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Abstract 

Background:  Using visual, biological, and electronic health records data as the sole 
input source, pretrained convolutional neural networks and conventional machine 
learning methods have been heavily employed for the identification of various malig-
nancies. Initially, a series of preprocessing steps and image segmentation steps are 
performed to extract region of interest features from noisy features. Then, the extracted 
features are applied to several machine learning and deep learning methods for the 
detection of cancer.

Methods:  In this work, a review of all the methods that have been applied to develop 
machine learning algorithms that detect cancer is provided. With more than 100 types 
of cancer, this study only examines research on the four most common and preva-
lent cancers worldwide: lung, breast, prostate, and colorectal cancer. Next, by using 
state-of-the-art sentence transformers namely: SBERT (2019) and the unsupervised 
SimCSE (2021), this study proposes a new methodology for detecting cancer. This 
method requires raw DNA sequences of matched tumor/normal pair as the only input. 
The learnt DNA representations retrieved from SBERT and SimCSE will then be sent to 
machine learning algorithms (XGBoost, Random Forest, LightGBM, and CNNs) for classi-
fication. As far as we are aware, SBERT and SimCSE transformers have not been applied 
to represent DNA sequences in cancer detection settings.

Results:  The XGBoost model, which had the highest overall accuracy of 73 ± 0.13 % 
using SBERT embeddings and 75 ± 0.12 % using SimCSE embeddings, was the best 
performing classifier. In light of these findings, it can be concluded that incorporat-
ing sentence representations from SimCSE’s sentence transformer only marginally 
improved the performance of machine learning models.

Keywords:  Cancer detection, DNA, Machine learning, SentenceBert, SimCSE

Introduction
Cancer is a disease where some cells in the body grow destructively and may spread 
to other body organs [1]. Typically, cells grow and expand through a cell division pro-
cess to create new cells that can be used to repair old and damaged ones. However, this 
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phenomenon can be interrupted resulting in abnormal cells growing uncontrollably to 
form tumors that can be malignant (harmful) or benign (harmless) [2–4].

With the introduction of genomic data that allows physicians and healthcare decision-
makers to learn more about their patients and their response to the therapy they provide 
to them, this has facilitated the use of machine learning and deep learning to solve chal-
lenging cancer problems. These kinds of problems involve various tasks such as design-
ing cancer risk-prediction models that try to identify patients that are at a higher risk of 
developing cancer than the general population, studying the progression of the disease 
to improve survival rates, and building methods that trace the effectiveness of treatment 
to improve treatment options [5–7].

Generally, the first step in analyzing genomic data to address cancer-related problems 
is selecting a data representation algorithm that will be used to estimate contiguous 
representations of the data. Examples of such algorithms include Word2vec [8], GloVe 
[9], and fastText [10]. The more recent and advanced versions of these algorithms are 
sentence transformers which are used to compute dense vector representations for sen-
tences, paragraphs, and images. Similar texts are found close together in a vector space 
and dissimilar texts are far apart [11]. In this work, two such sentence transformers 
(SBERT and SimCSE) are proposed for detecting cancer in tumor/normal pairs of colo-
rectal cancer patients. In this new approach, the classification algorithm relies on raw 
DNA sequences as the only input source. Moreover, this work provides a review of the 
most recent developments in cancers of the human body using machine learning and 
deep learning methods. While these kinds of similar reviews already exist in the litera-
ture, this study solely focuses on work that investigates four cancer types that have high 
prevalence rates worldwide [12] (lung, breast, prostate, and colorectal cancer) that have 
been published in the last five years (2018–2022).

Detection of cancer using machine learning
Lung cancer

Lung cancer is the type of cancer that begins in the lungs and may spread to other organs 
in the body. This kind of cancer occurs when malignant cells develop in the tissue of 
the lung. There are two types of lung cancer: non-small-cell lung cancer (NSCLC) and 
small-cell lung cancer (SCLC). These cancers develop differently and thus their treat-
ment therapies are different. Smoking (tobacco) is the leading cause of lung cancer. 
However, non-smokers can also develop lung cancer [13, 14].

When it comes to the detection of lung cancer using machine learning (Fig. 1), a con-
siderable amount of work has been done, a summary is provided (Table 1). Typically, a 
series of pre-processing steps using statistical methods and pretrained CNNs for feature 
extraction are carried out from several input sources (mostly images) to delineate the 
cancer region. Then, the extracted features are fed as input to several machine learn-
ing algorithms for classification of various lung cancer tasks such as the detection of 
malignant lung nodules from benign ones [15–17], the separation of a set of normalized 
biological data points into cancerous and non cancerous groups [18], and a basic com-
parative analysis of powerful machine learning algorithms for lung cancer detection [19].

The lowest classification accuracy reported in Table 1 was 74.4% by work in [20]. 
In this work, a pretrained CNN model (DenseNet) was used to develop a lung cancer 
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detection model. First, the model was fine-tuned to identify lung nodules from chest 
X-rays using the ChestX-ray14 dataset [21]. Second, the model was fine-tuned to 
identify lung cancer from images in the JSRT (Japanese Society of Radiological Tech-
nology) dataset [22].

The highest classification accuracy of 99.7% for lung cancer classification was 
reported by work in [18]. This study developed the Discrete AdaBoost Optimized 
Ensemble Learning Generalized Neural Network (DAELGNN) framework that uses 
a set of normalized biological data points to create a neural network that separates 
normal lung features from non-normal (cancerous) features.

Popular datasets used in lung cancer research using machine learning include the 
Lung Image Database Consortium (LIDC) and Image Database Resource Initiative 
(IDRI) (LIDC-IDRI) database [23] initiated by the National Cancer Institute (NCI), 
and the histopathological images of lung and colon cancer (LC2500) database [24].

Fig. 1  Generalized machine learning framework for lung cancer prediction [33]

Table 1  This table gives a summary of recent work that has been performed in lung cancer 
detection using machine learning and deep learning algorithms as discussed in Sect. 2.1

References Feature extraction Data ML/DL Acc (%)

[15] 2018 taxic weights, phylogenetic trees LIDC-IDRI [23] CNNs 92.6

[16] 2018 SCM LIDC-IDRI [23] MLP, k−NN, SVM 96.7

[20] 2018 histogram equalization JSRT [22], ChestX-ray14 [21] DenseNet 74.4

[25] 2019 – UCI [26] SVM,LR,DT,Naive Bayes 99.2

[18] 2019 AdaBoost ELVIRA biomedical data [27] ANN 99.7

[28] 2019 UNet and ResNet LIDC-IDRI [23] XGBoost and RF 84.0

[29] 2020 – spectroscopic data ResNet 95.0

[17] 2020 HoG, LBP, SIFT, Zernike Moment LIDC-IDRI [23] FPSOCNN 95.6

[30] 2021 2D-DFT and 2D-DWT LC25000 images [24] CNNs 96.3

[19] 2021 Correlation Attribute (CA) UCI [26] CNN, SVM, k-NN 95.5

[31] 2022 LeNet, AlexNet, VGG16, 
ResNet-50, Inception-V1

LUNA16 [32] Fully connected layer 97.25
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Breast cancer

Breast Cancer is a malignant tumor or growth that develops in the cells of the breast 
[34]. Similar to lung cancer, breast cancer also has the ability to metastasize to near by 
lymph nodes or to other body organs. Towards the end of 2020, there were approxi-
mately 7.8 million women who have been diagnosed with breast cancer, making this type 
of cancer the most prevalent cancer in the world. Risk factors of breast cancer include 
age, obesity, abuse of alcohol, and family history [35–37].

Currently, there is no identified prevention procedure for breast cancer. However, 
maintaining a healthy living habit such as physical exercise and less alcohol intake can 
reduce the risk of developing breast cancer [38]. It has also been said that early detection 
methods that rely on machine learning can improve the prognosis. As such, this type of 
cancer has been extensively studied using machine learning and deep learning [39, 40].

As with lung cancer (Sect. 2.1), a great deal of work has been executed in developing 
breast cancer detection models, a generalized approach that illustrates the process using 
machine learning is provided (Fig. 2).

Several classification problems have been studied that mainly focuses on the detection 
of breast cancer from thermogram images [41], handrafted features [42], mammograms 
[43], and whole slide images [44]. To develop a breast cancer detection model, initially, 
a pre-processing step is implemented that aims to extract features of interest. Then, the 
extracted features are provided as input to machine learning models for classification. 
This framework is implemented by several works such as [45–48].

One of the most popular datasets used for breast cancer detection using machine 
learning is the Wisconsin breast cancer dataset [42]. This dataset consists of features 
that describe the characteristics of the cell nuclei that is present in the image such as 
the diagnosis features (malignant or benign), radius, symmetry, and texture. Stud-
ies that used this dataset are [49, 50]. In [49], the authors scaled the Wisconsin breast 

Fig. 2  Generalized machine learning framework for breast cancer prediction [45]
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cancer features to be in the range between 0 and 1, then used a CNN for classification 
into benign or malignant. As opposed to using a CNN for classification, the authors [50] 
used traditional machine learning classifiers (Linear Regression, Multilayer Perceptron 
(MLP), Nearest Neighbor search, Softmax Regression, Gated recurrent Unit (GRU)-
SVM, and SVM). For data pre-processing, the study used the Standard Scaler technique 
that standardizes data points by removing the mean and scaling the data to unit vari-
ance. The MLP model outperformed the other models by producing the highest accu-
racy of 99.04% which is almost similar to the accuracy of 99.6% that was reported by 
[49].

Different form binary classification of benign or malignant classes, a study [46] pro-
posed a two-step approach to design a breast cancer multi-class classification model that 
predicts eight categories of breast cancer. In the first approach, the study used hand-
crafted features that are generated from histopathology images. These features were then 
fed as input to classical machine learning algorithms (RF, SVM, Linear Discriminant 
Analysis (LDA)). In the second approach, the study applied a transfer learning method 
to develop the multi-classification deep learning framework where pretained CNNs 
(ResNet50, VGG16 and VGG19) were used as feature extractors and baseline models. 
It was then found that the VGG16 pretrained CNN with the linear SVM provided the 
best accuracy in the range of 91.23%−93.97%. This study also found that using pretrained 
CNNs as feature extractors improved the classification performance of the models.

The Table 2 provides a summary of the work that has been done to detect breast can-
cer using machine learning.

Prostate cancer

Prostate cancer is a type of cancer that develops when cells in the prostate gland start 
to grow uncontrollably (malignant). Prostate cancer often presents with no symptoms 
and grows at a slow rate. As a result, some men may die of other diseases before the can-
cer starts to cause notable problems. Comparably, prostate cancer can also be aggressive 
and metastasize to other body organs that are outside the confines of the prostate gland. 
Risk factors that are associated with this type of cancer include age, specifically, men that 
are above the age of 50. Other risk factors include ethnicity, family history of prostate 
cancer, breast or ovarian cancer, and obesity [61–63].

Transfer learning, which is defined as the reuse of a pretrained model on a new prob-
lem, was frequently applied to develop prostate cancer detection models using machine 
learning (Fig. 3). For example, a study [64] applied a transfer learning approach to detect 
prostate cancer on magnetic resonance images (MRI) by using a pretrained GoogleNet. 
A series of features such as texture, entropy, morphological, scale invariant feature trans-
form (SIFT), and Elliptic Fourier Descriptors (EFDs) were extracted from the images 
as described by [65, 66]. Other traditional machine learning classifiers were also evalu-
ated such as Decision trees, and SVM Gaussian however, the GoogleNet model outper-
formed the other models.

Also using transfer learning, a study [67] developed a prostate cancer detection 
model by using MRI images and ultrasound (US) images. The model was developed 
in two stages: first, pretrained CNNs were used for classification of the US and MRI 
images into benign or malignant. While the pretrained CNNs performed well on the 
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US images (accuracy 97%), the performance on the MRI images was not adequate. 
As a result, the best-performing pretrained CNN(VGG16) was selected and used as 
a feature extractor. The extracted features were then provided as input to traditional 
machine learning classifiers.

Table 2  This table gives a summary of recent work that has been executed in breast cancer 
detection using machine learning and deep learning algorithms as discussed in Sect. 2.2

References Feature extraction Data ML/DL Acc, AUC or ROC (%)

[49] 2018 Watershed Segmenta-
tion

histopathology images CNN 98

[49] 2018 Label encoder, normali-
zation

Wisconsin breast 
cancer [42]

CNN 99.6

[50] 2018 Standard scaler Wisconsin breast 
cancer [42]

GRU-SVM, Linear 
Regression,

MLP, Nearest Neighbor,

Softmax Regression, 
SVM

99.0

[45] 2018 Inception V3 thermogram images 
[41]

LinearSVC, SVM 100

[51] 2019 – [52] CBIS-DDSM, [53] 
INbreast

ResNet50, VGG16 65-97

[48] 2020 Histogram-sigmoid 
fuzzy clustering

histopathology images Deep Neural Network 97

[44] 2019 filters whole slide images CNN 88

[46] 2020 Hu moment, color 
histogram,

and Haralick textures, 
ResNet50,

VGG16 and VGG19 BreakHis [54] RF, SVM, LDA,

ResNet50, VGG16, 
VGG19

91.2-93.9

[55] 2021 – IDC patch images [56] CNNs,LR,SVM, KNN 87

[47] 2022 AWS, DenseNet-169 mammograms [43] MLP 93.8

[57] 2022 AlexNet CNN ultrasound images 
and histopathological 
images

Fully connected layer 96.7-100

[58] 2022 AlexNet CNN MRI scans [59] Fully connected layer 98.1-98.44

[60] 2022 – Wisconsin Breast Can-
cer Diagnostic data

deep extreme gradient 
descent optimization

98.73

Fig. 3  Generalized machine learning framework for prostate cancer prediction using 3-d CNNs, pooling 
layers, and a fully connected layer for classification [69]
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Another study [68] also used the same dataset as in [64] to create a prostate cancer 
detection model. However, instead of using GoogleNet as seen previously by [64], this 
study used a ResNet-101 and an autoencoder for feature reduction. Other machine 
learning models were also evaluated but, the study concluded that the pretrained 
ResNet-101 outperformed the other models with an accuracy of 100%. These results are 
similar to a previous study [64] that showed how pretrained CNNs outperform tradi-
tional machine learning models for cancer detection.

Table 3, gives a summary of recent work that has been executed to create prostate can-
cer detection models.

Colorectal cancer

Colorectal cancer is a type of cancer that starts in the colon or rectum. The colon and 
rectum are parts of the human body that make up the large intestine that is part of the 
digestive system. A large part of the large intestine is made up of the colon which is 
divided into a few parts namely: ascending colon, transverse colon, descending colon, 
and sigmoid colon. The main function of the colon is to absorb water and salt from the 
remaining food waste after it has passed through the small intestine. Then, the waste 

Table 3  This table gives a summary of recent work that has been executed in prostate cancer 
detection using machine learning and deep learning algorithms as discussed in Sect. 2.3

References Feature extraction Data ML/DL Acc, AUC, 
or ROC 
(%)

[69] 2018 3-D CNN images from CEUS videos 3-D CNN, J48, logistic, RF,

Decision Table, FLDA, KNN 90

[70] 2018 level set-based approach, 
GGMRF

DWI images SNCSAE, RF, Random Tree, 94

[71] 2019 normalization and scaling NCI PLCO KNN, SVM, DT, RF, MLP,

Adaptive boosting, Quad-
ratic discriminant analysis

91

[72] 2019 modified ResNet, DT DWI images RF 87

[73] 2020 patch extraction principle whole slide images [74, 75] NASNetLarge 97.3–98

[64] 2020 As described by [65, 66] MRI images GoogleNet, Bayes, decision 
tree,

SVM Gaussian, SVM RBF, 
SVM polynomial

100

[68] 2021 Statistical methods MRI images Kernel Naïve Bayes, DTs, 
SVM-Gaussian,

KNN-Cosine, LSTM, RUS-
Boost Tree

100

[76] 2021 3-D U-Net bpMRI images U-Net 85

[67] 2022 VGG16 US and MRI images [77–79] RF, SVM, Gradient boosting, 
NN,

MobileNetV2, ResNet50V2, 
Resnet101V2,

Resnet152V2, Xception, 
VGG16, VGG19,

InceptionResNetV2, and 
InceptionV3

88–97

[80] 2022 slide tiling, Otsu’s method 
[81]

whole slide images, TCGA 
data [74]

EfficientNetB1 98–99
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that is left after passing through the colon goes into the rectum and is stored there until 
it is passed through the anus. Some colorectal cancers called polyps first develop as 
growth that can be found in the inner lining of the colon or rectum. Overtime, these 
polyps can develop into cancer, however, not all of them can be cancerous. Some of the 
risk factors of colorectal cancer include obesity, lack of exercise, diets that are rich in red 
meat, smoking, and alcohol [82–84].

In relation to the advancements made in colorectal cancer research using machine 
learning (Fig. 4), various tasks have been investigated such as predicting high-risk colo-
rectal cancer from images, predicting five-year disease-specific survival, colorectal 
cancer tissue multi-class classification, and identifying the risk factors for lymph node 
metastasis (LNM) in colorectal cancer patients [85–88]. As with prostate cancer, transfer 
learning was mostly applied to extract features from various input sources such as colo-
noscopic images, tissue microarrays (TMA), and H &E slide images. Then, the extracted 
features were fed as input to machine learning algorithms for classification.

One common observation with regards to colorectal cancer models, is that the predic-
tions made from the models were compared to those of experts. For example, a study 
[85] developed a deep learning model that detects high risk colorectal cancer from whole 
slide images that were collected from colon biopsies. The deep learning model was cre-
ated in two stages: first, a segmentation procedure was executed to extract high risk 
regions from whole slide images. This segmentation procedure applied Faster-Region 
Based Convolutional Neural Network (Faster-RCNN) that uses a ResNet-101 model as a 
backbone for feature extraction. The second stage of implementing the model applied a 
gradient-boosted decision tree on the output of the Faster-RCNN deep learning model 
to classify the slides into either high or low risk colorectal cancer, and achieved an AUC 
of 91.7%. The study then found that the predictions made from the validation set were in 
agreement with annotations made by expert pathologists.

Work in [89] also compared predictions made by the Microsatellite instability (MSI)-
predictor model with those of expert pathologists and found that experts achieved a 
mean AUROC of 61% while the model achieved an AUROC of 93% on a hold-out set 
and 87% on a reader experiment.

A previous study [90] developed a model named CRCNet, based a pretrained dense 
CNN, that automatically detects colorecal cancer from colonoscopic images and 

Fig. 4  Using a deep CNN network to predict colorectal cancer outcome using images [86]
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found that the model exceeded the avarage performance of expert endoscopists on a 
recall rate of 91.3% versus 83.8%.

In Table 4, a summary is provided that describes the work that has been executed in 
colorectal cancer research using machine learning.

In summary of the literature survey (Sect.  2), a series of machine learning 
approaches for the detection of cancer were analysed. Imaging datasets, biological 
and clinical data, and EHRs were primarily employed as the initial input source when 
developing cancer detection algorithms. This procedure involved a few preprocessing 
steps. First, the input source was typically preprocessed at the beginning stages of the 
experiment to extract regions or features of interest. Next, the retrieved set of fea-
tures were then applied to downstream machine learning classifiers for cancer predic-
tion. In this work, as opposed to using imaging datasets, clinical and biological data 
or, EHRs as the starting input source, this work proposes to use raw DNA sequences 
as the only input source. Moreover, contrary to using statistical methods or advanced 
CNNs for data extraction and representation, this work proposes to use state-of-the-
art sentence transformers namely: SBERT and SimCSE. As far as we are aware, these 
two sentence transformer models have not been applied for learning representations 
in cancer research. The learned representations will then be fed as input to machine 
learning algorithms for cancer prediction.

Table 4  This table gives a summary of recent work that has been executed in colorectal cancer 
detection/survival using machine learning and deep learning algorithms as discussed in Sect.  2.4

References Feature extraction Data ML/DL Acc, AUC, 
ROC, or 
AUPRC 
(%)

[86] 2018 VGG16 TMA, Whole slide images 1-d LSTM, SVM, LR, Naive 
Bayes

61–69

[91] 2019 Normalization EHR CNN 92

[92] 2020 Macenko method [93] H &E slide images [74, 
94–97]

ShuffleNet 96

[90] 2020 – Colonoscopic images 169-layer dense CNN 86.7–88.2

[89] 2021 Thresholding and normali-
zation

Whole slide images [74, 
98]

MobileNetV2 78–93

[99] 2021 Contrast-Limited Adaptive

Histogram Equalization 
(CLAHE)

Warwick-QU dataset [100] ResNet-18 & ResNet-50 73–88

[101] 2021 Normalization and data 
labeling

Numeric and clinical data FNNs, SVMs, LR, LDA 77

[85] 2022 Faster-RCNN Whole slide images Gradient-boosted decision 
tree

91

[87] 2021 VGG16 Whole slide images [102] MLP 99

[88] 2022 Aachen protocol [103] 
and,

Macenko normalisa-
tion[93]

Whole slide images and

clinical pathological data ShuffleNet 56–73
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Methods
Data description

In this study, 95 samples from colorectal cancer patients and matched-normal samples 
from previous work [104] were analysed. Exon sequences from two key genes: APC 
and ATM were used. The full details of the exons that were used in this study is shown 
Tables  5 and 6. Table  7 shows the data distribution among the normal/tumor DNA 
sequences. Ethics approval was granted by the University of Pretoria EBIT Research Eth-
ics Committee (EBIT/139/2020).

Data encoding

To encode the DNA sequences, state-of-the-art sentence transformers: Sentence-
BERT [105] and SimCSE [105] were used. These transformers are explained in the next 
subsection.

Sentence‑BERT

Sentence-BERT (SBERT) (Fig. 5) adapts the pretrained BERT [106] and RoBERTa [107] 
transformer network and modifies it to use a siamese and triplet network architectures 
to compute fixed-sized vectors for more than 100 languages. The sentence embeddings 
can then be contrasted using the cosine-similarity. SBERT was trained on the combina-
tion of SNLI data [108] and the Multi-Genre NLI dataset [109].

In its architecture, SBERT adds a default mean-pooling procedure on the output of 
the BERT or RoBERTa network to compute sentence embeddings. SBERT implements 
the following objective functions: classification objective function, regression objective 
function, and the triplet objective function. In the classification objective function, the 
sentence embeddings of two sentence pairs u and v are concatenated using the element-
wise difference | u− v | and multiplied with the trainable weight WtǫR

3n∗k:

Table 5  Exon sequences extracted from the APC gene

Chromosome Start End Gene

chr5 112,043,201 112,043,579 APC

chr5 112,073,555 112,073,622 APC

chr5 112,074,049 112,074,157 APC

chr5 112,090,569 112,090,722 APC

chr5 112,102,022 112,102,107 APC

chr5 112,102,885 112,103,087 APC

chr5 112,111,325 112,111,434 APC

chr5 112,116,486 112,116,600 APC

chr5 112,128,142 112,128,226 APC

chr5 112,136,975 112,137,080 APC

chr5 112,151,191 112,151,290 APC

chr5 112,154,662 112,155,041 APC

chr5 112,157,592 112,157,688 APC

chr5 112,162,804 112,162,944 APC

chr5 112,163,625 112,163,703 APC

chr5 112,170,647 112,170,862 APC
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where n is the length or dimension of the sentence embeddings and k is the value of the 
target labels.

The regression objective function makes use of mean-squared-error loss as the objec-
tive function to compute the cosine-similarity between two sentence embeddings u and 
v.

The triplet objective function fine-tunes the network such that the distance between 
an anchor sentence a and a positive sentence p is smaller than the distance between sen-
tence a and the negative sentence n.

(1)o = softmax(Wt(u, v, | u− v |)

Table 6  Exon sequences extracted from the ATM 

Chromosome Start End Gene

chr11 108,093,558 108,093,913 ATM

chr11 108,098,321 108,098,423 ATM

chr11 108,098,502 108,098,615 ATM

chr11 108,099,904 108,100,050 ATM

chr11 108,106,396 108,106,561 ATM

chr11 108,114,679 108,114,845 ATM

chr11 108,115,514 108,115,753 ATM

chr11 108,117,690 108,117,854 ATM

chr11 108,119,659 108,119,829 ATM

chr11 108,121,427 108,121,799 ATM

chr11 108,122,563 108,122,758 ATM

chr11 108,123,543 108,123,639 ATM

chr11 108,124,540 108,124,766 ATM

chr11 108,126,941 108,127,067 ATM

chr11 108,128,207 108,128,333 ATM

chr11 108,129,712 108,129,802 ATM

chr11 108,137,897 108,138,069 ATM

chr11 108,139,136 108,139,336 ATM

chr11 108,141,790 108,141,873 ATM

chr11 108,141,977 108,142,133 ATM

chr11 108,143,258 108,143,334 ATM

chr11 108,143,448 108,143,579 ATM

chr11 108,150,217 108,150,335 ATM

chr11 108,151,721 108,151,895 ATM

chr11 108,153,436 108,153,606 ATM

Table 7  Data distribution

Gene Total number of normal sequences Total number of tumor sequences Total

Before SMOTE: chosen sampling strategy = “not majority’’

APC 305214 553563 858777

ATM 545113 610309 1155422

After SMOTE: chosen sampling strategy = “not majority”

APC 553563 553563 1107126

ATM 610309 610309 1220618
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Using the pretrained SBERT model: all-MiniLM-L6-v2, each DNA sequence was 
represented by a 384-dimensional vector.

SimCSE

As with SBERT, Simple Contrastive Sentence Embedding (SimCSE) [110] (Fig. 6 is a 
transformer based model that modifies the BERT/RoberTa encoder to generate sen-
tence embeddings. It uses a contrastive learning approach that aims to learn sentence 
representations by pulling close neighbours together and propelling non-neighbours. 
SimCSE comes in two learning forms: unsupervised and supervised SimCSE. In unsu-
pervised SimCSE, the network is fine-tuned to predict the input sentence itself using 
dropout as noise then, the other sentences that are in the mini-batch are taken as 
negatives. In this case, dropout acts as a data augmentation method while previous 
[111, 112] methods have used word deletion, reordering, and substitution as a way of 
generating positive instances. In unsupervised SimCSE, an input sentence is fed twice 
to the encoder then, two embeddings with different dropout masks z, z′ are generated 
as output. The training objective for SimCSE is:

Fig. 5  SBERT architecture with classification objective function (left) and the regression objective function 
(right) [105]

Fig. 6  Unsupervised SimCSE (a) and supervised SimCSE (b) [110]
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where z is the standard dropout mask that are found in Transformers and no additional 
dropout mask is added [110].

In supervised SimCSE, positive pairs are taken from the natural language inference 
(NLI) datasets and used to optimise the following equation:

where τ is a temperature hyperparamter and sim(h1, h2) is the cosine similarity.
Using the unsupervised pretrained SimCSE model: unsup-simcse-bert-base-uncased, 

each DNA sequence was represented by a 768-dimensional vector.

K‑means clustering

The k-means clustering algorithm was used to visualize the sentence representations 
generated from SBERT and SimCSE in an unsupervised approach. The k-means algo-
rithm divides the data points into k clusters where each data point is said to belong 
to the cluster centroid closest to it. Since the data consists of two types of documents 
(tumor vs. normal), the k-means algorithm was asked to find 2 clusters n and assign each 
DNA sequence to its closest centroid [113].

Machine learning experiments

A total of three machine learning algorithms were used for classification: Light Gradient 
Boosting (LightGBM), eXtreme Gradient Boosting (XGBoost), and Random Forest (RF).

eXtreme gradient boosting (XGBoost)

eXtreme Gradient Boosting (XGBoost), is an efficient implementation of the gradient 
boosting algorithm. Gradient boosting belongs to a group of ensemble machine learning 
algorithms that be used to solve classification or regression problems. The ensembles are 
created from decision trees that are added one at a time to the ensemble, and fit to cor-
rect the classification error that were made by prior trees [114].

Light gradient boosting (LightGBM)

Light Gradient Boosting (LightGBM) machine is also a gradient boosting model that 
is used for ranking, classification, and regression. In contrast to XGBoost, LightGBM 
splits the tree vertically as opposed to horizontally. This method of growing the tree leaf 
vertically results in more loss reduction and provides higher accuracy while also being 
faster. LightGBM uses the Gradient-based One-Side Sampling (GOSS) method to filter 
out data instances for obtaining the best split value while XGBoost uses a pre-sorted and 
Histogram-based algorithm for calculating the best split value [115].
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Random forest (RF)

Random forest (RF) is a supervised machine learning that is used in classification and 
regression tasks. It creates decision tress based on different samples and takes the 
majority vote for classification or average for regression. While XGBoost and Light-
GBM use a gradient boosting method, Random Forest uses a bagging method. The 
bagging method builds a different training subset from the training data with replace-
ment. Each model is trained separately and the final result is based on a majority vot-
ing after consolidating the results of all the models [116].

Convolutional neural network (CNN)

Convolutional neural networks (CNNs) are a subset of neural networks that are fre-
quently used to process speech, audio, and visual input signals. Convolutional, pool-
ing, and fully connected (FC) layers are the three types of layers that are generally 
present in CNNs. The convolutional layer is the fundamental component of a CNN 
and is in charge of performing convolutional operations on the input before pass-
ing the outcome to the following layer. Then, the input is subjected to dimensionality 
reduction using pooling layers that reduces the number of parameters in the input. 
The FC layer uses a variety of activation functions, including the softmax activation 
function and the sigmoid activation function, to carry out the classification task using 
the features retrieved from the network’s prior layers [117, 118]. In this work, a three-
layer CNN model with a sigmoid activation function will be supplied with the embed-
ding features that were retrieved by SBERT and SimCSE sentence transformers. Due 
to computational limitations, the network will be trained over 10 epochs using the 
RMSprop optimizer and cross-validated over five folds.

Performance evaluation metrics

To measure the performance of the machine learning models, the average perfor-
mance of the models were reported using 5-fold cross validation and the following 
metrics were used: accuracy, precision, recall and F1 score. In Table 8, the definition 
of these metrics is provided.

This section described the datasets used in the study as well as data representation 
methods and machine learning algorithms that were applied in this work. In the next 
section, the results of the applied methods are described.

Table 8  Performance evaluation metrics

TP True positives, FP False positives, TN True negatives, FN False negatives [119]

Measure Formula

Precision tp/ (tp + fp)

Recall tp/(tp+fn)

F1 score 2*(precision*recall)/
(precision+recall)
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Results
Visualizations

In this subsection, unlabeled data from SBERT and SimCSE representations were 
explored and visualized with the k-means clustering algorithm. The representations of 
the SBERT algorithm (Fig.  7) revealed more overlap between the data points in com-
parison to the representations of the SimCSE algorithm (Fig. 8). In the next subsection, 
machine learning models are evaluated to reveal if there is sufficient signal in the repre-
sentations of the two sentence transformers that can discriminate between tumor and 
normal DNA sequences.

Comparative performance of the machine learning results

SBERT before SMOTE

Table 9 presents the performance of the machine learning models on the dev set in terms 
of the average accuracy, averaged over the five folds using the SBERT representations. 
More performance metrics such as F1 score, recall, and precision are reported in the 
Additional file 1 (Appendix A).

APC
Considering that the tumor DNA sequences belonging to the APC gene comprised of 

≈ 64% of the data before SMOTE sampling, the machine learning models classified most 
sequences as positive (tumor); with the CNN achieving the best overall with the highest 
accuracy of 67.3 ± 0.04%.

Fig. 7  Visualisation of the SBERT documents with k-means clustering
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ATM
In contrast to the data distribution of the APC gene before SMOTE sampling, the 

original data distribution of sequences from the ATM gene were relatively balanced as 
the tumor sequences comprised of 53% of the total data, and normal DNA sequences 
made up 47%. Moreover, as opposed to predicting nearly all sequences as positive, the 

Fig. 8  Visualisation of the SimCSE documents with k-means clustering

Table 9  Development (dev) set accuracy (%) of the machine learning models

SBERT before SMOTE SBERT after SMOTE

APC ATM APC ATM

Random forest 65.9 ± 0.25 68.5 ± 0.68 51.4 ± 10.7 71.4 ± 1.16

XGBoost 62.5 ± 0.29 73. ± 0.13 62.5 ± 0.29 73 ± 0.13
LightGBM 64.9 ± 0.29 70.2 ± 0.64 64.9± 0.29 70.3 ± 0.64

CNN 67.3 ± 0.04 71.1 ± 2.84 47.0 ± 17.4 69.4 ± 5.2

SimCSE before SMOTE SimCSE after SMOTE

APC ATM APC ATM

Random forest 65.9 ± 0.15 73.2 ± 0.17 50.8 ± 10.9 71.6 ± 1.47
XGBoost 62.5 ± 0.65 73.7 ± 0.17 62.5 ± 0.65 68.8 ± 0.73

LightGBM 64.7 ± 0.29 74. ± 0.18 64.7 ± 0.29 70.7 ± 0.28

CNN 67. ± 0.00 73 ± 0.02 43. ± 0.17 71 ± 0.04
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machine learning models demonstrated an unbiased above-average performance as 
the highest performing model (XGBoost) achieved an accuracy of 73. ± 0.13 %.

SBERT after SMOTE

APC
The performance of the majority of the machine learning classifiers after applying 

SMOTE remained consistent in that very little improvement or decline was observed. 
Moreover, while the CNN model previously obtained the highest overall accuracy before 
SMOTE oversampling, it performed the worst after applying SMOTE with a reported 
accuracy of 47. ± 17.4 %. Although biased, the LightGBM classifier reached the highest 
accuracy of 64.9 ± 0.29 %. Its confusion matrix is shown (Fig. 9).

ATM
The same trend as seen in the previous Sect. 4.2.2 was also observed in this section 

with sequences from the ATM gene. Here, the performance of the machine learning 
models after SMOTE sampling was relatively similar to the performance of the machine 
learning models before SMOTE sampling as the XGBoost still maintained the best over-
all accuracy of 73. ± 0.13 % (Fig. 10).

SimCSE before SMOTE

Table 9 also presents the performance of the machine learning models in terms of the 
average accuracy, averaged over the five folds using the SimCSE representations. Supple-
mentary performance metrics are reported (Additional file 1: Appendix A).

APC
In this experimental setting, the performance of the machine learning models with 

SBERT representations before SMOTE sampling was similar to the performance of the 
models with SimCSE representations before SMOTE sampling. Here, the CNN achieved 
the best accuracy of 67. ± 0.0 %.

ATM

Fig. 9  Confusion matrix of the LightGBM model using SBERT representations after SMOTE (dev set)



Page 18 of 25Mokoatle et al. BMC Bioinformatics          (2023) 24:112 

A similar pattern as in the previous Sect.  (APC, SimCSE before SMOTE) was also 
detected in this setting when using sequences from the ATM gene in that the perfor-
mance of the SimCSE models were almost similar to the performance of the SBERT 
models (before SMOTE) with slight improvement. The LightGBM model achieved the 
highest accuracy of 74. ± 0.18 % which was an improvement in accuracy of approxi-
mately 4 %.

SimCSE after SMOTE

APC
The LightGBM model achieved the highest accuracy of 64.7 ± 0.29 (Fig.  11), which 

was indistinguishable to the performance reported before SMOTE oversampling.
ATM In this final experimental setting, the results demonstrated a consistent perfor-

mance before SMOTE sampling and after SMOTE sampling. The highest performing 
model was the Random forest model as it achieved an average accuracy of 71.6 ± 1.47 % 
(Fig. 12).

In Table 10, the experiments were repeated on an additional unseen test set. Overall, 
the machine learning models demonstrated a slight increase in the accuracy as the high-
est performing model, XGBoost, achieved an average accuracy of 75. ± 0.12 % using 
SimCSE representations from the ATM gene.

Discussion
This paper provided a literature review of how cancer has been detected using vari-
ous machine learning methods. Additionally, this work developed machine learn-
ing models that detect cancer using raw DNA sequences as the only input source. The 
DNA sequences were retrieved from matched tumor/normal pairs of colorectal cancer 
patients as described by previous work [104]. For data representation, two state-of-
the-art sentence transformers were proposed: SBERT and SimCSE. To the best of our 

Fig. 10  Confusion matrix of the XGBoost model using SBERT representations after SMOTE (dev set)
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knowledge, these two methods have not been used to represent DNA sequences in 
cancer detection problems using machine learning. In summary of the results, we note 
that using SimCSE representations only marginally improved the performance of the 
machine learning models.

The ability to detect cancer by relying on human DNA as the only input source to a 
learning algorithm was one of the significant contributions of this work. We acknowl-
edge that similar research investigating the role that the DNA plays in various cancer 
types has been conducted in the past. In contrary, the way the DNA was represented for 
the learning algorithms in our work is different from that in earlier research. An example 
would be work performed by [120] that used cell-free DNA (cfDNA) data from shal-
low whole-genome sequencing to uncover patterns associated with a number of differ-
ent cancers including Hodgkin lymphoma, diffuse large B-cell lymphoma, and multiple 

Table 10  Test set accuracy (%) of the machine learning models

SBERT before SMOTE SBERT after SMOTE

APC ATM APC ATM

Random forest 66.6 ± 0.36 73.3 ± 0.18 66.5 ± 0.33 73.3 ± 0.16
XGBoost 67.1 ± 0.40 73.2 ± 0.20 67.1 ± 0.40 73.3 ± 0.20
LightGBM 67.4 ± 0.41 73.3 ± 0.18 67.4 ± 0.41 73.3 ± 0.18
CNN 67.2 ± 0.42 74. ± 0.12 66.8 ± 0.42 70.71 ± 0.17

SimCSE before SMOTE SimCSE after SMOTE

APC ATM APC ATM

Random forest 66.5 ± 0.37 73.7 ± 0.12 66.6 ± 0.35 73.6 ± 0.14

XGBoost 67.1 ± 0.41 73.9 ± 0.12 67.1 ± 0.41 75. ± 0.12
LightGBM 67.4 ± 0.41 74.1 ± 0.20 67.4 ± 0.41 74.1 ± 0.20

CNN 67.4± 0.47 75. ± 0.12 67.3 ± 0.46 73.3 ± 0.14

Fig. 11  Confusion matrix of the LightGBM model using SimCSE representations after SMOTE (dev set)
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myeloma. This study used PCA transformed genome-wide coverage features and applied 
them as input to a support vector algorithm to predict cancer status rather than employ-
ing sentence transforms for data representation as was done in our study. Another study 
[121] also used cfDNA sequences to predict cancer tissue sequences from healthy ones. 
In this work, reads from hepatocellular carcinoma (HCC) patients and healthy indi-
viduals were integrated with methylation information and then, a deep learning model 
was created to predict the reads that originated from a cancer tissue. The deep learning 
model consisted of a 1-d CNN followed by a maxpooling layer, a bi-directional LSTM, a 
1-d CNN, and three dense layers. To represent the cfDNA sequences and methylation 
information, the variables were encoded into a one-hot encoded matrix that was then 
provided as input to the deep learning model for classification. Different from relying 
on raw DNA or cfDNA data to develop cancer detection frameworks, a study [122] con-
solidated methods from variant calling and machine learning to develop a model that 
detects cancers of unknown primary (CUP) origin which account for approximately 3% 
of all cancer diagnoses. This work employed whole-genome-sequencing-based mutation 
features derived from structural variants that were generated through variant calling and 
fed them as input to an ensemble of random forest binary classifiers for the detection of 
35 different cancers.

Limitations of the study
The machine learning experiments were only performed on two key genes: APC and 
APC, therefore it would have been interesting to see how the models generalize across 
various genes. The common disadvantage of conducting the experiments on multi-
ple genes or whole genome sequencing data is that they require more computational 
resources which have a direct impact on cost. Another limitation of this work is that 
only two pretrained models were used for generating the sentence representations. Since 
there are several other pretrained models that are publicly available to choose from, 

Fig. 12  Confusion matrix of the Random forest model using SimCSE representations after SMOTE (dev set)
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some pretrained models were slower to execute than others hence a decision was made 
to focus on pretrained models that provided fast execution.

Conclusion
This article reviewed the literature and demonstrated how various machine learn-
ing techniques have been used to identify cancer. Given that they are the most com-
mon malignancies worldwide, this work placed a special emphasis on four cancer types: 
lung, breast, prostate, and colorectal cancer. Then, a new method for the identification 
of colorectal cancer employing SBERT and SimCSE sentence representations was pre-
sented. Raw DNA sequences from matched tumor/normal pairs of colorectal cancer 
served as the sole input for this approach. The learned representations were then pro-
vided as input to machine learning classifiers for classification. In light of the perfor-
mance of the machine learning classifiers, XGBoost was found to be the best performing 
classifier overall. Moreover, using SimCSE representations only marginally improved the 
classification performance of the machine learning models.
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