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Inhibiting a signalling pathway concerns controlling the cellular processes of a cancer cell’s viability, cell
division and death. Assay protocols created to see if the molecular structures of the drugs being tested
have the desired inhibition qualities often show great variability across experiments, and it is imperative
to diminish the effects of such variability while inferences are drawn. In this paper, we propose the study
of experimental data through the lenses of a mathematical model depicting the inhibition mechanism
and the activation-inhibition dynamics. The method is exemplified through assay data obtained from
an experimental study of the inhibition of the chemokine receptor 4 (CXCR4) and chemokine ligand
12 (CXCL12) signalling pathway of melanoma cells. The quantitative analysis is conducted as a two
step process: (i) deriving theoretically from the model the cell viability as a function of time depending
on several parameters; (ii) estimating the values of the parameters by using the experimental data. The
cell viability is obtained as a function of concentration of the inhibitor and time, thus providing a
comprehensive characterization of the potential therapeutic effect of the considered inhibitor, e.g. IC50
can be computed for any time point.
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1. Introduction

Cell signaling is essential for the functioning and survival of individual cells and biological organisms.
Understanding the signaling pathways presents an opportunity to get insight into the mechanism of
the disease and design therapeutic interventions. The review papers by Aldridge et al. (2006) and
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Hendriks (2010), which make this point, further discuss the role mathematical modelling can play
in describing and analysing regulatory networks as well as identifying therapeutic interventions via
activation or inhibition of specific pathways.

Cancer, being the leading cause of mortality in the world (Sung et al., 2021), attracts a significant
research effort, including in its forefront research employing mathematical models for feasibility and
quantitative analysis over wide spectrum of cancers and treatment procedures, e.g. Lima et al. (2016),
Jenner et al. (2020), Bonilla et al. (2021), Cardinal et al. (2022), Ruiz-Martinez et al. (2022). A general
model of control/inhibition of signalling pathways is introduced in Lee et al. (2021) with application
to a study of how an intracellular signalling network comprising signal transducers and activators
of transcription (STAT), B-cell lymphoma 2 (BCl2) and Bcl-2-associated X protein (BAX) regulates
important cellular states, either anti-apoptosis or apoptosis of cancer cells. The recent paper by Chang
et al. (2022) determines combination treatment of two tyrosine kinase inhibitors to treat disrupted
intracellular calcium signalling in oesophageal cancer. A mathematical simulation model was used
to determine the ratio of the inhibitors to produce a synergistic response. A mathematical model on
melanoma cancer using kinase inhibitors in combination with inhibitors of barrier proteins is discussed
by Nave & Sigron (2022).

The focus of this work is on suppression of the cell viability of melanoma via blocking the CXCR4
receptors on the cell membranes. CXCR4 is a receptor for the ligand CXCL12. The CXCL12/CXCR4
axis activates signal pathways promoting cell proliferation and migration. Its prominent role in many
cancers is well studied in general, e.g. Wong & Korz (2008); Chatterjee et al. (2014), as well as for
specific cancers, Cardones et al. (2003); Orimo et al. (2005); Biascia et al. (2020).

We propose a mathematical model representing the dynamics of activation and inhibition of the
CXCL12/CXCR4 axis. In the established terminology (Hendriks, 2010), this is a kinetic model,
mathematically represented as a system of differential equations. Inhibition is usually modelled by setting
the growth rate to be a generic, i.e. not process-specific, decreasing function of the inhibitor (Lee et al.,
2021). We propose an alternative approach, which takes into account the specific biological mechanism
effecting the inhibition of the CXCL12/CXCR4 axis. More precisely, we model the interplay of activation
and inhibition of this axis as a competitive dynamical system.

A well-recognized challenge of applications of kinetic models of signalling pathways is the large
number of parameters involved and the practical difficulty to identify their values in a unique way
from the available data (Aldridge et al., 2006). Although the competitive system representing the
activation-inhibition dynamics is relatively simple and can be reduced to a system of two differential
equations, the challenge of large number of parameters is well pronounced. Rather than trying to
identify the model parameters, we derive theoretically the variable of interest, namely the cell viability.
This new approach to kinetic models reduces significantly the number of parameters and provides an
efficient way for integrating them with experimental data. In the specific setting under consideration,
mathematical analysis of the model as a dynamical system yields an approximate representation of
the cell-viability as a function of time depending on four parameters. Further numerical and data
analysis reduces the number of parameters to two. These were estimated from the data in a very
robust way.

Cell viability data were obtained at several time points and under varied concentration of the inhibitor
using the crystal violet assay (Feoktistova et al., 2016). As with all experiments, crystal violet assay has
advantages and limitations (Larramendy & Soloneski, 2018, Chapter 1), certain measurement error can
be expected. There may be yet another fundamental source for data variability. One crucial aspect of
the test is that once a group of cells has undergone the crystal violet assay, another measurement of a
cell population cannot be made at a future time since a measurement causes the cell to be in a fixed
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(non-metabolizing) condition that prevents further growth. Therefore, every data point is a measurement
of a different group of cells. This suggests that, even though the cells are maintained properly, and used
their healthiest growth phase, the data’s variability also likely reflects the variations in the properties
of the cell groups and their initial states in the different wells. Hence, the observed variability of
experimental data is not unexpected. Fitting a theoretically derived type of functions to the experimental
data limits the effects of variability in the sense that (i) the type of function is predefined and not affected
by the observed data; (ii) data trends inconsistent with the function type (e.g. cell viability increasing
with time or inhibitor concentration) are eliminated; (iii) estimating a small number of parameters is
less dependant on variations of the data. Hence, one can reasonably expect that the results obtained here
regarding cell viability are more robust (getting a similar outcome should the experiment be repeated)
compared to purely data-based analysis like approximation/curve fitting and/or statistics. For example,
approximations of the data are highly dependent on the chosen type of functions and optimization
criterion, e.g. Khinkis et al. (2003). Further, the estimated values of the parameters are not necessarily
endowed with a biological meaning. Haibe-Kains et al. show in Haibe-Kains et al. (2013) that statistics
only based study of measurements in cell inhibitory assays may lead to inconsistent results for the same
drug across assays.

The proposed integration of data with existing biological knowledge embedded in a model provides
for, on the one hand, reliably (in the sense discussed above) establishing time dynamics of interest and,
on the other hand, a better understanding of the biological processes by more detailed interpretation of
the data, e.g. identifying the main drivers of the observed dynamics.

The remainder of this paper is organized as follows. In Section 2, we introduce a mathematical
model to capture the inhibition dynamics and the resultant effect on the cell viability. The model is
derived as a system of ordinary differential equations and analysed as a dynamical system. To facilitate
a first reading of the paper, the technical proof of the main theorem is moved to the Appendix. The
conducted experiments under the crystal violet assay protocol using L-Kynurenine as an inhibiting agent
are described in Section 3. The graphical representation of the data demonstrates both the variability of
data and the existence of a trend. Using the mathematical model, we construct in Section 4 the theoretical
cell viability variable in a specific form as a function of time depending on several parameters. Section 5
deals with fitting the theoretical cell viability to the set of data as well as some interpretation of the
obtained results. Application to deriving IC50 for all times within the time range of the experiments is
presented in Section 6. It is further shown that the method can produce the inhibiting concentration as
functions of time for any other level of cell viability, e.g. 30% or 70%. Concluding remarks and some
questions are discussed in the last section.

2. Model development and its mathematical analysis

Since more cancer cells are expected to die in the presence of an inhibiting drug, the amount of
inhibition in the micro-environment of a cancer cell would also be expected to vary with time. We
introduce a mechanistic model that deals with the inhabitancy of the inhibiting molecules on the cancer
cell. Melanoma cells express chemokine receptor 4 (CXCR-4) located on the cell membrane (Wong
& Korz, 2008). When the chemokine ligand 12 (CXCL12) bounds to CXCR4, it activates signalling
pathways such as mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K).
The activated signaling pathways promote cancer cell proliferation, migration and adhesion. Hence, the
CXCL12/CXCR-4 axis is crucial in cancer metastasis.

The investigation, both qualitatively and quantitatively, of the temporal dynamics of blocking this
axis, is the focus of this section, see Fig. 1.



4

Fig. 1. Signaling pathways are activated when the activator molecule, chemokine ligand 12 (CXCL12), connects to the chemokine
receptor 4 (CXCR4). Cell migration, adhesion and proliferation follow from this. Inhibition of signaling pathways occurs when a
molecule of the inhibitor, L-Kynurenine (L-Kyn), binds to the sensor CXCR4. As a result, the cell’s regular functioning is adversely
impacted, which causes cell death.

2.1 Mathematical model

Depending on which agent, the activator CXCL12 or an inhibitor docks on the sensor CXCR4 at each
time instant, the signaling pathway for producing essential for the survival and proliferation of the cell
is either activated or not. The dynamic interaction between activation and inhibition, an essential factor
determining the viability of the population, is captured through a system of differential equations. For
simplicity, we use terms that are not technical so that the model can be understood by researchers in
different disciplines. We introduce the variables involved in our model:

L - total number of free (not docked) activating molecules.
X - total number of free (not docked) molecules of the inhibiting substance.
R - total number of unoccupied ‘docking’ places on the sensors where X or L can attach
P - total number of docking places on the sensors occupied by activating molecules L.
Q - number of docking places on the sensors occupied by the inhibiting substance molecules X.
All these quantities are dynamic in the sense that they vary with time. A summary of how these

quantities interact is shown in Fig. 2.
The activation and blocking of the sensors can be described by equations similar to that used in

chemical reactions:

(1)

(2)
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Fig. 2. Kinetics: docking places (red), activating molecules (green) and inhibiting molecules (yellow) (a). Sensors (docking places)
on a cancer cell. (b) and (c) Chemical reactions along with the relationship between dynamic and static quantities.

The constants k1 and k−1 are specific for the activator, namely the considered here CXCL12 molecule,
while k2 and k−2 are specific for the inhibiting agent. These reactions can be represented by the following
differential equations using the principle of mass action reaction kinetics:

dP

dt
= k1RL − k−1P (3)

dQ

dt
= k2RX − k−2Q, (4)

dL

dt
= −k1RL + k−1P, (5)

dX

dt
= −k2RX + k−2Q, (6)

dR

dt
= −k1RL − k2RL + k−1P + k−2Q. (7)

By adding the appropriate equations we obtain

d(P + L)

dt
= d(Q + X)

dt
= d(P + Q + R)

dt
= 0. (8)

Hence, the quantities P+L, Q+X, R+P+Q remain constant during the reactions (1)–(2). This should not
be surprising since these reactions do not consider any growth or decay in the total number of molecules
of the activating agent, the inhibiting substance and docking places on the sensors. We have

L0 := P + L = total number of activating molecules, docked or free;

X0 := Q + X = total number of molecules of the inhibiting substance, docked or free;

R0 := P + Q + R = total number of docking places on the sensors occupied by

activating molecules, occupied by the inhibiting substance or free.
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It is possible to consider the processes of generation and destruction of the activating molecules as
well as destruction and re-supply of the inhibiting substance. However, considering these quantities as
constants may be sufficient as a first step as well as relevant to the conducted experiments due to their
limited time span.

Substituting L = L0 − P, X = X0 − Q and R = R0 − P − Q into equations (3)–(4), we obtain system
of two equations only:

dP

dt
= k1(R0 − P − Q)(L0 − P) − k−1P, (9)

dQ

dt
= k2(R0 − P − Q)(X0 − Q) − k−2Q. (10)

2.2 Equilibrium of the inhibition dynamics

We describe the qualitative dynamics of the system of differential equations (9)–(10). The only set of
initial conditions that are physically plausible is the set

Ω := {(P, Q) : 0 ≤ P ≤ L0, 0 ≤ Q ≤ X0, P + Q ≤ R0}. (11)

The following theorem shows that for all solutions of (9)–(10) initiated in Ω , the activation level,
as given by the value of P and the inhibition level, as given by the value of Q, approach an equilibrium
as time increases. The practical message is that if the assumed conditions remain prevalent in the long
term, the inhibition level approaches a constant.

Theorem 1. Consider the dynamical system (9)–(10) with all parameters being positive as well as the
set Ω as defined in (11). Then the following results hold:

(i) There is a unique equilibrium point (P∗, Q∗) in the interior of Ω .

(ii) The equilibrium (P∗, Q∗) is a stable proper node and hence locally asymptotically stable.

(iii) The set Ω is positively invariant, that is for any initial condition (P(0), Q(0)) ∈ Ω the solution
(P(t), Q(t)) of the system (9)–(10) is defined for all t > 0 and (P(t), Q(t)) ∈ Ω , t > 0.

(iv) The set Ω is contained in the basin of attraction of (P∗, Q∗).

Note that the statement (iv) in Theorem 1 is stronger than saying Ω is positively invariant, while
statement (ii) or (iii) does not specify the basin of attraction of (P∗, Q∗). The proof of Theorem 1 is
presented in the Appendix.

The phase diagram on Fig. 3 shows how the trajectories of the solutions of the system (9)–(10)
approach the equilibrium (P∗, Q∗), as stated in Theorem 1. One can further observe that all trajectories
initiated at the boundary of Ω excluding the origin are tangential to the line

P + Q = P∗ + Q∗ (12)

at the equilibrium. More precisely, the trajectories first approach the mentioned line (12) and then
continue towards the equilibrium while getting closer to the line and becoming visually indistinguishable
from it. This type of dynamics occurs when the Jacobian of the vector field at the equilibrium has two
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Fig. 3. Phase diagram of the models (9)–(10) of activation (P) and inhibition (Q) with parameter values
(R0, L0, X0, k1, k2, k−1, k−2) = (100, 100, 200, 10, 10, 1, 1). The domain Ω is the set with the purple boundary. The
shape of the trajectories is determined by the interaction of the fast and slow processes: except for the fast manifold, all other
trajectories first approach the slow manifold and than converges to the equilibrium (P∗, Q∗) tangentially to the slow manifold. The
parameters satisfy the condition (16). Hence, the fast and the slow manifold are straight lines given by (20) and (21), respectively.

distinct negative eigenvalues as captured in the concept stable proper node (Tabor, 1988, Section 1.4).
The next subsection discusses the physiological and the mathematical aspects of such dynamics.

2.3 Fast and slow manifolds

We can rewrite the systems (9)–(10) in the form

dP

dt
= k1R0

R0 − P − Q

R0
(L0 − P) − k−1, P (13)

dQ

dt
= k2R0

R0 − P − Q

R0
(X0 − Q) − k−2Q. (14)

We next set k̃i = kiR0, with i = 1 or i = 2 and along with k−1,k−2 these quantities are all rates where the
measuring unit is ‘per unit time’. Specifically, k̃1 is the rate of attachment of the activating agent and k̃2
is the rate of attachment of the inhibiting agent when all docking places are free (P = Q = 0). Typically
in the described type of physiological processes and as it is the case with activation (by CXCL12) or
blocking (by an inhibiting agent, e.g. L-kynurenine) of the receptor CXCR4, we have

k̃1 � k−1, k̃2 � k−2. (15)

The attachment rate is reduced by the fraction of available docking places, that is R0−P−Q
R0

(dimension-
less). When many docking spaces are available, that is P + Q is small compared to R0, we have a fast
process of attachment (growth of both P and Q) driven by k̃1,2. When the docking places are near full,
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the rates of change in P and Q depend on the rate new docking spaces become available, that is by k−1
and k−2. Considering (15), this is relatively much slower process.

The fast and the slow processes are represented mathematically by the invariant manifolds associated
with the eigenvalues of the Jacobian of the right-hand side of the system (9)–(10). As shown in the proof
of Theorem 1 (see Appendix), the Jacobian has two distinct negative eigenvalues. Let us denote them by
−λ and −μ, where μ > λ > 0. It follows easily from the invariant manifold theory, e.g. (Wiggins, 2003,
Theorem 3.2.1), that there exists locally a one-dimensional invariant manifold corresponding to each
eigenvalue. More specifically, each invariant manifold is a smooth curve passing through the equilibrium
and tangent to the eigenvector of the respective eigenvalue. The invariantness further implies that each
of these curves is a trajectory of a solution. Any non-equilibrium solution as time decreases can be
extended to intersect the boundary of Ω in view of Theorem 1. The manifold (curve) corresponding to the
eigenvalue −λ represents the slow process, while the manifold (curve) corresponding to the eigenvalue
−μ represents the fast process. Hence, we refer to them as the slow manifold and the fast manifold,
respectively. Any solution that is not initiated on any of the two manifolds displays features of both, with
the dynamics on the slow manifold eventually dominating.

The separation of the fast and the slow dynamics is a powerful tool in the analysis of complex models
in many fields, including chemical kinetics (Bykov & Goldshtein, 2013). The underlying mathematics
is the singular perturbation theory (Verhulst, 2010, Section 8.2), further generalized to arbitrary vector
fields in Bykov et al. (2006). This theory demonstrates that the slow processes are (mostly) responsible
for the long-term or limiting dynamics. Hence, the analysis can be reduced (with some approximation
error) to the analysis of the system on the slow manifold (Bykov & Goldshtein, 2013).

In the special case when

k1 = k2, k−1 = k−2 (16)

and using the results in the Appendix, one can derive the values of λ and μ in the following explicit form

λ = k1(R0 − P∗ − Q∗), μ = λ + k1(L0 + X0 − P∗ − Q∗). (17)

Clearly, λ < μ. Further, it is easy to show that

λ < k−1

(
1 + R0

L0 + X0 − R0

)
, (18)

μ > λ + k̃1
L0 + X0 − R0

R0
. (19)

The upper bound of λ in (18) is directly proportional to k−1 indicating that λ is small when k−1 is small.
Similarly, the lower bound of μ in (19) indicates that μ is significantly larger than λ when k̃1 is large.
One should note that increasing X0 does not change the situation. In fact, the upper bound of λ decreases
with respect to X0, while the lower bound of μ increases, making the difference between the fast and the
slow processes even more pronounced.
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Fig. 4. Graphs of the solutions P (red)and Q (blue) of the models (9)–(10) as well as P + Q (green) as functions of time (t). The
values of the parameters are as for Fig. 3, namely (R0, L0, X0, k1, k2, k−1, k−2) = (100, 100, 200, 10, 10, 1, 1), for varied set of
initial conditions. The graph of P + Q approaches the equilibrium considerably more quickly than either P or Q, i.e. it is forming
a boundary layer as in singular perturbation theory (Verhulst, 2010), and motivates reducing the analysis of model to its slow
manifold.

In this specific case, both the slow manifold (associated with λ) and the fast manifold (associated
with μ) are straight lines with respective equations

P + Q = P∗ + Q∗, (20)

Q∗P − P∗Q = 0. (21)

These straight lines are visible on Fig. 3, where the parameters are such that (16) holds. The temporal
dynamics are illustrated on Fig. 4. Compared to the graphs of P(t) and Q(t), the graph of P(t) + Q(t)
converges to its equilibrium much faster. Considering (20), this indicates the convergence of the solutions
P(t), Q(t) to the slow manifold that is much faster than the convergence to their equilibrium values. This
is a different way of representing the property that

all solutions, excluding the one initiated at the origin, eventually approach the

equilibrium of the system on a trajectory indistinguishable from the slow manifold. (22)

The special case when (16) holds was considered in some detail to illustrate the ideas that extend to
the general case, i.e. when (16) is not true. The behavior of the solution in the general case is determined
(as stated in (22)) by a fast and slow manifolds associated with the equilibrium as long as (15) holds.
Figure 5 represents a phase diagram for different values of the rate constants where (16) does not hold.
The fast manifold, the slow manifold and the property (22) can be observed in the figure.

3. Experimental data

The inhibitor compound used in this study is L-Kynurenine (L-Kyn). L-Kyn, a downstream metabolite
of the amino acid tryptophan, has been shown to inhibit proliferation and induce cell death of melanoma
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Fig. 5. Phase diagram of the models (9)–(10) of activation (P) and inhibition (Q) with parameter values
(R0, L0, X0, k1, k2, k−1, k−2) = (100, 100, 200, 20, 5, 3, 1). The domain Ω is the set with the purple boundary. The parameters do
not satisfy the condition (16). Hence, the fast and the slow manifold do not have simple equations as in (20) and (21). Nevertheless,
the shape of the trajectories is determined by the interaction of the fast and slow processes: except for the fast manifold, all other
trajectories first approach the slow manifold and then converge to the equilibrium (P∗, Q∗) tangentially to the slow manifold.

cell-lines via in vitro studies (Walczak et al., 2020). In addition to being an endogenous derivative, L-
Kyn is thereby a biologically suitable compound to be tested via melanoma-related in vitro assays and
to demonstrate a reduction in cell viability at increasing concentrations while still being tolerated by
non-cancerous cells (Marszalek-Grabska et al., 2021).

Melanoma cells were exposed to L-Kyn at 1-4 milli molars (mM) for 24, 48 and 72 hours. The cells
were then tested for cell viability using the crystal violet assay. The goal is to measure the effect of the
inhibitory agent on cell viability. Theoretically, the cell viability of a treated population is a function
of time. At any given time, it is defined as the ratio of the treated population size over the size of this
population if untreated. Following the crystal violet assay (Feoktistova et al., 2016), the cell viability is
measured as follows. A set of wells is prepared with 5000 cells each in growth cell culture medium and
incubated at physiological conditions. The initial size of the population is verified via manual counting.
After one day all cells are attached to the wells. The wells are divided into groups: control (no inhibition),
positive control (a known inhibitor added—nocodazole (NOC)) and the other groups treated with varied
concentrations of the inhibiting agent (L-Kyn). At least 9 wells from each group are analysed in 24 hours,
48 hours and 72 hours. The cells are fixed in their state, treated with crystal violet dye (absorbed only
by the DNA of living cells), and the wells are washed so that only the attached cells remain. Then the
absorbance of the dye is measured. The cell viability is calculated as the ratio of the absorbance of the
treated population over the absorbance the control population.

As expected due to the reasons given in the introduction, variations of the measurements are observed
in each analysed set of treated populations as well as in the populations in the negative control group, i.e.
the untreated. The calculated cell viability versus concentration of L-Kyn is given in Fig. 6(a)–(c) for the
specified measurement times. Every point is calculated using the average of three wells. The percentage is
taken with respect to the control populations so that the control population is always 100%. At least three
experiments were conducted. The graphs on Fig. 6(a)–(c) demonstrate significant variability of the results
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(a) Cell viability at 24 hours. (b) Cell viability at 48 hours.

(c) Cell viability at 72 hours. (d) Average cell viabilities over time for the

different concentrations of L-Kyn.

Fig. 6. Graphs showing experimental data for concentrations of the inhibitor (L-Kyn) at 1 mM, 2 mM, 3 mM and 4 mM at the
time points of 24 hours, 48 hours and 72 hours that were obtained using the crystal violet assay. For each time point, at least three
experiments are carried out. Variability across experiments can be observed on (a), (b) and (c), where segments of the same color
connect data collected in the same experiment. Trends of how the cell viability depends on time and concentration emerge clearer
on the time diagram (d) of the averaged data.

from one experimental series to the next. The main reason for this variability is that no two measurements
can be taken from the same population. However, trends can be extracted when considering large number
of experiments. The simplest way to integrate data at the same time under the same treatment is by using
the mean. Figure 6(d) represented the average cell viability versus time for the three concentrations in the
experiments. One can observe that there are general trends of decreasing of cell viability with respect to
time and with respect to concentration. Quantifying these general trends only from the data, particularly
considering the mentioned variability and some apparent exceptions from these trends, is not likely to
be very reliable. In the sequel, we suggest a method of integrating the data over time using the models
(9)–(10). In this way, the data is considered in its entirety over time and not only at individual time
instances.
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4. Expanding the model: theoretical derivation of the cell viability

We associate the data discussed in Section 3 with the models (9)–(10) in the following way. In this section,
we construct mathematically the concept of cell viability as a function of time using the theoretical
definition discussed already. In the sections that follow, we consider the assay data as approximate
measurements of the value of this function at given times, so that reliable and accurate approximation of
this function is derived.

Let M(t) denote the size of a natural population of cells. Suppose that sufficient resources and optimal
environment (as in the assay) are provided. Under such condition, one may assume a constant growth
rate model for the population, that is M(t) is a solution of the differential equation

dM

dt
= rM, (23)

where r > 0 is the constant (relative) growth rate. Then we have

M(t) = M(0)ert.

Let M̂(t) denote the size of an identical at t = 0 population of cells, which is subjected to some
treatment. In the setting of the models (9)–(10), the treatment is inhibition through the blocking of the
CXCR4 sensor. Then the cell viability is the function

M̂(t)

M(t)
, (24)

where the fraction is expressed as a percentage. For every concentration, the data in Section 3 can be
considered as a set of measurements of this function at times t = 0, t = 24, t = 48, t = 72 hours.
We can interpret the error of the measurements in different ways. In whichever way we consider the
measurements and the error associated with them, the goal is to derive an approximation to the function
(24), which agrees best with the data. For that goal, first we derive from the models (9)–(10) a suitable
representation of (24).

The impact of the inhibition can be modelled either as a function of Q or as a function of P. We chose
here Q. The inhibition Q is expected to reduce the growth rate. Thus, we have

dM̂

dt
= (r − αQ(t))M, (25)

where α is a positive constant. If the function Q is known, equation (25) can be solved explicitly and we
have

M̂(t)

M(t)
= M0ert−α

∫ t
0 Q(θ) dθ

M0ert
= e−α

∫ t
0 Q(θ) dθ . (26)

Interestingly, the cell viability function does not depend on the constant r, while it depends through Q
on the values of k1, k−1, k2, k−2, L0, R0, X0, P(0), Q(0) in (9)–(10) of which only X0, the concentration
of the inhibiting substance, is under the gambit of the experimenter.
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In the setting of the experiments, we have Q(0) = 0. However, as discussed earlier, driven by
the fast process, the solution is very quickly close to the slow manifold. This motivates the validity
of approximating such a solution with a solution on the slow manifold, essentially reducing the
dimensionality of the system to one, namely a differential equation about Q. As an illustration, let us
use again the case when (16) holds. Then the slow manifold is the straight-line (20) and Q satisfies on
this manifold the differential equation

dQ

dt
= k1(R0 − P∗ − Q∗)(X0 − Q) − k−1Q

with the solution given by

Q(t) = Q∗ − (Q∗ − Q(0))e−λt,

where λ = k1(R0 − P∗ − Q∗) + k−1. Hence, the Q-coordinate of a solution of the system (9)–(10) can
be approximated by

Q(t) ≈ Q∗ − (Q∗ − Q̄)e−λt, (27)

where (P̄, Q̄) is appropriate point on the slow manifold.
This approximation is illustrated in Fig. 7(a) for a sample of solutions. One can observe that the

graph of the approximation becomes indistinguishable from the Q(t) at about the same time when the
graph of P + Q is indistinguishable from its equilibrium, that is the solution is practically on the slow
manifold. This happens in a relatively small period of time compared to the time it takes for Q(t) to
reach its equilibrium Q∗ (the red dashed line). The validity of the approximation of the form (27) can be
graphically tested by plotting ln(Q∗ − Q(t)). If (27) is valid, then graph of

ln(Q∗ − Q(t)) ≈ ln(Q∗ − Q̄) − λt,

is approximately a straight line. The inverse is also true. If the graph of ln(Q∗ − Q(t)) is approximately
a straight line, then Q can be approximated as in (27).

In a general model, where (16) does not necessarily hold, approximation of the form (27) in
a sufficiently small neighborhood of the equilibrium follows from the Hartman–Grobman Theorem.
However, the validity over the whole slow manifold can be tested by plotting the graph of ln(Q∗ −Q(t)).
Figure 8(a) represents the graphs of Q for a set of solutions of the models (9)–(10) with parameter values
as for Fig. 5. On Fig. 8(b), the graphs of ln(Q∗ − Q(t)) for the same solutions are given. Similar to
Fig. 7(b), these are straight lines except for a small time interval in the beginning. In all our numerical
experiments, we found this to be true as long as (15) holds. Hence, we use the approximation (27) with
Q̄ and λ yet unknown.

Then, from (26), we obtain

M̂(t)

M(t)
≈ e−αQ∗ e−λt−1+λt

λ
−αQ̄ 1−e−λt

λ . (28)

The function in (28) depends on many unknown parameters. These include α and through Q∗ and Q̄, all
parameters of (9)–(10) as well as P(0). Hence, this function is not intended to be derived from the model,



14

(b)(a)

Fig. 7. Solutions of models (9)–(10) with parameters (R0, L0, X0, k1, k2, k−1, k−2) = (100, 100, 200, 10, 10, 1, 1) (as in Fig. 3) and
initial conditions Q(0)=0, P(0)∈{45, 65, 85} (a) Graphs of the Q-coordinate (solid blue) of solutions and their approximations on
the slow manifold (dotted magenta). Graphs of P + Q (solid green) for the same solutions. The graphs of P + Q reach equilibrium
relatively fast, thus indicating a boundary layer as in Fig. 3. Except for a short initial time period, the graph of Q overlaps with its
approximation on the slow manifold. (b) Graphs of ln(Q∗ − Q) for the functions Q (solid blue) and their approximations (dotted
magenta) plotted in (a). Except for a short initial time period the graph of ln(Q∗ − Q) is a straight line, thus indicating exponential
decay.

(a) (b)

Fig. 8. Solutions of models (9)–(10) with parameters (R0, L0, X0, k1, k2, k−1, k−2) = (100, 100, 200, 20, 5, 3, 1) (as in Fig. 5) and
initial conditions Q(0)=0, P(0)∈{25, 50, 75}. (a) Graphs of the Q-coordinate (solid blue) of solutions. (b) Graphs of ln(Q∗ − Q)

for the functions Q (solid blue) and their approximations (dotted magenta) plotted in (a). Since (8) is violated, we do not have the
approximation on the slow manifold in an explicit form. Nevertheless, except for a short initial time period, the graph of ln(Q∗−Q)

is a straight line, thus indicating exponential decay and motivating approximation by (27).

but rather it provides means of assimilating the data as approximate observations of a function of specific
form. Taking into account that, as discussed in Section 3, some error is involved in the measurements,

we may consider that measurements of M̂(0)
M(0)

, while close to 1 are not necessarily 1. Then we have for
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the cell viability an approximation by a function of the form

M̂(t)

M(t)
≈ φ(t) = Ae−B e−λt−1+λt

λ
−C 1−e−λt

λ , (29)

where A ≈ M̂(0)
M(0)

= 1, B = αQ∗, C = αQ̄. The values of A, B, C and λ for each concentration of the
inhibiting agent can be estimated by fitting the curve φ to the experimental data.

Remark. The time scale on Figs 4, 7 and 8 is not specified. These figures represent qualitatively the
behavior of the depicted functions over time. Note that the conclusions derived from these figures are of
such nature that they are independent of the time scale. The time axis on Figs 4, 7 and 8 should not be
confused with the time axis on Fig. 6(d) as well as figures in the next sections, where the time is in hours
and the range is determined by the measurement times in the experiments.

5. Identifying the parameters of the cell viability function from the experimental data

5.1 Fitting curves of the form (28) to the experimental data

We consider the data discussed in Section 2, which was obtained via the crystal violet assay protocol
using L-Kyn as an inhibiting agent. For any fixed concentration, we use the least squares method to
derive the best fitting curve of the form (29), where at t = 0 we consider the square of φ(0) − 1 =
A − 1. The optimization was performed using the Matlab function fminsearch (MATLAB, 2010),
with starting points from a dense mesh covering the feasible domain of the parameter vector (A, B, C, λ).
The numerical procedure discovered multiple local equilibria with very similar values of the objective
function, but very different values of the parameters. Further, all runs returned small values of λ (not
exceeding 10−3), which explains the ill-conditioning of the optimization problem. For small λt, the
first fraction in the exponent in (29) is approximately equal to 1

2λt2. Hence, B and λ cannot be reliably
estimated, e.g. increase in B can be compensated by a decrease of λ, returning the same or very similar
value of the objective function. This is resolved by rewriting the function φ in the form

φ(t) = Ae
−D e−λt−1+λt

λ2 −C 1−e−λt
λ , (30)

where D = λB. This stabilizes the optimization problem and we obtain a unique equilibrium for every
concentration. The values of A, D and λ are given in Table 1, while the graphs of φ are presented in
Fig. 9. Let us recall that the statistic R2 measures the goodness of fit of a model. It represents the fraction
of variation explained by the model. Therefore, it varies between 0 and 1. Values over 0.95, as the values
obtained in Table 1, are considered to indicate a very good fit of the model to the data.

5.2 Analysis and interpretation

The main driver of the dynamics of the curves in Fig. 9 is the term the parameter D = αλQ∗. Considering
the mathematical definition and the biological meaning of Q∗ and λ, they should both increase with any
increase of the concentration of the inhibiting agent. Hence, one expects that D to increase too. Indeed,
such increase of D can be observed clearly in Table 1.

The parameter C = αQ̄ is expected to have similar values for all experiments since the initial states
are similar. The obtained values of C are in a short-range near zero, from 10−14 to 10−16. These small
values of C imply that the initial states of the system are very close to the endpoint at Q = 0 of the
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Fig. 9. Graphs (solid magenta) of the functions of the form (30) fitted to the data of cell viability with concentration of the inhibitor
(L-Kyn) at 1 mM, 2 mM, 3 mM and 4 mM at the time points of 24 hours, 48 hours and 72 hours (see Fig. 6). The blue dots represent
the data points.

Table 1 Estimated values of the parameters A, D, C and λ in (30)

Concentration A D C λ R2

1mM 1.02866 2.82646 × 10−4 1.47370 × 10−14 3.19765 × 10−4 0.9665
2mM 1.02222 4.97166 × 10−4 3.22590 × 10−14 8.55739 × 10−5 0.9794
3mM 1.04992 1.05762 × 10−3 1.40822 × 10−15 1.75403 × 10−3 0.9710
4mM 1.03818 1.27147 × 10−3 5.91781 × 10−16 1.55132 × 10−3 0.9691

slow manifold. We recall that in the implemented experiments, the cells were allowed to settle under
optimal conditions for 24 hours. One may expect that during this period large fraction of the receptors
CXCR4 were occupied by the CXCL12 molecules. A small value of C, and respectively of Q̄, support
this hypothesis.
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(a) (b)

Fig. 10. Graphs of φ as a the function of λ with the other parameters as for concentration 2mM in Table 1 and t = 24: (a) The
value of the function φ cannot be computed accurately for λ < 10−7 (log scale for λ) using the formula (30) on a digital computer
with double precision. As λ → 0, the value of φ monotonically decreases to 88.585...%. The graph shows oscillations and lack
of convergence, thus illustrating the loss of accuracy. (b) The graph exhibits a very small gradient for λ ∈ [10−7, 10−3], i.e. φ is
nearly constant with respect to λ. The graphs in (a) and (b) motivate the using the approximation (31).

Regarding the estimated values of λ, firstly let us note that they are small. Using Q̄ ≈ 0, we have

Q(t) ≈ (1 − e−λt)Q∗.

The small values of λ indicate that the observed impact on cell viability occurs while Q(t) is still
relatively far from its equilibrium. As an example, for the concentration of 3mM, Q(72) ≈ 0.118Q∗,
that is the level of inhibition is about 12% of its maximum for the given concentration.

Secondly, we can observe that in this range of λ of about 10−3 and less, the function φ depends
little on λ. As an example, we have on Fig. 10(b) the graph of φ as a function of λ with the rest of the
parameters being for the concentration 2mM and t = 24. There is indeed a very small gradient, which
implies that the estimates of λ are sensitive to small variations of the data. A general decreasing trend in
the values of λ can be noticed in Table 1, but it is not as clear and well pronounced as in the case of D.
The mentioned sensitivity is a possible reason. From Fig. 10(a), we observe that for even smaller values
of λ (λ < 10−7) the accuracy of the computation of φ is completely lost due to roundoff errors.

5.3 Reducing the number of parameters

Theoretically, function φ depends on four parameters. However, we established little dependence on λ.
More precise computations show that, we have

e−λt − 1 + λt

λ2 ≈ 1

2
t2, (31)

where for λ < 0.002 and t ≤ 72, the relative error of approximation is bounded above by

1

3
λt < 4.8%. (32)
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Table 2 Estimated values of the parameters A and D in (33)

Concentration A D R2

1mM 1.02841 2.80609 × 10−4 0.9665
2mM 1.02211 4.96267 × 10−4 0.9794
3mM 1.04874 1.02984 × 10−3 0.9716
4mM 1.03746 1.24571 × 10−3 0.9695

Hence, we can apply the approximation formula in (31). Similarly, we have

1 − e−λt

λ
≈ t.

However, due to the small value of C, the term containing this fraction makes a negligible contribution
to the value of φ. Therefore, from a mathematical point of view, the obtained functions φ can be nearly
as well represented through functions from the two-parameter family

ψ(t) = Ae− 1
2 Dt2 . (33)

To validate this statement, we repeated the fitting process to the data using the functions ψ as given in
(33). The estimated values of A and D are given in Table 2. The values of D are very similar to the values
of D in Table 1 with at least the first two significant figures being the same. The values of A are the same
correct to four significant figures. The value of R2 has a very small increase affecting the fourth or fifth
digit only. The graphs of the functions ψ with parameters from Table 2 are visually indistinguishable
from the graphs of the functions φ on Fig. 9. Hence, these need not be presented.

The form (33) takes into account that the parameters C and λ in (30) are confined into a small
neighborhood of zero, so that one can get nearly as good approximation using a two parameter family
functions as given in (33). The similarity of the approximations by φ and ψ highlights

• the robustness of the estimation of these two parameters;

• identifying the term Dt2 as a primary driver of the dynamics with respect to time (due to this quadratic
term we obtain the distinct sigmoidal shape of the curves in Fig. 9);

• the parameter D captures the response to change of the concentration of the inhibitor.

Remarks.

1. The parameter D = αλQ∗ is composite and depends on all parameters of the model. While λ is
removed from φ as we move from (30) to (33), λ is not removed from the cell viability function
(28). It is still represented through D. Further, the form (33) shows that, while it might be difficult
to estimate reliably Q∗ and λ individually, a reliable estimation of the product comprising D can
be computed.

2. The fact that we can reduce the number of parameters of φ to two by letting λ → 0 in the first
fraction of the exponent and C = 0 is only valid for the considered set of data and it is not a
general property of the model. In a different experiment, where a different set of data is obtained,
the situation may be different. For example, λ is small only relative to the considered time interval
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Fig. 11. Graphs of the values of D for c = 0, 1, 2, 3, 4 (blue dots) and the interpolating function for c ∈ [0, 4] (red solid line).

[0, 72] so that (32) holds. If experiments are conducted over a longer period of time, (31) would
not be appropriate to use.

3. The parameter A was introduced in (30) to account for possible variation in the initial states of
the populations. Indeed, as the cell viability values are calculated based on the controls (cells not
exposed to any compound), a variability in the cell viability values are expected even at t = 0.
The fact that the results in Table 1 and in Table 2 show values of A is persistently larger than 1 by
about 3% is a possible indication of a process not yet accounted for in the model. For example,
some compounds are known to cause cell growth and not just cell death. An alternative possible
cause is a small delay from administering the inhibitor until the processes start progressing exactly
as described in the model. The deviation of A from 1 is not sufficiently pronounced to support
any of these hypotheses with the available data. Further, the mentioned overestimation of A is
rather small to affect the quality of the approximation beyond the initial stages, as the decay due
to the exponent in (33) determines the primary dynamics. It is nevertheless an issue that can be
investigated in future research theoretically and experimentally.

6. Calculating IC50

As mentioned, IC50 is a commonly used for characterizing the inhibiting properties of an agent and as
a benchmark for comparison with other agents. In more detail, given time t, IC50(t) is the concentration
that reduces the viability of the cells by 50% at time t. From the graphs in Fig. 9, given the respective
concentration, one can read the time for which this concentration provides a 50% reduction of cell
viability. We have IC50(71.84) = 1, IC50(53.69) = 2, IC(37.86) = 3, IC50(34.20) = 4. We derive
in this section the graph of the IC(50) as a function of time, so that one read from it the value of IC50 for
any specific time. For that purpose, we represent the cell viability as a function ϕ(c, t) of concentration
c (in mM) of the inhibiting agent and the time t (in hours).

As shown in Section 5, the impact of the concentration of the inhibitor is captured through the change
of the parameter D in (33). Let us consider D as a function of c, that is D = D(c). The second column
of Table 2 gives the values of D(1), D(2), D(3) and D(4). By default, D(0) = 1. Since we do not
have in any explicit form how D depends on c, we would not attempt a curve fitting, but rather use an
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Fig. 12. Surface graph of the cell viability ϕ defined in (34) as a function of two variables—the time and the concentration of the
inhibitor. Solid line: level curve at 50%. Dashed lines: level curves at 30%, 40%, 60% and 70%.

Fig. 13. Solid line: IC50(t) as a function of time. Dashed lines (left to right): IC30(t), IC40(t), IC60(t) and IC70(t) as functions
of time.

interpolation of the existing data. One can reasonably expect that the function is D is smooth. Hence,
we apply interpolation via cubic convolution—the simplest convolution interpolation, which yields a
smooth interpolant (Keys, 1982), and conveniently provided via the Matlab function interp1 for one
dimensional interpolation. The graph of the data points and the interpolating function D(c) for c ∈ [0, 4]
is shown in Fig. 11.

In a similar way, we obtain the function A(c) for c ∈ [0, 4]. We omit the details since A exhibits little
change for different concentrations with respectively little impact on the cell viability.

Thus, we obtain the cell viability function

ϕ(c, t) = A(c)e
−1

2
D(c)t2

, c ∈ [0, 4], t ∈ [0, 72]. (34)

The graph of the viability function ϕ is given on Fig. 12. The magenta solid line on the surface
represents the intersection with the horizontal plane where cell viability = 50%. When plotted on
concentration vs. time axes, we obtain the graph of the IC50 as a function of time, see solid line on
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Fig. 13. We can read from the graph IC50 for any given time. For example, we have IC50(48) = 2.2725,
IC50(60) = 1.638. Further, since we have the cell viability in the explicit form (34), we can construct
a level line at any cell viability level. The dashed lines on Fig. 12 represent level lines for cell viability
of 30%, 40%, 60% and 70%. Hence, we can obtain not only the half maximum inhibitory concentration
(IC50), but also the inhibitory concentration for any required level of cell viability at any specified time.
The dashed lines represent the inhibitory concentrations for cell viability of 30%, 40%, 60% and 70%
as functions of time.

7. Conclusions

The paper represents a study of the inhibition of cancer cell viability via blocking a signalling pathway
essential for the adhesion and proliferation of the cells. The method of analysis is based on the derivation
of a mathematical model representing the inhibition mechanism and the activation–inhibition dynamics.
The experimental results are assimilated and interpreted through the model. Thus, variations in the data
that may be obscuring general trends are ‘filtered out’. The method is exemplified on blocking the
CXCR4/CXCL12 axis in melanoma cells. The experimental data is obtained by using L-Kynurenine
as an inhibiting agent. The original contribution of the paper is (a) new model of inhibition of the
CXCR12/CXCR4 signalling pathway, comprising a competitive dynamical system; (b) alignment of
model and experimental data via theoretical construction of the observable variable, namely the cell
viability; (c) quantifying the effect of inhibition in a comprehensive way through the cell viability
derived as a function of inhibitor concentration and time. The obtained results enrich the methodology of
biological application of mathematical methods and contribute to a better understanding of the inhibition
mechanism of signalling pathways. The assessment of the efficiency of the inhibitor is relevant to any
further consideration of its feasibility for treatment of melanoma.

Using the same integrative approach of mathematical modelling and experimental work, one can
consider other inhibitors. Specifically, this team intends to study the impact of the CTCE-9908 agent as
studied by Porvasnik et al. (2009) on the cell viability of melanoma cells. However, the method is open
to a wider spectrum of applications. Further attention will be given to unveiling any unaccounted yet
causal relationships in the model, e.g. the reason for the persistent overestimation of the parameter A.
Certainly, such work will improve the accuracy of the model and the reliability of the produced results.
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Appendix

Before we present the proof of Theorem 1, we recall the Bendixon–Dulac criterion (e.g. Layek, 2015)
concerning the non-existence of a periodic solution for a planar system. For a planar system ẋ = f (x, y)
and ẏ = g(x, y) with a vector field F = (f , g), if div(F) = ∂f /∂x + ∂g/∂y �= 0 on a simply connected
subset Ω of R2 (a region in the plane without gaps/holes), then there is no non-constant periodic solution
in Ω .

Proof of Theorem 1

Proof of (i). The equilibria of (9)–(10) are solutions of the simultaneous equations

k1(R0 − P − Q)(L0 − P) = k−1P, (A.1)

k2(R0 − P − Q)(X0 − Q) = k−2Q. (A.2)

Dividing the left-hand sides and the right-hand sides of the equations (A.1) and (A.2) yields

k1(L0 − P)

k2(X0 − Q)
= k−1P

k−2Q
. (A.3)

Solving for Q, we obtain

Q = X0P

P + k1k−2
k2k−1

(L0 − P)
. (A.4)
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Expressing Q from equation (A1), we obtain

Q = R0 − P − k−1P

k1(L0 − P)
. (A.5)

The systems (A.1)–(A.2) are equivalent to the systems of equations (A.4)–(A.5), where each equation
gives Q as a function of P. Equation (A.4) defines a continuous increasing function of P on the interval
[0, L0]. Considered on the interval [0, L0], its graph connects the points (0, 0) and (L0, X0). The function
of P given in (A.5) is continuous and decreasing on the interval [0, L0) from R0 to −∞. Then we can
conclude that the graphs of the function in (A.4) and (A.5) intersect exactly once at a point (P∗, Q∗),
which satisfies 0 < P∗ < L0 and 0 < Q∗ < X0. It follows from (A.5) that P∗ + Q∗ < R0. Therefore,
(P∗, Q∗) is a unique solution of (A.1)–(A.2) in Ω or, equivalently, a unique equilibrium of (9)–(10) in Ω .

Proof of (ii). The Jacobian J of the vector field F of the system (9)–(10) can be written as

J =
(

k1(α + β) − k−1 k1β

k2γ k2(α + γ ) − k−2

)
,

where α := P + Q − R0, β := P − L0 and γ := Q − X0. Observe α, β, γ < 0 when (P, Q) is contained
in the interior of Ω .

We do not evaluate the point (P∗, Q∗) to avoid dealing with tedious expressions. We prove that it is
a hyperbolic sink by showing that the eigenvalues λ1 and λ2 of the Jacobian evaluated at (P∗, Q∗) lie
to the left of the imaginary axis in the complex plane. To this end, it is sufficient to show that λ1λ2 =
det(J)|(P∗,Q∗) is positive, while λ1 + λ2 = trace(J)|(P∗,Q∗) is negative. The determinant of J, det(J)

simplifies to

det(J) = k1k2(α + β)(α + γ ) − k1k−2(α + β) − k−1k2(α + γ ) + k1k2βγ + k−1k−2

= k1k2

(
(α + β)(α + γ ) − βγ )

)
− k1k−2(α + β) − k−1k2(α + γ ) + k−1k−2

= k1k2α(α + β + γ ) − k1k−2(α + β) − k−1k2(α + γ ) + k−1k−2.

Since α, β, γ < 0 in the interior of Ω , (P∗, Q∗)D, the terms k1k2α(α + β + γ ), −k1k−2(α + β) and
−k−1k2(α + γ ) are both positive, and thus det(J) > 0.

Next, in the same vein, we have trace(J) = div(F) = (k1(α+β)−k−1)+k2(α+γ )−k−2) < 0 in the
interior of D. Thus, (P∗, Q∗) is a hyperbolic sink, and hence a locally asymptotically stable equilibrium.
Further, the product of the non-diagonal entries of J is positive, which implies that the eigenvalues of J
are real and distinct. Hence, the equilibrium is a stable proper node.

Proof of (iii). The set Ω is determined in (11) by five linear inequalities. Hence, it is always a convex
polygon. In a typical case when R0 < L0 and R0 < X0, the set Ω is a triangle. However, if the stated
inequalities do not hold, Ω can be a rectangle, a trapeze or a pentagon. We prove that Ω is positively
invariant set for the dynamical system (9)–(10) by using the so-called tangent condition (Walter, 1998,
Section 10.XV), namely that at every point of the boundary ∂Ω the dot product of the vector field and
any outer normal vector at that point is non-positive. Let us recall that a vector ν(x) �= 0 is called outer
normal vector to Ω at x ∈ ∂Ω if the open ball with center x + ν(x) and radius |ν(x)| has no intersection
with Ω . This definition is applicable not only to the sides of the polygon Ω , but also at the vertices.
The boundary consists of all points satisfying the five inequalities in (11), while at least one of them
is satisfied as an equality. Verifying the tangent condition entails substituting in the right-hand side of



25

(9)–(10) the respective values of P and/or Q and calculating the dot product with the outer normal. As
illustration, consider the line segment P + Q = R0. Its outer normal vector is (1, 1). On this segment, we
have dP

dt = −k−1P and dQ
dt = −k−2Q. Therefore for the said dot product, we have −k−1P − k−2Q ≤ 0.

Similarly, one considers the rest of the boundary to establish that the tangent condition holds. Hence, Ω

is positively invariant.

Proof of (iv). Suppose there exists a point z ∈ Ω that is not contained in the basin of attraction of the
sink (P∗, Q∗). This implies that the ω-limit set of the trajectory passing through z is contained in Ω

by (iii). Owing to a result of a Poincare and Bendixon (e.g. Dumortier et al., 2006), for a planar flow,
the ω-limit set would either be an equilibrium solution or a periodic solution or a saddle-loop. Since
div(F) < 0 on Ω , a periodic solution is ruled out by Bendixon–Dulac criterion, and since (P∗, Q∗) is the
unique equilibrium that is a sink, a saddle loop is also not possible. Thus, no such z exists, and hence Ω

is contained within the basin of the (P∗, Q∗). �
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