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Summary

This study involves the investigation into the hypernuclear and multi-lambda systems

using the Jost-function method, as well as the recovery of the two-body potential from

the two and three-body systems using the approximate(guessed) wavefunction.

The Schrodinger equation describing the quantum system of interest is solved by being

replaced with a system of first-order differential equations, which enable one to obtain

the Jost functions. These Jost functions are multi-valued energy functions which can

be treated as single-valued functions defined on a complex energy surface called the

Riemann surface. Direct calculations of the Jost functions, the S-matrix, for all complex

momenta of physical interests including the spectral points corresponding to the bound

states and resonance states can be obtained. In this work, this method was used to

locate the spectral points for the wide range of Λ-nuclear systems within the two-body

ΛA-model. The S-matrix residues as well as the corresponding Nuclear-Vertex and

Asymptotic-Normalization constants (NVC’s and ANC’s) for the bound states are also

found.

For scattering parameters the Jost functions were factorized in such a way that they

contain certain combination of the channel momenta times an analytic single-valued

function of the energy E. The remaining energy-dependent factors were now defined on

single energy plane which does not have any branching points anymore. For these energy-

dependent functions, a system of first-order differential equations is obtained. Then,

using the fact that the functions are analytic, they were expanded in the power series to

obtain a system of differential equations that determine the expansion coefficients. When

the expansion coefficients are obtained for the expansion around the energy E0 = 0,
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the coefficients are then used to calculate the effective range parameters. For the same

hypernuclear systems, the scattering lengths, effective radii, and the other effective-range

parameters (up to the order ∼ k8) for the angular momentum ℓ = 0, 1, 2 are calculated.

Possible bound and resonant states of the multi-lambda systems ΛΛ(0+), ΛΛΛ(12
−
) and

ΛΛΛΛ(0+, 1+, 2+) are sought as zeros of the corresponding Jost functions calculated

within the framework of the hyperspherical approach with local two-body S-wave poten-

tials describing the ΛΛ interactions. Bound ΛΛ(0+), ΛΛΛ(12
−
) and states only appears

if the two-body potentials are multiplied by a minimum factor of ∼ 1.461 and 3.449. For

ΛΛΛΛ(0+, 1+, 2+) systems the bound states appear when the two-body potentials are

multiplied by the factors ∼ 3.018, 4.360 and 3.419.

A method for deducing the two-body potential from a given two- or three-body wave

function is suggested. This method makes it possible to numerically obtain an unknown

potential acting between the particles A and B when we know the potentials of their

interaction with a third particle C and know the characteristics of the three-body bound

state (ABC). The systems (nnp) and (ΛΛα) were used to show that a three-body wave

functions can be constructed using the knowledge of the binding energies and sizes of

these systems to deduce reasonable and realistic nn and ΛΛ potentials.
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Chapter 1

Introduction

1.1 Hypernuclear physics

In 1952 Marian Dansyz and Jerzy Pniewski used the nuclear emulsion technique to
see two stars connected by thick track and that led them to the conclusion that the
experimental evidence depicted a hypernucleus, in particular a nucleus consisting of a
Λ-hyperon and nucleons. Many hypernuclei were discovered up until 1955 [1][2]. After
more than 65 years of research on hypernuclei, our knowledge of the interaction of
hyperons with nucleons or with other hyperons still remains limited and this situation
is not good given the important role that hyperons play in various aspects of nuclear
physics as well as for astrophysics[3, 4, 5, 6, 7, 8].

The Λ-Particle belongs to the group of particles called hyperons (eg, Y = Λ,Σ,Ξ) which
are heavier than nucleons and made up of the up quark, the down quark and the strange
quark. The Λ-particle is the lightest hyperon with the mass of 1115.684MeV and a mean
life of 2.60× 10−10s. Its properties are listed in Table 1.1.

Table 1.1: Λ-particle properties taken from [9].

Λ-particle property Quantum number

Isospin(I) 0
Spin(Parity) 1/2+

Charge(Q) 0
Strangeness(S) -1
Charm(C) 0

Bottomness(B) 0

1
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The nucleus consisting of one or more nucleons replaced by Λ-hyperons is referred as
hypernucleus. Currently, only single-Λ (or S = −1 single-strange) and double-Λ (or
S = −2 double-strange) hypernuclei have been found experimentally. In the first case the
physical properties of the hyperon-nucleon interaction can be studied, while in double-Λ
hypernuclei the hyperon-hyperon interaction is also accessible [10]. In this case, S = −2
nuclei such as double-Λ hypernuclei and Ξ hypernuclei represent the way to the multi-
strangeness systems[10]. Due to lack of knowledge regarding the S = −2 scattering data
we have very little knowledge of the ΛΛ and ΛN interactions. When nucleons are added
to the core nucleus, they can only be outside the core nucleus due to the Pauli exclusion
principle. But, when a Λ hyperon is added to the core nucleus, due to no Pauli principle
between the nucleon and Λ, then the Λ particle can penetrate inside, and attract the
surrounding nucleons towards the interior of the core nucleus [11].

The hyperon-nucleon (Y N) and the hyperon-hyperon (Y Y ) interactions are important
to explore the strange nuclear systems, in which hyperons (or strange quarks) are added
in a normal nuclear systems as ”impurities”[11, 12]. Despite their importance, Y N and
Y Y interactions have still large uncertainties because direct Y N and Y Y scattering
experiments are either difficult or impossible due to the short life-time of hyperons [13].
Hence, the knowledge of the hyperon-nucleon (Y N) interaction is crucial for further
development of the hypernuclear physics. For instance, studies of very neutron rich
hypernuclei are important to understand the nature of neutron stars because several
model calculations predict that hyperons might be dominating in the core of neutron
stars [14, 15].

Around 1960, two double-Λ hypernuclei were experimentally observed and reported, 10
ΛΛ Be

[16, 17], and the other was 6
ΛΛHe[18]. In 1991, a new double-Λ hypernucleus was found

in an emulsion-counter experiment [18] at KEK, which was difficult to identify the
event uniquely. One interpretation of the observation was 10

ΛΛ Be with a repulsive ΛΛ
interaction [19], and another was 13

ΛΛ B with an attractive ΛΛ interaction. In 2001,
the KEK E373 experiment [20] reported the observation of the double-Λ hypernucleus
6

ΛΛHe (called the Nagara event), which was uniquely identified as a double-Λ hypernu-
cleus. The experiment extracted a two-Λ removal energy of 6.91 ± 0.16 MeV [20, 21].
This event demonstrated that the ΛΛ interaction should be less attractive than the ΛN
interaction, significantly influencing the study of the S = 2 sector interaction. Another
important observation was that of the hypernucleus identified as 10

ΛΛ Be, termed the
Demachi-Yanagi event [22] with the binding energy from this hypernucleus reported to
be 11.90± 0.13 MeV. However, whether this event should be interpreted as the ground
state or as an excited state remains ambiguous. Furthermore, in 2010, another double-Λ
hypernucleus was observed for the first time, known as the Hida event [22]. However,
again, there are two possible interpretations of this event (see the next section for de-
tails): The hypernucleus is either 11

ΛΛ Be, whose two-Λ removal energy is 20.83 ± 1.27
MeV, or 12

ΛΛ Be, whose two-Λ removal energy is 22.48 ± 1.21 MeV. Therefore, whether
this event should be interpreted as a ground state or an excited state is unclear.

2
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The other important aspect of the S = −1 hypernulear systems is the knowledge re-
garding the ΛN −ΣN coupling, which affects Λ and Σ hypernuclei. ΛN −ΣN coupling
is also important for understanding the equation of state (EoS) that governs the size
and mass of neutron stars. To understand the mechanism of gravitational waves from
two–neutron star mergers, we first need to understand the structure of neutron stars.
For this purpose, the EoS is essential. It is crucial to construct the EoS with strangeness.
That is why this observation is important from the perspective of hypernuclear physics.
This ΛN − ΣN coupling effect is thought to play a significant role in neutron-rich Λ
hypernuclei due to the total isospin becoming larger[10].

Several theoretical methods have been used over the past years to study hypernuclei sys-
tems. For local interactions, configuration space methods suh as, e.g. hyperspherical har-
monics, Green’s function Monte Carlo, expansion in Gaussians or stochastic variational
method (SVM), have been successfully used to predict properties of light hypernuclei
[3, 23, 24, 25, 26, 27]. For very light systems, the same goal can be achieved by solving
the Faddeev or Yakubovsky equations in momentum space [3, 28, 29, 30, 31, 32, 33].
Those methods allow one also to deal with non-local two-body interactions, but it is
difficult to extend the approaches to larger systems. Alternatively, shell model calcu-
lations have been a quite successful tool to understand properties of hypernuclei, in
particular the energy level splittings [3, 34, 35, 36, 37]. However, that approach requires
specific effective interactions that are not easily related to free-space baryon-baryon in-
teractions. The same disadvantage also holds for density functional approaches, which
have been applied to rather complex hypernuclei [38, 39]. Recently, nuclear lattice effec-
tive field theory (NLEFT) has been extended to hypernuclei using the impurity lattice
Monte Carlo technique [40]. Although this first study has been performed with some-
what simplified (spin-independent) interactions, that method promises the application
of free-space interactions up to medium-heavy hypernuclei. One specifically interesting
approach to tackle bound baryon systems is the no-core shell model (NCSM) [41].

There are three different types of physical problems associated with the Schrödinger
equation in a non-relativistic quantum mechanical system, namely, bound, scattering,
and resonant state problems which differs in the boundary conditions imposed on their
corresponding wave function at large distances.

A method used in this Thesis for locating central short range potential spectral points,
is based on a direct calculation of the Jost functions for single channel case or Jost
matrices for multichannel case in the complex mometum k-plane, has recently been
developed [42, 43, 44, 45]. When defined for all complex values of the momentum, these
functions contain complete information about the underlying physical system. Within
this method, the bound, resonant, and scattering states can be found by calculating the
Jost solutions and the Jost functions on the appropriate domain of the k-plane. The
bound and resonant state energies, for example, can be found by locating the zeros of
the Jost function on the positive imaginary axis and in the fourth quadrant respectively.
To obtain the Jost functions, the second-order Schrödinger equation is transformed into

3
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the coupled first-order differential equations whose solutions asymptotically tend to the
Jost functions, using an appropriate boundary conditions starting from r = 0 up to a
distance where the potential vanishes.

The S-matrix can be constructed as the ratios of the Jost functions and therefore is
singular at each spectral point where the Jost functions is zero. Firstly, the Jost functions
are multivalued energy functions and thus are defined on an appropriate number of
layered Riemann energy surface consisting of physical sheets and unphysical sheets.

Bound states and resonance states parameters are determined by finding the poles of the
S-matrix in an appropriate domain of the Riemann surface of energy. We move around a
threshold point En, from one layer to another. The threshold points En(n = 1, 2, ..., N)
are the branching points on this manifold[46]. Bound states correspond to negative
energy , Eb < 0, poles on the physical sheets of the Riemann surface of energy and the
resonances corresponds to the S-matrix poles at complex energies, Ei = Er − iΓ/2, on
the unphysical sheets of the energy Riemann surface.

At the spectral points the S-matrix residues can be calculated together with their cor-
responding Nuclear vertex constants and the Asymptotic normalization constants.

In quantum scattering theory, Taylor power-series expansion is used in what is known
as the effective-range expansion. For short range potential, it represented by this type
of a function which contains the scattering phase shift δℓ(k) in this form,

k2ℓ+1 cot δℓ(k) =
∞∑

n=0

cℓnk
2n, (1.1)

where sum of terms proportional to even powers of the collision momentum k, and cℓn are
energy independent expansion coefficients corresponding to the low-energy parameters.

A method within the phase variable approach was developed at least 60 years ago to cal-
culate the low-energy scattering parameters accurately, called phase-variable method(see
Ref.[46] and Refs. within). The technique of canonical quantization was used recently
to re-derive the same equations [47]. The low-energy parameters were now obtained via
the asymptotic values(r →∞) of the corresponding radial functions a(r), r0(r), P (r), ...
obeying a system of first-order differential equations. However, the problem arises when
the potential that supports the bound states is being used.This leads to the function
a(r) to have singularities and difficulties when the system of the differential equations is
solved numerically leading to numerical difficulties. This problem is resolved when we
use the expansion coefficients of the Jost functions which also obeys the system of the
differential equations. The Jost functions expansion coefficients can be used to obtain
the low-energy parameters.
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1.2 Aims and Objectives

1.2.1 The Lambda-hypernuclear systems

The first part of this study involves the investigation into the single Lambda-nuclear
systems. We would like to find their corresponding spectral points (i.e the bound and
resonance states) and the scattering parameters. We will try to do so for several orbital
angular momentum. The S-matrix residues at the bound state energies as well as their
corresponding Asymptotic normalization and Nuclear vertex constants would also be
calculated.

There are several reasons that motivate the studies of the Lambda-nuclear interactions.
First of all, they constitute the major part of the research devoted to the strangeness
in nuclear physics [48]. In addition to that, the low-energy collisions of Λ-particles with
nuclei and the formation of their bound states (hyper-nuclei) play an important role in
the description of massive celestial bodies such as the neutron stars [49, 50, 51].

At low collision energies the Λ-nucleus scattering phase-shift δℓ(k) can be accurately
parametrized with the help of the scattering length aℓ, effective radius rℓ, and few other
parameters (Pℓ, Qℓ, Lℓ, etc.) of the effective-range expansion,

k2ℓ+1δℓ(k) = −
1

aℓ
+

rℓ
2
k2 − Pℓr

3
ℓk

4 + Qℓr
5
ℓk

6 − Lℓr
7
ℓk

8 + · · · (1.2)

Therefore the knowledge of these parameters for the hyper-nuclear systems is helpful in
the analysis of various Λ-nuclear collision processes.

In addition to the elastic collisions, the Λ-particle can be captured by a nucleus with the
emission of a γ-quantum. Theoretical description of such a capture involves an integral,
⟨ubℓ′ |O|uscℓ ⟩, of a certain electromagnetic operator O sandwiched between the bound and
scattering state wave functions with the initial and final angular momenta ℓ and ℓ′. It
can be shown (see, for example, Ref. [52]) that astrophysically relevant radiative captures
are mainly peripheral and therefore the major contribution to this integral comes from
the distances that are much greater than the typical size of a hypernucleus. This means
that in many cases a sufficient accuracy can be achieved if, instead of the exact wave
functions, one uses their asymptotic forms,

ubℓ −→r→∞
Aℓ
e−κr

r
, uscℓ −→r→∞

Nℓ
eiδℓ

r
sin(kr − ℓπ/2 + δℓ) , (1.3)

where the phase shift δℓ(k) can be expressed via the effective-range parameters, the nor-
malization factor Nℓ is determined by the intensity of the incoming flux of the colliding
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particles, while the Asymptotic Normalization Constant (ANC), Aℓ, of the bound state
needs to be determined separately.

The above reasons make it clear that the values of the effective-range parameters for
hyper-nuclear scattering as well as the ANC’s for the bound states are necessary for
simple and quick calculations of various processes in nuclear astrophysics. To the best
of our knowledge, Ref. [53] is the only paper where these values were calculated for a
wide range of nuclei.

Using the same ΛA-potential (Here A stands for a nucleus with the mass number A) as
in Ref. [53], we will re-calculated the effective-range parameters and for the same set of
nuclear targets. In addition to the S-wave scattering lengths and effective radii reported
in Ref. [53], we will calculate the higher-order parameters in the expansion (1.2) as well
as obtained them for higher partial waves.

1.2.2 The multi-Lambda systems

The second part of this study involves the investigation into the multi-hyperon systems.
We will consider the three systems ΛΛ, ΛΛΛ, and ΛΛΛΛ. We would like to find out
if many Λ-particles are placed close to each other, is it possible for them to form a
bound state? Of course, we cannot answer such a question in full. Hence only estimated
calculations for a limited number of Λ-particles in the system will be done.

The multi-particle system will be described within the hyperspherical theory, because
the set of the hyperradial equations will be formally be the same as the one for coupled
partial waves in a two-body problem. Once the lowest resonance (or pole of the S-
matrix) on the complex energy plane is obtained, we can move that S-matrix pole
on the Riemann surface of the energy by changing the strength of the potential then
move from unphysical sheet to physical or otherwise passing through the threshold(zero
energy) to get an idea on how far a multi-Λ system is from being bound, we therefore
multiply the ΛΛ-potential by a numerical factor g > 1, and gradually increasing it, trace
the movement of the corresponding resonance pole until it reaches the threshold energy.
The critical value of g (with which a bound state just appears) can be found.

1.2.3 Reconstruction of the Multi-Lambda systems potential

In this third study, a suggested way to directly obtain the two-body potential, using
available information on a three-body system where the two bodies in question are
included is explored.

There is a kind of the three-body information that we need. Suppose we want to find out
how particles A and B interact with each other and for some reason it is not possible
to study the AB-scattering, at the same time we know the potentials that describe
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the interactions of these particles with a third particle, C, and they form a bound state
(ABC) whose energy can be determined experimentally. As we will show shortly, in such
a situation, in order to obtain the AB-potential, we need to know the three-body wave
function. Of course, one cannot calculate the (ABC) wave function if all the two-body
forces keeping this system together, are not known. Very often, however, one can make a
reasonable assumptions to the size of the system and its density distribution. Guessing
the wave function in this way, one then can obtain a reasonable guess for the two-body
potential. We will use the three body system, ΛΛα, experimental data (binding energy)
to try and recover the singlet ΛΛ-potential and compared it with the already existing
potentials.

1.3 Thesis Structure

This thesis is structured in following manner:

• Chapter 2 presents the theoretical background for multichannel Jost matrices for
two-body spinless system. It covers the theory behind transforming the two-body
Schrödinger equation into the coupled first-order differential equations and use an
appropriate boundary condition to obtain Jost matrices numerically.

• Chapter 3 present the background theory used to calculate the effective range pa-
rameters. This is done by use of the multichannel Jost matrices obtained in Chap-
ter 2. It also presents the calculations done on a wide range of ΛA-hypernuclear
systems for different orbital angular momenta. Some of the results obtained were
compared and published, See Ref.[54]

• In Chapter 4, the background theory used to solve the many-body Schroödinger
equation within the hypersperical approach to obtain it’s corresponding Jost ma-
trices for non-zero spin systems is presented.

• In Chapter 5 the background theory presented in Chapter 2 is used for the study
of various ΛA-hypernucleus systems. Some of the results obtained were compared
and published, See Ref.[54]

• In Chapter 6 the method present in Chapter 4 is used to study various multi-
lambda systems. Their spectral points were calculated and presented.

• Chapter 7 introduces an approach that can be used to recover the two-body poten-
tial from its corresponding three-body system data using an approximated wave
function. The method was tested by regenerating the already known two-body
potential of known systems.

• The general conclusions are presented in Chapter 8
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Chapter 2

Multi-channel Jost matrices for
spinless systems

The theoretical framework to be used in this study is introduced. The two-body spinless
multi channel problem is discussed using the Jost matrix theory. We first introduce the
Schrodinger equation in section 2.1, then present the multi-channel radial Schrodinger
equation for the two-body systems in Section 2.2. In Section 2.2.1, the multi-channel
Schrodinger equation is transformed into the first-order coupled differential equations
called the multi-channel Jost matrices with the boundary conditions. Section 2.3 explains
how the Jost matrices are used to locate the spectral points (bound and resonance states).
In Section 2.4 the scattering states and the S-matrix are defined in terms of the Jost
matrices. Section 2.5 introduces the S-matrix residues and followed by it’s relationship
with the Asymptotic normalization constants and nuclear vertex constants in Section
2.5.

2.1 Introduction

We firstly look at the general quantum system within a Schrodinger picture by fully
describing it using a state vector,|Ψa(t)⟩ (which belongs to Hilbert space), at a time, t.
It is characterized by a full set of quantum numbers, a = {α1, α2, α3, ..., αN}, which are
the eigenvalues of a set of Hermitian commuting operators.

The state vector Ψa(t) is also orthogonal and can be normalized such that,

⟨Ψa(t)|Ψa′(t)⟩ = δaa′, (2.1)

where δaa′ is the Kronecker Delta. Generally the state vector changes with time, and its
evolution is governs by the Schrodinger equation,

iℏ
d

dt
|Ψa(t)⟩ = Ĥ|Ψa(t)⟩, (2.2)
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provided that the initial state is known at time t = t0, where the Hamiltonian operator,

Ĥ = Ĥ0 + Û , (2.3)

is the combination of kinetic energy operator Ĥ0, and the potential energy operator Û .
The Hamiltonian Ĥ, is the total energy operator, and for most physical systems it is
time independent and its corresponding total energy, i.e E ∈ {a}, is conserved. The
possible discreet energies corresponding to certain system, described by |Ψa(t0)⟩ = |Ψa⟩,
becomes a solution of the following time independent eigenvalue problem,

Ĥ|ψa⟩ = E|ψa⟩. (2.4)

The state vector can be written in terms of the exponential function of the Hamiltonian
operator as [55],

|Ψa(t)⟩ = e−i(t−t0)Ĥ/ℏ|Ψa(t0)⟩, (2.5)

where t0 is a reference time, and it can be taken to be t0 = 0. Quantum state vectors
are normally presented using the space coordinates configuration where the basis of this
representation consists of continuous states |r⟩ where the system’s particles have a certain
space configuration determined by the full set r of the particles coordinates(r, taken to be
a multi-dimensional vector in the N−body configuration space, r ≡ (r1, r2, r3, ....., rN ).
Now the state vector dynamics is described by the complex-valued wavefunction

⟨r|Ψa⟩t = Ψa(r, t),

depending on the space-time coordinates. Hence the equations (2.4 and 2.5) can be
re-written as,

Ĥψa(r) = Êψa(r), (2.6)

and

Ψa(r, t) = exp

(
− i

ℏ
Et

)
ψa(r). (2.7)

The quantum states represented by wave functions of equation (2.7) are now called
the stationary states, where ψa(r) is the stationary state that obeys the stationary
Schrodinger equation (2.6).

For any particle moving in the local diagonal matrix potential U, in the coordinate
representation, it’s stationary Schrodinger equation is given by,

− ℏ2

2µ
∆rψa(r) + U(r)ψa(r) = Eψa(r). (2.8)

In cases of central potential that doesn’t depend on the direction of vector r, and for
spinless particles, the wave functions can be factorized into the radial and angular parts,

ψa(r) =
ua(r)

r
Yℓm(θ, φ), (2.9)
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where Yℓm(θ, φ), are so called spherical harmonics depending on the spherical angles θ
and φ as well as the angular momentum ℓ and its third component m forms part of set of
conserving parameters together with the energy E. The , ua(r), is radial wave function
that satisfies the following radial Schrodinger equation

[
d2

dr2
+ k2 − ℓ(ℓ+ 1)

r2
− V (r)

]
ua(r) = 0, (2.10)

where k2 = 2µE/ℏ2 and V (r) = 2µU(r)/ℏ2.

We will extend the radial Schrodinger equation (2.10) to the multi-channel two body
case in the next section of this Chapter.

2.2 Multi-Channel two-body radial Schrodinger equation

The two-body multi-channel quantum mechanical problem for particles with masses m1

and m2 having positions r1 and r2, relative to a specific frame of reference, is described
using the two-body Hamiltonian given by:

Ĥ = Ĥ0
1 + Ĥ0

2 + Û(r1 − r2) + ĥ (2.11)

with,

Ĥ0
i =

p̂i
2mi

, i = 1, 2 (2.12)

where, p̂i is the momentum operator for each individual particles. The Hamiltonian
also includes the interaction operator which depends on the particles coordinates r1
and r2, and the operator ĥ that describes the internal dynamics of the particles in the
moving system. This system can be reduced to an effective one-body problem after the
separation of the motion of its center of mass, and assuming that the center of mass
frame of reference is stationary relative to the laboratory frame. The two-body total
Hamiltonian similar to that of a single particle in a central potential is given by:

Ĥ =
p̂2

2µ
+ Û(r) + ĥ, (2.13)

with the relative position and reduced mass given by:

r = r1 − r2, (2.14)

µ =
m1m2

m2 +m1
(2.15)

The eigenvalues of the two-body Hamiltonian correspond to the discrete bound state
energy spectrum of the two particles interaction.
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The internal dynamics, such as the internal states of the colliding particles, correspond
to a different channel of the scattering process. Generally, there are infinite number of
the internal states, which are eigenstates of, ĥ,

ĥ|n⟩ = En|n⟩, n = 1, 2, 3, .....∞ (2.16)

Considering only the important N internal states, we can approximate the internal
Hamiltonian by N terms,

h ≈
N∑

n=1

|n⟩En⟨n|. (2.17)

The total Hamiltonian (2.13) representation using the relative coordinates r is now given
by the following N ×N matrix,

⟨n|Ĥ|n′⟩ = ⟨n|Ĥ0|n′⟩+ ⟨n|Û(r)|n′⟩+ ⟨n|ĥ|n′⟩

∴ Ĥnn′ = δnn′
⟨n|p̂2|n′⟩

2µn
+ Unn′(r) +

N∑

n=1

⟨n||n⟩En⟨n||n′⟩

∴ Ĥnn′ = −δnn′
ℏ2

2µn
∆r + Unn′(r) + Enδnn′ , (2.18)

where the µn is the reduced mass in the channel n. When we replace the Hamiltonian
in the time-independent Schrodinger equation (2.6) by multi-channel two-body Hamil-
tonian (2.18), we get the following system of coupled differential equations for channel
wave functions in the position representation:

[
ℏ2

2µn
∆r + (E − En)

]
ψn(E, r) =

N∑

n=1

Unn′(r)ψn′(E, r), (2.19)

where n is the channel number with n = 1, 2, ...., N with ψn(E, r), their corresponding
time-independent wave-function, and En are the energy thresholds for their correspond-
ing channels. An eigenstate of the Hamiltonian (2.18) corresponding to the eigenvalue
E, is a column-matrix,

Ψa(E, r) =




ψ1(E, r)
ψ2(E, r)

...
ψn(E, r)


 . (2.20)

The channels are characterized by complete set of channel quantum numbers,
a = {α1, α2, α3, .., αN} , which includes threshold energies. If the spin or angular momen-
tum forms part of quantum numbers, then the states that differs by one of them becomes
new channels. Any states of the system that differ by at least one quantum number are
considered as different channels, even if they share the same energy thresholds.

For a zero spin quantum system, each channel is characterized by two conserving quan-
tum numbers, the magnetic quantum number ,m, and the corresponding orbital angular
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momentum quantum number, ℓ. The radial Schrodinger equation explicitly contains the
quantum number, ℓ, after the separation of polar configuration variables into radial and
angular part are performed [55].

The Laplacian operator in equation (2.19) ,∆r, in polar coordinates, is defined in terms
of the orbital angular momentum operator, ℓ̂, by [55]:

∆r =
1

r2
∂r

(
r2∂r −

ℓ̂2

ℏ2r2

)
. (2.21)

The quantum numbers ℓ and m are related to the eigenvalues of the angular momentum
operator , ℓ̂ = r̂× p̂, for the two body system and the z−component,ℓz, of this operator
in an arbitrary Cartesian coordinate system. The operators ℓ̂ and ℓ̂z do not mutually
commute whereas ℓ̂2 and ℓ̂z do commute hence they share the same eigenvectors, |ℓm⟩.
Their respective eigenvalues are:

ℓ̂2|ℓm⟩ = ℓ(ℓ+ 1)ℏ2|ℓm⟩ (2.22)

ℓ̂z|ℓm⟩ = mℏ|ℓm⟩. (2.23)

The position operator eigenvectors that describe a specific space-configuration in spher-
ical coordinates are given by:

|r⟩ = |r, θ, φ⟩. (2.24)

The projection of, |ℓm⟩, on the spherical-angle part of the configuration eigenvectors
results in the well-known Spherical Harmonics [55]:

⟨θ, φ|ℓm⟩ = Yℓm(θ, φ), (2.25)

which can be written in terms of the Associated Legendre polynomials, Pℓm(z)[55]:

Yℓm(θ, φ) = (−1)m
√

(2ℓ+ 1)(ℓ−m)!

(4π)(ℓ+m)!
Pℓm(cos θ)eimφ. (2.26)

It can be shown that the spherical harmonics are orthonormal:

∫
Y ∗
ℓmYℓ′m′dΩ =

∫ 2π

0

∫ π

0
Y ∗
ℓmYℓm sin θdθdφ = δℓℓ′δmm′ . (2.27)

The eigenvalue equation and can now rewritten as follows:

ℓ̂2Yℓm(θ, φ) = ℓ(ℓ+ 1)Yℓm(θ, φ), (2.28)

ℓ̂zYℓm(θ, φ) = mYℓm(θ, φ). (2.29)

The time-independent channel wave functions, ψn(E,r), are set as projections of the
time-independent wave vector on the basis of configuration vectors,|r⟩ :

⟨r|ψn⟩ = ψn(E, r,θ, φ). (2.30)
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The channel wave-vectors are also eigenvectors of the operators ℓ̂2 and ℓ̂z , with their
corresponding quantum numbers ℓ and m for each channel. Each channel wave-vector
can be expanded over the orthonormal basis of eigenvectors,|ℓnmn⟩, of each channel , n,

ψn(E,r) =
∑

ℓnmn

⟨r, θ, φ|ℓnmn⟩⟨ℓnmn|ψn⟩

=
∑

ℓnmn

⟨θ, φ|ℓnmn⟩⟨r, ℓnmn|ψn⟩

=
∑

ℓnmn

Yℓnmn(θ, φ)⟨r, ℓnmn|ψn⟩ (2.31)

and each channel radial wave-function is now defined as:

uℓn(E, r) ≡ r⟨r, ℓnmn|ψn⟩. (2.32)

Using equation (2.31) together with equation (2.32) , we now get the time-independent
channel wave-functions as an expansion of the product of a radial dependent part and
the angular dependent spherical harmonics over ℓnmn:

ψn(E, r,θ, φ) =
∑

ℓnmn

un(E, r)

r
Yℓnmn(θ, φ). (2.33)

It is acceptable generally to further assume that the relative motion in each channel has
a single value of ℓn and mn. This simplifies the notation, hence the summation no longer
required over all possible values of ℓn and mn :

ψn(E, r,θ, φ) =
un(E, r)

r
Yℓnmn(θ, φ). (2.34)

The substitution of equations, (2.34 ,2.28 and 2.21) in the time-independent Schrodinger
equation (2.19), yields the following equation:

[
∂2r + k2n −

ℓn(ℓn + 1)

r2

]
un(E, r)Yℓnmn(θ, φ)

=
N∑

n′=1

Unn′(r)un′(E, r)Yℓn′m′
n
(θ, φ), (2.35)

where the channel wave-momenta kn defined by:

k2n ≡
2µn
ℏ2

(E − En). (2.36)

if we multiply equation (2.35) by Y ∗
ℓnmn

(θ, φ), and integrate over spherical angles (θ, φ),
using the orthonormal property of the spherical harmonics, (2.27), we get the following
multi-channel radial Schrodinger equation:

[
∂2r + k2n −

ℓn(ℓn + 1)

r2

]
un(E, r) =

N∑

n′=1

Vnn′(r)un′(E, r), (2.37)
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which is a system of N coupled second-order differential equations, and where,

Vnn′(r) =
2µn
ℏ2

∫
Y ∗
ℓnmn

(θ, φ)Unn′(r)Yℓn′mn′ (θ, φ)dΩ, (2.38)

are the elements of the reduced coupling potential matrix.

2.2.1 Transformation of the Schrodinger equation

The system ofN linear second-order differential equations (2.37) has 2N linearly-independent
column solutions, and only half are regular at the origin [46]. These regular solutions
are presented as ϕnn′(E, r), with,

ϕnn′(E, r) −−−→
r→∞

0 ∀n, n′. (2.39)

The regular column solutions are presented as the fundamental matrix of regular solu-
tions as:

Φ(E, r) =




ϕ11(E, r) ϕ12(E, r) · · · ϕ1N (E, r)
ϕ21(E, r) ϕ22(E, r) · · · ϕ2N (E, r)

...
...

. . .
...

ϕm1(E, r) ϕm2(E, r) · · · ϕNN (E, r)


 (2.40)

any other regular solution is a linear combination of the columns of the fundamental
matrix, and any physical solution is a linear combination of the columns of the corre-
sponding fundamental matrix [46]:




u1
u2
...
uN


 = C1




ϕ11
ϕ21
...

ϕN1


+ C2




ϕ12
ϕ22
...

ϕN2


+ · · ·+ CN




ϕ1N
ϕ2N
...

ϕNN


 . (2.41)

We can compactly present equation (2.41), as summation over channels,

un =
N∑

n′=1

ϕnn′Cn. (2.42)

The physical solution behaviour when r → 0 is properly guaranteed, and with a proper
choice of the combination coefficients Cn when r →∞, the correct asymptotic behaviour
is also achieved.

When the particles are far apart from their interaction region (i.e Vnn′(r →∞) → 0),
Eq.(2.37) decouples to N second-order differential equations:

[
∂2r + k2n −

ℓn(ℓn + 1)

r2

]
un(E, r) ≈0, r →∞, (2.43)

which are the Riccati-Bessel equations. For each of the N equation, Riccati-Hankel func-

tions, h
(±)
ℓ (kr), are their corresponding two linearly-independent solutions from which
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represent the incoming wave, h
(−)
ℓ (kr), and the out-going, h

(+)
ℓ (kr), physical spherical

waves. Their asymptotic behaviour are given as:

h
(±)
ℓ (kr) −−−−−→

|kr|→∞
(∓i)ℓ+1e±ikr = e±i[kr−π

2
(ℓ+1)]. (2.44)

These are not unique solutions. Riccati-Bessel, jℓ(kr), and Riccati-Neumann, yℓ(kr),
functions, are another pair of linearly independent solution that can be written as a
linear combination of the Ricacati-Hankel functions that turns out to be both singular
at point r = 0,

h
(±)
ℓ = jℓ(kr)± iyℓ(kr) −−−→

r→0
±iyℓ(kr) −−−→

r→0
∓ i(2ℓ− 1)!!

(kr)ℓ
. (2.45)

The Riccati-Bessel function is regular at the origin with the following behaviour,

jℓ(kr) −−−→
r→0

(kr)ℓ+1

(2ℓ+ 1)!!
. (2.46)

There are 2N linearly-independent column solutions to the system of equations (2.43),
which can be presented as square diagonal matrices where the matrix elements are the
Riccati-Hankel functions:

W (in) =




h
(−)
ℓ1

(kr) 0 · · · 0

0 h
(−)
ℓ2

(kr) · · · 0
...

...
. . .

...

0 0 · · · h
(−)
ℓN

(kr)




(2.47)

W (out) =




h
(+)
ℓ1

(kr) 0 · · · 0

0 h
(+)
ℓ2

(kr) · · · 0
...

...
. . .

...

0 0 · · · h
(+)
ℓN

(kr)




(2.48)

that represent the incoming and outgoing spherical waves in all channels and forms a
basis in the space of solutions. Any other column solution of equation (2.43) is a linear
combination of these 2N columns.

The columns of the fundamental matrix of the regular solutions (2.40) at large distance
(r →∞) are solutions of (2.43) can be written as linear combination of (2.47) and (2.48):

Φ(E, r)−−−→
r→∞

W (in)(E, r)f (in)(E) +W (out)(E, r)f (out)(E), (2.49)

where the ”in” superscript notation only refer to the amplitude of incoming wave whereas
the ”out” notation refers to the amplitude for the outgoing wave.These amplitudes,
f (in/out), called the Jost matrices. The asymptotic behaviour of the physical radial
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wave-functions (2.42) in terms of the energy dependent N ×N Jost matrices is given by
following equation in compact form:

U(E, r) −−−→
r→∞

W (in)(E, r)f (in)(E)C +W (out)(E, r)f (out)(E)C, (2.50)

where,

C =




C1

C2
...
CN


 , (2.51)

are unknown combination coefficients, and

U(E, r) =




u1(E, r)
u2(E, r)

...
uN (E, r)


 . (2.52)

For a single channel (N = 1) case, these matrix reduces to the following equation,

ϕ(E, r) −−−→
r→∞

h
(−)
ℓ (kr)f

(in)
ℓ (E) + h

(+)
ℓ (kr)f

(out)
ℓ (E). (2.53)

The single-channel Jost functions are defined as the energy-dependent amplitudes of
the incoming and outgoing spherical waves of the regular solution to the radial wave-
equation. The Jost matrices entries can also be thought as an amplitudes of incoming
and outgoing spherical waves for the corresponding channel.

The Jost function was first introduced by the Swiss physicist whose name was Res Jost in
1947 [56]. They completely describe the underlying physical system and thus determine
the S-matrix,

S(E) = F (out)(E)[F (in)(E)]−1. (2.54)

The fundamental regular matrix ϕ(E, r) at large distances is a linear combination (2.47)
with the r-independent coefficients matrices F (in/out)(E). We now look for ϕ(E, r) at
any point r, in this case with the matrices coefficient depending on r :

Φ(E, r) ≡W (in)(E, r)F (in)(E, r) +W (out)(E, r)F (out)(E, r). (2.55)

The new unknown matrix functions F (in/out)(E, r) becomes the Jost functions at large
r :

f (in/out)(E) = lim
r→∞

F (in/out)(E, r). (2.56)

From Eq.(2.53) we have three unknown functions hence the functions in equation (2.54)
cannot be independent of each other. We can impose any condition relating them, in
this case the Lagrange condition within the variational parameters method [57]:

W (in)(E, r)
∂

∂r
F (in)(E, r) +W (out)(E, r)

∂

∂r
F (out)(E, r) = 0 (2.57)
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which is standard in the theory of differential equations. The Lagrangian condition
is also satisfied at large distances so we do not change the asymptotic behaviour of
the solution. It has been shown using the Wronskian of the Riccati-Hankel functions

h
(±)
ℓ (kr) (see Ref[56]) that:

W (in)(E, r)
[
∂rW

(out)(E, r)
]
−
[
∂rW

(in)(E, r)
]
W (out)(E, r) = 2iK, (2.58)

where,

K =




k1 0 · · · 0
0 k2 · · · 0
...

...
. . .

...
0 0 · · · kN


 . (2.59)

Substituting Eq.(2.53) into the radial equation (2.37), apply the condition (2.55) and
using Eq.(2.56) the following system of first-order differential equations:

∂rF
(in) = − 1

2ik
W (out)V

[
W (in)F (in) +W (out)F (out)

]
, (2.60)

∂rF
(out) =

1

2ik
W (in)V

[
W (in)F (in) +W (out)F (out)

]
, (2.61)

which are equivalent to the second-order Schrodinger equation (2.37) (See Refs.[46, 58])
for the full derivations. The boundary conditions for these equations (2.58 and 2.59) are
only imposed at a single point. The demand for matrix (2.40) to be regular at the origin
requires both Jost functions to converge to the same constant,

F
(in)
ℓ (E, 0) = F

(out)
ℓ (E, 0). (2.62)

Because both , h
(±)
ℓ (kr), are singular at the origin, their singularities cancels each other

in the combination,

h
(−)
ℓ (kr) + h

(+)
ℓ (kr) = 2jℓ(kr). (2.63)

The following boundary condition for N channel will now be chosen:

F (in/out)(E, r → 0) =
1

2
I (2.64)

where I is the N ×N identity matrix [55]. If we introduce the following diagonal matrix
J, whose elements are made up of the Riccati-Bessel functions,

J(E, r) =




jℓ1(k1r) 0 · · · 0
0 jℓ2(k2r) · · · 0
...

...
. . .

...
0 0 · · · jℓN (kNr)


 . (2.65)

Equation (2.45) can be re-written in the following way:

J(E, r) =
1

2
W (in) +

1

2
W (out). (2.66)
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Implementing the boundary condition Eq.(2.55) near the origin, we obtain the following
regular behaviour of the fundamental matrix :

Φ(E, r → 0) = J(E, r) −−−→
r→0




(k1r)ℓ1+1

(2ℓ1+1)!! 0 · · · 0

0 (k2r)ℓ2+1

(2ℓ2+1)!! · · · 0
...

...
. . .

...

0 0 · · · (kNr)ℓN+1

(2ℓN+1)!!



, (2.67)

The physical radial solutions are now related to the regular solutions by Eq.(2.42) and
that leads to the following system of equations:

un(E, r) =
N∑

n′=1

[
h
(−)
ℓn

(knr)F
(in)
nn′ (E, r)Cn + h

(+)
ℓn

(knr)F
(out)
nn′ (E, r)Cn

]
(2.68)

for each channel. Now, the time-independent wave-function for each channel is given by:

ψn(E, r) =
1

r

N∑

n′=1

∑

ℓnmn

[
h
(−)
ℓn

(knr)F
(in)
nn′ (E, r)Cn+

h
(+)
ℓn

(knr)F
(out)
nn′ (E, r)Cn

]
Yℓnmn(θ, φ). (2.69)

The determined F (in/out)(E, r) with the coupled system of first order differential equa-
tions (2.60 and 2.61) allows us to obtain the wave-function for each channel (2.69). The
physical wave function should be normalized correctly to have the correct asymptotic
behaviour.

Alternative form of the Schrodinger equation Transformation

This idea of alternative transformation is based on the relation between the two pairs
of linearly independent solutions of the Riccati-Bessel equation, namely, between the

Riccati-Hankel functions h
(±)
ℓ (kr) and the pair of Riccati-Bessel jℓ(kr) and Riccati-

Neumann yℓ(kr) functions,

h
(±)
ℓ (kr) = jℓ(kr)± iyℓ(kr). (2.70)

Now by introducing these two diagonal matrices,

J =
1

2

[
W (in) +W (out)

]
=




jℓ1(k1r) 0 · · · 0
0 jℓ2(k2r) · · · 0
...

...
. . .

...
0 0 · · · jℓN (kNr)


 , (2.71)
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Y =
1

2

[
W (in) −W (out)

]
=




yℓ1(k1r) 0 · · · 0
0 yℓ2(k2r) · · · 0
...

...
. . .

...
0 0 · · · yℓN (kNr)


 , (2.72)

as well as the new unknown matrices,

A(E, r) = F (in)(E, r) + F (out)(E, r), (2.73)

B(E, r) = i
[
F (in)(E, r)− F (out)(E, r)

]
, (2.74)

we obtain equivalent representation of the fundamental matrix of the regular solutions[46],

Φ(E, r) = J(E, r)A(E, r)− Y (E, r)B(E, r). (2.75)

We obtain an equivalent system of differential equations for the new unknown matrices,

∂rA = −K−1Y V (JA− Y B), (2.76)

∂rB = −K−1Y V (JA− Y B), (2.77)

by combining Eqs.(2.60 and 2.61) with the boundary conditions

A(E, 0) = I, B(E, 0) = 0. (2.78)

These matrices should converge to their asymptotic values

A(E, r) −−−→
r→∞

A(E), B(E, r) −−−→
r→∞

B(E), (2.79)

and the Jost matrices can now be obtained,

F (in)(E) =
1

2

[
A(E)− iB(E)

]
, F (out)(E) =

1

2

[
A(E) + iB(E)

]
. (2.80)

2.2.2 The boundary conditions

In order to numerically solve Eqs. (2.60 and 2.61) and/or Eqs.(2.76 and 2.77), we need
to find the corresponding boundary conditions for the matrices F (in/out) and A,B on
their relevant intervals. Since the matrix ϕ(E, r) should be regular at r → 0, we have

hℓn
(−)(knr)F

(in)
nn′ (E, r) + hℓn

(+)(knr)F
(out)
nn′ (E, r) −−−→

r→0
0, (2.81)

using the Lagrange condition from Eq.(2.57),then the following condition is obtained,

hℓn
(−)(knr)∂rF

(in)
nn′ (E, r) + hℓn

(+)(knr)∂rF
(out)
nn′ (E, r) ≡ 0 (2.82)

and,

h
(+)
ℓ (kr)

h
(−)
ℓ (kr)

≡ jℓ(kr) + inℓ(kr)

jℓ(kr)− inℓ(kr)
−−−→
r→0

−1. (2.83)
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Now the matrices F (in)(E, r) and F (out)(E, r) as well as their first derivative are identical,
that is,

F
(in)
nn′ (E, r) −−−→

r→0
F

(out)
nn′ (E, r), (2.84)

∂rF
(in)
nn′ (E, r) −−−→

r→0
∂rF

(out)
nn′ (E, r), (2.85)

hence the boundary conditions for Eqs.(2.60 and 2.61) are obtained[59] and given by,

lim
r→0

jℓn(knr)F
(in/out)
nn′ (E, r)

jℓn′ (kn′r)
= δnn′ . (2.86)

From Eq.(2.73) both F (in) and F (out) tend to A/2 and thus

ϕnn′(E, r) −−−→
r→0

1

2

[
hℓn

(−)(knr) + hℓn
(+)(knr)

]
Ann′(E, r) = jℓn(knr)Ann′(E, r) (2.87)

such that the boundary conditions for Eqs.(2.76 and 2.77) is given by,

lim
r→0

jℓn(knr)Ann′(E, r)

jℓn′ (kn′r)
= δnn′ , lim

r→0

yℓn(knr)Bnn′(E, r)

jℓn′ (kn′r)
= 0. (2.88)

It is more convenient to work with Eqs.(2.75, 2.76 and 2.77) in the vicinity of r =
rmin near zero point then use Eqs.(2.55, 2.60 and 2.61) starting from r = rint, up to
infinity when doing numerical calculations. Near the point r = 0 the matrices F (in)

and F (out) become identical then the cancellation of h
(+)
ℓ (kr) and h

(−)
ℓ (kr) singularities

causes possible errors. The functions h
(±)
ℓ (kr) become more singular when increasing the

angular momentum , ℓ, hence the errors also increases. For larger ℓ the point r = rmin

must be shifted further away from the origin.

Therefore, in performing numerical calculations, we should solve Eqs.(2.76 and 2.77)
from r = rmin to an intermediate point r = rint. Now at this point, using the calculated
values of the matrices A(E, rint) and B(E, rint) in the relations,

F (in/out)(E, r) =
1

2

[
A(E)∓ iB(E)

]
. (2.89)

Then the initial matrices values F (in/out)(E, rint) can be found for further integration of
equations (2.60 and 2.61) up to a point r = R, where the matrices F (in/out) reach their
asymptotic values.

2.3 Multi-channel Riemann surface and the spectral points

The multi-channel Jost functions could be considered as the functions of the momen-
tum or energy. Momentum is more preferable in contrast to the two-layered energy
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surface[59]. For any fixed (including complex) value of energy E, each channel N mo-
menta can have two different values,

kn = ±
√

2µn
ℏ2

(E − En), n = 1, 2, ..., N (2.90)

depending on the choice of the sign in front of the square root. These momenta appear
as parameters in equations (2.60,2.61, 2.76 and 2.77). The solutions ϕ(E, r) and the
Jost matrices depend on the choice of the signs in (2.81). That means the Jost matrices
are not single-valued functions of E. At any specific energy E, they contain 2N different
values, for all possible combinations of the N channel momenta signs [46].

Multi-valued functions are treated as single valued functions defined on a multi-layered
complex surface which is called the Riemann surface. Now, Jost matrices are defined
on a Riemann surface of the energy consisting of 2N layers. At the threshold energies
, E = En, two sheets of the Riemann surface corresponding to ±kn, connect to each
other. Therefore the layers of the Riemann surface are interconnected to form multi-

Figure 2.1: Layer of the Riemann surface for two-channel problem at three different
energy intervals corresponding to different combinations of the signs of Imk1 and Imk2.
Taken from Ref.[46]

layered manifold having threshold points En(1, 2, ...., N) as branching points on this
manifold. Any point on a circle centered at the threshold En, can be parameterized as
E = En + ρ exp(iθ), where ρ is the distance from En and θ is the polar angle. Now, the
corresponding channel momentum given by,

kn =

√
2µnρ

ℏ2
eiθ/2, (2.91)

changes its sign after one full circle (θ = 2π) and comes to its original point after two
full circles (θ = 4π). We can move around these points continuously to reach any of
the 2N layers. Riemann surface are constructed by making cuts and connects layers
appropriately along the real energy axis. The cuts begins from the lowest threshold E1,
then goes to infinity in the positive direction.
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Figure 2.2: Riemann surface of the energy for a single-channel problem. The dot shows
the branch point at E = 0.Taken from Ref.[46, 54]

The Spectral points

The points on the energy surface at which the physical wave function has only the
outgoing wave asymptotic,

U(En, r) ∼
r→∞

W (out)(En, r)f
(out)(En)C, n = 1, 2, ... (2.92)

are called the spectral points[59]. Depending on their locations on the Riemann surface,
they may correspond to bound, resonance or virtual states solution to the Schrodinger
equation. This is achieved by finding the combination coefficients Cn such that the
contribution to the asymptotic behaviour from the first term of Eq.(2.50) is zero,

W (in)(En, r)f
(in)(En)C = 0, (2.93)

and that implies that,
f (in)(En)C = 0, (2.94)

which is a system of homogeneous linear equations for the unknown variables Cn. It has
a non-trivial solution if and only if the determinant of the matrix of its coefficients is
zero,

detf (in)(En) = 0. (2.95)

The roots of Eq.(2.94) are the spectral points which are the discrete set of isolated
energies E1, E2, E3, ... The energies En in general are complex numbers, and some how
distributed on the Riemann surface. The next sections (2.3.1,2.3.2 and 2.3.3) are based
on how to find these spectral points.
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2.3.1 Complex rotation

The numerical integration of Eqs.(2.60 and 2.61) works well when it is done for calculat-
ing the Jost matrices on the real energy and distance R axises. We encounter a technical
problem when we do calculations on the complex energy plane along the same path,
real R. The complex rotation technique is used to circumvent this problem to access the
resonance states.

In general when the given potential asymptotically vanishes at large distances, we have
[46]

F (in/out)(E, r) −−−→
r→∞

f (in/out)(E). (2.96)

These Jost matrices limits are reached within required accuracy from r = 0 up to
sufficiently large distance R using equations (2.60) and (2.61). The difficulty of finding
resonances are caused by the asymptotic behaviour of the Riccati-Hankel functions[60],

h
(±)
ℓ (kr) = ∓i exp

(
± ikr ∓ iℓπ

2

)
. (2.97)

When momentum , k, is complex, either h
(+)
ℓ (kr) or h

(−)
ℓ (kr) exponentially diverges,

depending on the sign of Imk. Now neither the first or second of the equations (2.60)
and (2.61) does give a numerically convergent solution. We circumvent the problem by
following the path shown in figure (2.3), The integration of the differential equations no

Figure 2.3: A deformed path for integrating the first order differential equations. Taken
from Ref.[46]

longer happens along the real axis from r = 0 to r = R, but through the intermediate
point r = R′ in the complex plane. The arc R′ → R can be ignored since the potential
is practically zero there. The divergence or convergence of the functions (2.602.61) is
determined by the sign of Im(kr)[46]. If we have k = |k|eiφ the rotation via angle θ in
r = |r|eiθ such that the product

kr = |kr|ei(θ+φ) (2.98)

has either positive or negative (even zero) imaginary part. Further technical details of
using complex rotation in calculating Jost matrices are exploited in
Refs.[42, 43, 44, 46, 61, 62, 63, 64, 65, 66, 67].
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2.3.2 Bound states

Bound states are such states of the system that particles stay together and never leave
their interaction region. The bound states spectral points are on the real negative axis,
Ei < 0, below all the thresholds,

Ei < En, for all n = 1, 2, 3, ....., (2.99)

on the physical Riemann sheet. All the thresholds energies are positive and since bound
state energy is negative or possible zero, Ei ≤ 0, we can choose the lowest threshold to
be zero.

In a two-body system the probability of finding one particle escaped from the interaction
region with the other particle is zero, hence the system time-independent wave-functions
for each channel, ψn(E, r, θ, φ), must also be zero for lager r. This implies that for each
channel, un(E, r) −−−→

r→∞
0, and the same is true for the matrix of solutions: U(E, r) −−−→

r→∞
0.

The asymptotic behaviour of the physical solutions for bound states requires the Eq.(2.50)
to converge to zero when r tends to infinity, i.e,

W (in)(Ei, r →∞)f (in)(Ei)C +W (out)(Ei, r →∞)f (out)(Ei)C → 0. (2.100)

Now since the corresponding channel momenta carries positive imaginary parts,

kn = +
√

2µEi/ℏ2 = +iκn, κn > 0. (2.101)

then it is clear that,

h
(+)
ℓn

(i|kn|r) −−−→
r→∞

0,

h
(−)
ℓn

(i|kn|r) −−−→
r→∞

∞.

This implies that W (out)(Ei) = 0 and W (in)(Ei) becomes an infinite diagonal matrix. It
is then required that

f (in)(Ei)C = 0. (2.102)

Since this is a system of linear homogeneous equations for the unknown combination
coefficients, cn, for a non-trivial solution, the column C matrix is non-zero, and Eq.(2.89)
holds if and only if,

det
[
f (in)(Ei)

]
= 0. (2.103)

on the physical sheet of the Riemann surface. For a single channel problem the Jost
function tends to zero at a bound state energy [59], Ei :

f (in)(Ei) = 0. (2.104)
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Due to the symmetry relation between f (in)(E) and f (out)(E), for a negative choice of
kn, it can be shown that bound states also corresponds to the det

[
f (out)(Ei)

]
= 0, on

the unphysical sheet of the Riemann surface. We will look at the resonance states in the
next section.

2.3.3 Resonance states

Just like bound states, resonances are also spectral points. That means their correspond-
ing physical solutions, u(En, r), at larger distances are composed of only the outgoing
spherical waves W (out)(En, r). The asymptotic behaviour of the radial wave-functions at
a resonance is given by:

U(Ei, r) −−−→
r→∞

W (out)(Ei, r)f (out)(Ei)C

−−−→
r→∞




−iℓ1+1eik1r 0 · · · 0
0 −iℓ2+1eik2r · · · 0
...

...
. . .

...
0 0 · · · −iℓn+1eiknr


 f (out)(Ei)C, (2.105)

where kn = ±
√

2µn

ℏ2 (Ei − En), where the second term contribution is zero,i.e,

W (in)(Ei, r)f (in)(Ei)C = 0 (2.106)

and by finding the same matrices and its determinant,

detf (in)(Ei) = 0, (2.107)

that determines the resonance energies.The resonance states are characterized by com-
plex energies with positive real and negative imaginary parts,

Ei = Er −
i

2
Γ, Er > 0, Γ > 0, (2.108)

where Γ is the total resonance width for the multi-channel resonance. Since the momen-

tum is still given by kn = ±
√

2µn

ℏ2 (E − En), the positive choice for all n corresponds

with the physical sheet and the negative momentum corresponds with the unphysical
sheet of the Riemann surface. Therefore the resonance spectral points are located on
the unphysical sheet of the Riemann surface. We use complex rotation technique when
we are searching for resonances.

In the next section we will present how the spectral points (bound and resonance en-
ergies) including others (i.e virtual and sub-threshold energies) are distributed on the
Riemann energy surface.

2.3.4 Distribution of the Spectral points on the Riemann surface

We have seen in the previous sections that the bound and resonance states energies
can be located using the Jost matrices in a unified way. In this section we present the
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distribution of the spectral points on the Riemann surface for single channel(N = 1) case
for short range potential interactions. The bound states discretely appear or distributed
along the positive imaginary axis, see Figure(2.4). The resonances usually appear in

Figure 2.4: Distribution of the spectral points on the complex momentum plane.Taken
from Ref.[46]

the form of a trajectory or a curve formed by discrete points in the complex k-plane.
Furthermore there are infinitely many possible resonances[59], and their trajectory can
curve is such way that corresponds with Er → −∞ and Γ → ∞. Such resonances with
Er < 0 are known as sub-threshold resonances and are not physically realizable. Now,
the mirror zeros with negative Re(k) are the mirror resonances due to the symmetries
of the Jost matrices.

There are other spectral points that do not correspond to a physical realizable states
[59]. They are real, negative energies located on the unphysical sheet of the Riemann
energy surface. Therefore they correspond to the pure negative complex momenta:

kn = −i
√
2µn|En|/ℏ2, (2.109)

as they appear on Figure [2.4] on the negative imaginary axis,and also referred to as
virtual states.

2.4 The Scattering states and the S-matrix

The scattering state is the transformation of an incoming wave into the outgoing wave
at the real positive energies, when E is above the threshold.The scattering state wave
function ψk(r) = ⟨r|ψk⟩ depends on two vectors ,k that indicates the direction where

26

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



the particles projectile come from and r that points in the direction of observation. The
wave function is assumed to be normalized to the δ-function,

⟨ψk|ψk′⟩ = δ(k − k′). (2.110)

The wave function for N -channel scattering problem is the column matrix composed by
these channel plane waves:

Ψ(E, r) =




ψk1(E,r)

ψk2(E,r)
...

ψkN (E,r)


 . (2.111)

When the potential is zero, the multichannel radial Schrodinger equation has the follow-
ing solution:

U(E, r) =
1

2
W (in)(E, r)C + 1

2
W (out)(E, r)C = J(E, r)C, V = 0, (2.112)

using the same boundary conditions:

f (in/out)(E) = F (in/out)(E) =
1

2
I (2.113)

Now from Eq.(2.34), the time-independent partial wave-solutions for each channel is
given by:

ψn(E, r) =
1

r
jℓn(knr)CnYℓnmn(θ, φ), Vnn′ = 0. (2.114)

Generally the channel plane wave in the partial wave expansion is given by:

ψkn(r) =

√
2

π

1

knr

∑

ℓnmn

iℓnjℓn(knrn)Y
∗
ℓnmn

(k̂n)Y
∗
ℓnmn

(r̂) (2.115)

where k̂n = (θkn , φkn) and r̂ = (θ, φ) are unit vectors in the directions of kn and r. For
a non-zero, short-ranged potential the general time-independent solution can be given
by [59]:

ψn(E, r) =

√
2

π

1

knr

N∑

n′

∑

ℓnmn

iℓn
[
h
(−)
ℓn

(knr)F
(in)
nn′ (E, r)+

h
(+)
ℓn

(knr)F
(out)
nn′ (E, r)

]1
2
[f (in)(E, r)]−1

nm′Y
∗
ℓnmn

(k̂n)Y
∗
ℓnmn

(r̂). (2.116)

If the S-matrix is defined as:

S(E) = f (out)(E)[f (in)(E)]−1, (2.117)
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then the asymptotic behaviour of Eq.(2.117) is obtained:

ψn(E, r) −−−→
r→∞

1

2

√
2

π

1

knr

N∑

n′

∑

ℓnmn

iℓn
[
h
(−)
ℓn

(knr)+

h
(+)
ℓn

(knr)Snn′(E)
]1
2
[f (in)(E, r)]−1

nm′Y
∗
ℓnmn

(k̂n)Y
∗
ℓnmn

(r̂), (2.118)

where Snn′ is the S-matrix elements. Now by subtracting and adding h
(+)
ℓ (kr) and using

the relation 2jℓ(kr) = h
(−)
ℓ (kr) + h

(+)
ℓ (kr) the expression becomes:

ψn(E, r) −−−→
r→∞

1

2

√
2

π

1

knr

N∑

n′

∑

ℓnmn

iℓn
[
2jℓn(knr)+

h
(+)
ℓn

(knr)(Snn′(E)− δnn′)
]
Y ∗
ℓnmn

(k̂n)Y
∗
ℓnmn

(r̂), (2.119)

and we obtain,

ψn(E, r) −−−→
r→∞

1

2

√
2

π

1

knr

∑

ℓnmn

iℓnjℓn(knr)Y
∗
ℓnmn

(k̂n)Y
∗
ℓnmn

(r̂)+

1

2

√
2

π

1

knr

N∑

n′

∑

ℓnmn

iℓn

2
h
(+)
ℓn

(knr)(Snn′(E)− δnn′)
]
Y ∗
ℓnmn

(k̂n)Y
∗
ℓnmn

(r̂). (2.120)

Eq.(2.120) can now be written as:

ψn(E, r) −−−→
r→∞

(2π)−3/2eikn·r+

1

2

√
2

π

1

knr

N∑

n′

∑

ℓnmn

iℓn

2
h
(+)
ℓn

(knr)(Snn′(E)− δnn′)
]
Y ∗
ℓnmn

(k̂n)Y
∗
ℓnmn

(r̂) (2.121)

given the fact that the plane wave can be expanded as,

eikn·r =
4π

knr

∑

ℓnmn

iℓnjℓn(knr)Y
∗
ℓnmn

(k̂n)Y
∗
ℓnmn

(r̂). (2.122)

We can now extract matrix elements of the partial wave amplitude and define it as
follows:

fnm ≡
1

2ikn
[(Snm)(E, r)− δnm], (2.123)

where now the full scattering amplitude is defined by:

fn(r̂ ← k̂n) = 4π
N∑

n′=1

∑

ℓnmn

fnn′(E)Y ∗
ℓnmn

(k̂n)Y
∗
ℓnmn

(r̂). (2.124)

Now the time-independent state wave-function of each channel is presented in this form:

ψn(E, r) −−−→
r→∞

(2π)−3/2eikn·r + (2π)−3/2fn(r̂ ← k̂n)
eiknr

r
(2.125)
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2.5 S-matrix Residues

The S-matrix residues can also be calculated using the Jost matrices, it has been shown
in [59]. Their relationship with the ANC and NVC is used to calculate these values for
various range of single hypernuclei systems in Chapter 5.

The S-matrix elements are complex functions of energy and can be expanded in the
Laurent series as:

Snm(E) =
Rnm

E − Ei
+D(0)

nm +D(1)
nm(E − Ei) +D(2)

nm(E − Ei)2 + ........, (2.126)

where Ei represented an isolated spectral energy point. The first term which is called the
principal part dominates the expansion when energy E gets very close to Ei (E → Ei,)
so that:

Snm(E) −−−−→
E→Ei

Rnm

E − Ei
. (2.127)

The residue is now defined as, Res[Snm, Ei] for each matrix element at the spectral point
and can be determined with:

Res[Snm, Ei] = lim
E→Ei

(E − Ei)Snm(E). (2.128)

Now using the Jost matrices and the S-matrix relationship we can derive the relation
between Jost matrices and S-matrix residues. Near the spectral point the determinant

of the Jost matrices, det

[
f (in)(E)

]
can be expanded using the Taylor series as [59],

det

[
f (in)(E)

]
= det

[
f (in)(E)

]
+ (E − Ei)

d

dE

[
f (in)(E)

]∣∣∣∣
Ei
+ · · · , (2.129)

where, det

[
f (in)(Ei)

]
= 0, at the spectral point and as E → Ei , all the higher-order

terms are neglected. Thus:

det

[
f (in)(E)

]
≈ (E − Ei)

d

dE

[
f (in)(E)

]∣∣∣∣
Ei
. (2.130)

The S-matrix using Jost matrices determinant and its adjugate can now be written as
follows:

S(E) = f (out)(E)

[
f (in)(E)

]−1

= f (out)(E)adj

[
f (in)(E)

]
1

det
[
f (in)(E)

] . (2.131)
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Eq.(2.131) above can now be re-written in the following form:

lim
E→Ei

(E − Ei)S(E) = lim
E→Ei

f (out)(E)adj

[
f (in)(E)

]
1

d
dEdet

[
f (in)(E)

]
Ei

(2.132)

The S-matrix residue is then given by:

Res[S, Ei] = lim
E→Ei

f (out)(E)adj

[
f (in)(E)

]
1

d
dEdet

[
f (in)(E)

]
Ei

. (2.133)

For single channel, this reduces to the following form:

Res[S, Ei] =
f (out)(Ei)
ḟ (in)(Ei)

(2.134)

where the derivative ḟ (in)(Ei) can be calculated numerically using this equation:

d

dE
det
[
f (in)(E)

]
=

det
[
f (in)(E + ϵ)

]
− det

[
f (in)(E − ϵ)

]

2ϵ
, ϵ→ 0 (2.135)

2.6 Asymptotic normalization constant and Nuclear ver-
tex constant

The S-matrix is a meromorphic function of the energy with a well-known pattern of
the poles distributed over the Riemann surface. These poles correspond to bound and
resonant states. The residues of the S-matrix at the poles, determine the probabilities
of the formation and decay of the corresponding bound and quasi-bound states. They
therefore are among the important characteristics of such states.

In Appendix A it is shown that the so called Nuclear Vertex Constants (NVC), Gab→d

and Gd→ab, describing the probabilities of virtual formation (ab→ d) and decay (d→ ab)
of a discrete state d composed of the two fragments a and b, are related to the residue
as follows:

Gab→dGd→ab =
iπ

µκd
Res [Sℓ(z), Ed] . (2.136)

It is also shown that, due to the time-reversal invariance, these two NVC’s may only
differ by sign (see Eq. (A.14)).

A residue of the S-matrix is also closely related to the corresponding Asymptotic Nor-
malization Constant Aℓ (defined by Eq. (1.3)). This relation is usually derived in two
different ways. It can be obtained by taking energy derivative of the Wronskian of the
Jost and regular solutions of radial Schrödinger equation (see, for example, Sec. 6.5 of
Ref. [68]). Alternatively, it can be found from the continuity equation (see, for example,
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Sec. 15 of Ref. [69]). In the Appendix B, using the first of these two approaches, it is
shown that at a bound-state energy Ed

Res [Sℓ(E), Ed] = (−1)ℓκd
µ
A2

ℓ , (2.137)

where κd = |
√
2µEd| is the absolute value of the corresponding momentum. Taking into

account Eq. (2.136), we see that the ANC can be factorized in terms of the NVC’s.
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Chapter 3

Expansion of the multi-channel
Jost matrices

In this chapter we use the multi-channel Jost matrices presented in Chapter 2, to present
the theoretical framework to be used for this study. The second part of the results of
Ref.[54] are then presented. Section 3.2, the Jost matrix is constructed in such a way
that their dependencies of its matrix elements on odd powers of the channel momenta
are factorized explicitly. In Section3.5, using the same ΛA-potential as in Ref.[54], the
effective-range parameters were re-calculated for the same set of nuclear targets. In
addition to the S-wave scattering lengths and effective radii reported in Ref.[54], the
higher-order parameters were also calculated.

3.1 Introduction

Power-series expansions are commonly used in physics. An expansion of this kind that
is most frequently used in quantum scattering theory, is known as the effective-range
expansion[46, 67]. For a short-range potential that we are considering, this expansion
reads,

k2ℓ+1 cot δℓ(k) =
∞∑

n=0

cℓnk
2n (3.1)

where δℓ(k) is the scattering phase shift and the right-hand side is a sum of terms pro-
portional to even powers of the collision momentum k. The cℓn are energy independent
expansion coefficients. This type of expansion has been suggested long time ago in
nuclear physics for the S-wave type, nucleon-nucleon scattering in this form,

k2ℓ+1 cot δ0(k) = −
1

a0
+

r0
2
k2 − P0r

3
0k

4 +Q0r
5
0k

6 − L0r
7
0k

6 (3.2)
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where the first two parameters on the right-hand side, namely, a and r0, were called the
scattering length and the effective radius. The parameters in the higher order terms of
this expansion (P0 , Q0, L0 etc.) are known as the shape parameters. The limitation
of this effective-range expansion is that it is only applicable near the point k = 0, when
the energy is close to the threshold[46, 67].

In Refs.[46, 59, 67, 70] different approach in generalizing the effective-range expansion to
multi-channel problems were developed, and will be presented in this chapter. Instead
of considering the channel phase shifts and their cotangents, a more general approach
is considered. A simple first-order differential equations were derived. By solving them
one can easily calculate any number of coefficients in the series expansion 3.1, and not
only for the S-wave state, but also for any angular momentum ℓ ̸= 0.

The structure of the Jost matrix is constructed in such a way that their dependencies
of its matrix elements on odd powers of the channel momenta are factorized explicitly.
These factors determine all the branching points of the Riemann surface of the energy,
while the remaining factors are single-valued holomorphic functions defined on a simple
energy plane. These functions are then expanded in power series of (E −E0), where E0

is an arbitrary complex energy.

An expression for the Jost matrix such that each of its elements is a product of a
nonanalytic ”branching” factor and a power series, is obtained. In this way, we are not
limited to the threshold points, but expand the Jost matrix practically anywhere on
the Riemann surface. When the Jost matrix is obtained in such a semi-analytic form
(the first several terms of the expansion), the S matrix and all the observables can be
easily calculated. Although it is possible, there is no need in introducing the generalized
scattering length and other parameters. The Jost matrix expansion coefficients are more
simple and reliable for this purpose.

3.2 Factorization of the multi-channel Jost matrices

We consider the Riccati-Bessel and Riccati-Neumann functions which are represented
by the absolutely convergent series, .,

jℓ(kr) =

(
kr

2

)ℓ+1 ∞∑

n=0

(−1)n
√
π

Γ(ℓ+ 3/2 + n)n!

(
kr

2

)2n

= kℓ+1j̃ℓ(E, r), (3.3)

yℓ(kr) =

(
2

kr

)ℓ ∞∑

n=0

(−1)n+ℓ+1

Γ(−ℓ+ 1/2 + n)n!

(
kr

2

)2n

= k−ℓỹℓ(E, r), (3.4)

which are factorized in terms of the odd and the even powers of k, hence the functions
j̃ℓ and ỹℓ are analytical single-valued functions of the energy E which do not depend on
odd powers of k. This Eqs. (3.3 and 3.4) tells us that the matrices A(E, r) and B(E, r)
including Jost matrices are multi-valued functions which can be defined on a complicated
Riemann surface.
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Now using the Equations.(3.3 and 3.4) each diagonal element of the matrices can be
rewritten as the product of an integer power of a channel momentum and an entire
function of the energy as [59],

J =




kℓ1+1
1 0 · · · 0

0 kℓ2+1
2 · · · 0

...
...

. . .
...

0 0 · · · kℓN+1
N


 J̃ , Y =




k−ℓ1
1 0 · · · 0

0 k−ℓ2
2 · · · 0

...
...

. . .
...

0 0 · · · k−ℓN
N


 Ỹ . (3.5)

where J̃ and Ỹ denote the diagonal matrices,

J̃ = diag

{
j̃ℓ1(E, r), j̃ℓ2(E, r), ..., j̃ℓN (E, r)

}
, (3.6)

Ỹ = diag

{
ỹℓ1(E, r), ỹℓ2(E, r), ..., ỹℓN (E, r)

}
, (3.7)

with the tilted functions defined by Eqs.(3.3,3.4). All possible odd powers of the channel
momenta are factorized and the remaining tilted functions are single-valued functions
of the energy[59]. These factorized representations can be written in the compact form
[59],

J = DJ̃, Y = KD−1Ỹ , (3.8)

where

D = diag

{
kℓ1+1
1 , kℓ2+1

2 , ..., kℓN+1
N

}
. (3.9)

Let us look for matrices A and B in the Eq. in the form,

A = D−1ÃD, B = DK−1B̃D. (3.10)

Substituting them in the first order differential equations (2.76 and 2.77) the following
equations were obtained,

D−1∂rÃD = −D−1Ỹ V (DJ̃D−1ÃD −KD−1J̃DK−1B̃D) (3.11)

DK−1∂rB̃D = −K−1DJ̃V (DJ̃D−1ÃD −KD−1J̃DK−1B̃D). (3.12)

The first of these equations is multiplied by D from the left, the second by KD−1 also
from the left, and both by D−1 from th right to eliminate all the momentum-dependent
coefficients [59]. Since all the matrices K, D, J̃, and Ỹ are diagonal and commute, the
following equations for tilted functions were obtained,
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∂rÃ = −Ỹ V (J̃Ã − Y B̃), (3.13)

∂rB̃ = −J̃V (J̃Ã − Y B̃). (3.14)

The potential V depends on the radius r, while the other matrices are functions of both
r and E. The boundary conditions for Eqs.(3.13 and 3.14) are given by:

J̃ÃJ̃−1 −−−→
r→0

I, Ỹ B̃J̃−1 −−−→
r→0

0 (3.15)

The coefficients in Eqs.(3.13 and 3.14) and their energy independent boundary condi-
tions (3.15) do not involve odd powers of the momenta, which implies that Ã(E, r) and
B̃(E, r) are single-valued functions of energy E, that is they are analytic and defined on
a simple complex-energy plane without any branching points[59]. The matrices A(E, r)
and B(E, r) are the ones carrying all difficulties associated with the multi-valuedness and
Riemann surface which originate from the matrices D and K. Their matrices elements
are given by,

Amn(E, r) = k−ℓm−1
m Ãmn(E, r)k

ℓn+1
n , Bmn(E, r) = kℓmm B̃mn(E, r)k

ℓn+1
n , (3.16)

where Ã and B̃ are real on the real axis, ImE, including Eqs. (3.13, 3.14 and 3.15).

When Eqs.(2.73 and 2.74) are combined the following expression obtained,

F (in/out) =
1

2
(Ã ∓ iB̃) = 1

2
D−1

(
Ã ∓ iD2K−1B̃

)
D (3.17)

or in the form,

F (in)
mn =

kℓn+1
n

2kℓm+1
m

Ãmn −
ikℓmm kℓn+1

n

2
B̃mn, (3.18)

F (out)
mn =

kℓn+1
n

2kℓm+1
m

Ãmn +
ikℓmm kℓn+1

n

2
B̃mn. (3.19)

Now considering Eq.(2.56) for the short range potential, the Jost matrices limits when
r →∞ are,

f (in/out)(E) = D−1a(E)D ∓ iDK−1b(E)D, (3.20)

with the matrices a(E) and b(E) being the asymptotic values of the r-dependent func-
tions of Ã(E, r) and B̃(E, r) i.e,

a(E) =
1

2
lim
r→∞

Ã(E, r), b(E) =
1

2
lim
r→∞

B̃(E, r), (3.21)
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and the Jost matrices entries,

f (in/out)mn (E) =
kℓn+1
n

kℓm+1
m

amn(E)∓ ikℓmm kℓn+1
n bmn(E), (3.22)

where

amn(E) =
1

2
Ãmn(E,∞), bmn(E) =

1

2
B̃mn(E,∞). (3.23)

Then we obtain the following S−matrix,

S(E) = [D−1a(E)D + iDK−1b(E)D][D−1a(E)D − iDK−1b(E)D]−1

= [D−1a(E) + iDK−1b(E)][D−1a(E)− iDK−1b(E)]−1, (3.24)

in terms of the holomorphic matrix-functions which depends on the variable E. The
analytic matrix-functions a(E) and b(E) can be expanded using the Taylor series around
any point E0 :

a(E) =
∞∑

n=0

α̃n(E0)(E − E0)
n, b(E) =

∞∑

n=0

β̃n(E0)(E − E0)
n, (3.25)

where the expansion coefficients, α̃n and β̃n, are the square matrices with the same
dimensions as the matrices a(E) and b(E) and they also depend on the choice of the
central point E0.

3.3 Power series expansions near an arbitrary point

The matrices Ã(E, r) and B̃(E, r) are holomorphic functions of the parameter E for any
finite value of radius r, hence they can be expanded in the power series around any point
E0 on the complex energy plane[46],

Ã(E, r) =
∞∑

n=0

(E − E0)
nαn(E0, r), (3.26)

B̃(E, r) =
∞∑

n=0

(E − E0)
nβn(E0, r), (3.27)

where the unknown expansion coefficients αn and βn depend on the point E0 and the
variable radius r. The same kind of expansion is also done for the other matrices J̃(E, r)
and Ỹ (E, r) by using the known coefficients, ηn and γn,

J̃(E, r) =

∞∑

n=0

(E − E0)
nγn(E0, r), (3.28)

Ỹ (E, r) =

∞∑

n=0

(E − E0)
nηn(E0, r). (3.29)
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where the diagonal matrices,

ηn(E0, r) = diag{ηn(ℓ1, E0, r), ηn(ℓ2, E0, r), ...., ηn(ℓN , E0, r)} (3.30)

and
γn(E0, r) = diag{γn(ℓ1, E0, r), γn(ℓ2, E0, r), ...., γn(ℓN , E0, r)} (3.31)

are made of the expansion coefficients given on Appendix.D. When all these series are
substituted into the Eq.(3.13 and3.14) and also replacing there the matrices J̃ and Ỹ
with the corresponding series (3.28 and 3.29), the following set of differential equations
were obtained [46, 59],

∂rαn = −
∑

i+j+k=n

ηiV (γjαk − ηjβk), (3.32)

∂rβn = −
∑

i+j+k=n

γiV (γjαk − ηjβk), n = 0, 1, 2, ..... (3.33)

with the energy independent boundary conditions at r = 0,

lim
r→0

J̃(E, r)αn(E0, r)[J̃(E, r)]
−1 = δn0I, βn(E0, 0) = 0, ∀n. (3.34)

The quantities αn and βn are functions of the square matrices, and their summation
condition, i+ j+k = n, decouples the first M pairs of the equations from any equations
with n > M.

The expansion coefficients α̃ and β̃ in the series (3.25) are the asymptotic values of the
corresponding coefficients,

α̃n(E0) =
1

2
lim
r→∞

αn(E0, r), and β̃n(E0) =
1

2
lim
r→∞

βn(E0, r). (3.35)

Therefore the coefficients α̃ and β̃, can be obtained by numerically integrating Eqs.(3.32,3.33)
from the boundary values (3.34) up to a faraway point where the potential vanishes and
the limits(3.35) are reached within acceptable accuracy.

Now for a single channel case using short range potential, we obtain the following Jost
functions factorized structure,

f
(in/out)
ℓ (E) = aℓ(E)∓ k2ℓ+1bℓ(E), (3.36)

where the factor k2ℓ+1 is responsible for the branching of the Riemann surface with
the unknown single valued analytic functions aℓ(E) and bℓ(E). These functions can be
expanded in the Taylor series around an arbitrary point E0 on the complex energy pane,

a(E) =
∞∑

n=0

α̃n(ℓ, E0)(E − E0)
n, b(E) =

∞∑

n=0

β̃n(ℓ, E0)(E − E0)
n, (3.37)
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then S-matrix can also be obtained with the following ratio,

Sℓ(E) =
f
(out)
ℓ (E)

f
(in)
ℓ (E)

=

∞∑

n=0

(α̃n + k2ℓ+1β̃n)(E − E0)
n

∞∑

n=0

(α̃n − k2ℓ+1β̃n)(E − E0)
n

(3.38)

3.4 Effective range parameters

We consider the expansions (3.25) around the real energies, in this case around the
threshold energy E0 = 0. The S-matrix (3.38) then takes the following form,

Sℓ(E) =
f
(out)
ℓ (E)

f
(in)
ℓ (E)

=

∞∑

n=0

(α̃n + ik2ℓ+1β̃n)E
n

∞∑

n=0

(α̃n − ik2ℓ+1β̃n)E
n

(3.39)

It was shown that for the real scattering energies, the functions aℓ(E) and bℓ(E) are
real, therefore for real E0 all the expansion coefficients are real as well [59]. That also
makes the Jost functions, the numerator and denominator in Eq.(3.39) to be complex
conjugates of each other at real energies, i.e,

f
(out)
ℓ (E) = f

(in)∗
ℓ (E), ImE = 0. (3.40)

The functions can be expressed in terms of the scattering phase shifts as,

f
(out/in)
ℓ e±iδℓ =

∞∑

n=0

α̃nE
n ± ik2ℓ+1

∞∑

n=0

β̃nE
n, (3.41)

then,

∞∑

n=0

α̃nE
n = |f (out)ℓ | cos δℓ (3.42)

ik2ℓ+1
∞∑

n=0

β̃nE
n = |f (out)ℓ | sin δℓ. (3.43)

When these two equations are divided, the following expression is obtained

k2ℓ+1 cot δℓ =
α̃0 + α̃1E + α̃2E

2 + ...

β̃0 + β̃1E + β̃2E2 + ...
. (3.44)

Now the division on the right hand side of Eq.(3.44),

K(E) =
α̃0 + α̃1E + α̃2E

2 + ...

β̃0 + β̃1E + β̃2E2 + ...
. (3.45)
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can be performed and expressed in the Maclaurin series(see AppendixC),

K(E) = K(0) +K′(0)E +K′′(0)
E2

2
+K′′′(0)

E3

6
+K(4)(0)

E4

24
. (3.46)

This expression is well known in the following form,

k2ℓ+1 cot δℓ = −
1

aℓ
+

rℓ
2
k2 − Pℓr

3
ℓk

4 +Qℓr
5
ℓk

6 − Lℓr
7
ℓk

6 (3.47)

Once the the expansion coefficients α̃n and β̃n in Eqs.(3.44 and 3.45) are calculated, then
using the relation E = (ℏk)2/2µ, and doing simple algebra the following parameters can
be obtained,

aℓ = −1/K(0), rℓ = K′(0)ℏ2/µ (3.48)

Pℓ = −
µK′′(0)

8ℏ2[K′(0)]3
, Qℓ = −

µ2K′′′(0)

48ℏ2[K′(0)]5
, Lℓ = −

µ3K(4)(0)

384ℏ6[K′(0)]7
, (3.49)

hence any number of effective-range parameters can also be calculated in Eq.3.47

3.5 Results and discussion

In this section we now use the method presented in the previous sections using the same
ΛA-potential as in Ref.[54] to calculate the effective-range parameters for the same set of
nuclear targets. In addition to the S-wave scattering lengths and effective radii reported
in Ref.[54], the higher-order parameters were also calculated.

In order to obtain the effective-range parameters, we numerically integrated the system
of differential equations (3.32,3.33) with max(n) = 4, from rmin = 10−5 fm to rmax =
30 fm. This integration gave us the sets of five coefficients a0,. . . ,a4 and b0,. . . ,b4, of the
expansions (3.26,3.27) around the threshold energy E0 = 0, for each of the hypernuclei
listed in Table 5.1. This was done for three values of the angular momentum, namely,
ℓ = 0, 1, 2. Using these coefficients, we calculated the effective range parameters as is
described in Sec. 3.4 and in Appendix C. The results of these calculations are given
in Tables 3.1, 3.2,3.3, 3.4. For comparison, these tables also include the corresponding
scattering lengths and effective radii obtained in Ref. [53, 71] for ℓ = 0.

As is seen from the tables, our values of a0 and r0 in most cases are different from those
reported in Ref. [53]. The reason for that is the following. The calculation of these
parameters in Ref. [53] involves two steps. At the first step, the authors of this paper
accurately calculate the energy E of the bound state and the corresponding ANC. At
the second step, they approximate the scattering amplitude using the effective-range
expansion and choose such values for a0 and r0 that make this amplitude singular at the
exact value of the energy E = E and give the exact value of the ANC. The problem
stems from the fact that the effective-range expansion is only accurate within a circle
around the point k = 0 on the complex k-plane. If the bound-state point is too far
from k = 0, then the exact E and ANC cannot correspond to exact a0 and r0. Ignoring
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this fact, i.e. using such a correspondence, the authors of Ref. [53] inevitably obtained
wrong values for the scattering length and effective radius. The deeper the bound state
is (longer distance from k = 0), the greater is the error. This can indeed be seen from our
Tables 3.1, 3.2, 3.3, 3.4. The most obviously these errors are visible in the cases of the

A+1
ΛZ ℓ aℓ (fm

2ℓ+1) rℓ (fm
1−2ℓ) Pℓr

3
ℓ (fm

3−2ℓ) Qℓr
5
ℓ (fm

5−2ℓ) Lℓr
7
ℓ (fm

7−2ℓ)

0

3.2367318
3.23 Ref. [53]

3.233
Ref. [71]

1.5479933
1.55 Ref. [53]

1.528
Ref. [71]

0.0305817 −0.0470130 −0.0541120

7
ΛLi 1 −11.8890107 −0.4454250 −0.7367272 0.0373076 0.0199897

2 −3.5980580 1.4895451 −0.1114456 0.6823769 −0.0412388

0

3.3370310
3.32 Ref. [53]

3.333
Ref. [71]

1.5954418
1.58 Ref. [53]

1.584
Ref. [71]

0.0201644 −0.0567890 −0.0537531

7
ΛBe 1 −11.0842228 −0.4105994 −0.7524937 0.0422563 0.0203875

2 −3.4693398 1.5548120 −0.1454417 0.6965474 −0.0440340

0

2.9083436
2.94 Ref. [53]

2.913
Ref. [71]

1.3781134
1.44 Ref. [53]

1.351
Ref. [71]

0.0669379 −0.0114131 −0.0591511

8
ΛHe 1 −18.5495216 −0.5948328 −0.6851782 0.0250095 0.0217978

2 −4.6199137 1.1229734 0.0544659 0.6355698 −0.0357335

Table 3.1: Effective-range parameters calculated with the potential (5.10) for a set of
the ΛA-hypernuclei at three values of the angular momentum ℓ = 0, 1, 2.

hypernuclei 40ΛCa,
89
ΛZr, and

208
ΛPb, where several different values for the same scattering

lengths and effective radii are obtained in Ref. [53] for each of these ΛA systems. The
different effective range parameters resulted from fitting different bound states, 1s, 2s,
or 3s.

Its was stated in Ref. [53] that to check the accuracy of the calculated values of the
low energy parameters aℓ and rℓ the continuous states of the Λ-core system for the
same potentials will be considered through calculation of the scattering amplitude at
low positive energies. Hence, the aℓ and rℓ were obtained by solving the Schrodinger
equation in the continuum. This was done in Ref. [71] and their results are also presented
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A+1
ΛZ ℓ aℓ (fm

2ℓ+1) rℓ (fm
1−2ℓ) Pℓr

3
ℓ (fm

3−2ℓ) Qℓr
5
ℓ (fm

5−2ℓ) Lℓr
7
ℓ (fm

7−2ℓ)

0

2.9776372
3.00 Ref. [53]

2.98 Ref. [71]

1.4179011
1.46 Ref. [53]

1.39 Ref. [71]

0.0612997 −0.0222939 −0.0627927

8
ΛLi 1 −17.2944438 −0.5715822 −0.6964672 0.0288635 0.0222372

2 −4.4914834 1.1627380 0.0330627 0.6451820 −0.0378284

0

2.9696895
2.99 Ref. [53]

2.973
Ref. [71]

1.4133919
1.46 Ref. [53]

1.387
Ref. [71]

0.0619893 −0.0210722 −0.0624442

8
ΛBe 1 −17.4302322 −0.5742543 −0.6951727 0.0284209 0.0221893

2 −4.5059661 1.1581426 0.0355338 0.6440746 −0.0375875

0

2.6601704
2.75 Ref. [53]
2.66 Ref. [71]

1.2233537
1.36 Ref. [53]
1.16 Ref. [71]

0.0872264 0.0344588 −0.0447297

9
ΛLi 1 −30.2816174 −0.6995040 −0.6472675 0.0141482 0.0233884

2 −5.7360210 0.8719319 0.1680681 0.6032644 −0.0314505

Table 3.2: Continuation of Table 3.1.

in Tables 3.1, 3.2, 3.3, 3.4. The new parameters from Ref. [71] correspond very well with
our scattering length values. However, there is a slight deviation with the effective radius
values. For the lighter hypernuclei our values are slightly higher, for heavy hypernuclei
our values are slightly lower.

3.6 Conclusion

Using the power-series expansion method developed, we calculated the effective-range
parameters for a set of hypernuclear systems. These parameters were obtained for the
expansion of the effective-range function up to the order of ∼ k8 and for three values
of the angular momentum, ℓ = 0, 1, 2. The S-wave scattering lengths and effective radii
reported in Ref. [53], agree with our results only for the hypernuclear systems with weak
Λ-core binding. We explained and discussed where the errors in Ref. [53] stemed from.

The set of parameters we report here, could be used for doing quick and simple esti-
mations of various low-energy Λ-nucleus scattering and radiative processes in nuclear
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A+1
ΛZ ℓ aℓ (fm

2ℓ+1) rℓ (fm
1−2ℓ) Pℓr

3
ℓ (fm

3−2ℓ) Qℓr
5
ℓ (fm

5−2ℓ) Lℓr
7
ℓ (fm

7−2ℓ)

0

2.9949610
3.01 Ref. [53]
2.99 Ref. [71]

1.4295702
1.47 Ref. [53]

1.40 Ref. [71]

0.0676614 −0.0301867 −0.0789783

9
ΛBe 1 −19.9324375 −0.5944134 −0.7009987 0.0338693 0.0257979

2 −4.9944344 1.0403790 0.0749026 0.6476081 −0.0419002

0
2.6954527
2.78 Ref. [53]

1.2459502
1.36 Ref. [53]

0.0867934 0.0274860 −0.0507608

9
ΛB 1 −28.7670176 −0.6887342 −0.6528373 0.0161647 0.0237073

2 −5.6531369 0.8886130 0.1587855 0.6077361 −0.0325131

0

2.5418377
2.67 Ref. [53]
2.54 Ref. [71]

1.1389516
1.32 Ref. [53]
1.10 Ref. [71]

0.0940851 0.0666536 −0.0282953

10
ΛBe 1 −45.9686609 −0.7514965 −0.6315538 0.0094229 0.0257815

2 −6.6953629 0.7268421 0.2292201 0.5904672 −0.0306455

0
2.5806786
2.70 Ref. [53]

1.1647722
1.34 Ref. [53]

0.0958299 0.0584115 −0.0389325

10
ΛB 1 −42.6407535 −0.7406425 −0.6374433 0.0116790 0.0261801

2 −6.5910600 0.7424771 0.2202733 0.5950236 −0.0318070

Table 3.3: Continuation of Tables 3.1 and 3.2.

astrophysics.
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A+1
ΛZ ℓ aℓ (fm

2ℓ+1) rℓ (fm
1−2ℓ) Pℓr

3
ℓ (fm

3−2ℓ) Qℓr
5
ℓ (fm

5−2ℓ) Lℓr
7
ℓ (fm

7−2ℓ)

0
2.3147558
2.55 Ref. [53]

0.9787536
1.27 Ref. [53]

0.0727682 0.1184816 0.0548001

11
ΛB 1 −118.8978026 −0.8221524 −0.6018303 −0.0020250 0.0266744

2 −8.0761179 0.5735226 0.3000920 0.5683354 −0.0265776

0
2.0571138
2.55 Ref. [53]

0.8188044
1.27 Ref. [53]

−0.0038234 0.1109938 0.1697086

12
ΛB 1 330.0349120 −0.8857725 −0.5721756 −0.0146351 0.0265256

2 −9.6971038 0.4483233 0.3591966 0.5482936 −0.0221406

0

2.1873420
2.50 Ref. [53]
2.18 Ref. [71]

0.8870320
1.24 Ref. [53]
0.87 Ref. [71]

0.0425647 0.1403582 0.1295937

12
ΛC 1 −1053.1827267 −0.8583324 −0.5885167 −0.0081525 0.0285572

2 −9.2778856 0.4801945 0.3397185 0.5594619 −0.0253774

0
1.9422817
2.42 Ref. [53]

0.7595789
1.20 Ref. [53]

−0.0584755 0.0686700 0.2026431

13
ΛC 1 120.1688352 −0.9107199 −0.5629724 −0.0200066 0.0283618

2 −10.9669098 0.3798920 0.3870105 0.5432989 −0.0214692

0

1.2437603
2.27 Ref. [53]
1.24 Ref. [71]

1.7907520
1.13 Ref. [53]
1.67 Ref. [71]

1.4652316 4.8109104 15.6207199

15
ΛN 1 40.3050008 −1.0126792 −0.5058925 −0.0471947 0.0223077

2 −15.3407597 0.2204808 0.4653529 0.5123503 −0.0121394

0

1.5307321
2.36 Ref. [53]
1.53 Ref. [71]

0.8736759
1.18 Ref. [53]
0.94 Ref. [71]

−0.1261722 −0.2782570 −0.5461116

16
ΛO 1 48.7623418 −0.9717814 −0.5355508 −0.0389966 0.0324707

2 −15.4742106 0.2274335 0.4494018 0.5311126 −0.0185748

Table 3.4: Continuation of Tables 3.1, 3.2, and 3.3 .
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A+1
ΛZ ℓ aℓ (fm

2ℓ+1) rℓ (fm
1−2ℓ) Pℓr

3
ℓ (fm

3−2ℓ) Qℓr
5
ℓ (fm

5−2ℓ) Lℓr
7
ℓ (fm

7−2ℓ)

0

6.5920480
1.90 Ref. [53]
5.85 Ref. [53]
6.59 Ref. [71]

3.7823570
0.95 Ref. [53]
2.88 Ref. [53]
3.97 Ref. [71]

−3.1674773 6.4512113 −13.0581977

40
ΛCa 1 −3.3401800 4.4214286 −14.5509496 63.5512029 −284.9201300

2 139.6342309 −0.2476025 0.7496207 0.2861516 0.1431451

0

4.2587252
1.75 Ref. [53]
2.99 Ref. [53]
4.26 Ref. [71]

2.4738256
0.88 Ref. [53]
1.49 Ref. [53]
2.55 Ref. [71]

−0.6830432 0.3916780 −1.1890961

89
ΛZr 1 182.0488652 −0.5351246 −1.2474277 1.0674631 −1.1429785

2 −53.3804347 0.1579840 0.0821054 1.5135949 −1.4317562

0

7.6146983
1.61 Ref. [53]
2.07 Ref. [53]
4.05 Ref. [53]
7.61 Ref. [71]

4.8695342
0.81 Ref. [53]
1.03 Ref. [53]
2.25 Ref. [53]
5.44 Ref. [71]

−7.9426465 34.5899671 −153.5075775

208
ΛPb 1 −118.5362295 −0.1132765 −2.8121229 9.5035524 −40.8388895

2 376.4672323 −0.0830591 0.4487441 0.7200042 −0.0258889

Table 3.5: Continuation of Tables 3.1, 3.2, 3.3, and 3.4
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Chapter 4

Jost matrices for non-zero spin
systems using the hyperspherical
approach

In this Chapter we present the background material to solve the many-body Schrodinger
equation using the hyperspherical approach for non zero spin particles. In Section4.2
we introduce the hyperspherical variables and the hyperspherical harmonics. Section
4.3 present the infinite system of coupled hyper-radial Schrodinger equation and it’s
transformation into the first-order differential equations of the Jost matrices. Section
4.3.1 up to 4.3.3 explains how the spectral points can be obtained using the Jost matrices.
Section 4.4 present the minimal approximation method that can be use to truncate the
infinite system of coupled hyperradial Schrodinger equations for numerical calculations
purpose.

4.1 Introduction

The study of the many body problem composed of N particles have led to the con-
struction of the hyperspherical harmonics, which are harmonic polynomials in 3(N − 1)
dimensional space. A configuration of those particles can now be specified by a set of
(N − 1) Jacobi vectors, r = {r1, r2, ...., rN−1}.

Within the hyperspherical coordinate framework, the configuration of a system made
up of N ≥ 3 particles is represented as a point in a (3N − 3)-dimensional hyperspace,
after the separation of the center-of-mass motion, and its kinematics is equivalent to
that of one body of mass M (the total mass of the system) on the (3N − 4)-dimensional
surface[72]. The hypersphere size depends on the hyperradius, in this case denoted
r = |r|. the other key relevant quantity is the so-called grand angular momentum ,
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denoted as Λ. The corresponding grand angular momentum correspond to the operator
Λ2 appears in the kinetic energy part T̂ of the quantum Hamiltonian operator written in
terms of hyperspherical coordinates. The operator T̂ is split into two parts, a hyperradial
operator T̂r and a grand angular momentum operator T̂Λ, as follows:

T̂ = − 1

2M

(
ℏ2

r3N−4

∂

∂r
r3N−4 ∂

∂r
− Λ̂2

r2

)
= T̂ρ + T̂Λ, (4.1)

in terms of hyperspherical coordinates. The reduced mass of the system,

µ =

(
m1m2m3....mN

m1 +m2 +m3 + ....+mN

)1/(N−1)

(4.2)

is usually used instead of the total mass,

M = m1 +m2 +m3 + ....+mN (4.3)

(m1,m2, ...,mN being the masses of individual particles); the presence of µ in Eq.4.1
requires just another mass scaling of r. The potential energy function V = V (r,Ω) of the
hyperspherical coordinates, in general depends on the hyperradius r and the complete
set of hyperangles, collectively denoted as Ω. The total Hamiltonian can be written,

Ĥ = T̂ + V̂ = − 1

2M

(
ℏ2

r3N−4

∂

∂r
r3N−4 ∂

∂r
− Λ̂2

r2

)
+ V (r,Ω), (4.4)

which act on the total wave function ΨJM that must be an eigenfunction of the total
angular momentum J and its projections. We look at the simple wave function of a
many-body system which does not form any bound clusters. Any bound state of the
whole system is characterized by the wave function that vanishes at large distance in
all directions.At complex energies the resonance wave function exponentially grow in all
directions.Such a simplification of the asymptotic wave function is actually an approx-
imation. The Jost matrices will be defined by considering the asymptotic behaviour of
the N -body wave function when the variable r goes to infinity in this Chapter. The Jost
functions (i.e the Jost matrices elements) are the coefficients in the superposition of the
incoming and outgoing waves(in each channels) in the asymptotic behaviour of the wave
function[59].

4.2 HyperSpherical variables and Harmonics expansion

We consider a system of A particles of mass mi each. The system is described using
N = A − 1 relative vectors and one center of mass vector. Let’s choose the relative
vectors to be Jacobi vectors, ρ = {ρ1,ρ2, ....,ρN−1}, specifying the space configuration
of the system. The total kinetic energy operator of the internal motion for such system
is,

H0 = −
ℏ2

2µ1
∆ρ1 −

ℏ2

2µ2
∆ρ2 −

ℏ2

2µ3
∆ρ3 − ....−

ℏ2

2µN−1
∆ρN−1 (4.5)

46

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



where µi is the reduced mass associated with the motion along the i-th Jacobi coordi-
nates. The same space configuration can be described by the set r = {r1, r2, ...., rN−1},
of the scaled vectors defined by[59],

ri =

√
µi
µ
ρi, i = 1, 2, ...., N − 1, (4.6)

where the µ is the reduced mass of the whole system. Now, the total kinetic operator
can be re-defined as,

H0 = −
ℏ2

2µ

(
∆r1 +∆r2 + ...+∆rN−1

)
= − ℏ2

2µ

N−1∑

i=1

∆ri = −
ℏ2

2µ
∆, (4.7)

where ∆ is the Laplacian in the space configuration of the dimension D = 3(N −
1)[59].The hyperradius can be as follows,

r =
√
r21 + r22 + r23 + ....+ r2N−1. (4.8)

The set of (3N − 1) hyperangles consisting of 2N ordinary spherical polar angles of the
N Jacobi vectors [(ϑi, φi), i = 1, ...., N ] and (N − 1) angles (ϕ2, ...., ϕN ) defining the
lengths of N Jacobi vectors are introduced through,

rN = r cosϕN

rN−1 = r sinϕN cosϕN−1

rN−2 = r sinϕN sinϕN−1 cosϕN−2

rN−3 = r sinϕN sinϕN−1 sinϕN−2 cosϕN−3

...

r2 = r sinϕN sinϕN−1 · · · · · · · · · sinϕ3 cosϕ2
r1 = r sinϕN sinϕN−1 · · · · · · · · · sinϕ3 cosϕ2 cosϕ1 (4.9)

where ϕ1 = 0. Each angle ϕi lie in the interval [0, π/2]. The collection of all specified
angles above will be denoted by the symbol Ω, hence r = {r,Ω}. It can be shown that
the Laplace operator,

∆ =

N−1∑

i=1

∆ri (4.10)

in terms of the hypershperical variables , r = {r,Ω}, is,

N−1∑

i=1

∆ri =

(
∂2

∂r2
+

3N − 1

r

∂

∂r
− Λ2(Ω)

r2

)
, (4.11)

47

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



where

Λ2 =−
N−1∑

i=1

( N−1∏

j=i+1

sin2 ϕj

)−1

×
[
∂2

∂ϕ2i
+ ((3i− 4) cotϕi − 2 tanϕi)

∂

∂ϕi
− ℓ̂2i (ϑi, φi)

cos2 ϕi

]
. (4.12)

The eigenfunctions , Y[L], of this operator are called the hyperspherical harmonics. They
are also solutions of the equation

Λ2Y[L] = ℏ2L(L+ 3(N − 1)− 2)Y[L]. (4.13)

L is called the hyperangular momentum quantum number and the symbol [L] denotes
the full set of 3(N − 1)− 1 quantum numbers for a fixed L. These numbers include the
following[59],

• The orbital angular momentum ℓi and its third component mi for each Jacobi
coordinate, i = 1, 2, ..., N − 1;

• The partial grand orbital numbers , Li, for the subsystems of the particles, and the
grand orbital number, L, for the whole system:

Li = Li−1 + ℓi + 2ni, i = 1, 2, ..., N − 1, ni = 0, 1, 2, ...., (4.14)

where L1 = ℓ1 and LN−1 = L is a grand orbital number.

The hyperspherical harmonics constitute an orthonormal basis in the space of the hy-
perspherical angles, which implies

∫
Y ∗
[L′](Ω)Y[L](Ω)dΩ = δ[L′][L]. (4.15)

The J and M numbers are the remaining two conserving part of the full set of numbers.
Now, it is more suitable to use the basis elements which correspond to the states with
definite values of the conserving total angular momentum. The linear combination of the
hyperspherical harmonics, denoted YLJM (Ω) , can be constructed such that they describe
the states with total angular momentum J (including spin) and its third component M
using the Clebsch-Gordan coefficients. The multi-index [L] constitutes the [L] quantum
numbers plus the two conserving numbers.

Since the functions YLJM constitute a basis in the space of hyperangles including the
space of the spins, the N -body wave function, ΨJM (E, r), can be expanded over this
basis with unknown coefficients, uJL(E, r),

ΨJM (E, r) = r2−3N/2
∞∑

[L]=[Lmin]

YLJM (Ω)uJL(E, r). (4.16)
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The summation generally begins from non-zero Lmin, hence the minimal value of grand
orbital number is determined by chosen value of J and by the permutation symmetry
of the considered system. When the calculations are done we can find some physical
reasons to truncate the summation in Eq.4.16.The factor r2−3N/2 in front is included to
remove the first derivative term in the radial Schrodinger equation.

4.3 Hyper-radial Schrodinger equation and the Jost ma-
trices

The N−body wave function obeys the following Schrodinger equation,

(
− ℏ2

2µ
∆+ U − E

)
ΨJM (E, r) = 0, (4.17)

where,

U(r) =
∑

i<j

Uij(r) (4.18)

is the sum of all the two-body potentials that describe the interactions between the
particles i and j. When one substitutes the expansion (4.16) into the Schrodinger equa-
tion(4.17), one arrives at the following infinite system of coupled hyperradial equations,

[
∂2r + k2 − λ(λ+ 1)

r2

]
uJ[L](E, r) =

∑

[L′]

V J
[L][L′](r)u

J
[L′](E, r), (4.19)

where the parameter k =
√

2µE/ℏ2 can be called hypermomentum, the parameter

λ = L+
3

2
(N − 2), (4.20)

which is the integer for an even number of particles and half-integer for an odd N, is the
generalization of the orbital angular momentum [59]. The potential-matrix elements are
obtained by integrating U(r) with the hyperharmonics over all the hyperangles:

V J
[L][L′](r) =

2µ

ℏ2
⟨Y JM

L |U(r)|Y JM
L′ ⟩. (4.21)

The required boundary conditions for the differential equations (4.19) are,

uJ[L](E, r)→ 0 r → 0, (4.22)

and the solutions must be regular at the origin.

The summations in (4.16) and (4.19) runs up to infinity, hence, the equations are trun-
cated at some [Lmax], then the number N of equations in the system (4.19) are finite
and each of its solutions becomes a column matrix of a finite length N .
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The only considered solutions are regular column-solutions. There are (N ) linearly
independent regular columns that can be combined in the form of a square (N × N )
matrix. This square matrix ϕ asymptotically behaves as a superposition of the incoming
and outgoing waves,

W (in/out) =




h
(∓)
λ1

(kr) 0 · · · 0

0 h
(∓)
λ2

(kr) · · · 0
...

...
. . .

...

0 0 · · · h
(∓)
λN

(kr)




(4.23)

i.e,
ϕJ(E, r) −−−→

r→∞
W (in)(E, r)f (in)J(E) +W (out)(E, r)f (out)J(E), (4.24)

where now f (in/out)J(E) are the N -body Jost matrices for the states with the total
angular momentum J. They are found as the asymptotic values,

f (in/out)J(E) = lim
r→∞

F (in/out)J(E, r), (4.25)

of the functions F (in/out)J(E, r), that are in this way,

ϕJ(E, r) =W (in)(E, r)F (in)J(E, r) +W (out)(E, r)F (out)J(E, r), (4.26)

and obey the same system of differential equations,

∂rF
(in)J = − 1

2ik
W (out)V J

[
W (in)F (in)J +W (out)F (out)J

]
, (4.27)

∂rF
(out)J =

1

2ik
W (in)V J

[
W (in)F (in)J +W (out)F (out)J

]
, (4.28)

with the boundary conditions

lim
r→0

jλ(kr)F
(in/out)J
[L][L′] (E, r)

jλ′(kr)
=

1

2
δ[L][L′]. (4.29)

The physical wave function can now be constructed using fundamental matrix4.26,

uJ[L](E, r) =W (in)(E, r)F (in)J(E, r)C +W (out)(E, r)F (out)J(E, r)C

= ϕJ(E, r)C

=
∑

[L′]

ϕJ[L][L′](E, r)C[L′] (4.30)

The alternative form of differential equations can be used to calculate the Jost matrices
the same way as it mentioned in Chapter.2. We introduce the linear combination of the
matrices (4.23)

j = diag{jλ1(kr), jλ2(kr), ...., jλN (kr)} (4.31)

n = diag{nλ1(kr), nλ2(kr), ...., nλN (kr)} (4.32)
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as well as the combinations of the unknown matrices,

AJ(E, r) = F (in)J(E, r) + F (out)J(E, r), (4.33)

BJ(E, r) = i[F (in)J(E, r)− F (out)J(E, r)], (4.34)

which obey the alternative system of differential equations,

∂rA
J = −1

k
nV J

(
jAJ − nBJ

)
(4.35)

∂rB
J = −1

k
jV J

(
jAJ − nBJ

)
(4.36)

with the boundary conditions,

lim
r→0

jλ(kr)A
J
[L][L′](E, r)

jλ′(kr)
=

1

2
δ[L][L′], lim

r→0

jλ(kr)B
J
[L][L′](E, r)

jλ′(kr)
= 0. (4.37)

4.3.1 Bound states and Resonance states

It is already mentioned in Chapter2 section2.3 that the spectral points En (bound and
resonant states) are those at which the physical solution has only outgoing waves in its
asymptotic,hence,

W (in)(En, r)f
(in)J(En, r)C = 0. (4.38)

This condition also implies that,

∑

[L′]

fJ[L][L′](En)C[L′] = 0, (4.39)

and this condition has non-trivial solution if and only if,

det f (in)J(En) = 0. (4.40)

The roots of Eq.4.40 are the discreet spectral points. The negative real energies , En <
0, which lie on the physical Riemann sheet are associated with the bound states and
corresponds with the positive imaginary momentum,

kn =
√

2µEn/ℏ2 = iκn.

The resonance states energies are complex with positive real and negative imaginary,

En = Er −
i

2
Γ, Er > 0, Γ > 0,

located on the unphysical sheet of the Riemann surface.

4.3.2 Virtual and sub-threshold resonances
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The virtual states, at times referred to as anti-bound states, are the other spectral points
located at real negative energies ,En < 0, on the unphysical sheet on the Riemann surface
[59]. The corresponds to the pure imaginary negative momenta,

kn = −i
√

(2µ/ℏ2)|En|, (4.41)

opposite to the bound states on the complex momentum plane. They are only possible
for zero angular momentum, ℓ = 0.

Mathematically, virtual states and resonance states corresponds to a wave function with
the same exponential growing asymptotic, hence they no difference between them theo-
retically. Physically there is a difference between the virtual states and resonance states.
A virtual state happens at a negative collision energy, Er < 0, with a zero width, Γ,
compare to resonance states. The resonances spectral points in most cases bends to-
wards the imaginary axis and continues toward infinity with Er → −∞ and Γ→∞. We
call this type of points with the negative Er the sub-threshold resonances. This spectral
points were briefly discussed on Chapter2 Section2.3.4 and shown on Figure2.4.

4.3.3 Complex rotation

It is known from Chapter2 that starting with a two-body radial Schrodinger equation
in its ordinary form, the Jost function for a long-range potential can be defined for
only Im{p} ≥ 0[44]. Without repeating the reasons given in Section2.3.1, the limits of
equations (4.25) can be obtained. We can state that if the integration of the differential
equations(4.27 and 4.28) is done along the real r-axis and the real energy axis, the bound
states energies are obtained without a problem.

At complex energies, these limits(4.25) along the real r-axis do no exists simultane-
ously.The complex rotation of the coordinate r is employed to circumvent the difficulty
caused by this Riccatti-Hankel functions,

h±λ (kr) −−−−−→|kr|→∞
∓ exp[±i(kr − λπ/2)]. (4.42)

In equations (4.27 and 4.28) we replace the real hyperradius with a complex one,i.e,

r′ = r expiθ, r ≥ 0, 0 ≤ θ ≤ π

2
,

hence we have the following system of first-order differential equations matrix elements,

∂rF
in
[L][L′](E, r

′) = −
h+λ (kr

′)

2ik

∑

[L′′]

V J
[L][L′′](kr

′)

×
[
h
(−)
λ′′ (kr

′)F in
[L′′][L′](E, r

′) + h
(+)
λ′′ (kr

′)F out
[L′′][L′](E, r

′)
]
,

∂rF
out
[L][L′](E, r

′) = +
h−λ (kr

′)

2ik

∑

[L′′]

V J
[L][L′′](kr

′)

×
[
h
(−)
λ′′ (kr

′)F in
[L′′][L′](E, r

′) + h
(+)
λ′′ (kr

′)F out
[L′′][L′](E, r

′)
]
. (4.43)
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Thus, we are able to access the resonance states energies on the fourth quadrant of the
complex momentum p-plane.

4.4 The minimal Approximation

The system 4.19 consists of an infinite number of equations and in order to use it in
numerical calculations, we have to truncate it somewhere. In order to achieve this,
the minimal approximation method can be used. This corresponds to the minimal
(n = 0) value of the grand orbital number and is called the hypercentral approximation,
[L] = [Lmin].

The total potential can be expanded in terms of the Hyperspherical harmonics basis,

V (r) =
∑

[L]=[Lmin]

U[L](r)Y[L](Ω). (4.44)

In general, realistic or phenomelogical nuclear potentials are not hypercentral. An im-
portant property of hypercentral potentials is that in the ground state the grand orbital
L takes its minimal value. Hence,the minimal value of L is obtained when the particles
fill the lowest shells.
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Chapter 5

The Lambda-nucleus systems

This chapter presents the first part of the results of Ref.[54], which is the first of the two
articles that this thesis is based on. The two-body multichannel Jost matrices method
described in chapter 3 is used in this study.

The single channel Jost matrices are used to calculate the spectral points (bound states
and resonance states) for various ΛA-hypernucleus systems. The calculated bound states
were also used to calculate the S-matrix residues as well as their corresponding asymp-
totic normalization and nuclear vertex values.

5.1 The single channel Jost method

The single channel radial part, uℓ(E, r), of the ΛA-wave function, ψℓm(r⃗ ) = uℓ(E, r)Yℓm(ˆ⃗r )/r,
obeys the Schrödinger equation,

[
∂2r + k2 − ℓ(ℓ+ 1)

r2
− U(r)

]
uℓ(E, r) = 0 , (5.1)

where k =
√
2µE, U(r) = 2µV (r), and µ is the Λ-nucleus reduced mass. This second-

order equation is equivalent to the system of two first-order equations (see, for example,
Refs.[42, 43]),

∂rF
(in)
ℓ = −

h
(+)
ℓ (kr)

2ik
U
[
h
(−)
ℓ (kr)F

(in)
ℓ + h

(+)
ℓ (kr)F

(out)
ℓ

]
, (5.2)

∂rF
(out)
ℓ =

h
(−)
ℓ (kr)

2ik
U
[
h
(−)
ℓ (kr)F

(in)
ℓ + h

(+)
ℓ (kr)F

(out)
ℓ

]
, (5.3)

where h
(±)
ℓ (kr) are the Riccati-Hankel functions, and the solution of Eq. (5.1) is obtained
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from F
(in/out)
ℓ (E, r) as follows:

uℓ(E, r) = h
(−)
ℓ (kr)F

(in)
ℓ (E, r) + h

(+)
ℓ (kr)F

(out)
ℓ (E, r) . (5.4)

Simple boundary conditions,

F
(in)
ℓ (E, 0) = F

(out)
ℓ (E, 0) =

1

2
, (5.5)

guarantee that the wave function, uℓ(E, r)−→
r→0

jℓ(kr), is regular at r = 0. Here jℓ =

[h
(−)
ℓ +h

(+)
ℓ ]/2 is the Riccati-Bessel function. Asymptotically, the functions F

(in/out)
ℓ (E, r)

converge to the Jost functions f
(in/out)
ℓ (E),

F
(in/out)
ℓ (E, r) −→

r→∞
f
(in/out)
ℓ (E) , (5.6)

which gives

uℓ(E, r) −→
r→∞

h
(−)
ℓ (kr)f

(in)
ℓ (E) + h

(+)
ℓ (kr)f

(out)
ℓ (E) . (5.7)

The discrete states and the corresponding energies Ed (spectral points) are found under
the condition that only the outgoing wave remains in the asymptotic form (5.7),

f
(in)
ℓ (Ed) = 0 . (5.8)

For any given energy E the Jost functions f
(in/out)
ℓ (E) are obtained by numerically

solving Eqs. (5.2,5.3), starting at r = 0 with the values (5.5), up to a distance where the
potential vanishes (which makes the right hand sides of these equations zero). In this
way the spectral points Ed can be easily located

The partial wave S-matrix is the ratio

sℓ(z) = f
(out)
ℓ (z)

[
f
(in)
ℓ (z)

]−1
(5.9)

and therefore is singular at each Ed.

The Jost functions f
(in/out)
ℓ (E) depend on the energy via the momentum k. Since in

the momentum-energy relation, k = ±
√
2µE, there are two possibilities for choosing the

sign, the Jost functions are double valued and thus are defined on a two layer Riemann
surface. This surface has a branch point at E = 0 and a cut along the positive real axis
where the two sheets are connected (as is illustrated in Fig. 2.2).

5.2 Lambda-nucleus potential model
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As we said before, there are too few experimental data for constructing a sophisticated
ΛN or ΛA potential. For the purposes of doing some estimates that would be useful
in nuclear astrophysics, it is sufficient to take into account the most general features
of the Λ-nucleus interaction. Apparently, the potential should be attractive (because
the hypernuclei exist) and proportional to the density and size of the nucleus. The
strength of such a potential can be adjusted to reproduce experimentally known (see
Refs. [73] and [53]) binding energies of the ground states of the hypernuclei. All possible
spin effects in the interaction are smaller than the uncertainties in the shape and in the
parameters of the central part of the potential. We therefore ignore such effects and,
following Ref. [53], use the interaction of the Woods-Saxon type:

V (r) =
V0

1 + exp

(
r −R
d

) , (5.10)

where R = r0A
1/3 with r0 = 1.1 fm, and d = 0.6 fm. The values of the strength parameter

V0 obtained in Ref. [53], which fit the ground-state ΛA energies for a set of core-nuclei
(6 ⩽ A ⩽ 207), are given in Table 5.1. In our calculations, we used the same parameters.

5.3 Results and discussions

In this study, several ΛA-hypernucleus systems presented on Table 5.2 were studied in
order to obtain their respective spectral points.

The first-order system of coupled-differential equation for Jost functions with the po-
tential (5.10) were solved numerically from rmin = 10−5 fm to rmax = 30 fm.The Jost
functions solutions for a given value E of energy were obtained, whereby they converges
to a constant values at rmax. For each of the hypernuclei listed in Table 5.1, varying
E and using the Newton’s method (see, for example, Ref. [74]), we located the spectral

points E (bound states and resonance states), where f
(in)
ℓ (E) = 0. These spectral ener-

gies(bound states) are given in the second columns of Tables 5.2,5.3,5.4. The resonance
states energies were also calculated and presented on the third and fourth columns of
Table 5.5,5.6.

For the given hypernuclei, we found all possible bound states within the two-body (Λ-
core) model with the potential (5.10). In order to check if no bound state is missing, we
used the Chew-Frautschi plots [75] (spectral points on the E − ℓ plane). An example of
such a plot for the heaviest hypernucleus in our list, 208

ΛPb, is shown in Fig. 5.1. Each
curve begins at an S-wave state. Actually, each Chew-Frautschi curve corresponds to a
separate Regge trajectory on the complex ℓ-plane. The thick dots shown in Fig. 5.1, are
the bound states. Each curve continues into the domain of positive energies, where the
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A+1
ΛZ V0 (MeV) |E| (MeV)

7
ΛLi 29.65 5.58
7
ΛBe 28.73 5.16
8
ΛHe 30.66 7.16
8
ΛLi 29.96 6.80
8
ΛBe 30.04 6.84
9
ΛLi 31.31 8.50
9
ΛBe 28.01 6.71
9
ΛB 30.95 8.30

10
ΛBe 30.81 9.11
10
ΛB 30.44 8.90

11
ΛB 31.36 10.24

12
ΛB 31.97 11.37

12
ΛC 31.00 10.75

13
ΛC 31.42 11.69

15
ΛN 32.45 13.59

16
ΛO 30.15 12.51

40
ΛCa 31.40 20.01
89
ΛZr 30.07 22.99

208
ΛPb 31.20 27.00

Table 5.1: Strength parameters V0 of the potential(5.10) and the corresponding energies
of the ground states for a set of the ΛA-hypernuclei. In the nuclear notation, the
superscript is the total number of baryons (including the Λ-particle).

plot includes the resonance spectral points. As is seen, the pattern of the dots includes
any additional bound states for the hypernucleus 208

ΛPb.

It should be noted, however, that the two-body model is a simplification. In actual
physical systems the core nucleus can be in any of its excited states. If these excitations
are taken into account, then each of the dots shown in Fig. 5.1, is split into several states
(above this dot).This means that there are more parallel Chew-Frautschi lines, than are
plotted. Such a description, however, is outside of our model.

After finding the bound states, we calculated the residue of the S-matrix at each of them
and the corresponding NVC’s and ANC’s. The residue was obtained as the ratio

Res [sℓ(E), E ] =
f
(out)
ℓ (E)[

d

dE
f
(in)
ℓ (E)

]

E=E

≈
2ϵf

(out)
ℓ (E)

f
(in)
ℓ (E + ϵ)− f (in)ℓ (E − ϵ)

, (5.11)

with ϵ = 10−9MeV. Then the squares of the NVC’s and ANC’s were found using the
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Figure 5.1: Chew-Frautschi plot of the two-body bound states generated by the potential
(5.10) for the hypernucleus 208

ΛPb.

relations (5.12,5.13).

Gab→dGd→ab =
iπ

µκd
Res [sℓ(z), Ed] (5.12)

and,

Res [sℓ(E), Ed] = (−1)ℓκd
µ
A2

ℓ . (5.13)

Thus obtained results are given in Tables 5.2,5.3,5.4. For the ANC’s, we give the absolute
values. Actually, the Aℓ can be multiplied by any complex number z, such that |z| = 1,
without changing the wave function normalization. It is a matter of convention that
ANC is real and for the ground state the wave function (having no nodes) approaches
zero at large distances from above (Aℓ > 0). Then for the first excited state (with one
node) it approaches zero from below (Aℓ < 0), etc.

For the sake of comparison, Tables 5.2,5.3,5.4 also include (where available) the NVC’s
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and ANC’s obtained in Ref. [53]. It is seen that the differences are minor.

5.4 Conclusions

In this work, we calculated the S-matrix residues as well as the corresponding Nuclear-
Vertex and Asymptotic-Normalization constants (NVC’s and ANC’s) for the bound
states of a wide range of hypernuclei within a two-body (Λ plus nuclear core) model.
This was done via a direct numerical evaluation of the Jost functions.The ANC’s and
the so called vertex constants within our method are found via calculating the residues
of the S-matrix at the bound-state poles. It turned out that for the ΛA-systems with
relatively large binding energies, our scattering lengths and the effective radii are signif-
icantly different from those reported in Ref. [53]. Our results reasonably well agree with
the NVC’s and ANC’s obtained in Ref. [53] within a completely different approach.
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A+1
ΛZ (level) |E| (MeV) Res [sℓ, E ] (fm−1) G2 (fm) |Aℓ| (fm−1/2)

7
ΛLi (1s) 5.57509 0.56811

0.73338
0.73 Ref. [53]

2.2780
2.28 Ref. [53]

7
ΛBe (1s) 5.15684 0.49406

0.66303
0.66 Ref. [53]

2.1663
2.16 Ref. [53]

8
ΛHe (1s) 7.15486 0.97455

1.0709
1.07 Ref. [53]

2.8203
2.82 Ref. [53]

8
ΛLi (1s) 6.79456 0.88114

0.99394
0.99 Ref. [53]

2.7164
2.72 Ref. [53]

8
ΛBe (1s) 6.83532 0.89140

1.0025
1.00 Ref. [53]

2.7281
2.73 Ref. [53]

9
ΛLi (1s) 8.49712 1.4812

1.4533
1.45 Ref. [53]

3.3459
3.35 Ref. [53]

9
ΛBe (1s) 6.70592 0.91699

1.0132
1.01 Ref. [53]

2.7929
2.80 Ref. [53]

9
ΛB (1s) 8.29738 1.4097

1.3996
1.40 Ref. [53]

3.2836
3.29 Ref. [53]

10
ΛBe (1s) 9.10317 1.8388

1.7058
1.71 Ref. [53]

3.6774
3.68 Ref. [53]

10
ΛB (1s) 8.88801 1.7462

1.6394
1.64 Ref. [53]

3.6052
3.61 Ref. [53]

11
ΛB (1s) 10.23707 2.5560

2.1969
2.20 Ref. [53]

4.2228
4.23 Ref. [53]

Table 5.2: The S-matrix residues, nuclear vertex-constants, and asymptotic normal-
ization constants, calculated with the potential (5.10) for a set of the lowest levels of
ΛA-hypernuclei. In the calculations, the energies and masses are measured in the units
of fm−1. In order to obtain the residues in MeV, the values given in the third column
should be multiplied by the factor ℏc = 197.327054MeV · fm.
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A+1
ΛZ (level) |E| (MeV) Res [sℓ, E ] (fm−1) G2 (fm) |Aℓ| (fm−1/2)

12
ΛB (1s) 11.36230 3.4912

2.8069
2.81 Ref. [53]

4.8198
4.83 Ref. [53]

12
ΛB (1p) 0.16495 −0.00049 0.00327 0.16461

12
ΛC (1s) 10.74421 3.0575

2.5279
2.53 Ref. [53]

4.5741
4.58 Ref. [53]

13
ΛC (1s) 11.68269 3.9924

3.1272
3.13 Ref. [53]

5.1289
5.14 Ref. [53]

13
ΛC (1p) 0.52243 −0.00366 0.01356 0.33777

15
ΛN(1s) 13.58176 6.6788

4.7577
4.77 Ref. [53]

6.4095
6.42 Ref. [53]

15
ΛN(1p) 1.99497 −0.05144 0.09561 0.90861

16
ΛO(1s) 12.50272 5.7165

4.2109
4.22 Ref. [53]

6.0618
6.07 Ref. [53]

16
ΛO(1p) 1.61479 −0.03438 0.07047 0.78418

40
ΛCa (1s) 20.00100 86.354

46.900
47.00
Ref. [53]

21.194
21.23
Ref. [53]

40
ΛCa (1p) 10.84196 −10.719 7.9072

7.93 Ref. [53]
8.7024
8.72 Ref. [53]

40
ΛCa (2s) 1.63748 0.25670

0.48725
0.48 Ref. [53]

2.1603
2.16 Ref. [53]

40
ΛCa (1d) 1.57505 0.00822 0.01591 0.39036

Table 5.3: Continuation of Table 5.2.
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A+1
ΛZ (level) |E| (MeV) Res [sℓ, E ] (fm−1) G2 (fm) |Aℓ| (fm−1/2)

89
ΛZr (1s) 22.99126 990.29

489.21
490.47
Ref. [53]

69.606
69.73
Ref. [53]

89
ΛZr (1p) 16.61716 −279.00

162.12
162.36
Ref. [53]

40.070
40.12
Ref. [53]

89
ΛZr (1d) 9.40883 13.107 10.122 10.012

89
ΛZr (2s) 7.86607 36.870

31.139
31.27
Ref. [53]

17.561
17.61 Ref. [53]

89
ΛZr (1f) 1.80713 −0.00312 0.00550 0.23345

89
ΛZr (2p) 1.00149 −0.05696 0.13482 1.15550

208
ΛPb (1s) 27.00085 53546.56

24126.79
24213.63 Ref. [53]

492.63
493.74
Ref. [53]

208
ΛPb (1p) 22.93632 −27435.30 13412.34

13465.11 Ref. [53]

367.30
368.19
Ref. [53]

208
ΛPb (1d) 18.08386 5058.43

2785.01
2797.61 Ref. [53]

167.37
167.83
Ref. [53]

208
ΛPb (2s) 16.42311 8903.42

5143.82
5165.33 Ref. [53]

227.47
228.04 Ref. [53]

208
ΛPb (1f) 12.578 −262.95 173.59 41.786

208
ΛPb (2p) 10.24455 −631.96

462.27
463.64
Ref. [53]

68.190
68.32 Ref. [53]

208
ΛPb (1g) 6.5487 1.3719 1.2551 3.5532

208
ΛPb (2d) 4.0609 4.0345 4.6874 6.8666

208
ΛPb (3s) 3.40020 10.965

13.922
13.17
Ref. [53]

11.834
11.52
Ref. [53]

208
ΛPb (1h) 0.16549 −9.2635× 10−11 5.3314× 10−10 7.3231× 10−5

Table 5.4: Continuation of Tables 5.2 and 5.3.
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A+1
Λ Z(level) ℓ Er(MeV) Γ(MeV)

7
ΛLi

1 1.9178231921814795 5.1163908538293432

2 7.0606069276069174 28.999157801053936

3 11.638163884102228 65.384919028938256

7
ΛBe

1 1.9424168036962184 5.5310221529539474

2 6.8876676481683310 29.692084985143108

3 11.235793655528200 66.278091007635979

8
ΛHe

1 1.5603396764374713 3.0006274799314485

2 7.4052821915060356 23.769983469363900

3 13.127339204934087 56.556649680832756

8
ΛLi

1 1.6146122599667934 3.2781366305488095

2 7.3254019119191964 24.300966531998231

3 12.891474174341820 57.269866969899567

8
ΛBe

1 1.6087350045020326 3.2462549389647255

2 7.3349820201906200 24.240952881812046

3 12.919007493881827 57.189906299890843

9
ΛLi

1 1.1296122447854291 1.5881894726830055

2 7.4083040016184789 19.735357762597690

3 13.890120072541530 49.549412020791138

9
ΛBe

1 1.4643014823738187 2.7673557115979812

2 7.1464617631276690 22.187071910849159

3 12.934644893267391 52.879919475183407

9
ΛB

1 1.1707491071361265 1.7037782298665096

2 7.3868199993355530 19.992415559953702

3 13.795908610626590 49.900280123098064

10
Λ Be

1 0.81332083913457320 0.90332727979106042

2 7.2125657126831291 17.174399016510481

3 14.040393191605983 44.727926666720293

Table 5.5: Spectral points calculated with the potential (5.10) for a set of the ΛA-
hypernuclei at the angular momentum of ℓ = 0, 1, 2, 3....

63

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



A+1
Λ Z(level) ℓ Er(MeV) Γ(MeV)

10
Λ B

1 0.86380616880177519 1.0051058555609897

2 7.2022340122567501 17.435417523377023

3 13.959240813965808 45.090955260065954

11
Λ B

1 0.35103303774348327 0.23181785818254996

2 6.9662726857148893 14.365125723837570

3 14.215548364046471 39.680833911850392

12
Λ B

1 -0.16494636120783870 0.000000000

2 6.6376036013406612 11.931411929450753

3 14.218160705758168 35.234035112327142

12
Λ C

1 4.2182463906099997E-002 9.1926667163653875E-003

2 6.6804876801390538 12.558492403629060

3 14.099259355095148 36.149877868537963

13
Λ C

1 -0.52242817461742730 0.0000000000000000

2 6.3372032114166528 10.551024022151582

3 13.992086052501529 32.391861643802812

15
Λ N

1 -1.9949704200772127 0.0000000000000000

2 5.5305200837084731 7.1970616263067066

3 13.532085549801309 25.924404137252708

16
Λ O

1 -1.6147854310054131 0.0000000000000000

2 5.4668210517256810 7.3733350515213125

3 13.194559959641195 25.654169517172718

40
Λ Ca

3 6.0935063784045589 3.2578318586341943

4 14.334652426741114 12.947291050277592

89
Λ Zr

4 5.2892158537898641 0.99592825926590989

5 12.563777690050783 5.5544678023091389

208
Λ Pb

6 6.2170118138641133 0.28201932368002602

7 12.667829307282350 2.0339774898641125

Table 5.6: Continuation of Tables 5.5
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Chapter 6

The multi-Λ Systems

6.1 Introduction

An understanding of how the hyperons interact with nucleons and with each other is cru-
cial for developing adequate models in nuclear astrophysics. In particular, the equation
of state and the models describing the neutron stars strongly depend on the presence
of the hyperon component in these celectial bodies (see, for example, Ref. [76]). The
present work is focused on one particular aspect of the the ΛΛ-interaction. A simple
question can be asked: if many Λ-particles are placed close to each other, is it possible
for them to form a bound state? Of course, we cannot answer such a question in full.
We can only do some estimate calculations for a limited number of Λ-particles in the
system.

It is well known (see Ref. [77]) that for a two-body system the S-matrix pole, corre-
sponding to a bound state, continuously moves on the Riemann surface of the energy,
when the strength of the interaction is changing. When its strength is decreasing, the
pole moves along the negative real axis, passes through zero energy (the threshold), and
becomes either a virtual state (if the angular momentum is zero), or a resonance. It
is logical to expect that the poles of a multi-particle S-matrix behave in a similar way.
This becomes obvious, if we desribe the multi-particle system within the hyperspheri-
cal theory, because the set of the hyperradial equations is formally the same as for the
coupled partial waves in a two-body problem.

In order to get an idea how far a multi-Λ system is from being bound, the ΛΛ-potential is
multiplied by a numerical factor g > 1, and gradually increasing it, trace the movement
of the corresponding resonance pole until it reaches the threshold energy. Thus found
critical value of g (with which a bound state just appears) characterises the “readiness” of
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the system to be bound. When such a multi-Λ system is placed in an external attractive
field (inside a nucleus or a neutron star, for example), it can form a cluster there, if
that external attraction is strong enough to effectively provide the same increase of the
potential as with the critical g. In other words, the critical value of the factor g gives us
an indication to the ability of a particular multi-Λ system to form clusters inside some
bigger systems.

6.2 Theoretical framework

The multi-hyperon systems ΛΛ, ΛΛΛ, and ΛΛΛΛ will be considered in this study. The
main feature of them is that none of their subsystems can form a bound state. Sometimes
the systems with such properties are called “democratic” [78, 79, 80, 81]. This feature
simplifies the asymptotic behaviour of the corresponding wave functions that describe
possible resonances. Since there is only one decay-channel, such a wave function has the
same behaviour, when any of the Jacobi coordinates tends to infinity, namely, it behaves
as the exponential, ∼ exp(ikρ), where ρ is the hyperradius and k is the momentum asso-
ciated with the total energy. In other words, for a “democratic” system the asymptotic
behaviour of a resonance wave function has the same simplicity as for a bound state.
The only difference is that k is complex.

The simplicity of the long-range asymptotics makes it possible to introduce a many-body
analog of the Jost function. Therefore, the spectral points (either bound or resonant
states) can be located in a unified way, as zeros of the many-body Jost function (on
different sheets of the Riemann surface, of course).

The method we use here, was suggested and described in detail in Chapter4 and Ref.[44],
where the multi-neutron systems nn, nnn, and nnnn were considered in Ref.[44]. Since
neutron and Λ-particle both are neutral and both have the same spin 1/2, all the formulae
from Ref. [44] can be used here without modifications.

In essence, the method is based on the expansion of the N -body wave function (for a
given total angular momentum J) over the hyper-spherical harmonics, Y J

[L](Ω),

ΨJ(ρ,Ω) = ρ2−3N/2
∞∑

L=Lmin

Y J
[L](Ω)u

J
[L](ρ) , (6.1)

where we retain only the first term with minimal value of the grand orbital quantum
number, L = Lmin. With such “minimal” approximation, the hyperradial part of this
wave function obeys the Schrödinger equation

[
∂2ρ + k2 − λ(λ+ 1)/ρ2

]
uJ[L](ρ) =W J

[L][L](ρ)u
J
[L](ρ) , (6.2)

where k2 = 2mE (m is the Λ-particle mass), λ is an analog of the orbital angular
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momentum, (which assumes half-integer values when N is uneven),

λ ≡ L+
3

2
(N − 2) , (6.3)

the matrix W is given by

W J
[L][L′](ρ) ≡ 2m⟨Y J

[L]|
∑

i<j

Vij |Y J
[L′]⟩ , (6.4)

where the integration runs over all the hyperangles and Vij are the two-body ΛΛ-
potentials.

Formally, Eq. (6.2) looks exactly like the corresponding two-body radial equation. We

therefore can introduce the Jost functions, f
J(in/out)
[L] (E), as the amplitudes of the in-

coming and outgoing hyperspherical waves in the asymptotic behaviour of the regular
solution of Eq. (6.2),

uJ[L](ρ) −→ρ→∞
h
(−)
λ (kρ)f

J(in)
[L] (E) + h

(+)
λ (kρ)f

J(out)
[L] (E) , (6.5)

where h
(±)
λ are the Riccati-hankel functions. By definition, the spectral points are those

(complex) values of the energy E, where the asymptotics (6.5) includes only the outgoing
waves. These points can be located by finding the roots of the equation

f
J(in)
[L] (E) = 0 . (6.6)

When searching these spectral points, an appropriate sign should be chosen in front of
the square root k = ±

√
2mE in order to look for them at the physical (Im k > 0) or

non-physical (Im k < 0) sheet of the Riemann surface.

In order to calculate f
J(in/out)
[L] (E) for any given E, we transform Eq. (6.2) into an

equivalent system of first order differential equations, whose solutions asymptotically
tend to the Jost functions (the derivation can be found in Refs. [42, 43, 44]). To this
end, we look for the hyperradial wave function in the form

uJ[L](ρ) = h
(−)
λ (kρ)F

J(in)
[L] (E, ρ) + h

(+)
λ (kρ)F

J(out)
[L] (E, ρ) , (6.7)

and for the unknown functions F
J(in/out)
[L] (E, ρ) obtain the system of equations

∂ρF
J(in)
[L] = −

h
(+)
λ (kρ)

2ik
W J

[L][L]

[
h
(−)
λ (kρ)F

J(in)
[L] + h

(+)
λ (kρ)F

J(out)
[L]

]
, (6.8)

∂ρF
J(out)
[L] =

h
(−)
λ (kρ)

2ik
W J

[L][L]

[
h
(−)
λ (kρ)F

J(in)
[L] + h

(+)
λ (kρ)F

J(out)
[L]

]
, (6.9)

67

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



with the following simple boundary conditions:

F
J(in/out)
[L] (E, ρ) −→

ρ→0

1

2
. (6.10)

It can be shown [42, 43, 44] that

f
J(in/out)
[L] (E) = lim

ρ→∞
F

J(in/out)
[L] (E, ρ) . (6.11)

This means that to obtain the Jost functions for a given energy E, we need to (nu-
merically) solve the differential equations (6.8,6.9) from the boundary values (6.10) at
short distances up to a large hyperradius where the right-hand sides of these equations
vanish (because W J

[L][L](ρ) −→ρ→∞
0) and the limits (6.11) are reached. As it is shown in

Refs. [42, 43, 44], to find these limits for complex values of the energy, equations (6.8,6.9)
must be integrated along a path in the complex plane of ρ.

Apparently, all the above equations are also applicable for a two-body system (N = 2).
In such a case we obtain the ordinary expansion over the spherical harmonics. If the
potential is spherically symmetric, then the partial waves are not coupled to each other,
and the “minimal” (S-wave) approximation becomes exact with Lmin = 0.

6.3 ΛΛ-Potential model

It is clear that there are no (and most probably cannot be) experimental data on the
ΛΛ-scattering. The corresponding interaction potential is therefore deduced from the
quark-theories. Its validity can only be checked indirectly, via the calculations of the
properties of the double-Λ hypernuclei.

The present calculations made here can only be viewed as just a rough estimate, a
simple 1S0 ΛΛ-potential of this kind proposed in Ref. [82] is also used here. It allowed
the authors of that paper to rather well reproduce experimental binding energies of the
light double-Λ hypernuclei. The potential is made of the two gaussian terms:

VΛΛ(r) = Ae−ar2 −Be−br2 , (6.12)

with A = 200.0MeV, B = 130.8MeV, a = 2.776 fm−2, and b = 1.062 fm−2.

This potential describes a weak attraction between the Λ particles at the intermediate
distances (few fm). This attraction is, however, insufficient to bind the particles. The
ΛΛ potentials can only generate the virtual state, which is given in the Table 6.1.

In order to artificially increase the attractive force, we multiply the potential by a factor
g > 1:

VΛΛ(r) → gVΛΛ(r) . (6.13)

By increasing and decreasing g, we can move the spectral points on the Riemann surface.
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6.4 ΛΛΛ and ΛΛΛΛ Potential model matrices

As was already mentioned, the quantum numbers of possible multi-Λ systems are exactly
the same as for the corresponding multi-neutron ones considered in Ref. [44]. Based
on that analysis, we conclude that the lowest possible multi-Λ states are: ΛΛ(0+) with

λ = 0; ΛΛΛ(12
−
) with λ = 5/2; ΛΛΛΛ(0+, 1+, 2+) with λ = 5. The corresponding matrix

elements, W J
[L][L](ρ), of the collective potential can be obtained using the same formulae

that are given in Sec. 3 of Ref. [44]. The general form of the matrix elements for three
and four Lambda (Λ) systems will then be given by,

W
(ΛΛΛ,1/2−)
[Lmin][Lmin]

(r) =
48

π

∫ π/2

0
sin4 θ cos2 θVΛΛ(

√
2r cos θ)dθ (6.14)

W
(ΛΛΛΛ,0+)
[Lmin][Lmin]

(r) =
105× 33

8× 16

∫ π/2

0
sin5 θ cos2 θ

(
4 cos4 θ − 4 cos2 θ sin2 θ

+
13

4
sin4 θ

)
× VΛΛ(

√
2r cos θ)dθ (6.15)

W
(ΛΛΛΛ,1+)
[Lmin][Lmin]

(r) =
105× 33

64

∫ π/2

0
sin9 θ cos2 θVΛΛ(

√
2r cos θ)dθ (6.16)

W
(ΛΛΛΛ,2+)
[Lmin][Lmin]

(r) =
105× 33

80

∫ π/2

0
sin5 θ cos2 θ

(
cos4 θ +

25

16
sin4 θ

)

× VΛΛ(
√
2r cos θ)dθ. (6.17)

6.5 Results and discussion

The spectral points, nearest to the threshold energy, found for the two-,three-, and four-
Λ systems, are given in Table 6.1. In the case of two Λ-particles, it is a virtual state.
WhenN > 2, the effective angular momentum λ in Eq. (6.2) is non-zero and therefore the
virtual states are not possible. Instead of them, we found the near-threshold resonances
with very large widths. Of course the “minimal” approximation, L = Lmin, diminishes
the predictive power of our results. In other words, the actual positions of the resonances
on the Riemann surface of the energy may be different from those given in Table6.1.
However, it should be mentioned that in hyperspherical calculations of the light nuclei
the “minimal” approximation always underestimates their binding (see, for example,
Ref. [79]). As was pointed out in Ref. [81], for a resonance, the decay in the states with
L > Lmin is suppressed due to the large centrifugal barrier, λ(λ + 1)/ρ2. Besides this,
the contribution from all higher hyperharmonics can effectively be taken into account
by an additional term in W J

[Lmin][Lmin]
(ρ). This means that such an effective potential

should be more attractive. As we see, an increase of the attraction drives the resonances
up (i.e. reduces their widths). Based on this,we conclude that the widths given in Table
6.1, should be considered as the upper bounds for them.
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state E (MeV) for g = 1 g for E = 0

ΛΛ(0+) −2.361 (virtual) 1.461

ΛΛΛ(12
−
) 0.219− i

2
22.128 3.449

ΛΛΛΛ(0+) 2.378− i

2
31.173 3.018

ΛΛΛΛ(1+) 0.708− i

2
46.515 4.360

ΛΛΛΛ(2+) 0.973− i

2
47.123 3.419

Table 6.1: Virtual and resonant states of the multi-Λ systems, generated by the potential
(6.12), as well as the critical values of the echancing factor g in (6.13) with which a bound
state just appears (E = 0).

6.6 Conclusion

Gradually increasing the enhancing factor g from its physical value, g = 1,we found the
critical values of g at which the spectral points pass the threshold and become bound
states. These values are listed in the last column of Table 6.1. The corresponding
trajectories of the resonance spectral points for the considered multi-Λ states are shown
in Figs.6.1, 6.2, 6.3, and 6.4. The sequences of the points in these figures are shown
for a uniform increase of g by 0.1, g = 1.0(lowest point), 1.1, 1.2, ... etc. Using the same
reasoning as for the widths, it can be said that the critical values of g found, are the
upper limits for them.

As is seen, one can move from the system ΛΛΛ to the system ΛΛΛΛ, the minimal critical
value of g is decreasing. This fact may be (speculatively) interpreted as a tendency and
an indication that a large enough system of Λ-particles could be bound.
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Figure 6.1: Movement of the 3Λ resonance when the enhancing factor g in (6.13) is
increased from 1 to 3.4 with the uniform step 0.1. The points corresponding to integer
values of g (1,2, and 3) are shown in a bigger size.
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Figure 6.2: Movement of the 4Λ resonance 0+ when the enhancing factor g in (6.13) is
increased from 1 to 3 with the uniform step 0.1. The points corresponding to integer
values of g (1,2, and 3) are shown in a bigger size.
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Figure 6.3: Movement of the 4Λ resonance 1+ when the enhancing factor g in (6.13) is
increased from 1 to 4.3 with the uniform step 0.1. The points corresponding to integer
values of g (1,2,3, and 4) are shown in a bigger size.
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Figure 6.4: Movement of the 4Λ resonance 2+ when the enhancing factor g in (6.13) is
increased from 1 to 3.4 with the uniform step 0.1. The points corresponding to integer
values of g (1,2, and 3) are shown in a bigger size.
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Chapter 7

Recovery of the two-body
Potential from a given
wavefunction

7.1 Introduction

In many publications dealing with the few-body problems, it is a commonplace to say
that a three-body system can reveal some additional information about the two-body
subsystems involved. It is however difficult to find any practical implementation of such
a statement. At the most, the few-body calculations are used to test how good the
guess of the unknown two-body forces is. In contrast to this, in the present paper, we
suggest a way to directly obtain the two-body potential, using available information on
a three-body system where the two bodies in question are included.

What kind of the three-body information are we speaking about? Suppose we want to
find out how the particles A and B interact with each other. However for some reason
it is not possible to study the AB-scattering. At the same time we know the potentials
that describe the interactions of these particles with a third particle, C, and they form
a bound state (ABC) whose energy can be determined experimentally. As we will show
shortly, in such a situation, in order to obtain the AB-potential, we need to know the
three-body wave function. Of course, one cannot calculate the (ABC) wave function
if all the two-body forces keeping this system together, are not known. Very often,
however, one can make a reasonable assumptions as to the size of the system and its
density distribution. Guessing the wave function in this way, one then can obtain a
reasonable guess for the two-body potential.
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In some cases, when the AB scattering data are not available this might be the only way
to “derive” the AB-potential from the corresponding three body experimental data. In
the present paper, as an example, we look for the singlet ΛΛ potential.

The advantage of such an approach is that thus constructed potential generates the
bound state at exactly the given experimental energy. At this point it should be em-
phasized that the method we are proposing here is not intended to compete with the
sophisticated approaches developed in the inverse scattering theory. Our goal is much
more modest. What we are trying to do is to roughly find the shape of the potential
when very little is known about it. We therefore cannot hope to deduce the correct an-
gular dependence of the potential if it is non-central, i.e. we assume that the potential is
spherically symmetric, V (r⃗ ) ≡ V (r). Due to the same reason it is logical to approximate
the wave function by its dominant component.

7.2 Two-body Model

To begin with, let us obtain the potential V that binds a two-body system with the
reduced mass µ, assuming that we know the bound-state wave function, ψ(r⃗ ) = ⟨r⃗ |ψ⟩,
and the corresponding energy E. The state vector |ψ⟩ obeys the Schrödinger equation,

V |ψ⟩ = (E −H0)|ψ⟩ , (7.1)

where H0 is the free-motion hamiltonian. Writing this equation in the coordinate rep-
resentation, we immediately find the potential,

V (r⃗ ) =
1

ψ(r⃗ )

(
E − ℏ2

2µ
∆

)
ψ(r⃗ ) . (7.2)

In principle, Eq. (7.2) gives us a recipe to deduce a non-central potential, if we know
E and the corresponding complete wave function depending on the three-dimensional
vector r⃗. However, as was mentioned above, we are only intended to look for the general
properties of an unknown potential using an approximate wave function and therefore
will ignore various fine details of it. This means that among all possible partial-wave
components of ψ we only use the dominant one,

ψ(r⃗ ) =
∑

[ℓ′]

R[ℓ′](r)Y[ℓ′](ˆ⃗r ) ≈ R[ℓ](r)Y[ℓ](ˆ⃗r ) , (7.3)

where R[ℓ] is the radial wave function; the multi-index [ℓ] ≡ {ℓ, s, J,M} includes the
orbital angular momentum ℓ, the two-body spin s, the total angular momentum J , and
its third component M ; the symbol ˆ⃗r represents the spherical angles of vector r⃗; and
Y[ℓ](ˆ⃗r ) is the spin-angular part of the wave function in a single partial wave,

Y[ℓ](ˆ⃗r ) =
∑

msz

CJM
ℓmsszYℓm(ˆ⃗r )χssz . (7.4)
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Here CJM
ℓmssz

and χssz are the Clebsch-Gordan coefficients and the two-body spin function,
respectively. Just to simplify notation, we furtherdown omit where possible the quantum
numbers J and M . For the same reason, in some places we omit even the multiindex
[ℓ]. This should not cause confusion since R(r) is supposed to describe the motion in
a single partial wave for which we are constructing a spherically symmetric potential,
V (r), acting in that state [ℓ].

Formally, we can get rid of the angular dependence by projecting Eq. (7.1) onto a
particular spin-angular state,

⟨Y[ℓ]|V |ψ⟩ = ⟨Y[ℓ]|(E −H0)|ψ⟩ , (7.5)

which replaces Eq. (7.2) with

V (r) = E − ℏ2ℓ(ℓ+ 1)

2µr2
+

ℏ2

2µR(r)

[
2

r
R′(r) +R′′(r)

]
, (7.6)

where all unnecessary subscripts are omitted and the prime means the derivative with
respect to r.

It should be noted that since the bound-state wave function R(r) is a factor in both
the numerator and denominator of Eq. (7.6), the normalization of this function can be
arbitrary.

7.2.1 Example of recovering Coulombic potential

Let us check if we can recover the Coulomb potential with the help of Eq. (7.6), starting
with exactly known wave function of the ground state of the hydrogen atom,

ψ100(r⃗ ) =
2

a
3/2
0

exp

(
− r

a0

)
Y00(ˆ⃗r ) , (7.7)

where

a0 =
ℏ2

µe2
.

The function ψ100 describes the state with ℓ = 0 and the energy

E = −µe
4

2ℏ2
= − e2

2a0
.

When evaluating the derivatives in Eq. (7.6), we can use non-normalized radial part of
the function (7.7),

R(r) = e−r/a0 . (7.8)

Performing the differentiations, we obtain:

V (r) = − e2

2a0
− ℏ2

µa0r
+

ℏ2

2µa20
= −e

2

r
, (7.9)
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as was expected.

7.2.2 Numerical example to recover the triplet NN−potential

In Sec. 7.2.1 it has been demonstrated how Eq. (7.6) works in the simplest case when all
the derivations can be done analytically, which allows us to trace all the steps and to see
mutual cancellations of some extra terms. How would this work if analytic derivations
were not possible? Can the potential be accurately recovered if the derivatives are
evaluated numerically? Do the extra terms still cancel each other? To answer these
questions, we consider here another example, namely, the triplet NN -potential that
generates the proton-neutron bound state, i.e. the deuteron.

r (fm)

V (MeV)

potential

probability density

0.05

0.10

0.15

[R(r)]2

1 3 4

100

80

60

40

20

0

−20

−40

−60

−80

Figure 7.1: Triplet Malflied-Tjon potential (7.10) and the radial probability density,
R2(r) [fm−3], for the S-wave bound state generated by this potential.

Let us consider the system consisting of a proton and a neutron. When their spins are
parallel and the total spin is 1 (the triplet state), the attaraction between these two
nucleons is sufficient to bind them in a stable nucleus, the deuteron, with experimentally
known binding energy 2.224566MeV [83] and the RMS-radius 2.128 fm [84].

It is not our intention to accurately describe the deuteron. Its energy and size for us
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are merely the reference characteristics of a quantum state for which we are going to
artificially construct a wave function and then to generate the corresponding two-body
potential.

In order to do the test, we choose a simple NN -potential, numerically obtain the
deuteron wave function, and using this wave function try to numerically recover the
NN -potential from which we started. As such a potential, we use the triplet NN -
potential proposed by R. A. Malfliet and J. A. Tjon in Ref. [85] (its slightly modified
parameters, which we use, are given in Ref. [86]). It is a combination of two Yukawa
terms,

V (r) = −λA
e−µAr

r
+ λR

e−µRr

r
, (7.10)

where λA = 626.885MeV, λR = 1438.72MeV, µA = 1.55 fm−1, µR = 3.11 fm−1, and it
is assumed that ℏ2/mN = 41.47MeV · fm2 with mN being the nucleon mass.

This potential supports an S-wave bound state with E = −2.2307MeV and the RMS-
radius 1.985 fm. The Malflied-Tjon potential and the radial dependence of the prob-
ability density for the bound state, are shown in Fig. 7.1. For locating the bound
state and calculating its wave function, we used the Jost-function method described in
Refs. [42, 43].

Numerically obtained radial wave functionR(r) was used then in Eq. (7.6) to re-construct
the potential. Thus recovered potential turned out to be practically indistinguishable
from the one shown in Fig. 7.1.

In the examples that we used so far the wave function was known or calculated exactly.
The main idea of the method we propose here is to uncover general features of a com-
pletely unknown potential, when the bound state energy is known and one can guess the
space distribution of the probability density. Therefore a question arises: how stable is
the method to unavoidable deviations of the guessed wave function from the unknown
exact one? To shed some light on this, let us examine how significant would be the
changes in the potential if we slightly distort the wave function of the deuteron.

As a distorted radial wave function, we use the following parametrization (this function
is not normalized):

R(r) =
r

r0
arctan

[
4(r/r0)

2
]
e−3r/r0 +

6r0
πr

arctan
[
(r/r0)

2
]
exp

(
−
√

2µ|E|
ℏ2

r

)
, (7.11)

where r0 = 1 fm and E = −2.2307MeV is the same as for the Malfliet-Tjon potential.
Since κ =

√
2µ|E|/ℏ2 = 0.2319 fm−1 ≪ 3 fm−1, the first term in Eq. (7.11) vanishes

much faster when r →∞, and thus this function has the correct asymptotic behaviour
determined by the second term.

The radial probability distributions, [R(r)]2, for the Malflied-Tjon deuteron model and
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Figure 7.2: Triplet Malflied-Tjon potential (7.10) and the corresponding probability
density for the deuteron (dashed curves) are compared with a “hand-made” density
(solid curve) and the corresponding potential that was obtained from it (solid curve).

for the normalized distorted function, are shown in Fig. 7.2. The distorted function
(7.11) near the origin vanishes faster, but is slightly above the Malflied-Tjon one at large
distances (the latter is not visible in the figure). As a result the distorted probability is
shifted to the right, and the RMS-radius is a bit larger, namely, 2.071 fm (which is a bit
closer to the experimental value, 2.128 fm [84], by the way).

If we denote
A(r) =

r

r0
arctan

[
4(r/r0)

2
]

(7.12)

and

B(r) =
6r0
πr

arctan
[
(r/r0)

2
]
, (7.13)

then
R(r) = A(r)e−3r/r0 +B(r)e−κr , (7.14)

R′(r) =

[
A′(r)− 3

r0
A(r)

]
e−3r/r0 +

[
B′(r)− κB(r)

]
e−κr , (7.15)
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and

R′′(r) =

[
A′′(r)− 6

r0
A′(r) +

9

r20
A(r)

]
e−3r/r0 + (7.16)

+
[
B′′(r)− 2κB′(r) + κ2B(r)

]
e−κr ,

where the derivatives of the auxiliary functions are:

A′(r) =
1

r
A(r) +

8r0r
2

r40 + 16r4
, (7.17)

A′′(r) =
1

r
A′(r)− 1

r2
A(r) + 16r0r

r40 − 16r4

(r40 + 16r4)2
, (7.18)

B′(r) = −1

r
B(r) +

12r30
π(r40 + r4)

, (7.19)

B′′(r) =
1

r2
B(r)− 1

r
B′(r)− 48r30r

3

π(r40 + r4)2
. (7.20)

Substituting the above R, R′, and R′′ in Eq. (7.6), we obtain the potential, V (r), for
which the function (7.11) is an exact solution of the radial Schrödinger equation with
the binding energy |E|. For the sake of comparison, we choose |E| = 2.2307MeV, i.e.
the same as for the potential (7.10), but in principle we can use any other value for it.

The Malflied-Tjon potential and the potential reconstructed from the distorted function
(7.11) are compared in the same Fig. 7.2. As we see, the suppression of the probability
near the origin results in a larger repulsive core (as one would expect). Despite the fact
that the analytic expression for the reconstructed potential is very complicated, there
are no drastic changes in the general features of the potential when we change the wave
function. In other words, the reconstruction procedure based on Eq. (7.6) is rather stable
against variations (errors) of the wave function.

7.3 Three-body Model

In the case of three interacting particles, the Schrödinger equation formally looks exactly
the same as Eq. (7.1), but now the operator V is the sum of three two-body potentials,

V = V12 + V13 + V23 , (7.21)
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where the subscripts are the particle labels. Let the potentials V13 and V23 be known
while the potential acting between the particles 1 and 2, unknown. It is convenient to
re-write the Schrödinger equation in the form,

V12|ψ⟩ = (E − V13 − V23 −H0)|ψ⟩ , (7.22)

where the unknown potential is separated.

✉

✉

✉1

2

3

~r

~ρ
θ

Figure 7.3: Jacobi coordinates (r⃗, ρ⃗) for the three particles 1, 2, and 3.

Let |r⃗, ρ⃗ ⟩ be the state with definite values of the Jacobi coordinates shown in Fig. 7.3.
Multiplying Eq. (7.22) by ⟨r⃗, ρ⃗ | from the left and assuming that all the potentials are
local and spherically symmetric, we obtain

V12(r)ψ(r⃗, ρ⃗ ) =

[
E − V13(r13)− V23(r23) +

ℏ2

2µr
∆r⃗ +

ℏ2

2µρ
∆ρ⃗

]
ψ(r⃗, ρ⃗ ) , (7.23)

where ψ(r⃗, ρ⃗ ) = ⟨r⃗, ρ⃗ |ψ⟩ is the wave function of the three-body bound state, µr and
µρ are the reduced masses associated with the motion along the corresponding Jacobi
coordinates, and the radial variables r13 and r23,

r13 =

∣∣∣∣
m2

m1 +m2
r⃗ + ρ⃗

∣∣∣∣ =
√(

m2

m1 +m2

)2

r2 + ρ2 +
m2

m1 +m2
rρ cos θ , (7.24)

r23 =

∣∣∣∣
m1

m1 +m2
r⃗ − ρ⃗

∣∣∣∣ =
√(

m1

m1 +m2

)2

r2 + ρ2 − m1

m1 +m2
rρ cos θ , (7.25)

are the inter-particle distances in the particle pairs (1,3) and (2,3). Here m1 and m2 are
the particle masses and θ is the angle between vectors r⃗ and ρ⃗.

Perhaps it should be reiterated once more that the method we propose here is intended
for just a very rough estimating of the unknown potential that describes the interaction
between the particles 1 and 2. When doing this we know exactly the energy, E, of the
bound state but need to guess (i.e. to construct “by hand”) the corresponding wave
function, ψ(r⃗, ρ⃗ ). Of course we can hope to make a reasonable guess only for the ground
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state and only for the main component of such a function. Similarly to Eq. (7.3), we
therefore take it as

ψ(r⃗, ρ⃗ ) ≈ R(r, ρ)Y00(ˆ⃗r )Y00(ˆ⃗ρ )χ , (7.26)

where it is assumed that all orbital angular momenta are zero and the total angular
momentum, J , is built from the particle spins,

χ = |((s1s2)s12s3)JJz⟩ . (7.27)

In order to leave in Eq. (7.23) only one “free” variable, r, which the potential V12 depends
on, we multiply this equation by ψ†(r⃗, ρ⃗ ) from the left and integrate over ρ⃗ as well as
over the spherical angles ˆ⃗r. When integrating over ˆ⃗ρ, we choose the z-component of ρ⃗
along vector r⃗. This makes the polar angle of ρ⃗ coinciding with θ. As a result, we obtain:

V12(r) = E − 1

2D(r)

∫ ∞

0
dρ

∫ π

0
dθ ρ2 sin(θ)R2(r, ρ)

[
⟨V13(r13)⟩+ ⟨V23(r23)⟩

]
+

+
ℏ2

2D(r)

∫ ∞

0
dρ ρ2R(r, ρ)

[
1

µrr2
∂r(r

2∂r) +
1

µρρ2
∂ρ(ρ

2∂ρ)

]
R(r, ρ) , (7.28)

where

D(r) =

∫ ∞

0
R2(r, ρ)ρ2 dρ (7.29)

is the two-body density of the particles 1 and 2; the symbols ⟨V13⟩ and ⟨V23⟩ denote the
averages of the corresponding potentials in the spin space, i.e.

⟨V13⟩ = χ†V13χ and ⟨V23⟩ = χ†V23χ . (7.30)

For calculating these averages, it is convenient to represent the potentials in terms of
the operators P (sij) projecting onto the states with certain values of the two-body spin,
sij , of the particles i and j,

V13(r13) =
∑

s13

V
[s13]
13 (r13)P (s13) and V23(r23) =

∑

s23

V
[s23]
23 (r23)P (s23) . (7.31)

Writing the projection operators in the form

P (s13) = |((s1s3)s13s2)JJz⟩ ⟨((s1s3)s13s2)JJz⟩ | (7.32)

and
P (s23) = |((s2s3)s23s1)JJz⟩ ⟨((s2s3)s23s1)JJz⟩ | , (7.33)

we can express the spin-averaging via the 6j-symbols (see Ref. [87]) as follows:

⟨V13(r13)⟩ =
∑

s13

V
[s13]
13 (r13)(2s12 + 1)(2s13 + 1)

{
s3 s1 s13
s2 J s12

}2

, (7.34)
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⟨V23(r23)⟩ =
∑

s23

V
[s23]
23 (r23)(2s12 + 1)(2s23 + 1)

{
s3 s2 s23
s1 J s12

}2

. (7.35)

As is seen the square of the radial wave function is present in both the numerator and
denominator of Eq. (7.28) and therefore it is not necessary to use it with the proper
normalization.

7.3.1 Recovering nn−potential from triton data

In order to test how accurately an unknown potential can be recovered with the help
of the procedure described in the preceding section, we consider the three-body bound
system nnp (triton), where all the potentials are actually known. However, we pretend
that the neutron-neutron potential is unknown and try to recover it using Eq. (7.28) and
the properties of triton.

Referring to Fig. 7.3, the proton is particle number 3 and the neutrons are particles 1
and 2. Neutron can interact with proton either in the singlet or triplet spin-state via
the potentials V s

NN and V t
NN , respectively. Due to the Pauli principle, the nn system

with ℓ = 0 can only be in the singlet state. Therefore, if our method works, then as a
result of the recovering we should obtain the singlet NN -potential for the “unknown”nn-
interaction.

In the sums (7.34, 7.35), we have s12 = 0 (nn-spin) and J = 1/2 (triton spin). The
summation involves only two terms and gives:

⟨V13(r13)⟩ =
1

4
V s
NN (r13) +

3

4
V t
NN (r13) , (7.36)

⟨V23(r23)⟩ =
1

4
V s
NN (r23) +

3

4
V t
NN (r23) . (7.37)

As the triplet NN -potential, V t
NN , we take the Malflied-Tjon one given by Eq. (7.10)

with the parameters listed just after that equation. The singlet potential, V s
NN , has

exactly the same functional form and almost all the same parameters except the first
one, namely, λA = 513.968MeV for the singlet state [86].

The main question in the proposed procedure of the unknown potential recovering is
how to make a reasonable guess of the three-body wave function. We assume that we
can only know the binding energy and perhaps (but not for sure and not always) the
RMS-radius of the three-body state.

The knowledge of the energy gives us the asymptotic behaviour of the wave function at
large distances. Indeed, it is known (see, for example,Ref. [88]) that the main contri-
bution to the asymptotics of a three-body bound-state wave function comes from the
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out-going hyper-spherical wave, namely,

R(r, ρ) −→
ζ→∞

∼ e−κζ

ζ5/2
, (7.38)

where ζ is the hyperradius,

ζ =

√
µ12
µ
r2 + ρ2 , (7.39)

and κ is the imaginary part of the momentum corresponding to the negative energy of
the bound state,

κ =

√
2µ|E|
ℏ2

. (7.40)

It is clear that the hyper-spherical wave (7.38) cannot be used as the function R at all
distances. Indeed, the right hand side of Eq. (7.38) becomes singular when ζ → 0, which
is unphysical. This problem can be circumvented by introducing a positive parameter α
in the denominator,

R(r, ρ) ∼ e−κζ

α+ ζ5/2
, (7.41)

which removes the singularity and keeps the behaviour (7.38) when α≪ ζ5/2.

The expression (7.41) is still not a satisfactory choice even as a very rough approximation
of the wave function because it is monotonically decreasing while a realistic wave function
should have a maximum somewhere at the distances corresponding to the size (RMS-
radius) of the system. Such a maximum can appear if we introduce a factor suppressing
the probability of finding the particles at short distances. The physical reason for such
a factor is the strong repulsion of the particles at distances ∼ 1 fm (the hard or soft core
in the two-body potentials). In nuclear theory such factors are known as Jastrow factors
(see, for example, chapter 3 of the book [89]).

Of course the Jastrow factor can be constructed in many different ways. We found
that for our problem of triton a good choice is the following (please take note that this
function is not normalized):

R(r, ρ) =
1

r
arctan

(
γr3/2

) e−κζ

α+ ζ5/2
. (7.42)

With the parameters γ = 0.81 fm−3/2 and α = 29.0 fm5/2 this wave function gives the
RMS-radius of triton 1.745 fm, which is within the uncertainty interval of its experi-
mental value (1.7591 ± 0.0363) fm [90]. As the binding energy of triton, we used the
experimental value, |E| = 8.481798MeV, [91].

Two things should be explained concerning the approximate wave function (7.42). Firstly,
it does not involve explicit Jastrow factors that would suppress approaching of the first
and the second neutrons to the proton. In fact, such factors are not needed because the
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Figure 7.4: The neutron-neutron potential (solid curve) numerically recovered using
Eq. (7.28) with the approximate (guessed) wave function (7.42) of triton and with its
experimentally known ground-state energy E = −8.481798MeV. For the sake of com-
parison, the singlet and triplet Malfliet-Tjon NN -potentials are shown by the upper and
lower dashed curves, respectively.

motion along both Jacobi coordinates is in the S-wave states. Therefore the proton can
approach any of the two neutrons only at the centre of mass where all three particles
meet. Such a configuration is already suppressed by the factor depending on r, and thus
no additional Jastrow factors are needed. Secondly, the function (7.42) is symmetric
only with respect to the permutations of the neutrons. This fact might be seen as vio-
lation of the Pauli principle. However, protons and neutrons, in fact, are not identical.
The isotopic invariance is an approximate symmetry. We therefore are not obliged to
construct a completely symmetric wave function.

Eq. (7.28) involves the first and second derivatives with respect to the radial variables
r and ρ. In principle, all necessary differentiation of the function (7.42) can be done
explicitly. However, to avoid cumbersome derivations and to reserve the possibility of
changing the functional form of the wave function, we calculated all the derivatives
numerically using simple finite difference formulae,

f ′(x) =
f(x+ h)− f(x− h)

2h
, f ′′(x) =

f(x+ h) + f(x− h)− 2f(x)

h2
, (7.43)

which give stable results with the step h = 10−5 fm.
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The neutron-neutron potential obtained in this way using Eq. (7.28) is shown in Fig. 7.4
by the solid curve. For the sake of comparison the singlet and triplet Malfliet-Tjon
NN -potentials are shown in that figure by the dashed curves. As is seen, the recovered
potential is almost correct, i.e. it almost reproduces the singlet potential. This successful
test allows us to hope that the proposed method can indeed give a reliable estimate of
a truly unknown potential in any other physical system even if its wave function is
constructed on the basis of general reasoning and intuition.

7.3.2 Recovering the ΛΛ−potential

Due to the obvious reasons it is not possible to study the ΛΛ-interaction in the direct
collisions of these two particles. The only experimental information from which one can
deduce some general features of the forces acting between them, is the information on the
double-Λ hypernuclei. Therefore various ΛΛ-potentials can only be constructed on the
basis of either the quark or boson-exchange theories. Validity of such potentials is tested
in the calculations of the properties of various double hypernuclei whose characteristics
are known experimentally.

Examples of the soft-core boson-exchange ΛΛ-potentials can be found in Ref. [92]. They
are known as the Nijmegen Soft-Core (NSC97) potentials. Since there are some am-
biguities in the constructing of them, several versions of such potentials are available.
For the purposes of the few-body calculations these potentials are usually simulated in
the coordinate representation by a simple functional form, VΛΛ(r), (see, for example,
Refs. [93, 94, 95]) with the parameters adjusted to make VΛΛ(r) either phase-equivalent
to the corresponding Nijmegen potentials or to exactly reproduce the measured binding
energy of the hypernucleus 6

ΛΛHe. The observation of this hypernucleus was so important
that nowadays it is known as the NAGARA event[96].

The method we are developing in the present work may also make a contribution to the
constructing of such a VΛΛ(r). Of course we do not expect to propose a very reliable
ΛΛ-potential. As it was emphasized from the very beginning, our method can only
deduce some general features of a potential, such as, for example, its approximate depth,
range,etc. However, in the case of the ΛΛ-interaction even this limited information can
be helpful in choosing the most adequate one among many available potentials.

Following the same line of reasoning as in Sec. 7.3.1, we construct the following (not
normalized) wave function of the hypernucleus 6

ΛΛHe in the three-body model ΛΛα:

R(r, ρ) = arctan
(
γr5/2

) e−κζ

α+ ζ5/2
. (7.44)

Here r and ρ are the Jacobi distances shown in Fig. 7.3,where 4He is the particle number
3, and ζ is the hyperradius (7.39). The momentum parameter (7.40) corresponds to
the binding energy of the three-body system (ΛΛα), |E| = 7.25MeV determined in the
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NAGARA experiment [96]. The other two parameters, α = 35 fm5/2 and γ = 2.5 fm−5/2,
were chosen such that the function (7.44) gives the following geometric sizes:

√
⟨r2⟩ = 3.80 fm ,

√
⟨ρ2⟩ = 2.35 fm . (7.45)

These RMS-distances are within the corresponding intervals obtained in Refs. [94, 97]
for various ΛΛ-potentials,namely,

3.09 fm ⩽
√
⟨r2⟩ ⩽ 4.09 fm , 2.11 fm ⩽

√
⟨ρ2⟩ ⩽ 2.35 fm . (7.46)

We assume that the Λα potential is known. We take it the same as in Ref. [94], namely,
as

VΛα(r) = Λ1 exp
(
−r2/β21

)
− Λ2 exp

(
−r2/β22

)
, (7.47)

where Λ1 = 450.4MeV, β1 = 1.25 fm, Λ2 = 404.9MeV, β2 = 1.41 fm. Since the spin of
the α-particle is zero, there is only one spin state in the Λα-system and therefore the
spin-averaging prescribed by Eqs. (7.34, 7.35) is trivial, i.e.

⟨V13(r13)⟩ = VΛα(r13) , ⟨V23(r23)⟩ = VΛα(r23) .

The ΛΛ-subsystem in 6
ΛΛHe is assumed to be in the S-wave state and therefore in the

singlet spin state. This means that we can only obtain the information on the 1S0
potential VΛΛ.

7.4 Conclusion

In this study, we suggested a simple and efficient method for relating a given wave
function of a three-body bound state to the corresponding two-body potential acting
in a chosen pair of particles, while the potentials in the other two pairs are assumed
to be given. The most interesting feature of the presented method is that (thanks
to the formal construction) any given wave function becomes an exact solution of the
three-body Schrödinger equation for a given binding energy and with the corresponding
(numerically obtained) two-body potential in a chosen pair of particles. The method
works for a two-body bound state as well. The accuracy of the method is demonstrated
using the examples of the bound systems ep,np, nnp, and ΛΛα.

Two possible applications of the presented method are envisaged. Firstly, we can deduce
an unknown two-body potential from an approximate (guessed) wave function. This may
be helpful when very little is known about such a potential and there is no possibility of
doing the scattering experiments. Secondly, if the two-body potential is known, we can
construct the corresponding three-body wave function. In doing this we can postulate
a wave function in a reasonable functional form with some free parameters and then
can fix these parameters by minimizing the deviations of the deduced potential from the
known (exact) one. The wave function obtained in this way is always a solution of the
Schrödinger equation with a given binding energy.
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Figure 7.5: The singlet ΛΛ-potential (solid curve) numerically recovered using Eq. (7.28)
with the approximate (guessed) wave function (7.44) of the hypernucleus 6

ΛΛHe and
with its experimentally known ground-state energy E = −7.25MeV. For the sake of
comparison, three versions of the Nijmegen soft-core one-boson-exchange ΛΛ-potential,
namely, NSC97e, ND, and ESC00 as well as the potential used by Hiyama et al. in
Ref. [95] are shown by the dashed curves.
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Chapter 8

General Conclusions

This study involved the investigation into the Lambda-nuclear and the multi-Lambda
systems. It was motivated by the lack of understanding of how the hyperons interact
with nucleons and with each other, which is important for developing adequate models
in nuclear astrophysics. The main results are summarized and possible future work is
briefly discussed.

8.1 Single Lambda-nuclear systems

The Jost matrix method is an approach that allows us to find the spectral points (bound
states and resonant states) and the scattering states in a unified way, hence the S-matrix
can also be obtained. The relationship between the S-matrix residues and the Jost
matrices also allows us to determine the Asymptotic Normalization Constants(ANC)
as well as the Nuclear Vertex Constants(NVC) parameters. The relevant background
material were presented in Chapter 2. Chapter 3 further present the background material
for low energy scattering parameters.

In Chapter 5 we present the new results obtained using the method provided in Chapter
2. Besides the background material in Chapter 3 the second part of results were also
presented in Section 3.5.

In Chapter 5 the wide range of hypernuclei two-body Λ plus nuclear core systems were
investigated using the same potential model as in Ref.[53]. Since the Jost functions are
not single valued functions of E, a complex analysis approach was used to by treating
the Jost functions as single valued functions by defining them on the complex surface
called the Riemann surface consisting of the physical sheets and unphysical sheets. For
a given hypernuclei, all their possible bound states on the physical sheet and resonances
states energies on the unphysical sheet were obtained from the direct calculations of the
Jost functions.To check if no bound states is not missing, we used the Chew-Frautschi
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plots(spectral points on the E − ℓ plane). In order to achieve this, the two-body radial
Schrodinger equation was transformed into an equivalent system of first-order differ-
ential equations for the functions that asymptotically tend to the Jost functions. We
also calculated the S-matrix residues and their corresponding Asymptotic normalization
Constants and the Nuclear Vertex Constants.

In Chapter 3 the method based on power series effective-range expansion was presented,
in order to look for low energy parameters. The Jost functions were factorized in such
way that they form certain combination of the channel momenta times an analytic
single-valued function of the energy E. The remaining energy-dependent factors were
now defined on single energy plane which does not have any branching points any-
more.For these energy-dependent functions, a system of first-order differential equations
is obtained. Then, using the fact that the functions are analytic, they are expanded in
the power series to obtain a system of differential equations that determine the expan-
sion coefficients. When expansion coefficients are obtained for the expansion around the
energy E0 = 0, the coefficients are then used to calculate the effective range parameters.
In Section 3.5, for the same set of hypernuclear systems, these parameters were obtained
for the expansion of the effective-range function up to the order of ∼ k8 and for three
values of the angular momentum, ℓ = 0, 1, 2. The S-wave scattering lengths and effective
radii reported in Ref.[53], agree with our results only for the hyper-nuclear systems with
weak Λ-core binding.

8.2 Multi-Lambda systems

In Chapter 6 we investigated the multi-hyperon systems ΛΛ, ΛΛΛ, and ΛΛΛΛ with a
feature that none of their subsystems can actually form a bound system. This study
was motivated by the work done on the multi-neutron systems of Ref.[44], since neutron
and Λ-particle both are neutral and both have the same spin 1/2.

We used the hyperspherical approach method, presented in Chapter 4, which is based
on the expansion of the N -body wave function (for a given total angular momentum J)
within the hyper-spherical harmonics, Y J

[L](Ω). Within the hyperspherical approach, the
wave function is expanded on an infinite series over hyperspherical harmonics, we then
end up with an infinite system of coupled hyperradial equations, which is truncated in
practical calculations. We used the hyperradial equations to locate the spectral points
(the resonance state energies) for the system considered. The numerical results obtained
are presented on Section 6.5.

The ΛΛ-potential were multiplied by a numerical factor g > 1, and gradually increasing it
to trace the movement of the corresponding resonance pole until it reaches the threshold
energy. The critical values of g at which the spectral points pass the threshold and
become bound states were found for each system. These values are listed in the last
column of Table 6.1.Thus found critical value of g (with which a bound state just appears)
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characterizes the “readiness” of the system to be bound. As we move from the system
ΛΛΛ to ΛΛΛΛ, the minimal critical value of g is decreasing and that may interpreted as
a tendency and an indication that a large enough system of Λ-particles could be bound.

8.3 Reconstruction of the Multi-Lambda systems potential

In Chapter 7 a method suggested a way to directly obtain the two-body potential, using
available information on a system where the two bodies in question are included were
explored. It has been showed in Section 7.2.1 and Section 7.2.2 via examples on how
can we analytically and numerically recover the two body potential for the two body
systems ep and np. For ep system, it was a direct recovery using the bound ground state
hydrogen atom wavefunction and its corresponding binding energy into the two-body
Schrodinger equation.

In Section 7.3 a three body system background material were presented. A triton sys-
tem data (nnp) was used as an example to illustrate how to recover the two-body nn
potential from a three body bound system in section 7.3.1 using a guessed wavefunction
constructed within the hyperspherical approach. The recovered potential were obtained
and compared with the known NN singlet and triplet Malfliet-Tjon NN -potentials in
Figure.7.4. The last part of this work was to try and construct the ΛΛ potential using
the same approach used for three-body system as in Section 7.3.1. In this case the the
double-Λ hypernuclei experimental information were useful. Similarly, an approximate
(guessed) wave function was used for the hypernucleus 6

ΛΛHe in the three-body model
ΛΛα together with its corresponding binding energy |E| = 7.25MeV determined in the
NAGARA experiment [96]. The ΛΛ-potential recovered from the wave function (7.44)
is shown in Fig. 7.5 and compared with three different Nijmegen ΛΛ-potentials, as well
as the potential used by Hiyama et al. in Ref. [95] in the same figure.

8.4 Conclusion

In general, the calculations made in Chapter 3 and Chapter 5(and Ref.[54]), their results
reasonable reproduced the results reported in Ref.[53] and Ref.[71]. In Chapter 3, further
effective-range parameters for up to the order of ∼ k8 for three of the angular momentum
values were calculated. Furthermore, the spectral points (bound states and resonance
states ) for a given hypernulear system were obtained by being traced via Chew-Frautschi
plots (on the E − ℓ plane), and they are reported in Chapter 5. Hence, it can be
claimed that the results obtained in Chapter3 and Chapter5(and Ref.[54]) are reliable
and comparable with some of the results reported before.

In Chapter 6, the trajectories of the calculated resonance spectral points on the complex
energy plane for the considered multi-Λ systems are reported. The critical values of g
which strengthens the potential in order for the spectral points to pass the threshold
and becomes bound states were found. This calculations gives us an indication that a
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large enough system of Λ-particles may be bound.

A proposed method is presented in Chapter7 (and Ref.[98]) that can be used to construct
the two-body potential using an approximate (guessed) wave function. The accuracy of
the method is demonstrated using the examples of the bound systems ep,np, nnp, and
ΛΛα.

8.5 Future work

The work presented here leads to further investigations in the field of hypernuclear
physics. An understanding of how the hyperons interact with nucleons and with each
other is crucial for developing adequate models in nuclear astrophysics. However it is
not easy to develop adequate models since the experimental data on Λ hypernuclei are
poorer,both in quantity and quality than the data available on normal nuclei.

Further work on single Λ-nuclear systems should take into the account the ΛN − ΣN
coupling when doing the calculations. So far, the majority of theoretical and experimen-
tal works in the field of hyper-nuclear systems were concentrated on the bound states of
the Λ particles in various nuclei. The resonances (quasi-bound states) are still waiting
for an adequate attention from both the theoreticians and experimentalists.
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Appendix A

Nuclear vertex constant

LetH be the hamiltonian of relative Λ-nucleus motion. If the plane waves are normalized
to the δ-function, ⟨k⃗′ |⃗k ⟩ = δ(k⃗′− k⃗ ), the scattering amplitude f at the energy z is given
by

f(z, k⃗′, k⃗ ) = −(2π)2µ⟨k⃗′|T (z + i0)|⃗k ⟩ , (A.1)

where T is the operator obeying the equation

T = V + V GV (A.2)

with the propagator G(z) = (z −H)−1. This propagator can be written in the form of
the Berggren spectral expansion[99],

G(z) =
∑

n

|n⟩⟨n|
z − En

+
∑

r

|ψ+
r ⟩⟨ψ−

r |
z − Er

+ G(z) , (A.3)

which involves singular terms corresponding to bound states |n⟩ and resonances |ψr⟩ as
well as a background term G(z). The state-vectors |ψ±

r ⟩ are related to each other via the
operation of time reversal[100]. Berggren showed[99, 101] that the two sets of resonant
states |ψ+

r ⟩ and |ψ−
r ⟩ together constitute a so-called bi-orthogonal set, such that

⟨ψ−
r |ψ+

r′⟩ = δrr′ .

The states |ψ±
r ⟩ can be normalize to unity using either a regularization procedure[99] or

complex rotation of the coordinate[102].

Substituting the expansion (A.3) into Eq. (A.2), we obtain

⟨k⃗′|T (z)|⃗k ⟩ =
∑

n

⟨k⃗′|V |n⟩⟨n|V |⃗k ⟩
z − En

+
∑

r

⟨k⃗′|V |ψ+
r ⟩⟨ψ−

r |V |⃗k ⟩
z − Er

(A.4)

+ ⟨k⃗′|V |⃗k ⟩+ ⟨k⃗′|V G(z)V |⃗k ⟩ .
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Apparently, the T -matrix has first-order poles at all the spectral points (En or Er), where
its residue is either

Res [T (z), En] = ⟨k⃗′|V |n⟩⟨n|V |⃗k ⟩ (A.5)

or
Res [T (z), Er] = ⟨k⃗′|V |ψ+

r ⟩⟨ψ−
r |V |⃗k ⟩ . (A.6)

It is well-known (see, for example, Chapter 10 of Ref.[103]) that the scattering T -matrix
can be found as

⟨k⃗′|T (z + i0)|⃗k ⟩ = ⟨k⃗′|V |⃗k+⟩ = ⟨k⃗′ − |V |⃗k ⟩ , (A.7)

where |⃗k±⟩ are the scattering states (related to each other via the time reversal in the
same way as |ψ±

r ⟩). In the case of a bound state, the time reversal operation leaves the
state vector unchanged, i.e. |n+⟩ = |n−⟩ = |n⟩ (this is because a bound state formally
lives forever, i.e. remains the same when time t → ±∞). Therefore, the residues (A.5)
and (A.6) are products of the T -matrices describing virtual formation and decay of the
corresponding discrete states. Symbolically, these transition operators for a resonance

⑥ ⑥

a

b

a

b

resonance

|ψ+
r 〉〈ψ−

r |
z − Er

|ϕ(in)〉〈ϕ(out)|

Figure A.1: Symbolic representation of a collision process a+ b→ a+ b that goes from
the in-coming asymptotic state |φ(in)⟩ to the out-going asymptotic state ⟨φ(out)| via
formation and subsequent decay of a resonant state |ψr⟩ (which corresponds to a pole
of the S-matrix at a complex energy Er = ER − iΓ/2). The filled circles represent the
so-called vertex constants, i.e. the amplitudes of formation and decay of the resonance.

are represented in Fig. A.1 by filled circles. Both momenta, k⃗′ and k⃗, are complex and
correspond to the energy of a given state,

k′2

2µ
=
k2

2µ
= z , (A.8)

where z is either En or Er. With the condition (A.8), the formation and decay ampli-
tudes are constants, which are called vertex constants. They are mainly used in nuclear
physics and therefore are known as Nuclear Vertex Constants with a traditional acronym
NVC.
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Apparently, the S-matrix and the T -matrix have exactly the same poles, and their
residues differ by a constant factor. We can therefore evaluate NVC by finding the
residues of the S-matrix. First of all, because of the rotational invariant, all the spectral
states (bound and resonant) are characterized by definite values of the angular momen-
tum ℓ and its z-component m (as we stated earlier, we ignore the spin effects). The
partial wave amplitudes fℓ(z) do not depend on m and are defined via the expansion

f(z, k⃗′, k⃗ ) = 4π
∑

ℓm

fℓ(z)Yℓm(
ˆ⃗
k′)Y ∗

ℓm(
ˆ⃗
k ) , (A.9)

where k′, k, and z are related via the on-shell condition (A.8).

Multiplying Eq. (A.4) by −(2π)2µ, we obtain the corresponding equation for the scat-

tering amplitude. Then we multiply this equation by Y ∗
ℓm(

ˆ⃗
k′ )Yℓm(

ˆ⃗
k ) and integrate over

the angles of vectors k⃗′ and k⃗. This gives

fℓ(z) = −(2π)2µ
∑

d

⟨klm|V |d+⟩⟨d−|V |klm⟩
z − Ed

+ B(z) , (A.10)

where the states |klm⟩ are defined via the expansion

|⃗k ⟩ =
√
4π
∑

ℓm

|klm⟩Y ∗
ℓm(

ˆ⃗
k ) , (A.11)

the operator |d+⟩⟨d−| stands for a generic discrete state projector (either |n⟩⟨n| or
|ψ+

r ⟩⟨ψ−
r |), and B(z) represents the resulting background terms of Eq. (A.4). The sum-

mation in Eq. (A.10) runs over the discrete states having the same angular momentum ℓ.

The NVC are usually defined via the residues of the T -matrix (see, for example, Refs.
[53, 104]). While the normalization of the scattering amplitude is defined uniquely (its
square gives the observable cross section), the normalization of the T -matrix depends
on the normalization of the plane waves. We therefore define NVC via the amplitude,

Gd→ab(ℓ)Gab→d(ℓ)
def
= −2π

µ
lim
z→Ed

(z − Ed)fℓ(z) =
iπ

µκd
lim
z→Ed

(z − Ed)sℓ(z) , (A.12)

where Gab→d(ℓ) and Gd→ab(ℓ) are the NVC for the formation (from the fragments a and
b) and decay of the discrete state d, κd =

√
2µEd, and sℓ is the partial wave S-matrix,

sℓ(z) = 1 + 2ikfℓ(z) . (A.13)

The product Gd→ab(ℓ)Gab→d(ℓ) corresponds to the two factors in the numerator on the
right hand side of Eq. (A.10). These factors are not independent from each other. Indeed,
the second factor can be written as ⟨d−|V |klm⟩ = ⟨d−|klm⟩V(k, ℓ), where V(k, ℓ) is the
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potential in the momentum representation (a real function). Taking into account that
⟨d−|klm⟩ = ⟨klm|d−⟩∗ and that the time reversal is equivalent to complex conjugation
of the wave function combined with the inversion of the momentum (see chapter 6 of

Ref. [103]), as well as using the symmetry property Yℓm(−ˆ⃗k ) = (−1)ℓYℓm(
ˆ⃗
k ), we find

that ⟨d−|V |klm⟩ = (−1)ℓ⟨klm|V |d+⟩ and thus

Gd→ab(ℓ)Gab→d(ℓ) = (−1)ℓG2
d→ab(ℓ) , (A.14)

which finally gives

G2
d→ab(ℓ) = (−1)ℓ iπ

µκd
Res [sℓ(z), Ed] . (A.15)

If |d⟩ is a bound state, then k = i|κ|. As can be deduced from Fig. 1 of Ref.[63], the
partial-wave S-matrix, sℓ(z), is real on the real negative axis of the physical sheet of
the energy Riemann-surface. According to Eq. (A.13) the amplitude fℓ(z) is also real
on that axis. This implies that the product Gd→ab(ℓ)Gab→d(ℓ) is real at all bound state
spectral points.
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Appendix B

Relation between the S-matrix
residues and the ANC

Using the so called Jost solutions χ
(±)
ℓ (E, r) of the radial Schrödinger equation (5.1) that

are defined by the boundary conditions

χ
(±)
ℓ (E, r) −→

r→∞
h
(±)
ℓ (kr) −→

r→∞
(∓i)ℓ+1e±ikr , (B.1)

the Jost functions (5.6) in the asymptotic behaviour (5.7) of a regular solution uℓ(E, r)
can be written as

f
(in/out)
ℓ (E) = ± i

2k
W
[
χ
(±)
ℓ , uℓ

]
, (B.2)

where W [f, g] = fg′− f ′g is a Wronskian of two functions, and W [h
(−)
ℓ (kr), h

(+)
ℓ (kr)] =

2ik. It follows from Eq. (B.2) that

.
f
(in)

ℓ (E) =
i

2k

[
W (χ

(+)
ℓ ,

.
uℓ) +W (

.
χ(+)
ℓ , uℓ)

]
+W (χ

(+)
ℓ , uℓ)

d

dE

(
i

2k

)
,

where the dot over the functions means the derivative over E. At a spectral point,
Ed = k2d/(2µ), the last term in this equation vanishes because the functions uℓ and

χ
(+)
ℓ are linearly dependent, or simply because their Wronskian is proportional to the

vanishing Jost function. Therefore
.
f
(in)

ℓ (Ed) =
i

2kd

{
W
[
χ
(+)
ℓ (Ed, r),

.
uℓ(Ed, r)

]
+W

[ .
χ(+)
ℓ (Ed, r), uℓ(Ed, r)

]}
. (B.3)

Our task now is to express the Wronskians on the right hand side of this equation in
terms of the discrete state wave function. In order to achieve this, consider the equations

[
d2

dr2
+ k2 − ℓ(ℓ+ 1)

r2
− U(r)

]
uℓ(E, r) = 0 ,

[
d2

dr2
+ k̃2 − ℓ(ℓ+ 1)

r2
− U(r)

]
χ
(+)
ℓ (Ẽ, r) = 0 ,
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at two different energies E and Ẽ. Multiplying the first of them by χ
(+)
ℓ (Ẽ, r), the second

by uℓ(E, r), and subtracting the second from the first, we obtain

u
′′
ℓ (E, r)χ

(+)
ℓ (Ẽ, r)− uℓ(E, r)χ

′′(+)
ℓ (Ẽ, r) + (k2 − k̃2)uℓ(E, r)χ

(+)
ℓ (Ẽ, r) = 0 ,

which means that

d

dr
W
[
χ
(+)
ℓ (Ẽ, r), uℓ(E, r)

]
= (k̃2 − k2)uℓ(E, r)χ

(+)
ℓ (Ẽ, r) . (B.4)

The differentiation of this equation over the energy E gives

d

dr
W
[
χ
(+)
ℓ (Ẽ, r),

.
uℓ(E, r)

]
= −2µuℓ(E, r)χ

(+)
ℓ (Ẽ, r) + (k̃2 − k2) .uℓ(E, r)χ

(+)
ℓ (Ẽ, r) .

If E = Ẽ = Ed, then k2 − k̃2 = 0, and thus

d

dr
W
[
χ
(+)
ℓ (Ed, r),

.
uℓ(Ed, r)

]
= −2µuℓ(Ed, r)χ

(+)
ℓ (Ed, r) . (B.5)

Similarly, by differentiating Eq. (B.4) over Ẽ and putting E = Ẽ = Ed, we obtain

d

dr
W
[ .
χ(+)
ℓ (Ed, r), uℓ(Ed, r)

]
= 2µuℓ(Ed, r)χ

(+)
ℓ (Ed, r) . (B.6)

When r → 0, both uℓ(Ed, r) and χ
(+)
ℓ (Ed, r) behave as the Riccati-Bessel function, ∼

(kdr)
ℓ+1. According to the boundary conditions (5.5), the function uℓ(Ed, r) near the

point r = 0 does not have any other energy-dependent (normalization) factor but kℓ+1
d .

Therefore after differentiation over the energy, the r-dependence remains the same,

.
uℓ(Ed, r) ∼

r→0
rℓ+1 .

This means that the functions
.
uℓ(Ed, r) and χ

(+)
ℓ (Ed, r) are linearly dependent at short

distances and thus
W
[
χ
(+)
ℓ (Ed, r),

.
uℓ(Ed, r)

]
−→
r→0

0 . (B.7)

When r → ∞, both uℓ(Ed, r) and χ
(+)
ℓ (Ed, r) behave as the exponential function, ∼

exp(+ikdr). According to the boundary condition (B.1), the function χ
(+)
ℓ (Ed, r) at

large r does not have any energy-dependent (normalization) factor. Therefore after
differentiation over the energy, its r-dependence remains the same. For a bound state
the momentum kd is pure imaginary, kd = i|kd|, and this exponential function vanishes
when r →∞. If the discrete state we are considering is a resonance, then Im kd < 0. In
such a case, we need to rotate the coordinate into the complex plane, r = |r| exp(iθ), with
such a rotation angle θ that Im(kdr) > 0. In fact, this is how a resonance wave function
can be normalized to unity, namely, by integrating its square from zero to infinity along
a ray in the complex plane [102]. Therefore, we can assume that for any discrete state
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exp(+ikdr) −→
r→∞

0 (where for resonances, r goes to infinity along a complex path). This

implies that

W
[ .
χ(+)
ℓ (Ed, r), uℓ(Ed, r)

]
−→
r→∞

0 . (B.8)

Bearing in mind Eqs. (B.7, B.8) and integrating (for resonances along a complex path)
Eq. (B.5) from 0 to r and Eq. (B.6) from r to ∞, we obtain

W
[
χ
(+)
ℓ (Ed, r),

.
uℓ(Ed, r)

]
= −2µ

∫ r

0
uℓ(Ed, r)χ

(+)
ℓ (Ed, r)dr

and

W
[ .
χ(+)
ℓ (Ed, r), uℓ(Ed, r)

]
= −2µ

∫ ∞

r
uℓ(Ed, r)χ

(+)
ℓ (Ed, r)dr .

Being substituted into Eq. (B.3), these Wronskians give

.
f
(in)

ℓ (Ed) =
µ

ikd

∫ ∞

0
uℓ(Ed, r)χ

(+)
ℓ (Ed, r)dr . (B.9)

Comparing the asymptotics (B.1) and (5.7), where f
(in)
ℓ (Ed) = 0, we see that

uℓ(Ed, r) = f
(out)
ℓ (Ed)χ

(+)
ℓ (Ed, r) . (B.10)

Therefore
.
f
(in)

ℓ (Ed) =
µ

ikd
f
(out)
ℓ (Ed)

∫ ∞

0

[
χ
(+)
ℓ (Ed, r)

]2
dr . (B.11)

Let ϕℓ(Ed, r) be the normalized wave function of a discrete state
∫ ∞

0
[ϕℓ(Ed, r)]2 dr = 1 ,

with the asymptotic behaviour

ϕℓ(Ed, r) −→
r→∞

Aℓe
+ikdr , (B.12)

where Aℓ is the asymptotic normalization constant (ANC). Then, comparing the asymp-
totics (B.12) and (B.1), we see that it is related to the Jost solution as

ϕℓ(Ed, r) = iℓ+1Aℓ χ
(+)
ℓ (Ed, r) . (B.13)

Using this, we finally obtain the derivative of the Jost function,

.
f
(in)

ℓ (Ed) = (−1)ℓ+1 µ

ikd

f
(out)
ℓ (Ed)
A2

ℓ

. (B.14)

Since at each spectral point the Jost function f
(in)
ℓ (E) has a simple zero, the S-matrix

has a simple pole, and the corresponding residue is related to the ANC as follows:

Res [sℓ(E), Ed] =
f
(out)
ℓ (Ed)
.
f
(in)

ℓ (Ed)
= (−1)ℓ+1 ikd

µ
A2

ℓ . (B.15)
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Alternatively, the S-matrix can be considered as a function of the momentum k. In such
a case, near the pole kd it behaves as sℓ ≈ Cℓ/(k − kd), where Cℓ = Res [sℓ, kd] is the
corresponding residue. It is easy to see that

Res [sℓ, kd] =
µ

kd
Res [sℓ, Ed] = i(−1)ℓ+1A2

ℓ . (B.16)
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Appendix C

Effective-range parameters

In Sec. 3.4 it was shown that the effective-range function

F(E) = k2ℓ+1 cot δℓ(k) (C.1)

is the ratio of two power-series of variable E = k2/2µ:

F(E) =
a0 + a1E + a2E

2 + · · ·
b0 + b1E + b2E2 + · · ·

. (C.2)

Expanding this function in the Maclaurin series,

F(E) = F(0) + F ′(0)E + F ′′(0)
E2

2
+ F ′′′(0)

E3

6
+ F (4)(0)

E4

24
+ · · · , (C.3)

we can obtain the effective range parameters on the right hand side of Eq. (1.2),

aℓ = −1/F(0) , rℓ = F ′(0)/µ , (C.4)

Pℓ = −
µF ′′(0)

8 [F ′(0)]3
, Qℓ =

µ2F ′′′(0)

48 [F ′(0)]5
, Lℓ = −

µ3F (4)(0)

384 [F ′(0)]7
, (C.5)

where

F(0) = a0
b0

, F ′(0) =
a1
b0
− a0b1

b20
, (C.6)

F ′′(0) =
2a2
b0

+
2a0b

2
1

b30
− 2a0b2

b20
− 2a1b1

b20
, (C.7)

F ′′′(0) =
6a3
b0

+
6a1b

2
1

b30
− 6a0b

3
1

b40
− 6a0b3

b20
− 6a1b2

b20
− 6a2b1

b20
+

12a0b1b2
b30

, (C.8)
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F (4)(0) =
24a4
b0

+
24a0b

2
2

b30
+

24a2b
2
1

b30
− 24a1b

3
1

b40
+

24a0b
4
1

b50
− 24a0b4

b20
− 24a1b3

b20

− 24a2b2
b20

− 24a3b1
b20

+
48a0b1b3

b30
+

48a1b1b2
b30

− 72a0b
2
1b2

b40
. (C.9)
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Appendix D

Expansion of the Riccati
Functions

The Riccati–Bessel and Riccati–Neumann functions can be factorized asthe Riccati–Bessel
and Riccati–Neumann functions as shown in equations and can be factorized as

jℓ(kr) = kℓ+1j̃ℓ(E, r) yℓ(kr) = kℓ+1ỹℓ(E, r) (D.1)

where the tilded functions depend on k2. Since these functions are holomorphic, they
can be expanded in taylor series at an arbitrary point E = E0,

j̃ℓ(E, r) =

∞∑

n=0

(E − E0)
ngℓn(E0, r) ỹℓ(E, r) =

∞∑

n=0

(E − E0)
ntℓn(E0, r), (D.2)

where the coefficients are given by the derivatives

gℓn(E0, r) =
1

n!

[
dn

dEn
j̃ℓ(E, r)

]

E=E0

=
1

n!

[
dn

dEn

jℓ(kr)

kℓ+1

]

E=E0

(D.3)

tℓn(E0, r) =
1

n!

[
dn

dEn
ỹℓ(E, r)

]

E=E0

=
1

n!

[
dn

dEn
kℓyℓ(kr)

]

E=E0

(D.4)

the following relations can be used to find the derivatives,

d

dz

jℓ(z)

zℓ+1
= −jℓ+1(z)

zℓ+1
and

d

dz
[zℓyℓ(z)] = zℓjℓ−1(z). (D.5)

After a simple but lengthy algebra, we finally obtain[mathfunction]

gℓn(E0, r) =
1

n!

[(
− µr

ℏ2

)n jℓ+n(kr)

kℓ+n+1

]

E=E0

, (D.6)

tℓn(E0, r) =
1

n!

(
µr

ℏ2

)n

[kℓ−nyℓ−n(kr)]E=E0 . (D.7)
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These functions should be the same for all sheets of the Riemann surface , i.e. for any
choice of the signs of channel momenta. The matrices γn and ηn of equations (3.28) and
(3.29) are diagonal with each row having the functions (D.6) and (D.7) with µ and k for
the corresponding channel.
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[30] K. Miyagawa, H. Kamada, W. Glöckle, and V. Stoks. Properties of the bound
Λ(Σ)nn system and hyperon-nucleon interactions. Phys. Rev., C51:2905–2913,
(1995).

[31] A. Nogga. Light hypernuclei based on chiral and phenomenological interactions.
Nuclear Physics, A914:140–150, (2013). XI International Conference on Hyper-
nuclear and Strange Particle Physics (HYP2012).

[32] A. Nogga. Light hypernuclei based on chiral and phenomenological interactions.
Nuclear Physics, A914:140–150, (2013). XI International Conference on Hyper-
nuclear and Strange Particle Physics (HYP2012).

[33] J. Haidenbauer and U.-G. MeiBner and A. Nogga. Hyperon-nucleon interac-
tion within chiral effective field theory revisited. The European Physical Journal,
A56(3), (2020).

[34] A Gal, J.M Soper, and R.H Dalitz. A shell-model analysis of Λ binding energies
for the p-shell hypernuclei iii. further analysis and predictions. Annals of Physics,
113(1):79–97, (1978).

108

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



[35] D. J. Millener, A. Gal, C. B. Dover, and R. H. Dalitz. Spin dependence of the Λ
n effective interaction. Phys. Rev., C31:499–509, (1985).

[36] D.J. Millener. Shell-model calculations for p-shell hypernuclei. Nuclear Physics,
A881:298–309, (2012). Progress in Strangeness Nuclear Physics.

[37] A. Gal and D.J. Millener. Neutron-rich hypernuclei:6ΛH,and beyond. Physics Let-
ters, B725(4):445–450, (2013).

[38] Bing-Nan Lu, Emiko Hiyama, Hiroyuki Sagawa, and Shan-Gui Zhou. Su-
perdeformed Λ hypernuclei within relativistic mean field models. Phys. Rev.,
C89:044307, (2014).

[39] Bing-Nan Lu, Emiko Hiyama, Hiroyuki Sagawa, and Shan-Gui Zhou. Su-
perdeformed Λ hypernuclei within relativistic mean field models. Phys. Rev.,
C89:044307, (2014).

[40] Dillon Frame, Timo A. Lähde, Dean Lee, and Ulf-G. Meissner. Impurity lattice
monte carlo for hypernuclei. The European Physical Journal, A56(10), (2020).
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