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Abstract 

The efficient implementation of REDD+ programs and local sustainable forest 

management needs reliable data on species composition and distribution, forest biomass, 

and carbon storage, which are presently lacking in the majority of African vegetation 

formations. The study explored the use of unmanned aerial systems (UAS) imagery and 

associated processing tools in the management of the Miombo woodlands in Zambia. 

Four different studies were undertaken to meet the overall objective of this study. In 

order to have an overall understanding of the global application of UAS in forestry and 

the implications for its application to the Miombo woodlands, the first study was based 

on a review of the application of UAS in forest management and monitoring with a focus 

on challenges and opportunities for use in the Miombo woodlands. UAS technology, key 

attributes of the Miombo woodlands, and applications of UAS in forestry at the global 

and sub-Saharan African levels were reviewed, which enabled us to identify key 

prospects and challenges for UAS applications in the Miombo region. 

As a demonstration of potential applications of UAS technology for managing the 

Miombo woodlands, the second study was focused on the use of multi-date and multi-

spectral UAS imagery to classify dominant tree species in the wet Miombo woodlands in 

the Copperbelt Province of Zambia. Multi-date, multispectral UAS images taken at key 

phenological stages (leaf maturity, transition to senescence, and leaf flushing) and object-

based image analysis (OBIA) with a random forest algorithm were utilized to classify the 

five dominant canopy species of the wet Miombo woodlands. The research found that 

combining multi-date raw band multi-spectral data with derived spectral indices 

produced better classification results (87.07% overall accuracy (OA), 0.83 Kappa) than 

using the best single-date multi-spectral data (80.12% OA, 0.68 kappa). The results from 

this study demonstrated the potential of using multispectral UAS imagery and 

phenology to map individual tree species in the Miombo woodlands of Zambia. 

The third study was based on the application of UAS-Lidar to estimate forest structural 

attributes, which are critical to the management of the Miombo woodlands. UAS-Lidar 

data was used to estimate above-ground biomass, basal area, diameter at breast height, 

and volume, using multiple linear regression. The results indicate that the UAS-Lidar 

estimations provide the requisite degree of precision (relative root mean square error 

(RMSE): 3.40 - 20.89%) required for fulfilling international carbon reporting requirements 
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and local forest management objectives. Furthermore, the use of unmanned aerial 

systems (UAS) equipped with Light Detection and Ranging (Lidar) technology offers a 

significant enhancement to the already utilized approaches for assessing Forest Structural 

Attributes (FSA) in the Miombo woodlands.  

The fourth study was focused on bridging the spatial data gap that exists between 

detailed field inventory methods and satellite-based remote sensing methods that are 

required for wall- to-wall mapping of the Miombo woodlands. This study conducted a 

two-phase sampling design for wall-to-wall forest structural attributes estimation, where 

areas covered by a UAS-lidar were sampled by field plots and areas covered by wall-to-

wall satellite imagery were sampled using a UAS-lidar. The results revealed that using 

UAS-lidar as reference data for predicting AGB using Sentinel-2 image metrics produced 

better results (Adj-R2 = 0.70 Mg/ha, RMSE = 27.97 Mg/ha) than using direct field estimated 

AGB and Sentinel-2 image metrics (R2 = 0.55 Mg/ha, RMSE = 38.10 Mg/ha). The results 

obtained demonstrated a practical solution to managing the Miombo woodlands using 

the available technology at multiple spatial scales. 

The synthesis of these studies provides a holistic contribution for utilization of UAS 

technology and its accompanying processing tools in improving the acquisition of 

inventory data for the purpose of managing the Miombo woodlands in Zambia. This is a 

crucial necessity in effectively managing the diverse forested landscapes in the region. 
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Chapter 1 : General Introduction 

1.1 Background 

The Miombo woodland is the most extensive tropical woodland in Africa with an 

estimated coverage of 2.7 million km2 mainly covering Angola, southern parts of the 

Democratic Republic of Congo, Malawi, Mozambique, Tanzania, Zambia, and Zimbabwe 

(Campbell, 1996). The Miombo woodlands are characterised by the dominance of three 

key deciduous genera (Brachystegia, Julbernadia and Isoberlinia) belonging to the family 

Fabaceae (Frost, 1996; Ryan et al., 2011a) The woodland offers a multiplicity of eco-

services ranging from food (fruits, honey, edible insects, and bush meat), construction 

materials (poles, timber and fiber), fuel (charcoal, firewood), and medicine as well as 

large scale water management services (Syampungani et al., 2009; Chirwa et al., 2015; 

Kachamba et al., 2016a). However, the covered area is shrinking as a result of degradation 

and deforestation caused by competing requirements such as settlement and agricultural 

development, as well as unsustainable overexploitation of timber and fuel wood 

products (Luoga et al., 2002; Syampungani et al., 2009). Furthermore, climate change, 

invasive species, fire, and herbivory all have a detrimental effect on woodland coverage 

(Ribeiro et al., 2020a).  

The rapid increase in CO2 concentration in the atmosphere has attracted attention to 

preservation of carbon stocks in tropical ecosystems. The international community 

recognizes the importance of forests in the global carbon cycle evidenced by the 

establishment of Reducing Emissions from Deforestation and Forest Degradation, plus 

forest conservation, sustainable management of forest and enhancement of carbon stocks 

(REDD+) mechanism through the United Nations Framework Convention on Climate 

Change (UNFCCC) (Barquín et al., 2014). This mechanism provides a financial incentive 

to developing countries for forest conservation and implementation of sustainable forest 

management based on reported national level of carbon stocks to the UNFCC (Goetz et 

al., 2015). A credible forest monitoring system that provides a backbone for Monitoring, 

Reporting and Verification (MRV) is a prerequisite for implementation of the REDD+ 

programme, for each participating country (Day et al., 2014; Goetz et al., 2015). 

Consequently, countries are expected to establish a national baseline of carbon stock 

estimates to be used as a basis for reporting changes of carbon stocks over time (Goetz et 

al., 2015; UNFCCC, 2015) 
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1.2 Motivation and philosophical argument 

The effective execution of the REDD+ programs and local sustainable management of 

forests requires accurate data pertaining to species composition and distribution, forest 

biomass and carbon storage, which are currently deficient in the majority of African 

vegetation formations (Ribeiro et al., 2012; Goetz et al., 2015). Although ongoing efforts 

are being made to improve the field inventory designs in the Miombo ecoregion 

(Mugasha et al., 2013; Kachamba et al., 2016a; Handavu et al., 2021), it is important to 

note that field-based approaches still need a substantial investment of time, financial 

resources, and labour in order to gather an adequate quantity of data for effective forest 

management and international reporting requirements. Furthermore, woodlands are 

extensive and mostly situated in remote areas with limited accessibility for efficient field 

inventory plot installation and monitoring. Therefore, it is necessary to investigate 

technologies that may supplement field forest inventory methodologies in order to bridge 

data gaps and increase capacity for monitoring forest and carbon changes with accuracy 

that fulfills local forest management and international reporting criteria. The use of 

remote sensing technologies provides opportunities for accomplishing this task 

(Gizachew and Duguma, 2016). 

1.2.1 Remote sensing for forest management in the Miombo woodlands 

Remote sensing offers a comprehensive and integrated approach to obtaining spatially 

precise observations, facilitating the rapid and adaptive gathering of forest inventory 

data over large regions in a cost effective manner (Wulder et al., 2013; White et al., 2016; 

Liu et al., 2018b; Shen et al., 2019). Several studies (Kashindye et al., 2013; Halperin et al., 

2016a; Macave et al., 2022) have effectively utilized medium-resolution imagery remote 

sensing, specifically Landsat and Sentinel-2, to estimate forest structural attributes (FSA) 

over large areas in the Miombo woodlands. However, these estimates do not meet the 

level of precision necessary for international reporting mechanisms and sustainable forest 

management at a local scale. Also, the medium-resolution satellite images that are 

normally used to make the National Forest Inventories (NFI) (Chamuya and Mgoo, 2014; 

GRZ, 2016; Government of Malawi, 2018) have problems such as: (i) inability to capture 

carbon stocks and carbon changes at appropriate resolutions for REDD+ (Gizachew and 

Duguma, 2016); (ii) inability to capture vertical structure of vegetation (Gibbs et al., 2007); 

(iii) failure to estimate biomass at dense leaf canopies due to saturation (Gizachew and 

Duguma, 2016); (iv) difficulty in capturing the spatial variability in the Miombo 
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woodland, which alternates between open and dense vegetation (Ribeiro et al., 2012); and 

(v) failure to capture disturbances of minor spatial extent such as selective harvesting of 

trees for timber and fire wood (Day et al., 2014). Mauya et al. (2015) estimated above 

ground biomass (AGB) in the Miombo forests of Tanzania using airborne light detection 

and ranging (airborne-lidar) with acceptable precision for global reporting systems and 

sustainable local forest management. Although airborne lidar has the capability to 

capture 3D vegetation structure information that aligns with international reporting 

standards, it is not suitable for wall-to-wall coverage, and its acquisition cost is a 

significant barrier for the majority of forest managers operating within the Miombo 

ecoregion (Mitchell et al., 2017). For effective management of the Miombo woodlands, a 

wide range of forest data products from precise field inventories is required for 

comprehensive satellite remote sensing-based mapping. Therefore, there is a need for 

cost-effective tools that have possibilities for bridging the spatial data gap that exists 

between field inventory and satellite-based methods. Research on the other vegetation 

formations (Anderson and Gaston, 2013; Tang and Shao, 2015; Banu and Borlea, 2016; 

Iglhaut et al., 2019; Eugenio et al., 2020; Guimarães et al., 2020) provides sufficient 

evidence for us to postulate that unmanned aerial systems (UAS) can facilitate forest 

management objectives in the Miombo woodlands ecoregion.  

1.2.2 UAS for forest management 

Numerous forest applications have seen the use of UAS, including: estimation of forest 

structural attributes (FSA) (Kachamba et al., 2016b; Guo et al., 2017; Liu et al., 2018b; Cao 

et al., 2019a), identification of tree species (Gini et al., 2014, 2018; Feng et al., 2015; Lisein 

et al., 2015; Franklin and Ahmed, 2017), forest health assessment (Czapski et al., 2015; 

Dash et al., 2017), tree species phenology (Park et al., 2019), forest fire assessment (Smigaj 

et al., 2015; Hristov et al., 2018), and monitoring selective tree harvesting (Samiappan et 

al., 2017; Ota et al., 2019; Thiel et al., 2020). Despite the demonstrated applicability of UAS 

in forest management (Anderson and Gaston, 2013; Tang and Shao, 2015; Banu and 

Borlea, 2016; Iglhaut et al., 2019; Eugenio et al., 2020; Guimarães et al., 2020), the use of 

UAS technology in the Miombo woodlands has thus far been limited to estimating forest 

structural attributes using Structure-from-Motion (SfM) photogrammetry applied to 

photographs captured by unmanned aircraft systems (UAS) (referred to as UAS-SfM) at 

a single site in the dry Miombo woodlands of Malawi (Kachamba et al., 2016b, 2017; 

Domingo et al., 2019). In a groundbreaking study, Kachamba et al. (2016b) used UAS-
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SfM-derived point clouds to estimate AGB in the dry Miombo woodlands of Muyobe 

forest, Mzimba District, in northern Malawi, with enough accuracy for international 

reporting mechanisms and sustainable local forest management. However, UAS-SfM has 

been shown to underperform in denser forest settings (Mlambo et al., 2017), making it 

difficult to disseminate to denser regions of the Miombo woodlands. UAS-mounted lidar 

systems (UAS-lidar) has been reported to perform well even in denser forest environment 

(Guo et al., 2017; Liu et al., 2018b; Cao et al., 2019a).The availability of low-cost UAS-SfM 

technology and the largely open canopies of the Miombo woodlands (Ribeiro et al., 

2020a), combined with the steadily declining cost of UAS-lidar sensors (Colomina and 

Molina, 2014), speak to the potential of using UAS technology for acquiring 3D vegetation 

structure information that is useful for FSA estimation and related applications, which 

need to be explored.  

The other aspect of the Miombo woodland that is still neither well studied nor 

understood is the species distribution and abundance in the region. Species abundance 

and distribution are a key aspects of sustainable forest management as they enable forest 

managers to effectively suggest possible management practices that will enable efficient 

and sustainable use of the forest resources. However, species distribution maps needed 

to support sustainable forest management are still lacking in Zambia and the rest of the 

Miombo woodland ecoregion. Current forest inventories and other field-based data 

acquisition methods, such as field assessments, are not appropriate for mapping tree 

species due to the coverage extent and accessibility challenges of the forest areas 

involved. Therefore, there is need for new methods of mapping tree species composition 

and distribution in the Miombo ecoregion. The high spatial resolution of UAS images, 

together with the flexibility of temporal resolution (Colomina and Molina, 2014) and the 

evident phenological differences across Miombo woodland species from season to season 

(Frost, 1996), provide an opportunity for the use of UAS in tree species classification, 

species distribution mapping, and related applications. 

1.3 Conceptual framework 

Monitoring forests and implementation of mechanisms such as REDD+ and MRV for 

sustainable forest management requires adequate affordable data and tools to satisfy 

various forest applications (Figure 1.1). Forest data are collected at different scales to 

satisfy different applications and management levels. The freely available Landsat and 
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Sentinel-2 imagery with moderate-spatial resolution, high temporal resolution and large 

area coverage are used to derive data products that are suitable for regional applications 

and decision making (e.g., early warning, hot spot identification). Moderate resolution 

(10 – 30 m) satellite imagery will require field data collections for georeferencing, ground 

truthing, model calibration, model validation and accuracy assessment. But the model 

results from moderate resolution satellite imagery are too coarse for application at a local 

level. The UAS imagery with ultra-high spatial resolution, flexible temporal resolution, 

and less area coverage are suitable for use at a local level to bridge the gap between coarse 

medium resolution products and ground methods. Miombo woodlands have 

characteristics that are amenable to most UAS forest applications, such as the suitability 

of applying UAS-SfM for estimating FSA due to the largely open canopies, and the 

interspecies phenological differences being easily captured by flexible temporal 

resolution UAS for tree species classification. The UAS can be used for generating 

detailed forest structure products that can be used for forest management and decision 

making at a local or stand level. However, UAS imagery also need filed data for 

georeferencing, ground truthing, model calibration, model validation and accuracy 

assessment. Furthermore, UAS imagery derived data products could also be used as 

reference data for moderate resolution satellite imagery data products.  
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Figure 1.1. Conceptual framework for data generation and application
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1.4 Research aim and objectives 

The aim of the thesis was to explore the application of UAS technology and associated 

processing tools in inventory data acquisition for use in management of the Miombo 

woodlands of Zambia. 

1.4.1 Specific objectives 

i.To review literature on the application of UAS in forest management and 

monitoring with a focus on challenges and opportunities for use in the Miombo 

woodlands 

ii.Investigate the use of UAS imagery to classify tree species in the Miombo 

woodlands of Zambia following these research questions: 

(a). What is the optimal single season window for acquiring UAS 

imagery to discriminate tree species in the Miombo ecoregion? 

(b).  Could multi-season imagery improve the discrimination of tree 

species in the Miombo ecoregion?  

(c). What other image features can improve Miombo species 

classification? 

iii.Explore the potential of UAS-lidar for estimating forest structural attributes of the 

Miombo woodlands in Zambia 

(a). How can UAS-lidar be used to improve FSA estimations in the 

Miombo ecoregion region? 

(b). What are the suitable UAS-lidar metrics for estimating AGB in the 

Miombo woodlands of the Copperbelt province of Zambia? 

(c). How does the regression model developed using data from a single 

site compare with that developed using combined data from two sites? 

(d). Are the models developed on one site transferable to a different site 

where ground reference data are unavailable? 

iv.Explore UAS-lidar as a sampling tool for satellite-based AGB estimations in the 

Miombo woodland of Zambia 

(a). What are the suitable UAS-lidar and Sentinel-2 metrics for 

estimating AGB in the Miombo woodlands of Zambia? 

(b).  What are the optimal prediction models for mapping and estimating 

AGB using UAS-lidar and Sentinel-2 data? 

(c). (iii) Could UAS-lidar-estimated AGB replace field-estimated AGB as 

reference data?  
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1.5 Thesis outline 

There are six chapters in this thesis. Chapter 1 is an introduction, followed by four chapters 

(2, 3, 4, and 5) in the form of articles in the format prescribed by the target peer-reviewed 

journals, and Chapter 6 is a summary of all the results from the previous chapters. Among 

the set of four papers under consideration, Chapters 2 and 3 have been published. The 

other two chapters are in the manuscript stage and ready for publication. Each individual 

paper has been presented as its own chapter, establishing it as a discrete contribution to 

the main research objective. Because of this approach, certain overlaps in technique 

explanation, formulation, and illustration are unavoidable in the various chapters. Only 

a single reference was adopted to maintain consistency. 

Chapter 1 introduces the research problem and outlines the aim and objectives of the 

thesis. 

In Chapter 2, the use of UAS technology in the field of forestry is reviewed. The primary 

emphasis is placed on the various sensors utilized in this context, the methodology 

implemented for processing the collected data, as well as the challenges and limitations 

associated with this application. Furthermore, a review was conducted on the 

fundamental characteristics of the Miombo woodlands, including their structure, 

composition, and phenology, with the aim of determining the most effective methods for 

implementing this technology inside the Miombo woodlands. This chapter is based on:  

Shamaoma, H.; Chirwa, P.W.; Ramoelo, A.; Hudak, A.T.; Syampungani, S. The 

Application of UASs in Forest Management and Monitoring: Challenges and 

Opportunities for Use in the Miombo Woodland. Forests 2022, 13, 

1812.  https://doi.org/10.3390/f13111812 

Chapter 3 explores the use of Multi-Date and Multi-Spectral UAS imagery for classifying 

the dominant tree species in wet Miombo Woodlands of Zambia. The five dominant 

canopy species of the wet Miombo woodlands in the Copperbelt province of Zambia 

were classified using multi-date, multispectral UAS images acquired at important 

phenological phases (leaf maturity, transition to senescence, and leaf flushing) using 

object-based image analysis (OBIA) with a random forest algorithm. This chapter was 

based on:  
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Shamaoma, H.; Chirwa, P.W.; Zekeng, J.C.; Ramoelo, A.; Hudak, A.T.; Handavu, F.; 

Syampungani, S. Use of Multi-Date and Multi-Spectral UAS Imagery to Classify 

Dominant Tree Species in the Wet Miombo Woodlands of Zambia. Sensors 2023, 23, 2241. 

https:// doi.org/10.3390/s23042241 

Chapter 4 demonstrated the use of UAS-lidar to estimate four forest structural 

parameters above ground biomass, basal area, diameter at breast height, and volume at 

two locations 90 km apart in the wet Miombo woodlands using a multiple linear 

regression approach. In addition, the transferability of models produced from one 

location to another was evaluated. This chapter was based on: 

Shamaoma, H.; Chirwa, P.W.; Zekeng, J.C.; Ramoelo, A.; Hudak, A.T.; Handavu, F.; 

Syampungani, S. Exploring the potential of UAS-lidar for estimating forest structural 

attributes of the Miombo woodlands in Zambia (Manuscript) 

The emphasis of Chapter 5 was on bridging the spatial data gap that exists between 

accurate field inventory techniques and satellite-based remote sensing technologies 

necessary for wall-to-wall mapping of the Miombo woodlands. The study utilizes a two-

phase sampling approach for estimating wall-to-wall AGB, with field plots sampling 

regions to be covered by a UAS-lidar and UAS-lidar sampling areas to be covered by 

wall-to-wall satellite imaging. This Chapter is based on: 

Shamaoma, H.; Chirwa, P.W.; Zekeng, J.C.; Ramoelo, A.; Hudak, A.T.; Handavu, F.; 

Syampungani, S. Exploring UAS-lidar as a sampling tool for satellite-based AGB 

estimations in the Miombo woodland of Zambia (Manuscript) 

 

Chapter 6 summarizes all of the study results from the preceding chapters. The 

contribution of the study results to society and forest management is discussed. General 

conclusions are offered, and additional efforts are recommended. 
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Chapter 2 The application of UAS in forest management and 

monitoring: Challenges and opportunities for use in the Miombo 

woodland 

 

 

 

 

This chapter is based on:  

Shamaoma, H.; Chirwa, P.W.; Ramoelo, A.; Hudak, A.T.; Syampungani, S. The 

Application of UASs in Forest Management and Monitoring: Challenges and 

Opportunities for Use in the Miombo Woodland. Forests 2022, 13, 

1812.  https://doi.org/10.3390/f13111812 
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Abstract 

The Miombo woodland is the most extensive tropical woodland in south central Africa. 

However, field sample plot data about forest cover changes, species distribution and 

carbon stocks in the Miombo ecoregion is inadequate for effective forest management. 

Owing to logistical challenges that come with field-based inventory methods, remote 

sensing plays an important role in supplementing field methods to fill in data gaps. 

Traditional satellite and manned aircraft remote sensing platforms have their own 

advantages and limitations. The advent of Unmanned Aerial Systems (UAS) has made it 

possible to acquire forest data at unprecedented spatial and temporal scales. UAS are 

adaptable to various forest applications in terms of providing flexibility in data 

acquisition with different sensors (RGB, multispectral, hyperspectral, thermal, and light 

detection and ranging [lidar]) at a convenient time. To highlight possible applications in 

the Miombo woodlands, we first provide an overview of the Miombo woodlands and 

recent progress in remote sensing with small UAS. An overview of some potential forest 

applications was undertaken to identify keys prospects and challenges for UAS 

applications in the Miombo region, which will provide expertise and guidance upon 

which future applications in the Miombo woodlands should be based. While much of the 

potential of using UAS for forest data acquisition in the Miombo woodlands remains to 

be realised, it is likely that the next few years will see such systems being used to provide 

data for an ever-increasing range of forest applications. 

Keywords: UAS; Miombo woodlands; Forest structure, Tree species, Forest degradation 
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2.1 Introduction 

The Miombo woodland covers 2.7 million km2 in Africa, mainly Angola, the southern 

parts of the Democratic Republic of Congo, Malawi, Mozambique, Tanzania, Zambia, 

and Zimbabwe (Campbell, 1996). The Miombo woodlands are characterised by the 

dominance of three key deciduous genera belonging to the family Fabaceae, subfamily 

Caesalpinioideae in the genera Brachystegia, Julbernadia and Isoberlinia (Frost, 1996). They 

occur on areas with generally poor soil nutrients and characterised by distinct wet and 

dry seasons, with annual mean rainfall ranging from 650 mm to 1500 mm (Frost, 1996; 

Ribeiro et al., 2012).The Miombo woodlands are divided into dry and wet woodland 

types in line with rainfall in the zone of occurrence (White, 1983) as well as species 

composition and structure (see Table 2.1).  

Table 2.1 Categorization of the Miombo Woodlands. 

Category dominant species 
Average canopy 

height 
occurrence 

Annual 

Rainfall  

Dry 

Miombo 

Brachystegia spiciformis, 

Brachystegia boehmii, and 

Julbernardia globiflora 

15 m, with less 

crown overlap 

southern Malawi, 

Mozambique, and 

Zimbabwe 

less than  

1000 mm 

Wet 

Miombo  

Brachystegia floribunda, 

Brachystegia glaberrima, 

Brachystegia longifolia, 

Brachystegia wangermeeana, 

Julbernardia paniculata, 

Isoberlinia angolensis and 

Marquesi macroura 

Trees greater  

than 15 m with 

some crown 

overlap   

eastern Angola, 

northern Zambia, 

DRC, central 

Malawi and south 

western Tanzania 

more than  

1000 mm 

 

The Miombo woodland is home to natural resource dependent communities and offers a 

multiplicity of eco-services ranging from food (fruits, honey, edible insects, and bush 

meat), construction materials (poles, timber and fiber), fuel (charcoal, firewood), 

medicine and water provisioning services (Syampungani et al., 2009; Ryan et al., 2011b; 

Chirwa et al., 2015; Kachamba et al., 2016a). However, rapid population growth coupled 
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with increase in electricity tariffs and prices of petroleum products has led to increased 

demand for land for settlement and agriculture expansion as well as overexploitation of 

timber and fuel wood products (Luoga et al., 2002; Syampungani et al., 2009). 

Consequently, there is a rapid upsurge in deforestation and degradation of the 

woodlands across the ecoregion (Mayes et al., 2015; Halperin et al., 2016b). 

However, current estimates of forest cover changes, species distribution and carbon 

stocks in the Miombo ecoregion are inadequate for effective forest management, and 

international reporting requirements such as for the Reducing Emissions from 

Deforestation and Forest Degradation plus (REDD+) necessary for forest conservation 

(Herold and Schiller, 2009; Ribeiro et al., 2012; Barquín et al., 2014; Mayes et al., 2015).  

Many studies have been conducted on UAS applications in forestry in a number of 

continents with the goal of sharing knowledge on their utility, e.g. (Anderson and Gaston, 

2013; Banu and Borlea, 2016; Eugenio et al., 2020; Guimarães et al., 2020). Nevertheless, a 

review focusing on UAS forestry applications in Miombo woodlands is still not available. 

A web-based search for articles on the following keywords: “Unmanned Aerial Systems”, 

“Unmanned Aerial Vehicles”, “Unoccupied Aerial vehicles”, “Remotely Piloted Aircraft 

Systems”, “Drones” and their acronyms “UAS”, “UAV” and “RPAS” in combination 

with commonly use synonyms in forestry: “forest”, “forestry” and “forests” from 1st 

January 2010 to 31st December 2020, in the Web of Science Database (WoS) based on 

Author affiliation revealed that Africa had the least number of publications compared to 

the other continents (Figure 2.1). Thirty-two articles were published with participation of 

African affiliated authors and only 9 of those articles were purely UAS forestry 

application related articles from sub-Saharan Africa. Furthermore, all these articles were 

published between the years 2016 and 2021. Table 2.2 shows that these studies were 

focused on biomass estimation and other forest structural attributes. Only three of these 

studies included other forest applications namely: (i)) height estimates of woody 

vegetation for monitoring disturbance from fire and grazing (Mayr et al., 2018), (ii) use 

of multi-spectral UAS imagery to estimate pre-fire AGB for the purpose of quantifying 

the fuel load (Eames et al., 2021), and (iii) extracted tree crowns morphology for 

predicting tree species (Bossoukpe et al., 2021a). With the continuous improvement of 

UAS platforms, sensors and processing technologies, the number of applications in sub-

Saharan Africa are expected to increase, making it necessary to undertake a review of 
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UAS applications in forestry to understand the associated opportunities and challenges 

in forest monitoring and management. Therefore, this paper is designed to summarize 

UAS applications in forestry and implications for management of Miombo woodland 

attributes. 

2.2 UAS platforms, sensors and data processing 

2.2.1 Classification of UAS 

There are many classifications of UAS, which are based on different characteristics such 

as size, weight, endurance and range capabilities (Table 2.3: (Anderson and Gaston, 

2013)). The majority of UAS used in forest application are in the ‘Small, and ‘Micro classes 

because of relatively low cost and ease of operation compared to other classes (Tang and 

Shao, 2015). This trend is expected to continue in the application of UAS in the Miombo 

woodlands e.g. (Kachamba et al., 2016b; Domingo et al., 2019) and therefore this study 

will be focused on these two classes. Typically, UAS are classified based on takeoff and 

landing technique: (i) horizontal take-off and landing - characteristic of fixed-wing (FW) 

aircraft (i.e., airplanes), and (ii) vertical take-off and landing characteristic of rotary-wing 

(RW) aircraft (i.e., helicopters, multi-rotor quadcopters, hexacopters, etc.). RW have 

capability for vertical take-off and landing, making them suitable for deployment and 

launching in areas with limited space such as built-up areas and forests. Compared to 

FW aircraft, RW aircraft are cheaper, more compact and portable, easier to use for both 

auto pilots and humans, and are more stable leading to superior image quality (Colomina 

and Molina, 2014; Tang and Shao, 2015). The major limitation of RW is that they have 

complex mechanical systems with many rotor blades which consumes a lot of power 

making them have low speed and less endurance resulting in less flight time and area 

coverage per flight compared to FW. 

The FW have high speed, large payload capacity, longer endurance and are able to cover 

longer distances within one flight, which makes them more suitable for mapping large 

areas compared to RW. The disadvantage for the FW is inability for vertical take-off and 

landing which makes them less suitable for application in dense forest environments with 

limited space, and they are relatively more expensive than RW (Colomina and Molina, 

2014). In addition, FW have lower stability especially in windy conditions, which can 

impact image quality (Tang and Shao, 2015). In terms of potential for application in the 

Miombo woodlands, which are characterised by generally open canopies, both FW and 
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RW aircraft have high potential for application but the RW is likely to dominate in line 

with global trends as revealed in a study by Eugenio et al. (2020) who carried out a global 

review of the application of UAS in forestry from 2010 to 2019 and found that RW where 

more popular than FW platforms. A similar study by Guimarães et al. (2020) corroborated 

these findings. The RW ease of use, affordability, and compactness gives it an edge over 

the FW counterpart albeit the FW has an advantage of high endurance. Furthermore, 

most UAS study sites are small, and regulations in the Miombo ecoregion countries 

require maintaining the line of sight by the pilot, which are compatible with RW. 

 

Figure 2.1. Showing number of forest-related UAS publications by continent 

2.3 UAS Sensors 

UAS are flexible platforms with capability to host a wide variety of sensors that can serve 

different types of forest applications including: forest inventory, conservation and 

monitoring of natural resources, fire monitoring, disease detection and mapping, and 

many others (Eugenio et al., 2020). In this section we present some of the sensors most 

commonly applied in forestry studies with great potential for application in the Miombo 

woodlands.
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Table 2.2 Summary of studies that applied UASs in forestry in sub-Saharan Africa. 

UAS/Type Sensor Aim Location Product Performance Reference Year 

SenseFly eBee 

(FW) 

RGB Biomass estimation 

and impact of DTMs 

generated from 

different methods on 

AGB estimates 

Malawi AGB R2 = 0.58-0.67 (Kachamba et al., 

2016b) 

2016 

SenseFly eBee 

(FW) 

RGB Assess influence of 

plot size on AGB 

estimation 

Malawi AGB R2 = 0.31-0.64 (Kachamba et al., 2017) 2017 

Soleon 

Coanda x12 

(RW) 

RGB Monitor disturbance 

of fire and grazing on 

woody vegetation 

Namibia Mean tree 

height 

metrics 

R2 = 0.7 (Mayr et al., 2018) 2017 

SenseFly eBee 

(FW) 

RGB, NIR Assess UAS influence 

of image resolution, 

sensor type and 

image overlap on 

AGB estimation 

accuracy 

Malawi AGB R2 = 0.55-0.76 (Domingo et al., 2019) 2019 

Unspecified 

DJI (RW) 

RGB, and 

MS 

Monitoring structural 

characteristics of 

vegetation 

Botswana Mean tree 

heights, 

crown area 

N/A (Kolarik et al., 2020) 2020 
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Phantom 4 

DJI (MR) 

RGB Derive tree heights 

and assess sensitivity 

of derived heights on 

AGB estimation 

Ethiopia AGB R2 = 0.99 (Hadush et al., 2022) 2021 

Spark DJI 

(RW) 

RGB Assess woody and 

herbaceous 

phytomass 

Senegal AGB R2 = 0.59 and 

0.71 

(Bossoukpe et al., 

2021b) 

2021 

Spark DJI 

(RW) 

RGB Estimate tree height 

and crown area 

Senegal Mean tree 

heights, 

crown area 

R2 = 0.84 and 

0.93 

(Bossoukpe et al., 

2021a) 

2021 

Matrice 100 

DJI (RW) 

MS Monitor pre-fire AGB Botswana 

and 

Mozambique 

AGB R2 = 0.91 and 

0.77 

(Eames et al., 2021) 2021 

RW = rotary-wing, FW = Fixed wing, RGB = red, green, blue, MS = multi-spectral, AGB = above ground biomass. 

Table 2.3 Classes of UAS platforms. 

Size Large Medium  Small  Micro  

Operating range.  Up to 500 km Up to 500 km < 10 km < 10 km 

Endurance Up to 2 days Up to 10 hours < 2 hours < 1 hour 

Flying altitude 3 -20 km < 4 km < 1 km < 250 m 

Payload 50 kg 50 kg 5 - 30 kg < 5 kg 
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2.3.1 Visible light sensors (RGB)  

The sensors that are sensitive to the portion of the electromagnetic spectrum (EM), about 0.4- 

0.7µm, that is also sensed by the human eye, are referred to as visible light or Red, Green and 

Blue (RGB) sensors (Lillesand et al., 2015). According to a review by Colomina and Molina, 

(2014), RGB sensors are the most commonly used sensors by UAS systems for forestry. A 

review by Eugenio et al. (2020) on the global development and application of UAS technology 

in forestry from the year 2010 -2019 revealed that 57% of UAS forest applications used RGB 

sensors. The major contributing factors to their popular use include: (i) low cost compared to 

the other sensors; (ii) less sophistication, easy to operate and light weight; (iii) low cost and 

readily available processing software; (iv) RGB images are easy to process compared to those 

from other sensors; and (v) most low cost UASs come with an RGB camera integrated on the 

system (Colomina and Molina, 2014; Eugenio et al., 2020). These attributes explain why the 

RGB sensor has been most applied in pioneering forestry applications in sub-Saharan Africa 

(Kachamba et al., 2016b, 2017; Mayr et al., 2018; Domingo et al., 2019; Kolarik et al., 2020; 

Bossoukpe et al., 2021a; b; Hadush et al., 2022).  

Despite their wider application, the limited spectral range of RGB sensors makes them 

inadequate for analyzing many vegetation parameters that require spectral information 

beyond the narrow visible spectrum (Nebikera et al., 2008). For example, a study by Effiom et 

al. (2019), in nature reserves, Amtsvenn, Germany, demonstrated that a combination of UAS-

RGB images with Multispectral Paleiades images significantly improved overall tree species 

classification from 62% to 84% compared to using UAS-RGB images alone. Similar observations 

were made by Franklin and Ahmed, (2017), who found that the addition of a near-infrared 

band to RGB improved the tree species classification by about 11%. In another study, Kolarik 

et al. (2020) assessed the effectiveness of UAS imagery for monitoring structural characteristics 

of vegetation in a semiarid savanna woodland, Chobe Enclave in northern Botswana, by 

comparing multiple approaches for extracting woody vegetation structure from UAS imagery. 

They assessed the efficacy of UAS imagery from RGB and multi-spectral sensors to extract 

vegetation structure parameters (crown area and fractional woody cover) and found that the 

NIR band in the multispectral sensor improved tree crown delineation and estimates of crown 

area, fractional woody cover, and herbaceous cover. However, despite the limitations of RGB 

sensors in the discrimination of tree species and studies of forest health, photogrammetric point 

clouds derived from RGB stereo images have been found to be comparable to and cost less than 

three dimensional (3D) lidar data (Iglhaut et al., 2019), which are currently lacking in the 

Miombo woodlands. 
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2.3.2 Multispectral  

Multispectral sensors are sensitive to visible part of the spectrum as well as wavelengths that 

fall beyond the visible spectrum, which may include: Near Infrared (0.7-1.3 µm), Middle 

Infrared (1.3 – 3 µm ), and Thermal Infrared (3 – 14 µm) regions (Lillesand et al., 2015), and 

spectral bands are stored as separate images in monotone. This allows for flexibility in choice 

of spectral bands to form desired image composites for image analysis. However, separate 

spectral bands increase the sophistication, weight and cost of the sensor as well as the 

processing and storage requirements of the resulting imagery (Whitehead and Hugenholtz, 

2014). Multispectral sensors that include the Near Infrared (NIR) part of the EM have 

significant advantages in vegetation applications because of the high vegetation reflectance in 

NIR compared to the visible part of the EM. Many studies have used UASs with multispectral 

sensors in forest management related applications. For example: (i) species identification 

(Franklin, 2017; Franklin and Ahmed, 2017; Gini et al., 2018; Xu et al., 2020), and (ii) exploiting 

the dissimilarities in reflectance properties between the visible and near infrared to calculate 

vegetation indices and monitor plant health (Czapski et al., 2015; Minarik and Langhammer, 

2016; Dash et al., 2017, 2018). Advantages of these sensors compared to RGB sensors is that the 

addition of NIR increases the possibility for computing various vegetation indices (Bannari et 

al., 1995; Xue and Su, 2017) required for analyzing vegetation health and increases the 

possibilities for discriminating various tree species, e.g. (Gini et al., 2014; Franklin and Ahmed, 

2017). For example, Ahmed et al. (2017) compared UAS RGB and multispectral imagery io 

classify different vegetation covers and found that multi-spectral based classification results 

were 10-15% higher compared to RGB image-based results. The disadvantages of the 

multispectral sensors compared to RGB sensors include higher cost and the requirement for 

more complex pre-processing methods in order to extract useful information from the captured 

images. As a result, less studies have employed UAS multi-spectral sensors compared to RGB 

sensors (Eugenio et al., 2020) and this also is reflected in the number of studies in sub-Saharan 

Africa under this review (Table 2.2). The Miombo woodland canopy is characterised by diverse 

tree species with similar appearance (Frost, 1996), and addition of NIR bands improves 

capability to discriminate tree species that might be difficult to discriminate by RGB sensors. 

2.3.3 Hyperspectral Sensors 

Hyperspectral sensors capture imagery in narrow spectral bands over a continuous spectral 

range, recording the spectra for all pixels in the scene. They capture more detailed information 

than multispectral sensors because an entire spectrum is acquired at each pixel. The major 

advantage of hyperspectral sensors is that they are able to discriminate small spectral details 

over narrow bands of the EM which could otherwise be generalized by multispectral 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



20 

 

 

broadband sensors (Adão et al., 2017). This is useful for detailed vegetation analysis for 

example discrimination of different vegetation species (Fung et al., 2008; Naidoo et al., 2012; 

Fassnacht et al., 2014b). According to the comparison of UAS sensors in a review by Colomina 

and Molina (2014), the disadvantages that limit its application with UAS include heavy 

payload, high cost of sensors, requirement for huge storage space due to the large number of 

bands, and complexity of data acquisition and analysis. Yao et al. (2019) added that most 

hyperspectral sensors are a linear-array and require specialized processing software, and users 

are expected to take care of data formats and geometric corrections. Due to these 

disadvantages, only a few studies have utilized this sensor type in other parts of the world 

(Eugenio et al., 2020; Guimarães et al., 2020), and none so far in sub-Saharan Africa. However, 

with continuous developments in both sensor and processing software technologies, some of 

the stated limitations are expected to be overcome, and the cost is expected to decrease which 

will open room for more applications (Colomina and Molina, 2014) including in sub-Saharan 

Africa.  

2.3.4 Thermal sensors 

Thermal infrared sensors capture information about the temperature of the heat emitted by 

objects, as opposed to reflected solar radiation, and images are produced based on temperature 

response of the emitting objects as opposed to their spectral reflectance properties. The 

application areas for UAS-Thermal sensors in forestry studies include: forest fire 

monitoring(Merino et al., 2012; Hristov et al., 2018), forest health monitoring (Smigaj et al., 

2015), and detecting warm-blooded animals in the forests (Witczuk et al., 2017). The use of UAS 

thermal sensors in forestry studies is limited (see (Eugenio et al., 2020) for number of published 

articles compared to other sensors and (Guimarães et al., 2020) for summary of applications) 

and is yet to be applied in sub-Saharan Africa. This could be due to their low spatial resolution 

compared to RGB and multispectral sensors, which limits the number of applications that can 

use the data. Another challenge for active fire remote sensing is the huge dynamic range of the 

brightness temperatures, which presents much more of an engineering challenge to measure. 

As a result, most thermal IR images saturate where there are active flames, especially the 

sensors light enough to be a feasible payload on a UAS (Colomina and Molina, 2014). Thermal 

cameras are also more expensive than RGB, further limiting their application in the Miombo. 

2.3.5 lidar Sensors 

lidar is an active laser-based remote-sensing technology that measures distance based on the 

return time of emitted light (Pádua et al., 2017). The advantage of lidar in forest applications 

lies in its ability to characterize forest structure in 3D with high accuracy (Popescu and Hauglin, 
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2014). For example studies in conifer stands by Naesset, (1997) in Norway and by Magnussen 

and Boudewyn, (1998) in British Columbia used airborne lidar to estimate stand height with 

(R2 = 0.90) and volume with (R2 = 0.45 to 0.89). The other important advantage is ability to 

penetrate the forest canopy, which makes it possible to capture understory vegetation as well 

as bare earth terrain in forested areas, although terrain accuracy is reportedly reduced with 

increasing canopy cover (Reutebuch et al., 2003). For example, an assessment of a lidar-

generated DTM in a mountainous forested area of western Washington State, United States of 

America under varying vegetation conditions (Reutebuch et al., 2003), found a mean DTM error 

ranging from 0.16 m for bare ground to 0.31 m for dense canopy. Examples of applications of 

UAS mounted lidar (UAS-lidar) systems in forestry include: below canopy mapping (Chisholm 

et al., 2013), tree stem detection and diameter measurements (Kuželka et al., 2020), forest 

change detection (Wallace et al., 2014), and estimating forest structure parameters (Wallace et 

al., 2016; Cao et al., 2019a). Despite its advantages compared to other sensors, UAS-lidar 

applications are still less pronounced as evidenced by the number of articles published in a 

review by Eugenio et al. (2020) and so far, there is no example of its application in sub-Saharan 

Africa. The major drawback of a UAS-lidar is heavier payload which requires bigger and 

relatively more expensive drones, and the associated higher cost of lidar sensors. However, the 

ability of lidar to penetrate forest canopies and detect bare earth elevations in difficult forest 

environments (White et al., 2013b) compensates for some of the disadvantages; with expected 

reductions in cost and improvements in sensor technology, the number of studies employing 

this technology is expected to increase. A pioneering study by Lin et al. (2011) developed a 

UAS-mounted lidar system (UAS-lidar) and were able to estimate tree heights and detect utility 

poles. In a similar study, Wallace et al. (2012b) developed a low-cost UAS-lidar system with an 

accompanying workflow for producing 3D point clouds, and used it to measure tree location, 

height, and crown width.  

2.4 Data processing 

Typically, many UAS sensors will generate huge data volumes which need to be processed to 

give meaningful information to satisfy various forestry applications. There are several post-

processing options for UAS imagery that can be pursued to satisfy intended forestry 

applications. Some common outputs from UAS imagery include: (i) mosaicking, that gives a 

seamless synoptic view of the area under study, (ii) 3D point clouds that are used in forest 

inventory and estimating forest structure parameters, (iii) vegetation indices for the monitoring 

forest health and discriminating different species, and (iv) classification and regression. 
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2.4.1 Mosaicking 

UAS use small format optical sensors that capture a series of overlapping photographs covering 

an area. Such single images cover an area of very limited spatial extent of a forest for 

meaningful analysis and need to be stitched together to form one composite image known as a 

mosaic. Most UAS optical imagery processing software use a scale invariant feature transform 

(SIFT) algorithm to mosaic UAS imagery. Jia et al. (2015) divides mosaicking process into three 

stages (i) image pre-processing (correction for image distortion); (ii) image registration (feature 

extraction, feature matching, model transformation, and parameter estimation); and (iii) image 

fusion (eliminating discontinuity of colour and achieve smooth transition from one photo to 

anther). Finally, the mosaic is georeferenced using ground control points or orthorectified 

using a DTM. 

2.4.2 Three-dimensional point clouds 

Three-dimensional (3D) point clouds are generated either directly using active lidar UAS 

sensors e.g. (Wallace et al., 2012a; Kuželka et al., 2020) or indirectly from passive optical UAS 

Digital Aerial Photography (DAP) using the Structure from Motion approach (SfM) (Dandois 

and Ellis, 2010; Kachamba et al., 2016b; Tomaštík et al., 2019; Xu and Ruan, 2020). 

The SfM approach stems from computer vision automatic feature matching algorithms 

(Snavely et al., 2007), and the principle is well described in Westoby et al. (2012) and Iglhaut et 

al. (2019). According to Westoby et al. (2012), SfM involves the re-establishment of the camera 

pose and scene geometry simultaneously through matching features in multiple overlapping, 

offset images and generating 3D point clouds in the image space coordinate system. The image 

space 3D point cloud is transformed to the object space in real world coordinates by the use of 

Ground Control Points (GCPs) with known coordinates in both systems to generate a Digital 

Surface Model (DSM), orthomosaic or other point cloud statistics. The DSM is the key product 

from which a canopy height model (CHM) can be generated by subtracting a Digital Terrain 

Model (DTM) from a DSM (Kraus and Pfeifer, 1998). 

Conversely, the UAS lidar sensor directly generates a 3D point cloud which undergoes three 

processes to produce a CHM: (i) de-noising to remove outliers (e.g., signals bouncing off from 

captured birds flying above the canopy) to generate a DSM; (ii) filtering or classifying, which 

entails separating ground from non-ground points to generate a DTM representing the ground 

terrain; and (iii) normalizing the DSM to generate a CHM by subtracting the DTM from the 

DSM.   
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Two methods have been applied to extract forest attributes from point clouds: the area-based 

approach (ABA) and individual tree detection (ITD) (Yu et al., 2010; Chen, 2013). In ABA 

methods, forest characteristics, such as mean tree height, mean diameter, basal area, volume 

and biomass are estimated at stand or plot level using statistics calculated from point clouds 

resulting in canopy height and density metrics used in regression, discriminant analysis or 

nonparametric estimation techniques, e.g., as in (Means et al., 2000; Naesset et al., 2004; Hudak 

et al., 2008; Maltamo et al., 2014a; Cao et al., 2019c). In the ITD methods, individual trees are 

segmented from point clouds and tree level attributes such as tree height, crown width and 

crown base height can be derived either directly from point clouds or statistical metrics such 

as those used in area-based approaches using crown metrics derived from point cloud data 

within individual tree segments (Vastaranta et al., 2011; Mohan et al., 2017; Guerra-hernández 

et al., 2018) 

The ABA approach can operate accurately with lower lidar pulse densities but requires more 

field measured plots for calibration. On the other hand, the ITD-based approach requires less 

field data for calibrating the individual tree measurements (Yu et al., 2010). However, the 

application of ITD approach is still limited compared to ABA due the lack of generic algorithms 

that can extract individual trees in varying complex forest environments especially broadleaf 

trees that have an inconsistent morphological structure, which is difficult to model using 

existing algorithms (Chen, 2013). 

2.4.3 Image classification 

Apart from extracting point clouds for estimating forest structure parameters, ultra-high 

resolution (UHR) optical UAS imagery can be classified to extract various forest characteristics 

that include (i) forest cover maps, (ii) forest burn severity, (ii) forest health (Dash et al., 2017) 

and forest tree species identification (Franklin, 2017; Feng and Li, 2019). Classification of UHR 

UAS imagery is either based on pixel-based classifiers, e.g., maximum likelihood algorithm 

(Gini et al., 2014), or Geographic Object Based Image analysis (GEOBIA), machine learning 

(ML) algorithms (Franklin and Ahmed, 2017), or a broad range of variants and hybrids of these 

methods (Singh et al., 2015). However, the UHR UAS imagery presents new challenges, which 

include intra-crown spectral variability (Gini et al., 2014; Franklin, 2017), illumination 

differences due to occlusion (Whitehead et al., 2014), and challenges in tree crown extraction 

(Gomes and Maillard, 2016). GEOBIA, in which the classification is based on image objects that 

correspond to targeted real world objects (e.g., individual tree crowns) instead of individual 

pixels (Blaschke, 2010) has been found to be effective in addressing some of these challenges 

(Franklin and Ahmed, 2017).  
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GEOBIA has two main processing steps: (i) image segmentation, which is the process of 

dividing an image into homogeneous regions or objects that correspond to discernible features 

in remote sensing imagery, e.g., trees, buildings, grasslands, and water bodies (Pal and Pal, 

1993; Costa et al., 2017); and (ii) classification of segmented image objects. Segmentation 

algorithms are categorized by the approach used to divide image objects: (i) pixel based (ii) 

edge based, (iii) region growing and (iv) hybrid method; a detailed discussion of these 

approaches can be found in (Pal and Pal, 1993; Hossain and Chen, 2019). In natural forest 

environments, segmented objects correspond to individual tree crowns. Therefore, GEOBIA 

entails first delineating individual tree crowns (ITCs), followed by classification of identified 

ITCs into appropriate species basing on the spectral characteristics of ITCs (Gomes and 

Maillard, 2016). Tree species classification based on ITCs has been found to yield better results 

compared to pixel based classification; for example, (Franklin, 2017) reported 60% and 80% for 

pixel based and GEOBIA, respectively. Segmentation techniques have been applied to 

delineate ITCs from different UAS products such as orthophoto mosaics, CHMs, point clouds 

or a combination of these. For example, Guerra-hernández et al. (2018) extracted ITCs from 

UAS-SfM and UAS-lidar generated point clouds in a Eucalyptus plantation in Valongo, Porto, 

Portugal with accuracies of 80% and 96%, respectively. In a study by Franklin and Ahmed 

(2017), they segmented multispectral UAV images acquired over a northern hardwood forest 

in eastern Ontario, Canada, then classified the generated image objects using a Machine 

Learning (ML) algorithm (Random Forests) to identify different tree species. A study by Mishra 

et al. (2018) used GEOBIA to identify different vegetation species in the Himalayan Langtang 

National Park, Nepal by segmentation, followed by multi-level image analysis and achieved 

78% accuracy.  

2.4.4 Vegetation indices 

Vegetation indices (VI) are useful algorithms for quantitative and qualitative monitoring and 

evaluation of vegetation cover, vigor, health, and growth dynamics (Xue and Su, 2017). VIs are 

based on the reflection of EM radiation by vegetation, which makes it possible to distinguish 

vegetation from other ground elements. As a result, many VIs have been developed for various 

vegetation monitoring applications (Bannari et al., 1995; Xue and Su, 2017). There are two broad 

categories of VIs that are commonly extracted from optical UAS imagery for monitoring 

vegetation (see Table 2.4 for formulae used to calculate these indices): (i) those that are based 

on multispectral or hyperspectral imagery (e.g., Ratio Vegetation Index [RVI], Normalized 

Difference Vegetation Index [NDVI], Simple Ratio [SR] Vegetation Index, etc.) and (ii) those 

that are computed based on the visible spectrum (e.g., Excess Greenness Index [ExG], 

Normalized Difference Index [NDI]), Red Green Ratio Index [RGRI] etc.). 
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NDVI has been the most widely used VI, which is calculated from multispectral images as the 

normalized ratio between the red and near-infrared bands and used to detect and monitor 

vegetation status (Xue and Su, 2017). However, with regards to UAS, as revealed above, the 

RGB sensors are the most used sensors, but they do not have the near-infrared band which 

facilitates vegetation detection. As a result, there are new efforts of establishing VIs based on 

RGB sensors as demonstrated in a study by Zhang et al. (2019), who introduced the new green-

red vegetation index (NGRVI) to extract vegetation information in arid and semi-arid lake 

Ebinur basin of Xinjiang Uygur region of China with more than 90% accuracy. Another study 

by Agapiou, (2020) explored the use of various published VIs on openly licensed RGB UAS 

imagery from several case studies in different countries with different environments and found 

that green leaf index (GLI) yielded the best results for all case studies. 

Table 2.4 Examples of visible-spectrum- and multispectral-based indices. 

Examples of multispectral based indices. 

Index Abbreviation Formula 

Normalized Difference Vegetation Index NDVI 
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Ratio Vegetation Index RVI 
𝑅

𝑁𝐼𝑅
 

Simple Ratio Index SR 
𝑁𝐼𝑅

𝑅
 

Excess Greenness Index ExG 2𝐺 − 𝑅 − 𝐵 

Normalized Difference Index NDI 
𝐺 − 𝑅

𝐺 + 𝑅
 

Red Green Ratio Index RGRI 
𝑅

𝐺
 

New Green-Red Vegetation Index NGRVI 
𝐺2 − 𝑅2

𝐺2 + 𝑅2 

Green Leaf Index GLI 
2𝐺 − 𝑅 − 𝐵

2𝐺 = 𝑅 + 𝐵
 

2.5 Classification of Miombo tree species 

The Miombo dominant canopy species have similar physiognomy resulting in similar 

appearance attributed to the fact that most of these species are of the family Caesalpiniodeae 

(Frost, 1996). This familial similarity in appearance presents challenges as there is high spectral 

similarity between co-occurring species, which may be difficult to discriminate by low 

spatial/spectral/temporal resolution remote sensing imagery. UAS platforms provide flexibility 

to accommodate multiple sensors (RGB, multispectral, hyperspectral, and lidar), which can be 
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used to acquire ultra-high spatial resolution imagery at convenient frequent intervals for use 

in the identification of tree species (Colomina and Molina, 2014). UAS enables the acquisition 

of imagery at sub-metre resolution, making it usable for the identification of individual tree 

species. However, ultra-high spatial resolutions may lead to different spectral responses from 

parts of the same tree such as leaves, branches and trunks, which can make it difficult to 

identify trees at species level due to variation of textures and spectral signatures within the 

same tree. Other challenges in using high resolution optical data from UAS for classification of 

tree species that might affect the quality of results include: (i) variation in illumination 

conditions for images taken on different dates and at different times of day that will result in 

different spectral response for the same objects, (ii) intraspecies variation in phenological 

development, which is common in the Miombo woodlands, and (iii) similarities in leaves and 

morphology of different tree species in the Miombo woodlands, which will result in mixing of 

different species. As a result, object-based image analysis is preferred to conventional pixel-

based classifiers for UAS imagery. For example, a study by Franklin and Ahmed (2017) showed 

an improvement in classification results for identifying tree species from 50-60% for pixel-based 

classification to 80% percent for object-based classification using the same UAS imagery in the 

same area.  

2.5.1 Flexible temporal frequency  

UAS provides a flexible temporal frequency (Tang and Shao, 2015) at which data can be 

acquired to coincide with important phenological events that can help discriminate different 

tree species. The proper timing of these events in the Miombo for example can help 

discriminate: (i) herbaceous layer from tree canopy using Normalized Difference Vegetation 

Index (NDVI) at the end of the rainy season in May, (ii) discriminate Brachystegia species from 

other species at leaf flushing using reddish colour, (iii) discriminate Julbernardia species using 

the late flowering event (Frost, 1996). For example, Lisein et al. (2015) used the Random Forest 

(RF) classification algorithm to classify 5 deciduous species groups on a 130 hectare 

broadleaved forest in Grand-Leez, Belgium, using single date, two-date and three-date 

multispectral UAS image combinations at critical phenological stages and found that three date 

combinations yielded superior results compared to the other combinations because of different 

phenological characteristics of different species.  

2.6 Monitoring disturbances  

UAS may be a useful tool in monitoring the disturbances and recovery of the Miombo 

woodland at landscape level. The disturbances in the Miombo arise from mainly the interaction 

of three factors namely (Frost, 1996); (i) anthropogenic, (ii) fire and (ii) herbivory  
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2.6.1 Anthropogenic disturbances 

Disturbances as a result of Miombo woodland utilization by people include complete clearing 

for cropping, shifting cultivation, selective harvesting of trees for timber, firewood, charcoal 

production, medicine and livestock grazing. While disturbances from huge clearings for 

cropping and charcoal production are detectable using freely available moderate resolution 

satellite imagery such as Landsat and Sentinel e.g. (Mayes et al., 2015; Sedano et al., 2020b), 

small scale disturbances from selective cutting and lopping of trees and understory grazing are 

difficult to detect from such imagery and occur at spatial and temporal scales that are difficult 

and costly to cover by field methods (Hosonuma et al., 2012; Romijn et al., 2012; Mitchell et al., 

2017). Furthermore, for shifting cultivation agriculture, which is common in the Miombo 

woodlands, some clearings are too small (0.5 – 2 ha) to be resolved by moderate resolution 

imagery (Mayes et al., 2015). UAS can be used to capture ultra-high spatial resolution imagery 

with timing and frequency required to monitor disturbances and recovery from selective 

harvesting and lopping of trees and bridge the temporal and spatial gap between freely 

available satellite imagery and field methods. For example, a study by Thiel et al. (2020) used 

repeated UAS flights to monitor selective logging at the individual tree level in a pine-

dominated forest in Germany; they were able to detect felled trees with a precision and recall 

of 97.5% and 91.7%, respectively. In a post-harvest assessment of charcoal and timber, Ota et 

al. (2019) used UAS imagery before and after a selective logging event in a tropical forest in 

Myanmar to quantify changes in above ground biomass (AGB). In addition, UAS 

methodologies proposed by Samiappan et al. (2017) and Puliti, (2018) in quantifying the 

harvested timber and detect illegal logging in protected areas may be useful in monitoring of 

such in Miombo woodlands. Further, UAS-SfM imagery can be used to monitor biomass 

changes due to grazing in open Miombo woodlands of less than 50% canopy cover, while in 

greater than 50% canopy cover UAS-lidar which can penetrate through the canopy and give a 

full vertical characterization of the forest can be used to monitor disturbances related to 

understory grazing (Mlambo et al., 2017). 

2.6.2 Fire related disturbances  

Fires are a major cause of changes in the structure and composition of Miombo woodlands 

(Frost, 1996). Therefore, pre-fire, during-fire, and post-fire forest management are important. 

UAS with ultra-high spatial resolution and flexibility of deployment are one of the emerging 

remote sensing tools for fire management (Fraser et al., 2017; Mckenna et al., 2017; Shin et al., 

2019). Grass and woody plant leaf litter are the major fuel load for fires in the Miombo 

woodlands (Ribeiro et al., 2020a) that could be quantified using UAS to assess the risk and serve 

as an early warning indicator for the likelihood of a fire occurrence. In terms of fire prevention 
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and early warning, Fernández-Álvarez et al. (2019) proposed a methodology based on high 

resolution UAS-lidar point clouds that can be used to characterize forest fuel load. Barber et al. 

(2021) used a UAS mounted with infrared and visible light sensors to capture imagery and 

employed reflectance in six wavelengths in the visible and infrared ranges to estimate fuel 

moisture in grasslands in western Washington, United States of America (USA). Another study 

by Shin et al. (2018) evaluated the feasibility of using UAS imagery for estimating forest canopy 

fuels in a ponderosa pine stand, in Flagstaff, Arizona, USA and accurately estimated canopy 

cover (R2 = 0.82, RMSE = 8.9%). During a fire event, UAS with thermal infrared sensors can be 

used for active fire detection and monitoring. For example, Merino et al. (2012) deployed a fleet 

of three UAS mounted with infrared and thermal sensors to measure and monitor the evolution 

of fire and demonstrated that UAS can cover the gap between the spatial measurement scales 

of cameras deployed on satellites and on towers. Valero et al. (2017) used UAS thermal infrared 

imagery to track the development of an active wildfire in real time and generated valuable data 

for managing the wildfire emergency response. For assessment of post-fire damage and 

recovery, the potential of using indices derived from RGB sensors mounted on UAS was 

demonstrated in studies by Mckenna et al. (2017) and Fraser et al. (2017), who were able to 

assess the extent and severity of fires and subsequent recovery of the ecosystems at landscape 

scale. The above examples of application of UAS in fire studies speak to the potential that UAS 

has in bridging the data gap in fire studies in the Miombo woodlands.  

2.6.3 Herbivores related disturbances 

Herbivores have been associated with causing changes in plant biomass, forest  structure and 

diversity across the African savannas (White, 1983). In the miombo woodlands, the largest 

share of herbivory related disturbances have been attributed to elephants (Frost, 1996; 

Hempson et al., 2015; Ribeiro et al., 2020b). For example; a study by Thomson, (1975) revealed 

that increased elephant numbers in Chizarira National Park, Zimbabwe, contributed to 

destruction of 67% of the 500 original mature Brachystegia boehmii trees. Another study by Guy, 

(1981), who monitored biomass changes over a four year period (1972 -1976) in the Sengwa 

wildlife Research Area in Zimbabwe, reported 46% decline in biomass of canopy trees, 42% 

decline in basal area and 23% decline in density, which was attributed to elephants. Other 

studies in similar environments have attributed the structure changes in vegetation cover to 

combined effect of elephants and fire (Dublin et al., 1990; Ribeiro et al., 2008). The impact of 

herbivory on vegetation is heterogenous and mainly species specific and occurs at different 

spatial scales (Thomson, 1975; Frost, 1996; Hempson et al., 2015). The interactions between 

herbivores and vegetation as well as their spatial heterogeneity are essential for understanding 

ecosystem structure and function of the Miombo woodlands (Frost, 1996). Though remote 
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sensing has been identified as an essential tool for quantifying the impacts of herbivory on 

vegetation structure (Levick et al., 2009), it is still underutilised for this purpose in the Miombo 

woodlands (Ribeiro et al., 2012). The advent of UAS provides an opportunity to collect high 

spatial/temporal resolution imagery data that are suitable for quantifying herbivory (Anderson 

and Gaston, 2013). For instance; Siewert and Olofsson, (2021) used repeated UAS fights from 

2018 and 2019 to quantify vegetation impacted by rodents at four complex landscapes of 

northern Sweden. They applied image raster math by subtracting 2019 NDVI imagery from 

2018 NDVI imagery to estimate changes in NDVI values as indication of rodent impacts on 

vegetation. These methods and high resolution UAS imagery has potential for monitoring 

disturbances caused by herbivores in the Miombo which occur at smaller spatial scales that 

would otherwise be difficult to detect from medium resolution satellite imagery 

2.7 Bridging the data gap 

Miombo woodlands exhibit multifaceted vegetation patterns varying from sparse to dense 

vegetation emanating from edaphic factors and disturbances (anthropogenic, fires and 

herbivory) factors (Frost, 1996). If not well captured, small-scale spatial variation in vegetation 

cover can lead to inaccurate quantification of biophysical and ecological properties of 

vegetation (Aubry and Debouzie, 2001). Effective forest management and international 

reporting requirements such as REDD+ requires vegetation data products covering the whole 

spatial spectrum from detailed field inventories to satellite remote sensing based wall to wall 

mapping (Mitchell et al., 2017). On one hand, detailed field inventory methods have been used 

to estimate biophysical properties of vegetation within the Miombo eco-region (Mugasha et al., 

2012; Chidumayo, 2013; Kachamba et al., 2016a; Handavu et al., 2021), though these studies 

were conducted on relatively small sites that are inadequate for regional wall-wall mapping. 

On the other hand, medium spatial resolution imagery (10- 250) has been used in mapping 

forest cover changes (Sedano et al., 2005; Cabral et al., 2010; Mayes et al., 2015; Halperin et al., 

2016b) and estimating charcoal related degradation (Sedano et al., 2020a; b) in the Miombo 

woodlands and achieved promising results that can be used for wall-to-wall mapping. 

However, medium resolution satellite imagery are unable to detect forest changes that occur at 

a smaller spatial scale in the Miombo woodlands (GOFC-GOLD, 2016), for example: (i) selective 

tree harvesting for firewood, charcoal production, and timber (Chidumayo and Gumbo, 2013), 

(ii) shifting cultivation and small field clearings of less than two hectares (Mayes et al., 2015), 

and (iii) under canopy biomass removal due to grazing (Chidumayo, 2013). From this review, 

UAS technology has demonstrated potential to bridge the spatial data gap that exist between 

detailed field inventory methods and satellite-based remote sensing methods that are required 
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for wall-to-wall mapping of the Miombo woodlands. This can be achieved through a two-phase 

sampling design where areas covered by UAS are sampled with field plots and areas covered 

by wall-to-wall satellite imagery are sampled using UAS 

2.8 Current status of application of UAS in Miombo woodlands 

Although there is great potential for application of UAS in the Miombo woodlands, the current 

status of application (Table 2.5) is still at a rudimentary level and all studies were done in one 

site in the dry Miombo (Kachamba et al., 2016b, 2017; Domingo et al., 2019). This shows that 

more studies need to be done in different environments of the Miombo woodlands to actualize 

the potential benefits of UAS technology. 

 

Table 2.5 Overview of UAS application status in the Miombo woodlands. 

Application Sensors No of studies Country/Category  

Estimation of forest 

structure (AGB, BA, 

CW, TD, CC, TH, TV) 

RGB, NIR 3 Malawi., dry 

Miombo 

Classification of tree 

species 

- - - 

Forest health - - - 

Forest fire - - - 

AGB = above ground biomass, BA = basal area, RGB = red, green, blue, CW = canopy width, 

TD = tree density, CC = canopy cover, TH = tree height, TV = tree volume. 

2.9 Challenges for UAS implementation in the Miombo woodland 

Although the advent of UAS technology has presented a lot of opportunities to improve 

management of forest resources in the Miombo woodland region, they come with challenges 

which need to be understood for successful implementation of the technology (Table 2.6). These 

challenges come from the limitations of the UAS technology as well as global operating 

guidelines and regulations. 
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2.9.1 Regulation 

Globally, UASs are subjected to aviation safety rules just like manned aircraft, and countries 

have developed legislation to regulate the use of UAS with the goal of minimizing the risks to 

other airspace users and also to both people and property on the ground (Stöcker et al., 2017). 

Therefore, it is important for any UAS operators to consult the legislation regulating UAS use 

in the country of intended use (Duffy et al., 2017). In the Miombo woodland ecoregion, 

Democratic Republic of Congo (DRC), Malawi, Tanzania, Zimbabwe and Zambia have 

legislation and Mozambique a directive guiding the operation of UAS, while in Angola there 

is no known legislation (“Global Drone Regulations Database,” 2014).  

Despite good intentions, the implementation of UAS regulations presents barriers to their 

successful application in forestry. The challenge comes in bureaucratic procedures and time 

taken to approve an application for flying permits (Rango and Laliberte, 2010), which might 

result in missing the timing of data collection for important forest related research events in the 

Miombo woodlands (e.g., vegetation phenological events) (Ribeiro et al., 2020a). The other 

challenge is the restriction that the UAS should be flown within the Visual Line of Sight (VLOS) 

of the pilot, which restricts the area that can be flown per flight. Furthermore, the restriction 

that UAS be flown up to a maximum height of 120 m above ground (and for Malawi 45 m above 

ground) results in increased resolution of the captured imagery and the number of captured 

photos, which increases computer processing demands. Where there are disparities in the laws 

and policies on the use of UAS among the Miombo ecoregion countries, cross frontier projects 

among practitioners and researchers, which are very important in forest management, may be 

negatively impacted. 

2.9.2  Site environment challenges 

A detailed understanding of the operational site potential hazards and distractions are a key 

requirement for successful mission planning and execution of UAS data collection (Cromwell 

et al., 2021). Some section of the Miombo woodlands is home to a variety of wildlife some of 

which are aggressive (e.g., lions, buffalos, and elephants among others) (Ribeiro et al., 2020a), 

and may distract the operators of UAS. Furthermore, flocks of Guinea fowls, large birds of prey 

such as eagles and other birds that inhabit Miombo woodlands might cause bird strikes on 

UAS. To mitigate such accidents from wildlife, UAS operators should be aware of their 

occurrence and behaviour beforehand.  

Site topography has been found to have a big influence on the quality of 3D point clouds 

required for estimating forest structural parameters (Zahawi et al., 2015; Domingo et al., 2019). 
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For example, a study by Domingo et al. (2019) conducted in the Miombo woodlands found that 

errors in tree height estimates increased with increase in steepness of the slope, with largest 

errors coming from slopes above a 35% incline. Another study by Alonzo et al. (2018), used 

UAS-SfM to quantify boreal forest structure and composition in interior Alaska, USA, and 

reported difficulties in acquiring data along the steep slopes due to problems in adjusting the 

UAS platform to sustain a constant flight altitude above the entire site terrain. 

2.9.3 Weather Limitations 

UAS operations are sensitive to weather conditions, such as high wind speed, precipitation and 

extreme temperatures which might impede UAS data collection at the optimal time of 

capturing relevant events (e.g., phenology, fire, insect infestations and many others) and 

sometimes may damage UAS components (ClimaCell, 2018). In addition, varying illumination 

conditions during image capture affect image quality, which may complicate image processing 

and lead to poor results (Cessna et al., 2021). Furthermore, wind-induced motion of leaves and 

branches during image capture can bring about complications in processing UAS imagery 

resulting in mismatch of features in overlapping images and poor quality orthophotos and 3D 

point clouds (Iglhaut et al., 2019). According to historical climate data (Weatheronline, 2022), 

in the Miombo ecoregion high wind speeds are experienced between June and October, a 

period when most Miombo tree species goes through dropping, flowering and leaf shooting, 

while rainfall occurs around November to April (Frost, 1996). Clouds are a prominent feature 

in the Miombo ecoregion especially from November to June (Weatheronline, 2022), and 

changes in cloud conditions during data collection can lead to changes in illumination 

conditions, which can cause biased estimation of measured spectral and structural variables 

(Dandois et al., 2015; Doughty and Cavanaugh, 2019). Adverse weather conditions may result 

in poorly timed UAS operations and an inaccurate assessment of forests or affect operations 

times resulting in project delays, discourage potential forest managers from using the 

technology. High overlap and side lap as well as restricting flight times to around noon has 

been proposed as some of the mitigating measures for unfavourable illumination conditions 

(Dandois et al., 2015; Iglhaut et al., 2019). Ultimately, observation of prevailing weather 

conditions in the area of interest is critical to proper flight timing to reduce the effects of wind, 

clouds and shadow within imagery in order to produce the best data possible for the intended 

application (Poley and McDermid, 2020). 
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Table 2.6 Summary of opportunities and challenges for potential UAS application areas in the 

Miombo woodlands. 

Application Opportunity Challenges 

Estimation of forest 

structure (AGB, BA, CW, 

TD, CC, TH, TV)  

Availability of affordable UAS-SfM 

in mostly open woodlands 

Low accuracy DTM in dense forest environments 

Variation in illumination conditions 

Phenological differences 

Limited area coverage area coverage per flight 

 

Availability and reducing cost of 

UAS-lidar for generating accurate 

DTMs 

Heavy payload and high cost 

Limited area coverage per flight 

 
Flexibility for multi-temporal 

deployment  
 

Classification of tree 

species 

Availability and reducing cost of 

UAS multispectral, hyperspectral 

sensors  

Availability of OBIA and manchine 

learning algorithms 

Phenological differences in tree 

species 

Flexibility for multi-temporal 

deployment 

Difficulties in separating differentspecies using 

RGB sensors with limited spectral resolution 

High cost of multispectral and hyperspectral 

sensors 

Steep learning curve for manchine learning 

algorithms 

Cost of specialized processing software 

Heavy payload demanding larger expensive 

UAS for hyperspectral sensors 

Interspecies homogeneity  

Intra species heterogeneity due to variation in 

illumination conditions  

Steep learning curve for processing 

hyperspectral imagery 

Limited area coverage per flight 

Forest health 

Availability of multi-spectral and 

hyperspectral sensors 

Availability of vegetation indices 

Heavy payload demanding larger expensive 

UAS for hyperspectral sensors 

Vegetation phenology 

Steep learning curve for processing 

hyperspectral imagery 

Limited area coverage per flight 

 Forest fires 
Availability of multi-spectral and 

thermal sensors 

Heavy payload demanding larger expensive 

UAS for thermal sensors 

High cost of sensor and specialized software 

Steep learning curve for processing algorithms 

 

Forest degradation 

Availability of low-cost RGB sensors 

Availability and reducing cost of 

UAS multispectral, hyperspectral, 

thermal and lidar sensors 

Difficulties in characterizing small-

scale degradation activities with 

freely available satellite imagery 

High cost of multispectral, hyperspectral, 

thermal and lidar sensors 

Steep learning curve for processing 

hyperspectral and lidar data Limited area 

coverage per flight 

AGB = Above Ground Biomass, BA = Basal Area, CW = Canopy Width, TD = Tree Density, CC = Canopy 

Cover, Tree Height, TV = Tree Volume, UAS = Unmanned Aerial System, SfM = Structure from Motion, DTM 

= Digital Terrain Model, lidar = Light Detection and Ranging, OBIA = object oriented image analysis. 
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2.9.4 Limitation of UAS sensors 

Most cameras that are used in UAS are not designed for remote sensing applications and as 

such spectral response curves for such cameras are poorly calibrated, making it difficult to 

convert brightness values into radiance (Whitehead and Hugenholtz, 2014), which is essential 

for comparative analyses. Moreover, most consumer grade cameras have limited spectral 

resolution and no infrared band, which limits their application for vegetation analysis. Another 

limitation of such cameras is that they are susceptible to vignette, where the centre of the image 

appears brighter than the edges (Kelcey and Lucieer, 2013), which is a result of differences in 

light paths between the centre and edges of the lens causing a radial shadowing effect at the 

edges of the image (Whitehead and Hugenholtz, 2014). Such negative effects have to be 

corrected in order to preserve spectral and structural attributes that are required for vegetation 

monitoring (Whitehead et al., 2014). In instances where information beyond the visible part of 

the EM is required (e.g., species discrimination and detailed vegetation analysis), multi-spectral 

or hyperspectral sensors can be used (Guimarães et al., 2020).  

Furthermore, for optical sensors, single UAS photos are usually mosaiced before any analysis 

at landscape level (Jia et al., 2015), but the process of mosaicking presents challenges caused by 

vignetting, relief displacement, misregistration, as well as image artifacts created when image 

balancing algorithms fail (Whitehead and Hugenholtz, 2014). Poor quality mosaics cause errors 

in spectral analysis, which can lead to biased estimates of forest inventory attributes. Some of 

the mosaic artifacts can be mitigated by following the UAS data collection protocol proposed 

by Dandois et al., (2015). 

2.9.5 Endurance challenge  

The major limitation of most small UAS that are used in forest applications especially multi-

rotors is low endurance, which means they can cover only a small area per flight (Colomina 

and Molina, 2014; Tang and Shao, 2015). Flight times for most UAS batteries ranges between 

10 – 30 minutes (Hardin et al., 2018). However, this limitation is mitigated by mission planning 

software, which allows the pilot to pre-plan a photographic mission, set mission parameters 

(flying height, endlap, sidelap, camera shutter speed, aircraft speed, etc.), predetermine flight 

time and area to be covered, and fly the aircraft autonomously, with minimal intervention. 

When the battery power is nearly depleted the aircraft automatically comes back to land and 

the pilot can change the battery and re-launch the aircraft to continue the mission where it 

ended. Even with this capability of mission planning software, the limited area coverage per 

flight is still a challenge which may discourage some practitioners from embracing this 

technology in the Miombo ecoregion.  
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2.9.6 Processing and storage challenges 

Automatic interpretation of ultra-high (under 10 cm) resolution image collected by UAS for 

species mapping is challenging to achieve using per-pixel classifiers that are implemented in 

most commonly used commercial image processing software packages (Franklin, 2017). 

However, progress has been reported in the use of GEOBIA and machine learning techniques 

to classify tree species (Franklin and Ahmed, 2017; Liu et al., 2018a), though these solutions 

tend to be site specific and data dependent, and thus cannot be easily generalized. Furthermore, 

image interpretation using GEOBIA and machine learning requires expensive specialized 

commercial software or open-source software with a steep learning curve, which might be 

beyond the capacity of most forest managers in the Miombo ecoregion. Another challenge is 

that ultra-high-resolution data collected by UAS demand expensive computer hardware with 

high processing and storage capacity that might be unaffordable for many institutions in the 

Miombo ecoregion countries and therefore may impede their application. For example, Agisoft 

Metashape, a popular software for generating point clouds and building mosaics from UAS 

imagery, requires a minimum of 16 GB for processing UAS imagery (Agisoft LLC, 2019). 

Depending on the size of the project and available hardware, processing of UAS imagery to 

generate meaningful data products for various applications can take many hours, which can 

be discouraging for many professionals.  

2.9.7 Vegetation cover challenges 

Miombo woodlands are generally open with little overlap between tree crowns (Table 2.1), but 

the density of trees varies in response to climate, topography, disturbance and edaphic factors 

(Frost, 1996; Ribeiro et al., 2012). Vegetation cover has significant influence on the performance 

of data processing algorithms and quality of generated data products (Dandois and Ellis, 2010; 

Lisein et al., 2013). The quality of a CHM, which is a fundamental product in estimation of 

vegetation structural attributes (Maltamo et al., 2014b), is highly correlated to the quality of the 

DTM used in generating it (Kraus and Pfeifer, 1998). Mlambo et al. (2017) evaluated the 

performance of UAS-SfM in two United Kingdom sites: (i) Meshaw, Denvo, which has a 

relatively open canopy and (ii) Dryden, Scotland, which has a closed canopy. Comparison of 

the CHM generated by lidar and UAS-SfM 3D point clouds exhibited high correlation (R2 = 

0.75) at Meshaw. At Dryden, there was poor correlation between UAS-SfM estimated and 

ground measured tree heights (R2 = 0.19), which was attributed to poor canopy penetration of 

UAS imagery. Their study recommended that the effect of poor canopy penetration can be 

mitigated by capturing UAS imagery during leaf-off season in deciduous forests. Their 

recommendations were corroborated by Aguilar et al. (2019), who used leaf-off UAS-SfM 

derived DTMs as ground reference for supporting teak plantations inventory in the dry forests 
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of the coastal region of Ecuador. A study by Hentz and Strager, (2018) assessed tree damage in 

West Virginia Research Forest using leaf-on generated UAS-SfM DSM, which gave better 

definition of the top canopy definition and leaf-off DTM, which gave a better definition of the 

ground. From lessons learnt from (Mlambo et al., 2017; Hentz and Strager, 2018; Aguilar et al., 

2019), we anticipate challenges in the quality of DTM that will be generated by UAS-SfM in the 

closed canopies environments that characterize some parts of the Miombo woodlands. 

However, the UAS-SfM DTM quality challenge can be mitigated by either using leaf off UAS 

imagery or UAS-lidar to generate one-off DTM that can be used repeatedly with multi-

temporal UAS-SfM DSM to compute CHMs for monitoring forest structural attributes.  

In terms of classification of individual tree species, the detection accuracy of ITCs tends to 

decrease with increases in the tree density, species diversity, and canopy structural complexity, 

which ultimately affects the quality of the final tree species classification results (Pu, 2014; 

Wang et al., 2018; Xu and Ruan, 2020). The Miombo woodlands are characterized by irregular 

tree crowns with a similar appearance (Frost, 1996). In wet Miombo there is typically 

overlapping of the crowns of neighboring trees. These attributes of the Miombo have been 

reported to cause challenges in identification of ITCs in similar forest environments (Lisein et 

al., 2015; Franklin, 2017; Xu et al., 2020). Some studies use fusion of structural and spectral 

information, and multi-temporal imagery (Lisein et al., 2015; Gini et al., 2018) to improve the 

accuracy of identification of tree species. 

2.10 Future Directions 

This review has evinced progress in UAS technology in various forest applications, though it 

is not yet fully embraced within the Miombo ecoregion as such data gaps still exist. There are 

several potential future directions for applying UAS technology in the Miombo woodlands, 

including, the choice of sensors and, data processing techniques which are available for the 

monitoring of Miombo woodlands. It is hoped that future research explores the utility of UAS 

technology to fill existing data gaps in (i) estimation of forest structural attributes, (ii) 

identification of tree species, (iii) monitoring forest health, (iv) monitoring forest fires, and (v) 

monitoring small scale degradation, which are critical to meeting the objectives of the REDD+ 

project. Challenges still exist in developing and operationalizing the UAS data collection and 

processing techniques in monitoring the Miombo woodlands. The existence of studies focusing 

on the use of UAS technology to estimate vegetation parameters within the Miombo ecoregion 

in the recent past (Kachamba et al., 2016b, 2017; Domingo et al., 2019), sets the tone for UAS 

based studies. With continuous improvement in UAS sensor and data processing technology 

coupled with the reduction in prices of specialized sensors (Colomina and Molina, 2014), it is 
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envisaged that more studies focusing on the use of UAS technology for monitoring the Miombo 

woodlands. The focus should be towards developing best practices for data collection, data 

processing techniques and model validation, which can be achieved by testing the technology 

in different environments of the Miombo. Some of the initiatives that could be undertaken to 

enhance operationalization of the use of UAS technology in the Miombo woodlands are 

proposed in Table 2.7. It is anticipated the use of UAS based methods will complement the 

existing methods to fill the existing spatial gap between ground-based methods and wall to 

wall satellite imagery. 

Table 2.7 Future directions. 

Application Sensors Recommendation 

Estimation 

biomass and 

other vegetation 

structural 

attributes 

RGB, MS, HS, lidar 

Comparing results from different algorithms in different 

environments and growth stages  

Comparing results of data collected in different seasons -

Comparing results from different sensors and combination of 

sensors -testing the models for robustness and transferability to 

different environments  

Classification of tree species  

 

Classification of 

tree species 
RGB, MS, HS, lidar 

Comparing the potential of data from different sensors and 

combination of sensors to classify tree species 

Comparing potential of using a combination of multi-temporal, 

and multi-spectral/hyperspectral data for classifying tree species 

Comparing results from different algorithms in different 

environments and growth stages 

 

Forest health MS, HS, lidar 

Comparing results from different indices in assessing forest 

health 

Exploring the use of a combination UAS-lidar and Mult—

spectral/hyperspectral imagery in monitoring forest health 

 

Forest fires 
RGB MS, Thermal, 

lidar 

Use of UAS-lidar and UAS-SfM in quantifying combustible as 

early warning system for fire Use of UAS thermal infrared 

imagery to track active fires Use of UAS imagery to assess post 

fire damage and recovery 

 

2.11 Conclusion 

The Miombo woodlands ecoregion suffers from a lack of quantitative estimates of forest cover 

changes, species distributions and carbon stocks which is key information required for effective 

forest management and international carbon MRV requirements. UAS presents alternative and 

supplementary methods to rapidly collect forest data at high spatial and temporal resolution 

that is required for monitoring and management of the Miombo woodlands. The key attributes 

of the Miombo woodlands provide potential for application of UAS technology in undertaking 
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forest inventory important for forest monitoring and management. It is a useful tool for 

estimating forest structure attributes, species identification, effects from fire and forest 

degradation, all of which are necessary for forest management. However, if the UAS 

technology is to be widely applied in the Miombo region, it is also important to comply with 

restrictive regulations and to obtain required flight permits.
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Chapter 3 : Use of multi-date and multi-spectral UAS imagery to classify 

dominant tree species in the wet Miombo woodlands of Zambia  

 

 

 

 

This chapter was based on:  

Shamaoma, H.; Chirwa, P.W.; Zekeng, J.C.; Ramoelo, A.; Hudak, A.T.; Handavu, F.; 

Syampungani, S. Use of Multi-Date and Multi-Spectral UAS Imagery to Classify Dominant 

Tree Species in the Wet Miombo Woodlands of Zambia. Sensors 2023, 23, 2241. https:// 

doi.org/10.3390/s23042241 
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Abstract  

Accurate maps of tree species distributions are necessary for the sustainable management 

of forests with desired ecological functions. However, image classification methods to 

produce species distribution maps for supporting sustainable forest management are still 

lacking in Miombo woodland ecoregion. This study used multi-date multispectral 

Unmanned Aerial Systems (UAS) imagery collected at key phenological stages (leaf 

maturity, transition to senescence and leaf flushing) to classify five dominant canopy 

species of the wet Miombo woodlands of the Copperbelt province of Zambia. Object 

Based Image Analysis (OBIA) with a random forest algorithm was used on single date, 

multi-date and multi-feature UAS imagery for classifying the dominant canopy tree 

species of the wet Miombo woodlands. It was found that classification accuracy varies 

both with dates and features used. For example, the August image yielded the best single 

date Overall Accuracy (OA) (80.12% OA, 0.68 kappa), compared to October (73.25% OA, 

0.59 kappa) and May (76.64% OA, 0.63 kappa). The use of a three-date image combination 

improved the classification accuracy to 84.25% OA and 0.72 kappa. After adding spectral 

indices to multi-date image combination, the accuracy was further improved to 87.07% 

and 0.83 Kappa . The results highlight the potential of using multispectral UAS imagery 

and phenology in mapping individual tree species in the Miombo ecoregion. It also 

provides guidance for future studies using multispectral UAS for sustainable 

management of Miombo tree species. 

Keywords: Miombo woodlands; Multi-date; Multi-spectral; UAS; Object-based; 

Classification 
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3.1 Introduction 

The Miombo woodlands are the most extensive dry forest type in southern Africa, with 

an estimated area of about 2.7 million km2 covering Angola, Malawi, Mozambique, 

Tanzania, Zambia, Zimbabwe and most of the southern parts of the Democratic Republic 

of Congo (Frost, 1996). The woodlands have an estimated 8,500 plant species, more than 

54 percent of which are endemic. They comprise one of the most important ecosystems 

in Africa because of their ecological, biological and socioeconomic significance 

(Syampungani et al., 2009; Chirwa et al., 2016; Kapinga et al., 2018). In addition, the 

Miombo woodlands contribute to the livelihoods of millions of rural and urban dwellers 

(Campbell, 1996). Some of the local ecosystem goods and services the woodland provides 

include fuelwood, charcoal, timber, fruit, beekeeping, mushrooms and medicines 

(Chirwa et al., 2016). These forest ecosystems provide valuable timber resources and 

support regional economic development, but their ecosystem services have been 

threatened by climate change and increasing disturbances from deforestation, 

fragmentation, degradation and other stressors (Luoga et al., 2002; Syampungani et al., 

2009). Trees are the foundational component of the forest ecosystem, and their species 

composition has important influence on forest biodiversity (Madonsela et al., 2018). 

Furthermore, tree species composition and spatial distribution are critical information 

needed to address ecological problems in tropical ecosystems (He et al., 2022). As a result, 

accurate information on the spatial distribution of dominant tree species in tropical 

natural mixed forests, such as the Miombo woodlands, with complex distribution and 

structure, is critical for understanding the dynamics of forest ecosystems. Furthermore, 

precise mapping of dominant tree species is required for effective management of 

Miombo woodlands, as well as for characterizing ecosystem services and climate 

feedbacks on forests (Ribeiro et al., 2015). Researchers have mapped tree species 

composition and distributions to assess biodiversity in other African savanna ecosystems 

(Cho et al., 2012; Madonsela et al., 2018). 

Up-to-date species distribution maps that may be attained from either the application of 

traditional surveys or remote sensing are critical for sustainable forest resource 

management (Turner et al., 2003). Traditional forest surveys could produce detailed and 

accurate maps of tree species distributions. However, they are time-consuming, labor-

intensive, expensive, and prone to errors that may go undetected (Xie et al., 2008; Cho et 

al., 2012). Given the difficulties in conducting traditional species mapping surveys (Day 
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et al., 2014), remote sensing has emerged as one of the tools for tree species mapping at 

scales ranging from landscape (Cao et al., 2018; Hologa et al., 2021) to regional (Fassnacht 

et al., 2016; Lim et al., 2019; Kollert et al., 2021). The understanding that species have 

unique spectral signatures associated with characteristic biochemical and biophysical 

properties can be exploited to map plant species mapping using remote sensing (Asner 

and Martin, 2009; Cho et al., 2010). Free multispectral imagery like Landsat and Sentinel 

has low spectral resolution (Nagendra and Rocchini, 2008), making them unsuitable for 

identifying plant species, especially in heterogeneous landscapes like the Miombo 

woodlands, but it can be used for regional species mapping in homogeneous landscapes 

dominated by planted forests (Naidoo et al., 2012). Hyperspectral imagery, on the other 

hand, has high spectral resolution with hundreds of contiguous bands across the 

electromagnetic spectrum, making it more suitable than multispectral imagery for 

capturing plant biochemical properties, which are closely linked to species identity 

(Asner and Martin, 2009; Cho et al., 2010), as has been demonstrated in many tree species 

classification studies across different vegetation formations at landscape scale (Cho et al., 

2012; Naidoo et al., 2012; Cao et al., 2021; Mäyrä et al., 2021). However, hyperspectral 

data are not widely available and remain prohibitively expensive in most Sub-Saharan 

African countries (Madonsela et al., 2017). 

To compensate for the low spectral resolution that is common to high resolution imagery 

(e.g. QuickBird, GeoEye, Rapideye, Pléiades, and WorldView), some studies investigated 

multi-seasonal imagery for tree species classification (Madonsela et al., 2017; Van 

Deventer et al., 2019). A study by Madonsela et al. (2017) used two–date WorldView-2 

imagery (maximum leaf foliage and transition to senescence) to classify tree species in 

the South African savannas. Their study compensated for low spectral resolution in 

WorldView-2 imagery by using two-date Worldview imagery to achieve an overall 

accuracy (OA) of 80.4% compared to OA of 76.4% and 72% for maximum leaf foliage and 

transition to senescence imagery, respectively. Another study by Van Deventer et al. 

(2019) investigated the use of multi-season (winter, spring, summer, and autumn) 

RapidEye imagery for classifying wetland and dryland vegetation communities in 

Isimangaliso Wetland Park, South Africa's subtropical coastal region. According to their 

findings, the four-season imagery combination produced the highest overall 

classification accuracy (OA = 86 ± 2.8%), followed by the spring (80 ± 2.9%), summer (80 

± 3.1%), autumn (79 ±3.4%), and winter (66 ± 3.1%). Though the preceding studies 
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demonstrated the ability of high spatial resolution, multi-date imagery to discriminate 

different tree species in the other African Savanna vegetation formations, none of these 

studies were conducted within the Miombo ecoregion, which has unique forest structure, 

species composition, and phenology (White, 1983). Furthermore, very high-resolution 

spaceborne imagery such as Rapid Eye and Worldview are not flexible enough to capture 

phenological events that are important for classifying tree species, as cloud cover can be 

a challenge in the tropics where these species are located. Additionally, the data sets used 

in these studies are expensive and out of reach for most African savanna researchers and 

forest managers. 

Unmanned Aerial Systems (UAS) have the flexibility of acquiring data almost anytime, 

anywhere with limited logistics, making them an essential tool in gathering ultra-high 

spatial resolution imagery (under 10 cm) on forests for detailed characterization of 

canopies in contrast to manned airplane and satellite platforms having less flexible or 

fixed acquisition constraints. As a result, using multispectral UAS imagery to classify 

forest tree species is becoming a popular forestry application (Fassnacht et al., 2014b; 

Torresan et al., 2017). 

The application of UAS imagery for tree species discrimination has shown promising 

results, as demonstrated in many studies (Feng et al., 2015; Lisein et al., 2015; Franklin 

and Ahmed, 2017; Gini et al., 2018; Feng and Li, 2019). However, all these studies were 

done in different ecosystems with different tree species, forest structure, and composition 

and therefore, the findings cannot be promulgated to the Miombo ecoregion. 

Furthermore, Franklin and Ahmed, (2017) observed that the application of UAS imagery 

for deciduous tree species classification is still at a rudimentary level and recommended 

that more tests are needed to ascertain its reliability and accuracy. As already stated, 

species distribution maps are still lacking in the Miombo ecoregion, and remote sensing 

methods for classifying tree species have not been explored. This study aims to evaluate 

the potential for mult-spectral and multi-date UAS imagery for classifying the dominant 

wet miombo species in Zambia. This study was designed to answer the following 

research questions: 

(i).What is the optimal single season window for acquiring imagery to 

discriminate tree species in the Miombo ecoregion?  
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(ii).Could multi-season imagery improve the discrimination of tree species in 

the Miombo ecoregion?  

(iii).What other image features can improve Miombo species classification? 

3.2 Materials and Methods 

The workflow containing the methodological steps of this study is shown in Figure 3.1. 

Within the framework of this study, we acquired single-date and multi-spectral imagery 

from multi-rotor UAS combined with individual tree crown delineation algorithms and 

a machine-learning classifier to identify the dominant tree species in the Miombo 

woodland of Mwekera area in Zambia.  

3.2.1 Study area 

The study area is 22 hectares of wet Miombo woodland located (12.860977ᵒ S, 28.357049ᵒ 

E; Figure 3.2) in Mwekera national forest reserve number 6, about 15 Km south east of 

the central business district of the City of Kitwe, in the Copperbelt Province of Zambia. 

The average human population density in the Copperbelt province is 63.0 persons per 

km2, with an average annual population growth rate of 2.2% (Central Statistical Office, 

2012). Mwekera forest covers about 111 km2 and the elevation ranges from 1210 to 1240 

m above mean sea level. Annual rainfall ranges between 1000 and 1500 mm and 

temperature ranges between 25Cᵒ and 32Cᵒ. The Miombo woodlands, which cover 

approximately 45% of Zambia, is the predominant vegetation in Mwekera (Stringer et 

al., 2012). Mwekera forest was classified as a National Forest to protect the Mwekera 

stream catchment, which is part of the Kafue River system. 
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3.2.2 Field data collection 

The fieldwork was conducted in May 2021, just before the first flight. Considering the 

accessibility of the field site and the heterogeneity of tree species, twenty plots of 20 m 

radius were set up at every 200 m and additional areas with sudden changes in tree cover 

in the study area. In each plot, all tree species (Appendix 3.1) with a diameter at breast 

height (DBH) greater than 5 cm were sampled (Number =688). The attributes of trees 

collected included individual tree positions, DBH, tree height and species name. The 

Figure 3.1 General UAS image acquisition, processing, and classification workflow 
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positions of all the sampled trees were measured using a CHC LT700H real-time 

kinematic (RTK) Global Navigation satellite system (GNSS) receiver. DBH was measured 

using a diameter tape and tree height was measured using a Nikon Forest Pro 

hypsometer. In this study, we conducted our classification experiments based on 

dominant tree species, which were Julbernardia paniculata (JP; 18.5%), Isoberlinia angolensis 

(IA; 16.6%), Marquesia macroura (MM; 15.7%), Brachystegia longifolia (BL; 9.3%) and 

Brachystegia spiciformis (BS; 7.4%) (Table 1; Appendix 3.1). The remaining species were 

recorded in less than 5% of the samples and were, therefore, not considered for 

classification. Furthermore, the dominant species found in Mwekera (Table 3.1), except 

for Marquesia macroura, were found to be preferred charcoal species (Syampungani et al., 

2011), which makes the site vulnerable to over-exploitation.  

Table 3.1 Sampled dominant tree species in the area 

3.2.3 UAS image data acquisition  

Three UAS images used to classify tree species were acquired on 25th May 2021 at full 

leaf maturity, 15th August 2021 at senescence for the majority of dominant canopy tree 

species and early flushing for BL and BS species, and 24th October 2021 at greening of 

flushed leaves for the majority of dominant species (Frost, 1996; Shamaoma et al., 2022). 

The DJI Phantom 4 RTK Multispectral multi-rotor UAS, equipped with one RGB camera 

and a multispectral camera array with five cameras covering blue (450 nm ±16 nm), green 

(560 nm ±16 nm), red (730 nm ±16 nm), red edge (450 nm ±16 nm) and near-infrared (840 

nm ±26 nm), as well as a D-RTK 2 mobile Global Navigation Satellite System (GNSS) base 

Species 

Code 

Tree species  Common local uses Trees 

sampled 

Training 

samples 

Validation 

samples 

JP Julbernardia paniculata Charcoal, pole, timber 127 89 38 

IA Isoberlinia anglolensis Charcoal, timber, pole 114 80 34 

MM Marquesia macroura Poles, charcoal 108 76 32 

BL Brachystegia longifolia Charcoal, bark rope 64 45 19 

BS Brachystegia spiciformis Charcoal, bark rope 51 36 15 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



47 

 

 

station (DJI, 2019), was used to capture imagery for this study. This UAS was chosen for 

our study because of two capabilities: (i) Real Time Kinematic GNSS capability that 

enabled direct image georeferencing for easy processing and comparison of multi-date 

images and (ii) integrated sunlight sensor for consistency of images collected at different 

times of the day. All our flights were undertaken between 11:30 AM and 12:30 PM local 

time to minimize shadowing on the images. In order to ensure consistent comparisons 

between the multi-date UAS imagery, the same UAS flight parameters were applied on 

all dates (Table 3.2). 

Table 3.2 Imagery acquisition parameters 

UAS flight parameters Value 

Camera model  DJI P4 Multi-spectral 

Flight height (m) 100  

Flight speed (m/s) 5 

Forward overlap (%) 85 

Side Overlap (%) 75 

Ground resolution (m) 0.05 

Spectral bands Blue, Green, Red, Red-Edge, Near Infra-Red 

Time of flight 11: 30 AM – 12:30 PM 

 

3.2.4 UAS data pre-processing 

The UAS images from the three dates were processed using the Structure from Motion 

(SfM) approach (Snavely et al., 2007) based on the workflow in Agisoft metashape 

software version 1.7 (Agisoft LLC, 2019), summarized as follows: (i) added photos while 

selecting multi-camera system and arranged bands according to image metadata, (ii) 

calibrated the reflectance based on the sun sensor, (iii) aligned photos by estimating 

camera position of multi-camera system and generated sparse point clouds consisting of 

tie points and estimated interior orientation parameters for each sensor, (iv) generated a 

dense point cloud based on calculated exterior and interior orientation parameters using 

dense stereo matching to densify the point clouds, (v) generated a Digital Surface Model 
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(DSM) based on the dense point cloud and resolution, (vi) generated an orthophoto 

mosaic based on the DSM, and (vii) exported the orthophoto mosaic in Geotiff format. 

The other process performed with Metashape software was to classify ground points and 

generate a digital terrain model (DTM), which was also exported together with the DSM 

for further processing in the calculation of the canopy height model (CHM). In order to 

optimize on storage space and processing time, the orthopho mosaic, DSM and DTM 

were exported at a degraded resolution of 0.30 m, which was tried and found suitable for 

segmenting tree crowns of mature deciduous trees (Effiom et al., 2019). 
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 Figure 3.2 Study area location 
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3.2.5 Computation of the CHM 

The CHM was computed based on recommendations from Mlambo et al. (2017), who 

found combination of UASs with non-radiometric RGB sensors and SfM approach (UAS-

SfM) to generate better DTMs in open woodlands compared to closed woodlands due to 

the inability of optical UAS imagery to capture the ground in closed canopy woodlands. 

Similar observations were made by (Aguilar et al., 2019), who used leaf-off UAS-SfM 

derived DTMs as ground reference for supporting teak plantations inventory in the dry 

forests of the coastal region of Ecuador. A study by Hentz and Strager, (2018) assessed 

tree damage in a West Virginia Research Forest using leaf-on generated UAS-SfM DSM 

and leaf-off DTM. Therefore, we took advantage of our multi-date data set to generate 

the best possible CHM from our available data sets by subtracting the leaf-off (15.08.21) 

DTM from leaf-on (25.0522) DSM. The computed CHM was resampled to 0.3 m 

resolution to match the orthopho and used an input in the tree species classification 

process.  

3.2.6 Tree species classification 

The tree species were classified using object-based image analysis (OBIA) (Shamaoma et 

al., 2006; Blaschke, 2010). This method outperforms pixel-based methods for classifying 

tree species from high-resolution imagery (Franklin, 2017). Therefore, OBIA was used in 

this study, and it was performed in three steps namely image segmentation, feature 

extraction and image classification. 

Image segmentation 

The orthophoto images were processed into homogeneous segments that closely 

correspond with individual tree crowns using the multi-resolution algorithm (Benz et al., 

2004) implemented in eCognition Developer version 9.0 software (Trimble, 2018). This 

algorithm grows by merging one pixel with neighboring pixels based on spectral and/or 

shape similarity criteria. A combination of orthophoto and CHM was assessed in this 

study as CHM was found to improve individual tree segmentation in other studies 

(Jakubowski et al., 2013; Xu et al., 2020). The UAS imagery captured in May (leaf-

maturity) was used for segmentation since all Miombo trees have a well-defined tree 

crown shapes at this stage of the year. Multiple iterations were performed via trial and 

error by varying the shape, compactness and scale parameters and comparing to the 

resulting tree crowns. Furthermore, the effect of combining the orthophoto and CHM to 
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the segmentation result was also assessed. The result of the segmentation were polygons 

of homogeneous objects representing a tree crown or group of similar tree crowns. The 

image objects polygons generated were used as a basis for segmenting the August UAS 

orthophoto (senescence for most of the Miombo tree species) and October UAS 

orthophoto (leaf-flushing for Miombo tree species). This was done to make sure that we 

used the same tree objects when comparing the accuracy of the classification results from 

the three image dates. 

Segmentation accuracy assessment 

The accuracy of OBIA analysis is based on the accuracy of the segmentation process and 

it is therefore important to assess quality of the segmentation before proceeding to the 

subsequent processes of feature extraction and image segmentation. In this study, the 

area estimation technique described in Clinton et al. (2010) was used to assess the 

segmentation accuracy of tree crowns. The three measures were compared to assess the 

accuracy of the tree crown segmentation using the following equations: 

 

 
𝑂𝑣𝑒𝑟𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝑂𝑆) =  

𝑎𝑟𝑒𝑎(𝐴𝑅𝑃 ∩ 𝐴𝐷𝑃)

𝑎𝑟𝑒𝑎(𝐴𝑅𝑃)
 

(1) 

 
𝑈𝑛𝑑𝑒𝑟𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝑈𝑆) =  

𝑎𝑟𝑒𝑎(𝐴𝑅𝑃 ∩ 𝐴𝐷𝑃)

(𝐴𝐷𝑃)
 

(2) 

 
𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 (𝑆𝐸) =  √(

(𝑂𝑆)2 + (𝑈𝑆)2

2
) 

(3) 

Where ARP is a detected object area segmented by the multiresolution segmentation 

(MRS) algorithm that is one-to-one with reference polygony, ADP is area of the reference 

polygon (tree crown) which is manually digitized in ArcMap, ArcGIS Desktop Version 

10.7.1 (ESRI, 2019) and Area (ARP∩ADP) is  area of manually delineated polygon 

correctly identified by MRS algorithm. The ideal value of the over segmentation, under 

segmentation and total detection error is 0. The reference polygons (tree crowns) were 

manually digested in ArcGIS for two forest stands and then applied to quantify the 

segmentation error.  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



52 

 

 

Feature extraction 

Before classification of tree species, it is essential to extract features of segmented tree 

objects that are used to discriminate different tree species in the subsequent classification 

process (Xu et al., 2020). The first step in our feature extraction process was to mask off 

non-canopy tree objects from canopy tree objects so that only features related to canopy 

tree objects are considered for subsequent tree species classification. This was done by 

applying a threshold height of greater than 3 m of CHM to represent canopy tree objects.  

The non-canopy tree objects taller than 3 m were separated by using normalized 

difference vegetation index (NDVI) value of less than 0.1. We explored the use of a 

combination of spectral, texture and vegetation indices because use of multiple features 

have been found to improve tree species discrimination in other studies (Cao et al., 2018; 

Gini et al., 2018; Shen et al., 2019). All the canopy tree object features for the three dates 

were extracted in eCognition Developer software before exporting to ArcGIS for tree 

species classification. The extracted features built into eCognition Developer software 

(Trimble, 2018) included: spectral features (mean blue, mean green, mean red, mean red-

edge, mean near infra-red (NIR), grey level co-occurrence matrix (GLCM) textural 

features (contrast, correlation, dissimilarity, and standard deviation) and band metrics 

(mean brightness and maximum difference). The vegetation indices included: green 

chromatic coordinate (GCC), red chromatic coordinate (RCC) and NDVI, which were 

computed and extracted within eCognition software using equations in Table 3.3.  

Table 3.3. Equations of vegetation indices used 

Vegetation index Equation Source 

NDVI 𝑁DVI=  (nir-red)/(nir+red) (Fuller and George, 

1999) 

GCC GCC= green/(blue+green+red) (Park et al., 2019) 

RCC (RCC= red/(blue+green+red) (Park et al., 2019) 

The tree objects were exported from eCognition as shape files with all the extracted 

features as attributes. The shape file attributes of the exported object features were 

rescaled by normalizing them to a common scale in order to prevent attributes with high 

range values from dominating those with low range values during the classification 
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process (Hsu et al., 2016). All feature values were rescaled to a range of 0 to 1 in ArcMap 

using the attribute table field calculator (equation 1). The shape files were converted to 

raster in ArcMap with each feature been used to create a single band raster image. 

 
𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =  

(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒)

(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒
 

 

(4) 

Species classification  

The tree species classification was done using Random Forest (RF), a non-parametric 

machine learning classifier that has been used widely in tree species classification using 

very high resolution imagery (Immitzer et al., 2012; Lisein et al., 2015; Franklin and 

Ahmed, 2017; Van Deventer et al., 2019; Xu et al., 2020). RF uses training samples, 

validation samples, and the majority vote to classify an object into a specific class. In the 

current study, the RF was implemented in ArcMap. The training and validation sample 

image objects were collected using the training sample manager in ArcMap guided by 

field sample crowns, but only sunlit objects were collected to represent a pure sample for 

each tree species and a shadow class was added to classify shadowed areas. A total of 

344 training samples were collected for the six classes divided as follows: JP (89), IA (80), 

MM (76), BL (45), BS (45) and shadow (19). The sample data were randomly split into 

training (70%) and validation (30%). The same training and validation samples were used 

to train and validate classification results for single-date imagery, multi-date and multi-

feature image combination to find the optimal solution for discriminating different tree 

species within the Miombo woodland study area.  

Class separability  

The separability of the 6 classes was summarized by collecting mean statistics of training 

data for each class in ArcMap training manager and exporting to excel for plotting and 

visualization. The variability of spectral, vegetation indices and texture features across 

dates and image combinations were visualized to assess the separability of different 

species.  
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Classification accuracy assessment 

The effectiveness of the different image date combinations to discriminate different tree 

species was assessed using a confusion matrix. For each classification result, the 

producer’s accuracy, user’s accuracy, overall accuracy, and kappa statistics were 

computed to assess the ability to discriminate species. 

3.2.7 Results 

3.2.8 Identifying segmentation parameters 

In this study, after a systematic trial and error process, the suitable segmentation 

parameter combinations for delineating tree crowns were scale (90) shape (0.8) and 

compactness (0.9). Scale was found to be the most sensitive parameter, and the effect of 

changing the scale while keeping the other parameters the same was evaluated by visual 

comparison. This showed that when scale factor was 50, tree crowns were over-

segmented, when scale factor was 150, tree crowns were under-segmented, and when 

scale factor was 80, tree crowns were best segmented, as shown in Figure 3.3. We also 

compared the CHM's contribution to segmentation visually in Figure 3.4 and 

quantitatively in Table 3.4.

 

Figure 3.3 Visual comparison of segmentation using different scale parameter: (a) 50 

(Oversegmentation), (b) 80 (correct segmentation ), and (c) 150 (Undersegmentation)  

 

 

 

 

(a) 

  
Automatic delineation Manual delineation 

(b) (c)  
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Table 3.4. Segmentation accuracy of using UAS orthopho and combination of UAS 

orthophoto and CHM  

 

Image source OS US SE Accuracy (%) 

Orthophoto 0.26 0.17 0.22 78 

Orthophoto and CHM 0.17 0.14 0.16 84 

 

 

 

Figure 3.4. Visual comparison of segmentation using orthophoto alone vs orthophoto 

with CHM at highlighted sites 1-3: (a) Original orthophoto, (b) using only the orthophoto, 

over-segmentation with irregular outlines for tree crowns, (c) using orthophoto and 

CHM, tree crowns are well segmented with smoother outlines. 

3.2.9 Discrimination of dominant tree species  

The investigated image features (mean spectral bands, mean spectral indicies, and GLCM 

textural features) in discriminating tree species revealed that spectral indices performed 

better than other image features (Figure 3.5; Appendix 3.2). The performance of each 

image feature in discriminating the tree species for each of the image dates is indicated 

below. 

Figure 3.5 shows the variability in the mean spectra across the three image dates. Figure 

3.5a (May Image): in the blue band JP, BL and shadow were mixed, while IA, BS and MM 

were discriminable; in the green band, only JP stood out with relatively high reflectance 

and all the other species were mixed with shadow; in the red band, BL was discriminable, 

JP, IA, and Shadow were somewhat mixed, while BS and MM were mixed; and in the 

(a) (b) (c) 

OS = oversegmentation, US= undersegmentation, SE = segmentation error 
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red-edge and NIR bands, only MM was discriminable, with all other species mixed with 

shadow. In Figure 5b (August image): the shadow was discriminable from all the species 

across the five bands; all the dominant species were clearly discriminable in the red and 

red-edge bands; in the blue band, JP and IA were discriminable while BS, BL and MM 

were somewhat mixed; in the green band, BS and BL were discriminable, while MM, IA 

and MM were somewhat mixed; and in the NIR band, JP, MM and BS were discriminable, 

while IA and BL were somewhat mixed. In Figure 3.5c (October image): the shadow was 

discriminable from all the tree species in all the bands except in the blue where it was 

somewhat mixed with BS; in the blue band, BL, JP, AI and MM were mixed; in the green 

band, all the species were mixed; in the red band, only MM was discriminable with the 

rest of the species somewhat mixed; and in the red-edge and NIR bands, MM, BL and BS 

were mixed, while IA and JP were discriminable (description summarised in Apendix 

3.2). 

 

Figure 3.5. Species separability in different bands (1, blue; 2, green; 3, red, 4, red-edge; 5, near 

infrared): (a) 25.05.21 image, (b) 15.08.21 image, and (c) 24.10.21 image 

(a) (b) (c) 
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Figure 3.6 shows the variability in the extracted spectral indices features across the three 

image dates, which revealed improved species separability compared to raw spectral 

band data. Figure 3.6a (May Image): in the brightness band, only the shadow was 

discriminable, with all the species  mixed due to uniform brightness in all species at leaf 

maturity; maximum difference band, all the species were mixed with shadow; BS was 

discriminable in the NDVI band, while all other species were mixed with shadow; in the 

GCC band, shadow, JP and BS were discriminable, while MM, IA, and BL were mixed; 

and in the RCC band, only BS was discriminable, while the rest of the species were mixed 

with shadow. In Figure 3.6b (August image): the shadow was discriminable from all the 

species across all spectral metrics bands except in GCC where it was mixed with IA; all 

the dominant tree species were discriminable in NDVI, RCC and maximum difference 

bands; and in the GCC band all species were discriminable except IA, which was mixed 

with shadow. In Figure 3.6c (November image): only MM was discriminable in the 

brightness band, with the rest of the species somewhat mixed with shadow; in the 

maximum difference band, IA, BS and MM were discriminable, while JP and BL were 

somewhat mixed with shadow; in the NDVI band, JP, IA, BS and MM were 

discriminable, while BL was somewhat mixed with shadow; in the GCC band,   BL and 

IA were discriminable, while JP was mixed with shadow and BS was mixed with MM; 

and in the RCC band, BL, BS and MM were discriminable, while shadow, JP and IA were 

mixed (description summarised in appendix 3.3). 
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Figure 3.6. Species separability in band spectral metrics bands ( 1, Brightness; 2, 

Maximum difference; 3, NDVI; 4, GCC; 5 RCC ): (a) 25.05.21 image, (b) 15.08.21 

image, and (c) 24.10.21 image   
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Figure 3.7 shows the variability in the extracted GLCM texture features across the three 

image dates, which exhibited more mixing among species compared to other considered 

features. Figure 3.7a (May Image): the shadow is discriminable in the contrast and 

standard deviation bands, BS was discriminable in the entropy band, and the rest of the 

species were mixed in the rest of the bands: In Figure 3.7b (August image): the shadow 

and JP were discriminable in the entropy band, while in the rest of the bands the classes 

were mixed. In Figure 3.7c (October image): shadow was discriminable in all bands 

except the standard deviation band, BS, BL and MM were discriminable in the entropy 

band; JP was discriminable in the correlation band; while in the rest of the bands the 

classes were mixed (description summarised in Appendix 3.4). 

Figure 3.7. Species separability in GLCM texture bands (1, contrast; 2, correlation; 3, 

dissimilarity; 4, entropy; and 5, standard deviation): (a) 25.05.22 image, (b) 15.08.21 image, 

and (c) 24.10.21 image 
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3.2.10 Tree species classification 

Figure 3.8 presents the results of the tree species classification using the Random forest 

algorithm. The visual observation indicated that JP occupied the most significant 

distribution across the entire study area. Figure 3.8b depicts the results of canopy species 

and herbercous layer discrimination using data fusion of UAS CHM and multi-spectral 

orthophoto mosaic while Figure 3.8c-e show the classification results from the May, 

August and October images, respectively. Finally, Figure 3.8f shows the classification 

results of the best combination of multi-date and multi-feature images considered in the 

study. 

The confusion matrix of the five dominant tree species using the three groups of metrics 

is shown in Table 3.5. In general, using single date data, the accuracy of the tree species 

classification, except for Marquesia macroura, is higher in the August image (Overall 

Accuracy: 80.12 %, Kappa Accuracy: 68%), followed by the May image with the October 

image being the least accurate. In addition, the average producer’s accuracy (PA) and 

user’s accuracy (UA) for all the dominant species were above 75%, which points to good 

spectral discrimination among species in the August image when JP is in senescence, 

while BS and BL are flushing and have a distinctive reddish colour. Furthermore, the 

species were poorly separable in the October image, with BS, BL and MM mixing across 

all bands and yielding an average PA and UA of less than 60%. Using multi-date images 

improved the tree species classification accuracy by about 4% to 84.25% OA and Kappa 

0.72. Additionally, combining multi-date images, spectral indices and texture improved 

the classification accuracy to 87.07% OA and Kappa 0.83.  

Table 3.5 Comparison of classification accuracies of tree species for single date, multi-

date, and multi-feature imagery 

Classes 25.05.21 

spectral 

15.08.21 

spectral 

24.10.21  

spectral 

Multi-date 

spectral 

Multi-date 

selection 

(spectral and 

indices) 

PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% 

JP 61.42 53.56 93.21 84.74 79.61 72.00 95.11 93.17 96.50 96.03 

IA 73.34 80.05 77.23 80.41 65.20 76.24 84.05 92.50 87.17 85.22 
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MM 82.44 88.25 70.08 67.45 54.17 60.58 93.86 84.35 94.88 86.24 

BL 58.22 67.45 86.08 79.44 57.28 44.56 86.75 72.04 92.15 85.36 

BS 74.31 71.25 75.41 81.98 52.5 65.05 91.15 82.15 95.04 81.26 

S 65.62 67.15 98.20 100 88.75 86.30 90.52 96.01 97.42 100 

OA% 74.64 80.12 68.25 84.25 87.07 

Kappa 0.63 0.68 0.59 0.72 0.83 

 

 

Abbreviations: JP = Julbernardia paniculate, IA = Isoberlinia anglosis, MM = 

Marquesia macroura, BL = Brachystegia longifolia, BS = Brachystegia speciformis, S 

= Shadow 
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Figure 3.8. Classification of dominant tree species: (a) orthophoto mosaic at leaf maturity, (b) 

level 1 classification to separate trees from non-tree objects, (c) species classification at leaf 

maturity (May image), (d) species classification at transition to senescence (August image), (e) 

species classification at flushing of new leaves, and (f) species classification using multi-date and 

multi-feature image combination 
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3.3 Discussion  

3.3.1 Segmentation of tree crowns 

The segmentation of tree crowns in this study was done by the MRS algorithm iteratively 

using trial and error method by varying the scale, shape and compactness parameters. 

The suitable parameters for delineating tree crowns in this study were 90, 0.8 and 0.9 for 

scale, shape and compactness, respectively. Among these parameters, the scale 

parameter was found to be the most sensitive and it substantially affected the 

segmentation results. This observation is consistent with the findings of studies by 

Effiom et al. (2019) in a mixed forest in Amstelveen, German and Xu et al. (2020) in a 

mixed forest in Xiagguqing, Diqing town, Yunna province China. The combination of 

multi-spectral orthophoto and CHM improved the segmentation accuracy by 6% 

compared with using only the multi-spectral orthophoto (Table 3.4). This improvement 

in segmentation accuracy can be attributed to the addition of the three-dimensional 

structural information of the trees contributed by the CHM. Such observations have also 

been seen in Arizona, United States of America (USA) (Sankey et al., 2017) and Qi’ao 

Island, China (Cao et al., 2018), both of which demonstrated the importance of tree height 

to improve the segmentation accuracy in natural forest stands.  

The tree crown segmentation accuracy obtained in this study is within the range (60% to 

95%) reported in other deciduous forests (Effiom et al., 2019; Xu et al., 2020). However, 

the accuracy of the tree crown segmentation may be dependent on many factors 

including image acquisition date and stand structure in different sites. For example 

Nevalainen et al. (2017) applied a local maxima method onto UAS-derived CHM to 

delineate individual tree crowns across a boreal forest, achieving accuracies between 40% 

-95%, depending on characteristics of the site. Another study by Yancho et al., (2019) used 

a combination of spectral and point cloud UAS data through sub-crown k-means 

clustering where 48% of the individual tree crown were correctly detected and 

segmented across a complex forest ecosystem. They also experimented using the same 

technique with CHM only and observed the accuracy degradation by 4.1%, thus 

confirming the observation elsewhere (Xu et al., 2020) that the synergy between CHM 

and spectral information gives superior results compared to a single data set approach. 
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3.3.2 Optimal single date imagery 

The August image (Figure 5b) was identified as the best single date image for 

discriminating tree species in the wet Miombo woodlands. August- September coincides 

with transition to senescence for most of dominant wet Miombo tree species and early 

flushing for some species in the Brachystegia genus (Frost, 1996). Moreover, interspecies 

phenological differences are more pronounced during this period, which maximizes 

interspecies spectral variability, a key feature for separating tree species (Hill et al., 2010). 

JP was strongly separable across all spectral bands in the August image resulting in high 

producer’s and user’s accuracies compared to other species and exhibited characteristics 

of a species in senescence, with high reflectance in the visible part of the spectrum and 

low reflectance in the red-edge and NIR part of the spectrum. In contrast, the MM and 

BS exhibited the characteristics of species at leaf flushing, with low reflectance in the 

pigment absorption bands (blue and red) and high reflectance in the red-edge and NIR 

bands. These results are consistent with findings in the study by (Madonsela et al., 2017), 

who also reported better classification accuracy in the image acquired during transition 

periods from full green canopy to senescence in the South African savannah. These 

findings corroborate earlier works in other regions by Key et al. (2001) in West Virginia, 

USA, (Hill et al., 2010) in Monks Wood, Cambridgeshire, eastern England and Somers 

and Asner, (2013) in Hawaii Volcanoes National Park, Hawai’i, USA. The October image, 

which coincided with the period when newly flushed leaves turn green in the wet 

Miombo woodlands (Frost, 1996; Ribeiro et al., 2020b), resulted in the lowest accuracy 

(Table 3.5) due to low interspecies spectral variability at this phenological stage. These 

results contrast with the findings by Lisein et al. (2015), who found early summer to be 

the optimal single date imagery for discriminating deciduous tree species in Grand-Leez 

municipality, Belguim. The differences in findings could be attributed to differences in 

species composition in the two regions. 

3.3.3 Improved accuracy with multi-date image 

The high accuracy achieved in the multi-date image compared to single date images 

(Figure 3.6 and Table 3.5) suggests that multi-date imagery takes advantage of 

interspecies differences in phenologies, exhibiting different spectral characteristics for 

tree species on different dates, which compensate for low spectral resolution (Key et al., 

2001) for the UAS imagery used in this study. Furthermore, it demonstrates that using a 

single date image results in missing important information for tree species 
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discrimination. The improvement in the classification results from multi-date image is in 

agreement with the observations in other studies elsewhere (Hill et al., 2010; Madonsela 

et al., 2017; Van Deventer et al., 2019), who found that utilizing multi-date image data 

improves the spectral variability among species because of differences in phenological 

developments of different species across the seasons. Lisein et al. (2015) captured 

multispectral UAS imagery at strategic dates of phenological development on 130 

hectares of broadleaved forest in Grand-Leez, Belgium. They used the Random Forest 

(RF) classification approach to classify five deciduous species groups using single-date, 

two-date and three-date multispectral image combinations and observed that the three-

date combination yielded superior results compared to the others.  

3.3.4 Image indices improve classification accuracy 

The addition of spectral indices increases separability of different classes as opposed to 

just using raw spectral information. For example, classes such as BS and shadow, which 

were difficult to separate using raw spectral information (Figure 5) in the May image 

become very separable using the spectral indices (Figure 6), thus demonstrating that a 

combination of raw spectral bands and spectral indices even for a single date image has 

potential to improve classification accuracy. These findings corroborate works by Xu et 

al. (2020) in China and (Ferreira et al., 2016) in Brazil, on how spectral indices improve 

classification accuracy of tree species. This highlights the importance of using a 

combination of raw spectral data and derived features such as texture and spectral 

indices when classifying tree species especially when using images of lower spectral 

resolution. This was in contrast to the findings of Van Deventer et al. (2019), who reported 

no improvements in vegetation community classification when spectral indices were 

used. Our study shows mixing of species when texture features are used in tree species 

classification (Figure 3.6), which result in low classification accuracies. This is in line with 

a study by Yang et al. (2019), who found that when combined with spectral features, 

GLCM textural features did not improve the classification accuracy of tree species in two 

observed sites in China (homogeneous park forest and heterogeneous management 

forest). However, our study contradicts studies by Gini et al. (2018), Ferreira et al. (2019), 

Xie et al.(2019) and Deur et al. (2020), who observed that texture features improve tree 

species discrimination. The difference in results could be attributed to the similar 

appearance of the Miombo woodlands species (Frost, 1996), which translates to a similar 

texture. 
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The methods proposed add a new technique for mapping of Miombo woodland tree 

species targeted for various products at a local scale. For instance, all the dominant 

Miombo species identified in this study are targeted for fuelwood production because of 

their burning qualities (Campbell, 1996), Isoberlinia anglolensis is targeted for timber, and 

Brachystwgia longifolia is targeted for its bark rope, which qualifies them as candidates for 

conservation and sustainable utilization (Syampungani et al., 2011). The classification 

results attained using multi-date UAS imagery for the dominant Miombo species unlock 

the potential for mapping and monitoring their distribution as well as inform decision 

making for better management and conservation. Although the study was limited to a 

small site and a few species, site-specific studies confined to one or a small group of 

species are important for upgrading existing information, and thus help sustainable use 

and management of forest resources (Syampungani et al., 2009). Therefore, the approach 

used here can be a turnkey for species distribution mapping in the miombo to 

supplement already existing methods useful in conservation of tree species important for 

the desirable goods and ecosystem services provide. 

3.4 Conclusion  

This study investigated the potential for using multi-spectral UAS imagery in classifying 

the dominant tree species of the wet Miombo. Single dates, combination of dates, and 

combination of features used in the classification of tree species tend to influence the 

classification accuracy. The August image achieved the best single date accuracy (80.12% 

OA, 0.68 kappa), compared to (73.25% OA, 0.59 kappa) and (76.64% OA, 0.63 kappa) for 

the October and May images, respectively. Use of a multi-date image combination 

improved the classification accuracy to 84.25% OA and 0.72 kappa. After the addition of 

spectral indices, the accuracy was further improved to 87.07% and 0.83 kappa. The use 

of multi-date imagery was found to be very useful in capturing the interspecies 

phenological differences that are useful for separating different tree species in the 

Miombo woodlands. The study has demonstrated the applicability of multi-spectral UAS 

imagery and OBIA to classify tree species in the Miombo woodlands 

The results have implications on the choice of dates for image acquisition for natural 

resources managers using multi-spectral UAS imagery to map tree species in the Miombo 

woodlands. Judging by the variation in species separability across different dates, it 

seems imperative to acquire imagery on seasonally separated dates that will enable 
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capture of all important phenological traits that are important for separating the Miombo 

woodlands tree species using spectral information. However, denser image acquisition 

dates should be concentrated around July-September when most of the dominant 

Miombo tree species are in transition from mature leaves through senescence to flushing. 

Due to phenological variation of the Miombo woodland tree species, no single date 

imagery can outperform the broadly spread multi-date imagery combination in 

capturing the information required for separating different tree species. 
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Chapter 4 : Exploring the potential of UAS-lidar for estimating forest 

structural attributes of the Miombo woodlands in Zambia 

 

 

 

This chapter is based on: 

Shamaoma, H.; Chirwa, P.W.; Zekeng, J.C.; Ramoelo, A.; Hudak, A.T.; Handavu, F.; 

Syampungani, S. Exploring the potential of UAS-lidar for estimating forest structural 

attributes of the Miombo woodlands in Zambia (Draft Manuscript) 
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Abstract 

The ability to collect precise three-dimensional (3D) forest structural information 

at a fraction of the cost of airborne light detection and ranging (lidar) makes 

unmanned aerial systems-lidar (UAS-lidar) a remote sensing tool with high 

potential for estimating forest structural attributes for enhanced forest 

management. The estimation of forest structural data in area-based forest 

inventories relies on the relationship between field-based estimates of forest 

structural attributes (FSA) and lidar-derived metrics at plot level, which can be 

modeled using either parametric or non-parametric regression techniques. In this 

study, the performance of UAS-lidar metrics was assessed and applied to estimate 

four FSA (above ground biomass (AGB), basal area (BA), diameter at breast height 

(DBH), and volume (Vol)) using multiple linear regression (MLR), a parametric 

technique, at two wet Miombo woodland sites in the Copperbelt province of 

Zambia. FSA were estimated using site-specific MLR models at the Mwekera and 

Miengwe sites and compared with FSA estimates from generic MLR models that 

employed combined data from the two sites. The results revealed that the model 

fit of site-specific MLR models was marginally better (Adj-R2: AGB = 0.87–0.93; BA 

= 0.88–0.89; DBH = 0.86–0.96; and Vol = 0.87–0.98 than when using a generic 

combined data model (AGB = 0.80; BA = 0.81; DBH = 0.85; and Vol = 0.85). 

However, the rRMSE (2.01 – 20.89%) and rBias (0.01-1.03%) of site specific MLR 

models and combined data model rRMSE (3.40-16.71%) and rBias (0.55-1.16%) 

were within the same range, suggesting agreement between the site specific and 

combined data models. Furthermore, we assessed the applicability of a site-

specific model to a different site without using local training data. The results 

obtained were inferior to both site-specific and combined data models (rRMSE: 

AGB = 36.29%–37.25%; BA = 52.98–54.52%; DBH = 55.57%–64.59%; and Vol = 

26.10%–30.17%). The results obtained from this indicate potential for application 

in estimating FSA using UAS-lidar data in the Miombo woodlands and are a 

stepping stone towards sustainable local forest management and attaining 

international carbon reporting requirements. Further research into the 

performance of UAS-lidar data in the estimation of FSA under different Miombo 

vegetation characteristics, such as different age groups, hilly terrain, and dry 

Miombo, is recommended. 
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4.1 Introduction 

About 10% of Africa's land area (c: a 2.5–4 million km2) is covered by the Miombo 

ecoregion, an important biome (White, 1983; Kapinga et al., 2018), representing a sizeable 

component of the savanna biome, contributing substantially to the terrestrial carbon 

cycle and providing a variety of socioeconomic, ecological, and environmental services, 

such as climate regulation and carbon sequestration, as well as biodiversity conservation 

(Syampungani et al., 2009; Chirwa et al., 2016). Recent climate change, attributed to rising 

levels of greenhouse gas emissions, will likely have significant repercussions on 

intensified climate feedbacks (Law and Waring, 2015; Otu-Larbi et al., 2020), for example, 

droughts, extreme weather events. The impact of these effects on Miombo woodlands 

development, biomass production and carbon storage need to be adequately understood 

(Ribeiro et al., 2015). Concerns about global climate change in recent decades has 

underscored the necessity for effective techniques in assessing and reporting forest 

biomass and carbon stocks across various scales, including local, national, continental, 

and global (Goetz et al.,; Fawzy et al., 2020). 

The Reduced Emissions from Deforestation and Forest Degradation (REDD+) program 

is a significant climate change mitigation initiative within the United Nations Framework 

Convention on Climate Change, focusing on promoting conservation and enhancing 

forest carbon stocks in developing nations (Goetz et al.,; Kachamba et al., 2016a), with a 

particular emphasis on forest-based solutions. Successful implementation of the REDD+ 

program entails precise data collections on forest biomass and carbon storage that are 

currently lacking in most African vegetation formations. 

To achieve precise predictions regarding the interactive impacts of environmental 

changes, alterations in the distribution of forest species, and variations in the carbon 

storage capacity of forests, it is imperative to construct accurate models that take into 

account the current climatic conditions and the diverse uses of forests (Law and Waring, 

2015). Accurate and reliable estimations of forest structural attributes (FSA) are 
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paramount for forest managers to arrive at informed choices (Gibbs et al., 2007; Dash et 

al., 2015; Shen et al., 2019) regarding the sustainable use of forests. 

Traditional field-based sample surveys, for instance, national forest inventories, are 

employed to assess FSA on a regional and national level (Naesset et al., 2004; White et 

al., 2016). However, field inventory is lengthy and laborious (Tomppo et al., 2008; 

Mitchell et al., 2017; Cao et al., 2018). Remote sensing can provide multifaceted, seamless, 

geographically precise observations in a quick and adaptable way for accurate FSA 

estimation (Wulder et al., 2013; White et al., 2016; Liu et al., 2018b; Shen et al., 2019). Light 

detection and ranging (lidar) is considered the most appropriate remote sensing 

technology for FSA estimation, as it has the ability to capture both the vertical and 

horizontal traits of vegetation (Lim et al., 2003a; Huang et al., 2011; Hudak et al., 2014; 

Maltamo et al., 2014a). Examples of application of lidar for estimating FSA include: 

diameter at breast height (DBH) (Huang et al., 2011), canopy cover (Korhonen and 

Morsdorf, 2014), stem density (Fekety et al., 2018), basal area (BA) (Hudak et al., 2006; 

Fekety et al., 2018), volume (Vol) (Naesset, 1997), and aboveground biomass (AGB) 

(Chen, 2013).  However, the use of lidar for forest inventory in low-income countries, 

where the bulk of forests are located, is limited by high data collection costs and mission 

safety concerns associated with piloted aircraft, which are often used (Guo et al., 2017). 

The advent of Unmanned Aerial Systems (UAS) and the advancement and downsizing 

of lidar sensors have made it possible to use UAS-mounted lidar systems (UAS-lidar) to 

assess FSA at a reduced price and with increased adaptability (Lin et al., 2011; Wallace et 

al., 2012b; Guo et al., 2017). In a groundbreaking study, Lin et al., (2011) developed a 

UAS-lidar and evaluated it for determining ground and tree heights in Vanttila, Espoo, 

Finland. A similar study by Wallace et al. (2012) utilized UAS-lidar to determine the 

position, height, and crown width of trees situated at the University of Tasmania farm in 

Australia. Another study by Guo et al. (2017) used a UAS-lidar system for estimating 

canopy height, canopy cover, leaf area index, and AGB in three distinct Chinese 

ecosystems, including a needleleaf-broadleaf mixed forest, an evergreen broadleaf forest, 

and a mangrove forest. Liu et al. (2018) used UAS-lidar generated point clouds to 

estimate six FSA: DBH (r2 = 0.89), Lorey’s mean height (r2 =0.97), stem density (r2 = 0.77), 

BA r2 = 0.89), Vol (r2 = 0.94) and AGB (r2 = 0.95) in Pizhou Ginkgo plantations, China. 

Studies by Wallace et al., (2012), Guo et al., (2017) and Liu et al. (2018) have demonstrated 
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the capability of UAS-lidar point clouds for estimating various forest attributes that are 

critical for forest management. However, none of the studies were carried out in African 

savannas or Miombo woodlands in particular.  

Thus far only a few studies have employed remote sensing methods in estimating AGB 

in the Miombo ecoregion. For example, Kashindye et al., (2013) employed medium-

resolution Landsat imagery and MLR to estimate FSA in the Miombo woodlands of 

Bereku and Duru Haitemba forests in Tanzania. Another study by Halperin et al., (2016) 

used Landsat imagery, a semiparametric generalized additive model (GAM), and two 

nonlinear models (sigmoidal and exponential) to predict AGB in the Miombo woodlands 

of Nyimba District in Zambia. However, the AGB estimates from imagery ulitised in 

studies by Kashindye et al., (2013) and Halperin et al., (2016) fall short of the precision 

required for international reporting mechanisms and sustainable forest management at 

a local level (Goetz et al., 2015; Jiang et al., 2019). Airborne lidar data, which overcome 

the shortcomings in imagery that were utilized by Kashindye et al., (2013) and Halperin 

et al., (2016), were used by Mauya et al., (2015) to estimate AGB in the Miombo 

woodlands of Tanzania with sufficient precision (rRMSE = 46.8%) for international 

reporting mechanisms and sustainable local forest management. They compared the 

parametric linear mixed effects (LMM) and non-parametric k-nearest neighbor (k-NN) 

models and revealed that both approaches are applicable for predicting AGB in the 

Miombo woodlands. However, the cost of acquiring airborne lidar is prohibitive for most 

forest managers in the Miombo ecoregion (Shamaoma et al., 2022), and this study only 

focused on the estimation of AGB, leaving out the other FSA that are also important for 

forest management (Gibbs et al., 2007; Dash et al., 2015).  

A study by Kachamba et al., (2016b) utilized cheaper UAS imagery and Structure from 

Motion (SfM) (UAS-SfM) derived point clouds to estimate AGB using MLR models in the 

Miombo woodlands of Muyobe forest, Mzimba District, in northern Malawi, to levels of 

precision (rRMSE= 46.7%) sufficient for international reporting mechanisms and 

sustainable local forest management. Nevertheless, the UAS-SfM approach has been 

reported to perform poorly in denser forest environments (Mlambo et al., 2017), which 

would make it challenging to promulgate to denser parts of the Miombo woodlands. 

Furthermore, studies by Mauya et al. (2015) and Kachamba et al. (2016b) were based on 

models developed from data collected from a single site;  the estimation of FSA using 
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models developed using data from separate sites as demonstrated in earlier studies 

(Lefsky et al., 2002; Hudak et al., 2006; Naesset, 2007; Fekety et al., 2018) in other 

vegetation formations, is yet to be investigated in the Miombo woodlands. 

Therefore, this study explored the use of UAS-lidar for supplementing and filling the 

gaps in other remote sensing imagery that have been used in predicting FSA (AGB, BA, 

and Vol) in Miombo woodlands. UAS-lidar from two sites, 95 km apart, and area-based 

methods were used to estimate FSA using multiple linear regression (MLR) models in 

the wet Miombo woodlands in the Copperbelt Province of Zambia. This modeling 

technique was chosen because it has been shown to perform well even on small sample 

data sets (Mountrakis et al., 2011; Morin et al., 2019), as was the case in this study. 

Furthermore, our choice was motivated by the recommendation by Næsset et al., (2005) 

that MLR is the method of choice for realistic forest inventories. To accomplish this, we 

attempted to answered the following questions: 

i. How can UAS-lidar be used to improve FSA estimations in the Miombo 

ecoregion region? 

ii. What are the suitable UAS-lidar metrics for estimating AGB in the Miombo 

woodlands of the Copperbelt province of Zambia? 

iii. How does the regression model developed using data from a single site 

compare with that developed using combined data from two sites? 

iv. Are the models developed on one site transferable to a different site 

where ground reference data are unavailable? 

4.2 Materials and methods 

4.2.1 Study area 

The study was conducted at two test sites (Figure 4.1). The first one was undertaken in 

Mwekera national forest reserve number 6 (12.860977o S, 28.357049o E and mean altitude 

of 1225 m above mean sea level), in Kitwe district, about 15 km southeast of the central 

business district (CBD). Mwekera forest encompasses approximately 11,100 hectares. The 

other study site is located in Miengwe forest reserve number 36 (13.413889o S, 28.838889o 

E and mean altitude of 1328 m above mean sea level), in the Masaiti district, 

approximately 90 km, southwest of the city of Ndola CBD and about 17 km off the Ndola 

– Lusaka highway. Miengwe forest reserve covers an estimated area of 8,094 hectares. 

Both forests are located in the Copperbelt Province of Zambia, which experiences annual 

precipitation between 1000 and 1500 mm and temperatures between 25 and 32 degrees 

Celsius. The Miombo woodlands, which cover roughly 45 percent of Zambia's area, are 
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the predominant vegetation in these forests (Zimba, 2007; Handavu et al., 2021). The 

woodlands are characterised by the dominance of three key deciduous genera 

(Brachystegia, Julbernadia and Isoberlinia) belonging to the family Fabaceae, subfamily 

Caesalpinioideae (Frost, 1996), though the dominant species vary (See Tables 4.1 and 4.2).  

Table 4.1: Summary of collected data for 10 most dominant species at Mwekera site 

  

Table 4.2. Summary of diameter at breast height (DBH) and total height (TH) data 

collected for 10 most dominant species at Miengwe site 

Tree Species N % DBH (cm) TH (m) 

  Abunda

nce 

Mean Range Mean Range 

Brachystegia longifolia 112 22.1 22.6 7.7 - 81.0 13.68 5.0 - 27.1 

Diplorynchus condylocarpon 68 11.4 9.4 5.0 - 30.9 8.26 5.6 – 15.0 

Baphia bequaertii 56 9.3 12.8 5.2 - 25.1 7.78 5.7 – 11.0 

Isoberlinia angolensis 48 8.1 17.9 6.4 - 59.2 25.50 7.1 – 22.0 

Pseudolachnostylis 

maprouneifolia 

36 6.0 13.6 5.2 - 24.7 8.33 5.2 - 11.2 

Combretum zeyheri 32 5.3 9.2 5.1 - 15.3 9.05 6.2 – 12.0 

Julbernadia paniculata 29 4.9 41.7 20.0 - 98.3 16.88 13.0 - 25.2 

Pericopsis angolensis 23 3.9 20.8 6.4 - 47.0 11.33 5.1 - 19.8 

Ochna schweinfurthiana 22 3.7 8.8 5.8 - 13.5 7.61 5.8 - 12.0 

Combretum collinum  22 3.7 11.4 5.5 - 21.7 9.73  6.0 - 14.2 

 

Tree Species N % DBH (cm) TH (m) 

  Abundan

ce 

Mean Range Mean Range 

Julbernardia paniculata 127 18.5 31.03 13.5 - 59.90 17.79 8.50 - 25.00 

Isoberlinia angolensis 114 16.6 23.92 9.90 - 44.70 14.55 5.00 - 20.50 

Marquesia macroura 108 15.7 29.21 5.30 - 70.00 15.10 3.25 - 25.00 

Brachystegia longifolia 64 9.3 20.65 11.8 - 64.00 11.27 8.50 - 23.00 

Brachystegia spiciformis 51 7.4 18.55 5.00 - 64.20 9.97 5.80 - 20.50 

Parinari curatellifolia 18 2.6 23.48 6.00 - 53.50 13.67 6.00 - 24.00 

Ochna pulchra 17 2.5 7.62 5.20 - 10.90 5.70 4.50 -   8.00 

Baphia bequaertii 16 2.3 11.63 5.80 - 23.70 6.95 3.00 - 15.00 

Pericopsis angolensis 16 2.3 24.42 10.3 - 70.00 14.01 5.00 - 25.10 

Diplorhynchus condylocarpon 14 2.0 8.94 5.00 - 18.00 7.64 4.50 - 10.00 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



75 

 

 

  

Figure 4.1. Location of study sites and distribution of sample plots 
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4.2.2 Field data collection 

Field work was conducted in November 2022 with sixteen (16) circular plots (radius = 20 

m) established at a 200 metre grid spacing in areas with sudden changes in vegetation 

cover. The coordinates of each plot centre were located using a LT700H real-time 

kinematic (RTK) Global Navigation satellite system (GNSS) handheld tablet (Shanghai 

Heave Navigation Technology, China) receiving real-time differential signals from a 

Continuously Operating Reference Station. All trees in the marked plots with DBH 

greater than 5 cm were identified to the species level, and their DBH and total height 

(TH) were measured. The DBH was measured using a diameter tape and TH was 

measured using a Nikon Forest Pro hypsometer. The measurements of the ten most 

dominant species for the two sites are summarized in Table 4.1 and 4.2. 

In this study, BA, Vol and AGB were calculated by aggregating the individual tree data 

to plot-level. Estimates of each of the FSA for the training data was calculated using 

following variables: DBH (basal area), DBH & TH (volume) and DBH, TH & wood 

density (AGB). The wood density (g/cm3) values were generated using species and genus 

wood density values from two data sources namely, Handavu et al. (2021) and the ICRAF 

database (www.worldagroforestry.org/wd/genus). For species that were not directly 

recoded in the above data sets, average wood density of the genus species was calculated. 

Standing tree volumes were calculated using three data parameters namely DBH, TH 

and tree form factor (0.74). Estimations of AGB were based on the best-fit models 

developed by Handavu et al., (2021).  
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Figure 4.2. Forest structural estimation workflow 

4.2.3 UAS Data collection  

In this study, a T-Drone M1200 quadcopter with a gAirHawk GS-100C UAS-lidar 

scanning system (comprising an integrated Livox new generation laser scanner, GNSS 

and IMU positioning and attitude determination system, and a storage control unit) were 

used. Mission Planner open source software was used for flight planning and to 

continuously track the aircraft and monitor flight parameters of the system. In addition, 

a GNSS ground reference station was used to provide accurate reference measurements 

and other parameters for post processing the UAS-lidar data (Figure 4.3). The hardware 
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setup for the for system is shown in Figure 4.3, while the specifications for T-Drone 

M1200 and GS-100C are shown in Table 4.3. The GS-100C lidar system is capable of 

recording up to three returns per pulse and uses a near-infrared wavelength of 905 nm 

(Table 4.3). 

Table 4.3. T-Drone M1200 and GS-100C Sensor specifications 

T-Drone M1200 Specifications 
Maximum (kg)  5 

Maximum flying weight (kg) 18.5 

Maximum flying time (min) 60 

Flying distance (km) 10 

Flying height (m) 1000  

Flying speed (ms-1) 10  

GS-100C Specifications 

Weight (Kg) 1.1 

lidar unit 

lidar class 905 nm Class 1 

Range accuracy  1σ (@20 m) < 2 cm 

Data Triple echo, 720000 points/sec 

FOV 70⁰ the circular view 

Laser sensor Livox Avia 

POS Unit 

Update frequency 200HZ 

Pitch accuracy 0.025⁰ 

Roll accuracy 0.025⁰ 

Heading accuracy 0.080⁰ 

Positional accuracy 0.02 ~0.05 m 

Camera 

Camera model  Sony a 6000 (Non standard) 

Effective pixel 24 Mega pixel 

Trigger event Distance or time 
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Flight planning and data acquisition 

The raw UAS-lidar point clouds were acquired on 9th November 2021, after leaf-flushing 

of the dominant Miombo trees and before emergence of the herbaceous layer. This date 

was chosen to enable the capture of a well-defined canopy and bare ground for accurate 

normalized point cloud derivation, which is essential for the subsequent generation of 

lidar metrics and modeling. The lidar data were acquired at a flight altitude of 80 m above 

ground level, flight speed of 5 m·s−1 and swath width of 42 m.  

 

lidar data pre-processing  

The first stages of the pre-processing of the collected UAS-lidar data was done in 

gAirhawk 5.0 version software (Geosun Navigation Technology Limited, Wuhan, 

RGB 

lidar 

Ground 

station GNSS Base 

station  

(a) 
(b) 

(c) (d) 

100-C 

M1200 

Figure 4.3. (a) T-Drone M1200 platform with 100-C sensor, (b) ground station and GNSS base 

station, (c) 100-sensor, and (d) aerial view of launch station 

GNSS 

antennas 
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China), where lidar data, IMU data and GNSS base data were integrated to process the 

flight trajectory and generate georeferenced UAS-lidar point cloud data in las format. 

Additionally, the UAS-lidar point clouds were denoised using an outlier removal 

algorithm in Lidar360 software (GreenValley International, California, CA, USA). The 

algorithm utilizes adjacent data points and a multiple of the standard deviation to detect 

anomalous data points. The study utilized the enhanced progressive Triangulated 

Irregular Network (TIN) densification (IPTD) filter algorithm to differentiate between 

ground points and non-ground points (Zhao et al., 2016). Then the inverse distance 

weighting (IDW) interpolation algorithm was used to generate the Digital Terrain Model 

(DTM), which was subtracted from each point's elevation value to produce normalized 

point clouds (Kraus and Pfeifer, 1998). 

4.2.4 Extraction of UAS-lidar Metrics 

lidar metrics are commonly used to regress field plot data against lidar data (Korhonen 

and Morsdorf, 2014; Zhang et al., 2017; Liu et al., 2018b). In this study, a 40 x 40 grid was 

utilized to derive various UAS-lidar metrics (Table 4), detailed description of the metrics 

can be found in (GreenValley International, 2021). To ensure the exclusion of non-canopy 

returns, a height threshold of 2 m was implemented during the extraction of metrics 

(White et al., 2013a). 

Table 4.4: Description of metrics derived from UAS-lidar data 

lidar metrics Description 

Percentile heights (H1, H5, H10, 

H20, H25, H30, H40, H50, H60, 

H70, H75, H80, H90, H95, H99) 

The percentile of the canopy height distributions (1st, 5th 10th, 20th, 25th, 

30th 40th, 50th, 60th, 70th,75th, 80th 90th, 95th and 99th ) of first returns 

Canopy return density (D1, D2, 

D3, D4, D5, D6, D7, D8, D9) 

The proportion of points above the quantiles (10th,20th, 30th, 40th,  50th 

and 60th, 70th, 80th and 90th) to total number of points  

Variance of height (Hvar) The variance of the heights of all points 

Maximum height (Hmax) Maximum of return heights above 2 m 

Coefficient of variation of 

heights (Hcv) 

Variation of heights of lidar returns above 2 m 

MADMedian (Hmdm) The median of median absolute deviation 

Hmsq Generalized means for the second power 

Hskew Skewness of height 

Hkurtosis The kurtosis of the heights of all points 

Hstd Standard deviation of height 

Hmean Mean height above ground of all first returns 

Canopy relief ratio (CRR) mean height returns minus the minimum height divided by the 

maximum height minus the minimum height 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



81 

 

 

Canopy cover (CC) above 2 m Percentile of first returns above 2 m 

Gap fraction (GF) An indication how much of the sky is visible from beneath a plant 

canopy. 

Leaf area index (LIA) Half of the surface area of all leaves per unit ground area 

4.2.5 Development of forest structural estimation models 

As per the findings of previous studies (Brosofske et al., 2014; Fassnacht et al., 2014a), it 

has been observed that the utilization of distinct modeling methodologies can yield 

varying outcomes. This study developed and MLR models for estimating Miombo 

woodlands FSA based on extracted UAS-lidar metrics. Three key steps were followed in 

the modelling processes which included: (i) variable selection, (ii) model development/ 

fitting, and (iii) model validation. The details for each step are described below. 

Variable selection  

The area-based prediction of forest inventory properties is based on statistically 

significant relationships between the predictor variables, which are lidar metrics, and the 

response variables, which are plot-level FSA (Guyon and Elisseeff, 2003; Chandrashekar 

and Sahin, 2014; Prasetiyowati et al., 2020). The objective is to choose a superior subset 

of variables with the aim of maximizing the predictive efficacy of the model (Guyon and 

Elisseeff, 2003). The motivations for variable selection include enhancing universality, 

minimizing time, and simplifying comprehension (Prasetiyowati et al., 2020). The 

present study scrutinized the correlation between FSA and several UAS-lidar metrics 

using Pearson's correlation coefficient (r), and multi-collinear variables (r > 0.85) were 

excluded to facilitate model parsimony and minimize overfitting. The best subsets 

regression strategy was used to identify the most appropriate linear models for 

predicting the FSA based on selected variables (Hudak et al., 2006), which was 

implemented in Minitab Version 21.1.1 (Minitab, 2023) to select the best performing 

model and variables. The module explores different combinations of variables in order 

to create subsets for regression models. These subsets are then assessed and ranked using 

multiple scoring criteria, such as R2, Akaike's Information Criterion corrected (AICc), 

Bayesian information criterion (BIC), and Mallow's Cp statistics (Brooks and 

Ruengvirayudh, 2016). In the present work, the AICc criterion, which has shown superior 

performance for smaller sample sizes (Sugiura, 1978; Brewer et al., 2016), was prioritized 

above other criteria in the determination of the best regression model. The selection of 
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the optimum subset for model building included considering a combination of predictors 

that minimized AICc over each of the possible subsets.  

MLR model 

MLR method has been widely used in the estimation of FSA because of its ability to 

handle dependencies or correlations between the predictor variables (Hudak et al., 2006; 

Fassnacht et al., 2014a; Lu et al., 2020). MLR assumes a linear relationship between a 

dependent variable (e.g., AGB, BA and Vol) and a set of independent variables (lidar 

metrics). The natural logarithm data transformation was applied to the dependent 

variable to improve the model fitting in line with previous studies (Naesset et al., 2004; 

Hudak et al., 2006). The predictions obtained were subjected to a back-transformation 

process by exponentiation (Cao et al., 2019a). The log transformation introduces a 

systematic bias, which was corrected during the exponentiation using a bias correction 

factor based on half the mean squared error (Hudak et al. 2006). The MLR model with 

the lowest AICc for each FSA was implemented. 

Model performance 

The model performances were evaluated based on differences in the R2 and RMSE. 

 
𝑅𝑀𝑆𝐸 =  √∑

(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑛

𝑖=1

 

(5) 

 𝑟𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

ȳ
 𝑥100% 

(6) 

 𝐵𝑖𝑎𝑠 =  ∑
(ŷ𝑖−𝑦𝑖)

𝑛

𝑛

𝑖=1
 

(7) 

 𝑟𝐵𝑖𝑎𝑠 =  
𝐵𝑖𝑎𝑠

ȳ
 𝑥100% 

(4) 

Where yi and ŷi denote field measured FSA and predicated FSA for plot i, 

respectively and n is the number of measured FSA. K-fold cross validation was used 

to compare the developed MLR and SVR models and understand their performance. 
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This method entails randomly dividing the data into k approximately equivalent 

folds or groups. In k iterations, each of these folds is regarded as a validation set. We 

used a k-value of 10 because it has been widely used and empirically demonstrated 

to produce test error rate estimates with neither excessively high bias nor extremely 

high variance. The dataset was divided into 10 subsets for the 10-fold cross-

validation. One subset was kept aside in each fold and used to evaluate the trained 

model (the validation set), while the remaining 9 subsets were used for training. Once 

a subset has been used for validation, the process is repeated until all subsets have 

been used. Finally, the predicted values from all the folds were compiled into a table, 

and the equations presented above were applied to the table to estimate cross 

validated RMSE. 

4.3 Results 

4.3.1 Variable selection 

The selection of predictor variables (UAS-lidar metrics) was conducted separately for 

each dependent variable (AGB, BA, DBH, and Vol). The predictors that were selected 

comprised a combination of parameters relating to height, density, and canopy cover. 

Table 4.6 indicates that among the metrics associated with canopy, CC was the most often 

chosen in the majority of the models. In terms of metrics related to height, H25 and H80 

were the most commonly picked. Additionally, for metrics related to density, D60 

emerged as the most frequently chosen metric.  

The selected models and variables are highlighted in Table 4.5. The models with a smaller 

number of predictors were prioritized over models with a larger number of predictors 

due to their demonstrated stability and ability to mitigate overfitting (Hudak et al., 2006; 

White et al., 2017). For example, when estimating the AGB, the model with four predictor 

variables was chosen based on lower AICc over the first model with five predictors, 

despite the latter exhibiting higher R2 and adjusted R2 values, as well as lower AICc 

values. 

4.3.2 MLR forest structural attribute estimations 

The modeling results are shown in Table 6. In general, the predictive performance 

of site-specific models for FSA was superior (Adj-R2: AGB = 0.87–0.93; BA = 0.88–0.89; 

DBH = 0.86–0.96; and Vol = 0.87–0.98) to that of the combined data model (AGB = 0.80; 
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BA = 0.81; DBH = 0.85; and Vol = 0.85). In addition, this research evaluated the 

transferability of the site-specific models between Mwekera and Miengwe (as shown in 

Table 4.7) and found that these models exhibited lower levels of model fit (R2 = 0.41-0.54) 

compared to both the site-specific models (R2 = 0.94-0.99) and combined data models (R2 

= 0.83-0.88). 
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Table 4.5. Candidate Models for Field estimated forest structural attributes prediction using UAS-lidar metrics (see table 3 

for UAS-lidar metrics description) 

Vars R2 R2 adj R2 -pred Cp  AICc BIC CC CRR Haad H25 H50 H80 H99 Hcv Hstd Hmdm Hm Hmd D10 D30 D40 D60 

Above ground biomass 

1 0.52 0.50 0.36 21.2 255.824 258.508       X                        

2 0.71 0.68 0.60 3.9 248.849 251.977       X                    X  

3 0.75 0.72 0.60 3.0 247.057 250.347         X  X     X           

4 0.83 0.80 0.67 2.1 243.824 245.419 X       X X     X          

5 0.84 0.80 0.68 2.2 243.351 245.936 X        X  X    X  X         

6 0.86 0.72 0.56 10.6 244.724 246.412 X      X X X   X      X     

7 0.91 0.77 0.62 12.0 247.354 247.423 X  X    X   X   X X X    

8 0.93 0.80 0.61 12.9 251.627 249.542 X  X    X   X   X X X  X   

9 0.93 0.80 0.60 13.6 256.438 251.420 X  X    X   X   X X X  X   X 

10 0.94 0.70 0.42 18.405 263.081 254.178 X  X X X  X X X  X   X X     

Basal area 

1 0.50 0.48 0.38 175.26 177.77 32.4    X             

2 0.59 0.56 0.47 173.17 176.04 24.8      X         X  

3 0.65 0.61 0.56 172.17 175.11 20.1      X X   X       
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4 0.73 0.67 0.61 169.71 172.36 14.2 X     X X   X       

5 0.81 0.76 0.70 164.64 166.59 7.4     X  X  X X    X   

6 0.85 0.80 0.73 163.16 163.91 5.1 X     X X  X X    X   

7 0.89 0.79 0.72 164.50 164.47 3.3 X  X   X X  X X    X   

8 0.90 0.78 0.68 164.39 160.86 4 X X X   X X  X X    X   

9 0.91 0.80 0.71 166.62 159.72 4.3 X X X   X X  X X    X  X 

10 0.93 0.88 0.79 170.07 158.70 4.8 X X X   X X  X X  X  X  X 

Diameter at breast height 

1 0.66 0.65 0.58 143.39 145.90 21.4     X            

2 0.78 0.76 0.70 136.14 139.02 9.9       X X         

3 0.86 0.84 0.79 128.03 130.96 2.2 X      X X         

4 0.88 0.85 0.80 127.84 130.49 1.8 X      X X        X 

5 0.88 0.85 0.78 131.21 133.15 3.5 X      X X    X    X 

6 0.89 0.85 0.76 134.17 134.92 4.7 X   X  X X X        X 

7 0.89 0.84 0.72 138.71 137.68 6.4 X   X X  X X    X    X 

8 0.92 0.87 0.55 137.60 134.08 5.2 X   X X X X  X  X X     

9 0.93 0.88 0.75 140.72 133.82 5.9 X  X X X X X  X  X X     

10 0.928 0.877 0.615 147.69 136.31 7.6 X  X X X X X  X  X X    X 
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Volume 

1 0.72 0.70 0.59 171.84 174.35 8.1    X             

2 0.80 0.78 0.75 166.50 169.37 9.2    X         X    

3 0.85 0.83 0.78 162.19 165.12 7.4 X   X         X    

4 0.88 0.86 0.81 146.44 140.34 3.6 X   X    X     X    

5 0.91 0.78 0.74 148.01 140.64 6.9 X  X X      X    X   

6 0.93 0.71 0.69 147.24 148.74 7.7 X  X   X X   X    X   

7 0.95 0.73 0.67 152.60 151.57 9.4 X  X   X    X X X  X   

8 0.97 0.75 0.69 159.63 162.28 12 X  X  X X    X X X  X   

9 0.97 0.76 0.62 156.91 158.85 15.4 X X X   X X   X   X X   

10 0.98 0.86 0.68 154.89 155.64 21.8 X X X  X X X   X   X X   

 

Table 4.6. Summary of cross validation results of model for R2, RSME and rRSME, Bias and rBias 

Site Response 

variable 

Prediction equation R2 R2_adj RMSE  rRMSE (%) Bias 

 

rBias 

(%) 

Mwekera 

ln(AGB) 1.42CC + 0.02H25 + 1.27Hcv - 3.57D20 - 1.27D60 + 0.24 0.90 0.87 15.41 15.46 0.01 0.01 

ln(BA) 1.12LAI + 1.24CRR - 0.02H25 + 0.05H80 - 3.05Hcv + 9.16D10) + 1.96D60  

-0.98 

0.92 0.88 1.78 11.12 -0.01 -0.04 

ln(DBH) 0.25LAI – 0.05Haad + 1.12CRR + 0.01H25 + 0.08Hstd – 0.31D80 +0.32 0.90 0.86 1.51 6.37 0.05 0.19 

ln(Vol) 1.05LAI + 2.16CRR - 2.71Hcv + 0.13Hstd + 8.98D10 +1.94D60 - 0.21 0.94 0.87 28.29 14.08 2.06 1.03 

         

Miengwe ln(AGB) 2.52CC - 8.27Hcv + 0.85Hstd + 5.49D20 – 1.84D50 - 0.07 0.95 0.93 15.38 14.76 -0.73 -0.70 
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ln(BA) 2.19CC – 5.71Hcv + 1.83Hstd – 1.10Haad – 3.12D50 – 1.44 0.92 0.89 2.81 20.89 1.63 0.10 

ln(DBH) 0.62CC + 0.03H1 – 0.04H25 – 2.70Hcv + 0.20Hstd – 0.012D70+1.237 0.97 0.96 0.31 2.01 0.00 0.01 

 ln(Vol) 1.81CC – 0.79Haad – 7.33Hcv +1.58Hstd + 3.16d20 -2.83D50 + 0.67D60 

= 0.04 

0.99 0.98 12.15 9.50 -0.73 -0.57 

         

Combined 

ln(AGB) 0.87CC + 0.13H80 – 0.06H99 – 0.19Hmd + 0.73 0.83 0.80 18.39 16.05 1.26 1.10 

ln(BA) 0.95CC + 0.17Haad + 0.07H80 + 0.07H99 +0.38Hstd -6.62D30 -0.04 0.85 0.81 2.69 16.71 0.19 1.16 

ln(DBH) 0.48CC + 0.03H99 -0.67Hcv + 0.26D60 +0.51 0.87 0.85 2.27 11.86 0.11 0.55 

 ln(Vol) 1.21CC + 0.07H25 + 1.40Hcv -6.27D10 +0.37 0.88 0.85 5.94 3.40 1.38 0.79 
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Figure 4.4. Shows a comparison of UAS-lidar estimated and field estimated FSA for Mwekera and 

Miengwe sites utilizing single site data models and combined data models. (a) above ground biomass, 

(b) basal area, (c) diameter at breast height and (d) Volume 
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Table 4.7. Local model transferability R2, RMSE and rRSME Bias, rBias 

 

 

 

 

 

4.4 Discussion 

4.4.1 Selecting the best predictors for estimating FSA 

We undertook variable selection to choose the best possible predictors (UAS-lidar metrics) to 

estimate the FSA of interest (AGB, BA, DBH or Vol). The best predictors for each forest 

structural attribute were a mix of height, density, and canopy cover-related metrics (Table 5). 

The height percentiles were the most selected lidar metrics across all FSA. This is consistent 

with earlier observations that demonstrated that height-related metrics (particularly high 

percentiles) are important in estimating FSA (Lefsky et al., 2005; Hudak et al., 2008; Bouvier et 

al., 2015; Liu et al., 2018b). However, there is a noticeable variation in the selected predictors 

for the two sites (site equations in Table 4.6) despite both being the wet Miombo woodlands. 

The observed differences may be ascribed to disparities in the structure and composition of the 

forests at the two locations, as seen in Tables 4.1 and 4.2. This finding is consistent with a 

previous investigation conducted by Bouvier et al. (2015). 

4.4.2 Site specific vs combined data models 

The results presented in Table 4.6 demonstrate that the Mwekera and Miengwe site-specific 

models exhibited superior model fit (adj-R2 = 0.86-0.98) compared to the combined site data 

model (adj-R2 = 0.80-0.85), confirming assertions by Foody et al. (2003). This agrees with claims 

by Bouvier et al. ( 2015) regarding the prominence of the dominant species in a forest stand, 

which significantly influences the correlation between lidar metrics and the FSA that is being 

estimated through area-based lidar techniques employed in this study. In relation to rBias the 

site-specific models (0.01-1.03%) exhibited a similar range to the combined data model (0.55-

1.16%), indicating coherence between the site-specific and combined data models. This 

contradicts work by Bouvier et al. (2015), who found that site specific models yielded better 

estimates of FSA than large-areas combined data models. 

Site Attributes Model R2 RMSE  rRMSE(%) Bias rBias (%) 

Mwekera 

AGB 

Miengwe 

0.55 23.25 23.33 6.20 6.22 

BA 0.52 8.02 50.33 3.71 23.29 

DBH 0.48 16.28 68.51 -4.32 -18.90 

Vol 0.48 37.07 18.45 13.33 6.63 

        

Miengwe 

AGB 

Mwekera 

0.53 20.02 19.21 2.50 2.40 

BA 0.42 3.58 26.02 0.90 6.50 

DBH 0.41 2.74 18.07 0.69 4.52 

Vol 0.50 29.76 23.26 -5.40 -4.22 
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4.4.3 Site-specific model transferability 

We assessed the efficacy of extrapolating single site models to estimate FSA in regions where 

UAS-lidar data is available, but field forest inventory measurements are assumed to be 

unavailable (Table 4.7). The obtained results (rRMSE = 26.10%-64.59%) fall within a similar 

range observed by Fekety et al., (2018). In their study, Fekety et al., (2018) evaluated the 

transferability of random forest regression models in estimating BA and Stem density (rRMSE 

= 32.3%-67.3%) across six lidar sites located in the Northern Rocky Mountains, Idaho, United 

States of America. In the present study, the performance of a transferred local model was found 

to be suboptimal when applied to a new site lacking field training data (Table 4.7) in 

comparison to the site where it was originally developed (Table 6). As such, this finding may 

serve as a starting step for forest managers wishing to incorporate UAS-lidar data gathered for 

non-forest applications into forest inventory processes. Nonetheless, the amalgamation of 

UAS-lidar collections from multiple sources presents challenges in terms of data quality. This 

is primarily due to the utilization of different flight settings and sensor characteristics 

(Goodwin et al., 2006; Hopkinson, 2007; Næsset, 2009). Consequently, forest managers wishing 

to combine USA-lidar from various sources are advised to employ a cautious, consistent 

approach to calculate reliable lidar metrics (Fekety et al., 2018).  

4.4.4 UAS-lidar improved FSA estimates 

This study used UAS-lidar to estimate more FSA (i.e. AGB, DBH, Vol and BA) compared to 

earlier studies that were carried out in the Miombo, which focused on AGB (Mauya et al., 2015; 

Kachamba et al., 2016b). We were able to achieve superior estimations of AGB: rRMSE = 14.76% 

- 16.05%, compared to rRMSE = 46.8% reached by Mauya et al. (2015) in Tanzania using 

airborne-lidar and rRMSE = 46.7% achieved by Kachamba et al. (2016b) in Malawi using UAS-

SfM. The difference in AGB estimation accuracy from Mauya et al. (2015) was most likely 

caused by the differences in point cloud densities. The UAS-lidar used in this study had an 

average point density of about 300 pts m-2, compared to the manned airborne lidar system used 

in Mauya et al. (2015) with an average point density of about 1.8 pts m-2. An increased point 

density results in enhanced delineation of the canopy structure, consequently leading to more 

accurate estimations of AGB (Kato et al., 2009). The difference in results from Kachamba et al. 

(2016b) may be attributed to the superior DTM from UAS-lidar owing to its ability to penetrate 

the canopy and capture the vertical distribution of the canopy as opposed to UAS-SfM, used in 

(Kachamba et al., 2016b). This comforms with findings from studies by Wallace et al. (2016) and 

Cao et al. (2019), who compared UAS-lidar and UAS-SfM for estimating FSA in a dry 

sclerophy11 eucalypt forest in Australia and in a planted forest in China, respectively, and 
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found that UAS-lidar yielded better estimates, due to the superior canopy penetration 

capability of active lidar technology versus the passive optical stereo imagery used in the UAS-

SfM technique. 

Although our study was confined to just two sites, site specific studies on a small number of 

species are critical to updating current knowledge and information thereby aiding in the 

sustainable use and management of forest resources (Syampungani et al., 2009). As a result, the 

techniques adopted here may be replicated in other parts of the Miombo with comparable 

vegetation formations. Further, considering the endurance and storage challenges that 

continue to plague UAS-lidar technology (Whitehead and Hugenholtz, 2014; Shamaoma et al., 

2022), we believe that UAS-lidar should be used as a sampling tool to bridge the spatial gap 

between ground techniques and wall-to-wall satellite data. This may be accomplished by 

utilizing a two-phase sampling strategy in which regions to be covered by UAS-lidar data are 

sampled using ground techniques and areas to be covered by wall-to-wall satellite imagery are 

sampled using UAS-lidar (Shamaoma et al., 2022). As such, the relationship between UAS-lidar 

metrics and field estimated FSA at the local sample site is of prime importance for modelling 

generic wall-to-wall relationships.  

4.5 Conclusion 

In this study, we were able to extract and select suitable UAS-lidar metrics for estimating FSA 

at two wet Miombo woodlands sites. Four FSA (AGB, BA, DBH and Vol) were estimated using 

MLR (adj-R2 > 0.79 and rRMSE < 21%). The results indicate that the UAS-lidar approach 

presented in this research provides a useful enhancement to the existing methodologies used 

for estimating aboveground biomass (AGB) in the Miombo woodlands. Also, the accuracy of 

FSA estimating models built using UAS-lidar data from a single site was compared to the 

accuracy of models built using data from two sites. The findings revealed that site-specific 

models exhibited superior performance compared to models using combined data. This 

phenomenon may be anticipated since the uniformity of forest structure and composition is 

expected to be stronger within a specific site compared to a broader geographical area. 

Nevertheless, a common data model exhibits more generality and is better suited for 

application over a broader geographic area.  

The results obtained in this study provides alternative remote sensing based FSA estimation 

with precision required for sustainable forest management at a local level as well as for 

international reporting management requirements such as REDD+ and MVR. 
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However, although this study demonstrated the utility of UAS-lidar in the estimation of FSA, 

we only considered mature wet Miombo woodlands in similar forest environments. Therefore, 

it is apparent that further work on this topic is required if the full potential of UAS-lidar as a 

source of forest inventory data in the Miombo woodlands is to be realized. Future works may 

be focused on estimation of FSA in the dry Miombo and hill Miombo, as well as different age 

groups of the regenerating Miombo woodlands, so as to have full understanding of the 

performance and limitations of UAS-lidar in estimating FSA across the entire spectrum of the 

Miombo woodlands. Furthermore, this study used area-based methods to estimate FSA from 

UAS-lidar. With continuous improvement of UAS-lidar sensors, increased point cloud 

densities per square meter, and advancement of processing technologies coupled with the open 

nature of the Miombo woodlands canopy, we expect future studies to focus on individual tree-

based methods for estimating FSA, resulting in richer forest inventory data as would benefit 

sustainable management of the Miombo woodlands.
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Chapter 5 : Exploring UAS-lidar as a sampling tool for satellite-based AGB 

estimations in the Miombo woodland of Zambia 

 

 

 

This chapter is based on: 

 

Shamaoma, H.; Chirwa, P.W.; Zekeng, J.C.; Ramoelo, A.; Hudak, A.T.; Handavu, F.; 

Syampungani, S. Exploring UAS-lidar as a sampling tool for satellite-based AGB estimations 

in the Miombo woodland of Zambia (Draft manuscript) 
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Abstract 

 

To date, only a limited number of studies have utilized remote sensing imagery to estimate 

aboveground biomass (AGB) in the Miombo ecoregion using wall-to-wall medium resolution 

optical satellite imagery (Sentinel-2 and Landsat), localized airborne light detection and 

ranging (lidar), or localized unmanned aerial systems (UAS) images. On the one hand, the 

optical satellite imagery is suitable for wall-to-wall coverage, but the AGB estimates based on 

such imagery lack precision for local or stand-level sustainable forest management and 

international reporting mechanisms. On the other hand, the AGB estimates based on airborne 

lidar and UAS imagery have the precision required for sustainable forest management at a local 

level and international reporting requirements but lack capacity for wall-to-wall coverage. In 

order to bridge the spatial data gap, this study employed a two-phase sampling approach, 

utilizing Sentinel-2 imagery, partial-coverage UAS-lidar data, and field plot data to estimate 

AGB in the 8,094-hectare Miengwe Forest, Miombo Woodlands, Zambia, where UAS-lidar 

estimated AGB was used as reference data for estimating AGB using Sentinel-2 image metrics. 

The findings showed that utilizing UAS-lidar as reference data for predicting AGB using 

Sentinel-2 image metrics yielded superior results (Adj-R2 = 0.70, RMSE = 27.97) than using 

direct field estimated AGB and Sentinel-2 image metrics (R2 = 0.55, RMSE = 38.10). The quality 

of AGB estimates obtained from this approach, coupled with the ongoing advancement and 

cost-cutting of UAS-lidar technology as well as the continuous availability of wall-to-wall 

optical imagery such as Sentinel-2, provides much-needed direction for future forest structural 

attribute estimation for efficient management of the Miombo woodlands. 

Key words: Above ground biomass, UAS-lidar, Two-phase, sampling tool 
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5.1 Introduction 

Sustainable management and carbon accounting of forests require accurate up-to-date 

vegetation structural data often covering extensive areas that are too huge to capture, process, 

and manage by manual methods (Kerr and Ostrovsky, 2003; Turner et al., 2003; Romijn et al., 

2012; White et al., 2013b; Barquín et al., 2014; Day et al., 2014). Typically, above ground biomass 

(AGB) in the Miombo woodlands is determined using destructive harvesting procedures, for 

building allometric equations based on the observed data from these cut trees, such as diameter 

at breast height (DBH), tree height, and wood density (Mugasha et al., 2012; Kachamba et al., 

2016a; Handavu et al., 2021). Nevertheless, the application of these allometric equations on 

extensive forest regions can pose challenges in terms of time, cost, and feasibility due to the 

difficulty in obtaining field measurement input parameters in remote terrains. Consequently, 

the AGB for most of vegetation formations in many parts of the African savannas, Miombo 

woodlands inclusive remains poorly understood.  

Remote sensing has made it possible to measure vegetation structure across vast areas in an 

efficient and repetitive manner (Hosonuma et al., 2012; Weisberg et al., 2021). The application 

of remote sensing methods in estimating AGB in the Miombo woodlands (Samimi and Kraus, 

2004; Kashindye et al., 2013; Mauya et al., 2015; Halperin et al., 2016a; Kachamba et al., 2016b; 

Næsset et al., 2016; Mareya et al., 2018) is becoming common. Most of these studies employ 

statistical models where field estimates of AGB are regressed against metrics generated from 

corresponding remote sensing data, followed by extrapolation of resulting models to the entire 

study area. The studies that have employed remote sensing imagery for estimation of AGB in 

the Miombo ecoregion so far have done it at two levels of abstraction, namely: (i) wall-to-wall 

estimation of AGB; and (ii) local or stand-level estimations. The wall-to-wall category includes, 

the use of atmospherically resistant vegetation indices (ARVI) and normalized difference 

vegetation indices (NDVI) derived from Landsat imagery to assess forest cover, stocking and 

above-ground tree biomass dynamics in the Miombo woodlands of Tanzania (Kashindye et al., 

2013). In another study, Halperin et al. (2016a) estimated AGB in Nyimba district, Miombo 

woodlands, Zambia, using National Forest Inventory (NFI) data, estimated canopy cover, 

environmental data, disturbance data, and Landsat 8 OLI satellite imagery. The medium 

resolution imagery (Landsat) utilized in Kashindye et al. (2013) and Halperin et al. (2016a) are 

suitable for wall-to-wall coverage, but the AGB estimates based on such imagery lack precision 

for local or stand-level sustainable forest management, as well as international reporting 

mechanisms (Xie et al., 2008) such as reducing emissions from Deforestation and Forest 

Degradation, plus forest conservation, sustainable management of forests and enhancement of 

carbon stocks (REDD+) and Monitoring, Reporting and Verification (MRV), which offers 

monetary rewards to developing countries for forest conservation, and the execution of 
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ecologically sound forest management based on national carbon stocks reported to the United 

Nations Framework Convention on Climate Change, UNFCCC (Day et al., 2014; Goetz et al., 

2015).  

At a local level, Mauya et al. (2015) employed airborne light detection and ranging (lidar) data 

to estimated AGB in the Miombo woodlands of Liwale district, Tanzania. Another study by 

Kachamba et al. (2016b), utilized unmanned aerial systems (UAS) image-based point clouds to 

estimate AGB in the Miombo woodlands, Muyobe forest, and Mzimba District in northern 

Malawi. The AGB data estimates by Mauya et al. (2015) and Kachamba et al. (2016b) have the 

precision required for sustainable forest management at a local level and international 

reporting requirements but lack capacity for wall-to-wall coverage. Furthermore, apart from 

the limited area coverage inherent in the UAS imagery approach employed in (Kachamba et 

al., 2016b), the imagery requires huge storage space and high processing speeds (Whitehead et 

al., 2014; Shamaoma et al., 2022) that are too demanding and still challenging for wall-to-wall 

estimations of AGB over a large area. As a result, the two levels of abstraction must be linked 

in order to get wall-to-wall AGB estimates with the accuracy necessary for local sustainable 

forest management and international carbon reporting requirements (Day et al., 2014; Goetz et 

al., 2015). 

With regard to bridging the spatial gap between wall-to-wall satellite imagery and detailed 

airborne and UAS imagery, some studies have proposed a two-phase sampling design where 

areas covered by UAS or airborne imagery are sampled via field plots and areas covered by 

wall-to-wall satellite images are sampled using UAS or airborne imagery, for example, lidar 

sampling (Korhonen and Morsdorf, 2014; Su et al., 2016; Nelson et al., 2017; Matasci et al., 2018; 

Wang et al., 2019) and UAS imagery sampling (Puliti et al., 2017; Navarro et al., 2019). These 

strategies have demonstrated tremendous potential to reduce field plot installation costs and 

improve wall-to-wall AGB estimate accuracy, which could provide solutions for forest data 

collection in forest inventory-plagued regions such as the Miombo ecoregion. A study by 

Wulder et al. (2012) presented a complete review of employing lidar sampling to allow large-

area forest characterizations, in which lidar samples were utilized in a way comparable to field 

samples. However, their review focused on airborne, which are still expensive to acquire in the 

Miombo region. UAS provide a more flexible and affordable sampling platform for use in 

conjunction with wall-to-wall satellite imagery, as demonstrated in recent studies (Puliti et al., 

2017; Wang et al., 2019, 2020). 
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In a pioneering study for UAS-based sampling, Puliti et al. (2017) used UAS photogrammetric 

point clouds as a sampling tool, together with a limited sample of field data and wall-to-wall 

Sentinel-2 images, to estimate growing stock volume in a 7330 hectare forest area in Norway 

using a hierarchical model-based inference and reported this approach to be cost-effective for 

large scale forest resource assessments. However, UAS photogrammetric point clouds have 

been reported to have challenges in capturing the vertical vegetation structure that are required 

for estimating AGB in denser forest environments (Mlambo et al., 2017; Shamaoma et al., 2022). 

In a related study, Wang et al. (2020) used a lidar sensor mounted on a UAS platform (UAS-

lidar) partial coverage data as a link between field plot data and wall-to-wall Sentinel-2 imagery 

to estimate mangrove forests AGB in Hainan Island, China. Apart from lowering field sampling 

costs, their research observed that their method produced better AGB estimations (R2 =0.62; 

rRMSE = 35.41%) than the usual method, which directly correlates field plots to Sentinel-2 data 

(R2 = .0.52; rRMSE = 39.88%).  

This paper proposes a two-phase sampling technique for low-cost, large-scale AGB estimate 

for the Miombo ecoregion by capitalizing on publicly-available Sentinel-2 satellite images and 

inexpensive UAS-lidar data. In order to achieve this, the specific objectives were: (i) identify 

suitable UAS-lidar metrics and Sentinel-2 metrics for estimating AGB in the Zambian Miombo, 

(ii) identify the optimal prediction model for mapping AGB (iii) assess if UAS-lidar-estimated 

AGB can replace field-estimated AGB as reference data. (iv) Compare the findings of direct 

field plots to Sentinel-2 AGB estimations from utilizing field plots to UAS-Lidar and UAS-lidar 

to Sentinel-2 in a two-phase sampling strategy. 

5.2 Materials and method 

5.2.1 Study area 

The research was conducted in Miengwe Forest Reserve Number 36, Masaiti District, 

Copperbelt Province, Zambia (Figure 5.1). The forest reserve is situated approximately 17 

kilometers from the Ndola-Lusaka highway and 90 kilometers southwest of the Ndola city 

center. The 8,094-hectare Miengwe Forest Reserve is located between 13°24′05′′S and 

28°49′00′′E. The region receives an average of 1200 millimeters of rainfall annually and 

experiences three distinct seasons: hot dry (September-November), rainy (December-March), 

and cold dry (April-August) (Handavu et al., 2021). The most prevalent soil form is residual 

lateritic soil, which consists primarily of silty clays and sediments. The area is within the Wet 

Miombo region and is characterized by the dominance of the families of Papilionacae and 

Fabaceae. The dominant genera and species are Brachystegia (Brachystegia spiciformis and 
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Brachystegia longifolia), Julbernardia (Julbernadia globiflora and Julbernadia paniculata), and 

Isoberlinia (Isobernilia angolensis). 

 

5.2.2 Field sample plots. 

To ensure that field sample plots, UAS-lidar data, and Sentinel-2 data corresponded in the two-

phase sampling approach (Nelson et al., 2009), the Sentinel-2 image covering the study area 

was resampled to 20 m spatial resolution and used to generate a 20 x 20 m grid framework that 

served as the foundation for both field and UAS-lidar sampling (Figure 5.2). The study area 

was divided into ten UAS lidar blocks ranging in size from 30 to 50 hectares, which were 

selected based on the vegetation coverage, accessibility, and availability of a UAS launch site 

as determined by visual interpretation of Google Earth images and field assessment. In each of 

the UAS-lidar blocks, ten to twelve circular sample plots of 10 m radius were established at 250 

m spacing at the centre of the 20 x 20 m Sentinel-2 grid framework, at least 50 m distant from 

the block border. These plots were designed to align with the 20 x 20 m grids that were used 

for extracting UAS-lidar metrics. The LT700H real time kinematic RTK (Shanghai Huace 

Navigation Technology Limited, China) Global Navigation Satellite Systems (GNSS) receiver 

Figure 5.1. Location of study area 
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was used to precisely locate the centers of these plots on the ground to within a few centimeters. 

The DBH, tree height, and species names of trees with DBH more than 5 cm were recorded in 

each of the sample plots. Allometric equations proposed by (Handavu et al., 2021) were used 

to estimate AGB at the plot level. 

 

Figure 5.2. Sample plot and grid framework overlaid on: (a) Sentinel-2 image and (b) lidar point cloud 

5.2.3 Collecting and pre-processing data from UAS-lidar 

Using a T-Drone M1200 quadcopter equipped with a gAirHawk GS-100C UAS-lidar scanning 

system, we collected the raw UAV-lidar point clouds between November 10th and 12th, 2021. 

The Livox Avia sensor (Table 4.3) on the GS-100C UAS-lidar operates at 200 HZ and can 

provide up to 720000 points/sec in triple echo. The mission was planned using the open-source 

program Mission Planner, which was also used to track the aircraft in real-time and monitor 

its flight characteristics. UAS-lidar data were collected at an altitude of 80 meters, a speed of 5 

meters per second, and a swath width of 42 meters. A GNSS ground base station was used as 

a reference for subsequent UAS-lidar data post-processing.  

The unprocessed UAS-lidar data downloaded from the GS-100C comprised raw lidar points, 

UAS inertia measurement unit data, UAS GNSS data, and raw photogrammetry imagery (used 

for colourising the point cloud). The raw UAS-lidar data and raw GNSS data from the ground 

GNSS base station were first processed in gAirhawk 5.0 version software (Geosun Navigation 
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Technology Limited, Wuhan, China), where lidar data, IMU data, and GNSS base data were 

integrated to process the flight trajectory and generate georeferenced UAS-lidar point cloud 

data in las format. The UAS-lidar point cloud data in las format underwent further processing 

in Lidar360 version 5.4.3.0 software (GreenValley International, California, CA, USA), which 

included: (i) denoising the lidar point cloud using an outlier reduction method; (ii) 

classification of point clouds into either ground or non-ground using an enhanced version of 

the progressive triangulated irregular network (TIN) densification filter method (Zhao et al., 

2016) implemented in lidar 360 software and processing was carried out using the default 

settings (max cell size of 20 m, max terrain angle of 88°, iteration angle of 8°, and iteration 

distance of 1.4 m), with the lowest point in the grid serving as the seed; and (iii) normalizing 

point clouds by subtracting the elevation of each point from the DTM that was generated using 

the inverse distance weighting (IDW) interpolation technique. The normalized points were 

used as input for extracting UAS-lidar metrics which were used for the subsequent modelling. 

5.2.4 Sentinel-2 data collection and pre-processing  

The Sentinel-2 images with less than 5% cloud cover captured in November 2022 were 

downloaded from the open access European Space Agency (ESA, 2022). The Sentinel 

Application Platform (SNAP) and ArcGIS Desktop Version 10.7.1 (ESRI, 2019) software were 

used to pre-process the raw Sentinel-2 imagery. The Sen2Cor atmospheric correlation processor 

(version 2.5.5) was used to do atmospheric correction to create Level2A bottom-of-atmosphere 

reflectance data. Three visible bands (Blue (B2), Green (B3), and Red (B4)), three red edge bands 

(Red Edge 1 (B5), Red Edge 2 (B6), and Red Edge 3 (B7)), two near infrared bands (B8) and 

Narrow Near Infrared (B8a)), and two shortwave bands (Shortwave 2 (B12) and Shortwave 3 

(B13)) were used in the Sentinel-2 image composite. Bands 1, 9, and 10 were removed because 

they were dedicated to atmospheric correction and had coarse resolution of 60 m. All adopted 

bands were resampled to 20 m resolution using the nearest neighbor approach in ArcGIS to 

match our sampling strategy (Wang et al., 2019; Mauya and Madundo, 2022; Muhe and Argaw, 

2022). Finally, subsets of all generated sentinel-2 imagery products were clipped to the size of 

the study area. 

5.2.5 Extraction of AGB predictors 

The UAS-lidar metrics were extracted in Lidar360 software based on polygons generated from 

a 20 x 20 m resampled Sentinel-2 grid framework (Figure 2). We generated a total of 37 UAS-

lidar metrics at the plot level (Table 5.1). The 20 x 20 m grid framework was generated based 

on the re-sampled Sentinel-2 using the “create fishnet tool’ in ArcToolbox, implemented in 

ArcGIS Desktop software, which includes an option for generating points inside each grid. The 
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points inside each grid served as the basis for extracting Sentinel-2 image metrics for estimating 

the AGB for the study area. 

Table 5.1.  UAS-lidar metrics 

lidar metrics Description 

Percentile heights (H1, H5, H10, 

H20, H25, H30, H40, H50, H60, 

H70, H75, H80, H90, H95, H99) 

The percentile of the canopy height distributions (1st, 5th 10th, 20th, 25th, 

30th 40th, 50th, 60th, 70th,75th, 80th 90th, 95th and 99th) of first returns 

Canopy return density (D1, D2, 

D3, D4, D5, D6, D7, D8, D9) 

The proportion of points above the quantiles (10th,20th, 30th, 40th,  50th 

and 60th, 70th, 80th and 90th) to total number of points  

Variance of height (Hvar) The variance of the heights of all points 

Maximum height (Hmax) Maximum of return heights above 2 m 

Coefficient of variation of 

heights (Hcv) 

Variation of heights of lidar returns above 2 m 

Hskew Skewness of height 

Hmd The median of absolute deviation of heights 

Hkurtosis The kurtosis of the heights of all points 

Hstd Standard deviation of height 

Hmean Mean height above ground of all first returns 

Canopy relief ratio (CRR) mean height returns minus the minimum height divided by the 

maximum height minus the minimum height 

Canopy cover (CC) above 2 m Percentile of first returns above 2 m 

Gap fraction (GF) An indication how much of the sky is visible from beneath a plant 

canopy. 

Leaf area index (LAI) Half of the surface area of all leaves per unit ground area 

5.2.6 Acquiring Sentinel-2 Metrics 

Prior experience (Mauya and Madundo, 2022; Muhe and Argaw, 2022) in estimating AGB using 

Sentinel-2 imagery influenced the choice of relevant bands as well as the derived vegetation 
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indices (VI) and biophysical variables (BV) in this work (Table 5.2). In addition, normalized 

difference fraction index (NDFI), an index that has been widely used to monitor forest 

disturbances in the tropics (Souza et al., 2005, 2013; Bullock et al., 2018) was calculated. It is 

based on spectral unmixing, which is the breakdown of the spectral signature of a mixed pixel 

into proportions of endmembers (pure spectra) (Shi and Wang, 2014). Using this approach, 

(Souza et al., 2005) employed a linear mixture model to decompose field data on cleared, 

selectively logged, and undisturbed Amazon forests into proportions of soil, shade, green 

vegetation (GV), and non-photosynthetic vegetation (NPV). Dense forests revealed high GV 

and low soil, NPV, and shade percentages. Cleared and thinned forests exhibited greater 

canopy shade and GV than non-disturbed forests. The NDFI was adopted in this study because 

it emphasizes the difference between forest and non-forest pixels (Bullock et al., 2018), which 

is crucial for estimating AGB. The NDFI was calculated using equation 8 and GVshade is the 

shade-normalised GV fraction given by equation 9 (Souza et al., 2005).  

NDFI is the ratio of the GV, NPV, soil, and shade endmember fractions, with the resulting NDFI 

values ranging from -1 to 1. In the present study, the calculation of the NDFI was implemented 

within the System for Earth Observation Data Access, Processing, and Analysis for Land 

Monitoring (SEPAL) cloud application (SEPAL,).   Subsequently, the final suitable metrics for 

the study were arrived at after undergoing a variable section process. 

Table 5.2 Selected multispectral bands, VI, and BF from Sentinel-2 images 

Bands Description Central wave length (nm) 

B2 Blue 490  

B3 Green 560 

B4 Red 665 

B5 Vegetation red edge 705 

B6 Vegetation red edge 740 

B7 Vegetation red edge 783 

 
𝑁𝐷𝐹𝐼 =

𝐺𝑉shade − (𝑁𝑃𝑉 + 𝑆𝑜𝑖𝑙)

𝐺𝑉shade + (𝑁𝑃𝑉 + 𝑆𝑜𝑖𝑙)
 

(8) 

 
𝐺𝑉shade =

𝐺𝑉

1 + 𝑆ℎ𝑎𝑑𝑒
                   

(9) 
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B8 Near infrared (NIR) 842 

B11 Short wave infrared (SWIR) 1.610 

B12 Shortwave infrared (SWIR) 2.190 

Vegetation 

indices 

Description (reference) Equation 

 NDVI Normalized Difference Vegetation Index (Xue 

and Su, 2017) 
NDVI =

B8 − B4

B8 + B4
 

 EVI Enhanced vegetation index (Xue and Su, 

2017) 

EVI
= 2.5

×
(B8 − B4)

(B8 + 6 × B4 − 7.5 × B2 + 1)
 

 SAVI Soil adjusted vegetation index (Xue and Su, 

2017) 

 

 

SAVI =
B8 − B4

B8 + B4 + L
× (1 + L) 

RENDVI_705 Red-edge normalized difference vegetation 

index (Xue and Su, 2017) 
RENDVI =

B8 − B5

B8 + B5
 

NBRI Normalized Burn Ratio Index (Miller and 

Thode, 2007) 
NBRI =

B8 − B12

B8 + B12
 

GNDVI 

 

Green Normalized Difference Vegetation 

Index (Askar et al., 2018) 
GNDVI =

B8 − B3

B8 + B3
 

Biophysical 

variables 

Description (reference) 

LAI Leaf area index (Muhe and Argaw, 2022) 

FAPAR Fraction of absorbed photosynthetically active radiation (Muhe and Argaw, 2022) 

FCOVER Fraction of vegetation cover (Muhe and Argaw, 2022) 

CAB Chlorophyll content in the leaf (Muhe and Argaw, 2022) 

 

5.2.7 Predicting AGB  

The multi-linear regression (MLR) approach was employed to predict AGB in this study 

because of its simplicity and ability to handle dependencies on or correlations between the 
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predictor variables (Fassnacht et al., 2014a; Nelson et al., 2017). A two-phase sampling 

approach was utilized to estimate the AGB for the Miengwe forest. The first phase involved 

creating the ground plot to UAS-lidar relationship and estimating AGB in the blocks covered 

by UAS-lidar. The UAS-lidar blocks were selected based on accessibility and availability of a 

UAS launch site and did not follow a strict north-south orientation. Since the UAS-lidar blocks 

did not match the orientation of the Sentinel-2-generated grid framework, the grid cells in the 

UAS-lidar block's margins, covering less a fraction of the 400-meter square grid, were removed. 

We estimated the AGB for a total of 4248 grid cells covering all the 10 UAS-lidar blocks in the 

study area, representing about 2.5% of the total Miengwe forest area. The estimated AGB of the 

UAS-lidar blocks were used as reference points in the subsequent estimation of AGB in areas 

covered by Sentinel-2 imagery for the rest of the study area. 

In the second phase, a relationship was established between the UAS-lidar predicted AGB 

(response variable) and wall-to-wall Sentinel-2 image metrics (Table 5.2) as predictor variables 

to estimate the AGB for the entire study area using MLR technique. Seven hundred random 

(700) points were generated within the 10 UAS-lidar blocks using the create random points tool 

implemented in ArcGIS Desktop Version 10.7.1. The 700 random samples of UAS-lidar 

estimated AGB grid cells served as training data for estimating AGB for the whole study area 

using Sentinel-2 image metrics.  

We also predicted the AGB for the Miengwe forest using the direct relationship between 

ground plots and Sentinel-2 imagery metrics, which allowed us to assess whether or not the 

use of UAS-lidar as a bridging sampling tool between the two was beneficial. The UAS-lidar to 

Sentinel-2 estimated AGB was later compared with the one obtained directly the ground points 

to Sentinel-2 metrics estimated AGB.  

5.2.8 The MLR modeling approach 

The MLR modeling procedures included three main stages: (i) variable selection, (ii) model 

development and fitting, and (iii) model validation.  

Variable selection and model development 

The first stage of variable selection involved using Pearson's correlation coefficient (r) to 

evaluate the association between the dependent variable and the independent variables to 

ensure model parsimony and eliminate overfitting by removing predictor variables with high 

levels of correlation with each other (r > 0.85). The best subsets regression approach built in 

Minitab Version 21.1.1 (Minitab, 2023) was used to identify the best performing model and 
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variables from a set of selected variables. As a model selection method, best subsets regression 

involves trying out every conceivable collection of predictor variables and picking the one that 

performs the best statistically (Hudak et al., 2006). The best model is chosen based different 

criteria including: highest adjusted-R2 and predicted-R2 as well as the lowest values for 

Mallows Cp, Akaike's Information Criterion corrected (AICc), and Bayesian information 

criterion (BIC). In our case the model with lowest AICc was considered to be the best as it has 

been proved to perform well for smaller samples in prior studies (Sugiura, 1978; Brewer et al., 

2016). Finally, the best MLR model was used to predict the AGB. 

Accuracy assessment 

To compare the predicted values with the observed values (AGB values acquired from lidar), 

three accuracy assessment indicators employed in (Liu et al., 2018b) were utilized. The 

developed MLR models were tested using k-fold cross validation to determine their accuracy. 

The idea behind this method is to randomly divide the data into k groups or folds where each 

member is nearly the same size. When doing k-fold cross-validation, each fold is treated as its 

own validation set. We choose k=10 because this number has been widely used and empirically 

proved to provide non-biased and rather stable estimates of the test error rate. Ten subsets of 

the original dataset are created and used for 10-fold cross-validation. Each fold uses 9 of the 10 

subsets for training and the remaining 1 for testing the accuracy of the learnt model on the 

validation set. Each subgroup will undergo the validation procedure many times. Finally, we 

utilized the aforementioned equations to calculate cross-validated RMSE from a table 

containing all of the folds' predicted values. 

5.3 Results 

5.3.1 Variables selection 

Since the processes for models 1-3 are similar, we only show the variable selection process for 

model 1. The variable CC emerged as the primary predictor in all ten models identified in the 

best subsets approach, indicating its significant influence (Table 5.3). Hcv and H80 were also 

shown to be influential predictors, since they were picked in seven out of the ten models. 

Overall, height related metrics dominated the list of selected lidar metrics.  

The model of four predictor variables was chosen to be the best model because it produced the 

highest predicted R2 and lowest AICc (highlighted in Table 5.3), and was less complicated 

compared to the model of six predictor variables. After implementation of the chosen model, it 

resulted in model 1, equation 10. This selection procedure was repeated in phase two for 
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estimating UAS-lidar-derived AGB using Sentinel-2 metrics. Vegetation indices NDFI and 

NBRI were the most influential predictors selected in 10 and 9, respectively, among the 10 

models selected using the best subsets technique, highlighting their strong impact in estimating 

AGB using sentinel-2 imagery. The model with six predictor variables was selected as the best 

model since it gave the highest predicted R2 and the lowest AICc (highlighted in Table 5.4) and 

resulted in model 2, equation 11. The same procedure was applied to directly estimate AGB 

using the relationship between field-estimated AGB and Sentinel-2 metrics, resulting in model 

3, equation 12. 

 

 

 𝑙𝑛 (AGB) = 1.68CC + 0.08H80 + 5.32D20 – 2.97Hcv + 0.20 (10) 

 𝑙𝑛(𝐴𝐺𝐵) = 4.53 + 7.25𝑁𝐷𝐹𝐼 + 6.61𝑁𝐵𝑅𝐼 + 0.60𝐿𝐴𝐼 + 

6.89𝐵12 + 0.2𝐵7 − 7.09𝐵6 

(11) 

 𝐴𝐺𝐵 = 2778𝐵11 + 1084𝐺𝑁𝐷𝑉𝐼 + 59.1𝐿𝐴𝐼 − 1171 (12) 
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Table 5.3. Candidate MLR Models for Field estimated AGB prediction using UAS-lidar metrics 

Vars R2 
adj-

R2  

pred-

R2  
Cp AICc BIC CC Haad Hmd Hcv Hstd H1 H20 H80 D10 D20 D30 D40 D50 D60 

1 0.46 0.35 0.26 8.7 978.46 980.79 X              

2 0.69 0.67 0.63 10 969.99 972.60 X   X           

3 0.76 0.74 0.71 4.9 962.31 964.87 X   X   X        

4 0.90 0.88 0.86 3.6 957.54 957.36 X   X   X X       

5 0.91 0.85 0.62 7.3 958.32 959.56 X X      X  X   X  

6 0.93 0.87 0.86 9.5 957.99 960.12 X X  X    X  X   X  

7 0.95 0.77 0.75 13.2 958.35 958.10 X X X  X   X   X  X  

8 0.95 0.86 0.76 15.1 957.69 959.55 X X X X X   X  X   X  

9 0.96 0.85 0.67 11 959.303 959.262 X  X X X   X  X    X 

10 0.97 0.84 0.54 10 964.606 959.379 X X X X X  X X  X X X X  

 

Table 5.4. Candidate MLR Models for UAS-lidar estimated AGB prediction using Sentinel-2 metrics 

Vars R2 adj-R2 pred-R2 Cp RMSE AICc BIC NDFI B02 NBRI B06 B11 B07 B05 B12 B04 

 

LAI 

1 46.3 46.3 45.2 268.2 0.66021 1493.583 1507.379   X        

2 56.1 56.0 54.8 87.0 0.59750 1346.480 1364.864 X  X        

3 58.8 58.7 57.3 38.1 0.57911 1301.127 1324.092 X  X X       

4 59.7 59.5 58.1 23.2 0.57311 1286.692 1314.234 X  X X    X   

5 65.3 65.1 62.8 13.8 0.56914 1277.416 1309.529 X  X   X  X  X 

6 78.7 70.4 63.9 9.5 0.56615 1273.136 1309.914 X  X X  X  X  X 

7 78.8 70.4 63.9 9.4 0.56671 1273.144 1314.382 X  X X X X  X  X 

8 78.9 70.5 63.8 9.4 0.56633 1273.184 1318.977 X X X X  X X X  X 

9 79.0 70.5 63.7 9.0 0.56579 1272.816 1323.157 X X X X X X X X  X 

10 79.0 70.5 63.3 11.0 0.56617 1274.856 1329.741 X X X X X X X X X X 
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5.3.2 AGB estimation at phase one 

Estimation of AGB by applying the relationship between field estimated AGB and UAS-lidar 

metrics using model 1 explained 90% of the variance of AGB, RMSE of 17.70 Mg/ha and a bias 

of 3.79 Mg/ha (Table 5.5) and Figure 5.4a, indicating that the model successfully predicted the 

AGB.  

Table 5.5 Summaries of used models 

Model R2 
adj-

R2 

Pred-

R2 

RMSE 

 

(Mg/ha) 

rRMSE% 

Bias 

(Mg/ha) 

Ground - UAS-lidar 0.90 0.87 0.81 17.70 14.38 3.79 

UAS-lidar – Sentinel-2 0.79 0.70 0.64 27.97 28.89 3.94 

Ground - Sentinel-2 0.62 0.55 0.46 38.10 37.54 6.19 

 

5.3.3 AGB estimation at phase two  

In phase 2, UAS-lidar prediction of AGB from phase one were used as sample data for 

predicting AGB using the relationship with Sentinel-2 variables (equation 11, model 2) and was 

Figure  
Figure 5.3.. Scatter plots showing estimation of above ground biomass: (a) Ground to UAS-lidar 

model and (b) UAS-lidar to Sentinel-2 model 
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able to explain 79% of the variance of AGB for the entire Miengwe forest. The RMSE of 27.97 

Mg/ha and bias of 3.94 Mg/ha was achieved (Table 4) and Figure 5.4b. With a predicted R2 = 

0.64, this demonstrated potential for applying UAS-lidar sampling when estimating AGB using 

Sentinel-2 imagery, contrasting it with what was determined using usual direct ground 

sampling to Sentinel-2 metrics, explaining only 62% of the variance of AGB across the Miengwe 

forest and a cross-validated predicted R2 = 0.46 Table 5.5 and Figure 5.5). The UAS-lidar-

Sentinel-2 model has a bias of 3.94 Mg/ha, slightly higher than the bias of 3.79 Mg/ha in the 

Ground-UAS-lidar model, indicating a good match between Sentinel-2 data and UAS-lidar 

data, supporting usage for UAS-lidar sampling. 

 

Figure 5.4. Scatter plots showing estimation of above ground biomass using ground to Sentinel-

2 model 

5.4 Discussion 

Accurately estimating AGB across extensive forest areas presents a significant challenge. 

Currently, AGB estimates for the majority of the vegetation formations of the Miombo 

woodland remain unknown, and corresponding AGB maps for these areas are unavailable. The 

present study presents the approach for producing an AGB map (Figure 5.5) for Miombo 

woodland through utilization of a two-phase UAS-lidar sampling methodology that leverages 

the combined advantages of field plots, UAS-lidar technology, and Sentinel-2 imagery. 
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Figure 5.5. Biomass map for Miengwe forest at 20 m resolution 

5.4.1 Choosing the optimal model and predictors for estimating the AGB 

The process of variable selection was conducted in order to identify the optimal predictors for 

accurately estimating the AGB across all phases. The first phase involved selecting best 

predictors for estimating AGB using the relationship between field estimated AGB and UAS-

lidar derived metrics. The second phase involved selecting best predictors for estimating AGB 

using the relationship between UAS-lidar metrics estimated AGB and metrics derived from 

Sentinel-2 imagery. The third and final phase was to select the best Sentinel-2 metrics for 

predicting AGB using the relationship between AGB estimated through field observations and 

Sentinel-2 image metrics.  

In phase 1, the most important predicators for AGB were a set of metrics associated with height, 

density, and canopy cover. CC was the most important predictor selected in all the 10 models 

for predicting AGB, followed by Hcv and H80, which were selected in 7 of the 10 models (Table 

5.3). This accords with UAS-lidar metrics selected in previous studies elsewhere, for example, 

height percentiles (Liu et al., 2018b; Cao et al., 2019a; Lu et al., 2020), canopy cover (Liu et al., 

2018b; Lu et al., 2020), canopy density (Lu et al., 2020) and coefficient of variation for heights 
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(Li et al., 2008; Bouvier et al., 2015; Liu et al., 2018b) for estimating AGB. Several previous 

studies (Cao et al., 2014, 2019b; Liu et al., 2018b) have demonstrated the utility of Hmean as a 

predictor for estimating aboveground biomass (AGB). However, in our study, it was seen that 

Hmean exhibited a strong correlation with other predictors, and as a result, it was excluded 

from further consideration. The differences in the selected predictors can be attributed to 

variation in metric selection algorithms, modelling approach and variation in forest structure 

and composition (Hopkinson, 2007; Næsset, 2009; Dube et al., 2016).  

For phase 2, the best Sentinel-2 image metrics predictors for estimating AGB were vegetation 

indices (NDFI and NBRI), the red-edge band (B6 and B7), SWIR bands (B11 and B12) and the 

biophysical variable LAI. The vegetation indices (NDFI and NBRI) and red-edge bands (B7 and 

B6) were strong predictors for models with fewer predictor variables (models 1-3, Table 5.4) 

because they are known to be good for separating vegetated from non-vegetated areas (Souza 

et al., 2005; Miller and Thode, 2007; Bullock et al., 2018; Muhe and Argaw, 2022), which is 

critical for AGB estimation. The red edge band lies at a specific wavelength that fluctuates 

swiftly at the convergence of the near-infrared and red spectral bands (Dube et al., 2016). This 

band is highly responsive to subtle changes in both the structure of the plant canopy and the 

chlorophyll content. Consequently, it is regarded as having the capacity to mitigate saturation 

effects and improve estimation of AGB, supporting works by other researchers (e.g. Wallis et 

al., 2019). Furthermore, this supports an assertion by Adam et al. (2014) that vegetation indices 

possess the ability to mitigate the effects of shadows and environmental factors on reflectance, 

thereby enhancing their correlation with AGB. The addition of the SWIR bands and the 

biophysical variable LAI resulted in improved models (models 5-10, Table 5.4). This finding is 

consistent with previous studies conducted by Dang et al. (2019) in Yok Don National Park, 

Vietnam, Mauya and Madundo (2022) in tropical montane forests of Tanzania, and Moradi et 

al. (2022) in Zagros oak forests in Iran, who reported a high correlation between AGB and red, 

red-edge, NIR and SWIR bands and vegetation indices that are derived from them. 

B11, NDFI, and LAI were the selected predictors (equation 12) for directly calculating AGB 

using field-estimated AGB and Sentinel-2 measurements. This was consistent with the results 

of Muhe and Argaw, (2022), who employed Sentinel-2 metrics to estimate AGB in a tropical 

afro-montane forest in Ethiopia. However, unlike Muhe and Argaw, (2022), Sentinel-2-derived 

biophysical variables were observed to be significantly correlated with each other, and just LAI 

was utilized to develop the model as opposed to the three biophysical variables used in Muhe 

and Argaw, (2022). Sentinel-2 derived products (indices and biophysical factors) were added 

instead of raw Sentinel-2 bands only since they were shown to enhance AGB estimates in 
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previous research (Castillo et al., 2017; Muhe and Argaw, 2022). The NDFI was a strong 

predictor in both models 2 and 3. This is not surprising because this index has been observed 

to be good at discriminating vegetated from non-vegetated areas (Souza et al., 2005; Bullock et 

al., 2018). In addition to selecting a suitable regression model, the variable selection strategy 

approach was crucial to lowering the feature dimension, minimizing information redundancy, 

and enhancing modeling efficiency (Hudak et al., 2006). 

5.4.2 Identify the optimal prediction model for mapping AGB 

After choosing the most important predictors for estimating AGB at the two phases, best 

subsets regression (Hudak et al., 2006) was used to come up with the best models for predicting 

AGB at all phases (Tables 5.3 and 5.4). Our criteria were based on the model with the highest 

prediction accuracy (pred-R2) as well as the lowest AICc, BIC and Mallows Cp, followed by the 

model with the fewest predictors, in that order. However, the most important consideration in 

selecting the optimal model was checking to see whether it contains variables that are 

consistent with ecological reasoning and have been shown to be strong AGB predictors in the 

literature (White et al., 2013a). The model included height metrics including the lower, middle, 

and upper percentiles, thereby offering data on the distribution of tree heights, as well as 

metrics for canopy cover and density, thereby yielding valuable insights into canopy cover. 

Previous studies have shown the efficacy of using the complement of selected metrics in 

estimating AGB (Bouvier et al., 2015; Liu et al., 2018b; Cao et al., 2019a). Our approach aligns 

with prior research that utilized the best subsets regression method, which was determined to 

be efficacious in identifying the optimal multiple linear regression (MLR) model (Hudak et al., 

2006; Cao et al., 2019a).  

5.4.3 Model comparison 

Model 1 (equation 10), in which we estimated the AGB using the relationship between field 

AGB estimates and UAS-lidar metrics, yielded the best results overall (Adj-R2 = 0.84, rRMSE= 

14.7%). It outperformed models 2 and 3, which predicted AGB using Sentinel-2 metrics. This is 

not unexpected given that lidar data measures 3-dimensional vegetation structure (Lim et al., 

2003b; Maltamo et al., 2014a) unlike optical images, which is essential for predicting AGB. 

Model 1 also performed better than (Mauya et al., 2015), who estimated AGB using airborne-

lidar in the Miombo woodlands of Tanzania (rRMSE 46.8%). Point cloud densities may have 

caused the variation in AGB estimate accuracy from (Mauya et al., 2015). The airborne-lidar 

system utilized in (Mauya et al., 2015) had an average point density of 1.8 pts m-2, whereas the 

UAS-lidar employed in this study had 300 pts m-2. Since canopy height determination relies on 
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the DTM, a greater point density will result in a better terrain surface model and more accurate 

canopy height determination (Kato et al., 2009; Cunliffe et al., 2020; Nandy et al., 2021). Model 

2 (equation 11) used the relationship between UAS-lidar estimated AGB from model 1 with 

Sentinel-2 image metrics to estimate the AGB for the entire study area, achieving (Adj-R 2 = 0.7, 

rRMSE = 28.9%), which was obviously less precise than model 1, but achieved better results 

than model 3, which used direct relationship between field estimated AGB and Sentinel-2 

metrics to estimate AGB. These findings corroborate works by (Wang et al., 2020), who 

employed UAS-lidar and Sentinel-2 imagery to estimate AGB in mangrove forests, 

northeastern Hainan island, China. The better performance of model 2 can be attributed to the 

large number of UAS-lidar estimated AGB reference points as well as the sampling strategy 

(Figure 2), which precisely linked the UAS-lidar data and Sentinel-2 data to a common location 

on the ground. 

5.4.4 UAS-lidar as reference data 

Previous research has shown that utilizing UAS imagery data to replace field data as reference 

data in a two-phase sampling approach is feasible (Puliti et al., 2017; Wang et al., 2020). This 

was demonstrated in this study when UAS-lidar estimated AGB was used as reference data to 

estimate AGB using Sentinel-2 imagery for the entire study area, achieving (Adj-R2 = 0.70), 

comparable to a study by Mauya et al., (2015) who used airborne-lidar to estimate AGB in the 

Miombo woodlands of Tanzania and achieved (Adj-R2 = 0.69). The positive relationship 

between UAS-lidar estimated AGB and Sentinel-2 image metrics exhibited in this study has 

benefits with synergistic potential to improve AGB estimation in the Miombo ecoregion. On 

the one hand, UAS-lidar offers the benefits of flexible deployment, affordability, and the 

capacity to capture precise vertical structure of vegetation, but it has drawbacks in terms of 

poor area coverage and massive processing and storage memory requirements (Guo et al., 2017; 

Shamaoma et al., 2022). On the other hand, we have multi-spectral Sentinel-2 imagery, which 

is suitable for wall-to-wall coverage at 10 m resolution with NIR, red-edge, and SWIR bands, 

and a short revisit period of five days that it is useful for AGB estimation but falls short of 

capturing the fine vertical vegetation structure details that are required for forest management 

at a local level (Day et al., 2014; Goetz et al., 2015). The findings of this study validate UAS 

data's capacity to deliver comprehensive training and validation information, which would 

have otherwise taken a significant amount of time and money utilizing field inventory 

processes. Furthermore, Sentinel-2-based AGB estimation offers a viable technique for 

broadening the scope of assessments beyond UAS-surveyed areas, boosting the efficiency of 

AGB estimation and monitoring operations. Previous research conducted on the estimation of 
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AGB in the Miombo forests using direct ground to medium resolution Landsat data has shown 

suboptimal model fit. Kashindye et al. (2013) found R2 values ranging from 0.47 to 0.65 in their 

research conducted in Babati district, Tanzania. Their finding falls within a similar range as the 

study conducted by Halperin et al. (2016b) in Nyimba district, Zambia, where the R2 ranged 

from 0.35 to 0.59 and it agrees with what was found utilizing direct ground to Sentinel-2 

estimation in this study (R2 = 0.62). These were all lower than the estimations derived in this 

work by ground-UAS-Lidar-Sentinel-2 two-phase sampling (R2 = 0.79). Hence, the integration 

of the two remote sensing data sources, as exemplified in this research, in conjunction with 

field techniques, enables the estimation of AGB in the Miombo woodlands with comprehensive 

accuracy that surpasses the individual capabilities of either data source, as evinced in prior 

studies (Riihimäki et al., 2019; Wang et al., 2020; Mao et al., 2022). 

5.4.5 Benefits of two phase-sampling 

Estimation of AGB across vast Miombo woodlands is often restricted by the difficulty in 

obtaining sufficient field measurements owing to a variety of reasons such as limited labour, 

limited financial resources, remoteness, and poor access to their location. Most Miombo 

woodlands AGB estimation studies are undertaken over small regions or at a local scale using 

either destructive sampling (Mugasha et al., 2013; Kachamba et al., 2016a; Handavu et al., 2021) 

or remote sensing methods (Mauya et al., 2015; Kachamba et al., 2016b) and a modest number 

of field samples. The two-phase sampling approach has demonstrated how UAS-lidar could be 

used to upscale the field sampling to cover extensive areas, even with few field sample plots. 

From a modest 54 field points in phase 1, we were able to upscale to 700 UAS-lidar sample 

points in phase 2 to cover extensive areas and easily relate between UAS-lidar estimated AGB 

and Sentinel-2 metrics to estimate AGB over an expanded area covered by the Sentinel-2 image. 

The benefits of using the upscaling UAS-Lidar-Sentinel-2 imagery model (adj-R2 = 0.70) as 

opposed to the direct field Plots-Sentinel-2 imagery model (adj-R2 = 0.55) to estimate AGB have 

been demonstrated. The reason for an improved result from the UAS-lidar sampling technique 

could be because UAS-lidar covers a larger area with more points representing a wide range of 

vertical and horizontal vegetation structural changes and accurately measures terrain 

morphology. Then, using the UAS-lidar estimated AGB as training samples, the model can fit 

AGB variations over the entire study area and generate high prediction accuracy. This assertion 

is supported by earlier studies that employed lidar as a sampling tool for biomass estimation 

(Nelson et al., 2017; Matasci et al., 2018; Wang et al., 2020). Though not investigated in this 

study, earlier studies have demonstrated that UAS-lidar sampling reduces the required 

number of field samples and the overall sampling cost (Puliti et al., 2017; Wang et al., 2020). 
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Previous research, however, has shown that optical Sentinel-2 images may become saturated 

in densely forested regions. This saturation problem may negatively impact AGB estimations. 

Nonetheless, Wang et al. (2023) showed that adding Sentinel-1 synthetic aperture radar (SAR) 

data might assist reduce saturation and improve AGB estimates over wide regions. They did 

so by using data from UAS-Lidar, Sentinel-1, and Sentinel-2 satellites to estimate AGB for 

regional coniferous forests in China. Similarly, Novarro et al. (2018) estimated AGB in 

Senegalese mangrove plantations using UAS-SfM point clouds, Sentinel-1, and Sentinel-2 data. 

The outcomes of this research and other related studies suggest that this technique can be used 

for improved AGB estimation for the entire Miombo ecoregion. 

Arguably, the best approach could have been using most accurate UAS-lidar to estimate the 

AGB for estimating the AGB for the whole study area. But UAS-lidar has limitations in terms 

of area covered per flight, storage space and processing speed (Whitehead et al., 2014; 

Shamaoma et al., 2022), which makes it cumbersome to cover extensive areas. In the present 

study, for example, the coverage area achieved during each flight utilizing our UAS was 

limited to 30-40 hectares. Moreover, the point clouds from flight (one UAS-lidar block) required 

30 – 40 Giga Bites (GB) of storage space for processing. These factors provided a substantial 

challenge for our field laptop, which had just 150 GB of free space, restricting us to processing 

three blocks at a time and backing them up to an external drive before moving on to the next 

batch. With all of the aforementioned problems and what the literature has adequately stated 

(Whitehead et al., 2014; Shamaoma et al., 2022), it can be concluded that the utilization of UAS-

lidar technology is currently limited to small sites and can only serve as a sampling tool for 

larger sites.  

5.5 Conclusion 

A two-phase sampling approach was used to estimate total AGB in the Miengwe forest reserve 

in the Miombo woodlands of Zambia. The findings of this study show the potential of using 

UAS-lidar as a sampling tool for estimating and monitoring AGB and other forest structural 

attributes across vast regions using wall-to-wall Sentinel-2 imagery when field data are limited. 

The AGB estimates are of a precision that is suitable for local forest management and 

international reporting mechanisms such as REDD+ and MRV. The approach used in this study 

could be up-scaled to provide spatially consistent, low cost and precise AGB estimates over 

extensive regions for supporting the long-term sustainability of carbon monitoring and 

reporting initiatives in Miombo woodlands. The continuous improvement and reduction in 

cost of UAS-lidar technology and the continuous availability of wall-to-wall optical imagery 
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such as Sentinel-2 assure viability and warrant further investigation and refinement of this 

approach for future wall-to-wall carbon monitoring and reporting programs in the Miombo 

ecoregion. 
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Chapter 6 : Synthesis 
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6.1 Introduction 

The main objective of this study was to explore the use of UAS imagery and associated 

processing tools in the management of the Miombo woodlands of Zambia. In order to achieve 

this objective, four different studies were undertaken namely: (i) to review of the application 

of UAS in forest management and monitoring with a focus on challenges and opportunities for 

use in the Miombo woodlands; (ii) to explore the use of multi-date and multispectral UAS 

imagery in classification of dominant tree species in the wet Miombo woodlands of Zambia; 

(iii) to explore the use of UAS-lidar in estimating the forest structural attributes in the wet 

Miombo woodlands of Zambia; and (iv) to explore the use of a two phase sampling approach 

in estimating the forest structural attributes in the Miombo woodlands of Zambia by coupling 

UAS-lidar and Sentinel-2 imagery. 

6.1.1 Why UAS for managing the Miombo woodlands? 

In order to establish connections on how UAS technology may be implemented in the Miombo 

woodlands, we reviewed the key attributes of the Miombo woodlands (structure, composition 

and phenology) and the existing application of UAS technology in forestry, focusing on sensors 

employed, data processing methodologies, challenges and limitations (Chapter 2). The primary 

characteristic of the Miombo woodlands is their deciduous nature (Frost, 1996), characterized 

by open woodlands as indicated in Table 2.4. This attribute makes the use of low cost UAS-SfM 

a suitable method for estimating forest structural attributes, especially in the dry Miombo 

region. In the wet Miombo, where there is denser vegetation coverage, it may be difficult to use 

UAS-SfM because it may not be able to adequately capture the ground, which is needed to 

make accurate DTMs (Mlambo et al., 2017). However, an alternative approach involving the 

use of UAS-lidar can be employed to estimate forest structure attributes and generate precise 

DTMs. These DTMs can then be utilized repeatedly to monitor FSA within the UAS-SfM 

framework. The UAS technology provides the scarce detailed forest inventory data that is 

essential for the implementation of sustainable forest management practices at the local level, 

as well as for international reporting initiatives such REDD+ and MRV. Additionally, it plays 

a crucial role in supporting forest conservation efforts, promoting sustainable forest 

management, and enhancing carbon stocks. The MRV system further incentivizes developing 

countries to engage in forest conservation and sustainable forest management by providing 

financial rewards based on the national carbon stocks reported to the United UNFCCC (Day et 

al., 2014; Goetz et al., 2015).  

The utilization of ultra-high-resolution UAS imagery offers the necessary spatial precision for 

studying leaf and flowering phenology in Miombo tree species, which is another important 

attribute for the successful application of UAS. Moreover, the use of UAS offers a significant 
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advantage in terms of data acquisition flexibility. This allows for the precise timing for 

capturing crucial phenological events, which may prove challenging for other remote sensing 

platforms like satellites and manned airplanes. These challenges include issues such as cloud 

cover or the lack of synchronization between data capture and the actual occurrence of the 

event. Understanding the phenology of Miombo woodlands is important for identifying tree 

species using UAS imagery and for the timing of UAS data acquisition for the estimation of 

FSA. For example, the temporal patterns of leaf flushing, leaf maturity, and senescence among 

different species can be utilized to identify tree species, as demonstrated in Chapter 3. 

Additionally, the collection of UAS data during the period of late October to early November, 

when trees have fully flushed leaves but before the emergency of herbaceous layer, allows for 

the extraction of accurate DTM and well-defined tree crowns.  

This, in turn, facilitates the precise estimation of FSA. Previous research (Anderson and Gaston, 

2013; Tang and Shao, 2015; Guimarães et al., 2020), as discussed in Chapter 2, has demonstrated 

that UAS provide a high spatial resolution and flexible temporal resolution. This makes them 

well-suited for monitoring disturbances that are challenging to detect using readily available 

satellite images (such as Landsat and Sentinel-2) (Hosonuma et al., 2012; Romijn et al., 2012; 

Mitchell et al., 2017). Additionally, UAS can effectively capture disturbances occurring at 

spatial and temporal scales that are impractical and expensive to cover using traditional field 

methods.  

6.1.2 Challenges of using UAS imageries in the Miombo woodlands 

Although UAS technology has presented a multitude of opportunities for improving the 

management of forest resources in the Miombo woodland region, it is imperative to 

comprehend the associated challenges that might impinge on its successful implementation 

(Whitehead et al., 2014), which were discussed in Chapter 2. The challenges stem from the 

limitations of UAS technology, site conditions, as well as local and global operational 

guidelines and regulations. Weather conditions, like high wind speed, precipitation, and 

extreme temperatures, can affect UAS operations by hindering data collection during crucial 

events and potentially causing damage to UAS components (ClimaCell, 2018). The major 

limitation of UAS imagery compared to freely available medium resolution in forest 

applications is its limited endurance, which means that only a small area can be covered per 

site. Furthermore, the low flying height results in a high number of ultra-high-resolution 

images for a small area, which require huge storage space and high-speed processing 

computers that are relatively expensive for most forest managers in the Miombo ecoregion 

(Shamaoma et al., 2022). Although there are anticipated implementation challenges, UAS 

provides an alternate and supplemental technique for speedily collecting forest data with high 

spatial and temporal resolution, which is necessary for Miombo woodland monitoring and 
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management. It is a valuable tool for evaluating forest structure attributes, species 

identification, fire and forest degradation impacts, and other tasks required for forest 

management and international carbon MRV requirements. This study's relevance in directing 

future uses of UAS technology in the Miombo woodlands ecoregion was shown by the 

successful demonstration of UAS applicability in the Miombo woodlands (Chapters 3-5) 

following the recommendations from Chapter 2. 

6.1.3 Tree species phenology and identification of tree species  

Understanding the local species phenology is important for successful identification of tree 

species using remote UAS imagery in complex natural tropical forest environments as 

demonstrated in other studies (Key et al., 2001; Lisein et al., 2015; Madonsela et al., 2017). In 

Chapter 3 we demonstrated that even with low spectral resolution, understanding species 

phenology can guide the choice of appropriate UAS image acquisition dates to accurately 

identify dominant tree species in the Miombo woodlands. This research used OBIA (Lang, 

2008), because it has been observed to outperform pixel-based approaches for classifying tree 

species from high-resolution imagery (Franklin, 2017). The OBIA procedure included three 

stages: image segmentation, feature extraction, and image classification. Each of these stages is 

important for successful tree species classification (Franklin, 2017; Xu et al., 2020). In this study 

multi-resolution segmentation algorithm implemented in eCognition Developer version 9.1 

was used to delineate tree crown objects (chapter 3). We found that data fusion of multi-spectral 

orthophoto and CHM, increased the segmentation accuracy by 6% compared to only utilizing 

the multi-spectral orthophoto alone. These results were consistent with findings of other 

studies in different vegetation formations (Sankey et al., 2017; Xu et al., 2020). Other factors that 

have been found to affect image segmentation include image acquisition date and stand 

structure (Nevalainen et al., 2017). In our study area, the May image (leaf maturity) yielded the 

best image segmentation results because all Miombo trees have well-defined tree crown shapes 

at this phenological stage, as opposed to August image (transition to senescence), when 

Miombo trees drop their leaves and shapes are more difficult to define (chapter 2 and 3). 

Difficulties were encountered in delineating different tree species in overlapping canopies but 

this might be mitigated by adopting improvements in image segmentation tools proposed by 

(Torres et al., 2020; Gu and Congalton, 2022).  

The study has demonstrated that several image features (raw spectral values, spectral indices, 

and textural features) must be examined before reaching the acceptable accuracy in tree species 

classification (Chapter 3). As compared to utilizing just raw spectral bands, the inclusion of 

spectral indices improves the separability of different species. Even for a single-date image, 

combining raw spectral bands and spectral indices has the potential to improve classification 
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accuracy; for instance, Brachystegia speciformis and shadow classes, were difficult to separate 

using raw spectral information in the May image but become very separable using the spectral 

indices. These results are consistent with those found in Xu et al. (2020) in China and Ferreira 

et al. (2016) in Brazil, which demonstrate how spectral indices enhance the accuracy of tree 

species classification even though the spectral indices they used were different from what were 

used in this study. Nevertheless, our findings contradict previous research (Gini et al., 2018; 

Ferreira et al., 2019; Xie et al., 2019; Deur et al., 2020), that found that textural features improve 

tree species classification. The differences in results could be attributed to the similar 

appearance of the Miombo woodlands species (Frost, 1996), which translates to a similar 

texture. 

In line with findings from previous studies (Key et al., 2001; Madonsela et al., 2017; Van 

Deventer et al., 2019), this study demonstrated that the use of multi-date imagery is important 

for identification of tree species in complex forest environments because it takes advantage of 

interspecies differences in phonologies, exhibiting different spectral characteristics for tree 

species on different dates, which compensate for the low spectral resolution. Furthermore, this 

study revealed that a combination of multi-feature (spectral bands, spectral indices and texture) 

and multi-date images improves tree species classification for Miombo tree species. The 

proposed approach adds a novel tool for mapping Miombo forest tree species that are targeted 

for diverse products at a local scale. For example, because of their high heat output and burning 

properties, all of the major Miombo species found in this research are preferred for fuelwood 

production (Syampungani et al., 2011). Isoberlinia angolensis is targeted for its timber, while 

Brachystegia longifolia is sought after for its bark rope, making them suitable candidates for 

conservation and sustainable usage. The precise mapping of dominant tree species is required 

for effective management of Miombo woodlands as well as for characterizing ecosystem 

services and climate feedbacks on forests. Moreover, the methodology employed in this 

research can be effectively applied to detect and control the proliferation of invasive species in 

the Miombo woodlands, akin to the methodology employed in other studies (Müllerová et al., 

2017; Weisberg et al., 2021). Another potential application of the findings from the identification 

of individual tree species in Chapter 3 is their utilization as inputs for estimating the 

aboveground biomass (AGB) of individual species, as demonstrated in previous research 

(Alonzo et al., 2018; Dalponte et al., 2018; Brede et al., 2022). Nevertheless, it is important to 

exercise caution when utilizing classification results to obtain accurate estimates of AGB for 

individual trees. This is due to the potential for misclassification errors, which can lead to the 

assignment of incorrect species-specific equations and subsequently impact the estimation of 

AGB.  
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6.1.4 Using UAS-lidar to estimate forest structural attributes in the Miombo woodlands 

The achievement of efficient forest management and the successful execution of REDD+ 

programs necessitate accurate data pertaining to forest biomass and carbon storage, which are 

presently insufficient in the majority of African vegetation formations. In Chapter 4 we 

demonstrated the capability of UAS-lidar data in precisely estimating four forest structural 

attributes (FSA): AGB (rRMSE: 12.67-21.57%), BA (rRMSE:18.36-26.09%), DBH (rRMSE:3.08-

8.33%), and Vol (rRMSE:15.42-51.53%) using area-based methods and MLR technique. The 

findings suggest that the UAS-lidar method proposed in this study offers a valuable addition 

to the current techniques used for estimating AGB in the Miombo woodlands. Furthermore, 

the precision of this approach meets the standards necessary for international carbon reporting 

mechanisms and sustainable forest management at the local level. Our AGB estimations 

outperformed those obtained by Mauya et al. (2015) using airborne lidar (rRMSE = 46.8%) and 

Kachamba et al. (2016b) utilizing UAS photographic image point clouds (rRMSE = 46.7) in 

Tanzania and Malawi, respectively, in similar vegetation formations.  

We also investigated the performance of FSA estimation models developed using UAS-lidar 

data collected from a single site compared to combined data from two sites 95 Km apart within 

the Miombo woodlands and found that site-specific models outperformed combined data 

models. This is expected, as vegetation structure and composition are likely to be more 

homogenous at a local site than over an extended geographical region. However, a combined 

data model is more generic and suitable for application over the broader geographical region. 

This fact was confirmed when we assessed the transferability of site-specific models to a 

different site and found that they performed poorly (rRMSE% = 16.8-72.1) compared to both 

site-specific (rRMSE% = 4.31–26.09) and combined (rRMSE% = 3.08–51.23) data models but 

were within the range (rRMSE% = 32.3–67.3) reported by Fekety et al. (2018) in mixed conifer 

and Douglas-fir forests, Idaho, United States of America. While the transferability approach 

may have exhibited inferior performance when compared to site-specific and combined site 

data models, its significance lies in its potential to assist forest managers in Miombo 

woodlands. Specifically, it can serve as an initial step for integrating UAS-lidar data, obtained 

for non-forest purposes, into forest inventory procedures in the absence of field forest 

inventory data.  

6.1.5 UAS connects ground- and satellite-based forest inventory approaches  

Despite success stories of UAS use in forestry, as demonstrated in Chapters 2-4, it is 

nevertheless plagued by problems such as restricted area coverage and storage (Whitehead et 
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al., 2014), which hamper effective application in forestry. Currently, UAS are more suitable for 

filling the spatial data gap between precise field inventory techniques and satellite-based 

remote sensing techniques needed for wall-to-wall mapping of the Miombo woodlands. Prior 

studies have demonstrated the feasibility of employing UAS imagery data as a substitute for 

field data in a two-phase sampling approach (Puliti et al., 2017; Wang et al., 2020). This 

phenomenon was exemplified in Chapter 5, wherein UAS-lidar estimated AGB data was 

employed as the reference to estimate AGB for the entirety of the study area utilizing Sentinel-

2 imagery. The achieved results (Adj-R2 = 0.70) were found to be comparable to a previous 

study conducted by Mauya et al. (2015), which utilized airborne lidar to estimate AGB (Adj-R2 

= 0.69) in the Miombo woodlands of Tanzania. The correlation between UAS-lidar estimated 

AGB and Sentinel-2 derived image metrics exhibited in this study has significant implications 

for enhancing AGB estimation in the Miombo ecoregion, as it offers synergistic advantages. 

UAS-lidar presents several advantages, including its adaptable deployment, cost-effectiveness, 

and ability to accurately capture the vertical structure of vegetation. However, it also has 

limitations in terms of limited area coverage and significant processing and storage memory 

demands as highlighted in Chapter 2.  

In contrast, the utilization of multi-spectral Sentinel-2 imagery presents a viable option for 

achieving comprehensive coverage at a resolution of 10 meters, incorporating near-infrared 

(NIR), red-edge, and shortwave infrared (SWIR) bands. This imagery possesses a short revisit 

interval of five days, rendering it valuable for estimating and monitoring AGB in the Miombo 

region. However, it does not fully capture the intricate vertical structure of vegetation 

necessary for localized forest management. Hence, the integration of both remote sensing data 

sources, as exemplified in Chapter 5 in conjunction with field measurements, enables the 

estimation of FSA in the Miombo woodlands with comprehensive accuracy that surpasses the 

individual capabilities of either method. The findings of this study validate the efficacy of using 

UAS data for generating reliable training and validation data. This approach offers a significant 

advantage over traditional field inventory methods, which often demand extensive time and 

resources. In addition, the use of Sentinel-2 data for estimating AGB offers a reliable method to 

expand the range of assessment beyond regions examined by UAS. This, in turn, enhances the 

effectiveness of AGB estimate and monitoring initiatives in the Miombo ecoregion. Earlier 

works by Puliti et al. (2017) in southern Norway and Wang et al. (2019) in mangrove forests on 

Hainan Island, China, explored the usefulness of the UAS sampling technique to extensive area 

estimation of FSA and found that it decreases the number of necessary field samples, hence 

lowering operating costs. However, previous studies have indicated that optical Sentinel-2 

imagery may become saturated in denser vegetation environments. This saturation issue can 
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potentially impact the accuracy of AGB estimates. Nevertheless, Wang et al. (2023) 

demonstrated that incorporating Sentinel-1 synthetic aperture radar (SAR) data can help 

alleviate the saturation problem and enhance AGB estimation across large areas. They achieved 

this by combining UAS-Lidar, Sentinel-1, and Sentinel-2 data to estimate AGB for regional 

coniferous forests in China. Similarly, Novarro et al. (2018) combined UAS-SfM point clouds, 

Sentinel-1, and Sentinel-2 imagery to estimate AGB in mangrove plantations in Senegal. 

This research demonstrated the effectiveness of estimating AGB in the Miombo forests utilizing 

UAS-lidar as a link between precise field inventory techniques and wall-to-wall Sentinel-2 data. 

The findings demonstrate the promising future for upscaling limited coverage UAS image-

generated maps to wall-to-wall satellite image-generated maps, presenting a robust tool to aid 

in the management of the Miombo woodlands in applications such as tree species 

identification, biodiversity assessments, and habitant mapping (Immitzer et al., 2017; Sprott 

and Piwowar, 2021), as well as mapping extent of invasive species, controlling and managing 

them (Rivas-Torres et al., 2018; Kattenborn et al., 2019; Bergamo et al., 2023). The synergistic 

benefit of utilizing UAS imagery and Sentinel-2 imagery is a powerful, low-cost mapping and 

monitoring tool for budget-constrained forest management agencies in the Miombo ecoregion. 

6.2 Management implications 

Results from objectives 1, 2, 3, and 4 show that UAS technology is an effective addition to 

current methods for managing the Miombo woodland. The precision of FSA estimation 

demonstrated that using UAS-SfM (Kachamba et al., 2016b) and using USA-lidar in Chapter 4 

adds significant value in the context of mapping and monitoring forest biomass. Additionally, 

it contributes to a deeper comprehension of forest carbon dynamics within the broader 

framework of the global carbon cycle, as the study results have the potential to make a valuable 

contribution to the field of carbon trading in Zambia, which has been identified as a measure 

for preventing deforestation and forest degradation. The precision of carbon estimates is a 

crucial determinant for sellers and buyers to reach a consensus. The high spatial resolution 3D 

forest structure data generated from UAS has great potential for detecting small scale 

degradation resulting from selective harvesting of trees for timber and charcoal production, 

which are very important for local forest management. Particularly, the study results will be 

valuable for enhancing local forest management and the effective implementation of REDD+ 

and MRV mechanisms.  

In addition, the method presented in Chapter 3 for classifying tree species has considerable 

promise for mapping tree species distributions, which are essential for effective management 
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of Miombo woodlands, as well as for characterizing ecosystem services and climate feedbacks 

on forests. Species distribution maps, in particular, might be utilized for biodiversity 

evaluations as well as habitat and species conservation strategies, identifying and prioritizing 

the conservation of species with multiple uses and assisting in the overall successful 

management of the Miombo forests. The classification approach used could also be extended 

to identifying and managing the invasive species that are currently threatening parts of the 

Miombo woodlands (Witt et al., 2019). Colomina and Molina (2014), Eugenio et al. (2020), and 

Guimares et al. (2020) have all shown additional UAS applications in other vegetation 

formations that are amenable to the Miombo woodlands and have the potential to enhance 

Miombo woodland management. These include forest health monitoring and management, 

forest fire management and forest degradation monitoring. 

6.3 General Conclusions 

The primary goal of this study was to investigate the application of UAS technology and 

associated processing tools in inventory data acquisition for use in the sustainable management 

of the Miombo woodlands of Zambia. Reviewing the current use of UAS technology in forestry 

and comparing it to the key characteristics of the Miombo woodlands showed that the 

technology was well-suited to this ecosystem. UAS has been found to provide a 

complementary and alternative way to swiftly collect forest inventory data at high spatial and 

temporal resolution that facilitates monitoring and management of the Miombo woodlands.  

The developed methods for dominant Miombo tree species identification, utilizing multi-date, 

multi-spectral UAS imagery, have proven to be highly valuable in capturing interspecies 

phenological variations. These variations were exploited to discriminate between different tree 

species within the Miombo woodlands. The use of multi-date UAS images has yielded 

classification results for the dominant Miombo species, which has the potential to facilitate the 

mapping and monitoring of their distribution. Furthermore, these results may provide valuable 

insights for decision-making processes aimed at enhancing management and conservation 

efforts. 

As a demonstration of the utility of UAS-lidar for estimating FSA, UAS-lidar technology was 

employed to estimate four FSA (AGB, BA, DBH, and Vol). The findings demonstrate that the 

UAS-lidar estimates meet the necessary level of accuracy for international carbon reporting 

obligations and local forest management purposes. Moreover, the utilization of UAS-lidar 

presents a valuable improvement to the existing methodologies employed for estimating FSA 

in the Miombo woodlands.  
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Despite claimed accomplishments in a variety of forest applications, UAS technology remains 

constrained in terms of geographical coverage and large data storage and processing 

requirements. As a consequence, existing uses are more appropriate for small sites or as a 

sampling tool for wall-to-wall satellite imagery. This research effectively established the 

applicability of UAS-lidar as a sampling tool for estimating AGB using Sentinel-2 imagery, 

yielding better findings than using direct field sampling and Sentinel-2 data. 

6.4 Future research avenues 

The ongoing advancements in UAS sensor and data processing technology, together with the 

decreasing costs of specialized sensors, suggest that there will be an increase in research 

endeavors centered on the use of UAS technology to fill the gaps that were not explored in this 

research for managing the Miombo woodlands. The primary objective should be the 

establishment of optimal methodologies for data gathering, data processing approaches, and 

model validation. This may be accomplished by conducting rigorous testing of the UAS 

technology in various forest applications across various Miombo environments. 

Some of the pressing issues to be considered for future research include: (i) the use of UAS 

multispectral and hyperspectral imagery for identifying and managing invasive species in the 

Miombo woodlands; (ii) employing UAS-lidar and UAS-SfM to estimate FSA using different 

algorithms in different environments and at different growth stages of the Miombo woodlands; 

(iii) comparing results from UAS data collected in different seasons for estimating FSA in the 

Miombo woodlands; and comparing the performance of classification algorithms in identifying 

dominant tree species at different growth stages in the Miombo woodlands. 
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Appendices 

Appendix 3.1. Sampled Tree Species in the Study Area 

Tree Species N % DBH (cm) TH(m) 

   Mean Range Mean Range 

Julbernardia paniculata 127 18.5 31.03 13.5 - 

59.90 

17.79 8.50 - 25.00 

Isoberlinia angolensis 114 16.6 23.92 9.90 - 

44.70 

14.55 5.00 - 20.50 

Marquesia macroura 108 15.7 29.21 5.30 - 

70.00 

15.10 3.25 - 25.00 

Brachystegia longifolia 64 9.3 20.65 11.8 - 

64.00 

11.27 8.50 - 23.00 

Brachystegia spiciformis 51 7.4 18.55 5.00 - 

64.20 

9.97 5.80 - 20.50 

Parinari curatellifolia 18 2.6 23.48 6.00 - 

53.50 

13.67 6.00 - 24.00 

Ochna pulchra 17 2.5 7.62 5.20 - 

10.90 

5.70 4.50 - 8.00 

Baphia bequaertii 16 2.3 11.63 5.80 - 

23.70 

6.95 3.00 - 15.00 

Pericopsis angolensis 16 2.3 24.42 10.3 - 

70.00 

14.01 5.00 - 25.10 

Diplorhynchus condylocarpon 14 2.0 8.94 5.00 - 

18.00 

7.64 4.50 - 10.00 

Anisophyllea boehmii 11 1.6 18.77 5.10 - 

44.90 

11.74 3.75 - 19.50 

Erythrina abyssinica 11 1.6 18.05 8.60 - 

33.30 

10.21 5.30 - 20.50 

Hymenocardia ulmoides 8 1.2 24.05 5.40 - 

9.90 

19.94 4.50 - 7.00 

Pseudolachnostylis 

maprouneifolia 

7 1.0 22.04 7.00 - 

20.80 

11.64 5.00 - 10.00 

Syzygium cordatum 7 1.0 21.20 9.10 - 

19.20 

11.21 5.25 - 10.00 

Hexalobus monopetalus 7 1.0 14.13 5.80 - 

57.30 

7.94 4.75 - 22.00 

Pterocarpus angolensis 7 1.0 12.29 5.30 - 

28.10 

8.22 5.30 - 15.00 

Swartzia madagascariensis 7 1.0 8.16 5.50 - 

10.80 

5.34 3.30 - 8.75 

Diospyros batocana 4 0.6 10.75 9.00 - 

11.60 

10.13 7.00 - 17.50 

Burkia africana 4 0.6 8.55 7.80 - 

9.30 

6.38 6.25 - 6.50 
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Albizia adianthifolia 4 0.6 14.15 12.3 - 

18.00 

13.00 10.75 - 16.50 

Uapaca sansibarica 4 0.6 15.23 8.90 - 

22.00 

10.44 6.00 - 15.75 

Lannea discolor 4 0.6 13.73 5.50 - 

23.50 

9.58 5.00 - 14.50 

Diospyros mespiliformis 4 0.6 19.73 19.1 - 

20.90 

12.30 12.30 - 12.30 

Brachystegia floribunda 4 0.6 34.45 25.7 - 

44.50 

19.00 17.50 - 20.00 

Mapraunea africana 3 0.4 8.90 6.80 - 

10.60 

5.83 4.25 - 6.75 

Bobgunnia madagascariensis 3 0.4 7.90 7.50 - 

8.70 

4.50 4.25 - 5.00 

Dalbergia nitidula 3 0.4 27.93 22.0 - 

30.90 

13.17 13.00 - 13.25 

Strychnos innocua 3 0.4 7.27 6.40 - 

7.70 

6.78 5.35 - 7.50 

Pseudochnostylis 

maprouneifolia 

3 0.4 7.77 5.80 - 

11.60 

5.87 5.30 - 7.00 

Maprounea africana 3 0.4 8.90 6.80 - 

10.60 

5.83 4.25 - 6.75 

Rhus longipes 3 0.4 9.43 8.80 - 

9.90 

5.50 5.00 - 6.00 

Albizya adiansfolia 3 0.4 18.43 7.80 - 

26.70 

13.08 6.75 - 17.50 

Combretum zeyheri 2 0.3 23.65 17.7 - 

29.60 

12.00 9.00 - 15.00 

Faurea speciosa 2 0.3 8.90 8.90 - 

8.90 

5.75 5.75 - 5.75 

Magnistipula butayei 2 0.3 15.90 15.9 - 

15.90 

8.00 8.00 - 8.00 

Erythropeleum africanum 2 0.3 30.10 30.1 - 

30.10 

17.75 17.75 - 17.75 

Ochna schweinfurthiana 2 0.3 6.80 6.60 - 

7.00 

5.95 5.00 - 6.90 

Albizia antunesiana 2 0.3 32.40 21.6 - 

43.20 

17.90 17.50 - 18.30 

Albizia versicolor 2 0.3 33.50 33.5 - 

33.50 

11.25 11.25 - 11.25 

Phyllocosmos lemaireanus 2 0.3 5.75 5.70 - 

5.80 

6.13 5.75 - 6.50 

Uapaca kirkiana 2 0.3 14.35 8.90 - 

19.80 

9.50 5.50 - 13.50 

Harungana madagascariensis 1 0.1 5.70 5.70 - 

5.70 

4.50 4.50 - 4.50 
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Canthium crassum 1 0.1 37.00 37.0 - 

37.00 

22.00 22.00 - 22.00 

Oxtenanthera abyssinica 1 0.1 9.20 9.20 - 

9.20 

11.00 11.00 - 11.00 

Dallbegiella nyasae 1 0.1 33.30 33.3 - 

33.30 

17.25 17.25 - 17.25 

Monotes africanus 1 0.1 7.20 7.20 - 

7.20 

10.75 10.75 - 10.75 

Syzygium guineense 1 0.1 5.90 5.90 - 

5.90 

6.70 6.70 - 6.70 

Uapaca nitida 1 0.1 14.60 14.6 - 

14.60 

6.00 6.00 - 6.00 

Albizya atunizyana 1 0.1 7.50 7.50 - 

7.50 

7.75 7.75 - 7.75 

Total  688 100     

  

Appendix 3.2. Summary of class separability using mean spectral features across the 3 sampled dates 

Bands Separable classes Mixed classes Date 

Blue IA, BS, MM BL, JP and shadow  

2
5
.0

5
.2

1
 

Green JP IA, BS, BL, MM, Shadow 
Red BL JP, IA and shadow/ BS, MM 
Red-edge MM IA, BS, BL, JP, shadow 
Near infrared MM IA, BS, BL, JP, shadow 

Blue shadow, JP, IA  BL, BS, MM 

1
5
.0

8
.2

1
 

Green shadow, BS, BL IA, MM, JP 
Red shadow and all 

species 

 
Red-edge shadow and all 

species 

 
Near infrared shadow, JP, MM, BS IA and BL 

Blue shadow, BS  BL, BS, MM 

2
4
.1

0
.2

1
 

Green shadow All species 
Red shadow, BS JP, BL, MM, IA 
Red-edge shadow, JP IA BS, BL, MM 
Near infrared shadow, JP, IA, BL BS, BL, MM 
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Appendix 3.3. Summary of class separability using mean spectral indices features across the 3 sampled 

dates 

Bands Separable classes Mixed classes Date 

Brightness shadow All species  

2
5
.0

5
.2

1
 

Maximum 

difference 

 All species, shadow 

NDVI BS JP, IA, BL, MM, 

shadow GCC Shadow, MM, JP, BS IA, BL 

RCC BS IA, MM, BL, JP, 

shadow Brightness shadow, JP, IA  BL, BS and MM 

1
5
.0

8
.2

1
 

Maximum 

difference 

All species and shadow  

NDVI All species and shadow  

GCC BL, BS, JP, MM Shadow, IA 

RCC All species and shadow  

Brightness MM  BL, BS, IA, JP, 

shadow 

2
4
.1

0
.2

1
 

Maximum 

difference 

IA, BS, MM shadow, BL, JP 

NDVI BS, MM, JP, IA BL, shadow 

GCC BL, IA JP, shadow/ BS, MM 

RCC BS, MM, BL shadow, JP, IA 

 

Appendix 3.4. Summary of class separability using mean textural features across the 3 sampled dates 

Bands Separable classes Mixed classes Date 

Contrast  shadow All species  

2
5
.0

5
.2

1
 

Correlation  JP, shadow, BS, 

MM/BL, IA Dissimilarity  All classes 

entropy BS IA, BL, MM, JP, shadow 

Standard deviation shadow All species 

Contrast  IA BS, BL, MM, JP, 

shadow 

1
5
.0

8
.2

1
 

Correlation  All classes 

Dissimilarity  All classes 

entropy Shadow, JP, BS IA, MM, BL 

Standard deviation  JP, shadow/ MM, BS, 

BL, IA Contrast  shadow All species 

2
4
.1

0
.2

1
 

Correlation Shadow, JP MM, IA, BS, BL 

Dissimilarity shadow All species 

entropy Shadow, BS, BL, MM JP, IA 

Standard deviation  All classes 
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