26 27		(L)	7.05, 1 g	81.50%	present study
28 29			adsorbent, 20		
30 31 32		Rosa Damascena by-	mL 100	1.74 /	
33 34		product (RD)	mg/mL (2 mg	87.00%	present study
35 36			dye total)		
37 38 39	377				
40 41	378				
42 43		3.2 Infrared spectroscop	y and morphology	of L and RD by produ	cts and post-adsorption L
44 45	379		y and morphology	or L and KD by-produ	ets and post-adsorption L
46 47	380	and RD residues			
48 49	381				
50 51 52	382	Infrared spectroscopy is a	a powerful tool tha	t can provide meaning	ful information about the
53 54	383	functional groups of inve	stigated substance	s. Fig. 2a presents the	infrared spectra of the Acid
55 56 57	384	orange 7. A broad and ch	aracteristic peak c	orresponding to the O-	H stretching vibrations was
58 59	385	observed at 3448 cm ⁻¹ . T	he bands at 1048 a	nd 1387 cm ⁻¹ could be	attributed to the azo (-
60 61 62 63 64 65				19	

-	386	N=N-) bond stretching movements, while the ones at 1035, 1122 and 1186 cm ⁻¹ are
1 2 3	387	characteristic peaks indicating the presence of sulfo groups [41]. Additionally, a band due to
3 4 5	388	aromatic ring stretching was observed at 1511 cm ⁻¹ . The RD and L by-products (Fig. 2b and
6 7 8	389	2c) exhibited characteristic bands at 3421 and 3427 cm ⁻¹ due to presence of OH groups (main
9 10 11	390	functional group in the polysaccharides). Peaks at 1636-1647 and 1734-1735 cm ⁻¹ could be
12 13	391	assigned to stretching and vibrations of the carboxyl groups from the pectic moieties. The
14 15	392	infrared spectra of post-adsorption RD and L residues are presented in Fig. 2c and 2e,
16 17 18	393	respectively. The most significant differences could be observed around 1500-1560 cm ⁻¹
18 19 20	394	where a new peak at 1540 cm ⁻¹ (for RD post-adsorption residue) and 1541 cm ⁻¹ (for L post-
21 22 22	395	adsorption residue) could be found. These bands are a result of the aromatic ring stretching
23 24 25	396	vibrations from the aromatic moieties of Acid orange 7 suggesting successful adsorption of
26 27	397	the dye onto the surface of the RD and L by-products.
28 29	398	
30 31		
32		
33 34		
35		
36		
37 38		
39		
40		
41 42		
43		
44		
45 46		
47		
48		
49 50		
51		
52		
53 54		
54 55		
56		
57 50		
58 59		
60		
61		
62 63		20
64		
65		

Furthermore, the morphology of the adsorbents and the post-adsorption residues of RD and L 2 were investigated by SEM and the observed image is presented in Fig. 3. The RD by-product 4 image revealed the presence of a fiber-type structure probably due to polysaccharide chains while the L by-product could be characterized with a fluffier and more porous surface. The 9 post-adsorption residues generally retain their structure. Although, some studies [16, 42] suggested that there is a significant difference in the adsorbent structure before and after adsorption, in our case no observable changes in the RD and L post-adsorption residues morphology, compared to the RD and L by-products, could be observed. This could be 19 explained with the physical type of the adsorption process of the Acid orange 7 onto the surface of the RD and L by-products.

52

Fig. 3 Morphological analysis by SEM of the RD (a. before adsorption; b. after adsorption)

and L (c. before adsorption; d. after adsorption) residues

3.3. Adsorption isotherms parameters determination

The adsorption isotherm characterizes the equilibrium state of molecules distribution between

the liquid and solid phase [43]. To evaluate the applicability of different isotherm models

(Langmuir, Freundlich, Temkin) to describe the process of adsorption their linearized form

was used (Eq. 3, 5 and 7, section 2.2.5). The Langmuir isotherm model assumes that
adsorption occurs on a relatively homogenous surface with limited interactions in the surface
plane. The Freundlich model empirically describes adsorption on non-homogenous, porous
surfaces. The Temkin isotherm model describes interactions of heterogeneous solid surfaces
with molecules from a solution and this assumption is made on the basis that temperature
increases lead to decreases of surface covering. The correlation of the models to the
experimental results is expressed by fitted plots and presented in Fig. 4.

Fig. 4 Langmuir, Freundlich and Temkin isotherms of Acid orange 7 adsorption on L and RD
residues for 293, 303 and 313 K

	434	
1 2 3	435	The parameters of the Langmuir, Freundlich and Temkin isotherm equations were calculated
4 5	436	and are presented in Table 5. The coefficients of determination showed that the Freundlich
6 7 8	437	equation better described the adsorption of Acid orange 7 using RD and L post-distillation
9 10	438	by-products than the Langmuir and Temkin models. Similar results were obtained by Khosla
11 12 13	439	et al. [44] investigating adsorption of Acid orange 7 on aluminum oxide nanoparticles. This
14 15	440	suggests a multilayer adsorption process and confirms the heterogeneous structure of the
16 17 18	441	surface of both adsorbents without lateral interactions. The coefficient n in the Freundlich
18 19 20	442	equation connected to adsorption intensity is practically not influenced by the temperature
21 22 23	443	and the type of the adsorbent. The values of the coefficient $K_{\rm F}$ showed higher adsorption
23 24 25	444	capacity for RD compared with L's capacity, at the three temperatures studied. In opposite of
26 27	445	the established from Khosla et al. [44], the values of the coefficient decreased with the
28 29 30	446	temperature rise, which probably means a decrease in the binding forces at higher
31 32	447	temperatures.
33 34		
35 36		
37 38		
39		
40 41		
42		
43		
44 45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55 56		
57		
58		
59		
60		
61 62		• ·
63		24
64		

Т, К			RD					L		
					Langm	uir model				
	K_L , L/g	$q_{ m m},$ mg/g	\mathbb{R}^2	ARE	SD	K_L , L/g	$q_{ m m}$, mg/g	\mathbb{R}^2	ARE	SD
293	0.02382	5.5036	0.7780	4.50	0.069	0.003579	22.9358	0.0525	5.91	0.10
303	0.01203	9.6246	0.2300	7.44	0.114	0.02560	1.7391	0.8366	7.22	0.10
313	0.01518	6.2735	0.1913	11.32	0.173	0.01973	2.6831	0.3539	17.95	0.24
					Freundl	lich model				
	$K_P L/g$	п	\mathbb{R}^2	ARE	SD	K_{F} , L/g	п	\mathbb{R}^2	ARE	SD
293	0.1136	0.8447	0.9935	4.17	0.0703	0.07765	0.9581	0.9791	6.04	0.09
303	0.1043	0.9026	0.9777	6.58	0.108	0.02312	0.6972	0.9967	3.26	0.04
313	0.0854	0.8872	0.9495	11.02	0.179	0.03134	0.7452	0.9439	14.08	0.19
					Temki	in model				
	$A_{T,}$ L/g	В	\mathbb{R}^2	ARE	SD	$A_{T,}$ L/g	В	\mathbb{R}^2	ARE	SD
293	0.1136	0.8447	0.9935	28.62	0.474	0.07765	0.9581	0.9791	12.71	0.20
303	0.1043	0.9026	0.9777	17.11	0.268	0.02312	0.6972	0.9967	14.07	0.23
313	0.0854	0.8872	0.9495	20.06	0.354	0.03134	0.7452	0.9439	5.11	0.07

Table 5. Parameters of the Langmuir, Freundlich and Temkin models of adsorption of Acid orange 7 on L and RD at 293, 303 and 313 K

450

1	451	The van't Hoff plots of $\ln K_e$ as a function of the reciprocal of the experiment temperatures
1 2 3	452	(293 K, 303 K and 313 K) are presented in Fig. 5 for L and RD. The obtained values of the
4 5	453	change of enthalpy (ΔH^0) and entropy (ΔS°), calculated from the slopes and intercepts of the
6 7 8	454	straight lines of the plots respectively, as well as, the values of the free energy change (ΔG°),
9 10	455	calculated according to equation 3, are presented in Table 6. The calculated thermodynamic
11 12 13	456	parameters were similar for both adsorbents. The calculation suggested that negative values
14 15	457	were observed for ΔG^0 and positive values for ΔH^0 and ΔS^0 at all experimental temperatures
16 17 18	458	for Acid orange 7 adsorption using L and RD by-products. Similar results were published for
18 19 20	459	adsorption of Acid orange-7 using canola waste [37] and aluminum oxide nanoparticles [44].
21 22	460	The negative values of ΔG^0 for both adsorbents implies that the adsorption processes were
23 24 25 26 27 28 29 30	461	spontaneous and feasible [31]. Generally, the adsorption process could be due to physical
	462	phenomenon and chemical interactions. In our case, the observed values decrease of ΔG^0
	463	were from -18,000 to -21,000 J/mol, which suggests that the type of interactions between L $$
31 32	464	and RD and Acid orange 7 was mainly physical and hence physical adsorption occurred. The
33 34 35	465	absolute values of ΔG^0 increased slightly with the temperature rise, which confirmed the
36 37	466	weak temperature's effect on the adsorption of the dye on the L and RD. The positive values
38 39	467	of ΔH^0 confirmed that the adsorption processes were endothermic for both by-products which
40 41 42	468	suggest a lower value of the required amount of heat characterizing the phenomenon of
43 44	469	physical sorption. Positive values of ΔS° suggested an affinity between the adsorbents and
45 46 47	470	the azo dye Acid orange 7 and assumed increased randomness at the solid/solution surface of
48 49	471	interaction with several structural changes in the adsorbent and the adsorbate.
50 51 52		
53 54		
55 56		
57 58		
59 60		

- 61
- 63 64 65

often proposed solution but again the problem with safely handling the washings arises. The 2 metabolic activity of different higher fungi and their immense capacity to grow and degrade different natural and synthetic substrates could support the conversion of these post-adsorption residues into value added products with low ecological footprints. Angelova et al. [20] demonstrated recently that lignocellulose compounds, together with the non-cellulosic polysaccharides and uronic acids polymers of steam distilled lavender straw and hexane extracted rose flowers were essential prerequisite for vegetative growth of Basidiomycetes fungi. The above chemical compounds stimulated mycelium net formation and supported the 19 full lignocellulose substrates colonization that at the end yielded innovative mycelium-based materials with desirable properties. G. resinaceum was chosen not only because of the strain's ability to grow well on different lignocellulose, but also it's potential to degrade synthetic dyes. G. resinaceum belongs to white-rot fungi (Basidiomycota phylum, order Polyporales). Due to their ability to produce extracellular lignin-degrading enzymes (lignin peroxidases, manganese peroxidases and laccases) in submerged or solid-state cultivation conditions, white-rot fungi have their advantages in mycoremediation processes for degradation of insoluble chemicals and hazardous environmental pollutants [45, 46]. In many studies focused on decolorization of synthetic dyes the "key players" are white-rot fungi such as Trametes versicolor, Pleurotus ostreatus, Ganoderma spp., etc. [22, 24, 25, 47]. In the present study solid-state cultivations of G. resinaceum GA1M using L and RD post-adsorption residues as feeding substrates were conducted. The twenty-days cultivations, comprising of several stages, resulted in homogenous mycelium-based bio-composites with a desired morphology (Fig. 6). Both obtained materials demonstrated acceptable conformational stability and had velvety tactile surfaces that was the result of well-developed aerial mycelium and dense hypha networks. These characteristics are of important

significance for the physical and mechanical properties of these mycelium-based biocomposites which in turn determine the application of the developed biomaterials [20].
The obtained mycelium-based bio-composites were analyzed for residual Acid orange 7. The
initial concentration of Acid orange 7 in spent adsorbents was in the 1.2-1.3 mg/g adsorbent
range. After the fungal growth, transformation and degradation of the lignocellulosic matrix,
metabolization of Acid orange 7 also occurred and the dye was not detected in either
mycelium-based materials.

The azo bond in the azo dyes is the main reason for their persistency since it is non-biodegradable under aerobic conditions. As a member of the Basidiomycetes, G. resinaceum possess a ligninolytic enzyme system with very broad substrate specificity which can break the recalcitrant azo bond. It is well known that degradation is not always equal to detoxification, but the Basidiomycetes representatives are able to decolorize and detoxify synthetic dyes and their metabolites. The enzymes that are most extensively used (dependently and independently) in the synthetic dyes' degradation are laccases, lignin peroxidases and manganese peroxidases [21].

- Fig. 6 Mycelium-based biocomposites produced from the L and RD residues resulted from
- 527 the adsorption of Acid orange 7

The Basidiomycetes *G. resinaceum* proved to be effective in removing the dye Acid orange 7 during solid-state cultivation on post-adsorption L and RD residues and simultaneously leading to innovative mycelium-based bio-composites. This approach is consistent with *zero waste* trends which will benefit overall environmental sustainability. Further research is needed to analyze physico-mechanical properties of the produced biomaterials and identify potential applications.

4. Conclusions

The present study focused on decontamination and removal of azo dye Acid orange 7 from aqueous solutions by combined treatment using industrial rose and lavender solid by-products as adsorbents and further degradation of the post-adsorption plant biomass by higher fungi resulting in production of mycelium-based biocomposites. The results suggested that more than 87% of the colorant was removed by the RD adsorbent and around 82% by L residue for one hour at 293 K. The highest adsorption capacity was demonstrated by both adsorbents with the highest initial concentration of 100 mg/L of the azo dye. The effectiveness of the adsorption increased decreasing the pH medium: for L at pH 1.5 the removal was 1.975±0.08 mg/g (98.75%) and for RD at pH 3.5 was 1.975 ± 0.08 (98.75%). The infrared spectroscopy analyses revealed that around 1500-1560 cm⁻¹ a new peak at 1540 cm⁻¹ (for RD post-adsorption residue) and 1541 cm⁻¹ (for L post-adsorption residue) appeared. These bands are due to the aromatic ring stretching vibrations from the aromatic moieties of Acid orange 7 suggesting successful adsorption of the dye onto the surface of the RD and L by-products. The adsorption of the azo dye was evaluated by Langmuir, Freundlich, and Temkin isotherm models and it was found that the Freundlich equation best described the adsorption of Acid orange 7 using RD and L by-products. The coefficient *n* in the Freundlich equation connected

1	554	to adsorption intensity is practically not influenced by the temperature and the type of the
1 2 3	555	adsorbent. The values of the coefficient K_F showed higher adsorption capacity for RD
4 5	556	compared with L's capacity, at the three temperatures studied. Negative values were observed
6 7 8	557	for ΔG^0 at all experimental temperatures implying that the adsorption processes were
9 10	558	spontaneous. The observed decrease of ΔG^0 (ranging from -18,000 to -21,000 J/mol) suggests
11 12 13	559	mainly physical adsorption occurred. The post-adsorption L and RD residues were then
14 15	560	subjected to solid state cultivation using G. resinaceum GA1M. As a result, new
16 17 18	561	biodegradable materials were obtained and the analyses demonstrated that Acid orange 7 was
18 19 20	562	not found in the resulted mycelium-based biocomposites. Consequently, three main results
21 22 23	563	were achieved: first, RD and L industrial by-products were successfully applied for
24 25	564	adsorption and removal of Acid orange 7 (valorization of rose and lavender essential oil by-
26 27 28	565	products); second, by solid state cultivation of the post-adsorption L and RD residues Acid
29 30	566	orange 7 was degraded by G. resinaceum GA1M; and third, new mycelium-based
31 32 33	567	biodegradable composites with promising application in construction and art were produced.
34 35	568	
36 37 20	569	'Statements and Declarations'
38 39 40	570	
41 42	571	Funding
43 44 45	572	This work was supported by the Ministry of Education and Science of Bulgaria (Bulgarian
46 47	573	National Science Fund) [Grant Number: KII-06-Austria/4 13/08/2021] and the Federal
48 49	574	Ministry of Education, Science and Research (BMBWF) through Austria's Agency for
50 51 52	575	Education and Internationalization (OeAD) [Grant Number: Africa UNINET P056; BG
53 54	576	01/2021].
55 56 57	577	
58 59	578	Competing Interests
60 61 62		
62 63 64		31
65		

1	579	The authors have no competing interests to declare that are relevant to the content of this
2 3 4	580	article.
4 5 6	581	
6 7 8	582	Author Contributions
9 10 11	583	Data curation: [Gergana Marovska], [Nikolay Menkov], [Mariya Dushkova], [Galena
12 13	584	Angelova], [Mariya Brazkova], [Anton Slavov]
14 15 16	585	Investigation: [Gergana Marovska], [Nikolay Menkov], [Mariya Dushkova], [Galena
10 17 18	586	Angelova], [Mariya Brazkova], [Anton Slavov]
19 20	587	Methodology: [Nikolay Menkov], [Anton Slavov], [Galena Angelova]
21 22 23	588	Formal analysis: [Nikolay Menkov], [Anton Slavov], [Galena Angelova], [Gergana
24 25	589	Marovska]
26 27 28	590	Writing- Reviewing and Editing: [Anton Slavov], [Nikolay Menkov], [Hendrik Brink],
28 29 30	591	[Galena Angelova], [Mariya Dushkova], [Nils Haneklaus]
31 32	592	Conceptualization: [Anton Slavov], [Nikolay Menkov], [Galena Angelova], [Gergana
33 34 35	593	Marovska]
36 37	594	Funding acquisition: [Anton Slavov], [Nils Haneklaus]
38 39 40	595	Project administration: [Anton Slavov], [Nils Haneklaus]
41 42	596	Availability of data and materials
43 44 45	597	All data generated or analyzed during this study are included in this published article.
46 47	598	
48 49	599	Compliance with Ethical Standards
50 51 52	600	
53 54 55 56 57 58 59 60 61	601	Ethical approval
62 63 64		32

1	602	This article does not contain any studies with human participants. All applicable
1 2 3	603	international, national, and/or institutional guidelines for the care and use of animals were
4 5	604	followed.
6 7 8 9	605	Informed consent
10	606	Not applicable.
11 12	607	Consent to participate
13 14 15	608	Not applicable.
16 17	609	Consent for publication
	610	Not applicable.
20 21	611	
22 23 24	612	5. References
25 26 27	613	
28 29	614	1. Benkhaya S, M'rabet S, El Harfi A (2020) Classifications, properties, recent synthesis and
	615	applications of azo dyes. Heliyon 6:e03271. https://doi.org/10.1016/j.heliyon.2020.e03271
32 33 34	616	2. Wakelyn PJ (2007) Health and safety issues in cotton production and processing. In:
	617	Gordon S, Hsieh YL (ed) Cotton, 1st edn. Woodhead Publishing Limited, Sawston, pp 460-
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	618	483. https://doi.org/10.1533/9781845692483.3.460
	619	3. Elgarahy AM, Maged A, Elwakeel KZ, El-Gohary F, El-Qelish M (2023) Tuning
	620	cationic/anionic dyes sorption from aqueous solution onto green algal biomass for
	621	biohydrogen production. Environ Res 216:114522.
	622	https://doi.org/10.1016/j.envres.2022.114522
	623	4. Du R, Cao H, Wang G, Dou K, Tsidaeva N, Wang W (2022) PVP modified rGO/CoFe ₂ O ₄
52 53 54	624	magnetic adsorbents with a unique sandwich structure and superior adsorption performance
55 56	625	for anionic and cationic dyes. Separ Purif Technol 286:120484.
57 58	626	https://doi.org/10.1016/j.seppur.2022.120484
59 60 61		
62 63 64		33

627	5. Crettaz S, Kämpfer P., Brüschweiler BJ, Nussbaumer S, Deflorin O (2020) Survey on
628	hazardous non-regulated aromatic amines as cleavage products of azo dyes found in clothing
629	textiles on the Swiss market. J Consum Prot Food Safety 15:49-61.
630	https://doi.org/10.1007/s00003-019-01245-1
631	6. Brüschweiler BJ, Merlot C (2017) Azo dyes in clothing textiles can be cleaved into a series
632	of mutagenic aromatic amines which are not regulated yet. Regul Toxicol Pharmacol 88:214-
633	226. https://doi.org/10.1016/j.yrtph.2017.06.012
634	7. Kaur N, Kaushal J (2022) Screening the six plant species for phytoremediation of synthetic
635	textile dye waste water. Mater Today: Proc 71:232-238.
636	https://doi.org/10.1016/j.matpr.2022.08.512
637	8. Jankowska K, Su Z, Zdarta J, Jesionowski T, Pinelo M (2022) Synergistic action of laccase
638	treatment and membrane filtration during removal of azo dyes in an enzymatic membrane
639	reactor upgraded with electrospun fibers. J Hazard Mater 435:129071.
640	https://doi.org/10.1016/j.jhazmat.2022.129071
641	9. Khan N, Ahmad A, Sharma V, Saha AK, Pandey A, Bhargava PC (2022) An integrative
642	study for efficient removal of hazardous azo dye using microbe-immobilized cow dung
643	biochar in a continuous packed bed reactor. Renew Energy 200:1589-1601.
644	https://doi.org/10.1016/j.renene.2022.10.016
645	10. Nurhayati E, Bagastyo AY, Hartatik DD, Direstiyani LC (2020) The enhancement of
646	biodegradability index of mature landfill leachate by electrochemical oxidation process using
647	boron-doped diamond and dimensionally stable anode. Res Chem Intermed 46:4811-4822.
648	https://doi.org/10.1016/j. molliq.2019.110928
649	11. Tran HT, Lin C, Bui XT, Nguyen MK, Cao NDT, Mukhtar H, Hoang HG, Varjani S, Ngo
650	HH, Nghiem LD (2022) Phthalates in the environment: characteristics, fate and transport, and
	34
	 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

advanced wastewater treatment technologies. Bioresour Technol 344:126249.

1 2 2	652	https://doi.org/10.1016/j.biortech.2021.126249
3 4 5	653	12. Xie S, Li M, Liao Y, Qin Q, Sun S, Tan Y (2021) In-situ preparation of biochar loaded
6 7	654	particle electrode and its application in the electrochemical degradation of 4-chlorophenol in
8 9 10	655	wastewater. Chemosphere 273:128506. https://doi.org/10.1016/j.chemosphere.2020.128506
11 12	656	13. Taheri M, Fallah N, Nasernejad B (2022) Which treatment procedure among
13 14 15	657	electrocoagulation, biological, adsorption, and bio-adsorption processes performs best in azo
16 17	658	dyes removal? Water Resour Ind 28:100191. https://doi.org/10.1016/j.wri.2022.100191
18 19 20	659	14. Boulahbal M, Malouki MA, Canle M, Redouane-Salah Z, Devanesan S, AlSalhi MS,
21 22	660	Berkani M (2022) Removal of the industrial azo dye crystal violet using a natural clay:
23 24 25	661	Characterization, kinetic modeling, and RSM optimization. Chemosphere 306:135516.
26 27	662	https://doi.org/10.1016/j.chemosphere.2022.135516
28 29 30	663	15. Mittal A, Gupta VK, Malviya A, Mittal J (2008) Process development for the batch and
31 32	664	bulk removal and recovery of a hazardous, water-soluble azo dye (metanil yellow) by
33 34 35	665	adsorption over waste materials (bottom ash and de-oiled soya). J Hazard Mater 151:821-832.
36 37	666	https://doi.org/10.1016/j.jhazmat.2007.06.059
38 39 40	667	16. Putro JN, Santoso SP, Soetaredjo FE, Ismadji S, Ju YH (2019) Nanocrystalline cellulose
41 42	668	from waste paper: Adsorbent for azo dyes removal. Environ Nanotechnol Monit Manag
43 44 45	669	12:100260. https://doi.org/10.1016/j.enmm.2019.100260
46 47	670	17. Slavov A, Vasileva I, Stefanov L, Stoyanova A (2017) Valorization of wastes from the
48 49	671	rose oil industry. Rev Environ Sci Biotechnol 16:309-325. https://doi.org/10.1007/s11157-
50 51 52	672	<u>017-9430-5</u>
53 54	673	18. Echavarria-Alvarez AM, Hormaza-Anaguano A (2014) Flower wastes as a low-cost
55 56 57	674	adsorbent for the removal of acid blue 9. Dyna 81:132-138.
58 59	675	https://doi.org/10.15446/dyna.v81n185.37234
60 61 62		25
63 64		35

1	676	19. Rabbani D, Mahmoudkashi N, Mehdizad F, Shaterian M (2016) Green approach to
1 2 3	677	wastewater treatment by application of Rosa damascena waste as nano-biosorbent. J Environ
4 5	678	Sci Technol 9:121-130. https://doi.org/10.3923/jest.2016.121.130
6 7 8	679	20. Angelova G, Brazkova M, Stefanova P, Blazheva D, Vladev V, Petkova N, Slavov A,
8 9 10	680	Denev P, Karashanova D, Zaharieva R, Enev A, Krastanov A (2021) Waste rose flower and
11 12 13	681	lavender straw biomass - An innovative lignocellulose feedstock for mycelium bio-materials
14 15	682	development using newly isolated Ganoderma resinaceum GA1M. J Fungi 7:866.
16 17	683	https://doi.org/10.3390/jof7100866
18 19 20	684	21. Brazkova M, Koleva R, Angelova G, Yemendzhiev H (2022) Ligninolytic enzymes in
	685	Basidiomycetes and their application in xenobiotics degradation. BIO Web Conf 45:02009.
23 24 25	686	https://doi.org/10.1051/bioconf/20224502009
26 27	687	22. Eichlerová I, Baldrian P (2020) Ligninolytic enzyme production and decolorization
28 29 30	688	capacity of synthetic dyes by saprotrophic white rot, brown rot, and litter decomposing
31 32	689	Basidiomycetes. J Fungi 6:301. https://doi.org/10.3390/jof6040301
33 34 35	690	23. Liu J, Sun S, Han Y, Meng J, Chen Y, Yu H, Zhang X, Ma F (2021) Lignin waste as co-
36 37	691	substrate on decolorization of azo dyes by Ganoderma lucidum. J Taiwan Inst Chem Eng
38 39 40	692	122:85-92. https://doi.org/10.1016/j.jtice.2021.04.039
41 42	693	24. Martínez-Sánchez J, Membrillo-Venegas I, Martínez-Trujillo A, García-Rivero A (2018)
43 44 45	694	Decolorization of reactive black 5 by immobilized Trametes versicolor. Rev Mex Ing Quim
46 47	695	17:107-121. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Martinez
48 49	696	25. Rainert KT, Nunes HCA, Gonçalves MJ, Helm CV, Tavares LBB (2021) Decolorization
50 51 52	697	of the synthetic dye Remazol Brilliant Blue Reactive (RBBR) by Ganoderma lucidum on bio-
53 54	698	adsorbent of the solid bleached sulfate paperboard coated with polyethylene terephthalate. J
55 56 57	699	Environ Chem Eng 9:104990. https://doi.org/10.1016/j.jece.2020.104990
58 59		
60 61		
62 63 64		36
65		

1	700	26. Günay A, Arslankaya E, Tosun I (2007) Lead removal from aqueous solution by natural
1 2 3	701	and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J Hazard Mater 146:362-
4 5	702	371. https://doi.org/10.1016/j.jhazmat.2006.12.034
6 7 8 9	703	27. Shikuku VO, Kowenje CO, Kengara FO (2018) Errors in parameters estimation using
10	704	linearized adsorption isotherms: Sulfadimethoxine adsorption onto kaolinite clay. Chem Sci
11 12 13	705	Int J 23:1-6. <u>https://doi.org/10.9734/CSJI/2018/44087</u>
14 15	706	28. Elmorsi T (2011) Equilibrium isotherms and kinetic studies of removal of methylene blue
	707	dye by adsorption onto miswak leaves as a natural adsorbent. J Environ Prot 2:817-827.
18 19 20	708	https://doi.org/10.4236/jep.2011.26093
21 22 23	709	29. Olasehinde EF, Abegunde SM, Adebayo MA (2020) Adsorption isotherms, kinetics and
24 25	710	thermodynamic studies of methylene blue dye removal using Raphia taedigera seed activated
26 27 28 29 30	711	carbon. Casp J Environ Sci 18:329-344. https://doi.org/10.22124/cjes.2020.4279
	712	30. Khan AA, Singh RP (1987) Adsorption thermodynamics of carbofuran on Sn (IV)
31 32	713	arsenosilicate in H ⁺ , Na ⁺ and Ca ²⁺ forms. Colloids Surf 24:33-42.
33 34 35	714	https://doi.org/10.1016/0166-6622(87)80259-7
36 37	715	31. Kodrić M, Reka A, Dimić Č, Tarbuk A, Đorđević D (2020) Thermodynamic investigation
40 41 42	716	of disperse dyes sorption on polyester fibers. Adv Technol 9:41-47.
	717	https://doi.org/10.5937/savteh2002041K
43 44 45	718	32. Kul AR, Aldemir A, Alkan S, Elik H, Çalişkan M (2019) Adsorption of Basic Blue 41
46 47	719	using Juniperus excelsa: Isotherm, kinetics and thermodynamics studies. Environ Res
48 49	720	Technol 2:112-121. https://doi.org/10.35208/ert.568992
50 51 52	721	33. Hamzeh Y, Ashori A, Azadeh E, Abdulkhani A (2012) Removal of Acid Orange 7 and
53 54	722	Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. Mater Sci
55 56 57	723	Eng C 32:1394-1400. <u>https://doi.org/10.1016/j.msec.2012.04.015c</u>
58 59		
60 61		
62 63		37
64 65		

1	724	34. Marovska G, Vasileva I, Petkova N, Ognyanov M, Gandova V, Stoyanova A,
1 2 3	725	Merdzhanov P, Simitchiev A, Slavov A (2022) Lavender (Lavandula angustifolia Mill.)
4 5 6	726	industrial by-products as a source of polysaccharides. Ind Crops Prod 188(B):115678.
7 8	727	https://doi.org/10.1016/j.indcrop.2022.115678
9 10 11	728	35. Wu Y, Hu Y, Xie ZW, Feng SX, Li B, Mi XM (2011) Characterization of biosorption
	729	process of acid orange 7 on waste brewery's yeast. Appl Biochem Biotechnol 163:882-894.
14 15	730	https://doi.org/10.1007/s12010-010-9092-z
16 17 18	731	36. Pelosi BT, Lima LKS, Vieira MGA (2013) Acid orange 7 dye biosorption by Salvinia
19 20	732	natans biomass. Chem Eng Trans 32:1051-1056. https://doi.org/10.3303/CET1332176
21 22 23	733	37. Balarak D, Abasizadeh H, Yang JK, Shim MJ, Lee SM (2020) Biosorption of Acid Orange
23 24 25	734	7 (AO7) dye by canola waste: equilibrium, kinetic and thermodynamics studies. Desalin Water
26 27	735	Treat 190:331-339. https://doi.org/10.5004/dwt.2020.25665
28 29 30	736	38. Sillanpää M, Mahvi AH, Balarak D, Khatibi AD (2021) Adsorption of Acid orange 7
31 32	737	dyes from aqueous solution using Polypyrrole/nanosilica composite: Experimental and
33 34 35	738	modelling. Int J Environ Anal Chem 103:212-229.
36 37	739	https://doi.org/10.1080/03067319.2020.1855338
38 39 40	740	39. Gupta VK, Mittal A, Gajbe V, Mittal J (2006) Removal and recovery of the hazardous azo
41 42	741	dye Acid orange 7 through adsorption over waste materials: Bottom ash and de-oiled soya. Ind
43 44	742	Eng Chem Res 45:1446-1453. <u>https://doi.org/10.1021/ie051111f</u>
45 46 47	743	40. Izadyar S, Rahimi M (2007) Use of beech wood sawdust for adsorption of textile dyes. Pak
48 49	744	J Biol Sci 10:287-293. https://doi.org/10.3923/pjbs.2007.287.293
50 51 52	745	41. Coates J (2006) Interpretation of infrared spectra, a practical approach. In: Meyers R (ed)
53 54	746	Encyclopedia of Analytical Chemistry. Wiley, Chichester, pp 1-23.
55 56	747	https://doi.org/10.1002/9780470027318.a5606
57 58 59		
60 61		
62 63		38
64 65		

	748	42. Lim CK, Bay HH, Aris A, Majid ZA, Ibrahim Z (2013) Biosorption and biodegradation
1 2 3	749	of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface
4 5	750	methodological approach. Environ Sci Pollut Res Int 20:5056-5066.
6 7 8	751	https://doi.org/10.1007/s11356-013-1476-5
9 10	752	43. Ertugay N, Mallkoc E (2014) Adsorption isotherm, kinetic, and thermodynamic studies
11 12 13 14 15	753	for methylene blue from aqueous solution by needles of Pinus Sylvestris L. Pol J Environ
	754	Stud 23(6):1995-2006.
16 17	755	44. Khosla E, Kaur S, Dave PN (2013) Mechanistic study of adsorption of Acid Orange-7
18 19 20	756	over aluminum oxide nanoparticles. J Eng 2013: 593534.
21 22	757	https://doi.org/10.1155/2013/59353445. Ngadin AA, Taghavi E, Eaton T (2022) The
23 24 25	758	development of white-rot fungi as a mycoremediation product. In: Shukla AC (ed) Applied
26 27	759	Mycology. Entrepreneurship with fungi. Springer, Cham, pp 75-94.
28 29 30	760	https://doi.org/10.1007/978-3-030-90649-8_3
31 32	761	46. Sosnicka A, Kózka B, Makarova K, Giebułtowicz J, Klimaszewska M, Turło J (2022)
	762	Optimization of white-rot fungi mycelial culture components for bioremediation of
35 36 37	763	pharmaceutical-derived pollutants. Water 14:1374. https://doi.org/10.3390/w14091374
38 39	764	47. Krastanov A, Koleva R, Alexieva Z, Stoilova I (2013) Decolorization of industrial dyes by
40 41 42	765	immobilized mycelia of Trametes Versicolor. Biotechnol Biotechnol Equip 27:4263-4268.
43 44 45 46	766	https://doi.org/10.5504/BBEQ.2013.0096
47 48		
49 50		
51 52 53		
54 55		
56 57		
58 59		
60 61		
62 63		39
64 65		