
Science of Computer Programming 228 (2023) 102946
Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Max-SAT-based synthesis of optimal and Nash equilibrium

strategies for multi-agent systems

Nils Timm ∗, Josua Botha, Steven Jordaan

Department of Computer Science, University of Pretoria, Pretoria, South Africa

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 May 2022
Received in revised form 21 March 2023
Accepted 22 March 2023
Available online 28 March 2023

Keywords:
Bounded model checking
Multi-agent systems
Strategy synthesis
Max-SAT-based optimisation
Nash equilibrium

We present techniques for verifying strategic abilities of multi-agent systems via SAT-based
and Max-SAT-based bounded model checking. In our approach we focus on systems of
agents that pursue goals with regard to the allocation of shared resources. One of the
problems to be solved is to determine whether a coalition of agents has a joint strategy
that guarantees the achievement of all resource goals, irrespective of how the opposing
agents in the system act. Our approach does not only decide whether such a winning
strategy exists, but also synthesises the strategy.
Winning strategies are particularly useful in the presence of an opposition because they
guarantee that each agent of the coalition will achieve its individual goal, no matter
how the opposition behaves. However, for the grand coalition consisting of all agents in
the system, following a winning strategy may involve an inefficient use of resources. A
winning strategy will only ensure that each agent will reach its goal at some time. But in
practical resource allocation problems it may be of additional importance that once-off
resource goals will be achieved as early as possible or that repetitive goals will be achieved
as frequent as possible. We present an extended technique that synthesises strategies that
are collectively optimal with regard to such quantitative performance criteria.
A collectively optimal strategy allows to optimise the overall system performance but it
may favour certain agents over others. In competitive scenarios a Nash equilibrium strategy
may be a more adequate solution. It guarantees that no agent can improve its individual
performance by unilaterally deviating from the strategy. We developed an algorithm that
initially generates a collectively optimal strategy and then iteratively alternates this strategy
until the strategy becomes a Nash equilibrium or a cycle of non-equilibrium strategies is
detected.
Our approach is based on a propositional logic encoding of strategy synthesis problems.
We reduce the synthesis of winning strategies to the Boolean satisfiability problem and
the synthesis of optimal and Nash equilibrium strategies to the maximum satisfiability
problem. Hence, efficient SAT- and Max-SAT solvers can be employed to solve the encoded
strategy synthesis problems.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

* Corresponding author.
E-mail address: ntimm@cs.up.ac.za (N. Timm).
https://doi.org/10.1016/j.scico.2023.102946
0167-6423/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.scico.2023.102946
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2023.102946&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ntimm@cs.up.ac.za
https://doi.org/10.1016/j.scico.2023.102946
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
1. Introduction

Multi-agent systems for resource allocation (MRAs) have been introduced in [1] as a concept for modelling competitive
resource allocation problems in distributed computing. An MRA is composed of a set of agents and a set of resources. Agents
have access to a subset of the overall set of resources. Moreover, each agent has a goal in terms of the amount of resources
to accumulate. Particular resources can be allocated by means of request actions. Further types of actions are release and
idle. MRAs run in discrete rounds. In each round each agent selects an action, and the tuple of selected actions gets executed
in a simultaneous manner. Once an agent has achieved its goal, it releases all accumulated resources and starts to allocate
them again. Agents may pursue to achieve their goals once-off or repetitively. Since resources are generally shared, the
achievement of goals is a competition between agents. Several practically relevant scenarios of resource allocation can be
modelled as a multi-agent system for resource allocation. A real-world example is the resource competition in heterogeneous
wireless sensor network (WSN) systems [2] used for industrial or environmental monitoring. In such systems different
applications run on heterogeneous sensor nodes that belong to multiple WSNs. Each application has individual requirements
such as receiving sensor data at a certain rate and via a certain delivery mode. Sensor nodes and communication channels
belong to a shared infrastructure. Thus, the applications compete for these network resources. MRA-based modelling is
an adequate paradigm for the simulation of heterogeneous WSN systems. Applications can be represented as agents, their
requirements as goals, and sensor nodes as resources.

For MRAs (or more specifically, for the scenarios that they model) it is typically of importance that they are designed in
a way such that for a certain group of agents the achievement of goals can be guaranteed, no matter how the remaining
agents in the system may counter-act. We call such a group of agents a coalition and the remaining agents the opposition.
Goal-achievability properties of a coalition A against an opposition B can be formalised in alternating-time logics such as
ATL or ATL∗ [3], which extend classical temporal logics by strategic operators. An alternating-time formula 〈 〈A〉 〉 ϕ expresses
that the coalition A has a strategy to achieve ϕ, irrespective of how the opposition acts, where ϕ is a classical temporal
logic formula. The formula ϕ characterises the collective goal of the coalition A, and it is composed of sub formulas that
characterise the individual goals of the agents in A. In this context, a strategy is a mapping between states of the underlying
MRA and actions to be taken by the agents in A in these states. The corresponding coalition versus opposition model checking
problem is to determine whether such a winning strategy exists or not, and the coalition versus opposition strategy synthesis
problem is to actually build the strategy. Established tools for deciding the PTIME-complete ATL model checking problem of
general multi-agent systems such as Mocha [4] and MCMAS [5] are based on binary decision diagrams (BDDs). These tools
primarily focus on the verification of multi-agent systems, but also provide support for strategy synthesis. Algorithms for the
2EXPTIME-complete ATL∗ model checking have been theoretically defined, but due to the high complexity no practically
relevant implementation exists.

In [6] we introduced a SAT-based bounded model checking technique for verifying goal-achievability properties of multi-
agent systems for resource allocation. Our technique does not only decide the coalition versus opposition model checking
problem, it also synthesises a corresponding winning strategy if existent. The properties that we consider in our approach
are specified in the alternating-time logic 1-ATL∗ . This logic is a subset of ATL∗ that is restricted to formulas with a single
path quantifier and a single temporal operator. Our approach encodes the bounded model checking problem in propositional
logic. Thus, model checking can be performed via satisfiability solving. From a satisfying truth assignment of the encoded
problem a winning strategy for the coalition A can be immediately derived. For our bounded model checking problems lin-
ear completeness thresholds exist, which also makes unbounded model checking feasible. A distinct feature of our technique
is our iterative strategy synthesis algorithm that allows to avoid the exhaustive consideration of all possible strategies for
many practical instances.

Winning strategies are particularly useful in the presence of an opposition because they guarantee that each agent of the
coalition will achieve its individual goal, no matter how the opposition acts. However, for the grand coalition consisting of all
agents in the system, following a winning strategy may involve an inefficient use of resources. A winning strategy will only
ensure that each agent will reach its goal at some time. But in practical resource allocation problems it may be of additional
importance that once-off resource goals will be achieved as early as possible or that repetitive goals will be achieved as
frequently as possible. For instance, the goal of a WSN-based application for fire detection is to receive certain environmental
data – and it is essential that the data is received at a high sample rate. In this article, we extend our existing technique such
that winning strategies can be synthesised that are optimal with regard to such quantitative criteria. For this, we augment
our MRAs with goal-related pay-offs. A strategy is collectively optimal if it maximises the overall pay-off. The corresponding
optimal strategy synthesis problem is no longer a pure decision problem and therefore cannot be reduced to standard Boolean
satisfiability. We show that optimal strategy synthesis can be reduced to the maximum satisfiability problem (Max-SAT) [7].
Our reduction is based on an extension of our existing propositional logic encoding by pay-off clauses. We have proven
that from a truth assignment that maximises the number of satisfied pay-off clauses a corresponding collectively optimal
strategy can be immediately derived. This allows us to employ a Max-SAT solver [8] for synthesising winning strategies that
ensure that agents will achieve their goals as early as possible or as frequently as possible.

A collectively optimal strategy ensures the qualitative objective that each agent will achieve its goal at least once, and
it optimises the quantitative objective of interest such as the frequency of agents reaching their goal. The latter objective
will only be optimised with regard to the overall multi-agent system but not necessarily with regard to each individual
agent. For practical scenarios where just the overall system performance is of importance such a solution will be sufficient.
2

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
But for strictly competitive scenarios a collectively optimal strategy that favours certain agents (or WSN applications) over
others may be not acceptable. For such scenarios a Nash equilibrium strategy [9] can be an adequate solution. We define a
Nash equilibrium of an MRA as a strategy that ensures that: 1. Each agent will achieve its individual goal at least once. 2.
No agent can increase its individual pay-off by deviating from the strategy with alternative strategic decisions, assuming
that the remaining agents still adhere to the strategy. Hence, a Nash equilibrium is a strategy on which even competing
agents may agree on. We developed an algorithm that initially generates a collectively optimal strategy and then itera-
tively alternates this strategy until the strategy becomes a Nash equilibrium or a cycle of non-equilibrium strategies is
detected.

We have implemented the coalition versus opposition strategy synthesis on top of the solver CaDiCaL [10]. Moreover, the
collectively optimal strategy synthesis and the Nash equilibrium synthesis have been implemented on top of the Max-SAT
solver OPEN-WBO [8]. Experiments show promising performance results. To the best of our knowledge, our technique is the
first Max-SAT-based approach to the synthesis of optimal an Nash equilibrium strategies for multi-agent systems.

The remainder of this article is organised as follows. Section 2 discusses related work. In Section 3 we introduce multi-
agent systems for resource allocation, strategies, and the goal-achievability properties that we consider in our approach.
Moreover, we define the coalition versus opposition strategy synthesis problem. Section 4 presents the propositional logic
encoding of the coalition versus opposition strategy synthesis problem. In Section 5 we present the SAT-based algorithm
for synthesising winning strategies that we originally introduced in [6]. In Section 6 we define the optimisation criteria fre-
quency and speed. Moreover, we generalise the synthesis of winning strategies to the synthesis of collectively optimal and
Nash equilibrium strategies. Section 7 presents the reduction of optimal and Nash equilibrium strategy synthesis to the max-
imum satisfiability problem. In Section 8 we introduce the implementation of our approach and we present experimental
results. We conclude this article in Section 9 and give an outlook on future work.

2. Related work

Model checking has been originally introduced as a technique for verifying temporal logic properties of hardware and
software designs [11]. Classical symbolic model checking approaches include BDD-based CTL model checking [12] and SAT-
based bounded LTL model checking [13]. CTL model checking has been also extended to multi-agent systems [14]. While
CTL and LTL do not consider strategic aspects, [3] introduced the alternating-time logics ATL and ATL∗ , which are logics for
reasoning about strategies in multi-agent systems. The general ATL model checking problem is PTIME-complete whereas the
ATL∗ model checking problem is 2EXPTIME-complete. Thus, while for ATL model checking efficient BDD tools like MCMAS
[5] and MOCHA [4] exist, ATL∗ has been rather considered on a theoretical level [15]. SAT-based bounded model checking
of multi-agent systems has been proposed in [16,17]. Similar to our technique, [16,17] unfold the transition relation k
times by means of a propositional formula. However, their approaches are limited to the verification of epistemic properties
and do not support strategic operators. These approaches have been only theoretically defined but not implemented. [18]
presents a SAT-based unbounded ATL model checking technique. Although based on a reduction to SAT, this technique
is very different from ours. In [18] a BDD-encoded model checking problem gets translated into a corresponding set of
quantified Boolean formulas and fix-point equations, which can be further translated into a plain propositional encoding.
[18] does not support strategy synthesis. An existing tool for synthesising ATL strategies is SMC [19]. SMC operates on
a BDD model of the multi-agent system to be verified. It iteratively guesses a strategy, fixes the strategy in the model
and checks whether it is a winning strategy, which reduces ATL model checking to CTL model checking in each iteration.
Experimental results presented in [19] show that SMC can successfully synthesise strategies for systems with up to eight
agents, which approximately matches with the capabilities of our SATMAS tool. While SMC is limited to the synthesis of
winning strategies, our tool additionally provides support for the synthesis of optimal and Nash equilibrium strategies.

The synthesis of Nash equilibrium strategies for multi-agent systems has been studied in several works on rational
verification [20–22]. Given a system where each agent has a qualitative goal and given a temporal logic formula ϕ, the
rational verification problem is to determine whether a Nash equilibrium strategy exists that guarantees ϕ. In this context,
the agents’ goals and the temporal logic formula typically characterise different properties. A winning strategy must ensure
ϕ but does not necessarily need to satisfy the goal of each agent. However, agents prefer strategies that satisfy their goal
over those that do not. A joint winning strategy is a Nash equilibrium if no agent that under this strategy fails to achieve its
goal can come up with an alternative individual strategy that will enable the agent to succeed in achieving its goal. Hence,
in rational verification the goals are entirely qualitative. In contrast, our approach focusses on a combination of qualitative
and quantitative goals. Moreover, we verify goal-reachability itself rather than separating goals and temporal logic properties
of interest.

Nash equilibria with regard to quantitative aspects have been considered in [23–26]. In [23] the authors propose an
extension of the temporal logic LTL called LTL[F]. The evaluation of an LTL[F] formula on a system model may yield a real
value from the interval [0, 1] rather then just a Boolean value. Hence, a formula may be partially satisfied by a system. It
is shown that the Nash equilibrium synthesis problem for systems where agents have LTL[F] goals is 2EXPTIME-complete.
Contrary to our work, the LTL[F] Nash equilibrium synthesis considers purely quantitative goals in the sense of maximising
the satisfaction value of LTL[F] formulas. In contrast, our approach combines qualitative goal formulas ϕ with quantitative
pay-offs. The authors of [24,25] introduce multi-agent systems in which agents have a primary goal that is qualitative
and a secondary goal that is quantitative. This is similar to our properties of interest where agents must achieve their
3

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
resource goal at least once (qualitative) and preferably as frequent resp. early as possible (quantitative). In [24] is proven
that if the qualitative goals are Büchi conditions, then an NP-algorithm for solving the corresponding Nash equilibrium
synthesis problem exists. Moreover, in [25] it is shown that if the qualitative goals are LTL formulas then the problem is
2EXPTIME-complete. The contributions of [24,25] are of theoretical nature, whereas our work also comprises tool support
and experimental results. A further difference to our work is that the approaches proposed in [24,25] are limited to decide
the existence of strict Nash equilibria, which form a subset of the (general) Nash equilibria that can be synthesised with
our technique. Another framework for reasoning about systems where agents have both qualitative and quantitative goals is
proposed in [26]. The authors augment multi-agent systems with transition pay-offs and introduce a quantitative extension
of the logic ATL∗ . This allows to model check whether agents have the strategic abilities to achieve quantitative pay-off
goals and at the same time qualitative state-based goals. The above works are predominantly of theoretical nature and
focus on establishing general complexity results of the proposed synthesis problems. In contrast, our work considers a
more specific scenario where agents primarily need to achieve qualitative resource goals with in a given time frame and
secondarily prefer to reach the goals as early as possible or as often as possible. Moreover, our work includes a practical
approach to solve this problem, which is based on a Boolean encoding and maximum satisfiability solving (Max-SAT) [7].
To the best of our knowledge, our technique is the first Max-SAT-based approach to the synthesis of optimal and Nash
equilibrium strategies. In related fields, Max-SAT has been employed to find optimal coalitions of agents [27], to synthesise
optimal controllers [28], and to model check quantitative hyper-properties [29]. [27] proposes a Max-SAT-based solution to
the coalition structure generation problem, which is to find a partition of agents into coalitions such that the overall system
pay-off gets maximised. Thus, in contrast to our approach the outcome of the technique presented in [27] is a partition,
and not a strategy. The authors of [28] use Max-SAT to find a controller of an autonomous system that, given a set of LTL
formulas, minimises the number of formulas that are violated by the system. The generated optimal controller is represented
as a transition system. Thus, the technique can be regarded as a system synthesis approach rather than a strategy synthesis
approach. In [29] Max-SAT is employed to solve the HyperLTL model checking problem, which is a generalisation of LTL
model checking allowing for simultaneous quantification over multiple paths. The proposed technique is a decision procedure
for the model checking problem, but it does not involve any synthesis.

3. Multi-agent systems for resource allocation

In our approach we focus on model checking and synthesising strategies for multi-agent systems for resource allocation
(MRAs), originally introduced in [1].

Definition 1 (Multi-agent system for resource allocation). A multi-agent system for resource allocation is a tuple M =
(Agt, Res, d, Acc) where

• Agt = {a1, . . . , an} is a finite set of agents,
• Res = {r1, . . . , rm} is a finite set of resources,
• d : Agt → N is a demand function that defines the number of resources that each agent needs to allocate in order to

achieve its individual goal,
• Acc : Agt → 2Res is an accessibility function that defines the subset of resources that each agent can access.

Example 1. The graph on the right describes the agents a1, a2, the resources
r1, r2, r3, r4, and the accessibility function of the multi-agent system for resource al-
location. The MRA is fully specified once the demand function is defined, e.g., d(a1) =
2, d(a2) = 3. In a sensor network context, this MRA may represent a heterogeneous
WSN system consisting of an application for fire detection a1 and an application for air
quality monitoring a2. The resources r1 to r4 may correspond to nodes with sensors for
temperature, smoke, carbon dioxide, and ozone. Access to the sensors for smoke and
carbon dioxide is shared, whereas the sensors for temperature and ozone are exclusive
to a1 resp. a2. The demand function may model that application a1 can confidently
detect a fire based on data from two of the three sensors it can access, and that ap-
plication a2 requires data from all three sensors it can access in order to report on the
air quality.

a2

a1

r4

r3

r2

r1

Each agent has the goal to gradually allocate a number of resources such that its demand is finally satisfied. The actions
that can be performed for this are:

Definition 2 (Actions). Given an MRA M , the set of actions Act is the union of the following types of actions:

• request actions: {reqa
r | a ∈ Agt, r ∈ Acc(a)}

• release actions: {relar | a ∈ Agt, r ∈ Acc(a)}
4

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
• release-all actions: {relaall | a ∈ Agt}
• idle actions: {idlea | a ∈ Agt}

Hence, an agent can request a particular resource, release a particular resource that it currently holds, release all re-
sources that it currently holds, or just idle. The fact that agents may hold certain resources gives rise to the notion of states
of an MRA, which we subsequently define. An MRA runs in discrete rounds where in each round each agent chooses its
next action. In a round the tuple of chosen actions, one per agent, gets executed simultaneously. The execution of actions
leads to an evolution of the system between different states over time.

Definition 3 (States). A state of an MRA M is a function s : Res → Agt+ where Agt+ = Agt ∪ {a0} and a0 is a dummy agent.
If s(r) = a0 then resource r is unallocated in state s. If s(r) = ai and i > 0 then r is allocated by agent ai in s. We denote by
s0 the initial state of M , where s(r) = a0 for each r ∈ Res, i.e., initially all resources are unallocated. We denote by S the set
of all possible states of M . If we want to express that resource r is currently allocated by agent ai but the current state is
not further specified, then we simply write r = ai .

Hence, states describe the current allocation of resources by agents. An agent may not be able to observe the entire state
of the MRA. We assume that agents can only observe the (state of the) resources they have access to.

Definition 4 (State observations). Let M be an MRA, let ai ∈ Agt and let s ∈ S . Then the observation of agent ai in state s
is a function sai : Acc(ai) → Agt+ such that sai (r) = s(r) for all r ∈ Acc(ai). We denote by Sai the set of all possible state
observations of ai .

In our example, agent a1 cannot access resource r4. Hence, the state observation of this agent in a state where all
resources are available and in a state where r4 is the only allocated resource would be the same. In each state only a subset
of actions may be available for execution by an agent, which we call the protocol:

Definition 5 (Action availability protocol). The action availability protocol is a function P : S × Agt → 2Act defined for each
s ∈ S and a ∈ Agt:

1. if |s−1(a)| = d(a) then P (s, a) = {relaall};
2. otherwise:

(a) relaall /∈ P (s, a);
(b) reqa

r ∈ P (s, a) iff s(r) = a0;
(c) relar ∈ P (s, a) iff s(r) = a;
(d) idlea ∈ P (s, a) iff ∀r ∈ Acc(a) : s(r) 	= a0.

Thus, if an agent has reached its goal, it has to release all of its allocated resources. Otherwise, an agent can request an
accessible resource that is currently unallocated, an agent can release a resource that it currently holds, and an agent can
idle only if none of its accessible resources are currently available.

Definition 6 (Action profiles). An action profile in an MRA M is a mapping ap : Agt → Act . A P denotes the set of all action
profiles. We say that a profile ap is executable in a state s ∈ S if for each a ∈ Agt we have that ap(a) ∈ P (s, a).

Based on action profiles we can formally define the evolution of an MRA.

Definition 7 (Evolution). The evolution of an MRA is a relation δ ⊆ S × A P × S where (s, ap, s′) ∈ δ iff ap is executable in s
and for each r ∈ Res:

1. if s(r) = a0 then:
(a) if ∃a : ap(a) = reqa

r ∧ ∀a′ 	= a : ap(a′) 	= reqa′
r then s′(r) = a;

(b) otherwise s′(r) = a0;
2. if s(r) = a for some a ∈ Agt then:

(a) if ap(a) = relar ∨ relaall then s′(r) = a0;
(b) otherwise s′(r) = a.

If an action profile is executed in a state of an MRA M , this leads to a transition of M into a corresponding successor
state, i.e., a change in the allocation of resources according to the actions chosen by the agents. According to the evolution,
the request of a resource r by an agent a will be only successful if a is the only agent that requests r in the current round.
If multiple agents request the same resource at the same time, then none of the agents will obtain it.
5

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
We are interested in solving strategic model checking problems with regard to MRAs: Given a coalition of agents A ⊆ Agt ,
does this coalition have a uniform strategy that guarantees that all agents in A will eventually achieve their goal, irrespective
of how the opposition of agents Agt\A acts?

Definition 8 (Uniform strategy). A uniform strategy of an agent a ∈ Agt in an MRA is an injective function αa : Sa → Act . A
strategy can be also denoted by a relation αa ⊆ Sa × Act where αa(sa, acta) = true iff αa(sa) = acta . Given A = {a1, . . . , ar} ⊆
Agt , a joint strategy for A is a tuple of strategies αA = (αa)a∈A , one for each a ∈ A.

A strategy determines which action an agent will choose under which observation. A strategy is uniform if the following
holds: Each time when an agent makes the same observation, it will perform the same action according to the strategy.
If a coalition of agents follows a joint strategy, this can have multiple possible execution paths as outcomes because the
remaining agents outside the coalition may act in an arbitrary way. In our approach, we assume that the remaining agents
may follow an arbitrary strategy from a set Σ . The outcome of a strategy αA in a state s for a set of opposition’s strategies
Σ is a set of paths.

Definition 9 (Outcome of a strategy). Let M be an MRA, s a state of M , A ⊆ Agt and B = Agt\A. Moreover, let αA be a joint
strategy for A and Σ a set of joint strategies for B . Then the outcome of αA in state s, assuming that the agents in B follow
an arbitrary strategy from Σ , is a set of paths

Π(s, αA,Σ) =
{

π = s0s1 . . . | s0 = s ∧
∀βB ∈ Σ : ∀t ∈N : ∃(acta1

t , . . . ,actan
t)∀a ∈ Agt :(

acta
t ∈ P (st,a) ∧ (a ∈ A → αa

(
(st)a

) = acta
t) ∧

(a ∈ B → βa
(
(st)a

) = acta
t) ∧(

st, (acta1
t , . . . , .actan

t), st+1
) ∈ δ

)}
where (st)a denotes the observation of agent a in state st .

The logic that we introduce for specifying strategic goal-achievability properties of agents in MRAs we call 1-ATL∗ . 1-ATL∗
is based on a subset of the alternating-time temporal logic ATL∗ [3].

Definition 10 (1-ATL∗ syntax). Let M be an MRA, A ⊆ Agt , B = Agt\A and Σ a set of joint strategies for B . Then formulas
〈 〈A,Σ〉 〉 ϕ ∈ 1-ATL∗ over M are defined as follows:

ϕ := a.goal | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Fϕ

where a ∈ Agt and a.goal is an atomic proposition that expresses that agent a has reached its goal, i.e., s(a.goal) = true iff
|s−1(a)| = d(a) for s ∈ S .

Here F refers to ‘finally’. 1-ATL∗ formulas are restricted to a single strategic operator 〈 〈A,Σ〉 〉 at the beginning of a
formula. Since we follow a SAT-based bounded model checking approach [13] we define bounded semantics for 1-ATL∗ .

Definition 11 (Bounded 1-ATL∗ semantics). Let M be an MRA, let s ∈ S be a state of M , let k ∈ N . Moreover, let A ⊆ Agt ,
a ∈ Agt , B = Agt\A and Σ a set of joint strategies for B . Then the k-bounded evaluation of a 1-ATL∗ formula 〈 〈A,Σ〉 〉 ϕ on
the state s, written [M, s |=k 〈 〈A,Σ〉 〉 ϕ], is inductively defined as:

[M, s |=k 〈〈A,Σ〉〉ϕ] ≡ ∃αA∀π ∈ Π(s, αA,Σ) : [M,π |=k ϕ]
[M,π |=k a.goal] ≡ |π(0)−1(a)| = d(a)

[M,π |=k Fϕ] ≡ ∃0 ≤ t ≤ k : [M,π(t) |=k ϕ]
where π(t) denotes the t-th state of the path π . Moreover, Boolean operators ¬, ∨, ∧ are interpreted with the usual seman-
tics.

3.1. Coalition versus opposition strategy synthesis

While ATL∗ uses strategic operators of the form 〈 〈A〉 〉, we use extended strategic operators 〈 〈A,Σ〉 〉. The semantic dif-
ference is as follows: A formula 〈 〈A〉 〉 ϕ expresses that the coalition A has a universal strategy to achieve ϕ, irrespective of
how the opposition Agt\A acts, whereas 〈 〈A,Σ〉 〉 ϕ expresses that the coalition A has a strategy to achieve ϕ against all the
6

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
opposition’s strategies in the set Σ . If we include all possible strategies of the opposition in Σ , then 〈 〈A〉 〉 ϕ and 〈 〈A,Σ〉 〉 ϕ
are semantically identical. In our SAT-based approach we focus on solving strategic bounded model checking problems of
the following form:

[M, s0 |=k 〈〈A,Σ〉〉
(∧

a∈A

(
Fa.goal

))]

Thus, we check whether the coalition A has a uniform strategy guaranteeing that each agent in A will finally reach its
resource goal within at most k time steps, assuming that the opposition follows an arbitrary strategy in Σ . Our technique
does not only yield the model checking result but also returns a winning strategy for A if such a strategy exists. We will
also show how our approach can be used for solving the corresponding universal problem

[M, s0 |=k 〈〈A〉〉
(∧

a∈A

(
Fa.goal

))]

where the strategies of the opposition are not restricted by Σ . We call this problem the coalition versus opposition strategy
synthesis.

4. SAT-encoding of coalition versus opposition strategy synthesis

We now present our propositional logic encoding of coalition versus opposition strategic bounded model checking prob-
lems [M, s |=k 〈 〈A,Σ〉 〉 ϕ]. We construct a propositional logic formula [M, 〈 〈A,Σ〉 〉 ϕ, k] over a set of Boolean variables V ars
that is satisfiable if and only if the encoded model checking problem holds. We assume that the formula [M, 〈 〈A,Σ 〉 〉 ϕ, k]
is converted into conjunctive normal form, which is the standard input format of SAT solvers:

Definition 12 (Conjunctive normal form (CNF)). Let V ar be a set of Boolean variables. A propositional logic formula F over
V ar in conjunctive normal form is a conjunction of clauses C where each clause is a disjunction of literals l, and a literal is
either a variable v ∈ V ar or its negation ¬v .

For CNF formulas the satisfiability problem is defined as follows:

Definition 13 (Boolean satisfiability problem). Let F over V ar be a formula in conjunctive normal form. The Boolean satisfi-
ability problem with regard to F is the problem of determining whether there exists a truth assignment α : V ar → {0, 1}
that makes all clauses of F true.

For CNF formulas F over a set of variables V ar and assuming that A(V ar) is the set of all possible truth assignments
over V ar we define Boolean satisfiability as the function

sat(F) =
{

1 if ∃α ∈ A(V ar) with α(F) = 1,

0 otherwise.

We will show that if the formula [M, 〈 〈A,Σ〉 〉 ϕ, k] is satisfiable for a truth assignment α : V ars → {0, 1}, then α describes
a uniform strategy αA for the coalition A that guarantees that the goal ϕ will be reached against all the opposition’s
strategies in Σ . Since we have the correspondence between truth assignments and strategies we denote both of them by α
resp. αA . In a top-down manner now we break down the overall encoding into sub encodings:

[M, 〈〈A,Σ〉〉ϕ,k] = [〈〈A〉〉 ,k] ∧
∧
β∈Σ

([β,k] ∧ [M,k]β ∧ [ϕ,k]β)

The sub formula [〈 〈A〉 〉 , k] encodes the condition that the agents in A must follow a uniform strategy and adhere to the
protocol at each time step up to k. [β, k] encodes that the agents in B = Agt\A exactly follow the strategy β . [M, k]β
encodes all k-bounded paths of M starting in the initial state, and [ϕ, k]β is a constraint that restricts the paths of M to
those that satisfy ϕ. Since for each strategy β ∈ Σ different paths may be taken and sub formulas of ϕ may be satisfied in
different states, we have for each β a distinct copy of the encoding of M and ϕ, indicated by the superscript. This means, for
some β 	= β ′ the encodings [M, k]β and [M, k]β ′

are structurally identical, but they are defined over distinct sets of variables.
Henceforth, we typically omit the superscript, unless we want to emphasise that the encoding refers to a particular strategy
β .

Besides defining the general propositional logic encoding, we also illustrate the encoding based on a running example
that is split into parts 2(a) to 2(f):
7

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Example 2(a). We consider simple example MRA that consists of two agents and two
resources. Initially, both resources are unallocated. The accessibility of agents to re-
sources is defined by the graph on the right. We assume that agent a1 has a demand
of 1 and agent a2 has a demand of 2. Moreover, we assume a single-agent coalition
A = {a1}. Hence, the opposition is B = {a2}. In our scenario, the set of strategies of
the opposition is Σ = {β} where β is informally defined as follows: If r2 is available
then request r2, if r2 is not available but r1 is available then request r1, if both re-
sources are allocated by a2 then release all, otherwise idle. The corresponding strategy
synthesis problem is to determine whether there exists a strategy α for agent a1 that
guarantees that a1 will achieve its goal of eventually holding one resource, under the
assumption that agent a2 follows the strategy β . It is easy to see that any strategy α
where agent a1 requests resource r1 in the initial state is a winning strategy against β .
In the further parts of the example we will illustrate how to construct the 1-bounded
encoding [M, 〈 〈{a1}, {β}〉 〉 Fa1.goal, 1] of this simple strategy synthesis problem. More-
over, we will show that a satisfying truth assignment of the encoding characterises a
winning strategy for agent a1.

a2

a1

r2

r1

4.1. Overall encoding

Subsequently, we present the details of the overall encoding. The encoding makes use of a number of basic encodings:
[r = a]t denoting that resource r is allocated by agent a in the state at time step t , [acta]t denoting that agent a chooses
action act in the state at time step t , and [a.goal]t denoting that a has reached its goal in the state at step t . If the SAT
solver generates a satisfying truth assignment α of the overall encoding and α

([r = a]t
) = 1 holds, then α characterises a

path where at the t-th state resource r is allocated by agent a. Similar properties hold for the remaining basic encodings.
For now we will remain with these informal definitions of these basic encodings. The formal definitions will follow in the
next sub section. We start with the encoding of paths and the temporal logic formula before we consider the strategic parts
[〈 〈A〉 〉 , k] and [β, k]. The encoding of k-bounded paths [M, k] is composed of the following sub encodings

[M,k] = [Init]0 ∧
k−1∧
t=0

[E volution]t,t+1

where [Init]0 encodes the initial state at time step 0 and [E volution]t,t+1 encodes the evolution (Definition 7) of M from
time step t to step t + 1.

Definition 14 (Encoding of the initial state). The encoding of the initial state of an MRA M at time step 0 where all resources
are unallocated is

[Init]0 =
∧

r∈Res

[r = a0]0

where [r = a0]0 is defined according to the encoding of resource states (Section 4.2).

Example 2(b). For our running example we get the initial state encoding [Init]0 = [r1 = a0]0 ∧[r2 = a0]0 which encodes
that both r1 and r2 are unallocated at time step 0. A truth assignment α that satisfies the overall encoding must clearly
also satisfy [Init]0. Hence, for such an α we will have α([r1 = a0]0) = 1 and α([r2 = a0]0) = 1. Our encoding is defined
in a way such that at each time step each resource is either unallocated or allocated by exactly one agent. Thus, from
α([r1 = a0]0) = 1 it follows that α([r1 = a1]0) = 0 and α([r1 = a2]0) = 0, and we get an analogous property with regard
to assignment α and resource r2. In the subsequent part of the example we will see that this property of our encoding
ensures that a truth assignment can be only satisfying if it characterises a state transition that is in line with the
evolution (Definition 7).

The initial state at time step 0 is the only state that is fixed in our encoding. States that will be reached at time
steps 1 ≤ t ≤ k follow from the truth assignment generated by the solver. The subsequent encoding ensures that generated
sequences of states are in line with the evolution:

Definition 15 (Encoding of the evolution). The evolution of a multi-agent system for resource allocation M from time step t to
t + 1 is encoded as [E volution]t,t+1 = ∧

r∈R [r.evolution]t,t+1 where [r.evolution]t,t+1 =
8

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
∨
a∈Acc−1(r)

(([r = a]t+1 ∧ [reqa
r]t ∧ ∧

a′ 	=a ¬[reqa′
r]t

)
∨ ([r = a]t+1 ∧ [r = a]t ∧ ¬[relar]t ∧ ¬[relaall]t

)
∨ ([r = a0]t+1 ∧ [relar]t

)
∨ ([r = a0]t+1 ∧ [r = a]t ∧ [relaall]t

)
)

∨ ([r = a0]t+1 ∧ [r = a0]t ∧ ∧
a∈Acc−1(r) ¬[reqa

r]t
)

∨ ([r = a0]t+1 ∧ [r = a0]t ∧ ∨
a,a′∈Acc−1(r),a 	=a′ ([reqa

r]t ∧ [reqa′
r]t

)
and the sub encodings are defined according to the encoding of resource states and actions (Section 4.2).

The encoding of the evolution has a sub formula for each resource r in M . It describes how the allocation state of r
changes based on agent actions at particular time steps. The first line of the encoding expresses that in the state at the next
time step t + 1 the resource r will be allocated by agent a if at the current time step t agent a requests r and no other
agent requests r.

Example 2(c). The following formula is the part of the evolution encoding of our example MRA focussing on resource
r1, agent a1 and the evolution from time step 0 to time step 1:([r1 = a1]1 ∧ [reqa1

r1]0 ∧ ¬[reqa2
r1]0

)
∨ ([r1 = a1]1 ∧ [r1 = a1]0 ∧ ¬[rela1

r1]0 ∧ ¬[rela1
all]0

)
∨ ([r1 = a0]1 ∧ [r1 = a1]0 ∧ [rela1

r1]0
)

∨ ([r1 = a0]1 ∧ [r1 = a1]0 ∧ [rela1
all]0

)
∨ ([r1 = a0]1 ∧ [r1 = a0]0 ∧ ¬[reqa1

r1]0 ∧ ¬[reqa2
r1]0

)
∨ ([r1 = a0]1 ∧ [r1 = a0]0 ∧ [reqa1

r1]0 ∧ [reqa2
r1]0

)
The first two lines of this formula encode the following: Resource r1 will be allocated by agent a1 at time step 1
(encoded as [r1 = a1]1) if a1 is the only agent that requests r1 at time step 0 (encoded as [reqa1

r1]0 ∧¬[reqa2
r1]0), or if a1

already holds r1 at time step 0 and does not release it (encoded as [r1 = a1]0 ∧ ¬[rela1
r1]0 ∧ ¬[rela1

all]0). The remaining
lines encode the conditions under which resource r1 will be unallocated at time step 1. One condition is that agent a1
currently holds r1 and releases this resource at time step 0.
In the previous part of the running example, we already argued that the encoding of the initial state gives us con-
straints with regard to satisfying truth assignments α. In particular, α([r1 = a0]0) = 1 must hold. This constraint also
limits the evolution from time step 0 to 1. Cases where it is assumed that r1 is allocated by a1 at time step 0 become
infeasible. Under the assumption of the above-mentioned partial assignment α, the evolution encoding can be reduced
to the following feasible cases:([r1 = a1]1 ∧ [reqa1

r1]0 ∧ ¬[reqa2
r1]0

)
∨ ([r1 = a0]1 ∧ [r1 = a0]0 ∧ ¬[reqa1

r1]0 ∧ ¬[reqa2
r1]0

)
∨ ([r1 = a0]1 ∧ [r1 = a0]0 ∧ [reqa1

r1]0 ∧ [reqa2
r1]0

)
In our approach, such a reduction is performed by the SAT solver while searching a satisfying truth assignment of
the overall encoding. For time step 0 to 1 it is quite obvious to see which evolution cases are feasible and which
not, because this immediately follows from the initial state constraint [Init]0. For later times steps the feasibility
additionally depends on the actions that the agents took in the past. We will see that decisions of agents to take
certain actions follow from the truth assignment generated for the overall encoding.

We are interested in goal-reachability properties: Do the agents in A have a strategy to achieve the goal ϕ within k
steps? The strategic part of the property gets encoded separately. The temporal logic part gets encoded as follows:

Definition 16 (Encoding of goal-reachability formulas). Let M be an MRA, A ⊆ Agt and k ∈ N . Then the k-bounded goal-
reachability property ϕ = ∧

a∈A F(a.goal) is encoded in propositional logic as

[ϕ,k] =
∧
a∈A

(k∨
t=0

[a.goal]t
)

where [a.goal]t is defined according to the encoding of goals (Section 4.2).
9

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
If we conjunct the encoding [M, k] with [ϕ, k], this restricts the k-bounded paths of M to those where each agent in A
reaches its goal at least once. What we have encoded so far corresponds to a classical linear temporal logic bounded model
checking problem for MRAs.

Example 2(d). In our running example the coalition consists of the single agent a1 only. The corresponding goal reach-
ability property in a 1-bounded scenario is:

[ϕ,1] = [a1.goal]0 ∨ [a1.goal]1 = [r1 = a1]0 ∨ [r1 = a1]1

Thus, a satisfying truth assignment α must characterise a strategy where the agent is guaranteed to reach its goal at
time step 0 or 1. Since the agent has only access to the resource r1 and its demand is 1, the only possibility to achieve
the goal is to successfully allocate r1 within the bound. Clearly, holding resource r1 at time step 0 contradicts the
initial state constraint. Hence, for a winning strategy resp. satisfying truth assignment α([r1 = a1]1) = 1 must hold. In
more general scenarios where agents have higher demands and access to multiple resources various possibilities to
achieve a goal may exist.

We now extend the encoding with the strategic aspects of 1-ATL∗ . The strategic encodings uses two additional basic
encodings: [uni f orm.acta]t denoting that agent a chooses action act in the state at time step t and also at all other time
steps where the same state observation is present, and [sa]t denoting that the observation of agent a at time step t is sa .

Definition 17 (Encoding of the protocol). Let M be an MRA, let A ⊆ Agt and let k ∈ N . Then the protocol of A for all time
steps up to k is encoded in propositional logic as [〈 〈A〉 〉 , k] = ∧k

t=0
∧

a∈A[a.protocol]t where [a.protocol]t =∨
r∈Acc(a)

(([uni f orm.reqa
r]t ∧ ¬[a.goal]t ∧ [r = a0]t

)
∨ ([uni f orm.relar]t ∧ ¬[a.goal]t ∧ [r = a]t

)
)

∨ ([uni f orm.relaall]t ∧ [a.goal]t
)

∨ ([uni f orm.idlea]t ∧ ¬[a.goal]t ∧ ∧
r∈Acc(a) ¬[r = a0]t

)
and the sub encodings are defined according to the encoding of actions with uniformity constraints, goals, and resource
states (Section 4.2).

The constraint [〈 〈A〉 〉 , k] forces the agents in A to follow the protocol at all time steps up to k. This means only actions
that are available in the current state can be chosen. Moreover, the constraint enforces the uniformity of choices with regard
to the state observation. The first line of the protocol encoding ensures that some agent a can only request some resource
r if the agent has not reached its goal yet and r is unallocated in the state at the current time step. Furthermore, the sub
constraint [uni f orm.reqa

r]t ensures that if the agent chooses the reqa
r action in the state at time step t , then it has to choose

the same action at all time steps where the agent’s state observation is the same as at t .

Example 2(e). The following formula is the part of the protocol encoding of our example MRA focussing on agent a1

and its strategic decision at time step 0:([uni f orm.reqa1
r1]0 ∧ ¬[a1.goal]0 ∧ [r1 = a0]0

)
∨ ([uni f orm.rela1

r1]0 ∧ ¬[a1.goal]0 ∧ [r1 = a1]0
)

∨ ([uni f orm.rela1
all]0 ∧ [a1.goal]0

)
∨ ([uni f orm.idlea1]0 ∧ ¬[a1.goal]0 ∧ ¬[r1 = a0]0

)
Thus, the agent a1 can request the accessible resource r1 (encoded as [uni f orm.reqa1

r1]0) if the goal is not yet reached
and the resource is currently available (encoded as ¬[a1.goal]0 ∧ [r1 = a0]0). a1 can release the resource if the goal is
not yet reached and the agent currently holds the resource. The agent can release all resources if the goal is reached,
and it can idle if the goal is not yet reached and the resource is currently unavailable. Since our example considers
time step 0, the initial state constraint restricts the actions that the agent can actually choose. We have that in the
initial state agent a1 has not achieved its goal and that resource r1 is unallocated. Under the assumption of a partial
truth assignment that satisfies the initial state constraint, the protocol encoding can be reduced to the following
feasible choice:([uni f orm.reqa1

r1]0 ∧ ¬[a1.goal]0 ∧ [r1 = a0]0
)

Consequently, the only action that agent a1 can choose at time step 0 is to request resource r1.

The final part of the encoding concerns strategies. In our approach, we use this part to fix the strategy that the opposition
of agents B = Agt\A is following.
10

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Definition 18 (Encoding of strategies). Let A = {a1, . . . , ar} ⊆ Agt , let αA = (αa)a∈A be a joint strategy for A and let k ∈ N .
Then the prescription of the strategy αA to A at all time steps up to k is encoded as

[αA,k] =
k∧

t=0

∧
a∈A

∧
(sa,acta)∈αa

([sa]t → [acta]t
)

where [sa]t is defined according to the encoding of state observations and [acta]t is defined according to the encoding of
actions (Section 4.2).

Each clause
([sa]t → [acta]t

)
in this encoding ensures that if at some time step t the state observation sa holds, then the

agent a has to choose action acta according to the strategy αa .

Example 2(f). In our running example we assume that the opposing agent a2 follows the strategy β , which we defined
in part (a) of the example. The corresponding propositional logic encoding [β, 0] looks as follows:([r2 = a0]0 → [reqa2

r2]0
)

∧ (
(¬[r2 = a0]0 ∧ [r1 = a0]0) → [reqa2

r1]0
)

∧ (
([r1 = a2]0 ∧ [r2 = a2]0) → [rela2

all]0
)

∧ (
([r1 = a1]0 ∧ [r2 = a2]0) → [idlea2]0

)
The first line of the above formula encodes the strategic decision to request resource r2 (encoded as [reqa2

r2]0) if this
resource is available in the state at time step 0 (encoded as [r2 = a0]0). The remaining lines encode strategic decisions
prescribed by β for the further possible states of the system. We know that at time step 0 the system is in the
initial state where r2 is available. Hence, any satisfying truth assignment α must satisfy [r2 = a0]0 and consequently
according to the above encoding also [reqa2

r2]0.

This completes the definition of the overall encoding [M, 〈 〈A,Σ〉 〉 ϕ, k] = [〈 〈A〉 〉 , k] ∧ ∧
β∈Σ

([β, k] ∧ [M, k]β ∧ [ϕ, k]β)
. For

our running example we can obtain a concrete overall encoding [M, 〈 〈{a1}, {β}〉 〉 Fa1.goal, 1] = [〈 〈{a1}〉 〉 , 1] ∧ [β, 1] ∧ [M, 1] ∧
[Fa1.goal, 1] where the sub formulas are defined as outlined in the parts (a) to (f). As illustrated, this concrete encoding will
be only satisfied for truth assignments that characterise the following: Initially all resources are unallocated, both agents
adhere to the protocol, state transitions are conform with the evolution, agent a2 follows the fixed strategy β , and agent a1
has a strategy to achieve its goal within 1 time step. Thus, we exemplified how our SAT-based strategy synthesis approach
conceptually works.

We continue with the formal definition of the basic encodings that are used within the overall encoding. This will be
followed by a discussion of the properties of the overall encoding with regard to satisfiability results and derivable model
checking resp. strategy synthesis results.

4.2. Basic encodings

An essential basic encoding in our approach is that a particular resource is allocated by a particular agent in the state at
time step t . In the encoding we make use of the fact that the agents in an MRA are indexed from 0 to n where the 0-index
indicates the dummy agent a0 holding unallocated resources. Each index can be represented by an m-digit binary number,
and each binary number can be logically represented by a conjunction of m negated or non-negated Boolean variables. We
introduce m Boolean variables for each resource r j ∈ Res and encode that r j is allocated by some agent ai ∈ Agt by building
a conjunction that corresponds to the binary representation of the agent’s index i:

Definition 19 (Encoding of resource states). Let M be multi-agent system for resource allocation, let r j ∈ Res, let ai ∈ Agt+
and let t ∈N . Let m = �log2 |Agt+|� and let bm−1 . . .b0 be the m-digit binary representation of the agent’s index number i.
Then the allocation of resource r j by agent ai in the state at time step t is encoded as

[r j = ai]t :=
0∧

l=m−1

((
bl ∧ [r j]l

t

) ∨ (¬bl ∧ ¬[r j]l
t

))

where [r j]l
t with 0 ≤ l < m are the Boolean variables introduced for the encoding.

Note that in this encoding each bl is a Boolean value (0 or 1), which means that either the left-hand side or the right-
hand side of the disjunction evaluates to 0. Thus, the encoding can be immediately simplified to a pure conjunction. Since
we get a pure conjunction, it is excluded that at some step t a resource is falsely allocated by multiple agents: For some
r and a 	= a′ there exists no truth assignment α such that α

([r = a]t
) = 1 and α

([r = a′]t
) = 1. The conjunction over digits
11

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
is built from the left-most position m − 1 to the right-most position 0. By following the definition above, we can encode a
state where some resource r1 is unallocated, r2 is allocated by some agent a1, and r3 is allocated by a2:(¬[r1]1

t ∧ ¬[r1]0
t

) ∧ (¬[r2]1
t ∧ [r2]0

t

) ∧ ([r3]1
t ∧ ¬[r3]0

t

)
Since Agt+ = {a0, a1, a2}, we introduce two Boolean variables per resource to be able to encode the binary representations
00, 01, 10. Based on the encoding of resource states, we can now also encode state observations and goals of agents.

Definition 20 (Encoding of state observations). Let M be an MRA, a ∈ Agt , sa ∈ Sa and t ∈N . Then the observation sa by a at
step t is encoded as

[sa]t :=
∧

r j∈Acc(a)

[r j = sa(r j)]t

where [r j = sa(r j)]t is defined according to the encoding of resource states.

Hence, the encoding of the state observation sa by agent a at time step t is a conjunction over the states of accessible
resources which are in line with sa .

Definition 21 (Encoding of goals). Let M be an MRA, let a ∈ Agt and let t ∈N . Then the achievement of a’s goal in the state
at time step t is encoded as

[a.goal]t =
∨

R⊆Acc(a)
|R|=d(a)

(∧
r∈R

[r = a]t
)

where [r = a]t is defined according to the encoding of resource states.

An agent a has achieved its goal at time step t if the number of resources allocated by a in the current state is equal to
the demand d(a) of this agent. Since the number of accessible resources may be higher than the demand, all possibilities for
satisfying the demand need to be considered. In the example below, we assume that a has access to the resources r1, r2, r3

and its demand is 2. As a corresponding goal encoding for time step t we get:

[a.goal]t = ([r1 = a]t ∧ [r2 = a]t
) ∨ ([r1 = a]t ∧ [r3 = a]t

) ∨ ([r2 = a]t ∧ [r3 = a]t
)

If the solver generates an assignment α with α
([a.goal]t

) = 1, then on the path corresponding to α agent a has reach its
goal in the state at time step t .

In the encoding of actions by agents we follow a similar concept as in the encoding of resource states. We assign a
unique binary number to each possible action of an agent ai and we represent each action by a logical conjunction over
negated or non-negated Boolean variables associated with this agent.

Definition 22 (Encoding of actions). Let ai ∈ Agt , actai ∈ Act(ai), t ∈N and m = �log2 |Act(ai)|�. Moreover, let fai : Act(ai) →
{0, . . . , m −1} a bijection that assigns a unique number to each possible action of ai and let bm−1 . . .b0 be the m-digit binary
representation of fai (act). Then the action actai of ai at step t is encoded as

[actai]t :=
m−1∧
l=0

(
bl ∧ [aci]l

t

) ∨ (¬bl ∧ ¬[aci]l
t

)

where [aci]l
t with 0 ≤ l < m are the Boolean variables introduced for the encoding.

Assuming that some agent a1 can perform 6 different actions, we need 3 Boolean variables for their encoding. Moreover,
assuming that the number 0 is assigned to the action idlea1 , the corresponding encoding is:

[idlea1]t = ¬[ac1]2
t ∧ ¬[ac1]1

t ∧ ¬[ac1]0
t

In the remainder of this sub section, we show how we enforce uniform behaviour of the agents in A and how we include
a logical mechanism that allows us to synthesise uniform strategies for reaching the goal. Since a strategy links a state
observation sa with an action acta , we define strategic decision encodings [sa.acta]. We include these decision encodings in
our overall encoding such that a truth assignment α satisfies [sa.acta] if and only if the strategy characterised by α links sa

with acta . Since strategic decisions are universal and not restricted to a particular time step, this encoding does not include
t as a parameter.
12

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Definition 23 (Encoding of strategic decisions). Let M be an MRA, let ai ∈ Agt , let actai ∈ Act(ai) and let sai ∈ Sai . Moreover,
let m = �log2 |Act(ai)|� and let fai : Act(ai) → {0, . . . , m − 1} be a bijection that assigns a unique number to each possible
action of agent ai . Let bm−1 . . .b0 be the m-digit binary representation of fai (actai). Then the strategic decision of agent ai

to perform action actai in state observation sai is encoded as

[sai .actai] :=
m−1∧
l=0

(
bl ∧ [saci]l) ∨ (¬bl ∧ ¬[saci]l)

where [saci]l with 0 ≤ l < m are the Boolean variables for the encoding.

Similarly to the encoding of actions, we assign a unique binary number to each possible action of an agent ai and we
represent each strategic decision by a logical conjunction over negated or non-negated Boolean variables associated with
this agent. This ensures that for different actions actai 	= act′ai no truth assignment can satisfy [sai .actai] and [sai .act′ai] at
the same time. This results in a guaranteed uniformity of strategies synthesised from the decision encodings.

The final part of the basic encoding concerns the uniform choice of actions:

Definition 24 (Encoding of actions with uniformity constraints). Let ai ∈ Agt , let actai ∈ Act(ai) and let t ∈N . Then the unifor-
mity constraint with regard to action actai by agent ai at time step t is encoded as

[uni f orm.actai]t := [actai]t ∧
(∨

sai ∈Sai ,actai ∈P (sai)

([sai]t ∧ [sai .actai]))

where [sai]t and [sai .actai] are defined according to the encoding of state observations and strategic decisions.

Here the uniform choice of actions by agents is enforced as follows: At each step t when an agent a makes a choice
to perform action acta , we connect this choice with the strategic decision encoding [sa.acta] corresponding to the current
state observation sa and to acta . This ensures that the action can only be chosen if there has been no time step with the
same observation where a different action has been chosen, or synonymously, the same action is also chosen at all steps
where the observation is the same as at t . This completes our encoding of strategic bounded model checking problems
[M, s |=k 〈 〈A,Σ〉 〉 ϕ] into a propositional formula [M, 〈 〈A,Σ〉 〉 ϕ, k]. Next, we summarise the properties of the encoding.

4.3. Properties of the encoding

The major property of our encoding is that it allows to perform sound model checking of the encoded problem via
satisfiability solving.

Theorem 1 (Model checking). Let [M, s |=k 〈 〈A,Σ〉 〉 ϕ] be a strategic bounded model checking problem and let [M, 〈 〈A,Σ〉 〉 ϕ, k] be
its encoding over V ars. Then:

[M, s |=k 〈〈A,Σ〉〉ϕ] ≡ sat
([M, 〈〈A,Σ〉〉ϕ,k])

Hence, the coalition A has a uniform strategy to achieve the goal ϕ within k time steps against all opposition’s strategies
in Σ if and only if the propositional logic encoding is satisfiable. Moreover, our approach also allows us to synthesise such
a uniform strategy that guarantees the achievement of the goal ϕ:

Theorem 2 (Strategy synthesis). Let [M, s |=k 〈 〈A,Σ〉 〉 ϕ] be a strategic bounded model checking problem, let [M, 〈 〈A,Σ〉 〉 ϕ, k] be its
encoding over V ars and let α : V ars → {0, 1} with α

([M, 〈 〈A,Σ〉 〉 ϕ, k]) = 1. Then for the strategy

αA =
(
{(sa,acta)|sa ∈ Sa ∧ acta ∈ Act ∧ α([sa.acta]) = 1}a∈A

)
the following holds: ∀π ∈ Π(s, αA, Σ) : [M, π |=k ϕ].

Thus, from a truth assignment α that satisfies the encoding we can directly derive a corresponding uniform strategy αA

that guarantees ϕ.

Proof of Theorem 1 and Theorem 2. The correctness of Theorem 1 and Theorem 2 is closely linked. The correctness follows
from the subsequent lemmas.

Firstly, we show that the part [M, k] of the overall encoding characterises k-bounded paths of M that are in line with
the evolution.
13

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Lemma 1 (Evolution paths). Let [M, s |=k 〈 〈A,Σ〉 〉 ϕ] be a strategic bounded model checking problem and let [M, k] = [Init]0 ∧∧k−1
t=0 [E volution]t,t+1 be the encoding of all k-bounded paths of M over V ars. Then for each truth assignment α : V ars → {0, 1} with

α([M, k]) = 1 there exists a sequence of states π = s0 . . . sk and a sequence of action profiles (acta1
t , . . . , actan

t), 0 ≤ t < k in M such
that

∀0 ≤ t ≤ k : ∀a ∈ Agt+ : ∀r ∈ Res : st(r) = a iff α([r = a]t) = 1

and

∀0 ≤ t < k : δ(st , (acta1
t , . . . ,actan

t), st+1) = 1 iff ∀a ∈ Agt : α([actai]t) = 1

Proof of Lemma 1. We have that s0 is the initial state of M , where s(r) = a0 for each r ∈ Res, i.e., initially all resources
are unallocated. According to Definition 12, the encoding of the initial state is [Init]0 = ∧

r∈Res[r = a0]0. Hence, any truth
assignment α that satisfies [M, k] must have the property that α([r = a0]0) = 1 for each r ∈ Res. Moreover, we have that
the evolution of an MRA is a relation δ ⊆ S × A P × S where (s, ap, s′) ∈ δ iff ap is executable in s and for each r ∈ Res
the conditions of Definition 7 hold. Further, we have that evolution of an MRA M from time step t to t + 1 is encoded
as [E volution]t,t+1 = ∧

r∈R [r.evolution]t,t+1 (see Definition 13). Consequently, we get that [Init]0 ∧ [E volution]0,1 only
evaluates to 1 for assignments α such that for all r ∈ Res α([r = a]1) = 1 if and only if there is a prefix s0s1 in M and s1(r) =
a. Moreover, if according to the evolution, the agents a ∈ Agt have chosen the actions acta in state s0, then α([acta]) = 1
must hold exactly for these actions. This argumentation can be extended to all prefixes s0 . . . sk of length k, which completes
the proof of Lemma 1. �

We now consider Lemma 2 which shows that there is an exact correspondence between k-prefixes of M for which the
goal-achievability property ϕ holds and satisfying assignments of [M, k] ∧ [ϕ, k].

Lemma 2 (Evolution paths satisfying ϕ). Let [M, s |=k 〈 〈A,Σ〉 〉 ϕ] be a strategic bounded model checking problem and let [M, k] ∧
[ϕ, k] be the encoding of all k-bounded paths of M over V ars that satisfy ϕ. Then for each truth assignment α : V ars → {0, 1} with
α([M, k]) = 1 there exists a sequence of states π = s0 . . . sk and a sequence of action profiles (acta1

t , . . . , actan
t), 0 ≤ t < k in M such

that all properties of Lemma 1 hold and additionally ∀a ∈ A : ∃0 ≤ t ≤ k : α([a.goal]t) = 1.

Proof of Lemma 2. The goal-achievability property is ϕ =
(∧

a∈A

(
Fa.goal

))
where Fa.goal holds for a k-bounded path π if

∃0 ≤ t ≤ k : |π(t)−1(a)| = d(a) (Definition 10 an 11). The corresponding k-bounded encoding is [ϕ, k] = ∧
a∈A

(∨k
t=0 [a.goal]t

)
where [a.goal]t = ∨

R⊆Acc(a),|R|=d(a)

(∧
r∈R [r = a]t

)
(Definition 16 and 21). If in some state π(t) some agent a has reached

its demand, then there must be some subset R ⊆ Acc(a) such that the size of R equals the agent’s demand and a holds all
resources of R in state π(t). So if there is a path s0 . . . sk in M that satisfies

(∧
a∈A

(
Fa.goal

))
, then the truth assignment α

corresponding to s0 . . . sk must also have the following property: α(
∧

a∈A

(∨k
t=0 [a.goal]t

)
) = 1. This completes the proof of

Lemma 2. �
We now consider Lemma 3 which shows that there is an exact correspondence between k-prefixes of M for which the

goal-achievability property ϕ holds and where the opposition B follows the fixed strategy β , and satisfying assignments of
[β, k] ∧ [M, k] ∧ [ϕ, k].

Lemma 3 (Evolution paths satisfying ϕ and β). Let [M, s |=k 〈 〈A,Σ〉 〉 ϕ] be a strategic bounded model checking problem and let
[β, k] ∧ [M, k] ∧ [ϕ, k] be the encoding of all k-bounded paths of M over V ars that satisfy ϕ and where the opposition B adheres to
the strategy β . Then for each truth assignment α : V ars → {0, 1} with α([M, k]) = 1 there exists a sequence of states π = s0 . . . sk and
a sequence of action profiles (acta1

t , . . . , actan
t), 0 ≤ t < k in M such that all properties of Lemma 1 and Lemma 2 hold and additionally

∀b ∈ B : ∀actb ∈ Act : ∀0 ≤ t ≤ k : β((st)b) = actb iff α([sb]t → [actb]t) = 1

where (st)b denotes the observation of agent b in state st .

Proof of Lemma 3. From the encoding of strategies (Definition 18) we get the following: Let B = {b1, . . . , br} ⊆ Agt , let
β(βb1 , . . . , βbr) be a joint strategy for B and let k ∈ N . Then the prescription of the strategy β to B at all time steps up
to k is encoded as [β, k] = ∧k

t=0
∧

b∈B

∧
(sb,actb)∈βb

([sb]t → [actb]t
)

Hence, for a truth assignment α with α([β, k]) = 1, we
get that also α([sb]t → [actb]t) = 1 holds for each time step, each agent b ∈ B and each (sb, actb) ∈ βb . Thus, we have for
all time steps along the path characterised by α that if the current state observation of some agent b is sb , then the agent
will perform action actb , which means the agent adheres to the strategy β in all states of the path characterised by α. This
completes the proof of Lemma 3. �
14

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
We now consider Lemma 4 which states that if we have the encoding of a strategic bounded model checking problem
with Σ = {β} where β is some strategy of the opposition, then only if there exists a satisfying assignment α there exists a
uniform succeeding strategy for A and this strategy can be derived from α.

Lemma 4 (Evolution paths satisfying ϕ, β and uniform protocol). Let [M, s |=k 〈 〈A, {β}〉 〉 ϕ] be a strategic bounded model checking
problem and let [〈 〈A〉 〉 , k] ∧ [β, k] ∧ [M, k] ∧ [ϕ, k] be the encoding of all k-bounded paths of M over V ars that satisfy ϕ where the
opposition B adheres to the strategy β and A follows the protocol in a uniform manner. Then for each truth assignment α : V ars →
{0, 1} with α([M, k]) = 1 there exists a sequence of states π = s0 . . . sk and a sequence of action profiles (acta1

t , . . . , actan
t), 0 ≤ t < k

in M such that all properties of Lemma 1, 2 and 3 hold and additionally for the strategy αA =
(
{(sa, acta)|sa ∈ Sa ∧ acta ∈ Act ∧

α([sa.acta]) = 1
)

the following holds: ∀π ∈ Π(s, αA, {β}) : [M, π |=k ϕ].

Proof of Lemma 4. The protocol encoding is as follows: Let M be an MRA, let A ⊆ Agt and let k ∈ N . Then the protocol
of A for all time steps up to k is encoded in propositional logic as [〈 〈A〉 〉 , k] = ∧k

t=0
∧

a∈A[a.protocol]t where [a.protocol]t

is defined according to Definition 17. Hence, if α([〈 〈A〉 〉 , k]) = 1, then for each a ∈ A and each t there exists some action
acta such that α([uni f orm.acta]t) = 1 holds. Let (sa)t be the state observation of agent a in the state at time step t along
the path characterised by α. Then according to the encoding of actions with uniformity constraints (Definition 24) we get
α([sa.acta]) = 1. We can synthesise the strategy αA as outlined in Lemma 4. Since the truth assignment α also satisfies all
properties of the Lemmas 1, 2 and 3, we can conclude that the synthesised strategy αA that the agents in A follow along
the path characterised by α is a winning strategy for the goal-reachability property against the opposition’s strategy β . This
completes the proof on Lemma 4. �

Lemma 4 can be straightforwardly generalised to Theorem 2. Instead of synthesising a strategy αA that succeeds against
a single opposition’s strategy β , we can also synthesise a strategy αA that succeeds against all opposition’s strategies in a
set Σ . For this the encoding gets extended to [〈 〈A〉 〉 , k] ∧∧

β∈Σ

([β, k] ∧[M, k]β ∧[ϕ, k]β)
. A truth assignment α that satisfies

this encoding characterises a strategy that is successful against all β ∈ Σ . We can conclude that Theorem 2 holds: Exactly
the satisfying truth assignments α of [M, 〈 〈A,Σ〉 〉 ϕ, k] characterise strategies αA such that ∀π ∈ Π(s, αA, Σ) : [M, π |=k ϕ].
holds. This immediately implies that [〈 〈A〉 〉 , k] ∧∧

β∈Σ

([β, k] ∧[M, k]β ∧[ϕ, k]β)
is a correct encoding of [M, s |=k 〈 〈A,Σ〉 〉 ϕ]

in the sense that [M, s |=k 〈 〈A,Σ〉 〉 ϕ] ≡ sat
([M, 〈 〈A,Σ〉 〉 ϕ, k]) holds. Hence, both Theorem 1 and Theorem 2 hold. �

5. Coalition versus opposition strategy synthesis algorithm

Our SAT-based approach allows to solve coalition versus opposition model checking problems of the form [M, s |=k
〈 〈A,Σ〉 〉 ϕ] where the coalition A attempts to reach its goal against the opposition’s strategies in Σ . However, it is typically of
interest to synthesise a strategy that universally succeeds, i.e., against all possible strategies of the opposition. The common
notation for this is: [M, s |=k 〈 〈A〉 〉 ϕ]. Universal goal-achievability can be naively checked by including all possible strategies
in Σ . But this would involve an exorbitant increase of the size of the encoding. We approach this problem by defining the
iterative Algorithm 1 on the subsequent page that successively extends the strategy set Σ . In each iteration, two strategic
model checking problems are solved: We first check whether [M, s |=k 〈 〈A,Σ〉 〉 ϕ] holds, i.e., whether A has a strategy α
that succeeds against all strategies in Σ . If not, then we can immediately terminate with the result that the model checking
problem does not hold. Otherwise, our algorithm will synthesise a strategy α that succeeds against Σ . Secondly, we consider
the so-called complementary model checking problem [M, s |=k 〈 〈B, {α}〉 〉 ¬ϕ], i.e., we check whether the opposition B has
a strategy β that succeeds against α in preventing the coalition A from reaching the goal ϕ. If the opposition does not
have such a strategy β , then we can conclude that α is a universally winning strategy for ϕ and the algorithm terminates
with this result. Otherwise, we synthesise β , add it to Σ and run the next iteration. In our algorithm, we initialise Σ with
a simple greedy strategy for B: As long as its goal is not reached and accessible resources are available, each agent in B
requests the accessible and available resource r j with the smallest index j.

The termination of Algorithm 1 is guaranteed. In each non-terminating iteration a strategy β is added to the set Σ that
was not contained Σ before. Since MRAs have finitely many states and actions, the number of possible strategies is also
finite. Thus, in the worst case the number of iterations is equal to the number of possible strategies for B . However, the
concept of checking the original problem and the complementary problem in each iteration allows for early termination in
many cases: If the complementary problem does not hold, then we already know that the current α is a universally winning
strategy – even if we have not considered all possible strategies for B yet. Since our approach is based on bounded model
checking it is incomplete, i.e., only bounded goal-reachability can be checked. However, if we can synthesise a winning
strategy for some bound k, then we can conclude that this strategy will also guarantee success for all larger bounds and
therefore also in the unbounded case. Conversely, having no winning strategy for some k does not allow us to conclude that
such a strategy does not exist in the unbounded case. General completeness of bounded model checking can be established
by determining the completeness threshold of the problem instance and by setting k to this threshold. For the reachability
properties that we consider, completeness thresholds are linear in the size of the state space [30].
15

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Algorithm 1: Coalition-Versus-Opposition-Strategy-Synthesis(M, 〈 〈A〉 〉 ϕ, k).

1 B := Agt\A, Σ := {β greedy}
2 loop forever do

3 if sat
([M, 〈 〈A,Σ〉 〉 ϕ, k]) for some assignment α then

4 skip /*α succeeds against all strategies in Σ*/

5 else
6 return ‘[M, s0 	|=k 〈 〈A〉 〉 ϕ’
7 if sat

([M, 〈 〈B, {α}〉 〉 ¬ϕ, k]) for some assignment β then

8 Σ := Σ ∪ {β} /*β succeeds against α*/

9 else
10 return ‘[M, s0 |=k 〈 〈A〉 〉 ϕ] and α is a universally winning strategy’

6. Optimal and Nash equilibrium strategy synthesis

For a given MRA M = (Agt, Res, d, Acc), a special case of the coalition versus opposition strategic bounded model check-
ing problem is the grand coalition bounded model checking problem, which is to determine whether the grand coalition Agt
has a joint winning strategy αAgt = (αa)a∈Agt to achieve the goal ϕ = ∧

a∈Agt

(
Fa.goal

)
within k steps. Formally, this problem

is defined as follows:

[M, s0 |=k 〈〈Agt〉〉ϕ] = ∃αAgt : [M,π(s0, αAgt) |=k ϕ]
where π(s0, αAgt) is the execution path starting in the initial state s0 where the grand coalition follows the strategy αAgt .
Since there is no opposition in the grand coalition model checking problem, following a joint strategy αAgt will always
result in exactly one execution path.

With our approach introduced in the previous sections we are able to solve the above problem and synthesise a winning
strategy if existent. Such a strategy will ensure that the goal ϕ will be achieved. However, in several fields of application
it may be of interest to find a strategy that allows to achieve the goal in an optimal way with regard to some criterion.
A strategy of a single agent may be considered as optimal if it enables the agent to achieve its individual goal as early as
possible, or as often as possible within k steps. Such optimisation criteria can be straightforwardly transferred to the grand
coalition and its collective goal.

6.1. Optimal strategy synthesis

Subsequently, we extend our approach to the synthesis of optimal winning strategies. For this, we first define functions for
quantifying the ‘pay-off’ of states and paths with regard to certain optimisation criteria.

Definition 25 (State pay-off). Let M be an MRA and let a ∈ Agt be an agent. Then the pay-off for agent a in states s ∈ S of
M is a function ρa : S → {0, 1} where

ρa(s) =
{

1 if |s−1(a)| = d(a),

0 otherwise.

Hence, the pay-off of an agent is 1 in exactly the states where the demand of the agent is satisfied, i.e., the individual
resource allocation goal is achieved. Assuming that we want to maximise the frequency of reaching the goal, the pay-off
function can be extended to paths as follows:

Definition 26 (Path pay-off – frequency). Let M be an MRA, let a ∈ Agt be an agent, and let k ∈ N be a bound. Then the
k-bounded frequency pay-off for agent a on paths π ∈ Π of M is a function ρ f r

a : Π →N where

ρ
f r

a (π) =
k∑

t=0

ρa
(
π [t])

and π [t] denotes the t-st state along π . The collective frequency pay-off of the grand coalition Agt is

ρ
f r
Agt(π) =

∑
a∈Agt

ρ
f r

a (π).

Thus, a winning strategy can be regarded as collectively optimal with regard to frequency if following the strategy results
in an execution path for which the collective frequency pay-off is maximal. An alternative criterion for optimality is speed,
i.e., we wish to minimise the number of steps until the agents reach their goal for the first time. Before we can define speed
pay-off, we first need an auxiliary function that yields the first position along a path where an agent reaches its goal.
16

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Definition 27 (First goal-achievement position). Let M be an MRA, let a ∈ Agt be an agent, and let k ∈ N be a bound. Then
the k-bounded first goal-achievement position of agent a along a path π ∈ Π in M is defined by the function f gpa : Π →N
where

f gpa(π) = min
(
t ∈ [0,k + 1]||π [t]−1(a)| = d(a) ∨ t = k + 1

)
and π [t] denotes the t-st state along π .

Hence, f gpa(π) returns the earliest position along the k-prefix of π where agent a achieves its resource goal, or f gpa(π)

returns k + 1 if the agent does not achieve its goal along the k-prefix of π . Now the speed pay-off of a path can be defined
as follows:

Definition 28 (Path pay-off – speed). Let M be an MRA, let a ∈ Agt be an agent, and let k ∈N be a bound. Then the k-bounded
speed pay-off for agent a on paths π ∈ Π of M is a function ρsp

a : Π →N where

ρ
sp
a (π) = k − (

f gpa(π) − 1
)
,

and the collective speed pay-off of the grand coalition Agt is

ρ
sp
Agt(π) =

∑
a∈Agt

ρ
sp
a (π).

The earlier an agent a achieves its goal along the k-prefix of π , the higher its speed pay-off is. And, if the agent does not
achieve its goal along the k-prefix, then the speed pay-off is 0.

We can now formally define collectively optimal strategies with regard to frequency or speed:

Definition 29 (Collectively optimal strategy). Let M be an MRA, let k ∈N be a bound, and let ϕ be a goal-reachability formula.
Moreover, let αAgt be a joint strategy of the grand coalition and let (ρc

a)a∈Agt with c ∈ { f r, sp} be a tuple of path pay-off
functions, one for each a ∈ Agt . Then αAgt is a collectively optimal winning strategy with regard to (ρc

a)a∈Agt if the following
conditions hold:

1. [M, π(s0, αAgt) |=k ϕ]
2. ¬∃α′

Agt with [M, π(s0, α′
Agt) |=k ϕ] and ρc

Agt(π(s0, α′
Agt)) > ρc

Agt(π(s0, αAgt))

where ρc
Agt(π) = ∑

a∈Agt ρc
a(π).

Hence, a winning strategy αAgt is collectively optimal with regard to a given tuple of pay-off functions if there does not
exist an alternative winning strategy α′

Agt that results in a greater collective pay-off. Given a grand coalition bounded model
checking problem [M, s0 |=k 〈 〈Agt〉 〉 ϕ] and an optimisation criterion c ∈ { f r, sp}, we denote the corresponding collectively
optimal strategy synthesis problem by [M, s0 |=k 〈 〈Agt〉 〉 ϕ]c

Opt .
A collectively optimal winning strategy ensures that each agent achieves its goal at least once (Condition 1) and it

additionally maximises the overall pay-off (Condition 2), but it does not necessarily optimise the pay-off of each individual
agent in the grand coalition. Thus, such a strategy may favour certain agents while disadvantaging others.

6.2. Nash equilibrium strategy synthesis

Given a tuple of pay-off functions, it may be practically more useful and fair to synthesise a strategy that is a Nash
equilibrium [9] rather than just being collectively optimal. In a joint Nash equilibrium strategy αAgt = (αa)a∈Agt , no agent
can increase its individual pay-off by deviating from αAgt , assuming that all other agents keep following their local strategies
αa prescribed by αAgt . A sub problem of the Nash equilibrium strategy synthesis problem is what we call the single-agent
strategy synthesis problem. Given an MRA M , a joint strategy αAgt = (αa)a∈Agt , a particular agent a ∈ Agt , and a goal ϕ, this
problem is defined as follows:

[M, s0 |=k 〈〈a|αAgt\a〉〉ϕ] = ∃α′
a : [M,π(s0, αAgt[αa ← α′

a]) |=k ϕ]
where 〈 〈a|αAgt\a〉 〉 is the short-hand notation for 〈 〈{a}, {αAgt\a}〉 〉, αAgt\a = αAgt\(αa), and αAgt [αa ← α′

a] is the substitution of
αa by α′

a in αAgt . The single-agent strategy synthesis is also a special case of the strategic bounded model checking problem
introduced in earlier sections. It asks whether the agent a has a strategy α′

a to achieve the collective goal ϕ, assuming that
all other agents follow their strategies prescribed by αAgt . We make use of the (negated) single-agent strategy synthesis
problem in the definition of Nash equilibrium strategies:
17

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Definition 30 (Nash equilibrium strategy). Let M be an MRA, let k ∈ N be a bound, and let ϕ be a goal-reachability formula.
Moreover, let αAgt be a joint strategy of the grand coalition and let (ρc

a)a∈Agt with c ∈ { f r, sp} be a tuple of path pay-off
functions, one for each a ∈ Agt . Then αAgt is a Nash equilibrium winning strategy with regard to (ρc

a)a∈Agt if the following
conditions hold:

1. [M, π(s0, αAgt) |=k ϕ]
2. ∀a ∈ Agt ¬∃α′

a with [M, π(s0, αAgt[αa ← α′
a]) |=k ϕ] and ρc

a(π(s0, αAgt[αa ← α′
a])) > ρc

a(π(s0, αAgt))

Hence, a joint strategy αAgt is a Nash equilibrium with regard to a tuple of pay-off functions (ρc
a)a∈Agt if it ensures that

the collective goal will be achieved (Condition 1) and no agent can improve its individual pay-off by deviating from αAgt

with an alternative strategy α′
a , assuming that all other agents keep following their strategies prescribed by αAgt (Condition

2). Given a grand coalition bounded model checking problem [M, s0 |=k 〈 〈Agt〉 〉 ϕ] and an optimisation criterion c ∈ { f r, sp},
we denote the corresponding Nash equilibrium strategy synthesis problem by [M, s0 |=k 〈 〈Agt〉 〉 ϕ]c

Nash .

6.3. Examples of winning, optimal, and Nash equilibrium strategies

We conclude this section with illustrative examples of winning, optimal and Nash equilibrium strategies of the grand
coalition.

Example 3. The graph on the right describes an MRA M consisting of the agents a1, a2
and the resources r1, r2, r3. The edges of the graph characterise the accessibility func-
tion. Moreover, we assume that the demand function of M is defined as follows:
d(a1) = 2, d(a2) = 2. a2

a1

r3

r2

r1

We will exemplarily solve the grand coalition bounded model checking problem [M, s0 |=6 〈 〈Agt〉 〉 ϕ] for this MRA, i.e., we
will check whether there exists a winning strategy that ensures that both agents will achieve their resource goals within
6 steps. Moreover, we will solve the optimal strategy synthesis and Nash equilibrium strategy synthesis generalisations of
this problem. We can synthesise a winning strategy α1

Agt that results in an execution path π1 on which both agents will
eventually reach their demand goal within at most 6 steps. The 6-prefix of π1 is depicted in Fig. 1 (a). The states along the
prefix are tuples of the form ax, ay, az where ax denotes the agent that currently holds resource r1, ay denotes the agent
that holds r2, and az denotes the agent that holds r3. Whenever x, y or z are 0, this denotes that the corresponding resource
is currently unallocated. The transitions of the prefix are labelled with the joint strategic decisions of the form 〈acta1 , acta2 〉
that cause the change of states. Hence, the transition labels characterise the crucial part of the joint strategy α1

Agt that
results in the path π1. We can see that α1

Agt is a winning strategy for our grand coalition bounded model checking problem
because it ensures that agent a1 achieves its goal at time step 2 and agent a2 achieves its goal at step 4. The achievement
of goals is indicated by boxes in the corresponding states.

If we consider the frequency-optimisation variant of the above model checking problem, then α1
Agt is not a collectively

optimal strategy. It only allows each agent to reach its goal once within 6 steps, but it is in fact possible to make strategic
decisions such that at least one of the agents will achieve its goal twice within 6 steps. A corresponding strategy α2

Agt
and 6-prefix of an execution path π2 are shown in Fig. 1 (b). As it can be seen, agent a1 reaches its goal at the steps
2 and 6, and agent a2 reaches its goal at step 4. Hence, the frequency pay-off of the 6-prefix of this path is ρ f r

Agt (π2) =
ρ

f r
a1 (π2) + ρ

f r
a2 (π2) = 2 + 1 = 3. The joint strategy α2

Agt is a collectively optimal winning strategy with regard to frequency
because there exists no alternative winning strategy that results in a pay-off higher than 3 for a bound of 6.

The strategy α2
Agt favours agent a1 over a2. Hence, in order to determine whether α2

Agt is a Nash equilibrium, we will
check whether a2 can deviate from α2

Agt and improve its individual pay-off, assuming that a1 still makes the strategic
decisions prescribed by α2

Agt . A possible deviation by a2 is to request resource r2 instead of resource r3 in the initial state.
This results in the alternative overall strategy α3

Agt and the execution path prefix π3 shown in Fig. 1 (c). As it can be seen,
this strategy improves agent a2’s individual pay-off at the cost of a1’s pay-off, but the collective pay-off is still the same.
However, in contrast to α2

Agt the joint strategy α3
Agt is a Nash equilibrium. There is no way for agent a1 to unilaterally

deviate from this strategy and increase its pay-off. All possible changes of strategic decisions by a1 will result in either the
same or even a lower pay-off. In the above example we have that the strategy α3

Agt is a Nash equilibrium and at the same
time collectively optimal. In general, the set of collectively optimal strategies and the set of Nash equilibrium strategies of a
model checking problem may intersect but may also have distinct elements, whereas the set of winning strategies is always
a superset of both the collectively optimal and the Nash equilibrium strategies.

In the subsequent section we will show that both the synthesis of collectively optimal and of Nash equilibrium strategies
can be reduced to solving the maximum satisfiability problem of Boolean formulas.
18

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
a0, a0, a0

π1, α1
Agt

0 :

a1, a0, a21 :

a1,a1 , a02 :

a0, a0, a23 :

a1, a2,a24 :

a1, a0, a05 :

a1, a0, a06 :

(a)

〈reqa1
r1 , reqa2

r3 〉

〈reqa1
r2 , rela2

r3 〉

〈rela1
all , reqa2

r3 〉

〈reqa1
r1 , reqa2

r2 〉

〈idlea1 , rela2
all 〉

〈reqa1
r2 , reqa2

r2 〉

a0, a0, a0

π2, α2
Agt

0 :

a1, a0, a21 :

a1,a1 , a02 :

a0, a0, a23 :

a1, a2,a24 :

a1, a0, a05 :

a1,a1 , a26 :

(b)

〈reqa1
r1 , reqa2

r3 〉

〈reqa1
r2 , rela2

r3 〉

〈rela1
all , reqa2

r3 〉

〈reqa1
r1 , reqa2

r2 〉

〈idlea1 , rela2
all 〉

〈reqa1
r2 , reqa2

r3 〉

a0, a0, a0

π3, α3
Agt

0 :

a1, a2, a01 :

a1, a2,a22 :

a1, a0, a03 :

a1,a1 , a24 :

a0, a0, a25 :

a1, a2,a26 :

(c)

〈reqa1
r1 , reqa2

r2 〉

〈idlea1 , reqa2
r3 〉

〈idlea1 , rela2
all〉

〈reqa1
r2 , reqa2

r3 〉

〈rela1
all , idlea2 〉

〈reqa1
r1 , reqa2

r2 〉

Fig. 1. (a): 6-prefix of a path π1 corresponding to the winning but non-optimal strategy α1
Agt . (b): Path π2 corresponding to the winning strategy α2

Agt that
is collectively optimal with regard to frequency. (c): Path π3 corresponding to the Nash equilibrium strategy α3

Agt .

7. Max-SAT encoding of optimal and Nash equilibrium strategy synthesis

In this section we will show how the problems of synthesising collectively optimal and Nash equilibrium strategies
can be encoded in propositional logic and solved via maximum-satisfiability (Max-SAT) solving. Both optimal and Nash
equilibrium strategy synthesis are generalisations of the grand coalition bounded model checking problem

[M, s0 |=k 〈〈Agt〉〉ϕ].
We can straightforwardly encode this (non-generalised) problem in propositional logic based on the definitions from Sec-
tion 4. We obtain the formula

FAgt = [〈〈Agt〉〉 ,k] ∧ [M,k] ∧ [ϕ,k]
where [〈 〈Agt〉 〉 , k] encodes that all agents must follow a uniform strategy and adhere to the protocol (Definition 17), [M, k]
encodes all k-bounded paths of M (Definition 13) and [ϕ, k] restricts the paths to those that satisfy ϕ (Definition 16).

From Theorem 1 in Section 4.3 we get that sat(FAgt) = 1 if and only if the encoded grand coalition model checking
problem holds. Moreover, from Theorem 2 we get that each truth assignment α that satisfies FAgt characterises a winning
strategy αAgt of the grand coalition. The theorem also describes how αAgt can be derived from α. Since we have a one-
to-one correspondence between truth assignments and strategies, each assignment can be regarded as a strategy and vice
versa.
19

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
7.1. Max-SAT-based optimal strategy synthesis

In order to synthesise an optimal winning strategy for the grand coalition we will extend the formula FAgt with ad-
ditional clauses that have weights w ∈ N∞ . We will use the weights to represent the pay-offs of agents in states of the
system. By adding weighted clauses we will obtain a formula in weighted conjunctive normal form:

Definition 31 (Weighted conjunctive normal form (WCNF)). Let V ar be a set of Boolean variables. A propositional logic formula
F over V ar in weighted conjunctive normal form is a conjunction of weighted clauses (C, wC) where C is a standard clause
and wC ∈N∞ is its weight. A clause (C, wC) with wC ∈N is called a soft clause and a clause (C, ∞) is called a hard clause.

For the sake of simplicity we typically just write C for hard clauses (C, ∞). Each WCNF formula F can be written as a
conjunction H∧ S where H are the hard clauses and S are the soft clauses of F .

For WCNF formulas the following optimisation problem has been defined:

Definition 32 (Maximum satisfiability problem). Let F = H ∧ S over V ar be a propositional logic formula in weighted con-
junctive normal form where H are the hard clauses and S are the soft clauses. The maximum satisfiability problem with
regard to F is the problem of finding a truth assignment α : V ar → {0, 1} that maximises∑

(C,wC)∈S
α(C) · wC

subject to the condition that α(H) = 1 holds.

Hence, the solution of the maximum satisfiability problem with regard to F is a truth assignment α that maximises the
sum of weights of the satisfied soft clauses, under the condition that all hard clauses are satisfied. If no such assignment
exists, then the maximum satisfiability problem has no solution.

For WCNF formulas F = H ∧ S over a set of variables V ar and assuming that A(V ar) is the set of all possible truth
assignments over V ar we define maximum satisfiability as the function

max-sat(F) =

⎧⎪⎨
⎪⎩

nil if sat(H) = 0,

arg max
α∈A(V ar)

(
α(H) · (∑

(C,wC)∈S
α(C) · wC

))
otherwise.

Hence, max-sat(F) returns nil if the problem has no solution. Otherwise it returns the truth assignment satisfying all hard
clauses that maximises the sum of weights of the satisfied soft clauses.

In our Max-SAT-based approach there will be a one-to-one correspondence between the path pay-off resulting from
following a strategy αAgt and the sum of weights of soft clauses satisfied by an assignment α. Therefore, we also define the
pay-off as a function ρ on truth assignments and WCNF formulas:

ρ(α,F) = α(H) · (∑
(C,wC)∈S

α(C) · wC
)
.

As it can be seen, the pay-off of assignments α that do not satisfy all hard clauses H will be always 0, and the pay-off of
assignments that satisfy all hard clauses will be the sum of weights of satisfied soft clauses.

The extension of the formula FAgt to a weighted formula F c
Agt that encodes optimal strategy synthesis with regard to the

criterion c ∈ { f r, sp} consists of two additional components. The first component [Auxc
Agt , k] introduces auxiliary variables

that allow to encode each goal-achievement sub formula of the form [a.goal]t (see Definition 21) as a unit clause consisting
of a single Boolean variable ga

t . The second component [Optc
Agt , k] makes use of the auxiliary variables and encodes the

actual optimisation problem with regard to the criterion c. Since the extensions for frequency optimisation and for speed
optimisation differ, we discuss them separately in the subsequent sub sections.

7.1.1. Encoding frequency optimisation
For optimising the frequency pay-off, the auxiliary component to be added to the encoding is defined as follows:

Definition 33 (Auxiliary encoding – frequency). Let M be an MRA and let k ∈ N . Then the k-bounded auxiliary encoding for
frequency optimisation is

[Aux f r
Agt,k] =

∧ k∧(
ga

t ↔ [a.goal]t
)

a∈Agt t=0

20

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
where ga
t with a ∈ Agt and 0 ≤ t ≤ k are the auxiliary variables introduced for the encoding, and [a.goal]t is defined

according to the encoding of goals (Section 4.2).

If we conjunctively add the frequency auxiliary encoding to the overall encoding FAgt of a grand coalition bounded
model checking problem, then a truth assignment α will set an auxiliary variable ga

t to true if and only if α corresponds to
a grand coalition strategy αAgt and π(s0, αAgt) is an execution path where agent a reaches its goal at time step t . Hence, ga

t
is a single-variable encoding of a reaching its goal at step t . We can now use each ga

t as a unit clause in an extension of our
encoding and also add a weight to it, which we do in the frequency optimisation encoding:

Definition 34 (Frequency optimisation encoding). Let M be an MRA and let k ∈N . Then the k-bounded frequency optimisation
encoding for an individual agent a ∈ Agt is

[Opt f r
a ,k] =

k∧
t=0

(
ga

t ,1
)

and the k-bounded frequency optimisation encoding for the grand coalition Agt is

[Opt f r
Agt,k] =

∧
a∈Agt

[Opt f r
a ,k]

where ga
t with a ∈ Agt and 0 ≤ t ≤ k are the Boolean variables introduced in the frequency auxiliary encoding.

Hence, [Opt f r
Agt , k] consists of soft clauses, each with a weight of 1 and each clause encodes that an agent achieved its

individual goal at a certain time step. The overall encoding of the problem of synthesising a collectively optimal strategy
with regard to frequency is F f r

Agt =FAgt ∧[Aux f r
Agt , k] ∧[Opt f r

Agt , k] where the sub formula FAgt ∧[Aux f r
Agt , k] consists of hard

clauses only. Solving max-sat(F f r
Agt) will return a truth assignment that satisfies all hard clauses and maximises the number

of satisfied soft clauses, if such an assignment exists. In Section 7.1.3 we will show that such an assignment corresponds to
a winning strategy that maximises the collective frequency pay-off.

7.1.2. Encoding speed optimisation
For optimising the speed pay-off, the auxiliary component to be added to the encoding is defined as follows:

Definition 35 (Speed auxiliary encoding). Let M be an MRA and let k ∈N . Then the k-bounded speed auxiliary encoding is

[Auxsp,k] =
∧

a∈Agt

k∧
t=0

(
f ga

t ↔ ([a.goal]t ∧
t−1∧
j=0

¬[a.goal] j)
)

where f ga
t with a ∈ Agt and 0 ≤ t ≤ k are the auxiliary variables introduced for the encoding, and [a.goal]t is defined

according to the encoding of goals (Section 4.2).

If we conjunctively add the speed auxiliary encoding to the overall encoding of a grand coalition bounded model checking
problem, then a truth assignment α will set a variable f ga

t to true if and only if α corresponds to a grand coalition strategy
αAgt and π(s0, αAgt) is an execution path where agent a reaches its goal at time step t for the first time along π(s0, αAgt).
Hence, f ga

t is a single-variable encoding of a reaching the goal at step t for the first time. We can now use each f ga
t as a

unit clause in an extension of our encoding and also add a weight to it, which we do in the speed optimisation encoding.

Definition 36 (Speed optimisation encoding). Let M be an MRA and let k ∈N . Then the k-bounded speed optimisation encod-
ing for an individual agent a ∈ Agt is

[Optsp
a ,k] =

k∧
t=0

(
f ga

t , (k-t)+1)
)

and the k-bounded speed optimisation encoding for the grand coalition Agt is

[Optsp
Agt,k] =

∧
a∈Agt

[Optsp
a ,k]

where f ga
t with a ∈ Agt and 0 ≤ t ≤ k are the Boolean variables introduced in the speed auxiliary encoding.
21

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Hence, [Optsp
Agt , k] consists of soft clauses where each clause encodes that an agent achieved its individual goal at a

certain time step for the first time. The earlier the time step, the greater is the weight of the corresponding clause. The
overall encoding of the problem of synthesising a collectively optimal strategy with regard to speed is F sp

Agt = FAgt ∧
[Auxsp

Agt , k] ∧ [Optsp
Agt , k] where the sub formula FAgt ∧ [Auxsp

Agt , k] consists of hard clauses only. Solving max-sat(F sp
Agt) will

return a truth assignment that satisfies all hard clauses and maximises the sum of weights of the satisfied soft clauses, if
such an assignment exists. In the next sub section we will show that such an assignment corresponds to a winning strategy
that maximises the collective speed pay-off.

7.1.3. Properties of the optimal strategy synthesis encoding
Given a collectively optimal strategy synthesis problem [M, s0 |=k 〈 〈Agt〉 〉 ϕ]c

Opt where c ∈ { f r, sp}, we can construct the
corresponding WCNF encoding F c

Agt = Hc
Agt ∧ Sc

Agt where Hc
Agt = [〈 〈Agt〉 〉 , k] ∧ [M, k] ∧ [ϕ, k] ∧ [Auxc

Agt , k] are the hard
clauses and Sc

Agt = [Optc
Agt , k] are the soft clauses of the encoding. For this encoding the following theorem holds:

Theorem 3 (Optimal strategy synthesis). Let [M, s0 |=k 〈 〈Agt〉 〉 ϕ]c
Opt be an optimal strategy synthesis problem and let F c

Agt be its
WCNF encoding. Then the following properties hold:

1. If max-sat(F c
Agt) = nil, then there does not exist a winning strategy for the grand coalition Agt to achieve ϕ within k steps.

2. If max-sat(F c
Agt) = α, and αAgt is the joint strategy corresponding to α, derived according to Theorem 2, then αAgt is a collectively

optimal winning strategy with regard to the criterion c.

Proof. We have F c
Agt =Hc

Agt ∧Sc
Agt where Hc

Agt = [〈 〈Agt〉 〉 , k] ∧[M, k] ∧[ϕ, k] ∧[Auxc
Agt, k] are the hard clauses and Sc

Agt =
[Optc

Agt , k] are the soft clauses of the encoding. Moreover, the WCNF formula F c
Agt is defined over a set of Boolean variables

V ar, and A(V ar) is the set of all possible truth assignments over V ar.

Proof of Property 1: max-sat(F c
Agt) = nil implies sat([〈 〈Agt〉 〉 , k] ∧ [M, k] ∧ [ϕ, k] ∧ [Auxc

Agt, k]) = 0 (Definition of max-sat for
WCNF formulas). The sub formula [Auxc

Agt , k] only introduces auxiliary variables and sets them equivalent to goal reach-
ability properties (Definition 33 and 35). Hence, [Auxc

Agt , k] cannot be the cause of unsatisfiability and we can conclude
that sat([〈 〈Agt〉 〉 , k] ∧ [M, k] ∧ [ϕ, k]) = 0. This implies that [M, s0 |=k 〈 〈Agt〉 〉 ϕ] does not hold (Theorem 1). We can now
immediately conclude that there does not exist a winning strategy for the grand coalition Agt to achieve ϕ within k steps.

Proof of Property 2: max-sat(F c
Agt) = α implies

α = arg max
α∈A(V ar)

(
α(Hc

Agt) · (∑
(C,wC)∈Sc

Agt

α(C) · wC
))

(Definition of max-sat for WCNF formulas). Hence, the assignment α satisfies all hard clauses of F c
Agt . In particular,

α([〈 〈Agt〉 〉 , k] ∧ [M, k] ∧ [ϕ, k]) = 1. We can conclude that [M, s0 |=k 〈 〈Agt〉 〉 ϕ] holds (Theorem 1), and that α characterises a
corresponding winning strategy αAgt (Theorem 2).

Now we still need to prove that αAgt is collectively optimal with regard to the criterion c. We show this for c = f g , i.e.,
for the case of frequency optimisation. According to the definition of max-sat, out of all truth assignments that satisfy all
hard clauses, α is the assignment that maximises the sum of weights of the satisfied soft clauses. Let wα be the sum of
weights of the soft clauses satisfied by α. Then for all other truth assignments α′ that satisfy all hard clauses we have that
wα ≥ wα′ . The assignment α makes wα clauses of the sub formula [Opt f r

Agt , k] true where each clause of [Opt f r
Agt , k] is of

the form (ga
t , 1) for distinct agents a ∈ Agt and time steps 0 ≤ t ≤ k (Definition 34). For each of these pairs of agents and

time steps, α(ga
t) = 1 implies α([a.goal]t) = 1 (Definition 33). The hard clauses of the encoding, [〈 〈Agt〉 〉 , k] ∧ [M, k] ∧ [ϕ, k],

ensure that α([a.goal]t) = 1 if and only if α characterises a joint strategy αAgt that results in a path π(s0, αAgt) where
agent a reaches its resource goal at time step t (Definitions 13, 14, 15). We can conclude that α characterises a strategy
that results in a k-bounded path where wα times some agent reaches its resource goal. Hence, the collective frequency
pay-off of the path π(s0, αAgt) is ρ f r

Agt(π(s0, αAgt)) = wα (Definition 26). Based on a similar argumentation, we can show
that each alternative truth assignment α′ that satisfies all hard clauses characterises a path π(s0, α′

Agt) with a pay-off

ρ
f r
Agt(π(s0, α′

Agt)) = wα′ . We already argued that wα ≥ wα′ for all alternative assignments α′ . Thus, we can conclude that α
characterises a joint winning strategy αAgt that is collectively optimal with regard to frequency. The proof for the case of
speed optimisation is analogous. �
7.2. Max-SAT-based Nash equilibrium strategy synthesis

We will now show how our approach to the synthesis of collectively optimal strategies can be extended to the synthesis
of Nash equilibrium strategies. As discussed in Section 8, a sub problem of the Nash equilibrium strategy synthesis is the
22

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
single-agent strategy synthesis [M, s0 |=k 〈 〈a|αAgt\a〉 〉 ϕ]. Given a joint strategy αAgt and an agent a, the single-agent strategy
synthesis is the problem of determining whether a has a strategy α′

a to achieve the collective goal ϕ, assuming that all other
agents follow their strategies prescribed by αAgt . This problem can be generalised to the synthesis of an optimal strategy for
the single agent a with regard to a criterion c: [M, s0 |=k 〈 〈a|αAgt\a〉 〉 ϕ]c

Opt , i.e., the generalised problem is to find a strategy
α′

a for agent a that maximises its individual pay-off, assuming that the remaining agents follow what αAgt prescribes to
them. Based on the definitions from the previous sub sections, we can encode this problem as a WCNF formula:

F c
a|αAgt\a

= [〈〈a〉〉 ,k] ∧ [αAgt\a,k] ∧ [M,k] ∧ [ϕ,k] ∧ [Auxc
a,k] ∧ [Optc

a,k].
Solving max-sat(F c

a|αAgt\a
) will yield a truth assignment from which we can derive an optimal strategy α′

a for agent a.
Now, how does this help us to synthesise a joint strategy that is a Nash equilibrium? A joint winning strategy αAgt =
(αa)a∈Agt is a Nash equilibrium if no agent a ∈ Agt can deviate from αAgt with an alternative strategy α′

a that would increase
its pay-off, assuming that all other agents follow their strategies prescribed by αAgt . Hence, if we can show for a joint
strategy αAgt = (αa)a∈Agt that for each agent a ∈ Agt the optimal strategy α′

a for the single-agent strategy synthesis problem
[M, s0 |=k 〈 〈a|αAgt\a〉 〉 ϕ]c

Opt is not better than αa , then we can conclude that αAgt is a Nash equilibrium. We developed
a max-sat-based algorithm, Algorithm 2, that gradually modifies a joint strategy αAgt until the strategy becomes a Nash
equilibrium or a cycle of non-equilibrium strategies is detected.

Algorithm 2: Nash-Equilibrium-Strategy-Synthesis(F c
Agt).

1 α0
Agt := max-sat

(
F c

Agt

)
2 if

(
α0

Agt = nil
)

then

3 return ‘no winning strategy exists’

4 for i = 0 to ∞ do

5 for each a ∈ Agt do

6 αi+1
a := max-sat

(
F c

a|αi
Agt\a

)
7 if

(
ρ
(
αi+1

a , F c
a|αi

Agt\a

)
> ρ

(
αi

a, F c
a|αi

Agt\a

))
then

8 αi+1
Agt := αi

Agt [αi
a ← αi+1

a]
9 if

(∃0 ≤ j < i : α j
Agt = αi+1

Agt

)
then

10 return ‘no equilibrium detectable’

11 break

12 return αi
Agt

The algorithm takes the encoding F c
Agt of an optimal strategy synthesis problem [M, s0 |=k 〈 〈Agt〉 〉 ϕ]c

Opt as an input. It
first generates a collectively optimal winning strategy α0

Agt , if existent (Line 1). If this is not the case, then no winning
strategy exists, and therefore, also no Nash equilibrium strategy exists. Otherwise, α0

Agt gets iteratively revised to a strategy
αi+1

Agt where i indicates the iteration. In each iteration i it is checked for each agent a ∈ Agt whether its current individual
strategy αi

a prescribed by the joint strategy αi
Agt is optimal or whether an alternative individual strategy αi+1

a exists that
grants a a greater pay-off. This step involves to solve the single-agent optimal strategy synthesis problem for agent a (Line
6). In case such a better strategy for agent a exists (Line 7), then αi

a is replaced by αi+1
a in the joint strategy (Line 8) and the

algorithm enters the next iteration (Line 11). If an iteration i is reached where none of the agents can improve its pay-off
by following an alternative strategy, then the current joint strategy αi

Agt is a Nash equilibrium. The algorithm then termi-

nates and returns αi
Agt (Line 12). A further condition for termination is that a cycle of non-equilibrium strategies has been

generated, which implies that no Nash equilibrium is detectable (Lines 9,10). In each iteration of the algorithm a strategy is
generated that either differs from all previously considered strategies or is identical to some previously generated strategy.
The detection of a strategy that is identical to a previously generated strategy results in immediate termination. Since for
finite-state MRAs only finitely many different strategies exist, the eventual termination of the algorithm is guaranteed –
although for larger MRAs an exhaustive exploration of the strategy space may be unrealistic.

Theorem 4 (Nash equilibrium strategy synthesis). Let [M, s0 |=k 〈 〈Agt〉 〉 ϕ]c
Nash be a Nash equilibrium strategy synthesis problem and

let F c
Agt be the WCNF encoding of the corresponding optimal strategy synthesis problem. If Nash-Equilibrium-Strategy-Synthesis(F c

Agt)
returns a joint strategy αi

Agt , then αi
Agt is a Nash equilibrium with regard to the criterion c.

Proof. The algorithm will only enter the iterative loop if a winning strategy exists. According to the definition of the
single-agent strategy synthesis problem, each modification of the strategy based on the lines 6 and 8 will still result in
a winning strategy. The lines 5-7 ensure that the algorithm will only return the current strategy αi if no agent a can
Agt

23

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
agents :
− a1
− a2

resources :
− r1
− r2
− r3

c o a l i t i o n :
− a1

bound : 10

a1 :
demand: 2
access :

− r1
− r2

a2 :
demand: 2
access :

− r2
− r3

Fig. 2. SATMAS input corresponding to Example 3.

deviate from αi
Agt with an alternative individual strategy αi+1

a that increases a’s pay-off, assuming that the remaining agents
still follow their individual strategy prescribed by αi

Agt . Thus, according to Definition 30 the joint strategy αi
Agt is a Nash

equilibrium. �
Hence, the algorithm allows us to synthesise Nash equilibrium strategies for grand coalition bounded model checking

problems if its execution does not run into a cycle of non-equilibrium strategies. We report on successful syntheses in the
subsequent section. As future work, we plan to derive propositional logic constraints from detected non-equilibrium cycles
and restart the algorithm with these constraints in order to increase the exhaustiveness of the search for an equilibrium.

8. Implementation and experiments

In this section we introduce the tool SATMAS1 that implements our synthesis technique and we present experimental
results. All experiments were conducted on a 2.6 GHz Intel Core i7 system with 16 GB.

8.1. SATMAS

We developed the tool SATMAS that implements our approach in Python. SATMAS takes a specification of a multi-agent
system for resource allocation M = (Agt, Res, d, Acc), a coalition A ⊆ Agt and a bound k as an input. The text file-based
input has an intuitive format which is exemplified in Fig. 2. Tool users can either manually specify input files or make use
of a random MRA generator.

The strategic property to be checked is ϕ = 〈 〈A〉 〉
(∧

a∈A

(
Fa.goal

))
, i.e., whether there exists a strategy that ensures that

each agent in the coalition A achieves its goal (i.e., satisfies its demand) within k steps. The tool offers the option to check
this property for the input k only, or to check the property iteratively for all bounds from 0 to k. Our tool supports the two
modes coalition versus opposition strategy synthesis and grand coalition optimal strategy synthesis.

8.2. Experiments on coalition versus opposition strategy synthesis

The coalition versus opposition strategy synthesis builds the propositional logic encodings of the strategic bounded model
checking problem and of its complement. Then it executes Algorithm 1 Coalition-Versus-Opposition-Strategy-Synthesis. The
encoding process includes optimisations such as logical simplifications and the Tseitin transformation into conjunctive nor-
mal form. The state-of-the art solver CaDiCaL [10] is employed to check the satisfiability of the encodings and to determine
satisfying truth assignments from which winning strategies can be derived. The solver is executed as a sub-process of our
tool SATMAS. It receives the encoding in a DIMACS file and eventually sends the result of the satisfiability check back to

1 available at github .com /TuksModelChecking /SATMAS.
24

http://github.com/TuksModelChecking/SATMAS

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Table 1
Coalition versus opposition strategy synthesis.

Scenario Bound Time

|A| = 3, |B| = 3, |Res| = 6, D = [2,3], ACC = [4,5] 64 4.0s
|A| = 3, |B| = 3, |Res| = 6, D = [3,4], ACC = [4,5] 64 4.8s
|A| = 3, |B| = 3, |Res| = 6, D = [3,4], ACC = [5,6] 64 11.7s
|A| = 4, |B| = 3, |Res| = 8, D = [3,4], ACC = [5,6] 64 15.1s
|A| = 4, |B| = 4, |Res| = 8, D = [3,4], ACC = [5,6] 64 42.5s
|A| = 4, |B| = 4, |Res| = 8, D = [5,6], ACC = [5,6] 64 45.0s
|A| = 4, |B| = 4, |Res| = 8, D = [5,6], ACC = [6,7] 64 96.7s
|A| = 5, |B| = 4, |Res| = 10, D = [5,6], ACC = [6,7] 64 133s
|A| = 5, |B| = 5, |Res| = 10, D = [5,6], ACC = [6,7] 64 392s
|A| = 5, |B| = 5, |Res| = 10, D = [6,8], ACC = [8,9] 64 958s

Table 2
Optimal strategy synthesis – increased accessibility.

Scenario Bound Pay-Off Time

|Agt| = 5, |Res| = 5, D = 2, ACC = 2 50 25 3.7s
|Agt| = 5, |Res| = 5, D = 2, ACC = 3 50 34 15.0s
|Agt| = 5, |Res| = 5, D = 2, ACC = 4 50 34 146s
|Agt| = 5, |Res| = 5, D = 2, ACC = 5 50 34 610s

SATMAS. In coalition versus opposition strategy synthesis experiments we were able to verify goal-reachability properties
of MRAs with up to ten agents and ten resources within our pre-set time limit of 1000 seconds. A selection of the results
where a winning strategy for the coalition A against the opposition B could be synthesised is shown in Table 1. The Sce-
nario column indicates the size of A, the size of B and the overall number of resources Res. Moreover, D is the interval
from which the demand of each agent was randomly selected, and ACC is the interval from which number of accessible
resources of each agent was randomly selected. The column Bound indicates the fixed bound of k = 64 that was used in all
experiments on the coalition versus opposition strategy synthesis. This chosen bound was sufficiently large to synthesize
a winning strategy for each of the considered scenarios. The column Time shows the overall time that the tool spent on
encoding and satisfiability solving. We increased certain parameters of the scenario in the different rows of the table in
order to evaluate which parameters have the most significant impact on the time. The parameters that were increased in
comparison to the previous scenario are highlighted in bold.

We detected that increasing the accessibility while keeping the remaining parameters unchanged involved the most
significant increase of the synthesis time. A higher degree of accessibility means more possibilities for strategic decisions,
which naturally leads to an enlarged search space. An increase of the size of the opposition has a similarly high impact on
the synthesis time. More agents in the opposition mean that a winning strategy to be synthesised has to succeed against
an enlarged set of strategies that the opposition may follow. The increase of the parameters size of the coalition and amount
of resources has a recognisable effect on the synthesis time. Both parameters contribute to the size of the state space to
be analysed, which is in O(|A + B||Res|). Finally, we detected that the demand is the least significant contributor to the
synthesis time. An increased demand neither increases the size of the state space nor the amount of possible strategic
decisions.

8.3. Experiments on grand coalition optimal strategy synthesis

The grand coalition optimal strategy synthesis mode requires that the chosen coalition is the grand coalition Agt . Addi-
tionally, an optimisation criterion c, either frequency or speed, must be selected via command line options. In this mode
our tool builds the logic encoding of the optimal strategy synthesis problem [M, s0 |=k ϕ]c

Opt . The maximum-satisfiability
solver OPEN-WBO [8] is employed to determine a truth assignment for the encoding that satisfies all hard clauses and
maximises the sum of weights of the satisfied soft clauses. OPEN-WBO is one of the top-ranked solvers of the MaxSAT
Evaluation 2022 [31]. From an optimal truth assignment the corresponding optimal strategy and the collective pay-off can
be derived. In experiments on the grand coalition optimal strategy synthesis we used the well-known dining philosophers
problem as a benchmark, which can be regarded as a special case of an MRA: Five philosophers (i.e., agents) sit at a round
table where adjacent philosophers share a fork (i.e., resource), and each philosopher has a demand of two. The synthesis
of a frequency-optimal strategy for this scenario takes 3.7 seconds with our tool. We generalised the original problem with
regard to several parameters of the scenario and analysed the effect on the synthesis time.

Table 2 shows the experimental results for scenarios with an increasing accessibility of agents to resources. In the first
scenario with ACC = 2 agent a1 has access to the resources r1 and r2, agent a2 has access to r2 and r3, and so forth. In
the second scenario with ACC = 3 each agent has access to three adjacent resources. In the final scenario each agent has
access to all five resources. The column Pay-Off indicates the collective pay-off that could be achieved within the bound.
25

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Table 3
Optimal strategy synthesis – increased demand.

Scenario Bound Pay-Off Time

|Agt| = 5, |Res| = 5, D = 2, ACC = 5 50 34 610s
|Agt| = 5, |Res| = 5, D = 3, ACC = 5 50 16 228s
|Agt| = 5, |Res| = 5, D = 4, ACC = 5 50 10 84.7s
|Agt| = 5, |Res| = 5, D = 5, ACC = 5 50 N/A 11.8s

Table 4
Optimal strategy synthesis – increased number of agents.

Scenario Bound Pay-Off Time

|Agt| = 5, |Res| = 5, D = 2, ACC = 2 50 25 3.7s
|Agt| = 6, |Res| = 5, D = 2, ACC = 2 50 25 5.6s
|Agt| = 7, |Res| = 5, D = 2, ACC = 2 50 25 9.1s
|Agt| = 8, |Res| = 5, D = 2, ACC = 2 50 24 13.9s
|Agt| = 9, |Res| = 5, D = 2, ACC = 2 50 22 105s
|Agt| = 10, |Res| = 5, D = 2, ACC = 2 50 17 96.8s
|Agt| = 11, |Res| = 5, D = 2, ACC = 2 50 N/A 16.2s

Table 5
Optimal strategy synthesis – increased number of resources.

Scenario Bound Pay-Off Time

|Agt| = 10, |Res| = 5, D = 2, ACC = 2 50 17 96.8s
|Agt| = 10, |Res| = 6, D = 2, ACC = 2 50 25 25.7s
|Agt| = 10, |Res| = 7, D = 2, ACC = 2 50 33 34.9s
|Agt| = 10, |Res| = 8, D = 2, ACC = 2 50 48 47.7s
|Agt| = 10, |Res| = 9, D = 2, ACC = 2 50 51 39.1s
|Agt| = 10, |Res| = 10, D = 2, ACC = 2 50 66 38.4s

As it can be seen, the increasing accessibility at a constant demand level leads to a considerable growth of the synthesis
time. Access to a higher number of resources involves significantly more possibilities to achieve the resource allocation goals
which the solver has to consider.

Table 3 shows the experimental results for scenarios with an increasing demand of each agent. In each scenario each
agent has access to all five resources.

Thus, the smaller the difference between the accessibility and the demand, the faster the synthesis problem can be
solved. Clearly, if the accessibility and the demand are at a similar level then there are less resource allocation possibilities
to be considered in the synthesis. In the latter row of Table 3 we have a scenario where no optimal winning strategy for a
bound of 50 exists. As we can see, the non-existence of such a strategy can be shown quite fast.

In the next set of experiments we analysed the impact of the number of agents on the optimal strategy synthesis. We
increased the number of agents while keeping the remaining scenario parameters constant. The access of the additional
agents to resources was arranged such that each pair of agents shared at most one resource. The results are shown in
Table 4.

In general, the synthesis time grows with the number of agents in the system. However, this growth is less significant
than the growth induced by an increased accessibility (compare Table 2). The synthesis in the scenario with ten agents
was even slightly faster than the synthesis in the scenario with nine agents. Our conjecture is that in certain cases adding
further agents to a scenario can introduce significant constraints to the strategy synthesis problem to be solved. This may
result in a constrained problem that is simpler and thus solvable faster. In the final scenario of Table 4 we have another
case where no optimal winning strategy exists, which the solver quickly detected.

We extend the experiments with ten agents by scenarios with an increasing number of resources. In each scenario the
access of agents to resources was evenly distributed. Thus, the final scenario with ten agents and ten resources represents a
classical dining philosophers problem with a table capacity of ten. The results are shown in Table 5.

Although a higher number of resources involves a larger state space to be explored, this set of experiments did not reveal
a clear correlation between the amount of resources in the system and the synthesis time. Our conjecture is that in certain
scenarios additional resources make the synthesis problem even easier to be solved, since with additional resources less
sharing is necessary. We attempted to extend the scenario with ten agents and ten resources by additionally increasing the
accessibility. However, our tool was not able to solve this extended scenario within a 1000 seconds time frame. This shows
again that the accessibility, or more specifically, the difference between the accessibility and the demand is the factor with
the highest impact on the synthesis performance.

In a further set of experiments we evaluated the effect of the bound on the synthesis time. The results are shown in
Table 6.
26

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Table 6
Optimal strategy synthesis – increased bound.

Scenario Bound Pay-Off Time

|Agt| = 5, |Res| = 5, D = 2, ACC = 2 50 25 3.7s
|Agt| = 5, |Res| = 5, D = 2, ACC = 2 100 50 9.4s
|Agt| = 5, |Res| = 5, D = 2, ACC = 2 200 100 27.5s
|Agt| = 5, |Res| = 5, D = 2, ACC = 2 500 250 150s

Unsurprisingly, an increase of the bound also increases the synthesis time. It can be expected that if the agents follow
an optimal strategy, the system will eventually end up in a loop of repetitive states – and the number of actually reached
states may be significantly smaller than the bound. Hence, instead of working with large bounds it may be an alternative to
extend the synthesis technique by a loop detection mechanism. This is left as future work.

8.4. Experiments on grand coalition Nash equilibrium strategy synthesis

We also prototypically implemented the grand coalition Nash equilibrium strategy synthesis. For several MRAs with up to
four agents and four resources we were able to detect winning strategies that are Nash equilibria within one minute,
whereas for other MRAs of the same size our tool timed out. A time out may indicate that no equilibrium exists. But such a
conclusion can be only drawn if all possible strategies have been considered, which may be practically infeasible for many
scenarios. Hence, so far our approach is capable of finding equilibria in small MRAs, but not of proving their non-existence.
Our Nash equilibrium strategy synthesis leaves space for improvement in future work. Since the synthesis requires to solve
a sequence of related Max-SAT problems, parallel solving with clause sharing may be applicable. Furthermore, heuristics
could be employed to determine the order in which Algorithm 2 should iterate over the agents.

9. Conclusion and outlook

In this article we introduced a technique for synthesising winning, collectively optimal, and Nash equilibrium strategies
for multi-agent systems for resource allocation (MRAs). The agents in these systems have once-off resource allocation goals
that they pursue to achieve. Given a partition of the agents into a coalition and an opposition, a winning strategy is a plan of
actions that ensures that all agents in the coalition achieve their goals, no matter how the opposition acts. Agents may have
the incentive to achieve their goals in an optimal way, e.g., as frequent as possible or as early as possible. We defined pay-
offs to measure optimality. An optimal strategy is a plan that guarantees that the overall pay-off of the collective of agents is
maximal. A Nash equilibrium strategy is a plan that ensures that no agent can increase its individual pay-off by unilaterally
deviating from the plan. Although MRAs are an abstract concept, several practically relevant resource allocation problems
can be modelled by MRAs. Winning, optimal, and Nash equilibrium strategies can provide efficient and fair solutions to
these problems.

Our technique is based on a reduction of the winning strategy synthesis problem to the Boolean satisfiability problem
(SAT) and a reduction of the optimal strategy synthesis problem to the maximum satisfiability problem (Max-SAT). We
showed that from a SAT resp. Max-SAT solution a winning resp. collectively optimal strategy can be immediately derived.
Furthermore, we defined an algorithm that iteratively alters a collectively optimal strategy until it becomes a Nash equilib-
rium or until a cycle of non-equilibrium strategies is detected. We have implemented our technique on top of the solvers
CaDiCaL and OPEN-WBO. In an experimental evaluation we analysed the capabilities and limitations of our approach.

As future work we plan to generalise our multi-agent systems for resource allocation, allowing different types of re-
sources and allowing advanced goals such as allocating resources in a particular order or holding resources for a certain
number of time steps. This will enable us to consider more realistic scenarios such as resource allocation in distributed op-
erating systems [32], wireless sensor networks [33] or clouds [34]. We also intend to extend our approach to the synthesis
of Pareto optimal strategies [35] which may be more useful than Nash equilibrium strategies in certain scenarios. Another
direction of future work is to transfer our Max-SAT-based technique to the synthesis of optimal multi-agent systems [36]:
Given a set of agents, a set of goals and a budget for purchasing access to resources, the most cost-efficient MRA for reaching
all goals shall be synthesised. Further plans are the integration of partial order reduction [37] and symmetry reduction [38]
in order to reduce the complexity of model checking and strategy synthesis. Moreover, we intend to combine our bounded
model checking approach with k-induction [39] in order to enable unbounded model checking in an efficient way. In our
present experiments, we experienced that if an encoded strategy synthesis problem could not be solved within 1000 sec-
onds with the (Max-)SAT solvers that we used, then it was very unlikely that the problem could be solved in a significantly
longer run of the solvers. Thus, we are also planning to re-run experiments on computer clusters and to integrate further
solvers into our tool.

CRediT authorship contribution statement

Nils Timm: Conceptualization, Investigation, Supervision, Writing – review & editing. Josua Botha: Software. Steven Jor-
daan: Investigation.
27

N. Timm, J. Botha and S. Jordaan Science of Computer Programming 228 (2023) 102946
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] R. De Masellis, V. Goranko, S. Gruner, N. Timm, Generalising the dining philosophers problem: competitive dynamic resource allocation in multi-agent
systems, in: European Conference on Multi-Agent Systems, Springer, 2018, pp. 30–47.

[2] W. Li, F.C. Delicato, P.F. Pires, Y.C. Lee, A.Y. Zomaya, C. Miceli, L. Pirmez, Efficient allocation of resources in multiple heterogeneous wireless sensor
networks, J. Parallel Distrib. Comput. 74 (1) (2014) 1775–1788.

[3] R. Alur, T.A. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (5) (2002) 672–713.
[4] R. Alur, T.A. Henzinger, F.Y. Mang, S. Qadeer, S.K. Rajamani, S. Tasiran, Mocha: Modularity in model checking, in: International Conference on Computer

Aided Verification, Springer, 1998, pp. 521–525.
[5] A. Lomuscio, H. Qu, F. Raimondi, Mcmas: an open-source model checker for the verification of multi-agent systems, Int. J. Softw. Tools Technol. Transf.

19 (1) (2017) 9–30.
[6] N. Timm, J. Botha, Model checking and strategy synthesis for multi-agent systems for resource allocation, in: Brazilian Symposium on Formal Methods,

Springer, 2021, pp. 53–69.
[7] P. Hansen, B. Jaumard, Algorithms for the maximum satisfiability problem, Computing 44 (4) (1990) 279–303.
[8] R. Martins, N. Manthey, M. Terra-Neves, V. Manquinho, I. Lynce, Open-wbo@ maxsat evaluation 2020, MaxSAT Eval. 2020 (2021) 24.
[9] J.F. Nash Jr, Equilibrium points in n-person games, Proc. Natl. Acad. Sci. 36 (1) (1950) 48–49.

[10] A. Biere, K. Fazekas, M. Fleury, M. Heisinger, CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020, in: T. Balyo,
N. Froleyks, M. Heule, M. Iser, M. Järvisalo, M. Suda (Eds.), Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions, in: Department of
Computer Science Report Series B, vol. B-2020-1, University of Helsinki, 2020, pp. 51–53.

[11] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, 2008.
[12] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri, Nusmv: a new symbolic model checker, Int. J. Softw. Tools Technol. Transf. 2 (4) (2000) 410–425.
[13] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu, Bounded model checking, Handb. Satisf. 185 (99) (2009) 457–481.
[14] F. Raimondi, A. Lomuscio, Automatic verification of multi-agent systems by model checking via ordered binary decision diagrams, J. Appl. Log. 5 (2)

(2007) 235–251.
[15] S. Schewe, Atl* satisfiability is 2exptime-complete, in: International Colloquium on Automata, Languages, and Programming, Springer, 2008,

pp. 373–385.
[16] A. Lomuscio, W. Penczek, B. Woźna, Bounded model checking for knowledge and real time, Artif. Intell. 171 (16–17) (2007) 1011–1038.
[17] X. Luo, K. Su, A. Sattar, M. Reynolds, Verification of multi-agent systems via bounded model checking, in: Australasian Joint Conference on Artificial

Intelligence, Springer, 2006, pp. 69–78.
[18] M. Kacprzak, W. Penczek, Unbounded model checking for alternating-time temporal logic, in: Proceedings of the Third International Joint Conference

on Autonomous Agents and Multiagent Systems, 2004, AAMAS 2004, IEEE, 2004, pp. 646–653.
[19] J. Pilecki, M.A. Bednarczyk, W. Jamroga, Smc: synthesis of uniform strategies and verification of strategic ability for multi-agent systems, J. Log. Comput.

27 (7) (2017) 1871–1895.
[20] M. Wooldridge, J. Gutierrez, P. Harrenstein, E. Marchioni, G. Perelli, A. Toumi, Rational verification: from model checking to equilibrium checking, in:

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.
[21] J. Gutierrez, P. Harrenstein, M. Wooldridge, From model checking to equilibrium checking: reactive modules for rational verification, Artif. Intell. 248

(2017) 123–157.
[22] J. Gutierrez, M. Najib, G. Perelli, M. Wooldridge, On computational tractability for rational verification, in: International Joint Conferences on Artificial

Intelligence, 2019.
[23] S. Almagor, O. Kupferman, G. Perelli, Synthesis of controllable Nash equilibria in quantitative objective game, in: IJCAI, vol. 18, 2018, pp. 35–41.
[24] J. Gutierrez, A. Murano, G. Perelli, S. Rubin, M. Wooldridge, Nash Equilibria in Concurrent Games with Lexicographic Preferences, 2017.
[25] J. Gutierrez, A. Murano, G. Perelli, S. Rubin, T. Steeples, M. Wooldridge, Equilibria for games with combined qualitative and quantitative objectives, Acta

Inform. 58 (6) (2021) 585–610.
[26] N. Bulling, V. Goranko, Combining quantitative and qualitative reasoning in concurrent multi-player games, Auton. Agents Multi-Agent Syst. 36 (1)

(2022) 1–33.
[27] X. Liao, Maximum satisfiability approach to game theory and network security, Ph.D. thesis, Kyushu University, 2014.
[28] R. Dimitrova, M. Ghasemi, U. Topcu, Reactive synthesis with maximum realizability of linear temporal logic specifications, Acta Inform. 57 (1) (2020)

107–135.
[29] B. Finkbeiner, C. Hahn, H. Torfah, Model checking quantitative hyperproperties, in: International Conference on Computer Aided Verification, Springer,

2018, pp. 144–163.
[30] D. Kroening, J. Ouaknine, O. Strichman, T. Wahl, J. Worrell, Linear completeness thresholds for bounded model checking, in: International Conference

on Computer Aided Verification, Springer, 2011, pp. 557–572.
[31] F. Bacchus, J. Berg, M. Järvisalo, R. Martins, A. Niskanen (Eds.), MaxSAT Evaluation 2022: Solver and Benchmark Descriptions, Department of Computer

Science Series of Publications B, Department of Computer Science, University of Helsinki, Finland, 2022.
[32] J.F. Kurose, R. Simha, A microeconomic approach to optimal resource allocation in distributed computer systems, IEEE Trans. Comput. 38 (5) (1989)

705–717.
[33] A. Mukherjee, P. Goswami, Z. Yan, L. Yang, J.J. Rodrigues, Adai and adaptive pso-based resource allocation for wireless sensor networks, IEEE Access 7

(2019) 131163–131171.
[34] F. Chang, J. Ren, R. Viswanathan, Optimal resource allocation in clouds, in: 2010 IEEE 3rd International Conference on Cloud Computing, IEEE, 2010,

pp. 418–425.
[35] E. Semsar-Kazerooni, K. Khorasani, Multi-agent team cooperation: a game theory approach, Automatica 45 (10) (2009) 2205–2213.
[36] D. Fisman, O. Kupferman, Y. Lustig, Rational synthesis, in: International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, Springer, 2010, pp. 190–204.
[37] W. Jamroga, W. Penczek, T. Sidoruk, P. Dembiński, A. Mazurkiewicz, Towards partial order reductions for strategic ability, J. Artif. Intell. Res. 68 (2020)

817–850.
[38] M. Cohen, M. Dam, A. Lomuscio, H. Qu, A symmetry reduction technique for model checking temporal-epistemic logic, in: Twenty-First International

Joint Conference on Artificial Intelligence, Citeseer, 2009.
[39] N. Timm, S. Gruner, M. Nxumalo, J. Botha, Model checking safety and liveness via k-induction and witness refinement with constraint generation, Sci.

Comput. Program. 200 (2020) 102532.
28

http://refhub.elsevier.com/S0167-6423(23)00028-X/bibD36E62945967F28FCFA9EE3895B8D175s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibD36E62945967F28FCFA9EE3895B8D175s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibE5184C0E5CE9B3221C08B31ED398EE5Bs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibE5184C0E5CE9B3221C08B31ED398EE5Bs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib5CD99E2DA3E537713113C3B9B389A2C3s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib5F605CD14F7FF9B7B5CBF045005E2D9Cs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib5F605CD14F7FF9B7B5CBF045005E2D9Cs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibB4A2A9940A96B03BB0DAEA52B9C02A9Cs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibB4A2A9940A96B03BB0DAEA52B9C02A9Cs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib1F1C4E212223748B01666B2D76296AFAs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib1F1C4E212223748B01666B2D76296AFAs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib07A4252F58CD452B51EE50B02B734D74s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib3845BC2A66F131FEDCB03361277F44B3s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib997D5545F42264383349983BA033215As1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib39B1699840FC21540DCF8B85437B2085s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib39B1699840FC21540DCF8B85437B2085s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib39B1699840FC21540DCF8B85437B2085s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib1AC6638832A92F5A025C38208DDCB2CBs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib1EB6CE38C06D9C95449C72A97C3102A3s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib575642C8A92C3BCDF5615CDFEDCF09A4s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibEEF17B7C33B94678F14F9761397FA772s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibEEF17B7C33B94678F14F9761397FA772s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib9EACF6066B2C4AD742AE5F702BC8EB50s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib9EACF6066B2C4AD742AE5F702BC8EB50s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib6D773904E46EFF799F33532D6B098A91s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib015B972D48C47E5DE6FF1C9BCC988B0Ds1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib015B972D48C47E5DE6FF1C9BCC988B0Ds1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib78A14236AF951C63040CDF0C653348ACs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib78A14236AF951C63040CDF0C653348ACs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibF91071644A0C60187B736C711E31CD05s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibF91071644A0C60187B736C711E31CD05s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib201D53DE839D140571F9817E9D5E96ADs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib201D53DE839D140571F9817E9D5E96ADs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibCC053686D9331803AC301E60F031E7ADs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibCC053686D9331803AC301E60F031E7ADs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibD40E37B66A9D2E5BAE041040FE40ED0Cs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibD40E37B66A9D2E5BAE041040FE40ED0Cs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib6295283B5E7BD8AC3D3C0E0878CD74A5s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib0935A947037059C7257CA89AF4304A9Es1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib1871DEC6B7510B102273D7AE38102AACs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib1871DEC6B7510B102273D7AE38102AACs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib7B0EB57A1AF7C03C64B9A49849970BD8s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib7B0EB57A1AF7C03C64B9A49849970BD8s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib28947339F7682B6F3C26DF98076EC08Fs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib5D2AACBF291E7EB5501DF084FD3FE67Bs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib5D2AACBF291E7EB5501DF084FD3FE67Bs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibAAD0ACD0D6CEDA07096F4E29D66F08BEs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibAAD0ACD0D6CEDA07096F4E29D66F08BEs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibBC463466E8767B2C3BD7EC508150D87Cs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibBC463466E8767B2C3BD7EC508150D87Cs1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib0BB2D627396CB06B12DE197D96E12B1Es1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib0BB2D627396CB06B12DE197D96E12B1Es1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib8559C111FC03199300EB3C38DF33AE83s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib8559C111FC03199300EB3C38DF33AE83s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib38E3E8F0C0B914A2FA81E38A913426B6s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib38E3E8F0C0B914A2FA81E38A913426B6s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib43E497994A08BF5FFEBDDE1961D42717s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib43E497994A08BF5FFEBDDE1961D42717s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib307F79978F1120E99DF1B75D570004F5s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibB8C59D3D062023F8EBFD54C00C4E94A6s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bibB8C59D3D062023F8EBFD54C00C4E94A6s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib8DF18F49865568259D7132DAEF0130B0s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib8DF18F49865568259D7132DAEF0130B0s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib1CB2DC17E0DBFF0050C56E4334FEA843s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib1CB2DC17E0DBFF0050C56E4334FEA843s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib1113D5A63CA5BD715445A614DBEFDDE3s1
http://refhub.elsevier.com/S0167-6423(23)00028-X/bib1113D5A63CA5BD715445A614DBEFDDE3s1

	Max-SAT-based synthesis of optimal and Nash equilibrium strategies for multi-agent systems
	1 Introduction
	2 Related work
	3 Multi-agent systems for resource allocation
	3.1 Coalition versus opposition strategy synthesis

	4 SAT-encoding of coalition versus opposition strategy synthesis
	4.1 Overall encoding
	4.2 Basic encodings
	4.3 Properties of the encoding

	5 Coalition versus opposition strategy synthesis algorithm
	6 Optimal and Nash equilibrium strategy synthesis
	6.1 Optimal strategy synthesis
	6.2 Nash equilibrium strategy synthesis
	6.3 Examples of winning, optimal, and Nash equilibrium strategies

	7 Max-SAT encoding of optimal and Nash equilibrium strategy synthesis
	7.1 Max-SAT-based optimal strategy synthesis
	7.1.1 Encoding frequency optimisation
	7.1.2 Encoding speed optimisation
	7.1.3 Properties of the optimal strategy synthesis encoding

	7.2 Max-SAT-based Nash equilibrium strategy synthesis

	8 Implementation and experiments
	8.1 SATMAS
	8.2 Experiments on coalition versus opposition strategy synthesis
	8.3 Experiments on grand coalition optimal strategy synthesis
	8.4 Experiments on grand coalition Nash equilibrium strategy synthesis

	9 Conclusion and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	References

